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10Genetics and Otitis Media

Nam K. Lee and Regie Lyn P. Santos-Cortez

�Introduction

Otitis media (OM) is a complex disease with various risk 
factors for its development, chronicity, and recurrence as 
well as a multifactorial etiology that is yet to be fully under-
stood. An intricate interplay among environmental, genetic, 
microbial, anatomic, and immunological factors contributes 
to the pathogenesis of OM. Within this context, young age, 
lack of breastfeeding, use of pacifiers, day-care attendance or 
overcrowding at home, and exposure to tobacco smoke and 
particulate matter, to name a few, have been identified as 
environmental risk factors for the development of OM 
[1–3].

Within the otolaryngology practice, the presence of fam-
ily history remains one of the most important inquiries made 
during an evaluation of a child with OM. Inherited or genetic 
factors were found to influence the early onset and develop-
ment of OM, with a higher incidence observed in certain 
populations [4–7]. For example, the frequency of OM is 
increased in children with chromosomal abnormalities such 
as Down syndrome (MIM 190685) and Turner syndrome 
(MIM 300082), in which the affected chromosomes often 
contain numerous genes of various functions [8, 9]. 
Chromosome 21, which is affected in Down syndrome, con-
tains many genes that are involved in the immune system, 
particularly those that play a role in interferon signaling, 
thereby causing a predisposition to viral and bacterial infec-
tions [10–15]. Compounded by distinct craniofacial struc-
tures of Down syndrome and its associated dysfunctions, 
such as small middle ear compartments, poor palatal tone, 
and maldeveloped Eustachian tubes, individuals with Down 
syndrome often experience OM that does not resolve easily, 
requiring multiple tympanostomy tube procedures, and sub-

sequent persistent tympanic membrane perforation and hear-
ing loss [16–19]. Turner syndrome is similar in its clinical 
manifestation with immune alterations found in T cells and 
immunoglobulins (Igs) along with craniofacial abnormalities 
of the palate, jaw, and ears that range from the external to 
inner ear system [20–22]. As a result, affected individuals are 
predisposed to a range of otologic problems from recurrent 
or chronic OM to conductive or sensorineural hearing loss 
and tympanic membrane pathology [9, 23].

The socioeconomic impact of health-care costs and delay 
in speech and language for OM-affected individuals under-
line the need for further research in OM. Although our cur-
rent understanding of the main contributors of genetic 
susceptibility to OM remains scant compared to our overall 
genetic knowledge of other common diseases, such as car-
diovascular disorders and cancer, continued efforts toward 
the identification of the determinants of human susceptibility 
and host genomic responses to OM will help elucidate its 
multifactorial etiology. Recent advances in genomic data-
bases, sequencing, and analytic techniques will benefit the 
ongoing genetic investigation into OM and ultimately lead to 
a better understanding of its pathogenesis, which, in turn, 
can improve strategies for its prevention and treatment.

�Human DNA Studies

�Heritability

Heritability, in the narrow sense, is an estimate of the propor-
tion of the variance in phenotypic or trait values under study 
(in this case, OM), which is due to genetic factors [24]. 
Because OM is a complex trait, heritability has been esti-
mated using data from related individuals as was done in 
twin studies performed in three cohorts from Norway, the 
United States, and the United Kingdom (UK). The initial 
twin study from Norway in 1997 consisted of 2850 twins, 
which was then followed up in 2004 with an enlarged cohort 
of 4247 twins [25, 26]. In the initial study, gender differences 

N. K. Lee · R. L. P. Santos-Cortez (*) 
Department of Otolaryngology-Head and Neck Surgery, School of 
Medicine, University of Colorado Anschutz Medical Campus, 
Aurora, CO, USA
e-mail: nam.lee@cuanschutz.edu;  
regie.santos-cortez@cuanschutz.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40949-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-40949-3_10#DOI
mailto:nam.lee@cuanschutz.edu
mailto:regie.santos-cortez@cuanschutz.edu
mailto:regie.santos-cortez@cuanschutz.edu


92

were detected in female twins who had higher heritability for 
OM at 74% compared to males with 45% heritability [25]. In 
the follow-up study that included an additional 1397 twins, 
gender-based differences for heritability estimates were not 
observed, although the overall heritability for OM remained 
high at 61–72% [26].

In Pittsburgh, a prospective cohort study of 168 same-sex 
twins and 7 same-sex triplets was conducted to determine the 
heritability of time or duration of middle ear effusion (MEE) 
[27]. The same cohort was reassessed after 5 years, and it 
was determined that the heritability of the time with MEE as 
a phenotype remained consistent [28]. Heritability was 73% 
in the initial study and 72% in the follow-up study, and both 
had p < 0.001 [27, 28].

Rovers et al. (2002) assessed the heritability of both OM 
and chronic airway blockage in a prospective study of 1373 
twins from the UK [29]. The heritability of acute OM was 
estimated to be 57%. For both OM and chronic airway block-
ade, an increasing genetic contribution to the phenotypic 
variance was observed at ages 2 years (49%), 3 years (66%), 
and 4 years (71%). However, no gender differences were 
observed [29].

