
slytHErin: An Agile Framework
for Encrypted Deep Neural Network

Inference

Francesco Intoci1(B), Sinem Sav1, Apostolos Pyrgelis1, Jean-Philippe Bossuat2,
Juan Ramón Troncoso-Pastoriza2, and Jean-Pierre Hubaux1,2

1 EPFL, 1015 Lausanne, Switzerland
{francesco.intoci,sinem.sav,apostolos.pyrgelis}@epfl.ch

2 Tune Insight SA, 1015 Lausanne, Switzerland
{jean-philippe.bossuat,juanramon.troncoso-pastoriza,

jean-pierre.hubaux}@tuneinsight.com

Abstract. Homomorphic encryption (HE), which allows computations
on encrypted data, is an enabling technology for confidential cloud
computing. One notable example is privacy-preserving Prediction-as-
a-Service (PaaS), where machine-learning predictions are computed on
encrypted data. However, developing HE-based solutions for encrypted
PaaS is a tedious task which requires a careful design that predominantly
depends on the deployment scenario and on leveraging the character-
istics of modern HE schemes. Prior works on privacy-preserving PaaS
focus solely on protecting the confidentiality of the client data uploaded
to a remote model provider, e.g., a cloud offering a prediction API, and
assume (or take advantage of the fact) that the model is held in plain-
text. Furthermore, their aim is to either minimize the latency of the
service by processing one sample at a time, or to maximize the number
of samples processed per second, while processing a fixed (large) number
of samples. In this work, we present slytHErin, an agile framework that
enables privacy-preserving PaaS beyond the application scenarios con-
sidered in prior works. Thanks to its hybrid design leveraging HE and its
multiparty variant (MHE), slytHErin enables novel PaaS scenarios by
encrypting the data, the model or both. Moreover, slytHErin features
a flexible input data packing approach that allows processing a batch
of an arbitrary number of samples, and several computation optimiza-
tions that are model-and-setting-agnostic. slytHErin is implemented in
Go and it allows end-users to perform encrypted PaaS on custom deep
learning models comprising fully-connected, convolutional, and pooling
layers, in a few lines of code and without having to worry about the
cumbersome implementation and optimization concerns inherent to HE.

Keywords: Confidential Cloud Computing · Cryptography ·
Homomorphic Encryption · Multiparty Computation ·
Prediction-as-a-Service · Privacy-Preserving Machine Learning

F. Intoci and S. Sav—These authors contributed equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Zhou et al. (Eds.): ACNS 2023 Workshops, LNCS 13907, pp. 359–377, 2023.
https://doi.org/10.1007/978-3-031-41181-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41181-6_20&domain=pdf
https://doi.org/10.1007/978-3-031-41181-6_20

360 F. Intoci et al.

1 Introduction

With recent advances in deep learning, cloud service providers expose trained
deep neural networks (DNNs) to end-users for prediction-as-a-service (PaaS)
through their application programming interfaces (APIs) [4,5,7,25,56]. For
instance, Amazon Forecast enables business analytics by performing forecast-
ing on client time-series data [3] and Azure’s Cognitive summarizes and classi-
fies financial documents [6]. However, PaaS applications raise privacy concerns
as both the user data (e.g., client time-series, text, or health data) and the
machine learning model (due to intellectual property concerns), can be sensitive
information, and cloud service providers must comply with privacy regulations
such as CCPA [12], GDPR [20], and HIPAA [30]. Thus, it is now needed more
than ever to protect the privacy of the data used in PaaS applications.

To enable privacy-preserving PaaS, various works propose performing
encrypted DNN inference by employing homomorphic encryption (HE) schemes
which allow computations directly on ciphertexts [8,10,11,16,17,22,29,31,33,
37,38,41,42,49]. However, to cope with the computational overhead introduced
by HE operations and to account for the characteristics of modern HE schemes,
e.g., their support of Single Instruction, Multiple Data (SIMD) operations, these
works rely on various optimizations which are tailored to specific PaaS scenar-
ios, the most common of which comprises a cleartext DNN model and encrypted
data. As a result, existing HE-based works cannot support emerging scenarios,
e.g., edge machine learning [2,44,55], that require outsourcing the prediction
to the client (while protecting the model’s intellectual property), or privacy-
preserving federated learning where inference is performed on a model that is
trained in encrypted form by multiple data providers [52,53,57]. Moreover, these
works rely on data packing schemes adapted to specific DNN architectures and
application requirements, aiming either to minimize prediction latency (typically
by processing one sample at a time, e.g., for real-time analytics), or to maximize
the number of samples processed per second (usually by collecting and then pro-
cessing in parallel a large number of samples leveraging on SIMD capabilities).

In this work, we design slytHErin, an agile framework for encrypted DNN
inference. Built on HE and its multiparty variant, our framework can be adapted
to various and novel PaaS scenarios where: (i) the client’s data is encrypted while
the model is in cleartext, (ii) the client’s data is in cleartext and the model is
encrypted, and (iii) both the client’s data and the model are encrypted. More-
over, slytHErin features application- and model-agnostic optimizations which
make it suitable for various settings. For instance, slytHErin implements an
intuitive and flexible packing scheme that efficiently enables SIMD operations
for arbitrary batch sizes, and generic optimizations for encrypted matrix oper-
ations. We implement slytHErin in Go and provide the building blocks that
enable the encrypted execution of any DNN model composed of fully-connected,
convolutional, and pooling layers. Contrary to prior works, our implementation
is not centered around a system model, specific assumptions, or DNN archi-
tectures, making it a versatile tool for securing different PaaS pipelines. Our
evaluation shows that slytHErin achieves accuracy similar to performing infer-

slytHErin: An Agile Framework for Encrypted DNN Inference 361

ence on cleartext data and/or models. Moreover, it yields an interesting trade-off
between latency and throughput, and its overall performance is on par with that
of the state-of-the-art HE-based inference solutions, while being more flexible
than specialized solutions. Our implementation can be found on https://github.
com/ldsec/slytHErin.

2 Related Work

Given the potential privacy issues that might arise in PaaS, a number of works
that build encrypted PaaS frameworks have been proposed. These works rely
on homomorphic encryption (HE) and/or multiparty computation (MPC) to
protect the confidentiality of both the ML model and the client’s evaluation
data during prediction [8,10,11,15,16,22,29,31,33,37,38,41,42,46,48,49].

