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Abstract. Set partitions and partition lattices are well-known objects
in combinatorics and play an important role as a search space in many
applied problems including ensemble clustering. Searching for antichains
in such lattices is similar to that of in Boolean lattices. Counting the num-
ber of antichains in Boolean lattices is known as the Dedekind problem.
In spite of the known asymptotic for the latter problem, the behaviour
of the number of antichains in partition lattices has been paid less atten-
tion. In this short paper, we show how to obtain a few first numbers
of antichains and maximal antichains in the partition lattices with the
help of concept lattices and provide the reader with some related heuris-
tic bounds. The results of our computational experiments confirm the
known values and are also recorded in the Online Encyclopaedia of Inte-
ger Sequences (see https://oeis.org/A358041).

Keywords: Formal Concept Analysis · partition lattice · maximal
antichains · concept lattices · enumerative combinatorics

1 Introduction

Partitions and their lattices are among the basic combinatorial structures [1] and
have various applications, for example, blocks of a partition of objects are known
as clusters in data analysis [2,3], while in social network analysis the partition
blocks of graph vertices (actors) are known as social communities [4,5]. As the
Boolean lattice of an n-element set, the lattice of all partitions of this set plays
a fundamental role as an ordered search space when we need to find a partition
with certain properties, e.g. when we search for partitions with a concrete number
of blocks with no two specific elements in one block (cf. constrained clustering [6]
or granular computing [7]) or generate functional dependencies over a relational
database (cf. partition pattern structures [8]). In Formal Concept Analysis, there
are also interesting attempts to employ the idea of independence for data analysis
via partitions of objects w.r.t. their attributes where a special variant of Galois
connection appears [9–11].
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In combinatorics, special attention is paid to the number of antichains in
Boolean lattices, that is to the number of all possible families of mutually incom-
parable sets. This problem is known as the Dedekind problem [12] and its asymp-
totic is well studied [13,14]. However, an analogous problem for antichains of
partitions has been paid less attention. For example, we know a few values for
the number of antichains in the partition lattice for n up to 51. Another inter-
esting question, for which there is the famous Sperner theorem, is about the
size of the maximum antichain in the Boolean lattice (actually, its width) [15].
R.L. Graham overviewed the results on maximum antichains of the partition lat-
tice [16]. Also, the number of maximal antichains (w.r.t. their extensibility) in
the Boolean lattice [17], a sibling of the Dedekind problem, was algorithmically
attacked and we know these numbers up to n = 72 [18]. The lattices of maximal
antichains for event sets play an important role in parallel programming [19].

In this paper, we not only confirm the results on the number of antichains in
the partition lattice, but also share our recent results on the number of maximal
antichains in the partition lattice up to n = 5, show recent progress for n = 6,
and provide some useful bounds for this number. All these results were obtained
with the help of concept lattices isomorphic to the partition lattice and parallel
versions of classic algorithms designed for that purpose.

2 Basic Definitions

Formal Concept Analysis is an applied branch of modern lattice theory aimed at
data analysis, knowledge representation and processing with the help of (formal)
concepts and their hierarchies. Here we reproduce basic definitions from [1,20]
and our related tutorial [21].

First, we recall several notions related to lattices and partitions.

Definition 1. A partition of a nonempty set A is a set of its nonempty subsets
σ = {B | B ⊆ A} such that

⋃

B∈σ

B = A and B ∩ C = ∅ for all B,C ∈ σ. Every

element of σ is called block.

Definition 2. A poset L = (L,≤) is a lattice, if for any two elements a and b in
L the supremum a∨b and the infimum a∧b always exist. L is called a complete
lattice, if the supremum

∨
X and the infimum

∧
X exist for any subset A of

L. For every complete lattice L there exists its largest element,
∨

L, called the
unit element of the lattice, denoted by 1L. Dually, the smallest element 0L is
called the zero element.

Definition 3. A partition lattice of set A is an ordered set (Part(A),∨,∧) where
Part(A) is a set of all possible partitions of A and for all partitions σ and ρ
supremum and infimum are defined as follows:

σ ∨ ρ =
{⋃

connσ,ρ(B) | ∀B ∈ σ
}

,

1 https://oeis.org/A302250.
2 https://oeis.org/A326358.

https://oeis.org/A302250
https://oeis.org/A326358
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σ ∧ ρ = {B ∩ C | ∃B ∈ σ,∃C ∈ ρ : B ∩ C �= ∅},where

connσ,ρ(B) is the connected component to which B belongs to in the bipartite
graph (σ, ρ,E) such that (B,C) ∈ E iff C ∩ B �= ∅.
Definition 4. Let A be a set and let ρ, σ ∈ Part(A). The partition ρ is finer
than the partition σ if every block B of σ is a union of blocks of ρ, that is ρ ≤ σ.

