
Graph Extraction for Assisting Crash
Simulation Data Analysis

Anahita Pakiman1,2(B) , Jochen Garcke1,3 , and Axel Schumacher2

1 Fraunhofer SCAI, Sankt, Germany
anahita.pakiman@scai.fraunhofer.de

2 Bergische Universität Wuppertal, Wuppertal, Germany
3 Institut für Numerische Simulation, Universität Bonn, Bonn, Germany

Abstract. In this work, we establish a method for abstracting informa-
tion from Computer Aided Engineering (CAE) into graphs. Such graph
representations of CAE data can improve design guidelines and sup-
port recommendation systems by enabling the comparison of simulations,
highlighting unexplored experimental designs, and correlating different
designs. We focus on the load-path in crashworthiness analysis, a com-
plex sub-discipline in vehicle design. The load-path is the sequence of
parts that absorb most of the energy caused by the impact. To detect
the load-path, we generate a directed weighted graph from the CAE
data. The vertices represent the vehicle’s parts, and the edges are an
abstraction of the connectivity of the parts. The edge direction follows
the temporal occurrence of the collision, where the edge weights reflect
aspects of the energy absorption. We introduce and assess three methods
for graph extraction and an additional method for further updating each
graph with the sequences of absorption. Based on longest-path calcula-
tions, we introduce an automated detection of the load-path, which we
analyse for the different graph extraction methods and weights. Finally,
we show how our method for the detection of load-paths helps in the
classification and labelling of CAE simulations.

Keywords: Automotive · CAE Knowledge · Graph Extraction ·
Weighted-Directed Graph · Flow Calculation · Load-path Detection

1 Introduction

We live in an interconnected world, and graph theory provides powerful tools
for modelling and analysing this interconnectedness. In graph theory, graphs
are usually given in advance or easily abstracted from problems. However, for
many real-world scenarios, the individual data instantiations of modelled graphs
need to be determined from the data before further analysis. Therefore, the con-
struction of high-quality graphs has become an increasingly desirable research
problem, resulting in many graph construction methods in recent years [1]. Fur-
thermore, knowledge graph (KG)s have become a new form of knowledge rep-
resentation and are the cornerstone of several applications for specific use cases
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Ojeda-Aciego et al. (Eds.): ICCS 2023, LNAI 14133, pp. 171–185, 2023.
https://doi.org/10.1007/978-3-031-40960-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40960-8_14&domain=pdf
http://orcid.org/0000-0001-9706-7305
http://orcid.org/0000-0002-8334-3695
http://orcid.org/0000-0003-0649-5799
https://doi.org/10.1007/978-3-031-40960-8_14


172 A. Pakiman et al.

in industry. The graph underlying the abstract structure, which effectively facil-
itates domain conceptualisation and data management, is the reason for the
growing interest in this technology. Moreover, the use of KG is the direct driver
of several artificial intelligence applications [2]. Towards vehicle KG, we aim to
capture knowledge about vehicle development designs by automatically extract-
ing graphs from a finite element (FE) model representing a vehicle.

The simplest scenario for identifying the connectivity of a graph is when it is
associated with a physical problem related to the graph. Such graphs include elec-
trical circuits, power grids, linear heat transfer, social and computer networks,
and spring-mass systems [3]. In this work, we are interested in crashworthiness
studies in vehicle design, where the transformation of crash simulation data into
a graph is a challenging and unexplored area of research. With the resulting
representation, we aim to provide an abstraction of the problem that allows the
use of graph theory methods for further automated analysis of the simulations.

Computer aided engineering (CAE) analysis, mostly with the finite element
method (FEM), enables car manufacturers to analyse many design scenarios,
nowadays between 10,000 to 30,000 simulations per week [4]. In crashworthiness
analysis, CAE engineers optimise the distribution of impact energy in the vehi-
cle structure to reduce injuries to occupants or vulnerable road users. How to
characterise the sequence of absorbed energy, known as the load-path, is a funda-
mental question in this analysis. The results of crash simulations include several
outputs, such as deformations, accelerations and internal energy. However, the
load-path is not explicitly calculated in a crash simulation. Therefore, a CAE
engineer must visualise the sequence to reveal the load-path. In this work, we
propose and investigate graph representations for an automated identification of
the load-path from the simulation data.

