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Abstract. Since the announcement of the NIST call for a new
lightweight cryptographic standard, a lot of schemes have been proposed
in response. Xoodyak is one of these schemes and is among the final-
ists of the NIST competition with a sponge structure very similar to the
Keccak hash function – the winner of the SHA3 NIST competition. In
this paper with conditional cube attack technique, we fully recover the
key of Xoodyak reduced to 6 and 7 rounds with time complexity resp.
242.58 and 276.003 in the nonce-reusing scenario. In our attack setting,
we import the cube variables in the absorbing associated data phase,
which has higher degree of freedom in comparison to data absorption
phase. We use MILP tool for finding enough cube variables to perform
the conditional key recovery attack. The 6-round attack is practical and
has been implemented. To the best of our knowledge, this is the first
proposed attack on 7-round Xoodyak.

Keywords: Xoodyak · Symmetric-key · Cryptanalysis · Conditional
Cube Attack · Lightweight Cryptography · MILP

1 Introduction

Due to the importance of lightweight cryptographic algorithms, the US National
Institute of Standards and Technology (NIST) in 2018 [18] announced an open
call for new lightweight cryptographic standards. On March 29, 2021, NIST
announced ten finalists and Xoodyak is one of the finalists. On February 7,
2023, NIST announced Ascon [11] as the winner of the competition [17]. Even
though Xoodyak was not chosen as the winner it still remains of interest as a
secure and efficient lightweight algorithm against which no attack on the full
version has been reported to date. In this paper we improve the best known
attack on Xoodyak reduced to 6 rounds and propose the first 7-round attack.

Xoodyak [6] is a scheme based on the Xoodoo permutation, proposed by the
same research team [5] that designed SHA3/Keccak [10] and has a very similar
structure. Throughout this paper, for the sake of convenience, the expression
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SHA3-like designs include all of the variants that are derived from the Keccak
sponge-based round function or from the Xoodoo permutation.

Cube attacks are a class of symmetric-key attacks, targeting cryptographic
primitives with low algebraic degree. In the attack procedure, the cryptographic
primitive is interpreted as a polynomial with algebraic degree n. The attack
leverages the fact that summing the output of 2n−1 inputs composed of all pos-
sible values of a set (i.e., a cube) of n − 1 variables (all other variables being
fixed), yields a linear function. If the obtained linear function contains some
secret information (e.g. bits from the internal state or the key), the secret infor-
mation can be recovered by solving a linear system of equations.

To improve the efficiency of the original cube attack, two types of related
attacks have been proposed. The first one is called a cube attack-like attack and
for the first time was introduced by Dinur et al. [7] at EUROCRYPT 2015. Later
in [4,12,19] the authors applied cube attack-like technique to attack different
variants of SHA3-like designs. The second semi-cube attack is called the condi-
tional cube attack and for the first time was introduced by Huang et al. ([13])
at EUROCRYPT 2017 and further extended by [15,16,20,22].

Cube attack-like cryptanalysis is similar to the original cube attack and has
an offline and an online phase. In the offline phase, a dictionary of all values of
some key bits (so-called related keys) and the corresponding value of the output
cube sum after certain number of rounds is compiled. In the online phase, by
having the real value of the related key bits, the cube sum is computed and one
looks for a match in the dictionary. In the conditional cube attack, the value of
the cube sum should become zero under certain conditions and by guessing the
key bits involved in the conditions, those key bits are recovered.

The proposed attacks in [7], are one of the first works on analyzing the resis-
tance of SHA3-like designs against the cube attack. The authors implemented
various types of algebraic attacks on keyed Keccak and Keyak [1]1 variants and
broke 6–7 rounds of these variants in practical time. Inspired by [3], with setting
up cube variables in the column parity, they bypassed the propagation produced
by θ in the first round.

In [13], Huang et al. for the first time, developed a new type of conditional
cube tester for SHA3-like designs. Inspired by dynamic cube attack [9], the
authors imposed some bit conditions for certain cube variables for controlling
the propagation of cube variables caused by the nonlinear operation χ and con-
structed a cube tester with smaller dimensions. They applied their model to
reduced-round Keccak-MAC [3] and Keyak [1] and improved the previous pro-
posed results for recovering the key, in terms of complexity and number of rounds.

Later in [15], by using a MILP tool, the authors improved the key recovery
attack in [13] on reduced-round Keccak-MAC-384 and Keccak-MAC-512 by 1
round. For increasing the number of rounds of the attack, the challenge was
finding enough ordinary cube variables. For being able to find enough ordinary
cube variables, the MILP method proposed by the authors described the relations
between ordinary cube variables and conditional cube variables in the first and

1 Keyak is an AE scheme based on Keccak sponge function.
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second rounds. In [20], for improving the conditional cube attacks on SHA3-like
designs in terms of the complexity and number of rounds, the authors proposed
another MILP model, which accurately described the propagations of the cube
variables through the two rounds and also proposed a MILP model which was
able to linearize first two rounds of SHA3-like designs. The authors applied their
technique to attack against KMAC128 and KMAC256 [21].

Some variants of SHA3-like designs such as Ketje Jr [2], Xoodyak, do not
have enough degree of freedom to perform the Huang et al.’s technique [13],
even with the help of MILP tool. To be more specific, the portion of their state
allocated for importing the data is not large enough to put enough cube variables
to perform the attack. For dealing with a low degree of freedom in some variants
of SHA3-like designs, Li et al. [16] introduced the so-called kernel quadratic term,
which was more compatible with such variants.

There exist just 2 works in the area of cube key-recovery attack on Xoodoo
structures. The first one is cube attack-like cryptanalysis on 6 rounds of a
Xoodoo-based authenticated encryption proposed by [19] with time complex-
ity and memory complexity resp. 289 and 255. The second one is a conditional
cube attack on 6 rounds of Xoodyak proposed by [22] with 243.8 time complexity
and negligible memory cost.

