
EARIC: Exploiting ADC Registers in IoT
and Control Systems

Eyasu Getahun Chekole(B), Rajaram Thulasiraman, and Jianying Zhou

Singapore University of Technology and Design, Singapore, Singapore
{eyasu chekole,jianying zhou}@sutd.edu.sg,
thulasiraman rajaram@alumni.sutd.edu.sg

Abstract. An analog-to-digital converter (ADC) is a critical part of
most computing systems as it converts analog signals into quantifiable
digital values. Since most digital devices operate only on digital values,
the ADC acts as an interface between the digital and analog worlds.
Hence, ADCs are commonly used in a wide-range of application areas,
such as internet of things (IoT), industrial control systems (ICS), cyber-
physical systems (CPS), audio/video devices, medical imaging, digital
oscilloscopes, and cell phones, among others. For example, programmable
logic controllers (PLCs) in ICS/CPS often make control decisions based
on digital values that are converted from analog signals by ADCs. Due
to its crucial role in various applications, ADCs are often targeted by a
wide-range of physical and cyber attacks. Attackers may exploit vulner-
abilities that could be found in the software/hardware of ADCs. In this
work, we first conduct a deeper study on the ADC conversion logic to
scrutinize relevant vulnerabilities that were not well explored by prior
works. Hence, we manage to identify exploitable vulnerabilities on cer-
tain ADC registers that are used in the ADC conversion process. These
vulnerabilities can allow attackers to launch dangerous attacks that can
disrupt the behaviour of the targeted system (e.g., an IoT or control
system) in a stealthy way. As a proof of concept, we design three such
attacks by exploiting the vulnerabilities identified. Finally, we test the
attacks on a mini-CPS testbed we designed using IoT devices, analog
sensors and actuators. Our experimental results reveal high effectiveness
of the proposed attack techniques in misleading PLCs to make incorrect
control decisions in CPS. We also analyze the impact of such attacks
when launched in realistic CPS testbeds.

Keywords: ADC Security · ADC Vulnerabilities · ADC Attacks ·
CPS Security · ICS Security · PLC Attacks · IoT Security

1 Introduction

A signal that represents a continuous range of values that varies over time is
referred to as an analog signal [30]. Such signals can also be characterized by
natural phenomena, such as lightning, earthquake, wind speed, volcano, sound
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waves, weight measurements, etc. Analog signals are often in the form of electri-
cal energy, such as voltage, current or electromagnetic power. These signals typ-
ically come from sound, light, temperature or motion sensors. However, analog
signals, which have more than 2 distinct readings, are not compatible in digital
computation. This is because, digital devices, such as computers and microcon-
trollers (MCUs)1, operate only on binary or digital values, i.e., 0 s and 1 s. As
such, it is required to convert analog signals to digital values (i.e., discrete-time
values) in order to process them using digital devices. This is where the analog-
to-digital converter (ADC) [23] comes in handy. As the name implies, ADC is
a system that converts an analog signal (i.e., continuous voltage values) to dig-
ital values, which can be understood by most computers and MCUs for digital
computation. Most state-of-the-art MCUs have an inbuilt ADC. Therefore, such
binary encoding of analog signals facilitates the interface between digital cir-
cuits and the real world. The analog-to-digital conversion logic of ADC typically
involves three steps: sampling and holding (S/H), quantization and encoding [33].

ADCs are widely used in most digital systems that involve analog signals in
its computations. These includes IoT, control systems (e.g., ICS/CPS), image
processing, digital multimeters, cell phones, and medical imaging, to name a
few. For example, PLCs [2] in ICS [34]/CPS [24,39] often make control decisions
based on the inputs obtained from analog sensors (e.g., temperature, pressure
and force sensors). However, they cannot directly use analog inputs as they
cannot understand analog signals. Hence, they have inbuilt ADCs that serve
to convert the analog signals into digital values. The PLCs will then use these
digital values to make control decisions [21].

Since ADC is an integral and critical part of most computing systems, such as
IoT and ICS/CPS, it has been targeted by various types of cyber criminals. The
attackers may exploit vulnerabilities that could be found in the hardware or soft-
ware of ADCs. For example, Bolshev et al. [5] has exploited vulnerabilities in the
sampling frequency and dynamic range of the ADC conversion logic. There are
also attacks that exploited the strong correlation between the ADC digital output
codes and the ADC supply current waveforms [17]. Other attacks exploited fast
attack automatic gain control (AGC) vulnerability in ADC [3,16,19]. Other class
of attacks exploited the DAC-to-DAC crosstalk vulnerability in the ADC con-
version logic [22,31,36]. Numerous side-channel attacks have also exploited vari-
ous types of vulnerabilities in ADC [4,11,13,26,27,29]. Hardware trojan attacks
were also launched on the analog circuits of ADCs [12]. Other researchers have
conducted a security analysis on the output signals of the ADC datapath and
its control unit [35] and ADC power noise measurement attacks [37]. However,
we are not aware of existing attack techniques in the literature that specifically
exploit vulnerabilities related to ADC registers (the smallest and fastest memory
locations that are built into the processor). Hence, this work aims to bridge this
gap in ADC security.

