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Abstract. This short paper introduces Euler™diagrams as an enhanced
version of traditional Euler diagrams and discusses how these can be
utilised for conceptual modelling. Instead of the traditional interpreta-
tion of Euler diagrams as Boolean logic, Euler™diagrams are considered
3-valued logic diagrams that are interpreted as First Order Logic (FOL)
expressions. It is argued that such diagrams have a good usability because
they are sufficiently simple yet reasonably expressive. Conditions for a
translation between Euler™diagrams and logical expressions and some
consistency rules are provided. Questions still remain with respect to a
detailed explanation of visual reasoning algorithms.

1 Introduction

Venn and Euler diagrams are frequently used as a tool for visualising logical
and set theoretical expressions. A common interpretation of such diagrams eval-
uates existing zones into True and missing or shaded zones into False resulting
in Boolean algebra. But set theory is more complex because the operations U
and N result in sets, whereas C, C and = result in truth values. For example,
A C B is equivalent to (NOT A) U B as a set-valued (Boolean) expression but
to V(z)x € A = x € B as a truth-valued, FOL expression. These two possi-
ble interpretations are not equivalent to each other because their negations are
different as shown in Sect. 3. For a truth-valued interpretation, Euler diagrams
should be assumed to be filled with 3 states: ‘none’, ‘at least one’ or ‘any num-
ber of” elements. This enhanced version of Euler diagrams is introduced in this
paper as ‘Eulertdiagrams’ which can additionally express functions and rela-
tions. Visually, the enhancement is simple: a quantifier and arrows are added to
the diagrams. Furthermore in order to reduce complexity, diagrams can be split
and concatenated using ‘AND’ and ‘OR’. Last but not least, truth-valued set
statements can also be added to Eulertdiagrams in a textual format.

One motivation for this paper were Chapman et al.’s (2011) ‘Concept Dia-
grams’ which present a different form of enhanced FEuler diagrams used for mod-
elling ontologies. Amongst several differences between Concept Diagrams and
Eulertdiagrams, Concept Diagrams use a notation where dots represent vari-
ables which, in our opinion, is more difficult to visually parse. Nevertheless
the visual reasoning algorithms described by Chapman et al. are relevant for
Eulertdiagrams as well. A second motivation for this paper were discussions
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with students about Euler diagrams while teaching an introductory mathemat-
ics class. It highlighted the need for using simple notations that the students
are already familiar with or learning anyway during the class. Students tend to
be very critical users that point out any difficulties encountered when learning
a notation. Previous experience showed that conventional diagrams for concept
lattices (Ganter & Wille 1999) are not intuitive for students and require more
teaching time (Priss 2017). Euler diagrams can express the same content as
concept lattices (Priss 2023) but appear to be easier to read. Because students
sometimes perceive diagrams for functions as in Fig. 1c also (incorrectly) as Euler
diagrams, the idea arose to include arrows for functions in Euler™diagrams as
well. Apart from teaching purposes, we envision illustrations of scientific results
for a general audience as a possible application of Euler™diagrams.

EulertDiagrams support conceptual modelling because sets can be consid-
ered concepts as they have both an extensional listing of elements as well as
an intensional, logical definition. For example, {z | + € N AND z < 4} has
an extension {1,2,3} and an intension ‘natural numbers smaller than 4’. Set
operations can be interpreted as conceptual operations. For example, if sets for
‘dog’ and ‘pet’ are defined, then so are ‘dog AND pet’ and ‘dog OR pet’. Thus
EulerTdiagrams visualise methods of concept formation and are also suitable for
representing concept lattices (Priss 2023).

This short paper introduces Euler™diagrams without presenting a detailed
mathematical or logical description (which will be left for a future paper).
Rodgers (2014) provides an overview of existing Euler diagram research. Later
results can be found mostly in the DIAGRAMS conference series'. Stapleton,
Shimojima & Jamnik (2018) discuss some aspects of existential quantifiers for
Euler diagrams, but we believe that a clear distinction between (Boolean) Euler
diagrams and more expressive Eulertdiagrams as presented in this paper is more
convincing and more usable.

Section 2 presents a short definition of Eulertdiagrams and their semantics.
Section 3 explains details and challenges of using Euler™diagrams. Section 4 dis-
cusses how to add functions and relations to the diagrams. Section5 presents
some short examples of visual reasoning with Euler™diagrams. The paper fin-
ishes with a conclusion.