In this paper by applying Li et al.’s conditional cube attack technique [16],
we recover the key of 6 and 7-round reduced Xoodyak. Unlike others [16,22],
we import the cube variables in the absorbing associated data phase instead of
the absorbing data phase. 2 Table 1 shows related results in comparison to our
results.

Table 1. Summary of key recovery attacks on SHA3-like designs

Variant Capacity Degree of Freedom Rounds Time Reference

Xoodyak 192 192 6 243.8 [22]

Xoodyak 192 352 6 242.45 Sect. 2

Xoodyak 192 352 7 276.003 Sect. 3

Our Contributions. In this paper, we apply the Li et al.’s conditional cube attack
technique [16] on Xoodyak and present the first 7 rounds of attack on Xoodyak,
and also 6 rounds with lower complexity in comparison to the proposed attack
in [22]. The complexities of our attack are listed in Table 1, and the details are
as follows:

– For 6-round Xoodyak in nonce-misuse settings, we recover the 384-bit key
with time complexity 242.45 and negligible memory cost.

– For 7-round Xoodyak in nonce-misuse settings, we recover the 384-bit key
with time complexity 276.003 and negligible memory cost.

2 the corresponding source code is available via https://github.com/mohammadvaziri/
Conditional-Cube-Attack-on-Xoodyak.

https://github.com/mohammadvaziri/Conditional-Cube-Attack-on-Xoodyak
https://github.com/mohammadvaziri/Conditional-Cube-Attack-on-Xoodyak
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Organization. In Sect. 2 some notations and brief descriptions of Xoodyak
are given. Some related works including cube attack and conditional cube
attack techniques are introduced in Sect. 3. Section 4 describes the MILP search
model for conditional cube attack. Section 5 gives the applications to Xoodyak.
Section 6 concludes this paper.

2 Preliminaries

2.1 Notations

Throughout the paper, we will use the following notations for Xoodoo:

S0 initial state of the Xoodoo permutation,
Si−1,θ internal state of Xoodoo after θ in the i-th round,
Si−1,ρwest

internal state of Xoodoo after ρwest in the i-th round,
Si−1,χ internal state of Xoodoo after χ in the i-th round,
Si output state of Xoodoo of the i-th round,
(i, ∗, k) index of a column,
(∗, j, k) index of a row,
(i, j, ∗) index of a lane,
(i, j, k) index of a bit,
A[i][j] the lane indexed by (i, j, ∗) of state A,
A[i][j][k] the bit indexed by (i, j, k) of state A.

2.2 Description of Xoodyak

Xoodyak [6] is designed based on Xoodoo [5] permutation which includes an
Authenticated Encryption with Additional Data (AEAD) scheme and a hash-
ing scheme. Xoodoo has a 384-bit state A, which is represented as a three-
dimensional array of bits, namely A[4][3][32]. In the state, the one-dimensional
arrays A[x][∗][z], A[∗][y][z] and A[x][y][∗] are called a column, a row, and a
lane respectively. The coordinates are computed modulo 4, modulo 3, and
modulo 32 for x, y, and z respectively. The round function of Xoodoo is as
R = ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ and in the following the details of the round function
of Xoodoo permutation based on the order are given:

θ : A[x][y][z] = A[x][y][z]
⊕ ∑2

j=0(A[x − 1][j][z − 5]
⊕

A[x − 1][j][z − 14]).
ρwest : A[x][1][z] = A[x − 1][1][z], A[x][2][z] = A[x][2][z − 11].
ι : A[0][0] = A[0][0] ⊕ RCi.
χ : A[x][y][z] = A[x][y][z] ⊕ ((A[x][y + 1][z] ⊕ 1) ∧ A[x][y + 2][z]).
ρeast : A[x][1][z] = A[x][1][z − 1], A[x][2][z] = A[x − 2][2][z − 8].

In Fig. 1, f is the 12-round permutation Xoodoo. As shown in Fig. 1, the
structure of the Xoodyak-AEAD is as follows: first, a 128-bit key is absorbed
into the 384-bit state, then the Xoodoo permutation is applied to the state;
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second, a 128-bit nonce is absorbed then the Xoodoo permutation is applied to
the state; third, the 352-bit associated data block is absorbed, then the Xoodoo
permutation is applied to the state; then it starts to absorb 192-bit plaintext
blocks and output ciphertext blocks in each term; the finalization phase happens
at the end. More information on the details of the Xoodyak-AEAD can be found
in [6].

Fig. 1. Xoodyak-AEAD structure

Our attack has two essential characteristics: firstly, we assume that the nonce
is reused, as the same assumption used by [16]; secondly, we apply our conditional
cube attack in the phase of absorbing associated data, contrary to [16], where
the attack is applied in the absorbing data phase. The degree of freedom in the
absorbing data phase is 192-bit. Following [6], however, the degree of freedom is
352-bit. To be more specific, according to Sect. 2.3 in [6], the absorb rate Rkin

is 44 bytes and according to Algorithms 1 and 2 in [6], Rkin is used during the
absorbing of associated data, which means the degree of freedom in associated
data phase is 352-bit. It should be noted that in order to recover the main key,
in our attack scenario the full 384-bit state needs to be recovered and the key
can be computed inversely, while in the scenario of [16] just half of the state
needs to be recovered.

3 Review of Cube Attacks and Related Techniques

In this section, we briefly describe the cube attack and overview 2 types of
proposed conditional cube attacks on the structure of the SHA3-like designs.
The first type of conditional cube attack is proposed by Huang et al. [13] to
attack Keccak keyed mode, and the second type is introduced by Li et al. [16]
to attack the schemes that have a lower degree of freedom.