We consider parts of the FE model entities as vertices of the structural graph
following the scheme of [5]. We want to detect the graph edges that resemble the
structural connectivity of the vehicle. We propose three approaches to determine
this structural graph: component-based graph (CBG), single part-based graph
(sPBG) and multi part-based graph (mPBG). The CBG follows two steps: find-
ing the connection of the components (a group of parts) and then identifying
the connection of the parts in each component. The sPBG and mPBG graphs
have additional steps to convert the component connections to part connections,
which requires the detection of the parts that are entangled in the connection
that is supporting the flow of energy.

Defining the vehicle structure as a graph is the first step in load-path detec-
tion. Secondly, we compute it as the longest path in weighted directed graphs,
where the edge weights between the parts shall represent the energy flow during
the crash. We study different edge weighting functions for three graph extraction
scenarios and analyse the determined load-paths from an engineering perspec-
tive. In this work, the investigation is carried out on the frontal structure of a
complete vehicle with a multi-scenario load-path in a full frontal load case. But,
our approach is applicable to different impact directions and load case scenarios.



Graph Extraction for Assisting Crash Simulation Data Analysis 173

In summary, the main contributions of this work are:

– the conversion of a vehicle structure to a weighted directed graph,
– the extraction of features representing the energy flow,
– a further graph segmentation that captures the time sequence of events,
– an automated detection of the load-path,
– the clustering of simulations based on their load-paths.

2 Related Work

Recently, a graph schema to model vehicle development with a focus on crash
safety was introduced in [5]. The graph modelling considers the CAE data in
the context of the R&D development process and vehicle safety, with the aim
to enable searchability, filtering, recommendation, and prediction for crash CAE
data during the development process. In [5], the car parts are directly connected
to their simulation, and the parts between the simulations have a connection to
similar design based on the properties ID (PID) of the parts. But, connections
between the parts of one simulation are missing, therefore the vehicle’s structure
and its connectivity is not modelled. Thus, incorporating the vehicle structure
into the graph structure will enrich the data representation.

In crashworthiness, graphs have been used to predict the response of the
vehicle [6] or barrier [7] with so-called bond graphs. The bond graphs available
for vehicle crashes represent the problem from the perspective of a mass-spring
model [6]. Bond graphs are ideal for visualising the essential properties of a
system because their graphical nature separates the system structure from the
equations [8]. Bond graphs represent the vehicle structure by summarising the
physical elements and connections. However, to the best of our knowledge, there
is no way of automatically extracting the vehicle structure as a bond graph.

Before the growth of computing power allowed large FEM analysis, there were
other modelling techniques that simplified the problem to a mass-spring model.
The advantage of the mass-spring model is that it can be easily represented as a
weighted graph. SISAME (Structural Impact Simulation And Model-Extraction)
is a general-purpose tool for the extraction and simulation of one-dimensional
non-linear lumped parameter structural models [9]. Using SISAME, mass ele-
ment weights and spring element load-paths were optimally extracted directly
from the test data accelerations and wall forces [10]. However, the lumped mass
spring (LMS) modelling is one-dimensional and focuses mainly on accurately
modelling the test data rather than representing the structural performance of
the vehicle. Later the deformation space models (DSM) model was introduced
[11] to compensate for the limitations of the LMS. It can only roughly capture
displacements and energy absorption, neglecting connections and interactions
with other components.

Another use of graphs in crash analysis is in the structural optimisation of
the vehicle [12,13]. Here, the optimisation method adds vertices and edges to
stiffen the structure, starting with a simple graph describing the perimeter of
the vehicle. The focus of these studies is to search with a graph for the optimal



174 A. Pakiman et al.

solution of the vehicle design. As a result, to complete the vehicle design and
ensure safety performance, further processes and CAE analysis are required.

To summarise, automatically converting a crash FE model in vehicle devel-
opment to a graph is still an open research question. Depending on the detail
required in a graph, there are several ways to represent an FE model of a vehicle.
As a specific application, we investigate how adding connections to the graph
will allow a load-path analysis for each simulation. For that, we use and extend
the recently introduced energy absorption features [14], which characterize the
simulation’s behaviour, as edge features to enable the load-path detection.

3 Graph Extraction

It is a challenging task to generate a graph representing the structure of a vehicle
from CAE data. Finding the connectivity of the parts is complex due to the
number of connections, the variety of FE modelling techniques and the variety
of physical types of connections. The best way to obtain this information would
be to use the computer aided design (CAD) database, which is more standardised
than CAE. However, this data depends on the company’s workflow to maintain
the link between the CAE and CAD models, which has yet to be well established.
In addition, these databases lack information on the dependencies of the part
connections, i.e. all parts are connected without any hierarchy. This hierarchy is
essential for defining the direction of the edges and for identifying the vertices of
the graph as either dead ends or capable of allowing energy to flow through the
structure. As a result, we are looking for a method to perform this intelligently
using the FE model, based on the location and closeness of parts therein.

