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Abstract. The notion of functional dependencies (FDs) can be used by
data scientists and domain experts to confront background knowledge
against data. To overcome the classical, too restrictive, satisfaction of
FDs, it is possible to replace equality with more meaningful binary pred-
icates, and use a coverage measure such as the g3-error to estimate the
degree to which a FD matches the data. It is known that the g3-error can
be computed in polynomial time if equality is used, but unfortunately, the
problem becomes NP-complete when relying on more general predicates
instead. However, there has been no analysis of which class of predicates
or which properties alter the complexity of the problem, especially when
going from equality to more general predicates. In this work, we provide
such an analysis. We focus on the properties of commonly used predicates
such as equality, similarity relations, and partial orders. These properties
are: reflexivity, transitivity, symmetry, and antisymmetry. We show that
symmetry and transitivity together are sufficient to guarantee that the
g3-error can be computed in polynomial time. However, dropping either
of them makes the problem NP-complete.

Keywords: functional dependencies · g3-error, predicates

1 Introduction

Functional dependencies (FDs) are database constraints initially devoted to
database design [26]. Since then, they have been used for numerous tasks rang-
ing from data cleaning [5] to data mining [28]. However, when dealing with real
world data, FDs are also a simple yet powerful way to syntactically express
background knowledge coming from domain experts [12]. More precisely, a FD
X → A between a set of attributes (or features) X and another attribute A
depicts a function of the form f(X) = A. In this context, asserting the existence
of a function which determines A from X in a dataset amounts to testing the
validity of X → A in a relation, i.e. to checking that every pair of tuples that
are equal on X are also equal on A. Unfortunately, this semantics of satisfaction
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suffers from two major drawbacks which makes it inadequate to capture the
complexity of real world data: (i) it must be checked on the whole dataset, and
(ii) it uses equality.

Drawback (i) does not take into account data quality issues such as outliers,
mismeasurements or mistakes, which should not impact the relevance of a FD in
the data. To tackle this problem, it is customary to estimate the partial validity of
a given FD with a coverage measure, rather than its total satisfaction. The most
common of these measures is the g3-error [8,17,21,31], introduced by Kivinen
and Mannila [22]. It is the minimum proportion of tuples to remove from a
relation in order to satisfy a given FD. As shown for instance by Huhtala et al.
[21], the g3-error can be computed in polynomial time for a single (classical) FD.

As for drawback (ii), equality does not always witness efficiently the close-
ness of two real-world values. It screens imprecisions and uncertainties that are
inherent to every observation. In order to handle closeness (or difference) in a
more appropriate way, numerous researches have replaced equality by binary
predicates, as witnessed by recent surveys on relaxed FDs [6,32].

However, if predicates extend FDs in a powerful and meaningful way with
respect to real-world applications, they also make computations harder. In fact,
contrary to strict equality, computing the g3-error with binary predicates becomes
NP-complete [12,31]. In particular, it has been proven for differential [30], match-
ing [11], metric [23], neighborhood [1], and comparable dependencies [31]. Still,
there is no detailed analysis of what makes the g3-error hard to compute when
dropping equality for more flexible predicates. As a consequence, domain experts
are left without any insights on which predicates they can use in order to estimate
the validity of their background knowledge in their data quickly and efficiently.

This last problem constitutes the motivation for our contribution. In this work,
we study the following question: which properties of predicates make the g3-error
easy to compute? To do so, we introduce binary predicates on each attribute of
a relation scheme. Binary predicates take two values as input and return true or
false depending on whether the values match a given comparison criteria. Predi-
cates are a convenient framework to study the impact of common properties such
as reflexivity, transitivity, symmetry, and antisymmetry (the properties of equal-
ity) on the hardness of computing the g3-error. In this setting, we make the follow-
ing contributions. First, we show that dropping reflexivity and antisymmetry does
not make the g3-error hard to compute. When removing transitivity, the problem
becomes NP-complete. This result is intuitive as transitivity plays a crucial role in
the computation of the g3-error for dependencies based on similarity/distance rela-
tions [6,32]. Second, we focus on symmetry. Symmetry has attracted less attention,
despite its importance in partial orders and order FDs [10,15,27]. Even though
symmetry seems to have less impact than transitivity in the computation of the
g3-error, we show that when it is removed the problem also becomesNP-complete.
This result holds in particular for ordered dependencies.