3.1 Cube Attack

Cube attack is a chosen plaintext attack, which can be seen as an extension
of higher order differential attacks [14], and was formally introduced by Dinur
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et al. [8]. In the cube attack, the output of the cipher is regarded as a black
box polynomial and by querying the black box polynomial a linear system of
equations is created. The linear system of equations contains some (or whole)
part of the secret key and by solving this system some (or whole) part of the
secret key is recovered. Cube attack is based on the following theorem:

Theorem 1 (Dinur, Shamir [8]). Given a polynomial f : Xn → {0, 1} of
degree d. Suppose that 0 < k < d and t is the monomial x0...xk−1. Write the
function as

f(x) = t · Pt(x) + Qt(x)

where none of the terms in Qt(x) is divisible by t. Note that degPt ≤ d−k. Then
the sum of f overall values of the cube (defined by t) is

∑

x′=(x0,...,xk−1)∈Ct

f(x
′
, x) = Pt(1, ..., 1

︸ ︷︷ ︸
k

, xk, ..., xn−1)

whose degree is at most d − k (or 1 if k = d − 1), where the cube Ct contains all
binary vectors of the length k.

In Theorem 1, Pt(x) is the “superpoly” of the term t. The original cube attack
contains two phases resp. offline and online. In the offline phase, by selecting a
random cube set, the superpoly, independent of the secret variables, is obtained
and in the online phase, by fixing the secret variables the actual value of the
obtained Superpolies is computed, and some linear system of equations is built.
As can be seen in [7,8], implementing the original cube attack is very expensive,
since the cube variables in the cube set are randomly selected and most of the
time the obtained Superpolies do not contain any useful information.

3.2 Conditional Cube Attack

To perform the conditional cube attack on r round of the SHA3-like designs,
the attacker looks for a set of cube variables {v0, ..., vk−1}, k ≥ 2 such that the
term v0...vk−1 does not appear at the output of the r − th round if some con-
ditions imposed at the first round hold. For doing so, some cube variables are
determined as conditional cube variables and for controlling the propagation of
the conditional cube variables, the conditions are imposed on the neighboring
positions of the conditional cube variables prior to the first χ operation. There-
fore, if the imposed conditions hold, the propagation of the conditional cube
variables are controlled and the term v0...vk−1 does not appear at the output
of the r − th round, otherwise, it does appear. Consequently, the cube sum is
zero only if the imposed conditions hold. Since the position of the conditions
includes the summation of some secret key bits and constant bits, the conditions
with high probability hold, if only the key bits involved in the conditions will be
guessed correctly.

Therefore, for performing a conditional cube attack on r rounds of a SHA3-
like design, the attacker first tries to find a term that does not appear at the
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output of the r-th round under certain conditions, then guesses the involved
secret key bits in the conditions. If the cube summation is zero, then the guessed
key bits with high probability are correct. In the following 2 techniques of con-
ditional cube attack proposed by Huang et al. and Li et al. is presented.

Huang et al.’s Conditional Cube Attack. The first type of conditional cube
attack is introduced by Huang et al. [13]. For performing the conditional cube
attack, first, they define two types of cube variables as conditional cube variable
and ordinary cube variable. For attacking r rounds of a SHA3-like design, they
prove that by having p(0 ≤ p < 2n+1) conditional cube variable and q(q =
2n+1−2p+1) ordinary cube variables, multiplication of conditional and ordinary
cube variables will not appear at the output of the r-th round. In the following,
the details of the Huang et al.’s conditional cube attack technique are given.

Definition 1 ([13]). Cube variables that have propagation controlled in the first
round and are not multiplied with each other after the second round of Keccak
are called conditional cube variables. Cube variables that are not multiplied
with each other after the first round and are not multiplied with any conditional
cube variable after the second round are called ordinary cube variables.

Theorem 2 ([13]). For (n + 2)-round Keccak sponge function (n > 0), if there
are p (0 ≤ p < 2n+1) conditional cube variables v0, ..., vp−1, and q = 2n+1 −
2p + 1 ordinary cube variables, u0, ..., uq−1 (If q = 0, we set p = 2n+1), the term
v0v1...vp−1u0...uq−1 will not appear in the output polynomials of (n + 2)- round
Keccak sponge function.

Theorem 2 indicates that by having a certain amount of conditional cube
variables and ordinary cube variables, the multiplication of those does not appear
at the output of the certain round of SHA3-like designs.

It is worth mentioning as the number of conditional cube variables is
increased the number of conditions is increased, as well, which leads to higher
time complexity in recovering the key. Therefore, in most of the works they
have used just one conditional cube variable [13,15]. In the case of using one
conditional cube variable, the following corollary is used:

Corollary 1. For (n + 2 )-round Keccak sponge function (n > 0), if there is
one conditional cube variable v0, and q = 2n+1 − 1 ordinary cube variables,
u0, ..., uq−1, the term v0u0...uq−1 will not appear in the output polynomials of
(n + 2 )-round Keccak sponge function.

The attack procedure of the Huang et al.’s conditional cube attack tech-
nique [13], which was later extended with an improved MILP model by Song et
al. [20] can be summarized in the following steps:

1. Determine the position of the conditional cube variable(s) at initial state.
2. Use the MILP model proposed by Song et al. [20] to find position of the bit

conditions and also the ordinary cube variables satisfying the requirements
in Theorem 2.
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3. Determine the key bits involved in the bit conditions.
4. Put the value 0 for any constant position at the initial state and for each

possible value of the bit conditions compute the cube sum.
5. If the cube sum is zero, then the guessed values of the bit conditions are

correct.

Li et al.’s Conditional Cube Attack. Huang et al.’s conditional cube
attack [13] becomes invalid for some variants of SHA3-like designs with a lower
degree of freedom to find enough ordinary cube variables. To overcome the chal-
lenge, Li et al. [16] came up with a new type of conditional cube attack. In their
technique instead of using the conditional cube variable, they introduce a degree
two term called kernel quadratic term. In the following, the definition of the
kernel quadratic term and the related corollary for performing the conditional
cube attack is presented.

