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Convolutional Neural Networks with  
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Cesar Muñoz-Chavez, Hermilo Sánchez-Cruz, Humberto Sossa-Azuela, 
and Julio Ponce-Gallegos

1  Introduction

Latin American women have higher rates of breast cancer incidence and mortality 
compared to women in developed countries. The incidence rate of breast cancer is 
80% for women over 44 years old, and the mortality rate is 86% [1]. Young women 
are also affected by breast cancer, with rates as high as 15% in less developed coun-
tries such as Mexico [2]. Low- and middle-income countries have a mortality to 
incidence ratio that is considerably higher, between 60% and 75%, compared to 
high-income countries [3]. Early detection of breast cancer is crucial for better sur-
vival rates, and digital screening mammography is commonly used by radiologists 
for analysis, diagnosis, and categorization of breast cancer [4, 5].

Although mammography is currently one of the most reliable methods for detect-
ing breast cancer, medical experts face challenges in interpreting mammogram 
images, which could lead to an incorrect diagnosis. Current methods of image clas-
sification were investigated, and those that use artificial intelligence stood out the 
most [6, 7]. Artificial intelligence (AI) has advanced quickly in recent years in a 
variety of sectors, including image processing. Since images are one of the most 
crucial sources of information for activities involving human intelligence, AI has 
been widely used in image processing [8, 9]. In this research, AI techniques were 
found to be beneficial, particularly in the form of computer-aided diagnosis (CAD) 
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as an alternative to radiologists’ time-consuming and inaccurate double-reading 
procedure. Some of these CADs utilize machine learning algorithms that take up the 
information from complex patterns [10–12]. However, traditional classifiers based 
on handcrafted features are considered to be complex and time-consuming, espe-
cially for tasks involving feature extraction and selection [11, 12].

Recent studies have shown that deep learning algorithms are efficient on tasks 
including image segmentation, detection, and classification in a range of computer 
vision and image processing disciplines [13–15]. Deep learning is a type of machine 
learning that is inspired by the structure and function of the brain. Deep learning has 
lately received a lot of attention for classification problems, particularly in the field 
of medical image analysis [16]. Therefore, for this research, current methods of 
image classification were analyzed, and based on the state-of-the-art, deep convolu-
tional neural networks (DCNNs) were found to perform well on the image classifi-
cation task [16–18]. These models require a large number of images, which is why 
we searched for well-known state-of-the-art datasets. Two datasets were used in this 
study: CBIS-DDSM (Curated Breast Imaging Subset of DDSM) [19] and Mini- 
MIAS (Mammographic Image Analysis Society) [20]. Transfer learning with fine- 
tuning was used to accomplish this research [21, 22], where a model built for one 
task is used for another and the model’s output is modified to meet the new task 
[23, 24].

This chapter presents the contributions of a research study aimed at exploring the 
effectiveness of deep learning algorithms for classifying mammogram images. In 
particular, the study compared the performance of two deep learning models, 
ResNet-50 and EfficientB7. To enhance the quality of the images, the researchers 
applied various image processing techniques, including CLAHE, unsharp masking, 
and a median filter. Additionally, they used a data augmentation algorithm from a 
library called Albumentation to increase the number of training images and improve 
the robustness of the convolutional neural network (CNN). The performance of 
each model was evaluated using five metrics, including accuracy, precision, recall, 
F1-score, and confusion matrix.

The rest of this chapter is organized as follows. A review of pertinent literature is 
presented in Sect. 2. The methodology used and the differences between each data-
set are presented in Sect. 3, along with full disclosure of all the steps used to accom-
plish the goal of classification tasks. Experimental results comparing every model 
and metric are described in Sect. 4. Finally, Sect. 5 provides some conclusions.

2  Previous Works

Deep convolutional neural network (DCNN) models have become increasingly 
popular in recent years due to their exceptional performance in various computer 
vision tasks, including image classification, segmentation, and detection. Many dif-
ferent models have been proposed and utilized in research studies. However, 

C. Muñoz-Chavez et al.



227

researchers have obtained varied results, and it is important to analyze these results 
to identify areas where DCNN models can be improved.