Equivalently one can use the traditional connection between supremum, infi-
mum and partial order in the lattice: ρ ≤ σ iff ρ ∨ σ = σ (ρ ∧ σ = ρ).

Definition 5. A formal context K = (G,M, I) consists of two sets G and M
and a relation I between G and M . The elements of G are called the objects
and the elements of M are called the attributes of the context. The notation
gIm or (g,m) ∈ I means that the object g has attribute m.

Definition 6. For A ⊆ G, let

A′ := {m ∈ M | (g,m) ∈ I for all g ∈ A}
and, for B ⊆ M , let

B′ := {g ∈ G | (g,m) ∈ I for all m ∈ B}.

These operators are called derivation operators or concept-forming
operators for K = (G,M, I).

Let (G,M, I) be a context, one can prove that operators

(·)′′ : 2G → 2G, (·)′′ : 2M → 2M

are closure operators (i.e. idempotent, extensive, and monotone).

Definition 7. A formal concept of a formal context K = (G,M, I) is a pair
(A,B) with A ⊆ G, B ⊆ M , A′ = B and B′ = A. The sets A and B are called the
extent and the intent of the formal concept (A,B), respectively. The subconcept-
superconcept relation is given by (A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 (B2 ⊆ B1).

This definition implies that every formal concept has two constituent parts,
namely, its extent and intent.

Definition 8. The set of all formal concepts of a context K together with the
order relation ≤ forms a complete lattice, called the concept lattice of K and
denoted by B(K).

Definition 9. For every two formal concepts (A1, B1) and (A2, B2) of a certain
formal context their greatest common subconcept is defined as follows:

(A1, B1) ∧ (A2, B2) = (A1 ∩ A2, (B1 ∪ B2)′′).

The least common superconcept of (A1, B1) and (A2, B2) is given as

(A1, B1) ∨ (A2, B2) = ((A1 ∪ A2)′′, B1 ∩ B2).
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We say supremum instead of “least common superconcept”, and instead of
“greatest common subconcept” we use the term infimum.

In Fig. 1, one can see the context whose concept lattice is isomorphic to the
partition lattice of a four-element set and the line (or Hasse) diagram of its
concept lattice.

1|2
34

12
|34

2|1
34

12
3|4

23
|14

13
|24

3|1
24

(1, 2) × × ×
(1, 3) × × ×
(1, 4) × × ×
(2, 3) × × ×
(2, 4) × × ×
(3, 4) × × ×

Fig. 1. The formal context (left) and the line diagram of the concept lattice (right)
which is isomorphic to P4.

Theorem 1 (Ganter & Wille [20]). For a given partially ordered set P = (P,≤)
the concept lattice of the formal context K = (J(P ),M(P ),≤) is isomorphic to
the Dedekind–MacNeille completion of P, where J(P ) and M(P ) are sets of
join-irreducible and meet-irreducible elements of P, respectively.

A join-irreducible3 lattice element cannot be represented as the supremum
of strictly smaller elements; dually, for meet-irreducible elements. If (P,≤) is a
lattice, then K = (J(P ),M(P ),≤) is called its standard context.

Theorem 2 (Bocharov et al. [2]). For a given partition lattice L = (Part(A),
∨,∧) there exist a formal context K = (P2, A2, I), where P2 = {{a, b} | a, b ∈
A and a �= b}, A2 = {σ | σ ∈ Part(A) and |σ| = 2} and {a, b}Iσ when a and b
belong to the same block of σ. The concept lattice B(P2, A2, I) is isomorphic to the
initial lattice (Part(A),∨,∧).

There is a natural bijection between elements of L = (Part(A),∨,∧) and
formal concepts of B(P2, A2, I). Every (A,B) ∈ B(P2, A2, I) corresponds to
σ =

∧
B and every pair {i, j} from A is in one of σ blocks, where σ ∈ Part(A).

Every (A,B) ∈ B(J(L),M(L),≤) corresponds to σ =
∧

B =
∨

A.