The FE model contains mesh faces and volumes with different entities repre-
senting the connections. The mesh is defined by nodes and elements, where the
element size defines the resolution of the discretization. The nodes can represent
the vertices and the elements define the edges for a graph defined as G(V,E)
with vertices and edges. Consequently, a FE model mesh itself represents a graph.
However, this graph has drawbacks. A small element size, three to five mm, for a
complete vehicle will result in a large number of vertices, up to 20 million, which
is computationally expensive for graph machine learning (GML) and the lack
of semantics makes it difficult to analyse engineering concepts. Coarsening the
crash FE mesh is an alternative, which is a topic in FE modelling [15–17]. How-
ever, rather than focusing on post-processing aspects, these studies have mainly
focused on reducing the compute time of the FE simulation. Nevertheless, the
result will still be a disconnected graph because a FE model contains multiple
meshes whose connectivity is not element based. Therefore, we focus on linking
FE entities to extract the structure of a vehicle as a connected graph.

To determine the connectivity, we split the graph extraction problem into two
steps. First, component-level connectivity and then connectivity of parts within
a component. Thereby we keep hierarchy information in the graph structure.
Previously, we introduced a grouping method for identifying components [18].
Here, we extend this method to search for connections between components. In
addition, we add edges to the graph that connect parts that belong to the same



Graph Extraction for Assisting Crash Simulation Data Analysis 175

component. To include timing in the graph, we also investigate to add a timing
segmentation based on the timing of outgoing edges, see Sect. 4.2.

Fig. 1. Abstracted visualization of the stages for graph extraction. While the method
works in 3D, we here show a 2D visualisation. Solid squares: part, dashed square:
component, circle: part box center of gravity (COG), triangle: component box COG,
green edges: component to component, blue edges: component to part, red edges: part
to part. (Color figure online)

We consider the parts of the FE entities as vertices of the structural graph
of the vehicle, which follows the scheme of [5]. We want to detect the edges
that resemble the structural connectivity of the vehicle, and we propose three
scenarios to do this: CBG, sPBG and mPBG. We need to extract information
from the structure of the vehicle to obtain the connectivity between parts. To do
this, we create 3D axis-aligned boxes for each part that contain the volume of
the part’s geometry, Fig. 1a. Then, based on the overlap of the boxes, we define
rules to group them as components, Fig. 1b, and later form the structure of the
graph from the overlap of the boxes. In the following three subsections, we will
discuss the detailed differences between these methods and for now only describe
the general idea. The CBG follows two steps: finding the connections between
components, Fig. 1c, and then determining the part connectivity in each com-
ponent, Fig. 1d. sPBG and mPBG have additional steps to convert component
connections to part connections, which requires identifying the parts involved in
the connectivity that supports the energy flow. We explore two scenarios for this
as single and multi-part-based graphs, Figs. 1e and 1f, respectively. For all these
methods, we consider a directed graph whose directions are set to have a positive
inner product with the impact axis, direction x in Fig. 1a and Algorithm 1.



176 A. Pakiman et al.

Algorithm 1. edge direction for vertices A and B, impact direction x

Input: TVL: Threshold Limit Value

if ‖AB‖ < TLV then

if
−−→
AB · −→x > 0 then
connect A to B

else
connect B to A

end if
end if

3.1 CBG

The construction of CBG requires first the detection of the components and then
the detection of the connections between components. The component detection
considers each part to be a box, then groups them together as a component, and
finally evaluates the component box. For CBG, in addition to the part vertices,
we also introduce component vertices into the graph. The location of these ver-
tices is at the centre of the components and the component parts are connected
to them. For example, in Fig. 1a with eight parts, four components are detected
and corresponding component boxes are generated, in Fig. 1b. Then, using a
threshold value (TLV ), our algorithm searches for immediately adjacent compo-
nents. The thresholding allows having several neighbours. The search algorithm
sorts components by impact direction, starting from the impactor/barrier posi-
tion and moving into the vehicle along the impact direction, e.g. x in Fig. 1c.
Finally, we connect all of the parts in each of the components to the component
box.