Valuable information can also be gleaned from familial 
studies with multiple OM-affected siblings as in the study by 
Hafrén [30]. Heritability estimates of recurrent acute and 
chronic OM were determined in their survey of 2436 chil-
dren, who underwent surgery for OM, and their relatives 
from 590 Finnish families. Chronic OM had lower heritabil-
ity (22%) compared to recurrent acute OM (38%), and the 
overall heritability of all types of OM was estimated at 48% 
[30]. As expected, heritability estimates are higher in identi-
cal twins than in other familial relations due to the greater 

similarity in both genetic makeup and environmental back-
ground of twins. Nonetheless, these heritability studies, 
albeit with various heritability estimates, phenotypic defini-
tions, ethnic background, and cohort composition, confirm 
the significant contribution of genetic factors to OM 
susceptibility.

�Genetic Linkage Studies

Genetic linkage studies test whether a pattern of inheritance 
of a disease or trait coincides with the genotypes of families: 
genetic linkage is therefore a test of co-segregation of a vari-
ant or variants inherited together (e.g., a haplotype) with the 
known disease status of family members. The main metric 
for linkage is the logarithm of odds (LOD) score, which is 
usually considered statistically significant if a LOD score of 
3.3 or greater is obtained for a variant or haplotype within 
pedigrees that co-segregate a disease or a trait [31]. To obtain 
a significant LOD score, either a large enough pedigree or a 
consanguineous family with multiple affected individuals is 
needed. Alternatively, smaller families that each on its own 
cannot obtain linkage but, when analyzed together, can lead 
to mapping of significant loci may be used. Before the advent 
of next-generation sequencing, genetic variants that are dis-
tributed across the genome were genotyped and then tested 
for linkage in order to identify a genomic region where the 
pathogenic variant is statistically the most likely to occur. 
Early linkage studies using different cohorts of families 
identified multiple loci in various regions of the human 
genome, most significantly on chromosome 10q (Table 10.1). 
It should be noted, however, that in many of the mapped loci, 

Table 10.1  Genomic loci mapped for otitis media susceptibility in linkage studies using family data

Loci Studies LOD score Significance and candidate genes within the loci
19q13.42–q13.43 Daly et al. [32] LOD 2.61 (p = 5.3 × 10−4) Leukocyte receptor cluster (LRC)—cluster of genes 

with polymorphic functions; mainly prevents 
immune cell activation [38]

Chen et al. [35] LOD 3.75 (p = 1.6 × 10−5) Zinc finger and zinc finger-related genes (ZNF71, 
ZNF8, ANF304)
Inflammasome protein complex (NLRP13, NLRP5, 
NLRP8)

10q26.3 Daly et al. [32] LOD 3.78 (p = 3.0 × 10−5) ADAM8—identified in allergen-induced asthma, 
expressed in leukocytes [193, 194]

Rye et al. [33] Zlr 2.69 (p = 3.6 × 10−3) ADAM12—involved in the epidermal growth factor 
receptor signaling pathway [41, 194]
Dedicator of cytokinesis 1 (DOCK1)—phagocytosis 
of apoptotic cells, skeletal and respiratory muscle 
tissue development in embryogenesis [42]
TCERG1L and PPP2R2D—an intergenic region
Transcription elongation regulator-like protein 
(TCERG1L)—suggested in fasting insulin, attention 
deficit disorder
Protein phosphatase 2A (PPP2R2D)—a modulator 
of the TGF-β/Activin/Nodal pathway [33, 43]
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Table 10.1  (continued)

Loci Studies LOD score Significance and candidate genes within the loci
3p25.3 Daly et al. [32] Unconditional:

 �� LOD 0.60
Conditional:
 �� 10q LOD 2.43
 �� 19q LOD 1.84

Presumed to be involved in the gene–gene 
interaction between 19q13.42 and 10q26.3
HRH1—an inflammatory mediator [195]
IRAK2—mediates inflammatory gene expression 
via NF-κB [196]

17q12 Casselbrant et al. [197] LOD 2.83 (p = 7.0x10−5) Adaptor-related protein complex2, beta 1 subunit 
(AP2B1)—CD8+ downregulation [198]Chemokine 
C–C motif ligand (CCL)—recruitment of 
eosinophils [199]

10q22.3 Casselbrant et al. [197] LOD > 2 (p = 1.8 × 10−3) SFTPA2—part of surfactant protein A, which 
regulates the phagocytosis of pathogens; expressed 
in the Eustachian tube [45]

Rye et al. [33] Zlr 1.64 (p = 0.05) –
7q33 Casselbrant et al. [197] LOD > 2 (p = 1.0 × 10−3) –
6p25.1 Casselbrant et al. [197] LOD > 2 (p = 2.6 × 10−3) –
4p15.2 Casselbrant et al. [197] LOD > 2 (p = 3.0 × 10−3) –
15q26.1 Allen et al. [59] p = 9.1 × 10−7 KIF7—the region is related to the splice site; 

regulates sonic hedgehog [200] and Indian 
hedgehog [64] via protein trafficking
TICRR—initiation of DNA replication [65]

5p15.33 Allen et al. [59] p = 0.045 Tubulin polymerization-promoting protein 
(TPPP)—located at the intron; affects microtubule 
function [63]

2q31.1 Allen et al. [59] p = 1.3 × 10−5 Non-coding region: possible role in the regulation 
of LDLR (ch19), which is expressed in ciliated 
airway epithelial cells [201]

the pathogenic variants responsible for OM susceptibility 
remain unknown. This is partly due to the lack of genetic 
studies performed in families with OM and potentially due to 
genetic heterogeneity for OM where families carry variants 
within multiple genes that are mostly rare or private variants, 
such that current family cohorts lack the power to detect 
significant OM loci. Below is a review of loci that have been 
mapped using families with OM.

