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Requirements for Machine Learning 
Methodology Software Tooling

Jochen L. Leidner and Michael Reiche

1  Introduction

Over the course of the last two decades, there has been an enormous growth in the 
importance of data-intensive projects, projects aiming at obtaining data-driven 
insights (“analytics”), and components that apply automatic induction, also known 
as machine learning, instead of traditional algorithms, to solve a problem at hand. 
This is because there is a human desire to push the “how” question onto the machine 
for solving.

This move from algorithms to “soft computing” models induced from data also 
means that new methodologies are needed that recommend news processes (e.g., to 
annotate datasets) and new best practices (e.g., to compute inter-annotator agree-
ment between annotators) to build such models. These (we will take a closer look 
below) extend our toolbox of software engineering methodologies (waterfall, agile 
kanban,1 etc.) with methodologies suitable for and indeed specifically designed for 
machine learning based working, which is typically quantitative, iterative, and 
experimental.

1 A kanban board is a software tool to support the kanban (Japanese for “billboard”) methodology, 
which relies on two primary practices: 1. to visualize work and 2. to limit work in progress.
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As we transition to this new breed of methodology, naturally we would like to 
make use of state-of-the-art software tools that support our methodology of choice. 
Where traditional software engineering gave us computer-aided software engineer-
ing (CASE) tools [2], we hope for equivalent guidance in the new, data-centric world.

To this end, we present a collection of requirements for such a software stack: In 
this chapter, we will gather and organize requirements for software tooling to sup-
port machine learning/data science methodologies.2 For the most part, we will be 
able to defer the choice of methodology, as it turns out the software tooling require-
ments can be separated from any particular methodology.

Software engineering—and in the era of soft computing this includes construc-
tion of machine learning models—does not happen in isolation: stakeholders need 
to be educated, influenced, convinced and kept informed, developers briefed about 
interfaces and non-formalized aspects of integration and maintenance; even holders 
of financial roles need to learn that model refresh is a recurring post-project activity 
that needs funding and staffing, which may be unwelcome news in projects moti-
vated by the “saving through automation” promised that machine learning offers. 
While machine learning researchers typically zoom in on only the mathematical or 
experimental work surrounding parameter estimation and evaluation of their mod-
els, real- life projects require extraordinary amounts of interactions with the environ-
ment. This requires new methodologies that are now beginning to emerge, and these 
in turn require software tooling to capture, store, process, retrieve, etc. the project 
knowledge that needs to be managed.

The remainder of this chapter is structured as follows: Sect. 2 provides some 
background about requirements and the requirements capture process. Section 3 
briefly recapitulates an exemplary selection of methodologies for machine learning 
projects. Section 4 describes our collected requirements for methodology software 
tooling, including requirements from the perspective of what stakeholders need 
from the system to support their work. Section 5 surveys some related work. In Sect. 
6, we provide a critical discussion. Finally, Sect. 7 summarizes our findings and 
concludes with suggestions for future work.

2  Method: From Stakeholders to Requirements Capture

In order to develop software tools to support the application of (and compliance 
with) machine learning methodologies that assist project teams and other stakehold-
ers with the functionalities required in the realization of machine learning projects, 
suitable requirements must be identified, formulated in high quality, and docu-
mented in a structured way [3–5]. Stakeholders are individuals or organizations 
with an interest in the planned system [4, p. 10]. Typical team members and other 
stakeholders’ responsibilities of a machine learning project and their tasks can be 
found in Table 1.

2 In the following, the term “machine learning” will be used, although it is also intended to refer to 
the entire field of data science.
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Table 1 Team members and other stakeholders and their typical responsibilities

Team members (top) 
and other 
stakeholders 
(bottom) Responsibilities

Data scientist Model engineering including data preparation, algorithm selection, 
hyperparameters selection, and model evaluation [6]

Data engineer Data processing including data collection, feature engineering, big data 
management, data pipeline management, and dataset building [6, 7]

Software engineer/
machine learning 
engineer

Turn the raw machine learning problem into a prototype or a well- 
engineered product, monitoring of drifts and adjustments of those [6, 8]

Technical lead Take charge of all technical decisions
Project manager 
(PM)

Administer, facilitate, manage: setting, updating, and monitoring team 
activities, project, and time plans; communication with stakeholders; 
defines the business goal; review the achievement of objectives; mediate 
issues and fights in the team, enabling innovation [6, 8]

Machine learning 
solution
architect

Integration of machine learning into the IT infrastructure [8]

User experience 
specialist

Ensures interacting with the system will be intuitive, pleasant, and 
successful (free from obstacles) [8]

Subject-matter expert Bringing understanding of a subject area [8]
User (focus group) Provides feedback and requirements. “User” refers to an end user of the 

system – product or service – that the machine learning models are going 
to be part of

Executive sponsor Making budget decisions, establishing a vision and several main goals of 
the project [8]

The IEEE defines a requirement as follows [9, p. 62]: “(1) A condition or capa-
bility needed by a user to solve a problem or achieve an objective. (2) A condition 
or capability that must be met or possessed by a system or system component to 
satisfy a contract, standard, specification, or other formally imposed documents. (3) 
A documented representation of a condition or capability as in (1) or (2)” [9, p. 62].