1 https://www.arrow.com/en/research-and-events/articles/engineering-basics-what-
is-a-microcontroller.

https://www.arrow.com/en/research-and-events/articles/engineering-basics-what-is-a-microcontroller
https://www.arrow.com/en/research-and-events/articles/engineering-basics-what-is-a-microcontroller
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In this work, we first conduct a deeper analysis and study on ADCs to explore
exploitable vulnerabilities in the analog-to-digital conversion logic. In particu-
lar, we study the various types of ADC registers involved in the analog-to-digital
conversion process. After systematically analyzing the nature of these registers,
we find out that most of them are vulnerable to a manipulation attack. This
is because, registers for low-end MCUs are often controllable by user code and
have no or little protections built in against unauthorized manipulations. Con-
sequently, an attacker may modify or clear certain values or flags of the registers
to deceive the output of the ADC conversion logic. Moreover, the attacks can be
performed in a stealthy way so that it will be very hard to be detected using con-
ventional techniques. The attacks can also be carried out physically or remotely
through malicious code injection or malevolent system configuration. In control
systems, such as ICS/CPS, systematically manipulated ADC outputs can mis-
lead PLCs to make wrong control decisions. This may, in return, result in a
disaster to the physical plant of the ICS/CPS. To the best of our knowledge,
there are no prior attacks presented in the literature that specifically targeted
ADC registers to deceit the ADC conversion process.

To scrutinize the actual exploitability of the registers, we design EARIC
(Exploiting ADC Registers in IoT and Control systems) – a scheme comprising
the three types of attacks we designed to manipulate the ADC conversion logic.
In EARIC, we particularly target three critical ADC registers that are com-
monly used in the ADC conversion logic. This includes, ADC multiplexer selec-
tion register (ADMUX), analog comparator control and status register (ACSR),
and two ADC data registers (i.e., ADC High register (ADCH) and ADC Low
register (ADCL)). By systematically manipulating the values or flags of these
registers, we manage to deceive or interrupt outputs of the ADC. That means,
we force the ADC to return undesirable digital values from analog signals. To
this end, we design and perform three types of attacks on the ADC conversion
logic: (1) Deceiving the ADC conversion process - changing the expected ADC
output into a totally different value; (2) Creating denial of service (DoS) in the
ADC process - hanging the ADC conversion process and causing system unavail-
ability; (3) Resetting the ADC conversion process - making the ADC to always
return an empty output. Finally, we assess and evaluate the effectiveness of the
proposed attacks using a minimalist CPS (mini-CPS) testbed we designed using
IoT devices, such as Arduino (as a soft PLC), analog sensors and actuators.

In general, the main motivation of this work is to show that dangerous
stealthy attacks can be launched into critical systems by exploiting certain ADC
registers. In this work, we make the following technical contributions.

1. We conduct a deeper study in the ADC conversion logic and identify vulnera-
bilities on the ADC registers used in the analog-to-digital conversion process.

2. We design and perform three types of attacks by exploiting the vulnerabilities
we identified.

3. We assess and evaluate the effectiveness (in terms of accuracy, efficiency and
impact) of the proposed attacks using an IoT-based mini-CPS testbed we
designed.
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2 Background

In this section, we provide relevant background information to this work. Specif-
ically, we provide a high-level information on the ADC conversion logic and
cyber-physical systems (CPS). For easy reference, Table 1 lists out all the rele-
vant acronyms and notations used in this paper.

Table 1. Description of acronyms and notations

Notation Description Notation Description

ACBG Analog comparator band gap DAC Digital-to-analog converter

ACD Analog comparator disable DoS Denial of service

ACIC Analog comparator input capture

enable

FS Full scale

ACI Analog comparator interrupt GND Ground

ACIE Analog comparator interrupt enable GUI Graphical user interface

ACIS Analog comparator interrupt mode

select

HMI Human machine interface

ACME Analog comparator multiplexer enable ICS Industrial control systems

ACO Analog comparator output IF Intermediate frequency

ACSR Analog comparator control and status

register

IoT Internet of things

ADC Analog-to-digital converter LM35 An analog temperature sensor

ADMUX ADC multiplexer selection register LSB Least significant bit

ADCH ADC high register MCU Microcontroller

ADCL ADC low register MSB Most significant bit

ADEN ADC enable MUX Multiplexer selection register

ADFR ADC free running PCM Pulse code modulation

ADIE ADC interrupt enable PLC Programmable logic controller

ADIF ADC interrupt flag PSA Power side-channel attack

ADPS ADC pre-scaler selection R/W Read/Write

ADSC ADC start conversion REFS Reference selection

AREF Analog reference S/H Sampling and holding

ADLAR ADC left adjust result SAR Successive approximation register

ADMUX ADC multiplexer selection register SCADA Supervisory control and data

acquisition

AIN Analog input pin SoC System-on-Chip

AVCC Analog voltage common collector SRAM Static random-access memory

CPS Cyber-physical systems VREF reference voltage

2.1 Overview of ADC

Analog and Digital Signals. As highlighted in the introduction, analog sig-
nals are electromagnetic signals that are characterized by a series of continuous
values that varies with time. These signals are illustrated in Fig. 1. Such signals
can be obtained from sound, temperature, light, and motion phenomena using
analog sensors.
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Fig. 1. Analog signals