Definition 2 ([16]). Suppose all the (q+2) cube variables are v0, v1, u0, ..., uq−1,
and constraints are as follows:
– After the first round, v0v1 is the only quadratic term.
– In the second round, if the bit conditions are satisfied, v0v1 does not multiply

with any of u0, ..., uq−1, i.e. no cubic term occurs.
– In the second round, if the bit conditions are not satisfied, v0v1 multiplies with

some of u0, ..., uq−1, i.e. some cubic terms like v0v1ui(i = 0, ..., q − 1) occur.

Then v0v1 is called kernel quadratic term. The remaining cube variables
except v0 and v1, i.e. u0, ..., uq−1, are called ordinary cube variables.

From the Definition 2, the following corollary can be deduced.

Corollary 2 ([16]). For (n+2)-round Keccak sponge function (n > 0), if there
is one kernel quadratic term v0v1, and q = 2n+1 − 1 ordinary cube variables,
u0, u1, ..., uq−1, the term v0v1u0u1, ..., uq−1 will not appear in the output polyno-
mials of (n + 2)-round Keccak sponge function under certain bit conditions. So
the distinguisher is approached as follows:
– under right bit conditions, the degree of output polynomials of n + 2 rounds

is no more than 2n+1.
– under the wrong bit conditions, the degree of output polynomials of n + 2

rounds is q + 2 = 2n+1 + 1.

The attack procedure of the Li et al.’s conditional cube attack technique can
be summarized in the following steps:

1. Determine the position of the kernel quadratic term at initial state.
2. Use the MILP model proposed by Song et al. [20], customized by Li et al. [16]

to find position of the bit conditions and also the ordinary cube variables
satisfying the requirements in Corollary 2.

3. Determine the key bits involved in the bit conditions.
4. Put the value 0 for any constant position at the initial state and for each

possible value of the bit conditions compute the cube sum.
5. If the cube sum is zero, then the guessed values of the bit conditions are

correct.
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Comparison of Huang et al.’s and Li et al.’s Technique. In Li et al.’s technique,
the kernel quadratic term is set in column parity at the output of the first
round. By doing so, the propagation produced by θ at the second round is
bypassed on the kernel quadratic term. Therefore, for satisfying the conditions
mentioned in Corollary 2, all we need is to avoid having ordinary cube variables
in 4 neighboring positions of the kernel quadratic term before the second χ. In
Huang et al.’s technique, however, the second θ propagates the conditional cube
variable, so the positions that the ordinary cube variables should not appear
before the second χ is more than four3. This strategy in Li et al.’s technique has
made the challenge of finding enough ordinary cube variables easier.

Comparison of Conditional Cube Attack and Original Cube Attack. In the origi-
nal cube attack, the cube variables are randomly chosen and there is no guarantee
on having a superpoly containing some secret key bits. In the conditional cube
attack, however, the cube variables are carefully selected and the imposed condi-
tions, always contain secret key bits. Moreover, the original cube attack contains
two offline and online phases and consumes a huge memory, while the conditional
cube attack is just 1 online phase and memory consumption is negligible.

4 Conditional Cube Attacks on Round-Reduced Xoodyak

As we mentioned, in our attack scenario we insert the cube variables in the
associated data phase, and as Fig. 2 shows, the XOR of the associated-data state
and unknown-data state is passed through the Xoodoo permutation. Therefore,
for recovering the master key, the whole state of the unknown data should be
recovered.

Fig. 2. Cube variables are injected in the associated data state. Our attack is applied
at the stage within the red frame. (Color figure online)

For finding a distinguisher, we use Li et al.’s technique. We also applied
Huang et al.’s technique but the MILP tool returned “infeasible solution”. We
3 By setting up the conditional cube variable in the column parity in the first round,

In Keccak sponge function is 22 and in Xoodoo permutation is 14.
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suspect that the reason is insufficient degrees of freedom, but further analysis
is necessary to confirm this. In the following, the way of finding the positions
of the cube variable in the initial state for building the Kernel quadratic term,
and the way of constructing the MILP model for having enough ordinary cube
variables are explained.

4.1 Finding Kernel Quadratic Term

The best way to control the propagation of the quadratic term is by setting the
kernel quadratic term in the column parity at the beginning of the second round.
To do this, in [16], they propose a reversing technique in which first they assume
the positions of the kernel quadratic term are set in the column parity i.e. two
kernel quadratic term (v0v1) exist at the same column at the output of the first
round, then they reversely impose the operations of the SHA3-like design.

In order to represent the number of the active bits of a conditional cube
variable (kernel quadratic term) in [13] a pattern as x-y-z is introduced, where
x, y and z are the number of active bits of a conditional cube variable (kernel
quadratic term) in the initial state, the output of first round and the input
of second χ operation, respectively. In [16], they propose a 6-2-2 pattern for
the propagation of the kernel quadratic term v0v1, which acts different than
the pattern 2-2-22 proposed by [13], for the propagation of the conditional cube
variable v0. In the 2-2-22 pattern the propagation of the conditional cube variable
v0 is controlled in the first round, but the θ operation in the second round diffuse
v0 in 22 positions, which means the ordinary cube variables should not appear
in 44 positions at the input of the second χ operation4. However, in the 6-2-2
pattern, the ordinary cube variables should not appear in just 4 positions at the
input of the second χ operation.

In [22], instead of using 6-2-2 pattern, they offer to use 8-2-2 pattern. Since
in 6-2-2 pattern, for creating the v0v1, the cube variable v0 is not set in column
parity, and as the ordinary cube variables are not supposed to multiply with v0,
the degree of freedom for the ordinary cube variables is decreased. However, in 8-
2-2 pattern, both of the cube variables v0 and v1 are set in column parity, which
creates more degree of freedom for the selection of the ordinary cube variables.