HE-Based Solutions. Cryptonets was the first work in this research direction
that enabled DNN evaluation on encrypted data using an HE scheme [22]. Its
overhead, in terms of latency, was later improved by Brutzkus et al. which pro-
posed novel approaches to represent the input data [11]. Other works focus on
improving the efficiency of encrypted matrix operations [32,39] or on designing
novel techniques for the encrypted evaluation of more complex ML models such
as graph convolutional networks [47]. The latter has been used in downstream
tasks such as human action recognition [34] achieving better latency than [11].
Other works develop compilers that ease the deployment of trained ML mod-
els with HE libraries, e.g., SEAL [54], HElib [27], or Palisade [50], for encrypted
inference. Boemer et al. [8,9] build a graph compiler for SEAL that simplifies the
use of a model trained with Tensorflow [1] or PyTorch [45] for encrypted PaaS.
CHET, on the other hand, is a domain-specific optimizing compiler that allows
the specification of tensor circuits suitable for HE-based DNN inference [18]. All
of these works propose specific input data representations (packing) and opti-
mizations for either latency or throughput for specific scenarios (e.g., featuring a
cleartext model vs. encrypted data) and DNN architectures. Moreover, to cope
with DNN non-linear operations that are not supported by HE schemes, e.g.,
activations, they either use interactions with the client [8], modify their func-
tionality to low-degree polynomial functions [11,18,22,34], or use polynomial
approximations [13,47].

Hybrid Approaches. To ease the encrypted execution of non-linear functions,
some works rely on hybrid approaches combining two-party computation with
HE [31,33,37,48], or secret sharing with garbled circuits [42,46,49]. For instance,
Liu et al. [37] utilize HE for matrix multiplications and garbled circuits for the
non-linear activations. Juvekar et al. [33] employ HE for matrix-vector multipli-
cation and convolution operations and garbled circuits for comparisons which are
widely used in activation functions. Similarly, we provide a hybrid framework for
privacy-preserving PaaS that supports a wide range of applications by relying on
a multiparty variant of HE. Moreover, thanks to our generic data representation
scheme and optimizations, our framework is agnostic of the DNN architecture

https://github.com/ldsec/slytHErin
https://github.com/ldsec/slytHErin

362 F. Intoci et al.

and parameters such as batch size, while achieving on par performance with the
state-of-the-art.

3 Background

3.1 Homomorphic Encryption

Homomorphic encryption (HE) schemes enable the execution of arithmetic oper-
ations directly on ciphertexts, i.e., without requiring decryption; this makes them
ideal candidates for privacy-preserving machine learning inference applications.
In this work, we employ the Cheon-Kim-Kim-Song (CKKS) scheme [14], which
is suitable for machine learning tasks as it enables approximate arithmetic over
C

N/2 (hence, over real values as well). The ring RQL
= ZQL

[X]/(XN + 1) of
dimension N with coefficients modulo QL =

∏L
i=0 qi defines the plaintext and

ciphertext spaces, hence both plaintexts/ciphertexts are represented by polyno-
mials of degree N − 1 whose coefficients encode a vector of N/2 values. The
security of CKKS is based on the ring learning with errors problem [40]. CKKS
supports the homomorphic evaluation of operations such as additions, multi-
plications, and rotations, and any operation is simultaneously performed on all
encoded values, hence offering Single Instruction, Multiple Data (SIMD). Non-
linear operations, e.g., comparisons, are supported via polynomial approxima-
tions, introducing a computation overhead versus accuracy tradeoff. CKKS is a
leveled HE scheme, i.e., an L-depth circuit can be evaluated before the ciphertext
is exhausted. Then, a costly procedure, called bootstrapping [21], is required to
refresh the exhausted ciphertext and enable more operations on it. We refer to
the traditional bootstrapping operation (performed by a single party) as cen-
tralized bootstrapping.
Multiparty Homomorphic Encryption (MHE). To make our framework
adaptable to various PaaS scenarios (see Sect. 4), we also rely on a multiparty
variant of the CKKS scheme [43]. In the multiparty homomorphic encryption
(MHE) scheme, a set of parties (e.g., model-providers) collectively generate a
public key while the corresponding secret key is secret-shared among them.
This setting enables secure collaboration between N parties, as parties use the
collective public key to encrypt their inputs and perform joint operations on
them using the MHE scheme. The result decryption by the client, however,
requires the participation of all parties. Hence, this scheme ensures confiden-
tiality under a passive adversary model with up to N − 1 collusions. Moreover,
the multiparty CKKS scheme offers efficient multiparty computation protocols.
For instance, it enables a collective bootstrapping operation, where the costly
centralized bootstrapping which homomorphically evaluates the decryption and
consumes many levels, is substituted by a lightweight one-round interactive pro-
tocol (CBootstrap(·)) which does not consume levels. Moreover, the scheme sup-
ports (CKeySwitch(·)), a collective key-switch operation which can change the
encryption key of a ciphertext.

slytHErin: An Agile Framework for Encrypted DNN Inference 363

3.2 Deep Neural Networks

Deep neural networks (DNNs) are able to model complex non-linear relation-
ships and find applicability in various domains such as computer vision. A DNN
consists of multiple hidden layers between the input and output layers. Our
framework enables the encrypted evaluation of DNNs comprising fully connected
(FC), convolutional (Conv), and pooling (Pool) layers. We succinctly present
the functionalities of these layer types:

Fully Connected layer: Given an input vector x, a weight matrix W and a
bias vector b, a FC-layer computes xWT + b.

Convolutional layer: Given an input tensor (e.g., an image) X with ci channels
of dimensions w ·h and a set of co kernels K each made up of ci filters of size
fw ·fh, a Conv-layer computes a tensor O with co channels. Each channel Oi

is computed as
∑ci

n=0 Xn∗Ki,n, with Xn the n-th channel of the input image,
Ki,n the n-th filter of the i-th kernel, and ∗ the cross-correlation operator.

Pooling layer: It performs dimensionality reduction on the input. The most
common types are SumPooling, AveragePooling, and MaxPooling, where the
feature-map is the sum, average, and the maximum of the features in a region
of the input, respectively. Max-Pooling requires non-linear operations, i.e.,
comparisons, which are non-trivial to implement under encryption, thus we
only consider the first two types.

Each layer can be paired with an activation function which is evaluated on
its output. The output of the DNN’s last layer is the prediction result (output).

4 slytHErin Overview

Building on the CKKS HE scheme and its multiparty variant (see Sect. 3), we
design a framework that is flexible for various encrypted PaaS scenarios (Fig. 1).
We first describe the involved entities before detailing slytHErin’s objectives
and workflow for each PaaS scenario.