2 Definition of EulertDiagrams

This section introduces Euler ™ diagrams as an enhanced version of Euler diagrams
(Fig. la and b). Euler diagrams consist of closed curves with labels representing
sets. In this paper, Euler diagrams fulfil the ‘well-formedness’ condition that each
visible area of the diagram is in one-to-one correspondence to a distinct intersection
of sets. The areas are called ‘zones’ in this paper. For example, in Fig. 1a, exactly
and only the zone just inside the outer zone corresponds to ‘partial function " NOT
function’. Rodgers (2014) defines further terminology and well-formedness condi-
tions which are not relevant for this paper. Venn diagrams are Euler diagrams that
contain 2™ zones for n sets corresponding to all possible intersections (such as, 0,

! http://diagrams-conference.org)/.


http://diagrams-conference.org/

Conceptual Modelling with Euler™ Diagrams 131

A, B and AN B for n = 2). In Euler diagrams, empty sets, such as a zone ‘func-
tion AND NOT partial function’ in Fig. 1a are left off or shaded as in Fig. 1b. It is
not always possible to draw an Euler diagram without shading. For fewer than 4
sets, the curves of Euler diagrams can be drawn as circles but for more than 3 sets,
other curve shapes may be required. Priss (2023) explains that rounded rectangu-

lar

curves as used in this paper have some advantages over the other shapes with

respect to the number of diagrams that can be drawn.
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Eulertdiagrams are Euler diagrams with the following enhancements:

Diagrams can be combined using AND and OR and also with textual statements
(truth-valued set expressions or definitions of sets using :=’ and set operations or
relations).

Elements of the sets can be written into the curves (as labels).

Zones have 3 possible states: shaded, ‘don’t care’ (nothing is written into the zone)
or ‘existential’ (contains at least one element or an 3).

Arrows can be added between two zones or between two elements.

Some conditions are required:

If a zone occurs more than once in a combined diagram, it must have the same
state.

The state of the outer zone must always be ‘don’t care’.

Each curve and arrow must have exactly one label. Labels can occur more than
once but only for the same item. The sets of labels for curves, sets and elements
must be mutually disjoint. If it is clear what is meant, labels can sometimes be
omitted.

The semantics of Eulertdiagrams is defined as follows:

Labels of elements, curves and arrows are names of elements, sets and relations,
respectively.

For a combined diagram, each component is translated separately into a statement
by interpreting each missing or shaded zone as a statement about not existing
elements, each existential zone as a statement about existing elements and ignoring
all ‘don’t care’ zones. The resulting FOL statements are then combined with AND.
Textual statements are interpreted as FOL statements.

Arrows between zones are interpreted as binary relations. Arrow heads are in the
middle of the lines for relations and at the end of the lines for functions. Arrows
between elements are relation instances. An arrow head indicates a direction of a
relation, for example, a < b corresponds to a pair (b, a). Relations and functions
are interpreted as not empty and as total, i.e. all elements in the sets at both ends
of the arrows must occur at least once in the relation.

The negation of shaded or missing zones is existential zones and vice versa and the
negation of ‘don’t care’ is ‘don’t care’.

With further conditions:

The set of drawn or deducible arrows is complete, i.e. whenever some elements in
a zone relate to another zone, an arrow must exist between the two zones or be
deducible from textual statements.
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AND
bijective function :=
injective function N surjective function

Fig. 1. Eulertdiagrams (left and middle) and a diagram of a function (right)

C5 Because relations are not empty, zones connected by arrows must be existential,
i.e. contain an 3-quantifier.

The conditions are not sufficient for avoiding contradictory diagrams but
FOL also does not have conditions that stop a user from writing ‘A = B AND
A # B’. Thus, a diagram is non-contradictory if all its statements combine to
an FOL statement that is free of contradictions. Further details about what is
meant by some of the points of this definition are explained in the remainder
of the paper. The focus of this paper is on the graphical aspects not on a more
detailed description of formal semantics which is left for a future paper.

A challenge for Euler diagrams is that they can easily become too complex
to be usable. Eulertdiagrams overcome this challenge by allowing to split a dia-
gram into many parts which are then combined with AND and OR. Furthermore,
textual statements (that are equivalent to Euler™diagrams) are allowed because
sometimes a diagram is simpler, sometimes a textual expression is simpler. Obvi-
ously this poses a new question as to how to split a diagram in a manner that
still supports visual reasoning about facts that are distributed across different
parts. The condition C1 avoids some problems. For example, it would not be
useful to split A = B into A C B in one component and B C A in another. Most
likely OR should be used extremely sparingly for combining diagrams. NOT is
only allowed as a set operation but not for combining statements. Combining
and splitting diagrams is discussed, for example, by Priss (2021 and 2023).