Fig. 2. Digital signals

Analog signals can be used as an input to solve various real-world problems.
For example, IoT services and control systems can use them to automate or
control processes. However, these signals cannot be directly used since digital
devices, such as computers and microcontrollers, can read only digital values.
Hence, the analog signals need to be first converted to digital signals before it
is used by digital devices further computations. Unlike analog signals, which are
represented by a sequence of continuous values, digital signals are broken down
into a set of discrete values with time series or sampling rates. It usually have
only two values – high (1) and low (0). Consequently, all values in digital signal
transmissions are in the form of 0’s and 1’s. Digital signals are illustrated in
Fig. 2.

Analog to Digital Conversion. The conversion of analog signals to digital
signals is carried out by an analog-to-digital converter (ADC). In other words,
ADCs serve to convert continuous-time analog signals to discrete-time digital sig-
nals, which will be consumed by digital devices for digital computations. Hence,
most digital devices have builtin ADC, integrated with their processors. They
can also be connected to an external ADC.

ADCs convert analog signals to digital signals using pulse code modulation
(PCM)2 method, which involves three main steps – sampling, quantizing and
encoding [15,32]. ADCs on most microcontrollers, e.g., PIC323, typically have a
10-bit wide resolution, i.e., with 1024 quantization levels. Most microcontrollers
also have multiple analog input channels due to their multiplexed ADC. For
example, the PIC32MX460F512L4 microcontroller has 16 10-bit wide ADC chan-
nels. The ADC analog comparator [25] is an essential building block in ADC

2 https://www.tutorialspoint.com/digital communication/
digital communication pulse code modulation.htm.

3 https://www.microchip.com/en-us/products/microcontrollers-and-
microprocessors/32-bit-mcus/pic32-32-bit-mcus.

4 https://www.microchip.com/en-us/product/PIC32MX460F512L.

https://www.tutorialspoint.com/digital_communication/digital_communication_pulse_code_modulation.htm
https://www.tutorialspoint.com/digital_communication/digital_communication_pulse_code_modulation.htm
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/pic32-32-bit-mcus
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/pic32-32-bit-mcus
https://www.microchip.com/en-us/product/PIC32MX460F512L
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that compares two input voltages and produces an output. ADCs also involve a
wide-range of memory registers that play various roles in the analog-to-digital
conversion process. For example, the ADC’s output data, i.e., the converted dig-
ital value, is stored in a 16-bit double data registers, i.e., ADCH (8-bit size) and
ADCL (8-bit size). A high-level architecture of the ADC conversion logic involv-
ing the main memory registers is illustrated in Fig. 3. A detailed discussion of
some of the registers is also provided in Sect. 4.

2.2 Overview of CPS

Cyber-physical systems (CPS) are engineering systems where computations and
communications are firmly integrated with physical entities to automate and
control industrial processes through feedback control [24,39]. It comprises the
following main entities [6]: physical plant (the physical system where actual
processes take place), sensors (devices that read state information of physical
processes), PLCs (embedded devices that issue control commands based on sen-
sor inputs), actuators (physical entities that implement control commands issued
by PLCs), SCADA [38] (a software designed for process monitoring and control-
ling), HMI (a system to display the state information of physical processes), and
historian server (a server used to store operational and historical data). A typical
CPS is also constrained by stringent real-time and availability requirements [9].

As discussed above, the PLC is at the heart of the CPS. It issues control
commands based on the inputs obtained from sensors. However, the sensors
could be digital or analog. In the latter case, the PLC cannot read analog signals
like many other digital devices (see the discussion in Sect. 2.1). Hence, the ADC
is required to convert the analog signals to digital values before the PLC uses
them to make control decisions. To facilitate the conversion process, most PLCs
nowadays come with inbuilt ADCs.

3 Threat Model

In our threat model, we consider adversaries that target digital systems, such
as IoT and control systems, by exploiting vulnerabilities of the ADC registers
that are used in the analog-to-digital conversion logic. The goal of the assumed
adversary is manipulating outputs of the ADC in a stealthy manner so that it
cannot be easily detected using conventional techniques. In fact, detecting the
assumed attack is even more difficult since it is to be performed on the interface
between the physical and digital worlds.

In reality, no attack would be successfully performed without creating a con-
nection with the targeted device. Therefore, in our threat model, we assume
that a connection can be established with the targeted digital devices (e.g.,
PLCs in CPS) either physically (e.g., via a serial connection) or remotely (e.g.,
via the Internet). Hence, we consider both physical attacks (e.g., insider attacks)
and remote attacks (i.e., cyberattacks) in our threat model. In the former case,
the attack can be performed by injecting malicious code to the targeted device
through a serial connection. In the latter case, the attack can be launched by
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uploading malicious code to the targeted device over Internet. Note that most
digital devices (including IoT and control devices) nowadays are connected to the
Internet to facilitate over-the-air OS/firmware update or remote code upload to
the devices. For example, the Arduino board has an Ethernet bootloader5 that
allows users to upload code remotely. Such facilities may allow the adversary to
remotely upload malicious code to the devices.