– Model-provider(s): This entity (one or more) has trained an ML model and
exposes it to end-users for queries (PaaS) through a prediction API hosted
on a cloud service provider.

– Client: This entity is a user of the PaaS that inputs its own sensitive data
which is evaluated on the model exposed by the model-provider. The client
obtains the output of the PaaS process, i.e., the prediction.

We consider that the client and the model-provider are honest-but-curious,
i.e., they follow the protocol specification, but they might try to infer infor-
mation about each other’s data. slytHErin’s objective is to protect both the
confidentiality of the client’s and the model-provider’s data. In particular, the
model-provider should not learn any information about the client’s evaluation
data and the prediction result, whereas the client should not obtain any knowl-
edge about the model beyond what can be inferred from the PaaS output.

364 F. Intoci et al.

Fig. 1. Encrypted PaaS scenarios enabled by slytHErin. Encryption is depicted with a
lock whose color is the same as the corresponding secret key. The black key (rightmost
figure) corresponds to the model-providers’ collective key. Scenario 1: The client sends
its encrypted data to the model-provider that evaluates it on the plaintext model.
Scenario 2: The encrypted model is sent to the client for evaluation on its cleartext
data. Scenario 3: The client sends encrypted data to a cohort of model-providers that
retain an encrypted model.

4.1 Scenario 1: Encrypted Client Data - Cleartext Model

This is the traditional HE-based PaaS setting, where a client encrypts its data
with its own public key and sends the ciphertext to the model-provider that
stores its ML model in plaintext form. The model-provider evaluates its model
on the client’s encrypted data – without interacting with the client – and returns
the encrypted prediction to the client. The client decrypts the ciphertext with
its secret key and obtains the prediction result. In this scenario, the client’s data
confidentiality is ensured as its inputs are encrypted throughout the DNN eval-
uation and the model-provider does not learn the prediction result. The model
confidentiality is protected as the model remains on the model-provider’s side.
Scenario 1 represents a typical PaaS setting, where a model-holder exposes a pre-
diction service that receives sensitive data as inputs [11,16,22,33]. For instance,
imagine a health-care insurance provider that uses its customer data and trains
a DNN that predicts the probability of patient re-admission to a hospital. The
model is exposed through an API to clients (e.g., hospitals) who wish to obtain
predictions about their own cohorts of patients. However, hospitals cannot share
their patient data with third-parties due to ethical and data privacy require-
ments, hence, slytHErin could be an enabler for such a service as it ensures
data confidentiality.

4.2 Scenario 2: Cleartext Client Data - Encrypted Model

In this scenario, the model-provider outsources the computation of the predic-
tion to the client. However, the model is an intellectual property that needs to
be protected. Thus, the model-provider encrypts its model with its own pub-
lic key and sends it to the client in encrypted form. The client evaluates the
encrypted model on its own (plaintext) data and obtains an encrypted predic-
tion. Finally, the client sends the prediction ciphertext to the model provider,

slytHErin: An Agile Framework for Encrypted DNN Inference 365

which obliviously decrypts the result and communicates it back to the client
(Sect. 5.6). The client’s data confidentiality is ensured as its evaluation data is
never transferred and the model-provider does not learn the prediction result due
to the oblivious decryption phase. The model confidentiality is protected as the
model is encrypted with the model-provider’s public key. Scenario 2 is suitable
for applications that require outsourcing a trained model to the client side for
predictions. For instance, this could be the case for model trading platforms that
offer a try-before-you-buy option, where customers locally test the performance
of an ML model on their data before purchasing it. Another relevant application
is model outsourcing to edge devices [2,44], e.g., mobile phones or smartwatches,
that monitor their owners’ activity and provide feedback to them through pre-
dictions, e.g., health recommendations or activity tracking [55]. We note that
this is a novel PaaS scenario enabled by slytHErin.

4.3 Scenario 3: Encrypted Client Data - Encrypted Model

In this scenario, we assume that the model-provider is represented by a cohort
of N nodes that have collectively trained a DNN on their joint data with a
state-of-the-art encrypted collaborative learning framework [52,53,57]. For this,
we rely on a multiparty variant of homomorphic encryption (MHE). In partic-
ular, the nodes (model-providers) generate a collective public key (black key
in Fig. 1, Scenario 3) whose corresponding secret key is secret-shared among
them (colored keys in Fig. 1, Scenario 3). We assume that the nodes collectively
train a DNN on their data and retain it under encryption for PaaS to mitigate
model-targeting attacks and protect its intellectual property. For this scenario,
the client encrypts its evaluation data with the collective public key and a mas-
ter node from the cohort performs the prediction (with both the model and the
data encrypted) with the assistance of the other nodes for collective interactive
operations (e.g., ciphertext refresh – CBootstrap(·), Sects. 3.1 and 5.6). Finally,
the ciphertext storing the prediction result is re-encrypted (i.e., CKeySwitch(·),
Sects. 3.1 and 5.6) under the public key of the client which decrypts it to obtain
the prediction. In this case, both the model and the client data are encrypted
with the cohort’s collective public key, hence, their confidentiality is ensured as
long as one of the cohort nodes is honest and does not participate in decryption.
The confidentiality of the prediction output is protected, as only the client can
decrypt it. Scenario 3 is suitable for PaaS applications after a model-provider
outsources the model training procedure to a cohort of N nodes that leverage
on distributed learning techniques for improved efficiency or after a federation
of N model-providers, each with their own data, uses a state-of-the-art frame-
work to train a collective ML model under encryption [19,52,53]. We note that
previous works that focused on encrypted DNN inference do not support (or
implement) inference on encrypted models or collaborative functionalities such
as bootstrapping or re-encryption.

366 F. Intoci et al.

5 Cryptographic Building Blocks

We describe slytHErin’s underlying cryptographic building blocks that make it
flexible and efficient for different encrypted PaaS scenarios (Sect. 4) and various
DNN architectures. We first introduce the data packing approach adopted to
encode/encrypt the input data (Sect. 5.1). Then, we describe the algorithms used
to evaluate fully-connected, convolutional, and pooling layers under encryption
in Sects. 5.2 and 5.3, respectively. We also present several optimizations that
slytHErin implements (Sect. 5.4) and how non-linear activation functions are
evaluated (Sect. 5.5). Finally, we present the multiparty computation protocols
which allow slytHErin to support novel PaaS scenarios (Sect. 5.6).