3 Expressing Logical Statements with EulertDiagrams

Figure 1a displays an Euler™diagram visualising conceptual information, such as
the fact that functions are partial functions. It is a typical diagram that might
be used in the context of teaching showing students that functions are partial
functions contrary to natural language where a noun modified by an adjective
tends to denote a subconcept of the unmodified noun. The diagram also expresses
a definition of ‘bijective function’ but as a textual statement because otherwise
an intersection would need to be labelled which is difficult to visually parse.
Figure 1b demonstrates transitivity of the set containment relation (A C B AND
B C C = A C (). The existence quantifier indicates that B C C. Whether
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A C B is not known (i.e. ‘don’t care’). The diagram further shows an example
of shading. If curves have exactly one label (C3), then showing the equality of
sets (A = X)) either requires shading or a textual statement ‘AND X := A’. A
textual statement would be clearer in this case.

b d
a) s )b c) ) 4
G
C ) »
;
— () 1
Fig. 2. Euler diagrams and the empty set

Elements of sets can be written into the zones as in Fig.2¢ (a € F). Sets
can only be shown as subsets but not as elements of other sets unless they are
written as strings ({} € F'). Figure 2 highlights difficulties expressing empty sets
in Euler diagrams which also affect Euler™diagrams. An empty set can either be
shaded (AN BN C = () or missing (DN E = ). The empty set J is a subset of
G N HNI. But there are no graphical clues showing that J must not be drawn
in any other location than the intersection of all other sets, that it is a subset of
G N H N1 even if not shown in the diagram and that all empty sets are equal
to each other. These challenges may not be caused by the diagrams but by the
fact that ‘empty’ tends to be a difficult concept.

7 b, 9p B @ ¢) )
AN s Ne ek
/ 0D (03
g 4 OR
Fig. 3. Euler diagram negation: binary or truth-valued

Figure 3 shows the difference between set- and truth-valued diagrams with
respect to negation. According to C2, Fig. 3a and 3e are Euler diagrams, but not
Euler™diagrams because their outer zones are shaded. The set-valued negation
of AN B (Fig.3a) is in 3b whereas 3b and 3c are truth-valued negations of each
other. The set-valued negation of A = B (in Fig.3d) is in 3e and its truth-
valued negation in 3f, in this case resulting in two diagrams connected with
‘OR’. Figure4 shows all 4 possible quantifiers that can result from translating
an Euler™diagram into an FOL statement. A symbol for an all-quantifier is not
included in the definition of Eulertdiagrams because it is implied by missing
zones. According to S2, ‘don’t care’ zones are ignored. If the quantifier in Fig. 4b
was missing, then it would contain four ‘don’t care’ zones and be interpreted as an
empty FOL statement. Translations between Eulertdiagrams and FOL should
be equivalent, but are not unique. For example, Fig. 4c can also be expressed as
V(x € B)x ¢ A. Furthermore, Euler diagrams can always be drawn in different
manners. A proof of logical equivalence of interpretations could follow strategies
employed by Chapman et al. (2011) and similar publications but is not included
in this short paper.
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a) Y(xeA)xe B b)IxeA)xe B C) VxeA)x¢B d)I(xeA)x¢ B
O B O
Fig. 4. Expressing quantifiers: a) ALL, b) SOME, c¢) NONE, d) NOT ALL

4 EulertDiagrams, Functions and Relations

As mentioned in the introduction, operations on sets or concepts support the
formation of further concepts. For example, the concepts ‘pet’ and ‘cat’ support
a discussion about ‘pet cats’. If functions or relations are added to the mixture,
further sets or concepts can be defined. For example, a relation ‘childOf’ gener-
ates a set of parents and a set of children and a verb ‘to see’ distinguishes objects
that can see or can be seen. For a universal set U of elements, a relation r and sub-
sets A, B C U, one can define the sets r<(B) := {z | x € U,3(b € B)(x,b) € r}
and 7% (A) :={z |z € U,3(a € A)(a,z) € r}. It follows that r C rI(U) x r>(U)
is a relation that is total on both sides, which means that every element in
r9(U) relates to at least one element in r* (U) and vice versa. For functions one
can write the usual f(A) instead of f>(A). It follows that f~1(B) = f<(B) for
bijective functions, r<(U) = r<(r>(U)), r>(U) = r> (r<(U)) and f(f<(f(A))) =
f(A) for functions. But in general r (r<(r® (A4))) # r* (A) is possible. For exam-
ple for a translation relation between English and Irish, one can start with an
Irish word, look up its English translation, then their Irish translations and so
on - a process that might only stop after many iterations or when r<(U) and
r” (U) have been reached.