3 join- and meet-irreducible elements are also called supremum- and infimum-
irreducible elements, respectively.
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3 Problem Statement

Let us denote the partition lattice of set [n] = {1, . . . , n} by Pn = (Part([n]),≤),
where Part([n]) is the set of all partitions of [n].

Two related problems, which we are going to consider are as follows.

Problem 1 (#ACP). Count the number of antichains of Pn = (Part([n]),≤)
for a given n ∈ N.

Problem 2 (#MaxACP). Count the number of maximal antichains of Pn =
(Part([n]),≤) for a given n ∈ N.

4 Proposed Approach

Our approach to computing maximal antichains of the considered lattice is a
direct consequence of the Dedekind-MacNeille completion and the basic theorem
of FCA. The first one allows building the minimal extension of a partial order
such that this extension forms a lattice. From the second theorem, we know
that every complete lattice can be represented by a formal context built on the
supremum- and infimum-irreducible elements of the lattice.

When Klaus Reuter was studying jump numbers of partial orders (P,≤),
he found their connection with the number of maximal antichains and reported
about it as follows [22]: “Originally we have discovered a connection of the con-
cept lattice of (P, P, �>) to the jump number of P . Later on, we learned from
Wille that this lattice is isomorphic to the lattice of maximal antichains of P .
Thus with speaking about MA(P ) it is now quite hidden that we have gained
most of our results by knowledge of Formal Concept Analysis.” Here, MA(P )
denotes the set of maximal antichains of (P,≤).

An order ideal
⏐
	X of X ⊆ P is a set {y ∈ P | ∃x ∈ X : y ≤ x}, while



⏐X

denotes the order filter generated by X (dually defined).
The lattice of maximal antichains of P , (MA(P ),≤) is defined by A1 ≤ A2

iff
⏐
	A1 ⊆ ⏐

	A2 for A1, A2 ∈ MA(P ).
It is known that two fundamental lattices related to orders, the distributive

lattice of order ideals and the lattice of the Dedekind-MacNeille completion can
be naturally described by FCA means [22]: B(P, P,≤) represents the Dedekind-
MacNeille completion (completion by cuts) of (P,≤), while B(P, P, �≥) represents
the lattice of order ideals of (P,≤) (which is isomorphic to the lattice of all
antichains of (P,≤)).

The observation made by Wille makes it possible to fit the lattice of maxi-
mal antichains in this framework: B(P, P, �>) represents the lattice of maximal
antichains of (P,≤).

Proposition 1 ([22], Proposition 2.1). (MA(P ),≤) is isomorphic to
B(P, P, �>).

Corollary 1. #MaxACP (Problem 2) is equivalent to determining the number
of formal concepts of B(Part([n]), Part([n]), �>).



On the Number of (Maximal) Antichains in the Lattice of set Partitions 61

So, our approach has two steps:

– 1. Generate the formal context K = (Part([n]), Part([n]), �>) for a given n.
– 2. Count the cardinality of Ln = B(Part([n]), Part([n]), �>).

K(P3) 1|2
3

12
|3

2|1
3

(1, 2) ×
(1, 3) ×
(2, 3) ×

�≥ 0 4 2 1 7

0 × × × ×
4 × × ×
2 × × ×
1 × × ×
7

�> 0 4 2 1 7

0 × × × × ×
4 × × × ×
2 × × × ×
1 × × × ×
7 ×

7

1 2 4

0

0

7

1 2 4

7

0

1,2,4

Fig. 2. The formal contexts K(P3) = (J(P3), M(P3), ≤) (left), (Part([3]), Part([3]), �≥)
(centre), and (Part([3]), Part([3]), �>) (right) along with the line diagrams of their
concept lattices [20] (bottom line), respectively.

The line diagram of B(Part([3]), Part([3]), �≥), which is isomorphic to the
lattice of maximal antichains (MA(P3),≤), and its formal context are given in
Fig. 2, the right column. The context for the lattice isomorphic to the lattice of
ideals of P3 is in the centre, while the original context for the lattice isomorphic
to P3 is shown on the right. The nodes of B(J(P3),M(P3),≤) are labelled with
integers, whose binary codes correspond to concept extents. For example, label 4
encodes the extent of concept ((2, 3), 1|23) since 410 = 1002. The orders �≥ and �>
are taken with respect to hierarchical order on concepts of B(J(P3),M(P3),≤
). The labels of the two remaining lattices are given with reduced attribute
labelling.