5.1 Input Data Packing

Modern homomorphic encryption schemes can encode (pack) a vector of values
into one ciphertext, thus enabling SIMD operations via the parallel computa-
tion of a function on all ciphertext slots. Designing an efficient packing scheme
is crucial, yet challenging, due to the costs of re-arranging the ciphertext slots
via rotations. Prior work on encrypted DNN inference [11,22,31,33,34,37,48]
designed efficient packing schemes but these are tailored to specific system mod-
els and assumptions (e.g., the client’s availability for the evaluation of certain
operations). slytHErin employs a simple yet generic data packing scheme that
is agnostic of the encrypted PaaS scenario and also flexible in terms of batch size
that results in optimized latency and throughput. Given a batch consisting of n
input samples each with d features, a naive approach is to encrypt/encode each
feature of an input sample separately, yielding an inefficient execution due to
the high number of ciphertexts/plaintexts. To leverage on SIMD operations and
enable efficient encrypted inference, we flatten the batch and encrypt/encode
all values in a single ciphertext/plaintext. For an input sample represented by
a tensor of size h × r × c (where, e.g., for an image, h is the number of chan-
nels, while r and c represent the size of the pixel matrix of each channel), we
encrypt/encode a batch of size n in a tensor of size n×h×r×c as follows: First,
we row-flatten (RowFlatten(·)) each of the n tensors, such that the batch-tensor
is transformed into a matrix of size n × d, with d = h × r × c. This is done
by iterating through all the channels of the input, by row-flattening the corre-
sponding 2D matrix, and by horizontally stacking their flattened representation.
The n × d matrix is then transposed and row-flattened (TensorFlatten(·)), thus
yielding a vector of size m = d × n. Our packing scheme requires that m ≤ s,
where s is the ciphertext capacity (i.e., s = N/2 for CKKS) and if that is not
possible, we employ block matrix arithmetic optimizations (see Sect. 5.4).

5.2 Matrix Multiplication

To support the evaluation of fully-connected layers under encryption, slytHErin
relies on the following matrix multiplication algorithm. Given two encrypted
matrices, A and W, where A is of size n × d and W of size d × h, slytHErin

slytHErin: An Agile Framework for Encrypted DNN Inference 367

Fig. 2. Multiplication of two matrices A and W of size 3 × 3.

implements their multiplication following the diagonal approach of [28]. First,
W is represented by its generalized diagonals [28], where the element i,j of the
diagonal is: di,j = W(i+j) mod d,j . Additionally, we replicate n times the element
di,j . The matrix multiplication, then, can be evaluated as follows:

A × W =
d∑

i=1

di � RotateCyclicd×i(RowFlatten(A
T))

where RotateCyclick(v) represents a cyclic rotation of the values in v by k posi-
tions to the left and � represents the Hadamard product. Figure 2 represents a
multiplication of two 3 × 3 matrices with this algorithm.

5.3 Convolutional and Pooling Layers

To evaluate convolutional layers under encryption, slytHErin represents the
convolution operation as a matrix multiplication by expressing the filter as a
Toeplitz matrix [23,26]. For ease of presentation, consider a toy-example with
a convolution between a single-channel input I ∈ R3×3 and a filter h ∈ R2×2

operating on the input with unitary stride and no padding. We can compute the
convolution as: O = TensorFlatten(h∗I)T = h′ ×I′ where I′ = TensorFlatten(I)T

and h′ = T (h) for a function T that returns a Toeplitz matrix [23] as follows:

h′ =

⎛

⎜
⎜
⎝

h1,1 h1,2 0 h2,1 h2,4 0 0 0 0
0 h1,1 h1,2 0 h2,1 h2,40 0 0 0
0 0 0 h1,1 h1,2 0 h2,1 h2,4 0
0 0 0 0 h1,1 h1,2 0 h2,1 h2,4

⎞

⎟
⎟
⎠

Note that computing OT = I′T × h′T allows us to utilize the matrix multi-
plication algorithm and the input data packing protocol of Sects. 5.2 and 5.1,

368 F. Intoci et al.

respectively. Moreover, OT is a valid input to any subsequent layer in the DNN
architecture, without requiring any re-packing, hence avoiding the cost of slot
re-arrangement. slytHErin generalizes this method for convolutional layers with
k kernels, each with m filters, and n inputs with m channels. slytHErin also
supports SumPooling and AveragePooling layers: these are evaluated by treating
them as convolutional layers, and employing the method previously described.

5.4 Optimizations

Complex-Number Trick. To optimize the input data packing scheme
(Sect. 5.1), slytHErin employs the complex-number trick [51]: Since the CKKS
plaintext space is CN/2, we can leverage the imaginary part of complex numbers
and pack (up to) two values in one plaintext slot. This allows us to effectively per-
form the multiplication and sum of two values with just one multiplication. As a
toy example, let us consider the vectors: a = (a1, . . .),b = (b1, . . .), c = (c1, . . .),
and d = (d1, . . .). To compute a � c + b � d = (a1c1 + b1d1, . . .), we com-
press the first two and the two last vectors each into one vector with the fol-
lowing complex representation: g = (a1 + ib1, . . .), h = (c1 − id1, . . .). Then,
g � h = (a1c1 + b1d1 + i.e., . . .) for some value e, and the real part of the result
can be extracted with complex conjugation, addition and constant multiplica-
tion. We apply this technique to the input matrix A and to the weight matrix
W. In particular, we embed pairs of adjacent columns of A into one column, i.e.,
column k is paired with column k+1 mod d, where d is the number of columns,
hence the entry A(k,j) becomes A(k,j)+iA(k,j+1). For W, we compress the pairs
of adjacent diagonals into one, padding with an extra 0-diagonal if the number
of diagonals is odd. The newly packed matrix W̃ has �d

2� diagonals instead of d,
reducing the complexity of the matrix multiplication algorithm by a factor of 2.

Block Matrix Arithmetic. When the size of the input batch exceeds the
ciphertext capacity, slytHErin employs block-matrix arithmetic [52]. The input
matrix A of size n × d, is represented as a block-matrix Ā of size q × p, i.e., a
matrix consisting of blocks (or sub-matrices) of size n

q × d
p for some divisors q and

p of n and d, respectively. Similarly, the weight matrix W of size d × h is par-
titioned to enable the multiplication Ō = Ā × W̄ under two constraints: (i) W̄
must have p row partitions, and (ii) every inner block Wk,j must be compatible
for matrix multiplication with the inner blocks Ai,k. Ō is a block-matrix of size
n× h with q row partitions and m column partitions (and m the number of col-
umn partitions of W̄). Each block Oi,j is computed as: Oi,j =

∑p
k=1 Ai,kWk,j .