Suitable requirements can be formulated generally at a higher level from a user 
perspective in natural language (user requirement) or in detail at a deeper level from 
a system perspective close to the software to be developed (system requirement) [5, 
10]. Requirements do not provide information on how they are to be implemented. 
Rather, they provide information about what the system was intended to do [11, 
p. 230–231]. From the variants for classifying requirements, we use those that dis-
tinguish according to (1) priority; (2) necessity, i.e., must/should/will); and (3) func-
tionality (nonfunctional/functional) [12, p. 80]. We use a template-based approach 
to formulate the requirements (see Fig. 1).

In principle, both analytical and empirical methods are suitable for the system-
atic eliciting of requirements. In Sect. 4, we elicit requirements for the needs of the 
typical stakeholders with the definition of characteristic user stories, which are 
derived from special properties of machine learning methodologies and from 
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practical experience of the two authors of this chapter, respectively. From these, we 
extract a set of formal requirement templates (Fig. 1) and eventually entities that can 
form the basis for a class diagram (in an object-oriented analysis) or an ER (entity- 
relationship) diagram.

3  Machine Learning Process Models

In the following, we will recapitulate some selected methodologies starting with the 
oldest that have been proposed for projects using machine learning, data mining, 
and data science generally speaking. For detailed surveys, see the related work below.

3.1  KDD

The KDD process [14–16] resulted from the “Knowledge Discovery from 
Databases” community, which also created the conference series of the same name. 
Data mining, according to it, is a five-step process with iterations to get from raw 
data to knowledge. First, carrying out a data selection step results in target data, a 
preprocessing activity leads to preprocessed data, transformations lead to trans-
formed data, and then the actual data mining turns it into patterns, which are inter-
preted by humans and/or evaluated by machine and/or humans (Fig. 2).

Fig. 1 Requirement template [13]

Fig. 2 The KDD process (simplified after Fig. 1 from [15, p. 29])
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KDD starts in its first phase with the selecting a dataset (database, set of variables 
or data sample under consideration). Preprocessing work then removes noise/outli-
ers, plugs gaps by imputation, and dealing with database schemas falls into this 
step. After that, the data is transformed (reduced and/or projected), which includes 
finding and extracting features that are useful for the task at hand and reducing its 
complexity. Next, the data mining algorithms/methods have to be selected (models, 
parameters). Framing or choosing the function of the data mining step then involves 
reflecting on the purpose of the model (e.g., summarization, classification, regres-
sion or clustering). The actual data mining phase applies classification, regression, 
some form of clustering, or sequence modeling suitable for the goals and dataset at 
hand. The final phase includes making sense of automatically discovered patterns, 
potentially using visualizations, weeding out superfluous or useless patterns, and 
translating useful patterns into language understandable by the project’s stakehold-
ers. Implicit, but accounted for in the methodology’s prose descriptions, is also 
making use of the resulting knowledge gained, which often means integrating it into 
a software system, which the authors call “performance system”; this corresponds 
to the deployment phase in other methodologies. Documenting and reporting con-
cludes a KDD process-based project.

3.2  SEMMA

The SEMMA methodology [17] was developed by SAS, Inc., a software company 
which also sells the SAS Enterprise Miner software, which is somewhat aligned 
with the SEMMA process. The process is divided into the following five phases:

• Sample: A subset of the appropriate data must first be selected. Identifying vari-
ables or factors (both dependent and independent) influencing the process is car-
ried out in this phase, as is partitioning the data into training and test folds.

• Explore: In an exploratory stage, uni- or multivariate analysis is conducted to 
detect gaps in the data and to study interconnected relationships; this phase is 
expected to rely heavily on data visualization techniques.

• Modify: Data is cleaned and transformed in order to prepare it for the modeling, 
using insights from the previous exploration phase.

• Model: This phase is where the core modeling step applies, i.e., a variety of data 
mining techniques are applied with the intention of identifying the one most suit-
able for solving the business problem at hand.

• Assess: Evaluate the model (How useful and reliable is it? How well it solves the 
problem?). Computing quantitative evaluation metrics of the best model’s qual-
ity is part of this last phase.

SEMMA has had limited impact to date, which is likely due to the fact that it was 
created (and is owned) by a single proprietary company.
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3.3  CRISP-DM

In contrast to the KDD process, the Cross-Industry Standard Process for Data 
Mining (CRISP-DM for short) [18, 19] was developed in an industrial environment 
and emerged from the cooperation of the companies NCR System Engineering, 
SPSS Inc., and DaimlerChrysler AG.  The iterative CRISP-DM starts with the 
Business Understanding phase before and ends with the Deployment phase after the 
cycle of the KDD process (Fig. 3). Because activities not previously considered are 
included here, the process is more comprehensive. The process is divided into the 
following six phases:

• Business Understanding: From the business perspective, project goals are deter-
mined and requirements and resources are defined in this initial phase. All find-
ings are incorporated into a project plan.

• Data Understanding: Here, data is collected, described, and analyzed to explore it.
• Data Preparation: The goal of this phase is to create an adequate dataset for the 

following modeling. For this process, data is selected, cleaned, transformed, 
merged, and formatted.

• Modeling: In this phase, the modeling itself is performed. Therefore, modeling 
techniques are applied and parameters are calibrated.

• Evaluation: The obtained model is tested for its final use by evaluating how the 
defined business objectives from the Business Understanding phase have been 
achieved. In addition, past activities are reviewed, and next steps are determined.

• Deployment: The model and the knowledge gained through it are made usable.

During the use of the model, it is monitored and, if necessary, maintained. 
Besides that, the project is documented and a final report is prepared.