In either physical or remote attack, the adversary is required to systematically
tailor malicious code that allows him to control the registers of low-end MCUs.
Note that the ADC registers can be controlled by user code and have no or little
underlying protections against manipulation attacks. Hence, the adversary can
manipulate the default values of the registers using his tailored malicious code.
The designed malicious code can be injected to the device’s firmware. In some
cases, the attacks might be performed through malevolent system configurations.
In our case, we perform the attacks by injecting our malicious code into the
Arduino firmware (details are provided in Sect. 4).

Fig. 3. A high-level architecture of ADC with registers

5 https://github.com/loathingKernel/ariadne-bootloader.

https://github.com/loathingKernel/ariadne-bootloader
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4 EARIC: The Proposed Attacks

4.1 Overview

In this section, we introduce EARIC – a scheme comprising the three attack
techniques we designed. As discussed in the preceding sections, we propose
and develop new ADC attack techniques by exploiting the registers used in the
analog-to-digital conversion logic. To simplify the presentation of our proposed
attacks, it is essential to highlight how the ADC conversion logic works and the
relevant registers involved in the process. As discussed in Sect. 2.1, ADC con-
verts the voltage value on the analog input pin and returns a digital value from
0 to 1023 (for a 10-bit wide ADC), relative to the reference value. The analog
input channel is selected using an analog multiplexer [18], and the input value
is processed in ADC with a reference voltage for certain clock timings. When
the analog-to-digital conversion is completed, the output result (often called the
“ADC output data”) is stored in the two ADC data registers, i.e., ADCH and
ADCL (each 8-bit wide). More precisely, for a 10-bit ADC resolution, the ADC
output will be stored in the 9th to 0th bits of the ADCH and ADCL data registers
(cf. Fig. 4). A typical schematic of ADC is illustrated in Fig. 3. In Fig. 3, ADC0
to ADC7 represents the input pins for the analog input signals. The multiplexer
(MUX) selects the input voltage from the pins and transfers it to the registers.

As shown in Fig. 3, several registers are involved in the ADC conversion
logic. As highlighted in the preceding sections, these registers are vulnerable
to attacks since its default values (data or flags) can be manipulated by an
attacker. This is because, there are no security mechanisms in place to protect
these registers against such malevolent manipulations. In this work, we exploit
such weaknesses to perform three types of attacks on the ADC conversion logic.
A detailed account of the attacks is provided in the following section.

4.2 The Proposed Attacks

As mentioned in the preceding sections, we perform three types of attacks on
ADC to scrutinize exploitability of its registers. In particular, we perform the
attacks by exploiting three of the most critical ADC registers, such as ADMUX,
ACSR, and the ADC data registers (i.e., ADCH and ADCL). The attacks are
tested using a mini-CPS testbed simulating an alarm system based on an analog
temperature sensor. In brief, the system triggers an alarm when the tempera-
ture read is beyond a threshold. A detailed account of the testbed is provided
in Sect. 5. Below, we discuss each of the proposed attack techniques and its
respective outcomes.

Deceiving the ADC Conversion Logic (Attack 1). With the first attack,
we deceive the ADC conversion logic by manipulating the ADMUX register. The
ADMUX register is used to select the reference voltage as well as to determine
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which analog input channel is to be chosen. Furthermore, this register is used to
determine whether the ADC output data should be left-justified (i.e., the output
data is to be read from the left-most bits) or right-justified (i.e., the output data
is to be read from right-most bits) with respect to the 16-bit ADC data registers
(i.e., ADCH + ADCL). As shown in Table 2, the ADMUX register comprises 8
bits. A high-level discussion of the bits is provided as follows.
- REFS (Reference Selection Bits): REFS1 (Bit 7) and REFS0 (Bit 6) are ref-
erence selection bits in ADMUX that are used to select the voltage reference for
the ADC. The internal voltage reference options may not be used if an external
reference voltage is applied to the AREF pin.
- ADLAR (ADC Left Adjust Result): ADLAR (Bit 5) affects the presentation
of the ADC output data in the ADC data registers (refer Sect. 4.2). Depending
on the value set to the ADLAR bit, the ADC output data can be either right-
justified (i.e., ADLAR = 0) or left-justified (i.e., ADLAR = 1) in the ADCH
and ADCL data registers. The default mode is right-justified. The left-justified
mode is not supported by most microcontrollers, including the Arduino board
we used in our experimental setup (cf. Sect. 5).
- MUX3 (Multiplexer): MUX3 (Bit 0 to 3) are the analog channel selection bits
that are used to select the analog input channel (refer ADC0 to ADC7 in Fig. 3).
A detailed account of how the analog channel selection bits work in ADC can
be found in [28].