Hence, by choosing suitable partitions, each matrix inner block is small enough to
be encrypted/encoded independently following the input data packing and the
generalized-diagonals approach described earlier (Sects. 5.1 and 5.2). Figure 3
represents the encryption of matrix A with 2× 2 partitioning. Then, the matrix
multiplication between two large matrices is evaluated as a series of sums and
multiplications between these smaller blocks. Given a model to evaluate (i.e.,
the dimensions of its layers), the number of input features, and a set of CKKS
parameters, slytHErin follows a heuristic-based approach to automatically find

slytHErin: An Agile Framework for Encrypted DNN Inference 369

Fig. 3. Partitioning of an input matrix A in a 2 × 2 block matrix.

the best batch size and partition strategy. In more detail, slytHErin explores
the space of possible splits, starting from divisors of the number of samples (if
provided by the user) or divisors of the features dimension, and picks the split
sequence and batch size that minimize the overall complexity of the pipeline in
terms of homomorphic operations (i.e., it minimizes the number of homomorphic
multiplications required to evaluate the model), thus optimizing throughput. In
any case, the user can also declare a customized batch size which overrides the
optimized batch size, and let slytHErin operate with a sub-optimal block matrix
representation. An advantage of the block matrix arithmetic approach is that it
is amenable to parallelization: Given q × p × m threads, the matrix multiplica-
tion between two blocks Ai,k and Wk,j can be delegated to each thread, while
using q ×m of them to combine the individual results. Moreover, for a given set
of cryptographic parameters and the corresponding evaluation keys, the client
does not need to regenerate the keys for the evaluation of arbitrary size matrices,
which is a computationally intensive task.

5.5 Non-Linear Operations

As non-polynomial functions, e.g., comparisons, are not computable under
HE, some works modify common activation functions (e.g., ReLU) with sim-
ple polynomial functions [22] (e.g., x2), or use polynomial approximations [53].
slytHErin employs the second approach and relies on Chebychev interpolants
to approximate any Lipschitz continuous function on any finite real interval.

5.6 Multiparty Computation Protocols

We remind that slytHErin relies on CKKS and its multiparty variant (MHE)
which enables interactive functionalities such as CBootstrap(·) for collective boot-
strapping and CKeySwitch(·) for collective key-switching. The latter enables
changing the encryption key of a ciphertext. In Scenario 3, the model-providers
rely on these functionalities to refresh the ciphertexts noise and to change the
encryption key of the prediction result, so that only the client can decrypt it.

We also design and implement an oblivious decryption protocol ObvDec(·),
for Scenario 2 (Sect. 4.2). In this protocol, the client masks its prediction result

370 F. Intoci et al.

(encrypted under the model provider secret key) with an encryption of 0 under
an ephemeral secret key, and sends the result to the model provider, which
can remove one layer of encryption from the result (by invoking the decryption
procedure of CKKS), without exposing the underlying plaintext. The result is
finally sent to the client that unmasks it.

6 Experimental Evaluation

6.1 Implementation and Experimental Setup

We implemented slytHErin in Go [24], using Lattigo as the cryptographic
library [35]. Our implementation is modular, reusable, and easy to adapt to
several PaaS applications. Detailed documentation can be found along with
our source code on https://github.com/ldsec/slytHErin. We evaluate slytHErin
using the following DNN architectures:

– NN5: A 5-layer convolutional neural network described in [22] for which we
replace the square activation function with a degree 2 Chebyshev approxima-
tion of Softplus.

– NN20: A 20-layer DNN composed of convolutional and fully connected layers
described in [16] (∼754K model parameters) for which we replace the activa-
tion functions with a degree-63 approximation of SiLU and train it with the
MSE loss function.

– NN50: Similar to NN20 but comprising 50 layers (∼1M model parame-
ters [16]).

We use the MNIST dataset [36] for encrypted image classification, as it is
the de-facto benchmark dataset used in prior work for privacy-preserving infer-
ence tasks [8,9,11,16,17,22,33]. All models were trained from scratch, achieving
similar accuracy to the original works (and with minimal accuracy loss in the
encrypted inference, none for NN5, approximately ∼0.13% for NN20, and ∼2%
for NN50). The CKKS parameters are configured to achieve 128-bit security.
For the multiparty interactive protocols, we deploy slytHErin on a local cluster
with an average network delay of 20ms and 1Gbps bandwidth. All experiments
were executed on machines running Ubuntu 22.04, with 12-core Intel Xeon E5-
2680 2.5 GHz CPUs and 256GB RAM DDR4. The results are averaged over 3–5
runs.

6.2 Empirical Results

We first demonstrate how slytHErin supports different batch sizes by evaluat-
ing NN5 on Scenario 1 (Sect. 6.2.1). We also compare slytHErin with prior
work on private PaaS as NN5 is the predominantly used benchmark. Then,
in Sect. 6.2.2, we evaluate NN20 on Scenario 3 to discuss slytHErin’s scal-
ability aspects with the number of model-providers. Finally, we demonstrate
slytHErin’s application and model agility by evaluating the more complex
model NN50 in all scenarios of Sect. 4 (Sect. 6.2.3).

https://github.com/ldsec/slytHErin

slytHErin: An Agile Framework for Encrypted DNN Inference 371

Fig. 4. slytHErin’s amortized runtime with different batch sizes.

6.2.1 Elastic Data Packing
We demonstrate the benefits of our packing approach (Sect. 5.1), by benchmark-
ing NN5 [22] in the traditional PaaS setting (Scenario 1) for various batch
sizes. For this experiment, slytHErin heuristically estimates the optimal batch
size for throughput at 83, as described in Sect. 5.4; this is experimentally con-
firmed by observing Figs. 4a and 4b. In particular, Fig. 4a shows slytHErin’s
latency for varying batch sizes up to 4, 096 in semi-log scale. We observe a lin-
ear increase in latency after the optimal size. This is expected, as slytHErin
automatically splits batch sizes larger than the optimal size into sub-batches
of optimal size, and processes them sequentially. Figure 4b shows the amor-
tized runtime of slytHErin for variable batch sizes: We observe that a batch of
size 83 is indeed the optimal point which minimizes the amortized runtime (or
maximizes the throughput). Finally, we compare slytHErin’s performance with
related works that evaluate NN5 in the same application scenario with polyno-
mial activation functions (thus, we exclude Gazelle [33] which relies on Garbled
Circuits). Table 1 shows that slytHErin’s performance is on par with or better
than previous works, while providing enhanced flexibility in terms of batch size.
The approach followed by CryptoNets and inspired works [8,17,22] allows them
to achieve a good throughput by processing large batches of data items (up
to N/2), but their runtime is independent of the batch size (hence, it will not
decrease for smaller batches as per Table 1). Conversely, the approach followed
by LoLa [11] achieves low latency for a single sample, but cannot amortize the
runtime when processing multiple samples. With slytHErin, the end-user can
define its custom batch size without a major impact on performance.

