
97

Requirements for Machine Learning
Methodology Software Tooling

Jochen L. Leidner and Michael Reiche

1 Introduction

Over the course of the last two decades, there has been an enormous growth in the
importance of data-intensive projects, projects aiming at obtaining data-driven
insights (“analytics”), and components that apply automatic induction, also known
as machine learning, instead of traditional algorithms, to solve a problem at hand.
This is because there is a human desire to push the “how” question onto the machine
for solving.

This move from algorithms to “soft computing” models induced from data also
means that new methodologies are needed that recommend news processes (e.g., to
annotate datasets) and new best practices (e.g., to compute inter-annotator agree-
ment between annotators) to build such models. These (we will take a closer look
below) extend our toolbox of software engineering methodologies (waterfall, agile
kanban,1 etc.) with methodologies suitable for and indeed specifically designed for
machine learning based working, which is typically quantitative, iterative, and
experimental.

1 A kanban board is a software tool to support the kanban (Japanese for “billboard”) methodology,
which relies on two primary practices: 1. to visualize work and 2. to limit work in progress.

J. L. Leidner (*)
Coburg University of Applied Sciences, Coburg, Germany

KnowledgeSpaces UG (haftungsbeschränkt), Coburg, Germany
e-mail: leidner@acm.org

M. Reiche
Coburg University of Applied Sciences and Arts, Coburg, Germany
e-mail: michael.reiche@hs-coburg.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Mora et al. (eds.), Development Methodologies for Big Data Analytics
Systems, Transactions on Computational Science and Computational
Intelligence, https://doi.org/10.1007/978-3-031-40956-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40956-1_4&domain=pdf
mailto:leidner@acm.org
mailto:michael.reiche@hs-coburg.de
https://doi.org/10.1007/978-3-031-40956-1_4#DOI

98

As we transition to this new breed of methodology, naturally we would like to
make use of state-of-the-art software tools that support our methodology of choice.
Where traditional software engineering gave us computer-aided software engineer-
ing (CASE) tools [2], we hope for equivalent guidance in the new, data-centric world.

To this end, we present a collection of requirements for such a software stack: In
this chapter, we will gather and organize requirements for software tooling to sup-
port machine learning/data science methodologies.2 For the most part, we will be
able to defer the choice of methodology, as it turns out the software tooling require-
ments can be separated from any particular methodology.

Software engineering—and in the era of soft computing this includes construc-
tion of machine learning models—does not happen in isolation: stakeholders need
to be educated, influenced, convinced and kept informed, developers briefed about
interfaces and non-formalized aspects of integration and maintenance; even holders
of financial roles need to learn that model refresh is a recurring post-project activity
that needs funding and staffing, which may be unwelcome news in projects moti-
vated by the “saving through automation” promised that machine learning offers.
While machine learning researchers typically zoom in on only the mathematical or
experimental work surrounding parameter estimation and evaluation of their mod-
els, real- life projects require extraordinary amounts of interactions with the environ-
ment. This requires new methodologies that are now beginning to emerge, and these
in turn require software tooling to capture, store, process, retrieve, etc. the project
knowledge that needs to be managed.

The remainder of this chapter is structured as follows: Sect. 2 provides some
background about requirements and the requirements capture process. Section 3
briefly recapitulates an exemplary selection of methodologies for machine learning
projects. Section 4 describes our collected requirements for methodology software
tooling, including requirements from the perspective of what stakeholders need
from the system to support their work. Section 5 surveys some related work. In Sect.
6, we provide a critical discussion. Finally, Sect. 7 summarizes our findings and
concludes with suggestions for future work.

2 Method: From Stakeholders to Requirements Capture

In order to develop software tools to support the application of (and compliance
with) machine learning methodologies that assist project teams and other stakehold-
ers with the functionalities required in the realization of machine learning projects,
suitable requirements must be identified, formulated in high quality, and docu-
mented in a structured way [3–5]. Stakeholders are individuals or organizations
with an interest in the planned system [4, p. 10]. Typical team members and other
stakeholders’ responsibilities of a machine learning project and their tasks can be
found in Table 1.

2 In the following, the term “machine learning” will be used, although it is also intended to refer to
the entire field of data science.

J. L. Leidner and M. Reiche

99

Table 1 Team members and other stakeholders and their typical responsibilities

Team members (top)
and other
stakeholders
(bottom) Responsibilities

Data scientist Model engineering including data preparation, algorithm selection,
hyperparameters selection, and model evaluation [6]

Data engineer Data processing including data collection, feature engineering, big data
management, data pipeline management, and dataset building [6, 7]

Software engineer/
machine learning
engineer

Turn the raw machine learning problem into a prototype or a well-
engineered product, monitoring of drifts and adjustments of those [6, 8]

Technical lead Take charge of all technical decisions
Project manager
(PM)

Administer, facilitate, manage: setting, updating, and monitoring team
activities, project, and time plans; communication with stakeholders;
defines the business goal; review the achievement of objectives; mediate
issues and fights in the team, enabling innovation [6, 8]

Machine learning
solution
architect

Integration of machine learning into the IT infrastructure [8]

User experience
specialist

Ensures interacting with the system will be intuitive, pleasant, and
successful (free from obstacles) [8]

Subject-matter expert Bringing understanding of a subject area [8]
User (focus group) Provides feedback and requirements. “User” refers to an end user of the

system – product or service – that the machine learning models are going
to be part of

Executive sponsor Making budget decisions, establishing a vision and several main goals of
the project [8]

The IEEE defines a requirement as follows [9, p. 62]: “(1) A condition or capa-
bility needed by a user to solve a problem or achieve an objective. (2) A condition
or capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed documents. (3)
A documented representation of a condition or capability as in (1) or (2)” [9, p. 62].

Suitable requirements can be formulated generally at a higher level from a user
perspective in natural language (user requirement) or in detail at a deeper level from
a system perspective close to the software to be developed (system requirement) [5,
10]. Requirements do not provide information on how they are to be implemented.
Rather, they provide information about what the system was intended to do [11,
p. 230–231]. From the variants for classifying requirements, we use those that dis-
tinguish according to (1) priority; (2) necessity, i.e., must/should/will); and (3) func-
tionality (nonfunctional/functional) [12, p. 80]. We use a template-based approach
to formulate the requirements (see Fig. 1).

In principle, both analytical and empirical methods are suitable for the system-
atic eliciting of requirements. In Sect. 4, we elicit requirements for the needs of the
typical stakeholders with the definition of characteristic user stories, which are
derived from special properties of machine learning methodologies and from

Requirements for Machine Learning Methodology Software Tooling

100

practical experience of the two authors of this chapter, respectively. From these, we
extract a set of formal requirement templates (Fig. 1) and eventually entities that can
form the basis for a class diagram (in an object-oriented analysis) or an ER (entity-
relationship) diagram.

3 Machine Learning Process Models

In the following, we will recapitulate some selected methodologies starting with the
oldest that have been proposed for projects using machine learning, data mining,
and data science generally speaking. For detailed surveys, see the related work below.