The result at this stage, Fig. 1d, is a connected graph, which is a heteroge-
neous graph of parts and components. Evaluating the longest path for a hetero-
geneous graph requires additional evaluation of edge features between vertices of
different types. Therefore, our goal is to modify this graph into a homogeneous
graph. First, we consider only the components as vertices, delete the vertices
of the parts, and evaluate the features of the component vertices based on the
parts, as we introduced earlier in [18]. This graph is CBG and doesn’t contain
the detailed features of all the parts. Another approach is to use the heteroge-
neous graph as an input to find further connectivities of the parts. We explore
this approach in Sects. 3.2 and 3.3.

3.2 sPBG

The sPBG is a basic approach to convert the heterogeneous part-component
graph into a part graph by transferring the component vertex and its corre-
sponding edges to a part vertex. Because of the single part selection, we call it
sPBG and we consider an alternative multiple part scenario in Sect. 3.3. There
are several ways to determine the corresponding part for each component. First,
we use a simple scenario and select the largest part, the geometric aspect of



Graph Extraction for Assisting Crash Simulation Data Analysis 177

the component, as the corresponding vertex for the component connection. For
example, in Fig. 1e with this consideration, the 1 remains in the same
position as the component-part graph because the connecting components con-
tain a single part. The edges 2,4,5 move from the component box to the
largest part, so 6 is removed. Finally, the edge 7 disappears in
the last components and edges 8,9 move to the other end of edge seven.

The sPBG graph is characterised by having a main connection from the
beginning to the end of vehicles with several dead ends for each master part. We
expect that the identification of the energy flow of the simulation will be limited
by the existence of many dead ends. Furthermore, for sPBG a single part is
the representative of a component and therefore only a single part interacts
with the other parts, which in some cases is not appropriate. For example, the
side-member, which is a thin-walled structure, has two U-sections welded and
several reinforcement plates. In this example, information about the interactions
of the other U-profiles and reinforcement plates will be missed if only one part is
considered to represent the component. Next, we consider multiple connections
between the components with mPBG. Multiple connections reinforce the lack of
internal connections compared to sPBG.

3.3 mPBG

The mPBG is an alternative to sPBG by allowing multiple representatives for
components. This approach allows for part interactions in the components and
between components. Here we transfer and distribute the component vertices
using the information from the component discovery process, rather than select-
ing the largest box. As described in [18], our component detection algorithm has
two scenarios for identifying the components: full and partial overlap merge. Full
overlap means a box is completely within the parent box, whereas partial overlap
addresses partially overlapping scenarios. These two scenarios are treated differ-
ently for mPBG extraction. In the case of a full merge, the part is connected
to its parent box, similar to sPBG. However, in partial overlap scenarios, both
boxes will represent the component. In this case, a component vertex is trans-
ferred to all partially overlapped boxes. Nevertheless, each part will retain its
connections to the child based on full merges. Figure 1f visualises these two sce-
narios. The edge 2,3 branches to two edges 21,22 and 31,32

respectively compared to the sPBG due to a partial merge. Furthermore, the
edge 9 branches to 91,92 since it is added after the partial merge
and belongs to both parent boxes.

4 Load-Path Detection

Understanding how an external load is transferred to a given structure helps to
evaluate the performance of different components, improve structural strength
and reduce structural weight in structural design and optimisation. The so-called
load-path of a component is a concept for tracking the transferred load within a



178 A. Pakiman et al.

structure, starting from the load points and ending at the support points, which
has been studied in structural design for several years [19]. Reviews of different
approaches to load-path detection are proposing a new metric to find detailed
load-paths at mesh size for better component design. However, we are interested
in the load-path in the context of crash analysis, which involves the interaction
of several components. Load-paths are typically defined as vehicle parts capable
of generating resisting forces during a crash event [20]. To identify load-paths
during a crash, nine load-paths were first defined and classified in [20]. These
can be easily examined for signs of loading after a crash. On the other hand,
this work mainly introduces new measures for evaluating real crashes.

We aim to identify the load-path to be able to compare simulations by high-
lighting the importance of different paths during the crash. We use the longest
path calculation1 to find the load-paths involved in absorbing the crash energy.
In this calculation, we aim to look at the internal energy absorption of the parts
since manufacturers optimise the energy absorption capabilities of the load-paths
[20]. To achieve this, we use the so-called internal energy IE features introduced
in [14]. Initially, one has an unweighted graph with IE features for vertices.
An essential step is to convert vertex features into edge weights. In this way,
the edge weights hold the absorption characteristics and instead of the longest
unweighted path, we compute the potential load-path.