372 F. Intoci et al.

Table 1. Latency comparison between slytHErin and prior encrypted frameworks for
the evaluation of NN5 and various batch sizes.

Framework Latency (s)

Batch size = 1 Batch size = 83 Batch size = 4,096

CryptoNets [22] 250 250 250

Faster CryptoNets [17] 39.1 3,245 160,153

LoLa [11] 2.2 182.6 8,951

nGraph-HE2 [8]a 2.05 2.05 2.05

slytHErin 3.7 4.08 243.4
a While slytHErin and related works [11,17,22] employ similar hardware for testing,
we note that nGraph-HE2 [8] employs compiler optimizations and a more performant
hardware with 376GB of RAM and 112 cores

Table 2. slytHErin’s performance for NN20 on
Scenario 3 (Sect. 4.3) with increasing number of
parties (model-providers).

of Parties Latency (s) Throughput
(samples/s)

3 245.58 (±0.50) 1.19

5 238.15 (±4.12) 1.22

10 278.19 (±9.11) 1.05

20 354.17 (±10.66) 0.82

Fig. 5. Benchmarking decentral-
ized vs. centralized bootstrapping
on encrypted NN20 for vari-
able number of parties (model-
providers).

6.2.2 Interactive MPC Protocols
We evaluate NN20 in Scenario 3 where the model is trained and retained
under encryption by multiple parties using a privacy-preserving collaborative
training framework [19,52,53] (Sect. 4.3). Note that this scenario requires the
use of the collective bootstrapping protocol CBootstrap(·), thus, it is not sup-
ported by prior encrypted inference frameworks. Table 2 shows slytHErin’s
latency and throughput for increasing number of parties, while in Fig. 5 we com-
pare slytHErin’s amortized runtime when employing CBootstrap(·) versus the
centralized bootstrapping. Overall, we observe a linear increase (decrease) in
slytHErin’s latency (throughput) as the number of parties increases. We note
that the CBootstrap(·) operation is executed in an asynchronous fashion by the
master model provider, i.e., the protocol is initiated concurrently with all the
model providers and the output is generated as soon as the last party provides its
share. For this reason, we can even experience lower latency when increasing the
number of parties by a limited amount (3 vs. 5), as the protocol becomes partic-
ularly sensible to the network conditions. In any case, the benefits of employing

slytHErin: An Agile Framework for Encrypted DNN Inference 373

Table 3. slytHErin’s performance for NN50 in Scenarios 1, 2, and 3 (Sect. 4). For
Scenario 3, the number of model-providers is N=3.

Latency(s) Amortized
(s/sample)

Throughput
(samples/s)

Avg.
latency/layer
(s)

Plaintext model
Encrypted data
(Scenario 1)

2,496.83 4.26 0.234 48.95

Encrypted model
Plaintext data
(Scenario 2)

2,699.75 4.62 0.216 52.93

Encrypted model
Encrypted data
(Scenario 3)

613.52 2.09 0.476 12.02

CBootstrap(·) over the centralized version (when possible) are evident, as the for-
mer enables refreshing the ciphertext noise with an efficient interactive protocol,
rather than with a computationally expensive homomorphic circuit.

6.2.3 Application and Model Agility
Finally, we demonstrate the high degree of flexibility offered by slytHErin,
both in terms of variety of enabled use-cases and supported architectures, by
evaluating a more complex model on all the scenarios described in Sect. 4. In
particular, we benchmark slytHErin with NN50 and a batch of 585 samples
on: (i) Scenario 1 with encrypted data and a plaintext model (Sect. 4.1), (ii)
Scenario 2 with an encrypted model and plaintext data (Sect. 4.2), and (iii)
Scenario 3 where the encrypted model is kept by N=3 model-providers and
encrypted data. Note that evaluating NN50 in Scenarios 1 and 2 requires the
invocation of the centralized bootstrapping operation, that is not supported by
most of the related works [8,11,22,33].

Table 3 shows the performance results for all scenarios. First, we note that
by leveraging on our data packing approach and processing multiple samples in
a SIMD fashion, slytHErin achieves reasonable runtime given the complexity
of the NN50 model (Scenario 1). For reference, the original work by Chillotti
et al. achieves at best an amortized time of 37.69s/sample and a throughput
of 0.02samples/s. Then, we also observe that slytHErin’s generic optimiza-
tions enable the efficient evaluation of encrypted models: Evaluating NN50
under encryption on Scenario 2, which involves a matrix multiplication, addi-
tion, polynomial activation, and centralized bootstrapping operations, is only
∼7% slower than evaluating a plaintext model evaluation (c.f. Scenario 1).
slytHErin achieves the best performance results on Scenario 3 thanks to
its support for interactive multiparty protocols such as collective bootstrap-

374 F. Intoci et al.

ping (Sect. 6.2.2). Overall, we remark that slytHErin is the first framework for
encrypted inference that can support all these application scenarios.

7 Conclusion

In this work, we presented slytHErin, an agile framework for privacy-preserving
deep neural network inference using homomorphic encryption. Thanks to our
hybrid design that leverages on HE and its multiparty variant, and generic
setting-agnostic optimizations, slytHErin can support various and novel sce-
narios for encrypted inference featuring untrusted model providers and clients.
These scenarios include: (i) the client sending encrypted data to an untrusted
model-provider for inference, (ii) the model-provider sending an encrypted model
to a client for local inference (without the need of mutual trust between them),
and (iii) the client sending the encrypted data to a cohort of model-providers
holding an encrypted model. Thus, slytHErin extends the applicability of
privacy-preserving PaaS beyond previous works. Moreover, with our intuitive
and flexible input data packing scheme, slytHErin can be adapted to various
deep neural network architectures and can accommodate diverse application
requirements, being able to process an arbitrary number of samples without
incurring major performance loss. Our experimental results show that the sim-
plicity of our packing approach and the agility of our framework does not harm
its performance as it is on par with, and occasionally better than, state-of-the-art
related works, while introducing an increased degree of flexibility over previous
works.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). http://tensorflow.org/

2. Almeida, M., Laskaridis, S., Venieris, S.I., Leontiadis, I., Lane, N.D.: DynO:
dynamic onloading of deep neural networks from cloud to device. ACM Trans.
Embed. Comput. Syst. 21(6), 1–24 (2022). https://doi.org/10.1145/3510831

3. Amazon Forecast (2023). https://aws.amazon.com/forecast/. Accessed 01 Jan 2023
4. Machine Learning on AWS (2023). https://aws.amazon.com/machine-learning/.