In our case, for finding the positions of v0 and v1 in the kernel quadratic
term v0v1, we also use 8-2-2 pattern, and at the same time by following the
reversing technique proposed by [16], we try to avoid having the variables v0
and v1 in the last lane. The obtained positions for the v0 and v1 at the ini-
tial state S0 are as A[0][1][0] = A[0][2][0] = A[1][0][20] = A[1][2][20] = v0 and
A[1][0][21] = A[1][2][21] = A[1][0][31] = A[1][1][31] = v1. According to Fig. 3, the
kernel quadratic term v0v1 appears in the positions S1[1][0][0] and S1[1][1][0].

4 To avoid having multiplication, the ordinary cube variables should not appear in the
neighboring positions of the conditional cube variable.
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Fig. 3. Forming of the kernel quadratic term in the first round of Xoodyak. Red, blue
and yellow squares show the positions of v0, v1, and v0v1 respectively. (Color figure
online)

4.2 MILP Model for Li et al. Technique

In this section, we customize a MILP model for our scenario proposed by
Song et al. [20] and also used by [16,22]. This MILP model is meant to find
2n+1 − 1 ordinary cube variables to attack n + 2 rounds of Xoodyak, by aim-
ing to minimize the number of bit-conditions. We assume the bit positions
of v0 and v1 at the kernel quadratic term v0v1 in S0 are the same as we
obtained in the previous section. The applied symbols in the model are as fol-
lows: a[x][y][z] = 1, a′[x][y][z] = 1, b[x][y][z] = 1 means state bit S0[x][y][z],
S0,ρweast

[x][y][z], S1[x][y][z] contains at least one ordinary cube variable, respec-
tively. The MILP model determines the valid positions for the ordinary cube
variables at S0, S0,ρweast

and S1,ρweast
, describes the treatment of θ and χ at the

first round, and also determines the total number of the ordinary cube variables,
needed to perform the attack.

Modeling the First Round. Due to the absorbing rate of the associated data state,
the first set of constraints needs to be added to the MILP model to avoid having
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any ordinary cube variable in the last lane of the initial state. The constraints 1
are meant for this purpose:

a[3][2][z] = 0, 0 ≤ z < 32 (1)

The bit positions that are already taken by the cube variable v0 and v1, at
S0 should not be a potential position for the ordinary cube variables to be taken.
To satisfy such constraints, the following equalities are added to the model.

a[0][1][0] = a[0][2][0] = a[1][0][20] = a[1][2][20] =
a[1][0][21] = a[1][2][21] = a[1][0][31] = a[1][1][31] = 0 (2)

For describing the treatment of the columns (x, ∗, z) in θ operation in [20],
two types of Boolean variables called f [x][z] and g[x][z] are introduced. If at the
column (x, ∗, z) at the initial state A, g[x][z] = 1, then the summation of all 3 bits
of the column should be nonzero, and if f [x][z] = 1, despite the existence of some
variable in the column (x, ∗, z), the summation of all 3 bits of the column should
be zero. It should be noted that f [x][z] = 1 means a 1-bit degree of freedom is
consumed. According to [20], if setting all of the cube variables in column parity
is of interest, g[x][z] should be set to 0 for all of the columns. In our case, since
we have enough degree of freedom and also for simplifying the MILP model, we
set all of the cube variables in column parity. Hence, following [20], the final
equations for modeling the θ operation are as follows:

−f [x][z] ≥ −1
−a[x][0][z] + f [x][z] ≥ 0
−a[x][1][z] + f [x][z] ≥ 0
−a[x][2][z] + f [x][z] ≥ 0
a[x][0][z] + a[x][1][z] + a[x][2][z] − 2f [x][z] ≥ 0

(3)

As in [16,22] is mentioned, the cube variables v0 and v1 should not multiply
with any other ordinary cube variable. Since they are supposed to multiply with
one another and build the kernel quadratic term. Therefore, for preventing the
multiplication of any ordinary cube variables with v0 and v1, the neighboring
positions of v0 and v1 at the state S0,ρweast

[x][y][z] should be 0. According to
Sect. 4.1, the cube variables v0 and v1 are in 8-bit positions. In total there exists
14 bit-positions in S0,ρweast

[x][y][z] that should be equal to 0:

a[0][0][11] = a[0][1][11] = a[1][1][20] = a[1][2][20] =
a[1][1][21] = a[1][2][21] = a[2][0][31] = a[2][2][31] =
a[1][0][0] = a[1][1][0] = a[1][2][0] = a[1][0][31] =
a[1][1][31] = a[1][2][31] = 0

(4)

In [20], for modeling the χ operation, two other Boolean variables so called
v[x][y][z] and h[x][y][z] are introduced for describing the bit conditions in
which v[x][y][z] = 1 indicates the existence of a condition at the state bit
S0,ρweast

[x][y][z] that has to be fixed to the amount of h[x][y][z]. Following [20],
if a′[x][y][z] and b[x][y][z] would represent the existence of the cube variables in
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the input and output of the χ operation respectively, the constraints 5 describe
the treatment of the χ operation:

−a′[x][y][z] − a′[x][y + 1][z] ≥ −1
−a′[x][y][z] + b[x][y][z] ≥ 0
−a′[x][y + 1][z] − v[x][y + 1][z] ≥ −1
−a′[x][y + 2][z] − v[x][y + 2][z] ≥ −1
−a′[x][y][z] − a′[x][y + 1][z] − h[x][y + 2][z] + b[x][y][z] ≥ −1
−a′[x][y][z] − v[x][y + 1][z] − h[x][y + 1][z] − b[x][y][z] ≥ −2
a′[x][y][z] − v[x][y + 2][z] + h[x][y + 2][z] − b[x][y][z] ≥ −1
a′[x][y][z] + a′[x][y + 1][z] + a′[x][y + 2][z] − b[x][y][z] ≥ 0
−a′[x][y + 1][z] − a′[x][y + 2][z] + v[x][y + 1][z] + v[x][y + 2][z] + b[x][y][z] ≥ 0
−a′[x][y + 1][z] − a′[x][y + 2][z] + v[x][y + 2][z] + h[x][y + 1][z] + b[x][y][z] ≥ 0

(5)

Modeling the Second Round. Preventing the multiplication of any ordinary cube
variable with the kernel quadratic term is the only set of constraints that needs
to be considered in the second round. Since the kernel quadratic term is set
in the column parity, it appears just in two positions before the second χ i.e.
S1,ρweast

. Therefore, we should avoid having any ordinary cube variable just in
4 neighboring positions of the kernel quadratic term in the same column.