The research by Rampun et al. [25] focuses on developing an automated method 
for breast pectoral muscle segmentation in mediolateral oblique mammograms. To 
achieve this, they employed a convolutional neural network (CNN) inspired by the 
holistically nested edge detection (HED) network, which is capable of learning 
complex hierarchical features and resolving spatial ambiguity in estimating the pec-
toral muscle boundary. The CNN is also designed to detect “contour-like” objects in 
mammograms. The study utilized several datasets, including MIAS, INBreast, 
BCDR, and CBIS-DDSM, to evaluate the performance of the proposed method. An 
ensemble approach was employed by Altameem et al. [26], in which the Gompertz 
function was used to build fuzzy rankings of the base classification techniques and 
the decision scores of the base models were adaptively combined to construct final 
predictions. Using Inception V4, ResNet 16, VGG 11, and DenseNet 121, as well as 
other deep CNN models, a deep learning approach using convolutional neural net-
works (CNNs) was used to classify breast cancer histopathological images from the 
BreaKHis dataset. The approach introduced by Wei et al. [27] enables the use of 
high-resolution histopathological images as input to existing convolutional neural 
networks (CNNs) without requiring complex and computationally expensive modi-
fications to the network architecture. This is achieved through the extraction of 
image patches from the high-resolution image, which are then used to train the 
CNN. The final classification is obtained by combining the predictions from these 
patches. This method allows existing CNNs to be used for histopathological image 
analysis without the need for extensive modifications or the development of a new 
architecture. Additionally, a network was trained and validated by Auccahuasi et al. 
[28] using a database of images containing microcalcifications classified as benign 
and malignant from mammographic images of MIAS. One recent study introduced 
“double-shot transfer learning,” which is a revolutionary method built on the idea of 
transfer learning. This strategy, presented by Alkhaleefah et al. [29], significantly 
improved categorization accuracy. The following research, proposed by Charan 
et al. [30], uses deep learning and neural networks for the classification of normal 
and abnormal breast detection in mammogram images using the Mammograms- 
MIAS dataset, which contains 322 mammograms with 189 images of normal breasts 
and 133 images of abnormal breasts. The study used a convolutional neural network 
(CNN) and obtained promising experimental results that suggest the efficacy of 
deep learning for breast cancer detection in mammogram images. Saber et al. [31] 
used pretrained convolutional neural networks (CNNs) to detect and classify breast 
tumors in the INbreast dataset using mammography images. The proposed model 
preprocesses the images to improve image quality and reduce computation time and 
then transfers the learned parameters from the CNNs to improve the classification. 
Another recent study proposes, by Qasim et al. [32], the use of a convolutional neu-
ral network (CNN) to detect breast cancer in mammography images by classifying 
them as noncancerous or cancerous abnormalities using the DDSM dataset. A set of 
mammogram images is preprocessed using histogram equalization, and the result-
ing images are used as a training source for the CNN. The proposed system, called 
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BCDCNN, is compared to the MCCANN system, and the results show that 
BCDCNN has higher classification accuracy and a higher resolution compared to 
other existing systems.

The use of pretrained models is good for discovering new models for specific 
tasks; a new method proposed by Montaha et  al. [33] utilizing the fine-tuned 
VGG-16 model called BreasNet-18 is introduced. This methodology used the 
CBIS-DDSM dataset, and preprocessing was applied to these images. Artifact 
removal was the name of the initial stage of the preprocessing. It made use of tech-
niques like binary masking, morphological opening, and detecting the largest con-
tour. “Remove line” is the name of the second stage. The following techniques were 
used on certain images that included a bright, straight line attached to the breast 
contour: in-range operation, Gabor filter, morphological operations, and invert 
mask. Some algorithms, like gamma correction, CLAHE, and Green Fire Blue, 
enhance images in the third stage. After the preprocessing, the data augmentation 
technique is used to acquire additional images and solve issues with over- and 
under-fitting. Finally, the BreastNet-18 model was used to evaluate the classifica-
tion problem of four classes. Additionally, Allugunti et al. [34] show a computer- 
aided diagnostic (CAD) method is recommended to classify three classes for the 
methodology using certain traditional methods (cancer, no cancer, and noncancer-
ous). Convolutional neural networks (CNNs), support vector machines (SVM), and 
random forests (RF) were the three classifiers they employed. They used a dataset 
with a total of 1000 images from the Kaggle website. Following the test of each 
classifier, it was discovered that CNN performed better, achieving an accuracy 
of 99.6%.