Accessed 01 Jan 2023
5. Azure Machine Learning (2023). https://azure.microsoft.com/en-us/products/

machine-learning/. Accessed 01 Jan 2023
6. Microsoft Azure Cognitive Service (2023). https://learn.microsoft.com/en-us/

azure/cognitive-services/language-service/. Accessed 01 Jan 2023
7. Machine Learning made beautifully simple for everyone (2023). https://bigml.

com/. Accessed 01 Jan 2023
8. Boemer, F., Costache, A., Cammarota, R., Wierzynski, C.: nGraph-HE2: a high-

throughput framework for neural network inference on encrypted data. In: ACM
WAHC (2019)

9. Boemer, F., Lao, Y., Wierzynski, C.: nGraph-HE: a graph compiler for deep learn-
ing on homomorphically encrypted data. CoRR abs/1810.10121 (2018). http://
arxiv.org/abs/1810.10121

http://tensorflow.org/
https://doi.org/10.1145/3510831
https://aws.amazon.com/forecast/
https://aws.amazon.com/machine-learning/
https://azure.microsoft.com/en-us/products/machine-learning/
https://azure.microsoft.com/en-us/products/machine-learning/
https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/
https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/
https://bigml.com/
https://bigml.com/
http://arxiv.org/abs/1810.10121
http://arxiv.org/abs/1810.10121

slytHErin: An Agile Framework for Encrypted DNN Inference 375

10. Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for B/FV,
TFHE and HEAAN fully homomorphic encryption and predictions for deep learn-
ing. IACR Cryptol. ePrint Arch. 2018, 758 (2018)

11. Brutzkus, A., Gilad-Bachrach, R., Elisha, O.: Low latency privacy preserving
inference. In: International Conference on Machine Learning, pp. 812–821. PMLR
(2019)

12. California Consumer Privacy Act (CCPA) (2023). https://www.oag.ca.gov/
privacy/ccpa. Accessed 01 Jan 2023

13. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-
preserving classification on deep neural network. IACR Cryptol. ePrint Arch. 2017,
35 (2017)

14. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homo-
morphic encryption over the torus. J. Cryptology 33(1), 34–91 (2020). https://
doi.org/10.1007/s00145-019-09319-x

16. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. Cryptology ePrint Archive, Paper
2021/091 (2021)

17. Chou, E., Beal, J., Levy, D., Yeung, S., Haque, A., Fei-Fei, L.: Faster cryptoNets:
leveraging sparsity for real-world encrypted inference. CoRR abs/1811.09953
(2018). http://arxiv.org/abs/1811.09953

18. Dathathri, R., et al.: CHET: an optimizing compiler for fully-homomorphic neural-
network inferencing. In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 142–156. PLDI 2019,
Association for Computing Machinery, New York, NY, USA (2019). https://doi.
org/10.1145/3314221.3314628

19. Froelicher, D., et al.: Scalable privacy-preserving distributed learning. In: PETS
(2021)

20. The EU General Data Protection Regulation (2023). https://gdpr-info.eu/.
Accessed 01 Jan 2023

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178.
STOC 2009, Association for Computing Machinery, New York, NY, USA (2009).
https://doi.org/10.1145/1536414.1536440

22. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
CryptoNets: applying neural networks to encrypted data with high throughput
and accuracy. In: ICML (2016)

23. Gnacik, M., �Lapa, K.: Using Toeplitz matrices to obtain 2D convolution (2022).
https://doi.org/10.21203/rs.3.rs-2195496/v1

24. Go Programming Language (2023). https://golang.org. Accessed 01 Jan 2023
25. AI and machine learning products (2023). https://cloud.google.com/products/ai.

Accessed 01 Jan 2023
26. Gray, R.M.: Toeplitz and circulant matrices: a review. Found. Trends R© Commun.

Inf. Theory 2(3), 155–239 (2006). https://doi.org/10.1561/0100000006
27. Halevi, S., Shoup, V.: HElib - an implementation of homomorphic encryption

(2014). https://github.com/shaih/HElib/. Accessed 01 Jan 2023

https://www.oag.ca.gov/privacy/ccpa
https://www.oag.ca.gov/privacy/ccpa
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
http://arxiv.org/abs/1811.09953
https://doi.org/10.1145/3314221.3314628
https://doi.org/10.1145/3314221.3314628
https://gdpr-info.eu/
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.21203/rs.3.rs-2195496/v1
https://golang.org
https://cloud.google.com/products/ai
https://doi.org/10.1561/0100000006
https://github.com/shaih/HElib/

376 F. Intoci et al.

28. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

29. Hesamifard, E., Takabi, H., Ghasemi, M., Wright, R.: Privacy-preserving machine
learning as a service. PETS 2018, 123–142 (2018)

30. Centers for Medicare & Medicaid Services. The Health Insurance Porta-
bility and Accountability Act of 1996 (HIPAA) (2023). https://www.cms.
gov/Regulations-and-Guidance/Administrative-Simplification/HIPAA-ACA/
PrivacyandSecurityInformation. Accessed 01 Jan 2023

31. Huang, Z., Lu, W.J., Hong, C., Ding, J.: Cheetah: lean and fast secure two-party
deep neural network inference. In: 31st USENIX Security Symposium (2022)

32. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1209–1222. CCS 2018,
Association for Computing Machinery, New York, NY, USA (2018). https://doi.
org/10.1145/3243734.3243837

33. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency
framework for secure neural network inference. In: USENIX Security (2018)

34. Kim, M., Jiang, X., Lauter, K., Ismayilzada, E., Shams, S.: Secure human action
recognition by encrypted neural network inference. Nat. Commun. 13(1), 4799
(2022). https://doi.org/10.1038/s41467-022-32168-5

35. Lattigo: a library for lattice-based homomorphic encryption in go (2023). https://
github.com/ldsec/lattigo. Accessed 01 Jan 2023

36. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
37. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via

MiniONN transformations. In: ACM CCS (2017)
38. Lloret-Talavera, G., et al.: Enabling homomorphically encrypted inference for large