Attack Synopsis: The default values of the ADMUX register bits are shown
in Table 2. That is, REFS1 is ‘1’, REFS0 is ‘1’, ADLAR is ‘0’, and MUX0 to
MUX3 is ‘0’. As discussed above, the value of ADLAR affects the presentation
of the ADC output data in the ADCH and ADCL data registers. By default, the
ADC output data is right-justified (i.e., ADLAR = 0). That means, the output
data will be read from the 9th to 0th bits of the ADCH and ADCL data registers
(for a 10-bit ADC resolution). The ADCH and ADCL data presentation with
respect to the ADLAR value (i.e., ‘0’ or ‘1’) is illustrated in Fig. 4. However,
as shown in Table 3, the ADLAR bit of the ADMUX register can be set to ‘1’
to reverse the ADC output data presentation (i.e., left-justified). Meaning, the
ADC output data will be read from the 15th to 6th bits, where the 15th to 10th

bits contain garbage (junk) data as shown in Fig. 4. When the digital device (e.g.,
the PLC in CPS) tries to read the ADC output data, it will be referred to the

Table 2. ADMUX register bits with its default values

ADMUX

Bits

REFS1

(Bit 7)

REFS0

(Bit 6)

ADLAR

(Bit 5)

-

(Bit 4)

MUX3

(Bit 3)

MUX2

(Bit 2)

MUX1

(Bit 1)

MUX0

(Bit 0)

Read/

Write

R/W R/W R/W R R/W R/W R/W R/W

Default

Values

1 1 0 0 0 0 0 0
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Table 3. ADMUX register bits after manipulating the ADLAR bit

ADMUX

Bits

REFS1

(Bit 7)

REFS0

(Bit 6)

ADLAR

(Bit 5)

-

(Bit 4)

MUX3

(Bit 3)

MUX2

(Bit 2)

MUX1

(Bit 1)

MUX0

(Bit 0)

Read/

Write

R/W R/W R/W R R/W R/W R/W R/W

Bit Values

(ADLAR = 1)

1 1 1 0 0 0 0 0

garbage location, which returns an undesirable value (often a very high value).
In practice, this attack might be achieved in different ways. For example, it could
be launched by sending a malicious ADC command to the PLC at runtime or by
systematically synthesising and injecting a malicious code to the PLC firmware.
In our case, we follow the latter. We inject the following code into the Arduino
firmware, which sets the ADLAR bit to ‘1’.

ADMUX | = (1 << 5);

After performing the above attack on our experimental setup, the ADC was
forced to return a temperature of 1588.13◦C from the analog temperature sensor
even though the actual temperature reading was 24.49◦C. The output of this
attack is depicted in Fig. 5. This misleads the PLC to issue and send a wrong
control command (i.e., “ON” command) to the actuator, i.e., a siren alarm set in
our experimental setup (refer Sect. 5). As a result, the siren alarm was triggered
even though the actual temperature was below the threshold. That means, the
wrong ADC read from the garbage location misleads the PLC to make a wrong
control decision, which in turn could cause a disaster or damage to the CPS
plant.

In sum, the main aim of this attack is deceiving the ADC output data pre-
sentation on the ADC data registers (i.e., ADCH and ADCL) by manipulating
the ADLAR value on the ADMUX register. Consequently, PLCs will be forced
to read undesirable ADC output data, hence misleading them to make wrong
control decisions. A high-level architectural illustration of this attack is provided
in Fig. 6. As shown in Fig. 6, the attack is performed on the ADLAR flag of the
ADMUX register and, consequently, the ADCH and ADCL data registers are
impacted.

Creating a DoS Attack on the ADC Process (Attack 2). In this attack,
we create a denial of service (DoS) attack on the ADC conversion process by
manipulating the ADC analog comparator control and status register (ACSR).
As highlighted in Sect. 2, the ADC analog comparator [25] is an essential part
of the ADC conversion process. It is managed and controlled by the ACSR
register. As depicted in Table 5, the ACSR register is represented by 8 bits com-
prising Analog Comparator Interrupt Mode Select (ACIS0 and ACIS1), Ana-
log Comparator Input Capture Enable (ACIC), Analog Comparator Interrupt
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Fig. 4. ADC output data presentation in ADCH and ADCL registers with respect to
the ADLAR value Note: “G” is for garbage data, “x” (from bit 9 to 0) represents
the ADC output data values in binary format, i.e., 0’s and 1’s. For example, Table 4
shows how a temperature reading of 24.49 ◦C is stored in the ADCH and ADCL data
registers.

Fig. 5. Output of Attack 1

Enable (ACIE), Analog Comparator Interrupt (ACI), Analog Comparator Out-
put (ACO), Analog Comparator Band Gap (ACBG) and Analog Comparator
Disable (ACD). All the ACSR bits except bit 5 (which is read-only) are readable
and writable (R/W). The default value of these bits is ‘0’ except ACO, which is
not applicable (NA).