In the following subsections, we first introduce the edge weights as a single
feature of the internal energy flow, fIE , and the time segmentation, st. fIE is
computed from the vertices maximum absorbed internal energy (IEmax) using
internal energy flow calculation, see Sect. 4.1. For st we update the graph with
time segmentation to have absorption time features on the edges, see Sect. 4.2.
Finally, in Sect. 4.3 we will present several ways to combine edge features.

4.1 Internal Energy Flow

We consider the flow equation for the propagation of the internal energy maxi-
mum IEmax feature from the vertices to the edges, fIE . Our graph is a directed
weighted graph G(V,E) with vertices V , edges E and a weight w(e) assigned to
each edge. We assume that the energy flow from vertex i to j, wi,j , is represented
by an edge weight between vertices i and j. The energy flow equation relates
the absorbed internal energy IEj of a vertex vj to the balance of the input and
output IE from that vertex to its neighbours:

IEj =
∑

n∈I(j)

wn,j −
∑

n∈O(j)

wj,n. (1)

For a vertex v in a graph, we denote by I(v) and O(v) the set of in-neighbours and
out-neighbours of v, respectively. We start computing edge weights with vertices
that only have incoming edges, called dead ends. We compute the flow from the
dead ends, backwards along their edge directions, to find the inflow of the dead

1 The longest path in a directed acyclic graph, dag_longest_path() , from NetworkX.



Graph Extraction for Assisting Crash Simulation Data Analysis 179

ends vertices. The active vertices for the next step calculation are the source
vertices to the dead ends. Consequently, if all their outflow energy is available,
we can find the inflow energy to the active vertices. Until all its outflows are
known, a vertex is withheld from being an active vertex. In addition, there is a
different treatment for the dead ends at vertices that have an inflow degree of
zero. These source-only vertices reflect where the impact is initiated and where
accordingly the kinetic energy input takes place. Therefore, these vertices are not
considered when they are marked as active vertices. Instead, the edge weights of
these source-only vertices are calculated when their outgoing neighbours are the
active vertices. In some cases, the weights of all their outgoing edges have already
been evaluated, but the active vertices may have more than one incoming edge.
In this case, the energy flow is partitioned to the in-degree, I(v). An unequal
stiffness of the structure does not allow an equal distribution. Therefore, equal
partitioning can lead to errors in the flow calculation, which we discuss in 5.1.

4.2 Time Segmentation

To convert the vertex absorption times into edge weights is more complex than
the handling of IEmax. This is because the graph connectivity of the vertices
differs from the time sequence of the parts that absorb energy. Moreover, the
time information of each vertex is an absorption interval (Δt), initial absorption
time ti to final absorption time tn, which may overlap with one of its neighbours.
In the example shown in Fig. 2, we demonstrate the time segmentation for vertex
j with two successors of l and k. In this figure, the absorption period of each
vertex is plotted as a vector along the time axis. The overlap of these vectors
highlights the need for time segmentation, see Fig. 2a. To overcome this, we
segment the time interval of the absorption for each vertex. The segmentation
is based on the ti value of the successors of the vertex.

Accordingly, we add vertices to the graph for each segmented time and con-
nect each successor vertex to the vertex added for time segmentation. In this
example, a vertex is added to the graph for each successor vertex, l and k, see
Fig. 2b. Note that if some of the successors have the same ti, then only one ver-
tex will be added. In addition, to include the total absorption, an extra vertex is

Fig. 2. An example of time segmentation process for a vertex j with two outgoing
edges to the successors vertices of k and l. The time axis shows the ti value for each
vertex and absorption time with an arrow in front of each vertex.



180 A. Pakiman et al.

added to represent the total absorption vector as the sum of δtj = δtj1+δtj2+δtj3,
see Fig. 2c. Then we sort the ti of the successor vertices to find the connec-
tion between the new vertices. Finally, the directed edges containing the time
sequences and durations are added and the old edges are deleted, see Fig. 2c.
Additionally, we add the initial timing tki as a vertex feature for the kth segment,
so that all vertices have a ti. Finally, the edge weight st for time segmentation
is for a directed edge from m to n defined by st := tmi − tni .