The study by Shen et  al. [35] introduces a novel deep learning algorithm for 
detecting breast cancer on mammograms. The algorithm utilizes an “end-to-end” 
training approach, which decreases the dependence on lesion annotations and 
enables the use of image-level labels. The model is trained on two separate datasets, 
the Digital Database for Screening Mammography (CBIS-DDSM) and the INbreast 
database, and the results indicate excellent performance with high accuracy on both 
heterogeneous mammography platforms. These findings have the potential to 
improve clinical tools and decrease the incidence of false-positive and false- negative 
screening results, which can lead to more accurate diagnoses and improved patient 
outcomes. The research conducted by Khamparia et al. [36] presented an approach 
for classifying mammograms using deep learning models. The authors experi-
mented with various models, such as a pretrained VGG model, a residual network, 
and a mobile network, to determine their effectiveness. They found that their fine- 
tuned VGG16 model, with data augmentation and pretrained ImageNet weights, 
outperformed the other models in terms of accuracy. They utilized the DDSM data-
set for their experiments, and their approach yielded an accuracy of 88.30% and an 
AUC value of 93.30%. Hameed et al. [37] proposed a deep learning methodology 
for the accurate detection of cancerous and noncancerous tissue using pretrained 
convolutional neural networks (CNNs). They used both the VGG16 and VGG19 
models as is and with modifications to enhance performance. The study collected 
544 whole slide images (WSIs) from 80 patients with breast cancer from the 
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pathology division of Colsanitas Colombia University in Bogota, Colombia. The 
images were normalized, and the data was divided into 80% for training and 20% 
for testing. They used a data augmentation strategy during training and achieved an 
accuracy and F1-score of 95.29%. This study has significant implications for the 
development of tools to aid in the accurate diagnosis of breast cancer, potentially 
improving patient outcomes. Additionally, the three stages of the Multi-View 
Feature Fusion (MVFF) methodology proposed by Nasir Khan et al. [38] are as fol-
lows: In the first step, mammography is binary-classified as abnormal or normal, 
and in the second, mass and calcification are classified. The final step is to classify 
the condition as malignant or benign. They utilized the CBIS-DDSM dataset for this 
investigation. The AUC values for mass and categorization were 93.20% and 0.84% 
for malignant and benign tumors, respectively. A new computer-aided detection 
(CAD) system is proposed for classifying benign and malignant mass tumors in 
breast mammography images using deep learning and segmentation techniques. 
The CAD system uses two segmentation approaches, one involving manual deter-
mination of the region of interest (ROI) and the other using threshold- and region- 
based techniques. AlexNet, a deep convolutional neural network (DCNN) used for 
feature extraction and fine-tuning to classify two classes, Ragab et al. present the 
performance in their paper [39]. VGGNet models that have been adjusted may per-
form better if classifications of masses and calcifications from mammography are 
performed using transfer learning. Xi et al. presented research about it [40]. The 
research by Hepsa et al. [41] showed that breast biopsies based on mammography 
and ultrasound results have a high rate of being diagnosed as benign (40–60%), 
which can lead to negative impacts such as unnecessary operations, fear, pain, and 
cost. To address this, they apply deep learning using convolutional neural networks 
(CNNs) to classify abnormalities in mammogram images as benign or malignant 
using two databases: Mini-MIAS and BCDR. While Mini-MIAS has valuable infor-
mation such as the location and radius of the abnormality, BCDR does not. Initially, 
accuracy, precision, recall, and F1-score values range from 60 to 72%. To improve 
results, the authors implement preprocessing methods including cropping, augmen-
tation, and balancing image data. They create a mask to find regions of interest in 
BCDR images and observe an increase in classification accuracy from 65% to 
around 85%.

3  Material and Methods

3.1  CNN Architectures

In this research, four popular CNN architectures were evaluated for their suitability 
for the classification of mammograms at different stages. These architectures have 
been widely cited in recent studies and were customized for this specific task using 
the suggested methodology. The evaluation of different CNN architectures is 
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important in identifying the best model for a particular task, as different architec-
tures have different strengths and weaknesses. By comparing the performance of 
these architectures, we can determine which one is most suitable for the task at 
hand. The customization of the architectures for mammogram classification 
involved adjusting various hyperparameters, such as the learning rate and batch 
size, to optimize performance. This process is crucial for achieving the best possible 
results and improving the accuracy of mammogram classification, which can have 
important implications for breast cancer diagnosis and treatment.

 VGG19

Simonyan et  al. [42] contribute a thorough evaluation of networks of increasing 
depth using an architecture with 3 × 3 convolution filters. They indicate the model’s 
ability to significantly improve 16–19 weight layers deep in both models.

Very deep convolutional neural network layers, totaling 19 layers, are used in the 
VGG19 architecture. It consists of multiple fully connected layers that are followed 
by a string of convolutional and max pooling layers. The network has been trained 
on a sizable dataset of photos in order to learn to recognize a wide range of objects 
and scenarios. The network is intended to be used for image classification tasks. The 
use of tiny convolutional filters with 3 × 3 pixels is one of the distinguishing char-
acteristics of the VGG19 design. Fine-grained characteristics can then be learned by 
the network from the input photos, which is helpful for tasks like object 
recognition.

VGG19 has achieved good results on a variety of image classification tasks, 
which suggests that it may be a reliable and robust model for this type of problem.

 ResNet-50 and ResNet152

He et al. [43] introduced ResNet, a CNN architecture that uses skip connections to 
enable residual function learning. The ResNet models include ResNet-34 A, 
ResNet-34 B, ResNet-34 C, ResNet-50, ResNet-101, and ResNet-152. An ensem-
ble of these models achieved a 3.57% error rate on the ImageNet test set and won 
first place in the 2015 ILSVRC classification challenge. In this study, ResNet-50 
and ResNet-152 were used for testing.

The ResNet architecture allows for the learning of residual functions through 
skip connections, which skip over layers that are not essential for the current task. 
This improves learning efficiency and speed. ResNet is known for its ability to train 
very deep networks without the vanishing gradient problem, thanks to the use of 
skip connections. ResNet-50 has an efficient and simple architecture, making it 
faster to train and easier to implement compared to other models. This feature is 
especially useful for tasks that involve processing a large amount of data, such as 
mammogram classification.
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 EfficientNetB7

Tan et al. [44] introduced a family of models called EfficientNets. EfficientNet is an 
efficient model that can achieve state-of-the-art accuracy on ImageNet and is com-
monly used for image classification transfer learning tasks. This architecture was 
formed by leveraging a multi-objective neural architecture search that optimizes 
accuracy as well as floating point operations per second (FLOPS).