3.1 KDD

The KDD process [14–16] resulted from the “Knowledge Discovery from
Databases” community, which also created the conference series of the same name.
Data mining, according to it, is a five-step process with iterations to get from raw
data to knowledge. First, carrying out a data selection step results in target data, a
preprocessing activity leads to preprocessed data, transformations lead to trans-
formed data, and then the actual data mining turns it into patterns, which are inter-
preted by humans and/or evaluated by machine and/or humans (Fig. 2).

Fig. 1 Requirement template [13]

Fig. 2 The KDD process (simplified after Fig. 1 from [15, p. 29])

J. L. Leidner and M. Reiche

101

KDD starts in its first phase with the selecting a dataset (database, set of variables
or data sample under consideration). Preprocessing work then removes noise/outli-
ers, plugs gaps by imputation, and dealing with database schemas falls into this
step. After that, the data is transformed (reduced and/or projected), which includes
finding and extracting features that are useful for the task at hand and reducing its
complexity. Next, the data mining algorithms/methods have to be selected (models,
parameters). Framing or choosing the function of the data mining step then involves
reflecting on the purpose of the model (e.g., summarization, classification, regres-
sion or clustering). The actual data mining phase applies classification, regression,
some form of clustering, or sequence modeling suitable for the goals and dataset at
hand. The final phase includes making sense of automatically discovered patterns,
potentially using visualizations, weeding out superfluous or useless patterns, and
translating useful patterns into language understandable by the project’s stakehold-
ers. Implicit, but accounted for in the methodology’s prose descriptions, is also
making use of the resulting knowledge gained, which often means integrating it into
a software system, which the authors call “performance system”; this corresponds
to the deployment phase in other methodologies. Documenting and reporting con-
cludes a KDD process-based project.

3.2 SEMMA

The SEMMA methodology [17] was developed by SAS, Inc., a software company
which also sells the SAS Enterprise Miner software, which is somewhat aligned
with the SEMMA process. The process is divided into the following five phases:

• Sample: A subset of the appropriate data must first be selected. Identifying vari-
ables or factors (both dependent and independent) influencing the process is car-
ried out in this phase, as is partitioning the data into training and test folds.

• Explore: In an exploratory stage, uni- or multivariate analysis is conducted to
detect gaps in the data and to study interconnected relationships; this phase is
expected to rely heavily on data visualization techniques.

• Modify: Data is cleaned and transformed in order to prepare it for the modeling,
using insights from the previous exploration phase.

• Model: This phase is where the core modeling step applies, i.e., a variety of data
mining techniques are applied with the intention of identifying the one most suit-
able for solving the business problem at hand.

• Assess: Evaluate the model (How useful and reliable is it? How well it solves the
problem?). Computing quantitative evaluation metrics of the best model’s qual-
ity is part of this last phase.

SEMMA has had limited impact to date, which is likely due to the fact that it was
created (and is owned) by a single proprietary company.

Requirements for Machine Learning Methodology Software Tooling

102

3.3 CRISP-DM

In contrast to the KDD process, the Cross-Industry Standard Process for Data
Mining (CRISP-DM for short) [18, 19] was developed in an industrial environment
and emerged from the cooperation of the companies NCR System Engineering,
SPSS Inc., and DaimlerChrysler AG. The iterative CRISP-DM starts with the
Business Understanding phase before and ends with the Deployment phase after the
cycle of the KDD process (Fig. 3). Because activities not previously considered are
included here, the process is more comprehensive. The process is divided into the
following six phases:

• Business Understanding: From the business perspective, project goals are deter-
mined and requirements and resources are defined in this initial phase. All find-
ings are incorporated into a project plan.

• Data Understanding: Here, data is collected, described, and analyzed to explore it.
• Data Preparation: The goal of this phase is to create an adequate dataset for the

following modeling. For this process, data is selected, cleaned, transformed,
merged, and formatted.

• Modeling: In this phase, the modeling itself is performed. Therefore, modeling
techniques are applied and parameters are calibrated.

• Evaluation: The obtained model is tested for its final use by evaluating how the
defined business objectives from the Business Understanding phase have been
achieved. In addition, past activities are reviewed, and next steps are determined.

• Deployment: The model and the knowledge gained through it are made usable.

During the use of the model, it is monitored and, if necessary, maintained.
Besides that, the project is documented and a final report is prepared.

The recommended procedures of the CRISP-DM are described in a detailed
handbook. It states that each phase has several generic activities, which in turn are
associated with artifacts, mostly in the form of reports. A project that adapts the
CRISP-DM in its pure form and is carried out entirely according to its manual will
therefore result in a comprehensively documented project. However, the process is
often adapted to the individual circumstances of a project, which leads to the omis-
sion of given elements or the addition of new ones [20]. It is still widely used today
and can be considered the de facto standard in the field of data-intensive analytics
projects [20–22].

Fig. 3 The CRISP-DM methodology (simplified after Fig. 2 from [18, p. 10])

J. L. Leidner and M. Reiche

103

3.4 CRISP-ML(Q)

CRISP-ML(Q) (short for “Cross-Industry Standard Process for the development of
Machine Learning applications with Quality assurance methodology”) is an attempt
(by a group that did not include the original CRISP-DM creators) to adjust
CRISP-DM from data mining to machine learning work [23].3 It takes into account
the special characteristics of machine learning, such as monitoring and maintaining
a machine learning application in a changing deployed environment. As the name
already indicates, essential concepts have been taken over from the CRISP-DM. In
CRISP-DM(Q), the two phases Business Understanding and Data Understanding
are merged into the Business and Data Understanding phase. The term “Maintenance”
has found its way into the name of the Monitoring and Maintenance phase. Quality
assurance measures to mitigate risks are proposed for all six phases of the iterative
methodology.

3.5 Data-to-Value (D2V)

The Data-to-Value methodology (“D2V” for short) is a development process model
[24–26] for the construction of systems that use (mostly supervised) machine learn-
ing in at least some of its components; it was developed, tested, and taught during
the teaching of university students at various universities (Essex, Zurich, Frankfurt,
Sheffield, Coburg) over the course of a decade, and it is motivated by the first
author’s long-standing industry practice in research and development projects in
natural language processing and information retrieval system construction of appli-
cations for professionals in the vertical domains of news/journalism, finance/insur-
ance, legal, risk/security, and pharmacology. It offers several characteristics that are
unique at the time of writing:

• It is an “evaluation first” methodology, which means that quantifying models is
addressed before any models are actually built; evaluation scaffolding is con-
structed early, so ongoing quantitative evaluation can guide the development pro-
cess, following the saying “what you can’t measure, you can’t improve.”

• It has an intricate number of stages – over 30 – each of which is associated with
some from a set of 100+ guidance questions to help more junior team members
around standard pitfalls and to create more consistency for senior team members.

• In particular, acknowledging the importance of data quality, the gold data anno-
tation process is spelled out in detail, which is surprisingly lacking from most
natural language processing and machine learning text books published to date.

3 https://ml-ops.org/content/crisp-ml

Requirements for Machine Learning Methodology Software Tooling

https://ml-ops.org/content/crisp-ml

104

• Ethical and technology impact considerations are not treated as an optional after-
thought; following [27, 28], they have been integrated into the process by design,
in the form of various checkpoints.