�19q13.42–q13.43
Daly et al. (2004) first identified the 19q13.42–q13.43 region 
as a suggestive susceptibility locus (LOD 2.61, p = 5.3 × 10−4) 
using genotype data from Minnesotan families with OM 
[32]. Approximately 100 annotated genes are present in this 
region, but many of their functions remain unknown. The 
leukocyte receptor cluster (LRC) genes were suggested as 
potential candidate genes within the 10q locus. Within this 
region are genes encoding the leukocyte Ig-like receptor 
(LIR; also known as Ig-like transcripts) and the killer cell 
immunoglobulin-like receptor (KIR), which are transmem-
brane proteins expressed on cells of immune function for 
various protein activation or inhibition [33]. Such proteins 
include tyrosine phosphatases Src homology region 2 
domain-containing phosphatase (SHP)-1 and/or SHP-2 [34]. 
This region was replicated by Chen et al. (2011), who fine-
mapped the locus to chromosome 19q13.43 using additional 
single nucleotide variant genotypes (LOD 3.75, 

p = 1.6 × 10−5) [35]. The additional candidate genes identi-
fied within the 19q locus include genes related to zinc fin-
gers, the tumor necrosis factor-alpha (TNFα), bone 
morphogenetic protein (BMP), and fibroblast growth factor-
beta (FGFβ) pathways, lymphocyte activation, and the 
inflammasome protein complex, all of which regulate innate 
immunity in response to harmful stimuli [35–37].

�10q26.3
In an initial linkage study for OM using the Minnesota fam-
ily cohort, the 10q26.3 locus was identified with a LOD 
score of 3.78 (p = 3.0 × 10−5) and was replicated in another 
cohort of Western Australia-based trios by Rye et al. in 2014 
(Zlr 2.69, p = 3.6 × 10−3) [32, 33]. Herein, trios are composed 
of the OM-affected individual (proband) and both parents, 
without affected or unaffected siblings. Within the 10q26.3 
locus, the Minnesotan and Australian studies identified can-
didate genes encoding a disintegrin and metalloproteinase 
(ADAM) domain. ADAM8 is found in leukocytes in response 
to allergen exposure in asthma and is also upregulated in epi-
thelial cells of the airway during allergic inflammation [38, 
39]. The function of ADAM12 is most strongly associated 
with cell adhesion and fusion, extracellular matrix restruc-
turing, and cell signaling [40]. It has been found to be upreg-
ulated in the middle ear in response to tobacco smoke [41]. 
Other genes implicated in this region include DOCK1 (MIM 
601403), which is involved in phagocytosis; TCERG1L 
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encoding transcription elongation regulator-like protein, and 
PPP2R2D (MIM 613992), which modulates the modulator 
of the transforming growth factor (TGF)/Activin/Nodal 
pathway [33, 42, 43].

�10q22.3
Chromosomal region 10q22.3 has also been identified (LOD >2, 
p  =  1.81  ×  10−3) and replicated with suggestive evidence (Zlr 
1.64, p = 0.05), though not reaching statistical significance [2, 
33]. SFTPA1 (MIM 178630) and SFTPA2 (MIM 178642) are 
genes within this region that together encode the human surfac-
tant protein (SP-A) and have previously been implicated in OM 
[44]. SP-A haplotype and genotype variations have been 
observed in children with the first episode of OM before 
6 months, and common variants in these genes were associated 
with protection against OM in infants at risk of asthma [45, 46]. 
SP-A is expressed in the middle ear mucosa and in the Eustachian 
tube and is known to contribute to innate immune responses by 
increasing the phagocytosis of otopathogens [45–48].

�Candidate Gene Association Studies

Using a gene of interest, candidate gene association studies 
estimate the frequency with which the minor allele, or the less 
prevalent allele in the background population, is found in 
OM-affected patients in comparison to a control group. Healthy 
or unaffected individuals that are related to the OM-affected 

patients within the same families, or unrelated healthy individ-
uals with no previous history of OM, may be used as controls 
(case–control study). Numerous studies have been conducted, 
particularly using candidate genes, relating to inflammation 
and innate immune responses, but many candidate gene studies 
will not lead to a significant association when a more stringent 
threshold for genome-wide significance is applied. Nonetheless, 
some genes that were initially identified in smaller case–control 
association studies, such as the HLA and ABO (MIM 110300) 
genes, were also deemed significant loci in genome-wide asso-
ciation studies (GWASs) for OM [49–56].

�Genome-Wide Association Studies (GWASs)

A GWAS is currently the starting point in identifying the loci 
of interest. It assesses the association of variants spread 
throughout the genome with the trait or disease under inves-
tigation and, in contrast to candidate gene association stud-
ies, does not assume an association between a locus of 
interest and the trait. Instead, a GWAS employs an agnostic 
approach to identifying the loci of interest, which may be a 
regulatory variant often found in the non-coding region, a 
haplotype encompassing variants that are inherited together, 
or a gene harboring multiple rare variants associated with the 
trait. For OM, a series of GWASs have been conducted using 
common variant genotypes from microarrays, with each 
describing independent findings (Table 10.2). With advances 

Table 10.2  Otitis media susceptibility genes identified from genome-wide association studies

Study SNP Cases Controls Cohort Significant associationsa Candidate genes
Rye et al. 2012 
[33]

2,524,817 416 1075 Western Australian 
Pregnancy Cohort (Raine) 
Study

rs6755194 (p  =  8.3 × 10−7)
rs1862981 (p  =  2.2 × 10−5)