The main idea behind EfficientNet is to scale up CNNs in a more efficient man-
ner. Conventional CNNs increase the depth and width of the network to improve 
accuracy, but this also increases the number of parameters and computation required. 
EfficientNet, instead, proposes to scale the network up in a more balanced way by 
also increasing the resolution of the input image. This allows the network to improve 
the accuracy while keeping the computational cost constant.

In order to scale up CNNs in a more organized way, this model suggests a novel 
model scaling technique that makes use of a straightforward but incredibly powerful 
compound coefficient. Our method uniformly scales each dimension with a fixed set 
of scaling coefficients, in contrast to existing approaches that arbitrarily scale net-
work dimensions like width, depth, and resolution.

EfficientNetB7 has been designed to be highly efficient in terms of both accuracy 
and resource usage. It has achieved state-of-the-art performance on a number of 
image classification and object detection benchmarks and has been widely used in a 
variety of applications.

3.2  Datasets

The Curated Breast Imaging Subset of DDSM, also known as CBIS-DDSM [19], is 
a subset of images that have been selected and curated by radiologists with special-
ized training from the original DDSM dataset. These images are stored in the stan-
dard DICOM format, which is commonly used for storing medical images such as 
CT and MRI scans.

Another curated mammographic dataset that is widely available is the 
Mammographic Imaging Analysis Society (MIAS) dataset [20]. Both of these data-
sets are often used for training and testing machine learning algorithms for tasks 
such as image classification, object recognition, and segmentation. In addition, the 
Mini-MIAS dataset is often used as a benchmark for image compression techniques.

Both CBIS-DDSM and Mini-MIAS datasets are available for free and provide 
numerous images that can be used for medical image analysis research. The CBIS- 
DDSM dataset contains over 2620 scanned film mammography studies, while the 
Mini-MIAS dataset contains over 322 images. The location of the tumor has already 
been indicated for both datasets, making them particularly useful for breast cancer 
detection and diagnosis research.
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3.3  Experiment Environment

The Python programming language was utilized in this study and was run on a 
workstation equipped with an NVIDIA Geforce RTX 3070ti 8GB graphics card, 
Ryzen R9 5900x processor, 32 of DDR4 3200Mhz RAM, and an XPG Spectrix 
512GB SSD. TensorFlow and Keras were employed in this research, both of which 
are open-source libraries designed for deep learning applications [45].

TensorFlow was launched by Google to aid in the development of deep learning 
models, while Keras is a neural network library that was written in Python. To 
achieve faster and more accurate results, we utilized the GPU, which necessitated 
the installation of the Deep Neural Network library (cuDNN) [46] and Compute 
Unified Device Architecture (CUDA).

4  Methodology

This section describes the data preprocessing steps, data selection process, data aug-
mentation strategy, and CNN architectures used for the classification tasks in this 
research.

Deep convolutional neural network (DCNN) models require a significant amount 
of data for training to achieve good performance [47]. To ensure accurate diagnosis 
and better outcomes, it is crucial to use trustworthy datasets. Deep learning has 
shown that more data can improve results. We searched through many sources to 
find a dataset that could provide the information we needed, recognizing that the 
lack of data could create issues. Ultimately, we identified two of the best datasets for 
mammography images used in state-of-the-art research: Mini-MIAS and CBIS- 
DDSM. We utilized images from both datasets in this investigation. Mini-MIAS 
contains 322 images, 133 of which show abnormalities (63 benign and 51 malig-
nant), and the remaining 208 do not. In contrast, CBIS-DDSM comprises 2620 
scanned film mammography studies. Once we obtained these datasets, we divided 
them into four different classification problems: normal and abnormal for Mini- 
MIAS; normal and abnormal for CBIS-DDSM; masses and calcifications for CBIS- 
DDSM; and finally, masses, calcifications, and normal for CBIS-DDSM. We tackled 
each of these classification problems in four stages (Fig. 1).

To achieve good performance, the deep convolutional neural network (DCNN) 
models required a significant amount of data, which is often not readily available. 
Therefore, transfer learning and fine-tuning techniques were applied to improve the 
performance of the models, even with limited data availability.
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Fig. 1 Proposed methodology for this research
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4.1  Stage 1

In the first stage, it involved a comparison of images without any abnormalities to 
those with tumors, both benign and malignant. Preprocessing of the final images 
with anomalies received special consideration at this stage because an algorithm 
was necessary to crop the images using the coordinates provided on the website 
page. Since it was only necessary to take random crops from images without any 
anomalies, there were no issues with the normal images.

4.2  Stage 2

In stage 2, a binary classification is applied to distinguish between the two types of 
mammography anomalies: masses and calcifications. The dataset is divided into 
masses (benign, benign without callback, and malignant) and calcifications (benign, 
benign without callback, and malignant), making CBIS-DDSM suitable for this sce-
nario. To solve this classification problem, benign masses are combined with malig-
nant masses and benign calcifications with malignant calcifications. Images labeled 
as “benign without callback” were not used at this stage.