• D2V features a “feasibility study” phase early in a project, which was motivated
by real-life requests by managers for impossible projects, in particular predictive
modeling of target variables for which no predictive signal is available in the
available datasets. This step dramatically de-risks data-intensive projects and
helps reduce sunk cost.

Figures 4 and 5 show the various stages of the D2V methodology.
Note that the boxes with double-line frames are indicative of subprocesses. The

feasibility study is a subgraph that contains a copy of the whole graph (except fea-
sibility study itself) in a way that permits many steps to be partially completed or
skipped; its purpose is, ahead of committing to a full-blown project, to check
whether there is enough signal in the data so that the predictive models conceived to
be constructed later actually can be built. Due to space reasons, we must refer the
interested reader to the open access technical report [25], which contains the most
detailed description of the process model to date.

Now that we have sketched the space of common and recent methodologies, we
can look into the list of core requirements for a software system that supports these
and other similar methodologies.

Fig. 4 The Data-to-Value phases: overall process (after [26])

J. L. Leidner and M. Reiche

105

Fig. 5 Further Data-to-Value phases: (i) gold data annotation subprocess (left), (ii) system deploy-
ment (right; after [26])

4 Requirements for Software Support Tools

We sourced our requirements as follows: First, we derived many requirements
directly or indirectly from properties of the methodologies that the software should
support, especially where these overlap. Second, we supplemented these by require-
ments gained through introspection by extracting them from user stories by the two
authors, who have a combined 30 years of experience.

We will describe our findings starting with user stories: A series of them put the
users of the system (team, in particular PM, and other stakeholders) at the center.
We then derive a longer list of requirements of instantiated requirement templates
from these; for brevity, we show a selection of the most relevant requirements here,
and we will exclusively focus on functional requirements. Finally, we derive a list
of the key classes (in object-oriented thinking) or entities (in entity-relationship
thinking), respectively.

4.1 Overall Vision

In addition to our presentation of the functional requirements, we begin with a
vision statement to capture the overall spirit and scope of the system that we antici-
pate being a useful support tool for machine learning projects with the following
particular methodologies:

There is a need for a system that guides a project team to follow a chosen
machine learning methodology and which manages the project’s metadata
centrally, persistently, and transparently.

Requirements for Machine Learning Methodology Software Tooling

106

This vision of a system that supports its users by providing process guidance and
metadata management is like a meta-level requirement: All other requirements
should at least not be in conflict with it. By saying “chosen” methodology, we imply
that not a particular methodology is hardwired in the software we envisage but that
it should be designed and implemented in a way that is separate from any particular
methodology and thus be capable of supporting most, past, present, and future
methodologies; in order words, we attempt to generalize across several or most
approaches. This requirement seems realistic, as in the realm of workflow tools,
such a generic approach has already been successful (see below).

4.2 User Stories and Requirement Templates

We now present several user stories, followed by the requirements extracted
from them.

Requirement 1 (Track Current Phase) (Must-Have) The system shall maintain
the current state (active phase) of the project with respect to the methodology that
it uses.

Requirement 2 (Monitor and Control Project) (Must-Have) The system shall
offer possibilities to monitor and control the project.

Requirement 3 (Track Actions and Time per Phase) (Must-Have) The system
shall capture “what happens when” in the project, including the duration (in calen-
dar days) spent in each phase.

Requirement 4 (Import Methodologies) (Must-Have) The system shall let the
user model import one (from a predefined library of given methodology) workflow.

Requirement 5 (Edit/Customize Methodologies) (Must-Have) The system shall
let the user customize a methodology’s workflow for a project.

Jack is an experienced project manager. His company uses a new software to
support a range of machine learning methodologies, as it improves his every-
day professional life in many ways: Instead of having to gather specifics for a
machine learning project (phases, paths, quality, etc.) from multiple systems,
he can now use one system one-stop shop tool to capture, store, and commu-
nicate a project’s status and progress to his superiors and team members as
well as to control and monitor his projects.

J. L. Leidner and M. Reiche

107

Requirement 6 (Support Multiple Methodologies) (Must-Have) The system
shall associate one methodology with each project.

Requirement 7 (Track Actions and Time per Phase) (Must-Have) The system
shall log project actions conducted in a permanent read-only activity protocol.

Requirement 8 (Capture and Categorize Stakeholders) (Must-Have) The sys-
tem shall capture all project stakeholder names, roles, and their associated RACI
categories.

Requirement 9 (Create Artifacts) (Must-Have) The system shall automatically
create document-based and/or document-like artifacts for evaluating completed
phases and/or activities. (Note: An artifact is a by-product created during the
machine learning development process, such as datasets, models, or documents.)

Requirement 10 (Ask Guidance Questions and Record Answers) (Must-
Have) The system shall ask the project manager the set of potential guidance ques-
tions associated with a phase (if the chosen methodology posits them) and capture
their answers. If they do not know an answer, permit entry of a list of team members
(“share/forward”) that may be able to answer.

At the beginning of a project, Jack must define which methodology
(CRISP-DM, Data-to-Value, etc.) should be used. The phases and paths are
then automatically recorded in the software as a default workflow of the meth-
odology. This workflow, including phases and paths, can be adopted or cus-
tomized. Jack is able to enrich the selected workflow with project specifics,
including the planned duration of sections, the project participants (core team)
and other stakeholders, and their roles and the RACI (responsible, account-
able, consulted, informed) category assigned to them [29]. All changes to the
project and their history are automatically stored and versioned. Target times
specified by him can be compared with the actual numbers, or with those of
past projects. If guidance questions are provided by the methodology or
requested by the users, then Jack can answer them himself or pass them on to
his team, thereby determining common processes of the machine learning
project. All answers are stored in the system’s database.

Requirements for Machine Learning Methodology Software Tooling

108

Requirement 11 (Manage Team) (Must-Have) The system shall capture the ini-
tial team, the role(s) of each member, skills required, skills needed for the project,
as well as ongoing team changes during the project.

Requirement 12 (Manage Tasks) (Must-Have) The system shall permit team
members to view their assigned (or all) tasks that are associated with the given
methodology’s current phase. They can also change the status, using the ternary
states “OPEN,” “IN PROGRESS,” and “COMPLETED”; tasks are automatically
synchronized with external third-party software systems from the project manage-
ment and the information management domains.

All project participants can view the status of the project and the progress in
the workflow at any time on the central view of a web-based dashboard, while
stakeholders external to the team get to see a specific view. The team can view
their personal task inbox as well as the global task list for current phrase with
respect to the methodology. Important success indicators, activities already
carried out, and activities still to be carried out are shown. RAG tags (red-
amber- green) are used to convey high-level status information to senior stake-
holders. On the one hand, the visualization of the dashboards at the moment
of viewing can serve as a basis for discussion vis-à-vis stakeholders. On the
other hand, standard reports can be sent at regular intervals, or ad hoc reports
can be sent via email or other communication channels when defined events
occur. A final report is semiautomatically generated by the system at the end
of each phase and at the end of each project. Jack can view the current project
and also past or concurrent projects he is entitled to. These are stored in the
system directly or through links to a project database. The presentation of
several projects side-by-side enables them to be compared with each other,
and all data is persisted for long-term archival purposes.