Following the constraints proposed by [20] and used by [16,22], we need
to avoid having uncertain propagation in each neighboring bit of the kernel
quadratic term. In order to do so, for each neighboring bit position of the kernel
quadratic terms, a new dummy variable ei, i = 0, 1, 2, 3 is introduced. ei = 1, if
at least one ordinary cube variable exists in the related neighboring position.

To avoid having uncertain propagation at the neighboring positions of the
kernel quadratic term, according to the θ operation, each neighboring bit at
S1,ρweast

contains a linear expression of 7 bits from S1, and according to the
χ operation in the first round, the existence of ordinary cube variable in each
bit at S1 is dependent on the existence of any ordinary cube variable in two
neighboring bits, and corresponded bit at S0,ρweast

. As a result, for having certain
propagation in the neighboring positions of the kernel quadratic term, for each
variable b[x][y][z] that exists in i-th neighboring positions of the kernel quadratic
term, the inequalities 6 proposed by [20] is used.

−ei − a′[x][y + 1][z] − a′[x][y + 2][z] ≥ −2
−ei − a′[x][y + 1][z] + v[x][y + 2][z] ≥ −1
−ei − a′[x][y + 2][z] + v[x][y + 1][z] ≥ −1
−ei − a′[x][y + 1][z] − v[x][y + 1][z] ≥ −2
−ei − a′[x][y + 2][z] − v[x][y + 2][z] ≥ −2
−ei − a′[x][y][z] − a′[x][y + 1][z] ≥ −2

(6)

The constraints 6 indicate if in the i-th neighboring position of the quadratic
term ei is nonzero, the position contains a linear expression of some certain
ordinary cube variable. For canceling the linear expression, a 1-bit degree of
freedom is consumed at the initial state. Hence for computing the total number
of ordinary cube variables, subtraction of the

∑3
i=0 ei is needed to be considered.
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Modeling for Finding Ordinary Cube Variables. The steps to build a
MILP model to find ordinary cube variables satisfying the conditions in the
Definition 2, are as follows:

– The objective is minimizing the number of bit conditions. Since the vari-
ables v[x][y][z] indicate the existence of a bit condition in S0,ρweast

[x][y][z]
the objective function is as follows:

Minimize :
i=3,j=2,k=31∑

i=0,j=0,k=0

v[xi][yj ][zk] (7)

– Adding the constraints generated in the Sect. 4.2 for the first round.
– Adding the constraints generated in the Sect. 4.2 for the second round.
– For having 2n+1−1 ordinary cube variables to attack n+2 rounds of Xoodyak,

the following constraint should be added to the model:

i=3,j=2,k=31∑

i=0,j=0,k=0

a[xi][yj ][zk] −
i=3,k=31∑

i=0,k=0

f [xi][zk] −
i=3∑

i=0

e[xi] = 2n+1 − 1 (8)

In the above equation,
∑i=3,k=31

i=0,k=0 F [xi][zk] +
∑i=3

i=0 e[xi] is the consumed
degree of freedom in the initial state S0.

– In order to avoid not having any bit condition, the following constraint will
be added to the model:

i=3,j=2,k=31∑

i=0,j=0,k=0

v[xi][yj ][zk] ≥ 1 (9)

5 Key Recovery on 6 and 7 Rounds Xoodyak

In this section, we apply the MILP model proposed in Sect. 4.2 for 6 and 7
rounds of Xoodyak respectively. Since the 6-round attack is practical, the full
key recovery attack is implemented.

As we mentioned earlier in Sect. 4.1, the bit positions of the kernel quadratic
term at the initial state are A[0][1][0] = A[0][2][0] = A[1][0][20] = A[1][2][20] = v0
and A[1][0][21] = A[1][2][21] = A[1][0][31] = A[1][1][31] = v1.

For recovering the key bits involved in the bit-conditions, firstly the key bits
are guessed and if the cube sum would be zero, the guessed key bits are expected
to be correct with high probability.

5.1 6 Rounds Conditional Cube Attack on Xoodyak

According to Fig. 2, we import the cube variables on the associated-data phase
and recover the whole of the unknown state that is XORed with the associated
data. The round function of the Xoodoo is reduced to 6 rounds.
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Table 2. Parameters set for attack on 6-round Xoodyak

Kernel Quadratic term

A[0][1][0] = A[0][2][0] = A[1][0][20] = A[1][2][20] = v0,
A[1][0][31] = A[1][1][31] = A[1][0][21] = A[1][2][21] = v1

Bit Conditions

A[0][2][21] = k67 + k90 + k104 + k195 + k218 + k323 + k346 + n67 + n90 + n104+
n195 + n218 + n323 + 1