4.3  Stage 3

In stage 3, something different was attempted. It was not possible to compare 
healthy mammograms without anomalies to abnormal mammograms in CBIS- 
DDSM since there is no category for healthy images. To address this, images were 
obtained from the Mini-MIAS dataset, which includes various abnormalities such 
as architectural distortion, calcification, well-defined or confined masses, spiculated 
masses, ill-defined masses, and asymmetry. The Mini-MIAS dataset also enables us 
to determine the severity of the abnormality (benign or malignant). However, to 
perform the binary classification, normal images were required. A random cut was 
made on each mammogram labeled as “normal,” and these images were used along-
side abnormal images from CBIS-DDSM for the classification.

4.4  Stage 4

In the final stage, the potential of this methodology for a multiclass problem was 
tested using labeled images of masses, calcifications, and normal images. As CBIS- 
DDSM does not include healthy or normal images, images from the Mini-MIAS 
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dataset were used instead. As a result, the output changed from a binary problem to 
a trinary problem due to the difference in data.

This methodology has been utilized, as depicted in Fig. 1. The primary differ-
ence is that CBIS-DDSM does not require an algorithm to crop images, unlike 
Mini-MIAS, which needed it. Cropped images can be obtained directly from the 
website’s archives.

4.5  Preprocessing

As previously stated, we examined four stages that utilized Mini-MIAS and CBIS- 
DDSM image databases. The first database, Mini-MIAS, contained images in PGM 
format, which we obtained from the website. However, we stored the images in 
PNG format because it preserves the quality of edited images. While downloading 
the images, we encountered an issue: The digital mammograms had a resolution of 
1024 × 1024, which could hinder processing. Luckily, the necessary information to 
identify anomalies was available on the Mini-MIAS website, and we developed an 
algorithm to crop the images based on their coordinates.

To identify regions in images with anomalies, we used the coordinates to obtain 
each cropped image. However, several images that contained anomalies lost sharp-
ness and quality when expanded, resulting in their exclusion from the evaluation. 
Conversely, healthy images were easier to obtain and were randomly selected for 
patches with a resolution of 112 × 112. Using an intercubic interpolation algorithm, 
we resized each image (normal and abnormal) to the standard 224 × 244 size after 
obtaining the ROI.

The CBIS-DDSM dataset, which contains cropped images of mammograms 
with masses and calcifications, was downloaded. The images had different sizes, so 
we created an algorithm to automatically resize and extract them from the folders to 
a standard size of 244 × 244 using an intercubic interpolation algorithm. For each 
lesion (masses and calcifications), we combined benign and malignant images to 
test whether the architectures used in this study could distinguish between them. 
The dataset contained 1555 images of masses and 1331 images of calcifications.

After obtaining the cropped images, we normalized each one to ensure that the 
pixel values ranged from 0 to 255, as the original mammography image had a reso-
lution of 16 bits and pixel values ranging from 0 to 65,535. We used the CLAHE 
technique to enhance image contrast, limiting contrast amplification to reduce noise 
amplification [47–49]. A clip limit of 0.01 was used for CLAHE. Finally, we com-
pared the results of two different approaches, namely, normalize (NO) and CLAHE.

Data augmentation was necessary after preprocessing to increase the amount of 
data available [50–54]. We used the Albumentation library [55] to develop an algo-
rithm that employed horizontal and vertical flips, with the option of adding rota-
tions. Researchers can increase the number of rotational samples required by 
adjusting the sample variable (Fig. 2).
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Fig. 2 To preprocess the images, several steps were taken. Firstly, the images were cropped and 
then normalized by adjusting the pixel values to fit within a certain range. After that, the contrast 
of the images was enhanced using the CLAHE technique. To increase the number of images avail-
able for the training phase, data augmentation was used to create synthetic data

In the conducted research, transfer learning models were utilized, and  
ImageNet weights were used to achieve better results. By employing pretrained 
models with learned features, the models were fine-tuned on the mammography 
image classification task. The ImageNet dataset, which is a large-scale dataset used 
for pretraining deep neural networks for image classification tasks, was chosen due 
to its millions of images and thousands of object categories, making it a valuable 
resource for transfer learning  [56, 57]. The models were initialized with  
weights pretrained on ImageNet, which allowed them to leverage the learned 
 features and adapt to the mammography image classification task more  
efficiently [21–24].
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5  Results and Evaluations

The preprocessed dataset was divided into three parts: 80% for training data, 10% 
for validation data, and 10% for test data. The ResNet-50 and EfficientNetB7 neural 
networks were used for classification with the following parameters settings: Adam 
optimizer, with a learning rate of 0.0001 [58], batch size set to 32, and binary and 
categorical cross-entropy used as loss functions [59]. The training process was set 
to run for 20 epochs.

For the classification neural network, we employ these layers in order to improve 
the outcome (Fig. 3).

5.1  Metrics

It is important to understand the metrics, including the confusion matrix which 
shows the number of true positive, true negative, false-positive, and false negative 
predictions made by the model. True positive (TP) refers to the number of instances 
that were correctly classified as positive, while true negative (TN) refers to the num-
ber of instances that were correctly classified as negative. False positive (FP) refers 

Fig. 3 Using a neural network to classify the features extracted from the models (VGG19, 
ResNet-50, ResNet152, or EfficientB7). Multiple layers were used, such as the dropout layer [60], 
batch normalization layer [61], and dense layers. The dense layer that classified the features 
extracted was assigned a 0.01 for the regularizer l2 value [62]
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to the number of instances that were incorrectly classified as positive, and false 
negative (FN) refers to the number of instances that were incorrectly classified as 
negative.