The recommended procedures of the CRISP-DM are described in a detailed 
handbook. It states that each phase has several generic activities, which in turn are 
associated with artifacts, mostly in the form of reports. A project that adapts the 
CRISP-DM in its pure form and is carried out entirely according to its manual will 
therefore result in a comprehensively documented project. However, the process is 
often adapted to the individual circumstances of a project, which leads to the omis-
sion of given elements or the addition of new ones [20]. It is still widely used today 
and can be considered the de facto standard in the field of data-intensive analytics 
projects [20–22].

Fig. 3 The CRISP-DM methodology (simplified after Fig. 2 from [18, p. 10])
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3.4  CRISP-ML(Q)

CRISP-ML(Q) (short for “Cross-Industry Standard Process for the development of 
Machine Learning applications with Quality assurance methodology”) is an attempt 
(by a group that did not include the original CRISP-DM creators) to adjust 
CRISP-DM from data mining to machine learning work [23].3 It takes into account 
the special characteristics of machine learning, such as monitoring and maintaining 
a machine learning application in a changing deployed environment. As the name 
already indicates, essential concepts have been taken over from the CRISP-DM. In 
CRISP-DM(Q), the two phases Business Understanding and Data Understanding 
are merged into the Business and Data Understanding phase. The term “Maintenance” 
has found its way into the name of the Monitoring and Maintenance phase. Quality 
assurance measures to mitigate risks are proposed for all six phases of the iterative 
methodology.

3.5  Data-to-Value (D2V)

The Data-to-Value methodology (“D2V” for short) is a development process model 
[24–26] for the construction of systems that use (mostly supervised) machine learn-
ing in at least some of its components; it was developed, tested, and taught during 
the teaching of university students at various universities (Essex, Zurich, Frankfurt, 
Sheffield, Coburg) over the course of a decade, and it is motivated by the first 
author’s long-standing industry practice in research and development projects in 
natural language processing and information retrieval system construction of appli-
cations for professionals in the vertical domains of news/journalism, finance/insur-
ance, legal, risk/security, and pharmacology. It offers several characteristics that are 
unique at the time of writing:

• It is an “evaluation first” methodology, which means that quantifying models is 
addressed before any models are actually built; evaluation scaffolding is con-
structed early, so ongoing quantitative evaluation can guide the development pro-
cess, following the saying “what you can’t measure, you can’t improve.”

• It has an intricate number of stages – over 30 – each of which is associated with 
some from a set of 100+ guidance questions to help more junior team members 
around standard pitfalls and to create more consistency for senior team members.

• In particular, acknowledging the importance of data quality, the gold data anno-
tation process is spelled out in detail, which is surprisingly lacking from most 
natural language processing and machine learning text books published to date.

3 https://ml-ops.org/content/crisp-ml
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• Ethical and technology impact considerations are not treated as an optional after-
thought; following [27, 28], they have been integrated into the process by design, 
in the form of various checkpoints.

• D2V features a “feasibility study” phase early in a project, which was motivated 
by real-life requests by managers for impossible projects, in particular predictive 
modeling of target variables for which no predictive signal is available in the 
available datasets. This step dramatically de-risks data-intensive projects and 
helps reduce sunk cost.

Figures 4 and 5 show the various stages of the D2V methodology.
Note that the boxes with double-line frames are indicative of subprocesses. The 

feasibility study is a subgraph that contains a copy of the whole graph (except fea-
sibility study itself) in a way that permits many steps to be partially completed or 
skipped; its purpose is, ahead of committing to a full-blown project, to check 
whether there is enough signal in the data so that the predictive models conceived to 
be constructed later actually can be built. Due to space reasons, we must refer the 
interested reader to the open access technical report [25], which contains the most 
detailed description of the process model to date.

Now that we have sketched the space of common and recent methodologies, we 
can look into the list of core requirements for a software system that supports these 
and other similar methodologies.

Fig. 4 The Data-to-Value phases: overall process (after [26])
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Fig. 5 Further Data-to-Value phases: (i) gold data annotation subprocess (left), (ii) system deploy-
ment (right; after [26])

4  Requirements for Software Support Tools

We sourced our requirements as follows: First, we derived many requirements 
directly or indirectly from properties of the methodologies that the software should 
support, especially where these overlap. Second, we supplemented these by require-
ments gained through introspection by extracting them from user stories by the two 
authors, who have a combined 30 years of experience.

We will describe our findings starting with user stories: A series of them put the 
users of the system (team, in particular PM, and other stakeholders) at the center. 
We then derive a longer list of requirements of instantiated requirement templates 
from these; for brevity, we show a selection of the most relevant requirements here, 
and we will exclusively focus on functional requirements. Finally, we derive a list 
of the key classes (in object-oriented thinking) or entities (in entity-relationship 
thinking), respectively.

4.1  Overall Vision

In addition to our presentation of the functional requirements, we begin with a 
vision statement to capture the overall spirit and scope of the system that we antici-
pate being a useful support tool for machine learning projects with the following 
particular methodologies:

There is a need for a system that guides a project team to follow a chosen 
machine learning methodology and which manages the project’s metadata 
centrally, persistently, and transparently.

Requirements for Machine Learning Methodology Software Tooling
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This vision of a system that supports its users by providing process guidance and 
metadata management is like a meta-level requirement: All other requirements 
should at least not be in conflict with it. By saying “chosen” methodology, we imply 
that not a particular methodology is hardwired in the software we envisage but that 
it should be designed and implemented in a way that is separate from any particular 
methodology and thus be capable of supporting most, past, present, and future 
methodologies; in order words, we attempt to generalize across several or most 
approaches. This requirement seems realistic, as in the realm of workflow tools, 
such a generic approach has already been successful (see below).