Attack Synopsis: Each logical bit in the ACSR register plays different roles
and functionalities in the ADC conversion logic, depending on the logical value
(i.e., 0’ or 1’) set to it. For example, the analog comparator will be disabled
if the logical bit ACD is set to 1’, the analog comparator interruption will be
enabled if the logical bit ACIE is set to 1’, etc. A detailed information regarding
the roles and functionalities of the ACSR bits in the ADC conversion logic can
be found in [28]. When we simultaneously set the ACD and ACIE bits to 1’
in the ACSR register, the ADC conversion process will hang, hence leading to
DoS attack. This will render system unavailability, which is a critical concern
in time-sensitive systems, such as CPS. Our construction of Attack 2 (i.e., DoS
attack) in the ADC conversion logic is formally captured as follows:

DoS Attack := (ACD == 1) ∧ (ACIE == 1)
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In our experimental setup, we perform this attack by injecting the code
“ACSR —= 0b10001000;” into the Arduino firmware. Here, the 4th bit (i.e.,
ACIE) and 8th bit (i.e., ACD) of the ACSR register are set to 1’, which causes
the system to hang (the output is shown in Fig. 7).

Table 4. The ADC output data presentation in data registers

ADCH ADCL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G G G G G G 0 0 0 1 0 0 1 1 0 0

Table 5. ACSR register bits

ACSR
Bits

ACD
(Bit 7)

ACBG
(Bit 6)

ACO
(Bit 5)

ACI
(Bit 4)

ACIE
(Bit 3)

ACIC
(Bit 2)

ACIS1
(Bit 1)

ACIS0
(Bit 0)

Read/

Write

R/W R/W R R/W R/W R/W R/W R/W

Initial
Values

0 0 NA 0 0 0 0 0

Fig. 6. Attacking the ADMUX register

Resetting the ADC Process (Attack 3) In this attack, we reset the ADC
process by manipulating the ADC data registers, such as ADCH and ADCL.
As discussed in the preceding sections, ADC has two 16-bit wide data registers,
i.e., ADCH and ADCL. These registers are used to store the ADC digital out-
put obtained from the analog conversion. For example, Table 4 shows how our
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Fig. 7. The output of Attack 2

temperature sensor reading of 24.49◦C is stored in the ADC data registers. The
equation to translate the sensor reading temperature value to binary format and
vice versa can be referred in [1].

Attack Synopsis: Like the other ADC registers, the ADC data registers (i.e.,
ADCH and ADCL) can also be manipulated by an attacker. One way to manip-
ulate these registers would be by clearing the ADC outcome data stored in them.
However, we cannot directly do that since these registers are read-only. Meaning,
we can only read the data stored in these registers, but not modifying it. So,
how can we achieve the attack on the ADC data registers? We discuss details of
our proposed attack technique as follows.

The ADC output data is read by the the ”analogRead()” function – a func-
tion (often used in Arduino) that reads the digital value from a specified analog
pin. However, there are some implicit tasks to be performed before reading the
digital value. First, the analog value (e.g., the voltage between 0 and 5V) from
the analog pin will be converted to a digital value between 0 to 1023 (for a 10-bit
long ADC). As discussed in the preceding sections, this digital value (i.e., the
ADC output) will be then stored in the ADCH and ADCL registers. Then, the
”analogRead()” function defines two variables, say ”low” and ”high”, to read
the ADC output from the ADCL and ADCH data registers, respectively. That
means, the ”low” variable reads values from the ADCL register and the ”high”
variable reads values from the ADCH register. The final ADC output will be a
combination of the two variables, i.e., low = ADCL && high = ADCH. How-
ever, we can attack this logic by including a malicious script in the device’s (the
Arduino in our case) firmware, and particularly in the ”analogRead()” func-
tion. Instead of assigning the ADCL and ADCH register values to the ”low”
and ”high” variables mentioned above, we can maliciously assign 0’ to both.
That means, we inject the ”low = 0;” and ”high = 0;” codes to the source-code
of the ”analogRead()” function in the Arduino firmware. This might also be
done through system configuration. This leads the ADC output to be always 0’
instead of the actual result. We tested this attack on our temperature reading
setup. Even though the actual temperature was 24.17◦C, the temperature read-
ing after launching the attack was always 0◦C. The outcome of this attack is
shown in Fig. 8. Therefore, this attack can also mislead the control decision of
PLCs in CPS. In a similar way, more critical and complex attacks can also be
performed on the ADC data registers.
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Fig. 8. Output of Attack 3

5 Experimental Design

In this section, we present details of our experimental setup designed to test the
proposed attack techniques. Our experimental setup simulates a temperature-
based alarm control system. In brief, the system periodically reads the surround-
ing temperature, and it triggers an alarm when the temperature value is above
a threshold, e.g., 30◦C.

To simulate the above process, we design a mini-CPS testbed using IoT
devices, sensors and actuators. Specifically, we use Arduino MEGA6 as a soft
PLC, which makes control decisions based on the temperature readings of the
sensor. We use an analog temperature sensor LM357 to read the surrounding
temperature and feed it to the PLC. We use an 8Ω siren alarm8 as an actuator,
which activates the alarm when it receives an “ON” command from the PLC. A
high-level schemata of the experimental setup is depicted in Fig. 9.