CAPN14
GALNT14
BPIFA gene cluster

Allen et al. 2013 
[59]

324,748 373 229 University of Minnesota 
[20]
University of Pittsburgh 
[24]

rs1110060 (p = 9.1 × 10−7)
rs10497394 (p = 1.5 × 10−8)
rs10775247 (p = 6.3 × 10−5)

KIF7
TICRR
TPPP

Einarsdottir et al. 
2016 [66]

964,193 829 2118 Finnish rs16974263 (p = 1.8 × 10−7)
rs268662 (p = 1.6 × 10−6)
rs4150992 (p = 3.4 × 10−6)

PLD3
SERTAD1
SERTAD3
HIPK4
PRX
BLVRB

van Ingen et al. 
2016 [70]

460,000 825 7936 European-descent 
Americans

rs2932989 (p = 4.4 × 10−8)
rs3767498 (p = 1.25 × 10−6)
rs12725646 (p = 4.3 × 10−5)
rs255142 (p = 1.9 × 10−6)
rs9514552 (p = 2.1 × 10−5)
rs12888576 (p = 7.8 × 10−6)
rs2809139 (p = 3.2 × 10−6)
rs8036951 (p = 3.8 × 10−5)
rs10409140 (p = 4.4 × 10−5)

FNDC1
KIF21B
CACNA1S
ASCL5
Intergenic region near 
MIR205HG
CRHR2
INMT
ARGLU1
BDKRB2
Intergenic region near 
C14orf177
FAM189A1
TPM4
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Table 10.2  (continued)

Study SNP Cases Controls Cohort Significant associationsa Candidate genes
Pickrell et al. 
2016 [49]; Tian 
et al. 2017 [53]

560,000–
950,000

46,936 74,874 European-descent 
Americans

rs681343 (p = 3.5 × 10−30)
rs1978060 (p = 1.2 × 10−19)
rs2808290 (p = 5.1 × 10−16)
rs7174062 (p = 3.5 × 10−14)
rs4329147 (p = 9.6 × 10−12)
rs8176643 (p = 3.7 × 10−11)
rs1802575 (p = 1.5 × 10−10)
rs5829676 (p = 1.8 × 10−10)
rs72931768 (p = 2.6 × 10−9)
rs35213789 (p = 3.8 × 10−9)
rs114947103 (p = 5.4 × 10−9)
rs13281988 (p = 9.8 × 10−9)
rs67035515 (p = 1.6 × 10−8)
rs73015965 (p = 3.8 × 10–8)

HLA genes
Several intergenic regions
FUT2
ABO
TBX1
MKX
AUTS2
CDHR3
PLG

a p-values in bold font indicate those that passed the genome-wide significant thresholds of the study

in computational efficiency, continuous decline in the cost of 
sequencing, and increasing availability of large-scale bio-
bank data with genotypes and OM phenotypes, the discovery 
of additional novel findings from GWASs, which include 
both common and rare variants, is possible in the near future.

In the first GWAS on OM, Rye et  al. (2012) used data 
from Australian trios and identified three novel candidate 
genes/gene clusters, namely, (1) rs6755194 within chromo-
some 2p23.1, which is either upstream of or intronic to two 
isoforms of CAPN14 (MIM 610229); (2) rs1862981, also 
located on 2p23.1, intronic to GALNT14 (MIM 60822) and 
proximal to CAPN14; and (3) BPIFA clusters, including 
BPIFA1 (MIM 607412), BPIFA2, and BPIFA3 on the 
genomic region 20q11.21 [57]. However, these findings 
could not be replicated in an independent cohort [58]. Other 
genes identified in this study with trends toward association 
were linked to the TGF-β pathway [57].

In the Minnesota-based cohort, Allen et al. (2013) iden-
tified an intergenic locus rs10497394 between the genes 
CDCA7 (MIM 609937) and SP3 (MIM 601804) on 2q31.1, 
which was subsequently replicated in an independent 
Pittsburgh-based US cohort as being associated with both 
chronic OM with effusion and recurrent acute OM [59]. 
This locus was found to regulate the expression of LDLR 
(MIM 606945) on chromosome 19, a gene that is expressed 
in ciliated epithelial cells of the airway with its transcribed 
protein predicted to be a binding site for human rhinovirus 
C, a known pathogen for upper respiratory tract infections 
and OM [60]. Newer data from the Genotype-Tissue 
Expression (GTEx) database showed that the rs10497394 
variant significantly regulates RNA levels of CDCA7 in 
thyroid and arterial tissues; however, GTEx does not 
include data from middle ear tissues [61]. CDCA7 muta-
tions cause immunodeficiency, centromeric instability, and 
facial anomalies syndrome (MIM 616910), wherein hypo- 
or agammaglobulinemia leads to recurrent life-threatening 

infections [62]. Additional loci on chromosomes 5 and 15 
(rs386057, rs1110060, and rs10775247) were also identi-
fied but did not reach genome-wide significance in the rep-
lication study [59]. The genes affected by these three 
variants are involved in microtubule function, regulation of 
mammalian sonic hedgehog and Indian hedgehog path-
ways, and DNA replication [63–65].