4.3 Feature Combination

We consider two approaches to combine IEmax and the timings of part absorp-
tion. In the first approach, we modify the vertex feature IEmax according to the
absorption time before the flow computation from Sect. 4.1. To do this we look
at the integration of the IE curve over time, IEΔt. The start and end of the
integration are set to the minimum timin

and maximum tnmax
of the absorption

times, ti and tn, respectively, over all parts. To simplify the calculation, we divide
the area under the curve IE into three zones. For each zone the area under the
curve, A, is calculated:

◦ (timin
, ti) unload period, A1 = 0

◦ (ti, tn) absorption period, A2 = IEmax(tn − ti)/2
◦ (tn, tnmax

) saturated period, A3 = IEmax(tnmax
− tn)

The sum of these areas is the new node feature and we compute, as in
Sect. 4.1, the combined edge weight with the flow of IEΔt, fIEΔt. In the second
approach, we use the time segmentation graph. For this graph, we calculate the
energy absorption efficiency, Pe = IE/Δt, where Δt = st, see Sect. 4.2, and
IE = fIE , see Sect. 4.1.

5 Result

We use an illustrative example presented in [18] to evaluate our method. This
study contains 66 simulations; each model contains 27 parts and 11 components.
The model structure is the same, therefore the graph structure remains the same
for all simulations. Figure 3 shows the extracted graph for CBG, sPBG and
mPBG. Here, in the graph visualisation, the vertices are positioned in the centre
of its part or component box. In Fig. 3a for CBG, the vertices of the graph are
labelled by these components. For sPBG and mPBG each vertex refers to a part
in Figs. 3b and 3c, where the parts corresponding to the vertex of a component
are coloured grey. The mPBG has additional edges compared to sPBG that are
marked in red, Fig. 3c. While the CBG, sPBG and mPBG graphs are the same
for 66 simulations, adding the time segmentation to the graphs can change the
structure for each simulation due to different time sequences. Figure 4 shows the
differences in two simulations generated by time segmentation for mPBG. In the
following sections, we evaluate the computation of the IE flow and the detection
of the load-path.2

2 The zoomed views use networkx.kamada_kawai_layout() with vertex distances

and positions to improve the visualisation.



Graph Extraction for Assisting Crash Simulation Data Analysis 181

Fig. 3. Extracted graphs for the illustrative example [18]. A zoomed view of the upper
half is shown for each graph. The additional edges for mPBG compared to sPBG are
marked as red in (c) (Color figure online).

Fig. 4. mPBG segmentation differences for simulations (0) and (27) due to different
times of absorption.

5.1 Graph Flow

We use the RSME of the inflow and outflow to evaluate the flow calculation as:

RSME =

√√√√√ 1
N

N∑

j=1

IEj −
⎛

⎝
∑

n∈I(j)

wn,j −
∑

n∈O(j)

wj,n

⎞

⎠. (2)

The flow calculation has a small error in the order of 2 to 3e − 16 for the three
graph extraction methods. The comparatively high spread of the RMSE for CBG
indicates that for some simulations the connectivity of the CBG graph is limited,
which increases the RMSE for these simulations.

5.2 Load-Path Detection

Here, we first discuss the result of the load-path detection for five reference
models, as in [18], and show how the load-path detection characterises the sim-
ulations. Then, we use the best method to classify all 66 simulations. In the
reference simulations – 3, 30, 31, 60, 61 — the crash-box thicknesses differ as
follows. Simulation 3 has the same thickness on both left hand side LHS and



182 A. Pakiman et al.

Fig. 5. Load-path detection, marked in red, for the five reference simulations from [18].
LHS and RHS are at the top and bottom, respectively. Each simulation and edge weight
setup include results of CBG, sPBG and mPBG. (Color figure online)

right hand side RHS. Compared to 3, simulations 30 and 31 are less stiff on RHS
and LHS, respectively. Whereas simulations 60 and 61 are stiffer on LHS and
RHS, respectively, compared to 3.

Figure 5 summarises the load-path detection with four edge weights as
described in Sect. 4. Columns a and c are the single feature results for fIE and
st. The other two columns are weighted with combined features fIEΔt and sPe

,
columns b and d respectively. We show the results of three different graph extrac-
tion methods for each scenario and the detected paths are marked in red. Based
on the structural stiffness, the expected energy load-path for simulations 30 and
60 is at the RHS (bottom) and for simulations 31 and 61 at the LHS (top).