4.2  User Stories and Requirement Templates

We now present several user stories, followed by the requirements extracted 
from them.

Requirement 1 (Track Current Phase) (Must-Have) The system shall maintain 
the current state (active phase) of the project with respect to the methodology that 
it uses.

Requirement 2 (Monitor and Control Project) (Must-Have) The system shall 
offer possibilities to monitor and control the project.

Requirement 3 (Track Actions and Time per Phase) (Must-Have) The system 
shall capture “what happens when” in the project, including the duration (in calen-
dar days) spent in each phase.

Requirement 4 (Import Methodologies) (Must-Have) The system shall let the 
user model import one (from a predefined library of given methodology) workflow.

Requirement 5 (Edit/Customize Methodologies) (Must-Have) The system shall 
let the user customize a methodology’s workflow for a project.

Jack is an experienced project manager. His company uses a new software to 
support a range of machine learning methodologies, as it improves his every-
day professional life in many ways: Instead of having to gather specifics for a 
machine learning project (phases, paths, quality, etc.) from multiple systems, 
he can now use one system one-stop shop tool to capture, store, and commu-
nicate a project’s status and progress to his superiors and team members as 
well as to control and monitor his projects.

J. L. Leidner and M. Reiche
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Requirement 6 (Support Multiple Methodologies) (Must-Have) The system 
shall associate one methodology with each project.

Requirement 7 (Track Actions and Time per Phase) (Must-Have) The system 
shall log project actions conducted in a permanent read-only activity protocol.

Requirement 8 (Capture and Categorize Stakeholders) (Must-Have) The sys-
tem shall capture all project stakeholder names, roles, and their associated RACI 
categories.

Requirement 9 (Create Artifacts) (Must-Have) The system shall automatically 
create document-based and/or document-like artifacts for evaluating completed 
phases and/or activities. (Note: An artifact is a by-product created during the 
machine learning development process, such as datasets, models, or documents.)

Requirement 10 (Ask Guidance Questions and Record Answers) (Must- 
Have) The system shall ask the project manager the set of potential guidance ques-
tions associated with a phase (if the chosen methodology posits them) and capture 
their answers. If they do not know an answer, permit entry of a list of team members 
(“share/forward”) that may be able to answer.

At the beginning of a project, Jack must define which methodology 
(CRISP-DM, Data-to-Value, etc.) should be used. The phases and paths are 
then automatically recorded in the software as a default workflow of the meth-
odology. This workflow, including phases and paths, can be adopted or cus-
tomized. Jack is able to enrich the selected workflow with project specifics, 
including the planned duration of sections, the project participants (core team) 
and other stakeholders, and their roles and the RACI (responsible, account-
able, consulted, informed) category assigned to them [29]. All changes to the 
project and their history are automatically stored and versioned. Target times 
specified by him can be compared with the actual numbers, or with those of 
past projects. If guidance questions are provided by the methodology or 
requested by the users, then Jack can answer them himself or pass them on to 
his team, thereby determining common processes of the machine learning 
project. All answers are stored in the system’s database.
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Requirement 11 (Manage Team) (Must-Have) The system shall capture the ini-
tial team, the role(s) of each member, skills required, skills needed for the project, 
as well as ongoing team changes during the project.

Requirement 12 (Manage Tasks) (Must-Have) The system shall permit team 
members to view their assigned (or all) tasks that are associated with the given 
methodology’s current phase. They can also change the status, using the ternary 
states “OPEN,” “IN PROGRESS,” and “COMPLETED”; tasks are automatically 
synchronized with external third-party software systems from the project manage-
ment and the information management domains.

All project participants can view the status of the project and the progress in 
the workflow at any time on the central view of a web-based dashboard, while 
stakeholders external to the team get to see a specific view. The team can view 
their personal task inbox as well as the global task list for current phrase with 
respect to the methodology. Important success indicators, activities already 
carried out, and activities still to be carried out are shown. RAG tags (red- 
amber- green) are used to convey high-level status information to senior stake-
holders. On the one hand, the visualization of the dashboards at the moment 
of viewing can serve as a basis for discussion vis-à-vis stakeholders. On the 
other hand, standard reports can be sent at regular intervals, or ad hoc reports 
can be sent via email or other communication channels when defined events 
occur. A final report is semiautomatically generated by the system at the end 
of each phase and at the end of each project. Jack can view the current project 
and also past or concurrent projects he is entitled to. These are stored in the 
system directly or through links to a project database. The presentation of 
several projects side-by-side enables them to be compared with each other, 
and all data is persisted for long-term archival purposes.

Jack can enter needed skills and skill levels for the project and then adds 
Sarah to the project as a team member in a data science role. The system is 
aware of her skills in data science, Python programming, and in particular her 
experience with clustering methods; however, as the system detects that Sarah 
has not yet got experience with Apache Hadoop and Apache Spark, two stan-
dard systems for distributed processing in big data projects, which Jack had 
indicated as needed for the project, the system alerts Jack to the skill gap, and 
because the formal start of the project is still a few weeks away, Jack proposes 
Sarah be sent to a training course as a means of upskilling to her line manager 
Joe, a suggestion to which he agrees.
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Requirement 13 (Manage Scope Change) (Must-Have) The system shall permit 
the PM to enter a scope change request received from the customer, and it collects 
sign-offs and comments from relevant stakeholders.