Einarsdottir et al. (2016) found three variants, all on chro-
mosome 19, to be associated with childhood OM in the 
Finnish population [66]. None of the identified regions over-
lapped with those previously found in association with OM 
on chromosome 19. Genome-wide significance was estab-
lished for rs16974263, a variant intronic to the PRX (MIM 
605725) gene, which was found in association with chronic 
OM with effusion in a UK cohort, albeit with opposite direc-
tions of effect [66]. Out of the several genes identified within 
this region are three candidate genes, PLD3 (MIM 615698), 
SERTAD1 (MIM 617850), and BLVRB (MIM 600941), 
which are previously known to be associated with immune 
function with expression found in macrophages [67, 68]. In 
the GTEx database, the rs16974263 variant regulates either 
the RNA levels or splicing of isoforms for SERTAD3, HIPK4 
(MIM 611712), PLD3, and PRX in various tissues [61]. In 
particular, SERTAD3 is expressed in the mucosal tissue and 
its protein inhibits the replication of influenza A virus upon 
induction by type I interferon responses during an infection 
[61, 69].

Additional studies in Americans of European-descent 
identified genome-wide significance for a variant on chro-
mosome 6 (rs2932989) that alters the methylation status of 
the gene encoding fibronectin type III domain containing 1 
(FNDC1, MIM 609991) [70]. Although its function is not 
clearly elucidated, the study found an upregulation of this 
gene in the middle ear tissue under pro-inflammatory condi-
tions [70]. Other candidate genes from suggestive loci largely 
contained those related to immune responses.

10  Genetics and Otitis Media



96

Finally, 14 genome-wide significant loci were identified by 
Pickrell et al. (2016) and Tian et al. (2017) using GWAS data 
from 23&Me [49, 53]. Among these loci, the OM-associated 
genes included FUT2 (MIM 182100) and ABO, both involved 
in glycosphingolipid biosynthesis, as well as TBX1 (MIM 
602054) and MKX (MIM 601332), which encode transcrip-
tion factors. Genes important for embryogenesis and neurode-
velopment (FGF3 (MIM 164950) and AUTS2 (MIM 607270)), 
as well as those implicated in asthma (CDHR3 (MIM 
615610)), and spontaneous chronic OM in mice (PLG (MIM 
173350)) were also found in association with OM [71–73]. To 
date, only 4 of these 14 loci, FUT2, TBX1, ABO, and CDHR3, 
have been replicated in independent human cohorts with addi-
tional evidence from functional or multi-omics studies per-
formed for FUT2 and CDHR3 [49–52, 74–78].

To identify pathways that are potentially important for 
OM susceptibility, 21 genes with p < 5 × 10−5 available in the 
literature were selected from candidate gene association 
studies and GWAS results. Using NetworkAnalyst software 
[79–81], these genes were then used as an input for defining 
protein–protein interaction networks. Within these networks 
exist subnetworks that are involved in significant pathways, 
highlighting the underlying pathophysiology and serving as 
potential targets for novel therapeutics (Fig. 10.1). The major 
pathways identified included a rhythmic process, a viral pro-

cess, negative regulation of an? apoptotic process, transcrip-
tion, transcription by RNA polymerase II, chromatin 
remodeling, regulation of cell cycle, and circadian rhythm 
(Table  10.3). These identified pathways suggest that basic 

Fig. 10.1  Protein–protein interactions in the network analysis of genes 
implicated in otitis media from exome sequencing and genome-wide 
association studies. The green nodes represent proteins encoded by 
input or seed genes with a p < 5 × 10−5 from exome sequencing and 
genome-wide association studies. The orange nodes represent proteins 
that are found in association with the seed proteins within a significant 
cellular process

Table 10.3  Significant pathways identified from network analysis of 
genes implicated in otitis media from exome sequencing and genome-
wide association studies

Significant pathways p-value Genes
Rhythmic process 7.9 × 10−17 PPARG

NCOA2
CREBBP
TP53
PRKDC
UBE3A
PML
EP300
NRIP1
PPARGC1A
SP1
MAGED1

TOP1
CREB1
DDX5
SFPQ
KDM5A
GNB2L1
NFKB2
HNRNPU
MLL
HDAC1
HDAC2
THRAP3

Viral process 1.99 × 10−16 MDM2
YWHAE
COPS6
KAT5
CREBBP
TP53
STAT3
CD4
TSG101
NEDD4L
UBE3A
PML
HNRNPA1
EP300
FYN
SP1
STAT1
IRAK1
RELA
MAP3K7
MMP1

LCK
RB1
HSPD1
TOP1
SRC
CREB1
TBP
YWHAB
CEBPA
RAN
RBX1
SUMO1
GNB2L1
SET
PAK2
TRIM28
CUL1
CUL2
EIF4A2
DAXX
IKBKG

Negative regulation of the 
apoptotic process

2.95 × 10−13 ROR2
MDM2
AKT1
EGFR
YWHAZ
PTK2B
STAT5B
IL6
TMF1
TP53
RAF1
PRKDC
CD38
STAT3
SMAD3
NFKB1
MED1
IRAK1
RELA
IL10
UBC
COPS5

ADA
WNT1
JUN
HSPA1A
HSP90AB1
HSPD1
SRC
MIF
CBL
DUSP1
AKT2
MSX2
SNCA
CDKN1A
BCL6
PPID
PAK2
HDAC1
NTRK2
HDAC2
BAG1
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Table 10.3  (continued)