We expect that for graphs with fIE-edge weight, it is the reverse of graphs
with st-weight whether we get a top or bottom load-path. This is due to the
physics of the problem, i.e. stiffer parts take more time for absorption and deform
less, which means lower IE. The only exception we observe is in the result with
CBG and st weighting. Here the detected path for these simulations does not
continue to the side-member and a different side of the structure is detected



Graph Extraction for Assisting Crash Simulation Data Analysis 183

Fig. 6. Identical load-paths, marked in red, that are identified for the simulation dataset
from [18]. Only one is shown if there is a symmetric pair. nL and nR are the number
of occurrences of a load-path in the dataset, respectively. (Color figure online)

compared to sPBG or mPBG. This example shows the limitation of CBG in
time feature extraction, i.e., the component level is less sensitive than the part
level.

Next for the combined features, fIEΔt and sPe
, for most scenarios the

detected load-path remains in the expected direction of the structure. The only
exception is the CBG graph for simulation 3. Simulation 3 is a symmetric model
and lacks a dominant load-path due to its symmetry. Again, the CBG method
lacks the detail to realise the effect of time in detecting the load-path. The addi-
tional obvious observation is that with sPe

weight the detected path is shorter.
This detection describes well that the crash-box influence is much greater than
those of the remaining parts. Therefore, this path captures the efficient path of
the load rather than the full path along the structure.

Among these approaches, the mpBG with st detects the most detailed load-
paths, which is better for simulation comparison. As a result, we use it to visually
categorise all 66 simulations. This method categorises the data into 12 identical
load-paths, where 10 are symmetric pairs, i.e., an LHS path corresponds to an
RHS path. Figure 6 summarises the clusters. Most of the simulations, 33, are
grouped in cluster B. The biggest difference of the clusters is between cluster A
and the rest where the path ends with a crash-box absorption. The remaining
clusters have similar absorption for the crash-box and differ in vertex selection
for the side-member at the end of the path.

6 Conclusion and Outlook

We considered load-path detection in crash analysis, one of the automotive CAE
domains, by using graph approaches. Due to the lack of graphs in the CAE data,
we introduced graph extraction methods to convert the CAE analysis of crashes
into graphs. To characterise the absorption path of the vehicle structure, we not
only abstract the vehicle structure into the graph, but also define edge direc-
tions and edge weights. By computing the longest weighted path in a graph an



184 A. Pakiman et al.

automated detection of load-paths now becomes feasible. Vehicles with the same
structural design have an almost similar graph structure, while edge weight-
ing and time segmentation detect differences in load-paths. Our method showed
promising results analysing an illustrative example with 66 simulations. Based
on our study, it is best to use different graph extraction approaches and edge
weights (w) for different applications, as follows:

1. CBG, w = fIE : crash mode analysis [18], advantage: simple and stable.
2. mPBG, w = fIEΔt: IE flow path analysis, advantage: more details.
3. mPBG, w = st: simulation clustering using load-path, advantage: sensitivity

to time sequence.
4. mPBG w = sPe

: analyse part or component efficiency.

As well as being useful for the CAE engineers, the load-path clusters from c)
can also be used as labels, which opens up new possibilities for using supervised
machine learning ML for CAE. We see as a next stage an implementation of
graph embedding methods to automatically classify the results.

In addition, posture detection methods can be used to further process the
data during the crash [21]. With these methods, part features should remain
at the vertex level for active part detection. However, as far as we are aware,
there is limited research on directed graphs to find the load-path. Furthermore,
converting a whole vehicle into a graph requires additional considerations. For a
complete vehicle, graph extraction can often lead to several unconnected graphs
due to the existence of larger parts. Our graph extraction works for sub-models,
but further heuristics are needed to extend its application, which is beyond the
scope of this work. Finally, we extracted a static graph from the undeformed
geometry. As the deformed structure may lead to additional contacts between
parts that do not exist in the undeformed structure, it may be useful in the
future to consider the deformed structures as well.