Jack can enter needed skills and skill levels for the project and then adds
Sarah to the project as a team member in a data science role. The system is
aware of her skills in data science, Python programming, and in particular her
experience with clustering methods; however, as the system detects that Sarah
has not yet got experience with Apache Hadoop and Apache Spark, two stan-
dard systems for distributed processing in big data projects, which Jack had
indicated as needed for the project, the system alerts Jack to the skill gap, and
because the formal start of the project is still a few weeks away, Jack proposes
Sarah be sent to a training course as a means of upskilling to her line manager
Joe, a suggestion to which he agrees.

J. L. Leidner and M. Reiche

109

Requirement 13 (Manage Scope Change) (Must-Have) The system shall permit
the PM to enter a scope change request received from the customer, and it collects
sign-offs and comments from relevant stakeholders.

Requirement 14 (Regularly Update Stakeholders) (Must-Have) The system
shall send regular project updates to all stakeholders honoring the RACI matrix and
comprising RAG status for all milestones, potential delays accrued, best model
quality information, and key performance indicators.

Requirement 15 (Create Final Report) (Must-Have) The system shall automati-
cally generate a final report after a project is completed. The report is stored in the
system and may be edited by the project manager and/or technical lead before send-
ing it to relevant stakeholders. The customer of the project is asked to acknowledge
initial receipt, and by answering to what extent the project has met the criteria for
success, the project is formally closed.

Requirement 16 (Plug-Ins) (Must-Have) The system shall be able to integrate
different types of software via a plug-in mechanism, so that a team/organization can
choose from a broad range of external tools.

Requirement 17 (Track Input Datasets Versions) (Must-Have) The system
shall capture and store a short description from a business perspective, attributes,
and metadata of each input dataset for machine learning. (Note: Metadata is data
about data, which is the description and context of data.)

Requirement 18 (Support Team Activities) (Nice-to-Have) The system should
provide team members with the ability to support and comment on their activities.

Requirement 19 (Track Code Versions) (Must-Have) The system shall capture
and version code the data used for machine learning experiments.

Requirement 20 (Record Decisions and Rationales) (Must-Have) The system
shall capture (and store in a database) any important decisions taken and the ratio-
nales behind them.

Maria has a computing degree specializing in data engineering. In the team, it
is her task to import different input datasets and enrich them with metadata.
The software system supports her in comparing and preparing different input
datasets. She can add useful comments to each dataset for her team colleagues.
The system supports her by offering the possibility to integrate several sys-
tems, which she uses as data sources.

Requirements for Machine Learning Methodology Software Tooling

110

Requirement 21 (Track Output Datasets Versions) (Must-Have) The system
shall capture and version the success metrics, attributes, and metadata of each out-
put record for machine learning. Note: Success metrics are, e.g., accuracy, error
rate, precision, and recall.

Wendy, a data scientist on the project, has an idea for a new feature that may
make her company’s classification model more accurate. As she is in the
Feature Engineering phase of Data-to-Value methodology used in her project,
she can remain in the current phase and initiate a “new feature” hypothesis
action. She then codes up the feature extractor for her idea and triggers the
evaluation action. It seems to help, as F1 goes up slightly, priming her to
checks in the new version of the code. The system keeps track of the rationale
behind her idea and links it to the change-set ID of the revision control system
that has the code, the model version thus improved, and the database of the
system records the new quality scores (precision, recall, F1) of her improved
classifier. The system also automatically updates work statistics, adding 1 day
to the Feature Engineering phase. Two days later, at the end of the month,
stakeholders receive an email to the system’s dashboard that shows the quality
improvements achieved in this month’s reporting period.

Bob is a junior data scientist that has recently joined Wendy’s team from a
local university. He is smart and hard-working, but naturally, he still lacks
real-life project experience. While, officially, Wendy mentors Bob, in practice
she has to spend much time in meetings as she receives more and more
responsibilities. Bob is guided by the system’s phases, each of which is asso-
ciated with guidance questions that help Bob avoid some typical “beginners’
pitfalls.” As he is charged with the data annotation subproject, the system
suggests some possible tools for annotation and for inter-annotator agree-
ment, and it persists the quality of each round of gold data annotation. After
working hard in phase Annotate More Data by Multiple Annotators, Bob initi-
ates a re-training action of the latest model based on additional gold data that
was just annotated, and the system calls the training and evaluation scripts
automatically. Upon completion of the automatic evaluation, quality KPIs are
stored in the system’s database with a time stamp. Seeing the new learning
curve of a baseline support vector machine regressor, the system suggests
checking if it has flattened enough to suggest concluding the gold data anno-
tation work, and in doing so, he concurs. Bob spends the next couple of weeks
training and improving various model variants, and he likes that the system
provides a central means for him to keep track of the hyperparameter setting
and the evaluation results of each model. He also draws motivation from see-
ing the F1 score improve over time in the “best model to date” view, which
also shows the remaining time available for experimenting in the current proj-
ect. In the past, Bob kept track of experiments in “README” files, but proj-
ect managers would typically keep asking for them to be sent by email to
them, which cluttered both their email inboxes.

J. L. Leidner and M. Reiche

111

Requirement 22 (Track Model Provenance) (Must-Have) The system shall cap-
ture and store the short name, version number (release number), technical descrip-
tion, hyperparameter settings, training data used, and revision control identifier
(pull request ID) of each machine learning model. Ideally, this should be done to
minimize human effort (avoiding duplication of data by semiautomatic import/soft-
ware integration).

Requirement 23 (Track Quality over Time) (Must-Have) The system shall cap-
ture and store in a database the absolute quality as well as relative progress or
regress of all model variants with time stamps.

Requirement 24 (Track Artifacts) (Must-Have) The system shall store all arti-
facts versioned and with project assignment.

Requirement 25 (Search) (Must-Have) The system shall be able to search for
artifacts, stakeholders, skills, and project knowledge.

We should stress that we do not assume our catalog to be complete or even com-
plete with respect to “must-have” requirements, but merely as a first attempt to spell
out the needs for a set of systems that – once implemented – can support a range of
methodologies. We encourage others to supplement our list.

Alice is the Chief Technology Officer (CTO), to whom the Vice President of
Research and Development reports, and to whom directs Wendy’s data sci-
ence group. As a key stakeholder, she receives monthly PDF reports that doc-
ument the project’s progress, and she has access to the dashboard for the
project. Skimming over the PDF report, it occurred to her to compare the
project with the most similar past project to see how the current performance
holds up to that scrutiny. Click on the dashboard; she can view the actions,
milestones, and KPIs of the current project; and by adding a second project to
this view and by using the built-in search, she can make the dashboard show
the most similar project side-by-side for easy comparison. The fact that the
system’s database keeps track of all past projects’ history and outcomes per-
mits to use an organization’s past performance in order to predict future
behavior: Alice finds that the most similar past project was delivered success-
fully, with a small-time delay of 5%, and she is relieved that this may suggest
that this time, absent of unknown unknowns, perhaps a similar result may
materialize.