a) partial function b) total and auto—relation c) injective function d) relation

ER) () (550 FE ) B

Fig. 5. Euler"diagrams for functions and relations

Figure 5a shows a partial function f : A - B with f : f9(B) — B and
f(A) = f(f9(B)) C B. Figure5b contains a total relation r C C' x D and a
total auto-relation s C C x C. Because of C5, arrows connect zones that are
existential. Furthermore C4 implies that if a zone I has more than one arrow for
a single relation r then J = r>(I) is true for the union J of the outermost zones
(Fig. 5d). For a zone K with one arrow, the zone at the other end of the arrow can
be defined using K and r as I := r<(K). For the two outermost zones H and J,
C4 implies that H = r<(r>(H)) = r(J) and J = r>(r<(J)) = r>(H). If these
two equations hold, sets H and J are called a ‘closed pair’ in this paper. Closed
pairs can be modelled as concepts using Formal Concept Analysis (Ganter &
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Wille 1999) but that is left for another paper. Because of C4, a relation between
sets with many subsets will lead to many arrows. Most likely separate diagrams
should therefore be used for each function or relation. Instead of labelling each
arrow, different colours could be used. Furthermore, a reduced drawing of arrows
can be employed drawing only the arrows for closed pairs and adding textual
statements that imply the remaining arrows. For example, in Fig.5d only the
arrow between H and J might be drawn and a statement ‘I := r<(K)’ added.
Full and reduced drawing of arrows must not be mixed.

5 Reasoning with Diagrams

This section translates two examples from Chapman et al. (2011) into Euler™
diagrams. A translation of the first example, shown in Fig. 6, yields a function
isPetOf: isPetOf9(U) — person and a statement ‘isPetOf<(U) C animal AND
isPetOf(Rex) = Mick’” which implies ‘Rex € animal AND Mick € person’ involv-
ing reasoning about the fact that if a function is applicable to instances then the
instances must be elements of the domain and codomain of the function. Such
reasoning is more easy to see in the diagrams than using the FOL statements.
In this case the top right and left diagrams should be mentally combined into
one diagram. The bottom right diagram summarises all of the information.

isPetOf

. sketr . Mick

animal person

Rex Mick

IMPLIES AND . AND

Fig. 6. Example of reasoning with diagrams

A second, slightly more complex example, is shown in Fig.7. Translated
into FOL, it defines a relation drives C drives<(U)x drives® (U) with driver :=
drives<(vehicle). The definition of driver is implied by the diagram because there
is only one arrow into drives” (U) N vehicle. Thus drivers are people who drive at
least one vehicle and possibly other non-vehicles. The statement ‘drives<(U) C
person AND driver C adult AND ABC1 € vehicle AND drives(Mick) = ABCT’
then implies ‘Mick C adult’. Visual reasoning consists of mentally inserting the
diagram about the relation instance (Mick, ABC1) into the top right diagram
using the fact that ABCI is a vehicle and then realising that the top left diagram
applies. The same information is contained in the FOL statements but these are
more difficult to visually parse and combine without writing down each step.
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AND

adult
AND Mick ———— ABC1 IMPLIES

drives
Fig. 7. Further example of reasoning with diagrams

6 Conclusion

This paper introduces Euler™ diagrams as a means for visually representing
statements about sets, functions and relations. A goal of this research is to pro-
duce simple diagrams for representing set (or conceptual) statements to a general
audience of people who are not or not yet trained in mathematics. By splitting
information into separate diagrams, complexity issues of larger Euler diagrams
can be avoided by Euler™ diagrams. Advantages of Euler diagrams for reasoning
are known from the literature (eg. Stapleton et al. 2018) and apply to Euler™
diagrams as well. Euler™ diagrams do not solve consistency checking of state-
ments. But because Euler™ diagrams can be translated into FOL statements,
algorithms for consistency checking of FOL statements can also be utilised for
Euler™ diagrams - although a more precise translation algorithm still needs to
be provided in a future paper. Some rudimentary software for generating Euler
diagrams from expressions is currently in development?. It is planned to extend
this software into a tool for Euler™ diagram generation and modification that is
compatible with other software for conceptual structures, such as Formal Con-
cept Analysis, Conceptual Graphs and ontologies.
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