Paper Organization. In Sect. 2, we recall some preliminary definitions.
Section 3 is devoted to the usual g3-error. In Sect. 4, we introduce predicates,
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along with definitions for the relaxed satisfaction of a functional dependency.
Section 5 investigates the problem of computing the g3-error when equality is
replaced by predicates on each attribute. In Sect. 6 we relate our results with
existing extensions of FDs. We conclude in Sect. 7 with some remarks and open
questions for further research.

2 Preliminaries

All the objects we consider are finite. We begin with some definitions on graphs
[2] and ordered sets [9]. A graph G is a pair (V,E) where V is a set of vertices
and E is a collection of pairs of vertices called edges. An edge of the form (u, u)
is called a loop. The graph G is directed if edges are ordered pairs of elements.
Unless otherwise stated, we consider loopless undirected graphs. Let G = (V,E)
be an undirected graph, and let V ′ ⊆ V . The graph G[V ′] = (V ′, E′) with
E′ = {(u, v) ∈ E | {u, v} ⊆ V ′} is the graph induced by V ′ with respect to G.
A path in G is a sequence e1, . . . , em of pairwise distinct edges such that ei and
ei+1 share a common vertex for each 1 ≤ i < m. The length of a path is its
number of edges. An independent set of G is a subset I of V such that no two
vertices in I are connected by an edge of G. An independent set is maximal if it
is inclusion-wise maximal among all independent sets. It is maximum if it is an
independent set of maximal cardinality. Dually, a clique of G is a subset K of V
such that every pair of distinct vertices in K are connected by an edge of G. A
graph G is a co-graph if it has no induced subgraph corresponding to a path of
length 3 (called P4). A partially ordered set or poset is a pair P = (V,≤) where
V is a set and ≤ a reflexive, transitive, and antisymmetric binary relation. The
relation ≤ is called a partial order. If for every x, y ∈ V , x ≤ y or y ≤ x holds, ≤
is a total order. A poset P is associated to a directed graph G(P ) = (V,E) where
(ui, uj) ∈ E exactly when ui �= uj and ui ≤ uj . An undirected graph G = (V,E)
is a comparability graph if its edges can be directed so that the resulting directed
graph corresponds to a poset.

We move to terminology from database theory [24]. We use capital first letters
of the alphabet (A, B, C, ...) to denote attributes and capital last letters (...,
X, Y , Z) for attribute sets. Let U be a universe of attributes, and R ⊆ U a
relation scheme. Each attribute A in R takes value in a domain dom(A). The
domain of R is dom(R) =

⋃
A∈R dom(A). Sometimes, especially in examples, we

write a set as a concatenation of its elements (e.g. AB corresponds to {A,B}).
A tuple over R is a mapping t : R → dom(R) such that t(A) ∈ dom(A) for every
A ∈ R. The projection of a tuple t on a subset X of R is the restriction of t
to X, written t[X]. We write t[A] as a shortcut for t[{A}]. A relation r over
R is a finite set of tuples over R. A functional dependency (FD) over R is an
expression X → A where X ∪ {A} ⊆ R. Given a relation r over R, we say that
r satisfies X → A, denoted by r |= X → A, if for every pair of tuples (t1, t2) of
r, t1[X] = t2[X] implies t1[A] = t2[A]. In case when r does not satisfy X → A,
we write r �|= X → A.
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3 The g3-error

This section introduces the g3-error, along with its connection with independent
sets in graphs through counterexamples and conflict-graphs [3].

Let r be a relation over R and X → A a functional dependency. The g3-error
quantifies the degree to which X → A holds in r. We write it as g3(r,X → A).
It was introduced by Kivinen and Mannila [22], and it is frequently used to
estimate the partial validity of a FD in a dataset [6,8,12,21]. It is the minimum
proportion of tuples to remove from r to satisfy X → A, or more formally:

Definition 1. Let R be a relation scheme, r a relation over R and X → A a
functional dependency over R. The g3-error of X → A with respect to r, denoted
by g3(r,X → A) is defined as:

g3(r,X → A) = 1 − max({|s| | s ⊆ r, s |= X → A})
|r|

In particular, if r |= X → A, we have g3(r,X → A) = 0. We refer to the
problem of computing g3(r,X → A) as the error validation problem [6,31]. Its
decision version reads as follows:

Error Validation Problem (EVP)
Input: A relation r over R, a FD X → A, k ∈ R.
Question: Is is true that g3(r,X → A) ≤ k?