Requirement 14 (Regularly Update Stakeholders) (Must-Have) The system 
shall send regular project updates to all stakeholders honoring the RACI matrix and 
comprising RAG status for all milestones, potential delays accrued, best model 
quality information, and key performance indicators.

Requirement 15 (Create Final Report) (Must-Have) The system shall automati-
cally generate a final report after a project is completed. The report is stored in the 
system and may be edited by the project manager and/or technical lead before send-
ing it to relevant stakeholders. The customer of the project is asked to acknowledge 
initial receipt, and by answering to what extent the project has met the criteria for 
success, the project is formally closed.

Requirement 16 (Plug-Ins) (Must-Have) The system shall be able to integrate 
different types of software via a plug-in mechanism, so that a team/organization can 
choose from a broad range of external tools.

Requirement 17 (Track Input Datasets Versions) (Must-Have) The system 
shall capture and store a short description from a business perspective, attributes, 
and metadata of each input dataset for machine learning. (Note: Metadata is data 
about data, which is the description and context of data.)

Requirement 18 (Support Team Activities) (Nice-to-Have) The system should 
provide team members with the ability to support and comment on their activities.

Requirement 19 (Track Code Versions) (Must-Have) The system shall capture 
and version code the data used for machine learning experiments.

Requirement 20 (Record Decisions and Rationales) (Must-Have) The system 
shall capture (and store in a database) any important decisions taken and the ratio-
nales behind them.

Maria has a computing degree specializing in data engineering. In the team, it 
is her task to import different input datasets and enrich them with metadata. 
The software system supports her in comparing and preparing different input 
datasets. She can add useful comments to each dataset for her team colleagues. 
The system supports her by offering the possibility to integrate several sys-
tems, which she uses as data sources.

Requirements for Machine Learning Methodology Software Tooling
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Requirement 21 (Track Output Datasets Versions) (Must-Have) The system 
shall capture and version the success metrics, attributes, and metadata of each out-
put record for machine learning. Note: Success metrics are, e.g., accuracy, error 
rate, precision, and recall.

Wendy, a data scientist on the project, has an idea for a new feature that may 
make her company’s classification model more accurate. As she is in the 
Feature Engineering phase of Data-to-Value methodology used in her project, 
she can remain in the current phase and initiate a “new feature” hypothesis 
action. She then codes up the feature extractor for her idea and triggers the 
evaluation action. It seems to help, as F1 goes up slightly, priming her to 
checks in the new version of the code. The system keeps track of the rationale 
behind her idea and links it to the change-set ID of the revision control system 
that has the code, the model version thus improved, and the database of the 
system records the new quality scores (precision, recall, F1) of her improved 
classifier. The system also automatically updates work statistics, adding 1 day 
to the Feature Engineering phase. Two days later, at the end of the month, 
stakeholders receive an email to the system’s dashboard that shows the quality 
improvements achieved in this month’s reporting period.

Bob is a junior data scientist that has recently joined Wendy’s team from a 
local university. He is smart and hard-working, but naturally, he still lacks 
real-life project experience. While, officially, Wendy mentors Bob, in practice 
she has to spend much time in meetings as she receives more and more 
responsibilities. Bob is guided by the system’s phases, each of which is asso-
ciated with guidance questions that help Bob avoid some typical “beginners’ 
pitfalls.” As he is charged with the data annotation subproject, the system 
suggests some possible tools for annotation and for inter-annotator agree-
ment, and it persists the quality of each round of gold data annotation. After 
working hard in phase Annotate More Data by Multiple Annotators, Bob initi-
ates a re-training action of the latest model based on additional gold data that 
was just annotated, and the system calls the training and evaluation scripts 
automatically. Upon completion of the automatic evaluation, quality KPIs are 
stored in the system’s database with a time stamp. Seeing the new learning 
curve of a baseline support vector machine regressor, the system suggests 
checking if it has flattened enough to suggest concluding the gold data anno-
tation work, and in doing so, he concurs. Bob spends the next couple of weeks 
training and improving various model variants, and he likes that the system 
provides a central means for him to keep track of the hyperparameter setting 
and the evaluation results of each model. He also draws motivation from see-
ing the F1 score improve over time in the “best model to date” view, which 
also shows the remaining time available for experimenting in the current proj-
ect. In the past, Bob kept track of experiments in “README” files, but proj-
ect managers would typically keep asking for them to be sent by email to 
them, which cluttered both their email inboxes.
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Requirement 22 (Track Model Provenance) (Must-Have) The system shall cap-
ture and store the short name, version number (release number), technical descrip-
tion, hyperparameter settings, training data used, and revision control identifier 
(pull request ID) of each machine learning model. Ideally, this should be done to 
minimize human effort (avoiding duplication of data by semiautomatic import/soft-
ware integration).

Requirement 23 (Track Quality over Time) (Must-Have) The system shall cap-
ture and store in a database the absolute quality as well as relative progress or 
regress of all model variants with time stamps.

Requirement 24 (Track Artifacts) (Must-Have) The system shall store all arti-
facts versioned and with project assignment.

Requirement 25 (Search) (Must-Have) The system shall be able to search for 
artifacts, stakeholders, skills, and project knowledge.