Significant pathways p-value Genes
Transcription, 
DNA-templated

6.0 × 10−13 NR3C1
PPARG
NCOA1
NR3C2
IRF1
IRF8
POU1F1
NR4A1
NR1H3
TCF3
POLR1D
IRF2
IRF5

RELA
GTF2I
JUN
POU2F2
POU2F1
RXRB
CEBPA
PPP5C
NR1H2
NR1I3
ASXL1
PHF3
ARHGAP35

Transcription by RNA 
polymerase II

6.9 × 10−11 NR3C1
STAT5B
TMF1
TADA2A
ONECUT1
TP53
TGFB1I1
IRF1
STAT3
POU1F1
MAFF
TAF6
TRIM24

NR4A1
NR1H3
SMAD3
EP300
IRF2
NCOR1
NFKB1
CEBPB
PBX1
IRF5
NFATC2
NFATC1
GTF2I

Chromatin remodeling 5.96 × 10−9 TADA2A
SMARCE1
SMARCD1
HMGB1
SMARCC1
SMARCA4
HMGB2

SMARCA2
RB1
MYB
TOP1
HDAC1
HDAC2
DAXX

Regulation of cell cycle 1.3 × 10−8 CDK11A
IRF1
STAT3
EP300
SRSF5
MED1
CDK14
COPS5
USP16

DTL
ABL1
JUN
RB1
SFPQ
CCND3
SFN
GNB2L1

Circadian rhythm 4.6 × 10−8 EGFR
NCOA2
EP300
NRIP1
PPARGC1A
NCOR1
HNRNPR

JUN
TOP1
CREB1
HDAC1
NTRK2
THRAP3

cellular processes are involved in OM susceptibility with 
viral infection as a primary target for OM prevention and 
treatment.

�Exome Sequencing

The coding regions or exome, i.e., all the exons comprising 
the parts of all genes that are transcribed and translated into 
proteins, only make up approximately 1% of the human 

genome. With growing knowledge and advancements in 
technology, exome sequencing allows for the assessment of 
variants within all coding regions of the genome and has 
become a cheaper alternative for identifying pathogenic vari-
ants for various diseases, particularly for rare variants with 
strong phenotypic effects. Using exome sequence data, rare 
pathogenic variants in three genes, A2ML1 (MIM 610627), 
FUT2, and SPINK5 (MIM 605010), were found in associa-
tion with OM in an Indigenous Filipino pedigree and has 
since been replicated in various OM cohorts of different eth-
nicities [74, 82–84].

The A2ML1 gene encodes a protease inhibitor that is spe-
cifically expressed in the middle ear [83]. It is similar to 
alpha-2-macroglobulin (A2M), also a protease found in the 
middle ear that is associated with recurrent acute OM [85]. 
Two loss-of-function A2ML1 variants, i.e., a frameshift vari-
ant and a splice variant, were identified in a cohort of 
Indigenous Filipino population with an estimated 50% prev-
alence of OM [83]. The same frameshift variant in A2ML1 
was identified in US-based otitis-prone children with early-
onset severe OM (p = 3.34 × 10−14) [83]. An additional 25 
variants of the same gene were found in probands with OM 
from different cohorts [82, 83]. Moreover, differential 
expression analysis of RNA sequence data from Coloradan 
children with OM revealed co-upregulation of A2ML1 with 
genes (e.g., SPINK5) that are involved in several pathways, 
including keratinocyte differentiation [82]. Follow-up micro-
biota studies showed a significantly higher relative abun-
dance of the Leptotrichia spp. in the middle ears of individuals 
with A2ML1 variants [84, 86]. In contrast, for a rare patho-
genic SPINK5 variant that was also identified in the 
Indigenous Filipino population through exome sequencing 
and linkage analysis, a greater biodiversity in the oral cavity 
and increased relative abundance of Microbacteriaceae were 
observed [84]. Notably, A2ML1 is expressed in the middle 
ear mucosa, whereas SPINK5 is faintly localized to the 
mucosal tissues but strongly localized to the outer ear and 
tympanic membrane in mouse middle ears [83, 84].

FUT2, located on chromosome 19, encodes 
2-fucosyltransferase and is involved in the synthesis of blood 
group H antigens and the regulation of its expression on vari-
ous mucosal surfaces [87]. Several common and rare vari-
ants within FUT2 were associated with an increased risk for 
OM in US trios and various ethnic cohorts [74]. These 
include two stop variants, p.Trp154* and p.Arg202*, and 
two missense variants, p.Ala104Val and p.Arg138Cys [74]. 
For these four FUT2 variants, levels of A antigen, a common 
binding spot for potential otopathogens and commensal bac-
teria, were reduced on the cell surface of mutant epithelial 
cells [74]. FUT2 variants also affect gene transcription and 
alter the mucosal microbiome in the setting of 
OM. Differential expression analysis revealed downregula-
tion of FN1, KMT2D, MUC16, and NBPF20 and upregula-
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tion of MTAP in individuals with the FUT2 p.Trp154* variant 
[75]. Changes in regulation of these four genes were also 
seen in the middle ears of mice inoculated with the human 
otopathogen non-typeable Haemophilus influenzae (NTHi), 
except upregulation of Fn1 found in the inoculated mice 
[75]. Additionally, the FUT2 variant was associated with an 
increased load of otopathogens within the middle ear with 
concordant decrease in relative taxa abundance of commen-
sal bacteria in the nasopharynx [75].

Also utilizing exome sequencing, Jamieson et al. reported 
two genes, NR3C1 (MIM 138040) and NREP (MIM 607332), 
as candidates for severe OM in a cohort from the Australian 
Aboriginal population [88]. Although these genes failed to 
attain genome-wide significance, NR3C1 and NREP impli-
cate a role of gene–environment interaction in the expression 
of inflammatory modulators due to environmental stress and 
shifts in the microbiome, respectively [89–93].