As shown in Fig. 9, the analog temperature sensor (LM35) is connected to
the Arduino board (via the analog input A0) to read the surrounding temper-
ature. The sensor is also connected to the internal voltage reference 3.3V. The
Arduino board has 16 analog input pins and 54 digital input/output pins. It also
contains an inbuilt ADC and MCU. The inbuilt ADC (integrated in the same
electrical circuit board with the MCU) converts the analog temperature values
to a discrete-time digital values. The MCU acts as a PLC and makes control
decisions, such as triggering the alarm, based on the digital temperature value
obtained from the ADC. More specifically, it issues an “ON” or “OFF” control
command depending on the the temperature value and the threshold set. The
“ON” control command triggers the alarm while the “OFF” control command
turns off the alarm. An 8Ω mini speaker (a siren alarm) is connected to the
Arduino board to act as an actuator. It activates the alarm when it receives an
“ON” command from the PLC, and it turns off the alarm otherwise.

Due to lack of access, we did not conduct our experiments on real-world
CPS testbeds with vendor-supplied PLCs. Yet, we believe that our experimental
setup described above is substantially sufficient to evaluate the effectiveness of
6 https://store.arduino.cc/products/arduino-mega-2560-rev3.
7 https://www.electronicwings.com/sensors-modules/lm35-temperature-sensor.
8 https://circuit.rocks/mini-metal-speaker-w-wires-8-ohm-0-5w.html.

https://store.arduino.cc/products/arduino-mega-2560-rev3
https://www.electronicwings.com/sensors-modules/lm35-temperature-sensor
https://circuit.rocks/mini-metal-speaker-w-wires-8-ohm-0-5w.html
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Fig. 9. Schematic diagram of the experimental setup

the proposed attach techniques. This is because, Arduino boards are widely used
both in experimental and production settings. For example, it is widely used in
various IIoT, ICS and CPS systems. Hence, protecting such systems against
ADC-based attacks is also desirable. Moreover, the analog-to-digital conversion
logic and software/hardware design of most ADCs are very similar. Hence, the
ADC architecture (including its memory registers) of Arduino-based PLCs is
highly likely to be similar with that of real-world PLCs. Therefore, we expect
that the presented ADC attacks will also be effective when applied to real-world
PLCs, which is left as a future work.

6 Evaluation and Discussion

In this section, we discuss a detailed evaluation of our proposed attacks. In brief,
we evaluate the proposed attack techniques along three dimensions: 1) Accuracy
2) Efficiency and 3) Impact. Furthermore, we discuss possible countermeasures
to prevent such types of ADC attacks.

6.1 Attack Accuracy

There were no much significant internal or external factors that could influence
our experimental results. The only sensible factor or variable is the tempera-
ture environment. Hence, we conduct the experiments in different temperature
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conditions, such as cold (< 16◦C), mild (16◦C–25◦C) and hot (> 25◦C). In all
such circumstances, the proposed attacks always produced the expected results.
Meaning, we have not observed any false positive or false negative results in all
our experiments. Therefore, the proposed attacks are very accurate in achieving
the intended goal.

6.2 Attack Efficiency

The proposed attack techniques are simple to be launched. The attacks are
performed by systematically manipulating the flag or data values of the targeted
ADC registers. At runtime, there was not any significant overhead observed, both
in CPU and memory usage. It takes only a few microseconds to conduct each of
the three attacks. To experimentally show the execution time of each attack, we
performed 50 simulations for each attack. The experimental results are depicted
in Table 6. That means, the execution time of Attack 1 and Attack 3 are 60.2
µ and 60.3 µ, respectively. However, we could not measure the execution time
of Attack 2 since the system immediately hangs after this attack is performed.
Therefore, outputs of the attacks are almost instantaneous. Meaning, impacts of
the attacks can be reflected in real-time – without any significant delay.

6.3 Attack Impact

ADCs are commonly used in a wide-range of critical systems, such as ICS, CPS,
and IoT, among others. Hence, manipulating the ADC conversion logic may
result in a catastrophic impact to the systems. For example, the ADC outcome
(i.e., the converted digital value) is a crucial input to the PLC to make con-
trol decisions in CPS. If the ADC outcome is manipulated, it will mislead the
PLC to make wrong control decisions. This will result in incorrectly controlling
the physical process in CPS. Hence, the entire CPS system could be severely
impacted, including destruction of the physical plant. Although the proposed
attacks are tested on an Arduino-based soft PLC, we believe that it can also be
applied and tested on real-word CPS systems (refer the discussion in Sect. 5).

Table 6. The average execution time of the attacks for 50 simulations

Attack 1 Attack 2 Attack 3

60.2 µs Not applicable since the system hangs after the attack 60.3 µs

6.4 Proposed Countermeasures

As discussed in the preceding sections, attacking the ADC logic can result a
catastrophic impact on various systems and infrastructures. In particular, manip-
ulating values of the ADC registers is a critical stealthy attack that might not
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even be easily detected. Therefore, it is essential to design appropriate counter-
measures against these attacks. In this work, we highlight possible countermea-
sures and research directions to overcome such security concerns.

Enforcing write-protected policy to ADC registers As discussed, the register
manipulation attacks are carried out by overwriting the exiting data or flags
of certain critical registers in ADC, such as ADMUX, ACSR and the ADC
data registers. One possible direction to address such attacks is by systemati-
cally enforcing a stringent”write-protected” policy to critical ADC registers and
other memory locations. Such measures may help to prohibit an unauthorized
overwriting of ADC registers, hence preventing manipulation attacks in ADC
registers.