Evaluating the performance of a machine learning model requires the use of vari-
ous metrics, with accuracy being one of the most commonly used. This metric mea-
sures the percentage of correct predictions made by the model, making it simple and 
intuitive. However, accuracy can be misleading in cases where the classes in the 
dataset are imbalanced, meaning that one class is significantly more prevalent than 
others (Eq. 1).

 
Accuracy

TP TN

TP TN FP FN
,�

�
� � �  (1)

Precision is another crucial metric that measures the proportion of true positives, 
or correct predictions of the positive class, among all positive predictions made by 
the model. This metric is particularly relevant in tasks where minimizing false posi-
tives is essential, such as medical diagnosis or spam detection (Eq. 2).

 
Precision

TP

TP FP
,�

�  (2)

Conversely, recall measures the proportion of true positives among all actual posi-
tive examples in the dataset. This metric is especially valuable in tasks where detect-
ing as many positive examples as possible is critical, such as fraud detection or 
cancer screening (Eq. 3).

 
Recall

TP

FN FP
,�

�  (3)

To achieve a balance between precision and recall in a model, a useful metric is the 
F1-score. This metric is the harmonic mean of precision and recall, providing a 
more comprehensive evaluation of a model’s performance by taking both precision 
and recall into account (Eq. 4).

 
F score

Precision Recall

Precision Recall
,1 2� � �

�
�  (4)

The AUC (area under the curve) metric is used to evaluate the performance of a 
binary classifier. It is a measure of the classifier’s ability to distinguish between 
positive and negative classes.

AUC is calculated by plotting the true positive rate (TPR) against the false- 
positive rate (FPR) at various classification thresholds. The true positive rate is the 
proportion of positive cases that are correctly identified as positive, while the false- 
positive rate is the proportion of negative cases that are incorrectly classified as 
positive.
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It is essential to select the right metric for the task at hand because various met-
rics may highlight various elements of model performance. Model selection, hyper-
parameter adjustment, and model evaluation are a few of the uses for deep learning 
metrics. Deep learning metrics in this research is used to evaluate the performance 
of a deep learning model on a particular task or problem. They provide a way to 
quantitatively measure how well the model is able to solve the problem and can be 
used to compare the performance of different models or to track the progress of a 
model as it is being trained.

Overall, the purpose of using deep learning metrics is to help you understand 
how well your model is performing and to identify areas where it may be underper-
forming. This can help you to fine-tune your model and improve its performance.

5.2  Tables

For the training set, data augmentation was used on the training set to introduce 
variations to the model by applying changes to the datasets, which can increase the 
robustness of machine learning and reduce training costs.

To increase the amount of data available for training, various data augmentation 
techniques were applied to the Mini-MIAS and CBIS-DDSM datasets. The specific 
techniques used for each stage are summarized in Table 1 for stage 1 images in the 
Mini-MIAS dataset, Table 2 for stage 2 images made synthetically using both data-
sets, Table 3 for stage 3 images with lesions labeled as “masses and calcifications” 
using only the CBIS-DDSM dataset, and Table 4 for stage 4 images with normal 
images labeled for lesions using both datasets for the multiclass problem. Before the 
DCNN could use the dataset, the number of images in each class needed to be bal-
anced to ensure that the model could learn from all classes equally. This was espe-
cially important for Tables 2 and 4, which required greater increases in normal 
images because there were fewer of them compared to the other classes.

Table 5 shows the outcomes of using the normalized dataset, including perfor-
mance metrics such as accuracy, precision, recall, F1-score, and AUC.  Table  6 
shows the results of using the dataset with the CLAHE preprocessing technique and 

Table 1 Using the technique of data augmentation to the training dataset of stage 1

Without data augmentation
Class Training set Validation set Test set
Normal 165 22 22
Tumor 82 11 11
With data augmentation
Class Training set Validation set Test set
Normal 4648 720 22
Tumor 4648 560 11
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Table 2 Using the technique of data augmentation to the training dataset of stage 2

Without data augmentation
Class Training set Validation set Test set
Normal 209 20 22
Abnormal 2308 288 290
With data augmentation
Class Training set Validation set Test set
Normal 18,464 20 22
Abnormal 18,464 288 290

Table 3 Using the technique of data augmentation to the training dataset of stage 3

Without data augmentation
Class Training set Validation set Test set
Masses 1244 155 156
Calcifications 1064 133 134
With data augmentation
Class Training set Validation set Test set
Masses 24,880 155 156
Calcifications 24,880 133 134

different pretrained models, comparing the performance of each stage. The tables 
include overall test results as well as precision, recall, F1-score, and AUC results for 
each class. The ResNet-50 and EfficientNetB7 models achieved excellent results, 
with up to 99% accuracy attained when fine-tuning for stage 3. The VGG19 model 
also produced good results, especially when images were normalized with a range 
of 0–255, as shown in Tables 5 and 6.