It is known [6,12] that there is a strong relationship between this problem
and the task of computing the size of a maximum independent set in a graph:

Maximum Independent Set (MIS)
Input: A graph G = (V,E), k ∈ N.
Question: Does G have a maximal independent set I such that |I| ≥ k?

To see the relationship between EVP and MIS, we need the notions of coun-
terexample and conflict-graph [3,12]. A counterexample to X → A in r is a pair
of tuples (t1, t2) such that t1[X] = t2[X] but t1[A] �= t2[A]. The conflict-graph of
X → A with respect to r is the graph CG(r,X → A) = (r, E) where a (possibly
ordered) pair of tuples (t1, t2) in r belongs to E when it is a counterexample to
X → A in r. An independent set of CG(r,X → A) is precisely a subrelation of
r which satisfies X → A. Therefore, computing g3(r,X → A) reduces to find-
ing the size of a maximum independent set in CG(r,X → A). More precisely,
g3(r,X → A) = 1− |I|

|r| where I is a maximum independent set of CG(r,X → A).

Example 1. Consider the relation scheme R = {A,B,C,D} with dom(R) = N.
Let r be the relation over R on the left of Fig. 1. It satisfies BC → A but not
D → A. Indeed, (t1, t3) is a counterexample to D → A. The conflict-graph
CG(r,D → A) is given on the right of Fig. 1. For example, {t1, t2, t6} is a maxi-
mum independent set of CG(r,D → A) of maximal size. We obtain:

g3(r,D → A) = 1 − |{t1, t2, t6}|
|r| = 0.5

In other words, we must remove half of the tuples of r in order to satisfy D → A.
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Fig. 1. The relation r and the conflict-graph CG(r,D → A) of Example 1.

However, MIS is an NP-complete problem [13] while computing g3(r,X →
A) takes polynomial time in the size of r and X → A [21]. This difference
is due to the properties of equality, namely reflexivity, transitivity, symmetry
and antisymmetry. They make CG(r,X → A) a disjoint union of complete k-
partite graphs, and hence a co-graph [12]. In this class of graphs, solving MIS is
polynomial [14]. This observation suggests to study in greater detail the impact
of such properties on the structure of conflict-graphs. First, we need to introduce
predicates to relax equality, and to define a more general version of the error
validation problem accordingly.

4 Predicates to Relax Equality

In this section, in line with previous researches on extensions of functional depen-
dencies [6,32], we equip each attribute of a relation scheme with a binary predi-
cate. We define the new g3-error and the corresponding error validation problem.

Let R be a relation scheme. For each A ∈ R, let φA : dom(A) × dom(A) →
{true, false} be a predicate. For instance, the predicate φA can be equality,
a distance, or a similarity relation. We assume that predicates are black-box
oracles that can be computed in polynomial time in the size of their input.

Let Φ be a set of predicates, one for each attribute in R. The pair (R,Φ) is a
relation scheme with predicates. In a relation scheme with predicates, relations
and FDs are unchanged. However, the way a relation satisfies (or not) a FD can
easily be adapted to Φ.

Definition 2 (Satisfaction with predicates). Let (R,Φ) be a relation
scheme with predicates, r a relation and X → A a functional dependency both
over (R,Φ). The relation r satisfies X → A with respect to Φ, denoted by
r |=Φ X → A, if for every pair of tuples (t1, t2) of r, the following formula
holds: (

∧

B∈X

φB(t1[B], t2[B])

)

=⇒ φA(t1[A], t2[A])

A new version of the g3-error adapted to Φ is presented in the following
definition.
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Definition 3. Let (R,Φ) be a relation scheme with predicates, r be a relation
over (R,Φ) and X → A a functional dependency over (R,Φ). The g3-error with
predicates of X → A with respect to r, denoted by gΦ

3 (r,X → A) is defined as:

gΦ
3 (r,X → A) = 1 − max({|s| | s ⊆ r, s |=Φ X → A})

|r|

From the definition of gΦ
3 (r,X → A), we derive the extension of the error

validation problem from equality to predicates:

Error Validation Problem with Predicates (EVPP)
Input: A relation r over (R,Φ), a FD X → A over R, k ∈ R.
Question: Is it true that gΦ

3 (r,X → A) ≤ k?