�Mouse DNA Studies

A critical limitation to human studies is the inability to ade-
quately control for genetic or environmental factors due to 
variability and heterogeneity across human subjects. Animal 
models present an alternative method in the exploration of 
the genetics of OM through the control of genetic and envi-
ronmental factors and have led to a growing number of genes 
identified in association with OM [94]. Despite the availabil-
ity of numerous animal models in the study of OM, the 
murine model has been largely favored in genetic studies. In 
all, 99% of mouse genes are homologous to human genes 
and, consequently, mice and humans share similar physiol-
ogy and development of many basic functions [95]. Owing 
to the early mapping of the mouse genome, tools to manipu-
late mouse genes for phenotyping and susceptibility studies 
are widely available, along with a growing number of knock-
out and transgenic mouse models [96].

Gene-driven models and phenotype-driven N-ethyl-N-
nitrosourea (ENU) mutagenesis methods have been used to 
understand the genes involved in OM in mice. In the gene-
driven method, a growing availability of transgenic and 
knockout mouse strains through efforts such as the Knockout 
Mouse Phenotyping Program (KOMP2) is harnessed to 
assess the effect of mutations on OM susceptibility [97]. In 
the phenotype-driven model, ENU is used as a mutagen to 
induce random nucleotide changes [95]. This is then fol-
lowed by screening of the phenotype of interest (e.g., 
increased OM prevalence), allowing for the discovery of 
novel genes. Genetically altered mice from either method 
may express the desired phenotypes, for example, by devel-
oping spontaneous OM, or in other studies, changes in OM 

expression after inoculation of otopathogens through trans-
bullar injection or pressure-induced translocation of microbes 
to the middle ear from the nasopharynx [98, 99]. The genes 
identified thus far mainly involve craniofacial development 
or innate immune responses. Here, we will discuss a number 
of genes with a distinctive expression of OM phenotypes, 
illustrating the key points.

�Mice with Craniofacial Abnormalities

Mice with impaired craniofacial development from DNA 
modifications often develop chronic OM with effusion and 
are frequently associated with congenital syndromes. Gene-
driven models have led to the implication of numerous genes 
in knockout mice with similar phenotypic observations. E2f4 
is a key transcription factor that interacts with pRB during 
cell cycle progression [100]. Many E2f4−/− mice die early on, 
but the surviving mice develop OM due to craniofacial 
defects that increase their susceptibility to opportunistic 
infections [101]. In humans, mutations in the EYA gene fam-
ily, comprised of nuclear phosphatases that act as transcrip-
tional coactivators, are known to cause branchiootorenal 
syndrome 1 (MIM 113650) from variants in EYA1 (MIM 
601653) and sensorineural hearing loss (MIM 601316) from 
variants in EYA4 (MIM 603550) [102–106]. In mice, defi-
ciency of Eya4 caused middle ear and Eustachian tube 
abnormalities, ultimately leading to OM with effusion [107]. 
Similar findings were observed in haploinsufficient Ets1 and 
Fli1 mice that developed OM and had craniofacial abnor-
malities consistent with those of the small middle ear cavity, 
short nasal bone, and malformation of the nasal bony-
cartilaginous junction [108]. Specific to the middle ear, ana-
tomical abnormalities, including ossicular fusion to the 
middle ear wall and stapedial malformations, were observed. 
The genes ETS1 (MIM 164720) and FLI1 (MIM 193067) lie 
within a genomic region of the human genome on the long 
arm of chromosome 11, which is deleted in Jacobsen syn-
drome (MIM 147791); Jacobsen syndrome includes cranio-
facial dysmorphisms and isoimmune thrombocytopenia 
among its clinical features [109]. These genes are E26 
transformation-specific (ETS) transcription factors that are 
expressed in neural crest cells during embryogenesis 
[110–112].

ENU-derived edison and Jeff variants both lead to sponta-
neous chronic OM and mild craniofacial defects in mice 
[113, 114]. In both edison and Jeff variants, their respective 
mutations in the mouse genes Nisch and Fbxo11 are also 
associated with faulty innate immune responses (further 
described below) [115]. Eya4 is another gene with a possible 
regulatory role in the immune system [116].
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�Studies of Innate Immune Responses in Mice

An innate immune response is broad and encompasses cel-
lular functions of macrophages and neutrophils to mucosal 
integrity and ciliary function. As such, the genetic findings 
related to innate immunity are accordingly diverse. Toll-like 
receptors (Tlrs) are a class of pattern recognition receptors 
involved in innate immunity at the cellular level. Numerous 
Tlr mutations have been identified through knockout mouse 
models (gene-driven) as causing or prolonging otitis media 
in mice. Tlr4 deletion caused a delay in immune responses, 
leading to an early development of OM, which was often 
chronic [117, 118]. Knockout of Tlr2 and Tlr9 also resulted 
in similar findings with prolonged or severe infections [119, 
120]. A similar phenotype was observed with the deletion of 
Myd88, which encodes an adaptor protein recruited in 
response to Tlr and interleukin (IL)-1 for activation of down-
stream signaling pathways [121, 122]. After Myd88 knock-
out, a delay in macrophage and neutrophil recruitment 
resulted in chronic OM and prolonged mucosal thickening, 
which were more severe than those found with Tlr mutations 
[123].