Requirements for Machine Learning Methodology Software Tooling

112

4.3 From Requirements Toward OO Classes/ER Entities

The above requirements help us identify a set of classes (or relational entities) as
follows:

• Projects. The system shall maintain a persistent list of projects, some of which
are in progress, some of which are completed, and some of which have been put
on hold.

• Team Members. A team member has a line manager, a set of skills and associated
availability information, and a set of roles in the project.

• Tasks. Tasks are the ultimate constituent elements of work packages in a proj-
ect plan.

• Roles. A role is the function (or set of functions) that a team member plays in a
given project, e.g., “technical lead,” “project manager,” “data scientist,” “soft-
ware engineer,” or “data quality specialist.”

• Skills and Skill Levels. A team member can have a particular skill profile (set of
skills at certain levels each) associated with them. A project can have a set of
skills and levels needed associated with it.

• Stakeholders. The PM can create and maintain a list of stakeholders (typically,
people outside the project team), who may be external or internal and have an
interest in the project. The project’s executive sponsor, who pays for it, is a prime
example. The system shall maintain RACI information (a classification of how to
communicate with the stakeholder; see [29]). A stakeholder can pose a question
to the PM. A stakeholder can view one of several progress dashboards.

• Models. A project relies on one or more machine learning components or mod-
els, each of which exists in various iterations. Models have a technical short
name and a description, as well as link to code and training data it was used to
induce it from. Models can be run on datasets (experiments), resulting in experi-
mental results. Model performance can be plotted on a timeline that documents
progress regarding quality (time 𝑡 shows all models available then, singling out
the best one).

• Experiments. A project typically comprises several experiments per machine
learning component. An experiment comes into life once code for a model type
is run against one or more folds of one or more datasets. Experiments can con-
clude once time allocated to experimenting is used up, sufficient quality has been
reached, or (most often) diminishing returns on efforts invested have been
reached.

• Datasets. A project uses one or more datasets. Datasets can be human-annotated
or not (“raw”). Datasets can either play the role of input or source of gold data
for either training or evaluation.

• Methodologies. A methodology defines a set of phases and possible transitions
between them in the form of a directed graph. Each phase may contain activity
information and other elements such as questionnaires.

• Textual Artifacts. A textual artifact is a text document (regardless of file format)
that is uploaded (mostly automatically) to serve as the documentation for the

J. L. Leidner and M. Reiche

113

project as a whole or serves as the result (deliverable) of a methodology’s phase.
One can view these as file attachments.

• Phases. A phase is a state (point in time associated with a set of activities and
project subgoals) in a methodology; it can recursively contain other phases.

• Activities. An activity is something that a team member is expected to carry out,
given the project is in a certain stage of a methodology.

• Questionnaires. A questionnaire is a set of predefined questions associated with
some methodologies and their associated, project-specific answers. They support
making assumptions and decisions in the project explicit, transparent, and
shareable.

• Code. Model implementation program code is not contained in the system but
referred to as a link to a source code change-set (e.g., in Git or a similar revision
control system).

5 Related Work

We found five broad groups of prior art that are relevant to the work presented in this
chapter: first, work on tool support for machine learning methodologies; second,
relevant work on requirements capture, including requirement specifications for
machine learning models; third, tools to construct machine learning pipelines;
fourth, general work on tooling support for workflows, especially but not limited to
the software engineering domain; and fifth, work on tool support for machine learn-
ing development, deployment, and operations.

5.1 Work on Tooling for Machine Learning
Process Methodology

A useful starting point for abstracting over individual methodologies is compari-
sons: For instance, several papers offer survey and comparisons of CRISP-DM,
SEMMA, KDD, and other methodologies [22, 30–34].

In a case study [35], 17 software engineers, data scientists, and others at a Dutch
bank were interviewed to identify shortcoming of existing machine learning process
models. They find that “existing development tools for machine learning are still not
meeting the particularities of this field,” and in particular, “feasibility assessments,
documentation, model risk assessment, and model monitoring are stages that have
been overlooked by existing lifecycle models.”4

We are not aware of any previous work on actual requirements elicitation for
software support tooling in the context of following a methodology.

4 The interviews predate the major Data-to-Value publications, which address several aspects of all
of these.

Requirements for Machine Learning Methodology Software Tooling

114

5.2 Requirements Capture

The computer science literature on requirements capture for designing software sys-
tems is vast, and it is covered in general software engineering textbooks [10, 11] as
well as in dedicated monographs and papers [4, 12, 36–41], so we will just mention
a few exemplary references important to our work here.

Mullery [42] describes an early method for controlled requirement specification.
User stories have long been considered a useful tool in requirements elicitation [43].

Recently, design thinking has had a great influence on software engineering, in
particular under the various agile methodologies. Canedo and Parente da Costa [44]
provide a survey of the intersection of design thinking and agile software engineer-
ing. While we are not aware of previous work that derived requirement templates
from user stories, in [45] goals are derived from a use-case based requirement speci-
fication. While we extracted the requirements from user stories manually, [46] pro-
pose an interesting idea, namely, the extraction using natural language processing
methods (see [47] for a review).

5.3 Workbenches for Constructing Machine
Learning Pipelines

There are a number of software systems that permit the technical experimentation
with machine learning methods by defining workflows run by individuals, and with-
out addressing any nontechnical issues such as project management, data and code
provenance, etc. We will just name two popular and free example systems here, but
there are many others. Weka (short for: Waikato Environment for Knowledge
Analysis, [48]) is an open source project originating from the University of New
Zealand at Waikato. It is implemented in Java, therefore cross-platform, and it lets
users define data mining/machine learning workflows visually. These can then be
executed end to end automatically at the click of a button from reading the data to
showing an evaluation result table.5 Orange [49] is a similar offering originating at
the Bioinformatics Laboratory, Faculty of Computer and Information Science,
University of Ljubljana, Slovenia. It is implemented in Python and C++ and like-
wise uses a graphical “no code” interface to define local data processing workflows
that constitute machine learning experiments.6 RapidMiner (formerly known as
YALE) is a commercial offering originating from work done at the University of

5 See http://old-www.cms.waikato.ac.nz/~ml/weka/ (accessed 2023-01-30) and https://en.wikipe-
dia.org/wiki/Weka_(machine_learning) (accessed 2023-01-30).
6 See https://orangedatamining.com/widget-catalog/ (accessed 2023-01-30) for a set of the avail-
able processing resources/components that can be used in a workflow and https://www.youtube.
com/c/OrangeDataMining (accessed 2023-01-30) for a set of training videos.

J. L. Leidner and M. Reiche

http://old-www.cms.waikato.ac.nz/~ml/weka/
https://en.wikipedia.org/wiki/Weka_(machine_learning)
https://en.wikipedia.org/wiki/Weka_(machine_learning)
https://orangedatamining.com/widget-catalog/
https://www.youtube.com/c/OrangeDataMining
https://www.youtube.com/c/OrangeDataMining

115

Dortmund, Germany.7 It is cross-platform and also permits the composition of data
flows on screen via visual programming. SAS Inc., the largest privately owned soft-
ware company, also has a range of offerings in this space (SAS Enterprise Miner,
SAS Viya, etc.).8

These and similar systems are very useful for beginners or machine learning
users without the skills or willingness to implement code, but contrary to our goal
here they do not integrate documentation, team collaboration, and other nontechni-
cal aspects that are essential for working in large and in particular distributed teams.