Note that some rows and columns of the third context can be removed
without affecting the lattice structure. For example, duplicated rows 2 and 4.
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Columns and rows obtained as an intersection of other columns and rows, respec-
tively, can also be removed without affecting the concept lattice structure. This
procedure is called reducing the context [20]. Thus, for moderately large n we
use the so-called standard contexts of concept lattices, K(L) = (J(L),M(L),≤),
where L = (L,≤) is a finite lattice, and J(L) and M(L) are join- and meet-
irreducible elements of L [20].

The first step is trivial, while for the second step, we have plenty of algorithms
both in FCA [23] and Frequent Closed Itemset mining [24] communities. How-
ever, having in mind the combinatorial nature of the problem, and the almost
doubly-exponential growth of the sequence, we cannot use a fast algorithm which
relies on recursion or (execution tree will be humongous) sophisticated structures
like FP-trees due to memory constraints. We rather need a parallelisable solution
which does not require the memory size of O(|L|) and can be easily resumed, for
example, after the break of computation for monthly routine maintenance. So,
we set our eye on Ganter’s Next Closure algorithm [25,26], which does not refer
to the list of generated concepts and uses little storage space.

Since the extent of a concept uniquely defines its intent, to obtain the set of
all formal concepts, it is enough to find closures either of subsets of objects or
subsets of attributes.

We assume that there is a linear order (<) on G. The algorithm starts by
examining the set consisting of the object maximal with respect to < (max(G))
and finishes when the canonically generated closure is equal to G. Let A be a
currently examined subset of G. The generation of A′′ is considered canonical
if A′′ \ A does not contain g < max(A). If the generation of A′′ is canonical
(and A′′ is not equal to G), the next set to be examined is obtained from A′′ as
follows:

A′′ ∪ {g} \ {h|h ∈ A′′ and g < h}, where g = max({h|h ∈ G \ A′′}).

Otherwise, the set examined at the next step is obtained from A in a similar
way, but the added object must be less (w.r.t. <) than the maximal object in A:

A′′ ∪ {g} \ {h|h ∈ A and g < h}, where g = max({h|h ∈ G \ A and h < max(A)}).

The pseudocode of NextClosure is given in Algorithm 1.
The NextClosure algorithm is enumerative and produces the set of all

concepts in time O(|G|2|M ||L|) and also has polynomial delay O(|G|2|M |). For
our counting purposes, Step 5 of the algorithm should be replaced with |L| :=
|L| + 1, while Step 12 should return |L|.

Our modification of the algorithm features parallel computing, saving of
intermediate results as pairs (A′′, |L|), and representation of sets as binary vec-
tors with integers as well as usage of bit operations on them.
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Algorithm 1. NextClosure
Input: K = (G, M, I) is a context
Output: L is the concept set
1: L := ∅, A := ∅, g := max(G)
2: while A �= G do
3: A := A′′ ∪ {g} \ {h|h ∈ A and g < h}
4: if {h|h ∈ A and g ≤ h} = ∅ then
5: L := L ∪ {(A′′, A′)}
6: g := max({h|h ∈ G \ A′′})
7: A := A′′

8: else
9: g := max({h|h ∈ G \ A and h < g})

10: end if
11: end while
12: return L

5 Results and Recent Progress

The results for #ACP problem were published in OEIS by John Machacek on
Apr 04 2018. We have validated them with the used approach. While our results
on #MaxACP were obtained by Oct 29 2022. They are summarised for n up
to 5 in Table 1.

Table 1. The confirmed (the first row) and the obtained (the last row) results

n 1 2 3 4 5

#ACP, OEIS A302250 2 3 10 347 79814832

#MaxACP, OEIS A358041 1 2 3 32 14094

All the contexts and codes are available on GitHub: https://github.com/
dimachine/SetPartAnti. We used IPython for its ease of implementation and
speeded it up with Cython and multiprocess(ing) libraries. To compute all the
known values for #MaxACP it took about 357 ms, while similar experiments
for #ACP took 26 min 44 s on a laptop with 2.9 GHz 6-core processor, Intel
Core i9.

To compute #MaxACP for n = 6, we used Intel Core i9-12900KS with
24 threads (at maximum capacity) and 3.4 GHz of base processor frequency.
Sixty branches of computation have been completed with 250201481250 maxi-
mal antichains, while twelve branches are still in progress (see Fig. 3) with the
preliminary sum 1320200000000 obtained during more than one month of com-
putations.