Ordinary Cube Variables

A[0][1][3] = u0, A[0][2][3] = u0, A[0][0][9] = u1, A[0][1][9] = u2,
A[0][2][9] = u1 + u2, A[0][0][12] = u3, A[0][1][12] = u3, A[0][0][23] = u4,
A[0][1][23] = u5, A[0][2][23] = u4 + u5, A[0][0][24] = u6, A[0][1][24] = u7,
A[0][2][24] = u6 + u7, A[0][0][30] = u8, A[0][1][30] = u8, A[1][0][2] = u9,
A[1][2][2] = u9, A[1][0][11] = u10, A[1][1][11] = u10, A[1][0][14] = u11,
A[1][2][14] = u11, A[1][0][22] = u12, A[1][2][22] = u12, A[2][0][2] = u13,
A[2][1][2] = u14, A[2][2][2] = u13 + u14, A[2][0][5] = u15, A[2][1][5] = u16,
A[2][2][5] = u15 + u16, A[2][1][8] = u17, A[2][2][8] = u17, A[2][0][9] = u18,
A[2][1][9] = u19, A[2][2][9] = u18 + u19, A[2][1][11] = u20, A[2][2][11] = u20,
A[2][0][12] = u21, A[2][1][12] = u22, A[2][2][12] = u21 + u22, A[2][0][14] = u23,
A[2][1][14] = u24, A[2][2][14] = u23 + u24, A[2][1][16] = u25, A[2][2][16] = u25,
A[2][0][24] = u26, A[2][1][24] = u27, A[2][2][24] = u26 + u27, A[2][0][30] = u28,
A[2][1][30] = u28, A[3][0][1] = u29, A[3][1][1] = u29, A[3][0][25] = u30,
A[3][1][25] = u30

Guessed Key Bits

k67 + k90 + k104 + k195 + k218 + k323 + k346

By linearizing 1 round of Xoodoo, the degree of the 6th round is 32. Therefore,
in total, we need 33 cube variables to mount the attack, 2 of them build the
kernel quadratic term and the rest are ordinary cube variables. Table 2 presents
kernel quadratic term, ordinary cube variables, and bit conditions obtained by
the MILP model.

According to Table 2, the only key bit needs to be recovered is as k12 +
k21 + k58 + k140 + k149 + k268 + k277. The time complexity to recover a 1-bit
key is 234. Since the Xoodoo permutation is symmetric in z-axis, the key-bit
k12+i + k21+i + k58+i + k140+i + k149+i + k268+i + k277+i can be recovered by
i-bit 0 ≤ i < 32 rotating all of the parameters in z-axis. We can recover 352
bits by finding a different set of cube variables and also rotating them in z-axis.
If we leave 32 remaining key-bit as an exhaustive search, the complexity for
recovering 352 key-bit is 28.45234 = 242.45. As a result, the total complexity is
242.45+232 	 242.451. This complexity is a bit lower than the proposed complexity
by [22] i.e. 243.8.

In our experiments, we generate 384 random bits as unknown data, which are
to be XOR-ed with the associated data state, and in the associated data state we
import the cube variables and set the rest of the positions to be zero. We calculate
the cube sum on all of the lanes. It is worth mentioning that the probability of
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having zero cube sum for all of the lanes for a random function is 2−384. Hence,
it is safe to declare the guessed key as correct with high probability, once the
33-dimension cube sums become zero.

To test the correctness of the parameters in Table 2, we run experiments,
whose steps are summarized in Algorithm 1.

Algorithm 1. Testing the obtained parameters in Table 2
input: parameters in Table 2.
output: resulting cube sum for each guess.
Generate 384 random bits as the representation of the unknown data and store the
state as Key;
Compute the value of k67 + k90 + k104 + k195 + k218 + k323 + k346 and store it as the
right key which needs to be recovered;
for each key guess i, i ∈ {0x0, 0x1} do

Initial-State = Key
Final-State = 0
Initial-State[10][26] = i ⊕ 1
for each possible value of cube set j, j ∈ [0, 234] do

Temp-State = Initial-State
generate the j-th permutation of cube variables, and store it in Cubes-State
Temp-State = Temp-state ⊕ Cubes-State
Impose 6-round Xoodoo permutation on Temp-state
Final-State = Final-state ⊕ Temp-State

end for
Print Final-State

end for

Next we present the results from experiments for testing the correctness of
the parameters given in Table 2.

384-bit key K:
01100110110011010001010101111000 11010001101001000010110101001001
10010001110110110011010001001011 11010111010111011001100010011100
00101010111000100111011101010011 10101100001100100010011000110001
01010001010011011011111110010011 01001010110101001010111010100010
11110011010001011010110011010101 11011101110100110011110000000001
10000001100101010101000110110101 00100110111010111100001100000010

According to Table 2 and above generated key, the correct value for the
guessed key bit is 1.

guessed value: 0, cube sums: 0x10b7a9c8, 0x189ab404, 0x3eeeacfa,
0x3eeeacfa, 0x5c5f184e, 0xd4497ce3, 0xff28ba81, 0xfa3d438c,
0x5155d784, 0x4aca9eb9, 0x748c5ed8, 0x53899c47, 0xad5b47e9

guessed value: 1, cube sums: 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0

The program was run in Ubuntu 20.04 operating system with gcc 9.40. Recov-
ery of a 1-bit key needs about 10 h using one CPU core (AMD EPYC 3.3GHz).
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Table 3. Parameters set for attack on 7-round Xoodyak

Kernel Quadratic term

A[0][1][0] = A[0][2][0] = A[1][0][20] = A[1][2][20] = v0,
A[1][0][31] = A[1][1][31] = A[1][0][21] = A[1][2][21] = v1

Bit Conditions

A[0][2][13] = k4 +k13 +k50 +k132 +k141 +k260 +k269 +n4 +n13 +n50 +n132 +n141 +n260

A[0][2][22] = k13+k22+k59+k141+k150+k269+k278+n13+n22+n59+n141+n150+n269

A[0][2][27] = k18+k27+k146+k155+k160+k274+k283+n18+n27+n146+n155+n160+n274+1

A[1][2][7] = k2 +k25 +k130 +k153 +k258 +k281 +k295 +n2 +n25 +n130 +n153 +n258 +n281