Authorizing and tracking firmware updates Properly authenticating and autho-
rizing PLCs would be another approach to prevent ADC-based attacks. To min-
imize attacks that inject malicious ADC commands to the PLC firmware, only
authorized users should be allowed to make such changes. A logging system
should also be in place that tracks and traces all authorized and unauthorized
software/firmware changes made or inputs provided to the system.

7 Related Work

In this section, we discuss prior works that are closely related to the security of
ADC. In particular, we discuss prior attacks performed on the ADC logic.

As discussed in the introduction, ADCs have been targeted by various types
of attackers. Attackers often target certain vulnerabilities that can be discov-
ered in the hardware or software of ADCs. Bolshev et al. [5] has conducted
an extensive study both on the hardware and software based vulnerabilities of
ADCs. They then developed an attack technique by exploiting vulnerabilities in
the sampling frequency and dynamic range of the ADC conversion logic. There
are also side-channel attacks that exploited the strong correlation between the
ADC digital output codes and the ADC supply current waveforms [17]. If the
power side-channel attack (PSA) of the ADC is exploited, it can expose the
private signal change data [16]. When applied to a successive approximation
register (SAR) without PSA protection, the power supply current waveforms of
the SAR are attacked. Other side-channel attacks have been also developed by
exploiting various vulnerabilities in ADC [4,11,13,20,26,27,29].

Other class of attacks have exploited fast attack automatic gain control
(AGC) vulnerability in ADC to deceive the outcome of the analog to digital
conversion [3,16,19]. Some other attacks exploited the DAC-to-DAC crosstalk
vulnerability in the ADC logic [22,31,36]. However, we are not aware of any
existing attack techniques that exploit vulnerabilities related to ADC registers.

In CPS, an attacker who has access to the PLCs can generate a signal with
a frequency that is interpreted as being valid by the ADC, when in reality it can
cause serious damage to the physical process [19]. In spite of ADCs having anti-
aliasing filter that restricts the bandwidth of a signal, these filters do not prevent
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frequency attacks. Another ADC-related CPS attack involves manipulating the
device’s input and output (I/O) at a low level, which allows the attacker to
control the PLC without triggering any alarms [20].

System-on-Chip (SoC) integrators may design a Hardware Trojan with the
intention of perturbing the ADC from malfunctioning by manipulating input or
output signals or by affecting the modulator’s output bit [36]. Another stealthy
hardware trojan attack was also recently launched on the analog integrated
circuits (ICs) of ADCs [12]. However, all these attacks did not specifically target
the ADC registers.

Memory corruption attacks are another common threats against IoT devices
or PLCs in ICS/CPS. They typically exploit memory-safety vulnerabilities, such
as buffer overflows and dangling pointers, that could be found in the software
or firmware of the devices to corrupt the process memory or execution flow
of programs at runtime [7,8,10,14]. However, these attacks target the runtime
process memory of the devices, not specifically the ADC memory registers.

In summary, there are several types of ADC-related attacks presented in the
literature. To the best of our knowledge, none of them specifically target ADC
registers. In this work, we identify and exploit certain ADC registers used in the
analog-to-digital conversion process, which appear to be the unexplored attack
surfaces in ADC.

8 Conclusion

ADCs are integral components in most critical systems, such as IoT and control
systems. However, ADCs have been targeted by a wide range of physical or cyber
attacks. The attackers may exploit various types of vulnerabilities that could be
found in the software or hardware of ADCs. In this work, we first conducted
a more in-depth study of the ADC conversion logic to discover relevant ADC
vulnerabilities that were not well explored by previous work. Consequently, we
managed to find relevant vulnerabilities on ADC registers. To demonstrate its
exploitability, we developed three types of ADC attacks and tested it in an IoT-
based mini-CPS environment.

By manipulating the ADC registers, we showed that it is possible to deceive
the ADC outcome or maliciously halt the analog-to-digital conversion process.
The ADC process can be forced to return an output that is much different from
the expected result. This is carried out by changing the flag in the ADC multi-
plexer selection register, called ADMUX. An attack can also be carried out by
manipulating the analog comparator control and status registers, called ACSR.
We managed to maliciously hang the ADC conversion process by simultaneously
enabling the ACD (analog comparator disable) and ACIE (analog comparator
input enable) bits of the ACSR register, which resulted in system unavailability.
We also showed that the ADC conversion process can be rendered useless by
setting its output values to zero. This is achieved by resetting the data reader
when it reads the ADC output from the ADCH and ADCL data registers. This
was an attempt to show that ADC registers can most definitely be manipulated
if no underlying protection mechanism is set for the ADC conversion process.
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In the future, we plan to extend our experiments on real-world CPS testbeds
using vendor-supplied PLCs. We also intend to conduct additional research to
further explore key ADC vulnerabilities. Proposing and developing appropriate
countermeasures for register-based ADC attacks is also left as a future work.
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