As for the lower and upper bounds and asymptotic analysis on the number
of (maximal) antichains of set partitions, it is more complex than that of set
subsets.

https://oeis.org/A302250
https://oeis.org/A358041
https://github.com/dimachine/SetPartAnti
https://github.com/dimachine/SetPartAnti
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Fig. 3. Completed (left) and incomplete branches (right) for our current ma(P6) com-
putation

Fig. 4. Comparison with Dn and ma(Bn) (left) and with the lower and upper bounds
of acp(Pn) (right) for our current macp(P6) computation

The size of the level sets of the partition lattice is given by Stirling numbers
of the second kind, while the sizes of the level sets of the Boolean lattice are given
by binomial coefficients. The lower bound and the asymptotic for the Boolean
lattice are based on the size of its largest level set(s) (maximal antichain), so we
could use similar logic for the partition lattice. However, the maximal value of
the Stirling number of the second kind, max

k≤n

{
n
k

}
, is not always equal to the size

of the maximum antichain in Pn and the connection between these numbers is
non-linear with unknown constants [27]4.

Thus, from [27], we know that

4 The question on the equality was posed by G.C. Rota [16].
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d(Pn) = max
k≤n

{
n

k

}

Θ(na(ln n)−a−1/4), where

d(Pn) is is the size of the maximal antichain in Pn and a = 2−e ln 2
4 ≈ 0.02895765.

Luckily, according to [16], it was first shown that a maximal antichain has
at most max

k≤n

{
n
k

}
elements for n ≤ 20, while later it was obtained that the

discrepancy arises when n ≥ 3.4 · 106 [28,29]. Thus, a simple lower bound for

#ACP problem is given by 2
max
k≤n

{n
k} ≤ 2d(Pn), and can be further improved by

considering not only the partition lattice level for max
k≤n

{
n
k

}
.

Proposition 2. acp(Pn) ≥
n∑

k=1

2{n
k} − n + 1 for n ≥ 1.

Proof. Each partition lattice level contains partitions in k blocks for a given
1 ≤ k ≤ n. These partitions form a maximal antichain and each of its subsets
forms an antichain. The number of unique antichains by each level is given by
2{n

k} − 1 since the empty set should be counted only once.

For the upper bounds, we can use knowledge of FCA, where the largest
number of concepts of a context with n objects and m attributes is given by
2min (n,m). Since the Bell numbers Bn count the size of the Partition lattice on n
elements, the number of objects (and attributes) in K = (Part([n]), Part([n]), �>)
and K = (Part([n]), Part([n]), �≥) is given by Bn. Thus, the trivial upper bound
is given by 2Bn but it is equivalent to the powerset of all partitions. We can notice
the 0 and 1 of the set partition lattice are represented by empty column and
empty row in the context inducing the order ideals lattice, while for the context
inducing the lattice of maximal antichains, they are represented by full row and
column, respectively. This implies slightly better upper bounds 2Bn−1 + 2 with
n > 1 (although, it is still valid for n = 1 giving 3 > acp(1) = 2B1 = 2) for
#ACP and 2Bn−1 for #MaxACP.

Remark 1. Since we deal with lattices, which are partial orders (reflexive, anti-
symmetric, and transitive), their incidence relations can be represented with
formal contexts with identical sets of objects and attributes where each object-
attribute pair on the main diagonal belongs to the incidence relation (the main
diagonal is full) while all the pairs below the diagonal do not.

Proposition 3. Let L = (L,≤) be a finite lattice, then |B(L,L, �≥)| ≤ 2|L|−2+2.

Proof. 1) Let |L| = 1, then |B(L,L, �≥)| = 2 which is less than 21
2 . 2) Let |L| = 2,

then |B(L,L, �≥)| = 3 which is equal to the right-hand side of the inequality.
3) For |L| ≥ 3, let us consider the subcontext (L \ 1, L \ 0, �≥). Recalling the
structure of the incidence table for a partial order with all empty pairs below
the main diagonal, we obtain that one of the context objects, 0, and one of its
attributes, 1, are represented by a full row and a full column, respectively, while
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the main diagonal is full and the pairs above the main diagonal belong to �≥. It
is so, since for every pair (a, b) above the main diagonal of the original context
|(L,L,≤)| only one of the cases fulfils 1) a < b or 2) a �< b (which implies a �≥ b,
i.e. a and b incomparable). Either case implies a �≥ b.