References

1. Qiao, L., Zhang, L., Chen, S., Shen, D.: Data-driven graph construction and graph
learning: a review. Neurocomputing 312, 336–351 (2018)

2. Abu-Salih, B.: Domain-specific knowledge graphs: a survey. J. Netw. Comput.
Appl. 185, 103076 (2021)

3. Stanković, L., et al.: Data analytics on graphs part III: machine learning on graphs,
from graph topology to applications. Found. Trends Mach. Learn. 13(4), 332–530
(2020)

4. Schwanitz, P.: Towards AI based recommendations for design improvement (AI-B-
REDI). Presentation at SIMVEC, Baden-Baden November 2022 (2022)

5. Pakiman, A., Garcke, J.: Graph modeling in computer assisted automotive devel-
opment. In: 2022 IEEE International Conference on Knowledge Graph (ICKG),
pp. 203–210 (2022). arXiv preprint arXiv:2209.14910

6. Granda, J.J.: Automating the process for modeling and simulation of mechatronics
systems. In: Bond Graph Modelling of Engineering Systems, pp. 385–430, Springer,
New York (2011). https://doi.org/10.1007/978-1-4419-9368-7 11

http://arxiv.org/abs/2209.14910
https://doi.org/10.1007/978-1-4419-9368-7_11


Graph Extraction for Assisting Crash Simulation Data Analysis 185

7. Granda, J.J., Gloekler, T.: Bond graph models for reconstruction of vehicle barrier
equivalent speeds. In: Proceedings of the International Conference on Bond Graph
Modeling and Simulation, pp. 35–47 (2016)

8. Gawthrop, P.J., Bevan, G.P.: Bond-graph modeling. IEEE Control Syst. Magaz.
27(2), 24–45 (2007)

9. Mentzer, S.G., Radwan, R.A., Hollowell, W.T.: The sisame methodology for extrac-
tion of optimal lumped parameter structural crash models. Tech. rep., SAE Tech-
nical Paper (1992)

10. Lim, J.M.: Lumped mass-spring model construction for crash analysis using full
frontal impact test data. Int. J. Automot. Technol. 18, 463–472 (2017)

11. Lange, V.A., Fender, J., Song, L., Duddeck, F.: Early phase modeling of frontal
impacts for crashworthiness: from lumped mass-spring models to deformation space
models. Proc. Inst. Mech. Eng. Part D: J. Autom. Eng. 233(12), 3000–3015 (2019)

12. Ortmann, C., Schumacher, A.: Graph and heuristic based topology optimization
of crash loaded structures. Struct. Multidiscip. Optimiz. 47(6), 839–854 (2013)

13. Schneider, D., Schumacher, A.: Finding optimized layouts for ribs on surfaces using
the graph and heuristic based topology optimization. In: Schumacher, A., Vietor,
T., Fiebig, S., Bletzinger, K., Maute, K. (eds.) WCSMO 2017, pp. 1615–1628.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67988-4 121

14. Pakiman, A., Garcke, J., Schumacher, A.: Knowledge discovery assistants for crash
simulations with graph algorithms and energy absorption features. Appl. Intell.
(2023)

15. Bank, R.E., Xu, J.: An algorithm for coarsening unstructured meshes. Numer.
Math. 73(1), 1–36 (1996)

16. Chawla, A., Mukherjee, S., Sharma, A.: Mesh generation for folded airbags. Com-
put. Aided Des. Appl. 1(1–4), 269–276 (2004)

17. Montevecchi, F., Venturini, G., Grossi, N., Scippa, A., Campatelli, G.: Finite ele-
ment mesh coarsening for effective distortion prediction in wire arc additive man-
ufacturing. Addit. Manuf. 18, 145–155 (2017)

18. Pakiman, A., Garcke, J., Schumacher, A.: Simrank-based prediction of crash sim-
ulation similarities. INS Preprint No. 2210. Institut für Numerische Simulation,
Universität Bonn (2022)

19. Marhadi, K., Venkataraman, S.: Comparison of quantitative and qualitative infor-
mation provided by different structural load path definitions. Int. J. Simulat. Mul-
tidiscip. Design Optimiz. 3(3), 384–400 (2009)

20. Lindquist, M., Hall, A., Björnstig, U.: Real world car crash investigations-a new
approach. Int. J. Crashworthiness 8(4), 375–384 (2003)

21. Ma, N., et al.: A survey of human action recognition and posture prediction.
Tsinghua Sci. Technol. 27(6), 973–1001 (2022)

https://doi.org/10.1007/978-3-319-67988-4_121

	Graph Extraction for Assisting Crash Simulation Data Analysis
	1 Introduction
	2 Related Work
	3 Graph Extraction
	3.1 CBG
	3.2 sPBG
	3.3 mPBG

	4 Load-Path Detection
	4.1 Internal Energy Flow
	4.2 Time Segmentation
	4.3 Feature Combination

	5 Result
	5.1 Graph Flow
	5.2 Load-Path Detection

	6 Conclusion and Outlook
	References