We should stress that we do not assume our catalog to be complete or even com-
plete with respect to “must-have” requirements, but merely as a first attempt to spell 
out the needs for a set of systems that – once implemented – can support a range of 
methodologies. We encourage others to supplement our list.

Alice is the Chief Technology Officer (CTO), to whom the Vice President of 
Research and Development reports, and to whom directs Wendy’s data sci-
ence group. As a key stakeholder, she receives monthly PDF reports that doc-
ument the project’s progress, and she has access to the dashboard for the 
project. Skimming over the PDF report, it occurred to her to compare the 
project with the most similar past project to see how the current performance 
holds up to that scrutiny. Click on the dashboard; she can view the actions, 
milestones, and KPIs of the current project; and by adding a second project to 
this view and by using the built-in search, she can make the dashboard show 
the most similar project side-by-side for easy comparison. The fact that the 
system’s database keeps track of all past projects’ history and outcomes per-
mits to use an organization’s past performance in order to predict future 
behavior: Alice finds that the most similar past project was delivered success-
fully, with a small-time delay of 5%, and she is relieved that this may suggest 
that this time, absent of unknown unknowns, perhaps a similar result may 
materialize.
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4.3  From Requirements Toward OO Classes/ER Entities

The above requirements help us identify a set of classes (or relational entities) as 
follows:

• Projects. The system shall maintain a persistent list of projects, some of which 
are in progress, some of which are completed, and some of which have been put 
on hold.

• Team Members. A team member has a line manager, a set of skills and associated 
availability information, and a set of roles in the project.

• Tasks. Tasks are the ultimate constituent elements of work packages in a proj-
ect plan.

• Roles. A role is the function (or set of functions) that a team member plays in a 
given project, e.g., “technical lead,” “project manager,” “data scientist,” “soft-
ware engineer,” or “data quality specialist.”

• Skills and Skill Levels. A team member can have a particular skill profile (set of 
skills at certain levels each) associated with them. A project can have a set of 
skills and levels needed associated with it.

• Stakeholders. The PM can create and maintain a list of stakeholders (typically, 
people outside the project team), who may be external or internal and have an 
interest in the project. The project’s executive sponsor, who pays for it, is a prime 
example. The system shall maintain RACI information (a classification of how to 
communicate with the stakeholder; see [29]). A stakeholder can pose a question 
to the PM. A stakeholder can view one of several progress dashboards.

• Models. A project relies on one or more machine learning components or mod-
els, each of which exists in various iterations. Models have a technical short 
name and a description, as well as link to code and training data it was used to 
induce it from. Models can be run on datasets (experiments), resulting in experi-
mental results. Model performance can be plotted on a timeline that documents 
progress regarding quality (time 𝑡 shows all models available then, singling out 
the best one).

• Experiments. A project typically comprises several experiments per machine 
learning component. An experiment comes into life once code for a model type 
is run against one or more folds of one or more datasets. Experiments can con-
clude once time allocated to experimenting is used up, sufficient quality has been 
reached, or (most often) diminishing returns on efforts invested have been 
reached.

• Datasets. A project uses one or more datasets. Datasets can be human-annotated 
or not (“raw”). Datasets can either play the role of input or source of gold data 
for either training or evaluation.

• Methodologies. A methodology defines a set of phases and possible transitions 
between them in the form of a directed graph. Each phase may contain activity 
information and other elements such as questionnaires.

• Textual Artifacts. A textual artifact is a text document (regardless of file format) 
that is uploaded (mostly automatically) to serve as the documentation for the 
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project as a whole or serves as the result (deliverable) of a methodology’s phase. 
One can view these as file attachments.

• Phases. A phase is a state (point in time associated with a set of activities and 
project subgoals) in a methodology; it can recursively contain other phases.

• Activities. An activity is something that a team member is expected to carry out, 
given the project is in a certain stage of a methodology.

• Questionnaires. A questionnaire is a set of predefined questions associated with 
some methodologies and their associated, project-specific answers. They support 
making assumptions and decisions in the project explicit, transparent, and 
shareable.

• Code. Model implementation program code is not contained in the system but 
referred to as a link to a source code change-set (e.g., in Git or a similar revision 
control system).

5  Related Work

We found five broad groups of prior art that are relevant to the work presented in this 
chapter: first, work on tool support for machine learning methodologies; second, 
relevant work on requirements capture, including requirement specifications for 
machine learning models; third, tools to construct machine learning pipelines; 
fourth, general work on tooling support for workflows, especially but not limited to 
the software engineering domain; and fifth, work on tool support for machine learn-
ing development, deployment, and operations.

5.1  Work on Tooling for Machine Learning 
Process Methodology

A useful starting point for abstracting over individual methodologies is compari-
sons: For instance, several papers offer survey and comparisons of CRISP-DM, 
SEMMA, KDD, and other methodologies [22, 30–34].

In a case study [35], 17 software engineers, data scientists, and others at a Dutch 
bank were interviewed to identify shortcoming of existing machine learning process 
models. They find that “existing development tools for machine learning are still not 
meeting the particularities of this field,” and in particular, “feasibility assessments, 
documentation, model risk assessment, and model monitoring are stages that have 
been overlooked by existing lifecycle models.”4

We are not aware of any previous work on actual requirements elicitation for 
software support tooling in the context of following a methodology.

4 The interviews predate the major Data-to-Value publications, which address several aspects of all 
of these.
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5.2  Requirements Capture

The computer science literature on requirements capture for designing software sys-
tems is vast, and it is covered in general software engineering textbooks [10, 11] as 
well as in dedicated monographs and papers [4, 12, 36–41], so we will just mention 
a few exemplary references important to our work here.