5.4 Work on Support Tooling for Business Workflows

There is a huge body of work in computer science and business informatics specifi-
cally on workflows9 and computer-supported systems for workflow management
(see [50] for a survey).

Besides the academic literature, there are software products available for BPM
(business process modeling) and RPA (“robotic process automation”), in particular
from the largest enterprise software providers: SAP SE’s Signavio Process Manager
and Oracle’s BPM Suite.10 The latter contains Oracle BPM Studio, a component that
enables process developers to create process-based applications and for process
analysts and developers to model business processes.

5.5 Work on Support Tooling for Machine Learning
Development, Deployment, and Operations

The term “ML-DevOps” combines the areas of development, deployment, and
operations of machine learning applications (in analogy to traditional software
DevOps, cf. [51]) so that their cooperation is strengthened with a continuous pipe-
line. The objective is to reduce the release time of usable software products and to
increase the quality of the software product in the production environment [52, 53].

7 See https://rapidminer.com (accessed 2023-01-30).
8 See https://www.sas.com (accessed 2023-01-30).
9 In computer science, “workflow” is a highly ambiguous term, which may denote business pro-
cesses (the word sense we are interested in here), allocation of work to workers in operating sys-
tems or high-performance compute clusters, and global distribution of work in grid computing
(distributed scientific computing), among others.
10 See https://www.oracle.com (accessed 2023-01-30) and https://www.sap.com (accessed
2023-01-30).

Requirements for Machine Learning Methodology Software Tooling

https://rapidminer.com
https://www.sas.com
https://www.oracle.com
https://www.sap.com

116

Available software products in this area are Domino’s Enterprise MLOps plat-
form, DataRobot’s AI Cloud platform, and Weights & Biases’s MLOps platform.11
The differences to the software proposed in this chapter are the lack of integration
of (and guidance by) different (customizable) methodologies and the lack of team
functionality. This results in disadvantages: For example, a question catalog with
guidance questions can be provided by a methodology to help in going through the
phases. This question catalog could recommend certain workflows and exclude
other workflows based on the response behavior of the team members.

6 Discussion

We have collected what we believe are the core requirements for a support tool that
facilitates implementing (following, complying with) recently proposed machine
learning methodologies, and we have shown a subset of higher-level ones in this
chapter (some more granular ones were not presented for space reasons). The main
lesson to be learned from this exercise is a reaffirmation that considerable value can
be created through the combination of well-designed processes supported by well-
designed support tooling; however, a strong symmetry can be observed in that the
advantages benefit more the organization and management than the team members.
All team members need to embrace the methodology as well as the tool, which
requires a small overhead of time and effort from everyone; however, the immediate
benefit is to have a single go-to location where project information can be accessed
from. Project managers and less experienced team members benefit the most from
the tooling as specified here, the former from the centralization of project-related
information and the latter from the guidance that the tooling provides.

It is hard to check a set of requirements for completeness in isolation; the easiest
way to find out that everything that is needed is covered is perhaps to implement the
requirements in a running system, so that shortcomings will quickly become appar-
ent. Ultimately, support tooling for methodologies ought to be evaluated in con-
trolled experiments, as has been proposed for methodologies themselves [54], but
the effort to carry out such experiments is substantial.

One of the hardest problems, in our view, will be to design any supporting soft-
ware in ways that ensure it will be embraced or at least accepted by all team mem-
bers. The past has shown that many systems (including useful and well-respected
ones like Atlassian’s JIRA issue tracking system) are rejected as “bureaucratic” or
“overkill,” whereas others (e.g., version control systems like Git and the online ser-
vice offering it, Microsoft’s github.com, or the team chat groupware Slack) have
become more readily accepted. One key to success here might be offering

11 See https://www.dominodatalab.com/product/domino-enterprise-mlops-platform, https://www.
datarobot.com/platform/ and https://wandb.ai/site (accessed 2023-01-30).

J. L. Leidner and M. Reiche

https://www.dominodatalab.com/product/domino-enterprise-mlops-platform
https://www.datarobot.com/platform/
https://www.datarobot.com/platform/
https://wandb.ai/site%20

117

alternative user interfaces (e.g., based on the command line) to accommodate vary-
ing preferences among software engineers.

Another serious practical challenge is the question of how to design the software
tool that supports the methodology in a way so that the integration of existing soft-
ware tools is possible from the project management domain (e.g., Microsoft Project,
Omni Group’s OmniPlan, Atlassian Trello, Atlassian JIRA, SAP Project System,
etc.), the machine learning experimentation domain (e.g., RapidMiner, Python/
Google Tensorflow, Weka, JetBrains PyCharm, JetBrains IntelliJ, Microsoft Code),
team and communication domain (e.g., email, Slack, Zoom), and data and informa-
tion management domain (e.g., PostgreSQL, Git, Amazon Web Services Simple
Storage Service) (Fig. 6). Project plans need to be importable, and activities belong-
ing to a methodology’s phases must be able to trigger creation of the tasks assigned
to team members, for instance, in JIRA, automatically.

The following four refined yet minimal requirements fall out of the above discus-
sion and can be seen to specialize the original Requirement 16. They appear to be
critical for the system’s practical success. At the same time, it is challenging to
implement them in a way that avoids the anticipated system to become more than
loosely coupled with the various third-party systems supported. The plug-in mecha-
nism, therefore, must be designed to be simple, generic, portable, and
minimalistic.

Requirement 26 (Import Tasks) (Nice-to-Have) The system should provide an
inbound interface for third-party plug-ins to import sets of tasks from external proj-
ect management systems (e.g., Microsoft Project, Omni Group’s OmniPlan).

Requirement 27 (Export Tasks) (Nice-to-Have) The system should provide an
outbound interface for third-party plug-ins to export sets of tasks to external ticket-
ing management systems (e.g., Atlassian JIRA or Trello).

Requirement 28 (Synchronize Contacts, Skills, and Comments) (Nice-to-
Have) The system should provide an inbound and outbound interface for third-
party plug-ins to import and export project-related communications (e.g., email,
Slack), people names, roles, and contacts (e.g., Lightweight Directory Access

Fig. 6 Loosely coupled integration of external systems

Requirements for Machine Learning Methodology Software Tooling

118

Protocol, Internet Message Access Protocol, Microsoft Exc[]hange) from and to
external communication as well as people skills, expertise, and experience via per-
sonnel management systems (e.g., SAP SuccessFactors, Kenjo, Workday).

Requirement 29 (Synchronize Development Activity) (Nice-to-Have) The sys-
tem should provide an inbound and outbound interface for third-party plug-ins to
import and export action or change notifications from and to external experimenta-
tion management systems (e.g., SAS, RapidMiner) and data (incl. model) stores
(e.g., RNA Mapping Database, Amazon Web Services Simple Storage Service).

7 Summary, Conclusions, and Future Work

In this chapter, we have described a set of requirements for software tooling support
for machine learning methodologies. We tried to do so without hard-wiring assump-
tions of any specific methodology, abstracting the narration to the level of following
a predefined workflow.