At the same time, the first subdiagonal is empty since �≥ is antireflexive. It
implies that the number of concepts |B(L\1, L\0, �≥)| ≤ 2min(|L\1|−1,|L\0|−1) =
2|L|−2. Going back to the original context, we obtain two more concepts for the
deleted object 1, (1′′,1′) = (L, ∅) and for the deleted attribute 0, (0′,0′′) =
(∅, L), respectively.

Unfortunately, even these slightly better upper bounds are overly high, but
at least we can do better by providing an upper bound for macp(n), which can
be also estimated via the sizes of the standard context for MA(Pn). Thus, for
MA(Pn) the upper bound is as follows:

2min(|J(MA(P6))|,|M(MA(P6))|) = 2min(172,188) ≈ 5.986 · 1051 .

Table 2. The sizes of standard context for MA(Pn) compared to Bell numbers for n
up 7

n 1 2 3 4 5 6 7

Bell numbers 1 2 5 15 52 203 877

J(MA(Pn)) 0 1 2 8 37 172 814

M(MA(Pn)) 0 1 2 9 42 188 856

The size of the standard context for the lattice of antichains on partitions for
a fixed n is given by Bell numbers both for join- and meet-irreducible elements
(see Table 2).

Since we know macp(Pn) ≤ acp(Pn), we can try to further sharpen this
inequality by discarding some of those antichains that are not maximal.

Proposition 4. macp(Pn) ≤ acp(Pn) −
n∑

k=1

2{n
k} + 2n − 1 for n ≥ 1.

Proof. We subtract from acp(Pn) the number of all non-maximal antichains
obtained by each level of the partition lattice, which gives us a decrement 2{n

k}−2
for each k (the empty set is counted only once).

Let us use Δ(n) for acp(n) − macp(n) and Dl(n) for the decrement by levels
n∑

k=1

2{n
k} − 2n + 1. In Table 3, it is shown that for the first three values Δ(n)

and Dl(n) coincide, but later the antichains different from the level antichain’s
subsets appear.

Proposition 4 gives us a tool to establish an improved upper bound for
macp(Pn).
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Table 3. The signed relative error Δ(n)−Dl(n)
Δ(n)

n 1 2 3 4 5

Δ(n) 1 1 7 315 79800738

Dl(n) 1 1 7 189 33588219

Relative error 0 0 0 0.4 ≈ 0.5791

Proposition 5. macp(Pn) ≤ 2Bn−2 −
n∑

k=1

2{n
k} + 2n + 1 for n ≥ 1.

Proof. We directly plug in 2Bn−2 + 2 in the previous inequality. Note that for
n = 1, macp(Pn) = 1 < 21−2 − 2{1

1} + 2 + 1 = 11
2 .

Since
(
n
k

) ≤ {
n
k

}
, we could expect that the Dedekind numbers Dn and the

number of maximal antichains of the Boolean lattice, ma(Bn), are good candi-
dates for heuristic lower bounds. As we can see from Fig. 4, they become lower
than their counterparts for the set partition lattice already at n = 4.

It is known that Bn <
(

0.792n
ln(n+1)

)n

for all positive integers n [30]. So, log Bn

is bounded by a superlinear function in n5. Thus, we can try a linear approxi-
mation for the logarithms of the number of maximal antichains, macp(P6), and
that of antichains, acp(P6), respectively, by a tangential line passing through
the line segments [log macp(P4), log macp(P5)] and [log acp(P4), log acp(P5)],
respectively. Let us consider the natural logarithm, ln. Thus, these heuristic
lower bounds are as follows:

eln
2 acp(5)/ ln acp(4) ≈ 1.25 · 1026 and eln

2 macp(5)/ lnmacp(4) ≈ 273562462667.8.

The latter heuristic lower bound is already about 5.74 times smaller than the
currently precomputed estimate of macp(6), i.e. 1570401481250.

6 Conclusion

We hope that this paper will stimulate the interest of the conceptual structures
community in computational combinatorics, both from algorithmic and theoretic
points of view. Recent progress in computing such numbers as the Dedekind num-
ber for n = 9 due to high-performance computing and FCA-based algorithms
can be relevant here [31].
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