Mullery [42] describes an early method for controlled requirement specification. 
User stories have long been considered a useful tool in requirements elicitation [43].

Recently, design thinking has had a great influence on software engineering, in 
particular under the various agile methodologies. Canedo and Parente da Costa [44] 
provide a survey of the intersection of design thinking and agile software engineer-
ing. While we are not aware of previous work that derived requirement templates 
from user stories, in [45] goals are derived from a use-case based requirement speci-
fication. While we extracted the requirements from user stories manually, [46] pro-
pose an interesting idea, namely, the extraction using natural language processing 
methods (see [47] for a review).

5.3  Workbenches for Constructing Machine 
Learning Pipelines

There are a number of software systems that permit the technical experimentation 
with machine learning methods by defining workflows run by individuals, and with-
out addressing any nontechnical issues such as project management, data and code 
provenance, etc. We will just name two popular and free example systems here, but 
there are many others. Weka (short for: Waikato Environment for Knowledge 
Analysis, [48]) is an open source project originating from the University of New 
Zealand at Waikato. It is implemented in Java, therefore cross-platform, and it lets 
users define data mining/machine learning workflows visually. These can then be 
executed end to end automatically at the click of a button from reading the data to 
showing an evaluation result table.5 Orange [49] is a similar offering originating at 
the Bioinformatics Laboratory, Faculty of Computer and Information Science, 
University of Ljubljana, Slovenia. It is implemented in Python and C++ and like-
wise uses a graphical “no code” interface to define local data processing workflows 
that constitute machine learning experiments.6 RapidMiner (formerly known as 
YALE) is a commercial offering originating from work done at the University of 

5 See http://old-www.cms.waikato.ac.nz/~ml/weka/ (accessed 2023-01-30) and https://en.wikipe-
dia.org/wiki/Weka_(machine_learning) (accessed 2023-01-30).
6 See https://orangedatamining.com/widget-catalog/ (accessed 2023-01-30) for a set of the avail-
able processing resources/components that can be used in a workflow and https://www.youtube.
com/c/OrangeDataMining (accessed 2023-01-30) for a set of training videos.
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Dortmund, Germany.7 It is cross-platform and also permits the composition of data 
flows on screen via visual programming. SAS Inc., the largest privately owned soft-
ware company, also has a range of offerings in this space (SAS Enterprise Miner, 
SAS Viya, etc.).8

These and similar systems are very useful for beginners or machine learning 
users without the skills or willingness to implement code, but contrary to our goal 
here they do not integrate documentation, team collaboration, and other nontechni-
cal aspects that are essential for working in large and in particular distributed teams.

5.4  Work on Support Tooling for Business Workflows

There is a huge body of work in computer science and business informatics specifi-
cally on workflows9 and computer-supported systems for workflow management 
(see [50] for a survey).

Besides the academic literature, there are software products available for BPM 
(business process modeling) and RPA (“robotic process automation”), in particular 
from the largest enterprise software providers: SAP SE’s Signavio Process Manager 
and Oracle’s BPM Suite.10 The latter contains Oracle BPM Studio, a component that 
enables process developers to create process-based applications and for process 
analysts and developers to model business processes.

5.5  Work on Support Tooling for Machine Learning 
Development, Deployment, and Operations

The term “ML-DevOps” combines the areas of development, deployment, and 
operations of machine learning applications (in analogy to traditional software 
DevOps, cf. [51]) so that their cooperation is strengthened with a continuous pipe-
line. The objective is to reduce the release time of usable software products and to 
increase the quality of the software product in the production environment [52, 53].

7 See https://rapidminer.com (accessed 2023-01-30).
8 See https://www.sas.com (accessed 2023-01-30).
9 In computer science, “workflow” is a highly ambiguous term, which may denote business pro-
cesses (the word sense we are interested in here), allocation of work to workers in operating sys-
tems or high-performance compute clusters, and global distribution of work in grid computing 
(distributed scientific computing), among others.
10 See https://www.oracle.com (accessed 2023-01-30) and https://www.sap.com (accessed 
2023-01-30).
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Available software products in this area are Domino’s Enterprise MLOps plat-
form, DataRobot’s AI Cloud platform, and Weights & Biases’s MLOps platform.11 
The differences to the software proposed in this chapter are the lack of integration 
of (and guidance by) different (customizable) methodologies and the lack of team 
functionality. This results in disadvantages: For example, a question catalog with 
guidance questions can be provided by a methodology to help in going through the 
phases. This question catalog could recommend certain workflows and exclude 
other workflows based on the response behavior of the team members.

6  Discussion

We have collected what we believe are the core requirements for a support tool that 
facilitates implementing (following, complying with) recently proposed machine 
learning methodologies, and we have shown a subset of higher-level ones in this 
chapter (some more granular ones were not presented for space reasons). The main 
lesson to be learned from this exercise is a reaffirmation that considerable value can 
be created through the combination of well-designed processes supported by well- 
designed support tooling; however, a strong symmetry can be observed in that the 
advantages benefit more the organization and management than the team members. 
All team members need to embrace the methodology as well as the tool, which 
requires a small overhead of time and effort from everyone; however, the immediate 
benefit is to have a single go-to location where project information can be accessed 
from. Project managers and less experienced team members benefit the most from 
the tooling as specified here, the former from the centralization of project-related 
information and the latter from the guidance that the tooling provides.