Observe that according to the definition of satisfaction with predicates (Defi-
nition 2), counterexamples and conflict-graphs remain well-defined. However, for
a given predicate φA, φA(x, y) = φA(y, x) needs not be true in general, meaning
that we have to consider ordered pairs of tuples. That is, an ordered pair of tuples
(t1, t2) in r is a counterexample to X → A if

∧
B∈X φB(t1[B], t2[B]) = true but

φA(t1[A], t2[A]) �= true.
We call CGΦ(r,X → A) the conflict-graph of X → A in r. In general,

CGΦ(r,X → A) is directed. It is undirected if the predicates of Φ are symmetric
(see Sect. 5). In particular, computing gΦ

3 (r,X → A) still amounts to finding the
size of a maximum independent set in CGΦ(r,X → A).

Example 2. We use the relation of Fig. 1. Let Φ = {φA, φB , φC , φD} be the
collection of predicates defined as follows, for every x, y ∈ N:

– φA(x, y) = φB(x, y) = φC(x, y) = true if and only if |x − y| ≤ 1. Thus, φA is
reflexive and symmetric but not transitive (see Sect. 5),

– φD is the equality.

The pair (R,Φ) is a relation scheme with predicates. We have r |=Φ AB → D
but r �|=Φ C → A. In Fig. 2, we depict CGΦ(r, C → A). A maximum independent
set of this graph is {t1, t2, t3, t5}. We deduce

gΦ
3 (r, C → A) = 1 − |{t1, t2, t3, t5}|

|r| =
1
3
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Fig. 2. The conflict-graph CGΦ(r, C → A) of Example 2.

Thus, there is also a strong relationship between EVPP and MIS, similar to
the one between EVP and MIS. Nonetheless, unlike EVP, the problem EVPP
is NP-complete [31]. In the next section, we study this gap of complexity between
EVP and EVPP via different properties of predicates.

5 Predicates Properties in the g3-error

In this section, we study properties of binary predicates that are commonly
used to replace equality. We show how each of them affects the error validation
problem.

First, we define the properties of interest in this paper. Let (R,Φ) be a relation
scheme with predicates. Let A ∈ R and φA be the corresponding predicate. We
consider the following properties:

(ref) φA(x, x) = true for all x ∈ dom(A) (reflexivity)
(tra) for all x, y, z ∈ dom(A), φA(x, y) = φA(y, z) = true implies φA(x, z) =

true (transitivity)
(sym) for all x, y ∈ dom(A), φA(x, y) = φA(y, x) (symmetry)

(asym) for all x, y ∈ dom(A), φA(x, y) = φA(y, x) = true implies x = y (anti-
symmetry).

Note that symmetry and antisymmetry together imply transitivity, as φA(x, y) =
true entails x = y.

As a first step, we show that symmetry and transitivity are sufficient to
make EVPP solvable in polynomial time. In fact, we prove that the resulting
conflict-graph is a co-graph, as with equality.

Theorem 1. The problem EVPP can be solved in polynomial time if the pred-
icates used on each attribute are transitive (tra) and symmetric (sym).

Proof. Let (R,Φ) be a relation scheme with predicates. Let r be relation over
(R,Φ) and X → A be a functional dependency, also over (R,Φ). We assume that
each predicate in Φ is transitive and symmetric. We show how to compute the
size of a maximum independent set of CGΦ(r,X → A) in polynomial time.

As φA is not necessarily reflexive, a tuple t in r can produce a counter-
example (t, t) to X → A. Indeed, it may happen that φB(t[B], t[B]) = true
for each B ∈ X, but φA(t[A], t[A]) = false. However, it follows that t never
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belongs to a subrelation s of r satisfying s |=Φ X → A. Thus, let r′ = r \ {t ∈
r | {t} �|=Φ X → A}. Then, a subrelation of r satisfies X → A if and only if it
is an independent set of CGΦ(r,X → A) if and only if it is an independent set
of CGΦ(r′,X → A). Consequently, computing gΦ

3 (r,X → A) is solving MIS in
CGΦ(r′,X → A).