5.3  Comparison with Previous Works

In this section, we compare our model with a few recent studies that were previously 
mentioned. The comparison is shown in Table 6, which displays the best results  
of our proposed models, namely, VGG-19, ResNet-50, ResNet-152, and 
EfficientNet-B7, compared to those of earlier studies with a common focus. It is 
noteworthy that EfficientNet-B7 performed the best in a binary classification 
between tumor images and healthy images. Additionally, Table 7 presents further 
information.
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Table 4 Using the technique of data augmentation to the training dataset of stage 4

Without data augmentation
Class Training set Validation set Test set
Normal 209 22 22
Masses 1244 155 156
Calcifications 1064 133 134
With data augmentation
Class Training set Validation set Test set
Normal 19,904 20 22
Masses 19,904 155 156
Calcifications 19,904 133 134

6  Conclusions and Future Work

In conclusion, four pretrained deep convolutional neural networks (DCNNs) were 
compared for their effectiveness in classifying mammogram images using fine- 
tuning. The study utilized images from two datasets, Mini-MIAS and CBIS-DDSM, 
and ROIs were obtained by cropping images to help identify objects of interest with 
more accuracy. Transfer learning and fine-tuning were employed to improve the 
models’ efficiency compared to state-of-the-art.

The four phases of the DCNNs were evaluated to determine their performance in 
an unrelated task, and ImageNet weights were incorporated to optimize the models. 
The third stage using improved ResNet-50 and EfficientNetB7 models generated 
remarkable results compared to state-of-the-art models. EfficientNetB7 is consid-
ered a better choice due to its high accuracy and efficiency, outperforming other 
models on various tasks.

However, the equipment used in this study had limitations, and the authors hope 
that future studies will use more specialized equipment to obtain quicker results and 
better comparisons. The authors also plan to compare the pathology of the images 
among normal, benign, and malignant and explore the possibility of applying the 
same networks to DCNN with a smaller input. Additionally, they plan to create a 
multimodal convolutional neural network and apply this classification task using 
different information from each DCNN to obtain various outcomes and integrate 
them for a final result that is more accurate and varied.
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Table 5 The values obtained as a result of the training are shown in this table. Each stage’s final 
result is observed along with each DCNN only with normalized images

DCNN performance when 
using normalized images

DCNN Class Accuracy Precision Recall F1-score AUC
Mini-MIAS

Normal 0.9545 0.9545 0.9545
VGG19 Tumor 0.93939 0.9091 0.9091 0.9091 0.9318

Overall 0.9091 0.9091 0.9091
Normal 0.9545 0.9545 0.9545

ResNet-50 Tumor 0.9393 0.9091 0.9091 0.9091 0.9318
Overall 0.9091 0.9091 0.9091
Normal 0.9130 0.9545 0.9333

ResNet152 Tumor 0.9091 0.9 0.8181 0.8571 0.8863
Overall 0.9 0.8181 0.8571
Normal 0.9565 1 0.9777

EfficientB7 Tumor 0.9696 1 0.9091 0.9523 0.9545
Overall 1 0.9091 0.9523

CBIS-DDSM
Calcification 0.8875 0.8656 0.8787

VGG19 Masses 0.8896 0.8875 0.9102 0.8987 0.8879
Overall 0.8897 0.8896 0.8896
Calcification 0.9147 0.8805 0.8939

ResNet-50 Masses 0.9068 0.9006 0.9294 0.9148 0.9050
Overall 0.9006 0.9294 0.9148
Calcification 0.9076 0.8805 0.8939

ResNet152 Masses 0.9034 0.9 0.9230 0.9113 0.9018
Overall 0.9 0.9230 0.9113
Calcification 0.9166 0.9029 0.9097

EfficientB7 Masses 0.9172 0.9177 0.9294 0.9235 0.9162
Overall 0.9177 0.9294 0.9235
Normal 0.9829 0.9829 0.9965

VGG19 Abnormal 0.9807 0.9444 0.7727 0.85 0.8846
Overall 0.9802 0.9807 0.9798
Normal 0.9965 0.9965 0.9965

ResNet-50 Abnormal 0.9935 0.9545 0.9545 0.9545 0.9755
Overall 0.9545 0.9545 0.9545
Normal 0.9931 1 0.9965

ResNet152 Abnormal 0.9935 0.9989 0.9090 0.9523 0.9545
Overall 0.9090 0.9523 0.9931
Normal 0.9931 1 0.9965

EfficientB7 Abnormal 0.9935 0.9989 0.9090 0.9523
Overall 0.9989 0.9090 0.9523
Normal 0.8636 0.8636 0.9266 0.9266

(continued)
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Table 5 (continued)

DCNN performance when 
using normalized images

VGG19 Calcification 0.9253 0.8731 0.8731 0.8731 0.8888
Masses 0.8974 0.8974 0.8974 0.8974
Overall 0.8846 0.8846 0.884 0.9042
Normal 0.9987 0.9545 0.9767 0.9772

ResNet-50 Calcification 0.9006 0.9055 0.8582 0.8812 0.8953
Masses 0.8841 0.9294 0.9062 0.9038
Overall 0.9014 0.9006 0.9004 0.9255
Normal 0.9988 0.8636 0.9268 0.9318