It is hard to check a set of requirements for completeness in isolation; the easiest 
way to find out that everything that is needed is covered is perhaps to implement the 
requirements in a running system, so that shortcomings will quickly become appar-
ent. Ultimately, support tooling for methodologies ought to be evaluated in con-
trolled experiments, as has been proposed for methodologies themselves [54], but 
the effort to carry out such experiments is substantial.

One of the hardest problems, in our view, will be to design any supporting soft-
ware in ways that ensure it will be embraced or at least accepted by all team mem-
bers. The past has shown that many systems (including useful and well-respected 
ones like Atlassian’s JIRA issue tracking system) are rejected as “bureaucratic” or 
“overkill,” whereas others (e.g., version control systems like Git and the online ser-
vice offering it, Microsoft’s github.com, or the team chat groupware Slack) have 
become more readily accepted. One key to success here might be offering 

11 See https://www.dominodatalab.com/product/domino-enterprise-mlops-platform, https://www.
datarobot.com/platform/ and https://wandb.ai/site (accessed 2023-01-30).

J. L. Leidner and M. Reiche

https://www.dominodatalab.com/product/domino-enterprise-mlops-platform
https://www.datarobot.com/platform/
https://www.datarobot.com/platform/
https://wandb.ai/site%20


117

alternative user interfaces (e.g., based on the command line) to accommodate vary-
ing preferences among software engineers.

Another serious practical challenge is the question of how to design the software 
tool that supports the methodology in a way so that the integration of existing soft-
ware tools is possible from the project management domain (e.g., Microsoft Project, 
Omni Group’s OmniPlan, Atlassian Trello, Atlassian JIRA, SAP Project System, 
etc.), the machine learning experimentation domain (e.g., RapidMiner, Python/
Google Tensorflow, Weka, JetBrains PyCharm, JetBrains IntelliJ, Microsoft Code), 
team and communication domain (e.g., email, Slack, Zoom), and data and informa-
tion management domain (e.g., PostgreSQL, Git, Amazon Web Services Simple 
Storage Service) (Fig. 6). Project plans need to be importable, and activities belong-
ing to a methodology’s phases must be able to trigger creation of the tasks assigned 
to team members, for instance, in JIRA, automatically.

The following four refined yet minimal requirements fall out of the above discus-
sion and can be seen to specialize the original Requirement 16. They appear to be 
critical for the system’s practical success. At the same time, it is challenging to 
implement them in a way that avoids the anticipated system to become more than 
loosely coupled with the various third-party systems supported. The plug-in mecha-
nism, therefore, must be designed to be simple, generic, portable, and 
minimalistic.

Requirement 26 (Import Tasks) (Nice-to-Have) The system should provide an 
inbound interface for third-party plug-ins to import sets of tasks from external proj-
ect management systems (e.g., Microsoft Project, Omni Group’s OmniPlan).

Requirement 27 (Export Tasks) (Nice-to-Have) The system should provide an 
outbound interface for third-party plug-ins to export sets of tasks to external ticket-
ing management systems (e.g., Atlassian JIRA or Trello).

Requirement 28 (Synchronize Contacts, Skills, and Comments) (Nice-to- 
Have) The system should provide an inbound and outbound interface for third- 
party plug-ins to import and export project-related communications (e.g., email, 
Slack), people names, roles, and contacts (e.g., Lightweight Directory Access 

Fig. 6 Loosely coupled integration of external systems
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Protocol, Internet Message Access Protocol, Microsoft Exc[]hange) from and to 
external communication as well as people skills, expertise, and experience via per-
sonnel management systems (e.g., SAP SuccessFactors, Kenjo, Workday).

Requirement 29 (Synchronize Development Activity) (Nice-to-Have) The sys-
tem should provide an inbound and outbound interface for third-party plug-ins to 
import and export action or change notifications from and to external experimenta-
tion management systems (e.g., SAS, RapidMiner) and data (incl. model) stores 
(e.g., RNA Mapping Database, Amazon Web Services Simple Storage Service).

7  Summary, Conclusions, and Future Work

In this chapter, we have described a set of requirements for software tooling support 
for machine learning methodologies. We tried to do so without hard-wiring assump-
tions of any specific methodology, abstracting the narration to the level of following 
a predefined workflow.

Our result is a list of 29 presented functional requirements, with indications 
whether we rate each as essential or optional. In drawing up this list, we followed 
the proven template-based approach for requirements capture.

While there has been a lot of prior research on business process modeling, 
including software tooling, we are not aware of any previous requirements capture 
attempt for machine learning methodology software support.

In future work, our findings could be confirmed or challenged by holding inter-
views with experienced stakeholders to ensure our catalog of requirements is com-
plete. High-level user requirements ought to be translated to specific system 
requirements that in turn inform a system architecture for the envisaged system. A 
system or a set of systems then ought to be implemented that embody subsets of 
these requirements as the logical next step. A prototype could then serve to affirm 
the consistency and completeness of the requirements.

While this is going to be a lot of work, it might not be hard work; in contrast, the 
adoption of such tools ought to be maximized, and the effectiveness of the support 
provided by such tools ought to be evaluated (e.g., using questionnaires similar to 
Lending and Chervany [55]), tasks we consider both very challenging. Furthermore, 
future work could study how to maximize adoption of tools by the various individu-
als that make up project teams and other stakeholders.
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