We prove now that CGΦ(r′,X → A) is a co-graph. Assume for contradiction
that CGΦ(r′,X → A) has an induced path P with 4 elements, say t1, t2, t3, t4
with edges (t1, t2), (t2, t3) and (t3, t4). Remind that edges of CGΦ(r′,X → A)
are counterexamples to X → A in r′. Hence, by symmetry and transitiv-
ity of the predicates of Φ, we deduce that for each pair (i, j) in {1, 2, 3, 4},∧

B∈X φB(ti[B], tj [B]) = true. Thus, we have
∧

B∈X φB(t3[B], t1[B]) =
∧

B∈X

φB(t1[B], t4[B]) = true. However, neither (t1, t3) nor (t1, t4) belong to CGΦ(r′,
X → A) since P is an induced path by assumption. Thus, φA(t3[A], t1[A]) =
φA(t1[A], t4[A]) = true must hold. Nonetheless, the transitivity of φA implies
φA(t3[A], t4[A]) = true, a contradiction with (t3, t4) being an edge of CGΦ(r′,
X → A). We deduce that CGΦ(r′,X → A) cannot contain an induced P4, and
that it is indeed a co-graph. As MIS can be solved in polynomial time for co-
graphs [14], the theorem follows. �

One may encounter non-reflexive predicates when dealing with strict orders
or with binary predicates derived from SQL equality. In the 3-valued logic of SQL,
comparing the null value with itself evaluates to false rather than true. With
this regard, it could be natural for domain experts to use a predicate which is
transitive, symmetric and reflexive almost everywhere but on the null value.
This would allow to deal with missing information without altering the data.

The previous proof heavily makes use of transitivity, which has a strong
impact on the edges belonging to the conflict-graph. Intuitively, conflict-graphs
can become much more complex when transitivity is dropped. Indeed, we prove
an intuitive case: when predicates are not required to be transitive, EVPP
becomes intractable.

Theorem 2. The problem EVPP is NP-complete even when the predicates
used on each attribute are symmetric (sym) and reflexive (ref).

The proof is omitted due to space limitations, it can be found in [33]. It is
a reduction from the problem (dual to MIS) of finding the size of a maximum
clique in general graphs. It uses arguments similar to the proof of Song et al.
[31] showing the NP-completeness of EVPP for comparable dependencies.

We turn our attention to the case where symmetry is dropped from the
predicates. In this context, conflict-graphs are directed. Indeed, an ordered pair
of tuples (t1, t2) may be a counterexample to a functional dependency, but not
(t2, t1). Yet, transitivity still contributes to constraining the structure of conflict-
graphs, as suggested by the following example.

Example 3. We consider the relation of Example 1. We equip A,B,C,D with
the following predicates:

– φC(x, y) = true if and only if x ≤ y



The g3-error with Predicates 11

– φA(x, y) is defined by

φA(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

true if x = y

true if x = 1 and y ∈ {2, 4}
true if x = 3 and y = 4
false otherwise.

– φB and φD are the equality.

Let Φ = {φA, φB , φC , φD}. The conflict-graph CGΦ(C → A) is represented in
Fig. 3. Since φC is transitive, we have φC(t3[C], tj [C]) = true for each tuple
tj of r. Moreover, φA(t3[A], t6[A]) = false since (t3, t6) is a counterexample to
C → A. Therefore, the transitivity of φA implies either φA(t3[A], t4[A]) = false

or φA(t4[A], t6[A]) = false. Hence, at least one of (t3, t4) and (t4, t6) must be a
counterexample to C → A too. In the example, this is (t3, t4).

Fig. 3. The conflict-graph CGΦ(r, C → A) of Example 3.

Nevertheless, if transitivity constrains the complexity of the graph, dropping
symmetry still allows new kinds of graph structures. Indeed, in the presence
of symmetry, a conflict-graph cannot contain induced paths with more than 3
elements because of transitivity. However, such paths may exist when symmetry
is removed.

Example 4. In the previous example, the tuples t2, t4, t5, t6 form an induced P4

of the underlying undirected graph of CGΦ(r, C → A), even though φA and φC

enjoy transitivity.

Therefore, we are left with the following intriguing question: can the loss of
symmetry be used to break transitivity, and offer conflict-graphs a structure
sufficiently complex to make EVPP intractable? The next theorem answers this
question affirmatively.