Our result is a list of 29 presented functional requirements, with indications
whether we rate each as essential or optional. In drawing up this list, we followed
the proven template-based approach for requirements capture.

While there has been a lot of prior research on business process modeling,
including software tooling, we are not aware of any previous requirements capture
attempt for machine learning methodology software support.

In future work, our findings could be confirmed or challenged by holding inter-
views with experienced stakeholders to ensure our catalog of requirements is com-
plete. High-level user requirements ought to be translated to specific system
requirements that in turn inform a system architecture for the envisaged system. A
system or a set of systems then ought to be implemented that embody subsets of
these requirements as the logical next step. A prototype could then serve to affirm
the consistency and completeness of the requirements.

While this is going to be a lot of work, it might not be hard work; in contrast, the
adoption of such tools ought to be maximized, and the effectiveness of the support
provided by such tools ought to be evaluated (e.g., using questionnaires similar to
Lending and Chervany [55]), tasks we consider both very challenging. Furthermore,
future work could study how to maximize adoption of tools by the various individu-
als that make up project teams and other stakeholders.

Acknowledgments The authors would like to thank Marco Zierl for discussions and two anony-
mous referees for helpful feedback that improved the quality of this chapter.

J. L. Leidner and M. Reiche

119

References

1. Weber, C., Hirmer, P.: P. Reimann. In: Abramowicz, W., Klein, G. (eds.) Business Information
Systems, pp. 403–417. Springer International Publishing, Cham (2020)

2. Iivari, J.: Commun. ACM. 39(10), 94 (1996)
3. Cheng, B.H., Atlee, J.M.: Future of Software Engineering (FOSE ’07), pp. 285–303 (2007).

https://doi.org/10.1109/FOSE.2007.17
4. Kotonya, G., Sommerville, I.: Requirements Engineering. Worldwide Series in Computer

Science. Wiley, Nashville (1998)
5. Sommerville, I.: IEEE Softw. 22(1), 16 (2005). https://doi.org/10.1109/MS.2005.13
6. Kreuzberger, D., Kühl, N., Hirschl, S.: Machine learning operations (mlops): overview, defini-

tion, and architecture (2022). https://doi.org/10.48550/ARXIV.2205.02302. https://arxiv.org/
abs/2205.02302

7. Provost, F., Fawcett, T.: Data Science for Business. O’Reilly Media, Sebastopol (2013)
8. Taulli, T.: Implementing AI Systems. Apress, Berkeley (2021)
9. IEEE: IEEE standard glossary of software engineering terminology (1990). https://doi.

org/10.1109/IEEESTD.1990.101064. IEEE Std 610.12-1990
10. Sommerville, I.: Software Engineering, 10th edn. Pearson Education, London (2015)
11. Braude, E.J., Bernstein, M.E.: Software Engineering, 2nd edn. Wiley, Nashville (2007)
12. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer-Verlag, London (2005)
13. The SOPHISTs: Requirements engineering: the sophists »a short RE primer« (2016). https://

www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/
RE- Broschuere_Englisch_- _Online.pdf. Accessed 2022-07-21

14. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: AI Mag. 17, 3 (1996). https://doi.org/10.1609/
aimag.v17i3.1230

15. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: Commun. ACM. 39(11), 27 (1996). https://doi.
org/10.1145/240455.240464

16. Fayyad, U.M., Piatetsky-Shapiro, G., P.: Smyth. In: Fayyad, U.M., et al. (eds.) Advances in
Knowledge Discovery and Data Mining. MIT Press, Cambridge, MA (1996)

17. SAS Institute Inc.: Data mining using SAS Enterprise Miner: a case study approach (2013).
https://support.sas.com/documentation/onlinedoc/miner/ casestudy_59123.pdf. Accessed
2022-07-21

18. Chapman, P., et al.: CRISP-DM 1.0 – step-by-step data mining guide. Tech. rep. The
CRISP-DM Consortium (2000) https://www.kde.cs.uni- kassel.de/wp- content/uploads/lehre/
ws2012- 13/kdd/files/CRISPWP- 0800.pdf. Accessed 2008-05-01

19. Shearer, C.: J. Data Warehous. 5, 13–22 (2000)
20. Schröer, C., Kruse, F., Gómez, J.M.: Proc. Comput. Sci. 181, 526 (2021). https://doi.

org/10.1016/j.procs.2021.01.199
21. KDnuggets: What main methodology are you using for your analytics, data mining, or data

science projects? poll (2014). https://www.kdnuggets.com/polls/2014/ analytics- data- mining-
data- science- methodology.html. Accessed 2022-07-21

22. Saltz, J., Hotz, N.: 2020 IEEE International Conference on Big Data (Big Data), p. 2038–2042
(2020). https://doi.org/10.1109/BigData50022.2020.9377813

23. Studer, S., Bui, T.B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., Müller, K.R.:
Machine Learning and Knowledge Extraction. 3(2), 392 (2021). https://doi.org/10.3390/
make3020020

24. Leidner, J.L.: Project management for data science. Tutorial held at the IEEE international
conference on data science and applications (DSAA 2018), Turin, Italy, 2018

25. Leidner, J.L.: Data to value: an ‘evaluation-first’ methodology for natural language projects.
Tech. rep. Cornell University, New York, NY, USA (2022) https://arxiv.org/abs/2201.07725.
ArXiv Pre-Print Server

26. Leidner, J.L.: In: Rosso, P., Basile, V., Martínez, R., Métais, E., Meziane, F. (eds.) Natural
Language Processing and Information Systems: proceedings of the 27th International

Requirements for Machine Learning Methodology Software Tooling

https://doi.org/10.1109/FOSE.2007.17
https://doi.org/10.1109/MS.2005.13
https://doi.org/10.48550/ARXIV.2205.02302
https://arxiv.org/abs/2205.02302
https://arxiv.org/abs/2205.02302
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.1990.101064
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/RE-Broschuere_Englisch_-_Online.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/RE-Broschuere_Englisch_-_Online.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/RE-Broschuere_Englisch_-_Online.pdf
https://doi.org/10.1609/aimag.v17i3.1230
https://doi.org/10.1609/aimag.v17i3.1230
https://doi.org/10.1145/240455.240464
https://doi.org/10.1145/240455.240464
https://support.sas.com/documentation/onlinedoc/miner/ casestudy_59123.pdf
https://www.kde.cs.uni-kassel.de/wp-content/ uploads/lehre/ws2012-13/kdd/files/CRISPWP-0800.pdf
https://www.kde.cs.uni-kassel.de/wp-content/ uploads/lehre/ws2012-13/kdd/files/CRISPWP-0800.pdf
https://doi.org/10.1016/j.procs.2021.01.199
https://doi.org/10.1016/j.procs.2021.01.199
https://www.kdnuggets.com/polls/2014/ analytics-data-mining-data-science-methodology.html
https://www.kdnuggets.com/polls/2014/ analytics-data-mining-data-science-methodology.html
https://doi.org/10.1109/BigData50022.2020.9377813
https://doi.org/10.3390/make3020020
https://doi.org/10.3390/make3020020
https://arxiv.org/abs/2201.07725