DNN models. IEEE Trans. Comput. 7, 1145–1155 (2021). https://doi.org/10.1109/
TC.2021.3076123

39. Lu, W.J., Sakuma, J.: More practical privacy-preserving machine learning as a
service via efficient secure matrix multiplication. In: Proceedings of the 6th Work-
shop on Encrypted Computing & Applied Homomorphic Cryptography, pp. 25–36.
WAHC 2018, Association for Computing Machinery, New York, NY, USA (2018)

40. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM (JACM) 60(6), 1–35 (2013)

41. Meftah, S., Tan, B.H.M., Mun, C.F., Aung, K.M.M., Veeravalli, B., Chandrasekhar,
V.: DOReN: toward efficient deep convolutional neural networks with fully homo-
morphic encryption. IEEE Trans. Inf. Forensics Secur. 16, 3740–3752 (2021).
https://doi.org/10.1109/TIFS.2021.3090959

42. Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: Delphi: A cryp-
tographic inference service for neural networks. In: USENIX Security (2020)

43. Mouchet, C., Troncoso-Pastoriza, J.R., Bossuat, J.P., Hubaux, J.P.: Multiparty
homomorphic encryption from ring-learning-with-errors. PETS 2021, 291–311
(2021)

44. Murshed, M.G.S., Murphy, C., Hou, D., Khan, N., Ananthanarayanan, G., Hussain,
F.: Machine learning at the network edge: a survey. ACM Comput. Surv. 54(8),
1–37 (2021). https://doi.org/10.1145/3469029

45. Paszke, A., et al.: Automatic differentiation in PyTorch. In: 31st Conference on
Neural Information Processing Systems (NIPS 2017) (2017)

46. Patra, A., Suresh, A.: BLAZE: blazing fast privacy-preserving machine learning.
In: NDSS (2020)

https://doi.org/10.1007/978-3-662-44371-2_31
https://www.cms.gov/Regulations-and-Guidance/Administrative-Simplification/HIPAA-ACA/PrivacyandSecurityInformation
https://www.cms.gov/Regulations-and-Guidance/Administrative-Simplification/HIPAA-ACA/PrivacyandSecurityInformation
https://www.cms.gov/Regulations-and-Guidance/Administrative-Simplification/HIPAA-ACA/PrivacyandSecurityInformation
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1038/s41467-022-32168-5
https://github.com/ldsec/lattigo
https://github.com/ldsec/lattigo
https://doi.org/10.1109/TC.2021.3076123
https://doi.org/10.1109/TC.2021.3076123
https://doi.org/10.1109/TIFS.2021.3090959
https://doi.org/10.1145/3469029

slytHErin: An Agile Framework for Encrypted DNN Inference 377

47. Ran, R., Wang, W., Gang, Q., Yin, J., Xu, N., Wen, W.: CryptoGCN: fast and scal-
able homomorphically encrypted graph convolutional network inference. In: Oh,
A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information
Processing Systems (2022). https://openreview.net/forum?id=VeQBBm1MmTZ

48. Rathee, D., et al.: CrypTFlow2: practical 2-party secure inference. In: ACM CCS,
pp. 325–342 (2020)

49. Riazi, M.S., Samragh, M., Chen, H., Laine, K., Lauter, K.E., Koushanfar, F.:
XONN: XNOR-based oblivious deep neural network inference. In: USENIX Secu-
rity (2019)

50. Rohloff, K.: The PALISADE lattice cryptography library (2018). https://git.njit.
edu/palisade/PALISADE

51. Sav, S., Bossuat, J.P., Troncoso-Pastoriza, J.R., Claassen, M., Hubaux, J.P.:
Privacy-preserving federated neural network learning for disease-associated cell
classification. Patterns 3(5) (2022). https://doi.org/10.1016/j.patter.2022.100487

52. Sav, S., Diaa, A., Pyrgelis, A., Bossuat, J.P., Hubaux, J.P.: Privacy-preserving
federated recurrent neural networks. CoRR abs/2207.13947 (2022). https://arxiv.
org/abs/2207.13947

53. Sav, S., et al.: POSEIDON: privacy-preserving federated neural network learning.
In: Network and Distributed System Security Symposium (NDSS) (2021)

54. Microsoft SEAL (release 3.3) (2023). https://github.com/Microsoft/SEAL.
Accessed 01 Jan 2023

55. Sim, S.H., Paranjpe, T., Roberts, N., Zhao, M.: Exploring edge machine learning-
based stress prediction using wearable devices. In: 2022 21st IEEE Interna-
tional Conference on Machine Learning and Applications (ICMLA), pp. 1266–1273
(2022). https://doi.org/10.1109/ICMLA55696.2022.00203

56. Watson Machine Learning (2023). https://cloud.ibm.com/catalog/services/
watson-machine-learning. Accessed 01 Jan 2023

57. Xu, G., et al.: Hercules: boosting the performance of privacy-preserving federated
learning. IEEE Trans. Dependable Secure Comput. 1–18 (2022). https://doi.org/
10.1109/TDSC.2022.3218793

https://openreview.net/forum?id=VeQBBm1MmTZ
https://git.njit.edu/palisade/PALISADE
https://git.njit.edu/palisade/PALISADE
https://doi.org/10.1016/j.patter.2022.100487
https://arxiv.org/abs/2207.13947
https://arxiv.org/abs/2207.13947
https://github.com/Microsoft/SEAL
https://doi.org/10.1109/ICMLA55696.2022.00203
https://cloud.ibm.com/catalog/services/watson-machine-learning
https://cloud.ibm.com/catalog/services/watson-machine-learning
https://doi.org/10.1109/TDSC.2022.3218793
https://doi.org/10.1109/TDSC.2022.3218793

	slytHErin: An Agile Framework for Encrypted Deep Neural Network Inference
	1 Introduction
	2 Related Work
	3 Background
	3.1 Homomorphic Encryption
	3.2 Deep Neural Networks

	4 slytHErin Overview
	4.1 Scenario 1: Encrypted Client Data - Cleartext Model
	4.2 Scenario 2: Cleartext Client Data - Encrypted Model
	4.3 Scenario 3: Encrypted Client Data - Encrypted Model

	5 Cryptographic Building Blocks
	5.1 Input Data Packing
	5.2 Matrix Multiplication
	5.3 Convolutional and Pooling Layers
	5.4 Optimizations
	5.5 Non-Linear Operations
	5.6 Multiparty Computation Protocols

	6 Experimental Evaluation
	6.1 Implementation and Experimental Setup
	6.2 Empirical Results

	7 Conclusion
	References