Theorem 3. The problem EVPP is NP-complete even when the predicates
used on each attribute are transitive (tra), reflexive (ref), and antisymmetric
(asym).

The proof is omitted due to space limitations. It is given in [33]. It is a
reduction from MIS in 2-subdivision graphs [29].

Theorem 1, Theorem 2 and Theorem 3 characterize the complexity of EVPP
for each combination of predicates properties. In the next section, we discuss the
granularity of these, and we use them as a framework to compare the complexity
of EVPP for some known extensions of functional dependencies.
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6 Discussions

Replacing equality with various predicates to extend the semantics of classical
functional dependencies is frequent [6,32]. Our approach offers to compare these
extensions on EVPP within a unifying framework based on the properties of the
predicates they use. We can summarize our results with the hierarchy of classes
of predicates given in Fig. 4.

Fig. 4. Complexity of EVPP with respect to the properties of predicates.

Regarding the computation of the g3-error, most existing works have focused
on similarity/distance predicates. First, the g3-error can be computed in polyno-
mial time for classical functional dependencies [20]. Then, Song et al. [31] show
that EVPP is NP-complete for a broad range of extensions of FDs which hap-
pen to be reflexive (ref) and symmetric (sym) predicates, which coincides with
Theorem 2. However, they do not study predicate properties as we do in this
paper. More precisely, they identify the hardness of EVPP for differential [30],
matching [11], metric [23], neighborhood [1], and comparable dependencies [31].
For some of these dependencies, predicates may be defined over sets of attributes.
Using one predicate per attribute and taking their conjunction is a particular
case of predicate on attribute sets.

Some extensions of FDs use partial orders as predicates. This is the case
of ordered dependencies [10,15], ordered FDs [27], and also of some sequential
dependencies [16] and denial constraints [4] for instance. To our knowledge, the
role of symmetry in EVPP has received little attention. For sequential depen-
dencies [16], a measure different than the g3-error have been used. The predicates
of Theorem 3 are reflexive, transitive and antisymmetric. Hence they are partial
orders. Consequently, the FDs in this context are ordered functional dependencies
as defined by Ng [27]. We obtain the following corollary:

Corollary 1. EVPP is NP-complete for ordered functional dependencies.

Ordered functional dependencies are a restricted case of ordered dependencies
[15], sequential dependencies [16], and denial constraints [4] (see [32]). The hard-
ness of computing the g3-error for these dependencies follows from Corollary 1.
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The hierarchy depicts quite accurately the current knowledge about EVPP
and the delimitation between tractable and intractable cases. However, this anal-
ysis may require further refinements. Indeed, there may be particular types of
FDs with predicates where EVPP is tractable in polynomial time, even though
their predicates belong to a class for which the problem is NP-complete. For
instance, assume that each attribute A in R is equipped with a total order φA.
We show in Proposition 1 and Corollary 2 that in this case, EVPP can be
solved in polynomial time, even though the predicates are reflexive, transitive
and antisymmetric.

Proposition 1. Let (R,Φ) be a relation scheme with predicates. Then, EVPP
can be solved in polynomial time for a given FD X → A if φB is transitive for
each B ∈ X and φA is a total order.

Proof. Let (R,Φ) be a relation scheme with predicates and X → A a functional
dependency. Assume that φB is transitive for each B ∈ X and that φA is a total
order. Let r be a relation over (R,Φ). Let G = (r, E) be the undirected graph
underlying CGΦ(r,X → A), that is, (ti, tj) ∈ E if and only if (ti, tj) or (tj , ti) is
an edge of CGΦ(r,X → A).

We show that G is a comparability graph. To do so, we associate the following
predicate ≤ to CGΦ(r,X → A): for each pair ti, tj of tuples of r, ti ≤ ti and
ti ≤ tj if (ti, tj) is a counterexample to X → A. We show that ≤ is a partial
order:

– reflexivity. It follows by definition.
– antisymmetry. We use contrapositive. Let ti, tj be two distinct tuples of r and

assume that (ti, tj) belongs to CGΦ(r,X → A). We need to prove that (tj , ti)
does not belong to CGΦ(r,X → A), i.e. it is not a counterexample to X → A.
First, (ti, tj) ∈ CGΦ(r,X → A) implies that φA(ti[A], tj [A]) = false. Then,
since φA is a total order, φA(tj [A], ti[A]) = true. Consequently, (tj , ti) cannot
belong to CGΦ(r,X → A) and ≤ is antisymmetric.