120

Conference on Applications of Natural Language to Information Systems, 15–17 June,
Valencia, Spain, pp. 517–523. Springer, Cham, Switzerland, NLDB 2022 (2022). https://doi.
org/10.1007/978- 3- 031- 08473- 7_48

27. Hovy, D., Spruit, S.L.: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, pp. 591–598. ACL, Berlin, Germany (2016)

28. Leidner, J.L., Plachouras, V.: Proceedings of the First ACL Workshop on Ethics in Natural
Language Processing Held at EACL, pp. 30–40. Association for Computational Linguistics,
Valencia, Spain (2017). https://doi.org/10.18653/v1/W17- 1604

29. Kerzner, H.: Project Management: a Systems Approach to Planning, Scheduling, and
Controlling, 10th edn. Wiley, Hoboken (2009)

30. Azevedo, A., Santos, M.F.: Proceedings of the IADIS European Conference on Data Mining,
24–26 July 2000, pp. 182–185, Amsterdam (2008)

31. Haertel, C., Pohl, M., Nahhas, A., Staegemann, D., Turowski, K.: PACIS 2022 Proceedings
(2022). https://aisel.aisnet.org/pacis2022/242

32. Kurgan, L.A., Musilek, P.: Knowl. Eng. Rev. 21(1), 1 (2006). https://doi.org/10.1017/
S0269888906000737

33. Mariscal, G., Óscar Marbán, C., Fernández: Knowl. Eng. Rev. 25(2), 137 (2010). https://doi.
org/10.1017/S0269888910000032

34. Martinez, I., Viles, E., Olaizola, I.G.: Big Data Res. 24, 100183 (2021). https://doi.
org/10.1016/j.bdr.2020.100183

35. Haakman, M., Cruz, L., Huigens, H., van Deursen, A.: Emp. Softw. Eng. 26(5), 1 (2021)
36. Wiegers, K.: Software Requirements, 3rd edn. Microsoft Press, Redmond (2013)
37. Pohl, K.: Requirements Engineering: Grundlagen, Prinzipien, Techniken, 2nd edn. dpunkt,

Heidelberg, Germany (2008)
38. Vessey, I., Conger, S.A.: Commun. ACM. 37(5), 102 (1994). https://doi.

org/10.1145/175290.175305
39. Herzwurm, G., Schockert, S., Mellis, W.: Joint Requirements Engineering: QFD for Rapid

Customer-Focused Software and Internet-Development. Vieweg, Wiesbaden (2000)
40. Rupp, C.: Requirements-Engineering und -Management. Professionelle, iterative

Anforderungsnanalyse für IT-Systeme. Hanser, Munich, Germany (2001)
41. Firesmith, D.: Engineering security requirements. J. Object Technol. 2(1), 53–68 (2003)
42. Mullery, G.P.: Core -a method for controlled requirement specification (1979)
43. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E., Brinkkemper, S.: International Working

Conference on Requirements Engineering: foundation for Software Quality, pp. 205–222.
Springer (2016)

44. Canedo, E.D., da Costa, R.P.: In: Marcus, A., Wang, W. (eds.) Design, User Experience,
and Usability: theory and Practice, pp. 642–657. Springer International Publishing, Cham,
Switzerland (2018)

45. Anton, A.I., Carter, R.A., Dagnino, A., Dempster, J.H., Siege, D.F.: Requir. Eng. 6, 62 (2001)
46. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: ARSENAL: automatic

requirements specification extraction from natural language. Tech. rep. Cornell University,
New York, NY, USA (2016)

47. Raharjana, I.K., Siahaan, D., Fatichah, C.: IEEE Access. 9, 53811 (2021). https://doi.
org/10.1109/ACCESS.2021.3070606

48. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: practical Machine Learning Tools
and Techniques, 4th edn. Morgan Kaufmann, Amsterdam (2016)

49. Demšar, J., Curk, T., Erjavec, A., Črt Gorup, T., Hočevar, M., Milutinovič, M., Možina, M.,
Polajnar, M., Toplak, A., Starič, M., Štajdohar, L., Umek, L., Žagar, J., Žbontar, M., Žitnik,
B.Z.: J. Mach. Learn. Res. 14, 2349 (2013)

50. La Rosa, M., Aalst, W.M.P.V.D., Dumas, M., Milani, F.P.: ACM Comput. Surv. 50(1) (2017).
https://doi.org/10.1145/3041957

51. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: IEEE Softw. 33(3), 94 (2016)

J. L. Leidner and M. Reiche

https://doi.org/10.1007/978-3-031-08473-7_48
https://doi.org/10.1007/978-3-031-08473-7_48
https://doi.org/10.18653/v1/W17-1604
https://aisel.aisnet.org/pacis2022/242
https://doi.org/10.1017/S0269888906000737
https://doi.org/10.1017/S0269888906000737
https://doi.org/10.1017/S0269888910000032
https://doi.org/10.1017/S0269888910000032
https://doi.org/10.1016/j.bdr.2020.100183
https://doi.org/10.1016/j.bdr.2020.100183
https://doi.org/10.1145/175290.175305
https://doi.org/10.1145/175290.175305
https://doi.org/10.1109/ACCESS.2021.3070606
https://doi.org/10.1109/ACCESS.2021.3070606
https://doi.org/10.1145/3041957

121

52. Bass, L., Weber, I., Zhu, L.: DevOps: a Software Architect’s Perspective. Addison-Wesley
Professional (2015)

53. Lwakatare, L.E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J., Kuvaja,
P., Mikkonen, T., Oivo, M., Lassenius, C.: Inf. Softw. Technol. 114, 217 (2019). https://doi.
org/10.1016/j.infsof.2019.06.010

54. Saltz, J., Shamshurin, I., Crowston, K.: Proceedings of the Hawaii International Conference on
System Sciences, pp. 1013–1022. HICSS (2017)

55. Lending, D., Chervany, N.L.: Proceedings of the 1998 ACM SIGCPR Conference on Computer
Personnel Research, pp. 49–58. ACM, New York, NY, USA (1998)

Requirements for Machine Learning Methodology Software Tooling

https://doi.org/10.1016/j.infsof.2019.06.010
https://doi.org/10.1016/j.infsof.2019.06.010

	Requirements for Machine Learning Methodology Software Tooling
	1 Introduction
	2 Method: From Stakeholders to Requirements Capture
	3 Machine Learning Process Models
	3.1 KDD
	3.2 SEMMA
	3.3 CRISP-DM
	3.4 CRISP-ML(Q)
	3.5 Data-to-Value (D2V)

	4 Requirements for Software Support Tools
	4.1 Overall Vision
	4.2 User Stories and Requirement Templates
	4.3 From Requirements Toward OO Classes/ER Entities

	5 Related Work
	5.1 Work on Tooling for Machine Learning Process Methodology
	5.2 Requirements Capture
	5.3 Workbenches for Constructing Machine Learning Pipelines
	5.4 Work on Support Tooling for Business Workflows
	5.5 Work on Support Tooling for Machine Learning Development, Deployment, and Operations

	6 Discussion
	7 Summary, Conclusions, and Future Work
	References