ResNet152 Calcification 0.9006 0.8776 0.9104 0.8937 0.9074
Masses 0.9090 0.8974 0.9032 0.9038
Overall 0.9020 0.9006 0.9008 0.9143
Normal 1 0.7722 0.8717 0.8863

EfficientB7 Calcification 0.9102 0.875 0.9402 0.9064 0.9195
Masses 0.9337 0.9038 0.9185 0.9198
Overall 0.9132 0.9102 0.91007 0.9086

Table 6 The values obtained as a result of the training are shown in this table. Each stage’s final 
result is observed along with each DCNN using the CLAHE technique

DCNN Performance using 
CLAHE

DCNN Class Accuracy Precision Recall F1-score AUC
Mini-MIAS

Normal 0.9545 1 0.9767
VGG19 Tumor 0.9696 1 0.9166 0.9565 0.9583

Overall 0.9166 0.9565 0.9545
Normal 0.8333 0.8695 0.9091

ResNet-50 Tumor 0.9091 0.9091 0.9523 0.9302 0.8928
Overall 0.9091 0.8333 0.8695
Normal 0.8333 0.9091 0.9130

ResNet152 Tumor 0.9393 0.913 1 0.9545 0.9166
Overall 1 0.8333 0.9091
Normal 0.9166 0.9166 0.9523

EfficientB7 Tumor 0.9393 0.9523 0.9523 0.9523 0.9345
Overall 0.9166 0.9166 0.9166

CBIS
DDSM

Calcification 0.8617 0.7910 0.8249
VGG19 Masses 0.8448 0.8323 0.8910 0.8606 0.8410

Overall 0.8459 0.8448 0.8441
Calcification 0.8759 0.8955 0.8856

ResNet-50 Masses 0.8931 0.908 0.8910 0.8996 0.8932

(continued)
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Table 6 (continued)

DCNN Performance using 
CLAHE

Overall 0.90844 0.8910 0.8996
Calcification 0.9076 0.8805 0.8939

ResNet152 Masses 0.9034 0.9 0.9230 0.9113 0.9018
Overall 0.9 0.9230 0.9113
Calcification 0.8978 0.9179 0.9077

EfficientB7 Masses 0.9137 0.9281 0.9102 0.9190 0.9140
Overall 0.9281 0.9102 0.9190
Normal 0.9830 1 v

VGG19 Abnormal 0.9839 1 0.7727 0.8717 0.8863
Overall 0.7727 0.8717 0.9830
Normal 0.9989 0.9989 1

ResNet-50 Abnormal 1 0.9989 0.9989 1 1
Overall 0.9989 1 0.9989
Normal 0.9931 1 0.9965

ResNet152 Abnormal 0.9935 1 0.9090 0.9523 0.9545
Overall 0.9090 0.9523 0.9931
Normal 1 0.9989 1

EfficientB7 Abnormal 1 0.9989 0.9989 1 1
Overall 1 0.9989 1
Normal 1 0.9090 0.9523 0.95454

VGG19 Calcification 0.8557 0.856 0.7985 0.8262 0.8486
Masses 0.8383 0.8974 0.8668 0.8621
Overall 0.8573 0.8557 0.8554 0.8884
Normal 1 0.9090 0.9523 0.9545

ResNet-50 Calcification 0.9166 0.9029 0.9029 0.9029 0.9149
Masses 0.9177 0.9294 0.9235 0.9230
Overall 0.9171 0.9166 0.9167 0.9308
Normal 0.9090 0.9090 0.9090 0.9510

ResNet152 Calcification 0.8974 0.8931 0.8731 0.8830 0.8972
Masses 0.8993 0.9166 0.9079 0.9070
Overall 0.8973 0.8974 0.8973 0.9184
Normal 1 0.9090 0.9523 0.9545

EfficientB7 Calcification 0.8974 0.9126 0.8582 0.8846 0.8982
Masses 0.8734 0.9294 0.9006 0.8974
Overall 0.8992 0.8974 0.8973 0.9167
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Table 7 Comparison of this methodology to others found in the literature

Author Database Model Accuracy AUC

Auccahuasi 
et al.

MIAS Custom CNN 94% None

Alkhaleefah 
et al.

CBIS-DDSM, 
MIAS, BCDR,

Multiple fine-tuned models 96.49% 0.994%

Saber et al. INBreast VGG16 and VGG19 97.1% 0.988%
Qasim et al. Mini-MIAS Custom CNN 99.4%
Shen et al. CBIS-DDSM, 

INBreast
ResNet-50 and VGG16 0.91%

Khamparia 
et al.

DDSM Modified VGG Alexnet, VGG16, 
VGG19, MVGG, MobileNet, and 
ResNet-50

94.3%

Nasir Khan 
et al.

CBIS-DDSM, 
MIAS

VGGNet, GoogleNet, ResNet 92.29% 0.93%

Ragab et al. DDSM, 
CBIS-DDSM

Custom AlexNet with SVM 87.2% 0.94%

Our proposed
model

CBIS-DDSM, 
Mini-MIAS

VGG19, ResNet-50, ResNet151, and 
EfficientNetB7

99.98% 0.99%
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