– transitivity. Let ti, tj , tk be tuples of r such that (ti, tj) and (tj , tk) are in
CGΦ(r,X → A). Applying transitivity, we have that

∧
B∈X φB(ti[B], tk[B]) =

true. We show that φA(ti[A], tk[A]) = false. Since (ti, tj) is a counterexample
to X → A, we have φA(ti[A], tj [A]) = false. As φA is a total order, we deduce
that φA(tj [A], ti[A]) = true. Similarly, we obtain φA(tk[A], tj [A]) = true. As
φA is transitive, we derive φA(tk[A], ti[A]) = true. Now assume for contradic-
tion that φA(ti[A], tk[A]) = true. Since, φA(tk[A], tj [A]) = true, we derive
φA(ti[A], tj [A]) = true by transitivity of φA, a contradiction. Therefore,
φA(ti[A], tk[A]) = false. Using the fact that

∧
B∈X φB(ti[B], tk[B]) = true,

we conclude that (ti, tk) is also a counterexample to X → A. The transitivity
of ≤ follows. �

Consequently, ≤ is a partial order and G is indeed a comparability graph. Since
MIS can be solved in polynomial time for comparability graphs [18], the result
follows.
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We can deduce the following corollary on total orders, that can be used for
ordered dependencies.

Corollary 2. Let (R,Φ) be a relation scheme with predicates. Then, EVPP can
be solved in polymomial time if each predicate in Φ is a total order.

In particular, Golab et al. [16] proposed a polynomial-time algorithm for a
variant of g3 applied to a restricted type of sequential dependencies using total
orders on each attribute.

7 Conclusion and Future Work

In this work, we have studied the complexity of computing the g3-error when
equality is replaced by more general predicates. We studied four common proper-
ties of binary predicates: reflexivity, symmetry, transitivity, and antisymmetry.
We have shown that when symmetry and transitivity are taken together, the
g3-error can be computed in polynomial time. Transitivity strongly impacts the
structure of the conflict-graph of the counterexamples to a functional dependency
in a relation. Thus, it comes as no surprise that dropping transitivity makes the
g3-error hard to compute. More surprisingly, removing symmetry instead of tran-
sitivity leads to the same conclusion. This is because deleting symmetry makes
the conflict-graph directed. In this case, the orientation of the edges weakens the
impact of transitivity, thus allowing the conflict-graph to be complex enough to
make the g3-error computation problem intractable.

We believe our approach sheds new light on the problem of computing the
g3-error, and that it is suitable for estimating the complexity of this problem
when defining new types of FDs, by looking at the properties of predicates used
to compare values.

We highlight now some research directions for future works. In a recent paper
[25], Livshits et al. study the problem of computing optimal repairs in a relation
with respect to a set of functional dependencies. A repair is a collection of tuples
which does not violate a prescribed set of FDs. It is optimal if it is of maximal
size among all possible repairs. Henceforth, there is a strong connection between
the problem of computing repairs and computing the g3-error with respect to a
collection of FDs. In their work, the authors give a dichotomy between tractable
and intractable cases based on the structure of FDs. In particular, they use
previous results from Gribkoff et al. [19] to show that the problem is already NP-
complete for 2 FDs in general. In the case where computing an optimal repair
can be done in polynomial time, it would be interesting to use our approach and
relax equality with predicates in order to study the tractability of computing
the g3-error on a collection of FDs with relaxed equality.

From a practical point of view, the exact computation of the g3-error is
extremely expensive in large datasets. Recent works [7,12] have proposed to
use approximation algorithms to compute the g3-error both for equality and
predicates. It could be of interest to identify properties or classes of predicates
where more efficient algorithms can be adopted. It is also possible to extend the
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existing algorithms calculating the classical g3-error (see e.g. [21]). They use the
projection to identify equivalence classes among values of A and X. However,
when dropping transitivity (for instance in similarity predicates), separating the
values of a relation into “similar classes” requires to devise a new projection
operation, a seemingly tough but fascinating problem to investigate.

Acknowledgment. we thank the reviewers for their constructive feedback and the
Datavalor initiative of Insavalor (subsidiary of INSA Lyon) for funding part of this
work.
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