A[1][2][16] = k2+k11+k130+k139+k258+k267+k304+n2+n11+n130+n139+n258+n267

Ordinary Cube Variables

A[0][0][1] = u0, A[0][1][1] = u1, A[0][2][1] = u0 + u1, A[0][0][2] = u2,
A[0][1][2] = u2, A[0][1][9] = u3, A[0][2][9] = u3, A[0][0][10] = u4,
A[0][1][10] = u5, A[0][2][10] = u4 + u5, A[0][1][13] = u6, A[0][2][13] = u6,
A[0][0][14] = u7, A[0][1][14] = u8, A[0][2][14] = u7 + u8, A[0][0][15] = u9,
A[0][1][15] = u10, A[0][2][15] = u9 + u10, A[0][0][18] = u11, A[0][1][18] = u12,
A[0][2][18] = u11 + u12, A[0][1][19] = u13, A[0][2][19] = u13, A[0][0][27] = u14,
A[0][1][27] = u15, A[0][2][27] = u14 + u15, A[0][0][28] = u16, A[0][1][28] = u16,
A[1][0][6] = u17, A[1][2][6] = u17, A[1][0][11] = u18, A[1][2][11] = u18,
A[1][0][12] = u19, A[1][2][12] = u19, A[1][1][19] = u20, A[1][2][19] = u20,
A[1][0][24] = u21, A[1][2][24] = u21, A[1][0][25] = u22, A[1][2][25] = u22,
A[1][0][26] = u23, A[1][2][26] = u23, A[1][0][29] = u24, A[1][2][29] = u24,
A[2][0][1] = u25, A[2][1][1] = u26, A[2][2][1] = u25 + u26, A[2][0][2] = u27,
A[2][1][2] = u28, A[2][2][2] = u27 + u28, A[2][0][6] = u29, A[2][1][6] = u30,
A[2][2][6] = u29 + u30, A[2][1][7] = u31, A[2][2][7] = u31, A[2][0][10] = u32,
A[2][1][10] = u23, A[2][2][10] = u23 + u32, A[2][0][11] = u33, A[2][1][11] = u34,
A[2][2][11] = u33 + u34, A[2][1][12] = u35, A[2][2][12] = u35, A[2][0][14] = u36,
A[2][1][14] = u36, A[2][0][15] = u37, A[2][1][15] = u38, A[2][2][15] = u37 + u38,
A[2][0][16] = u39, A[2][1][16] = u40, A[2][2][16] = u39 + u40, A[2][0][20] = u41,
A[2][1][20] = u41, A[2][1][21] = u42, A[2][2][21] = u42, A[2][0][24] = u43,
A[2][1][24] = u44, A[2][2][24] = u43 + u44, A[2][0][25] = u45, A[2][1][25] = u46,
A[2][2][25] = u45 + u46, A[2][1][26] = u47, A[2][2][26] = u47, A[2][0][28] = u48,
A[2][1][28] = u49, A[2][2][28] = u48+u49, A[2][0][29] = u50, A[2][1][29] = u9+u50,
A[2][2][29] = u9, A[2][0][30] = u51, A[2][1][30] = u52, A[2][2][30] = u51 + u52,
A[3][0][0] = u53, A[3][1][0] = u53, A[3][0][3] = u54, A[3][1][3] = u54,
A[3][0][4] = u55, A[3][1][4] = u55, A[3][0][5] = u56, A[3][1][5] = u56,
A[3][0][8] = u57, A[3][1][8] = u57, A[3][0][9] = u58, A[3][1][9] = u58,
A[3][0][13] = u10 + u17, A[3][1][13] = u10 + u17, A[3][0][17] = u59, A[3][1][17] =
u59,
A[3][0][19] = u60, A[3][1][19] = u60, A[3][0][22] = u61, A[3][1][22] = u61,
A[3][0][23] = u62, A[3][1][23] = u62, A[3][0][31] = u5 + u13 + u47 + u59,
A[3][1][31] = u5 + u13 + u47 + u59,

Guessed Key Bits

k4 +k13 +k50 +k132 +k141 +k260 +k269, k13 +k22 +k59 +k141 +k150 +k269 +k278
k18+k27+k146+k155+k160+k274+k283, k2+k25+k130+k153+k258+k281+k295
k2 + k11 + k130 + k139 + k258 + k267 + k304,



60 M. Vaziri and V. Velichkov

To verify the correctness of our results for 6-round Xoodyak, by parallelism, we
have run 76 experiments, which the key was generated randomly, and the correct
value of the bit condition was imported at the initial state A[0][2][21]. For all of
the experiments the zero cube summation was obtained.

5.2 7 Rounds Conditional Cube Attack on Xoodyak

The round function of the Xoodoo is reduced to 7 rounds. By linearizing 1
round of Xoodoo, the degree of the 7-th round is 64. Therefore, we need 65
cube variables to mount the attack, 2 of them build the kernel quadratic term
and the rest are ordinary cube variables. Table 3 presents kernel quadratic term,
ordinary cube variables, and bit conditions obtained by the MILP model. The
process of key recovery is analogous to Algorithm 1.

According to the Table 3, the key-bits need to be recovered are as k4 + k13 +
k50 + k132 + k141 + k260 + k269, k13 + k22 + k59 + k141 + k150 + k269 + k278, k18 +
k27+k146+k155 + k160+k274+k283, k2+k25+k130+k153 + k258+k281+k295, k2
+ k11 + k130 + k139 + k258 + k267 + k304. The time complexity to recover a 5-bit
key is 25 × 265 = 270. By rotating all of the parameters in 64 times, 320 key bits
with the complexity of 26×270 = 276 can be recovered. If we leave the remaining
64 key bits to exhaustive search, the total complexity is 276 +264 = 276.003. This
is the first proposed key recovery on 7 rounds of Xoodyak.

6 Conclusion

In this paper, we present a 6-round and 7-round key recovery attack on Xoodyak
which is one of the finalists of the lightweight cryptographic algorithm NIST
competition with the structure, similar to SHA3 algorithm. As no attack is
reported on the full version of Xoodyak, so far, Xoodyak can be regarded as a
secure and efficient lightweight algorithm that is still of interest. We use MILP-
based tool to find cube variables required to perform the attack and we import
our cube variables in the absorbing associated data phase. The complexity of
the 6-round attack and 7-round are 242.45 and 276.003, respectively.
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