In response to TLR activation, the NF-κB pathway is trig-
gered downstream to initiate an inflammatory response 
[124]. Through phenotype-driven models, a number of genes 
have been associated with the NF-κB pathway and OM. As 
described above, the edison mouse variant displayed disrup-
tion in immune response in addition to the observed cranio-
facial abnormalities. The deletion of the Nisch gene further 
impacted the downstream signaling of the NF-κB pathway as 
well as the LIMK1 pathway, which is associated with vascu-
lar permeability and perturbation that lead to middle ear 
effusion and mucoperiosteal inflammation [113, 125, 126]. 
Another ENU-derived mouse strain is Junbo, which has a 
deletion of the Evi1 gene and demonstrated spontaneous 
acute OM and chronic OM [127]. Evi1 encodes a transcrip-
tion factor that is known to be involved in multiple pathways 
[128, 129]. In the NF-κB pathway, Evi1 binds to a subunit of 
NF-κB, preventing its interaction with DNA, thereby down-
regulating inflammation [130].

In the TGF-β pathway, the activation of TGF-β causes a 
cell signaling cascade with SMAD proteins, leading to tran-
scription of target genes, RNA processing, translation of 
messenger RNA (mRNA), and protein regulation for 
numerous cellular processes, including craniofacial develop-
ment and inflammation [131–134]. The genes implicated in 
association with the TGF-β pathway include Tgif1, Fbxo11, 
and Evi1. As previously mentioned, the phenotypic changes 
observed in Jeff mice were attributed to a mutation in the 
Fbxo11 gene, which encodes for a ubiquitination protein 
involved in tumor suppression [135, 136]. Jeff mice dis-

played nuclear accumulation of the Smad2 protein, which 
mediates transcription of target genes within the TGF-β 
pathway [137]. Evi1, defects in which are responsible for the 
OM observed in Junbo mice, interacts with Smad3 proteins, 
resulting in the suppression of the growth-inhibiting mecha-
nism of the TGF-β pathway [127, 129, 138]. Based on the 
mutagenesis studies that implicated the TGF-β pathway in 
OM in these gene-based mouse models, TGIF1, a homeodo-
main protein that acts as a negative regulator of the TGF-β 
pathway, binds to Smad2 to recruit a co-repressor and subse-
quently recruits histone deacetylases, leading to inhibition of 
transcription [132, 139, 140]. In Tgif1-knockout mice, con-
ductive hearing loss was associated with chronic effusion, 
middle ear mucosal thickening, and an increase in goblet 
cells [141].

Other pathways and functions presumed to be associated 
with OM include the c-Jun N-terminal kinase  (JNK) path-
way, mucociliary clearance, mitogen-activated protein 
kinase (MAPK) pathway, and bony development [76, 129, 
142–145]. Despite the vast expansion of genetic knowledge 
gained from these mouse studies, there are a number of limi-
tations that prevent rapid application of knowledge from 
mouse models to application in the management of OM in 
humans. Because the otopathogens in humans differ from 
those in mice, these mouse models require inoculation of 
human otopathogens into the middle ear, which often cause 
a shorter course of OM in mice. There are also immunologi-
cal and anatomical differences. The lymphocyte-rich immune 
system of mice versus the neutrophil-rich immune system in 
humans as well as the lack of mastoid air cells in mice require 
additional consideration [146]. At the genetic level, alterna-
tive splicing and innumerable factors contributing to com-
plex disease processes like OM require additional 
complementary studies in humans.

�RNA Studies

There are various types of RNAs, each serving numerous 
functions beyond protein translation to the regulation of gene 
expression. Examination of RNA profiles can thus provide a 
more accurate and detailed picture of the cellular mecha-
nisms at play for various disease processes. A messenger 
RNA (mRNA) is a single-stranded RNA, complementary to 
the DNA, used as codes for protein synthesis. In contrast, a 
microRNA (miR) provides insights into gene expression. A 
microRNA is a 23 nucleotide-long RNA that functions to 
control gene expression posttranscriptionally by binding to 
the 3′ untranslated region (UTR) of a target mRNA [147]. 
Accordingly, investigators have studied mRNAs and miR-
NAs in order to understand OM pathophysiology.
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�mRNAs

mRNA expression in OM has been studied through the 
assessment of single gene transcription or whole transcrip-
tome of various cells within the middle ear. Single-gene 
studies performed on human samples showed differential 
expression of aquaporins, C-type lectin receptors, mucins, 
beta-defensins, and cytokines in different types of OM, 
implicating the roles of cellular homeostatic and inflamma-
tory responses in OM pathogenesis [148–152]. Differential 
expression of the protooncogene C/EBP-homologous pro-
tein (DDIT3, MIM 126337) was observed in otitis-prone 
children, associating the frequency of OM with the endo-
plasmic reticulum stress response through the PERK (pro-
tein kinase RNA-like endoplasmic reticulum kinase) 
signaling pathway [153].

Various methods of genetic expression analysis, including 
reverse transcription PCR (RT-PCR), microarray, and RNA 
sequencing (RNA-seq), have been used to profile the genetic 
expression of middle ear epithelial cells (MEECs) in associa-
tion with OM. The types of information that can be gathered 
from these studies are wide-ranging. Inoculation of murine 
models with a common human otopathogen, NTHi, helped 
identify differential expression of 3657 genes, most of which 
are involved in innate immune response modulation, cell 
marker variation, and recruitment of neutrophils and macro-
phages [154]. The substantial role that innate immunity plays 
in OM was reinforced in the study by Ryan et al. (2020) with 
single-cell transcriptome analysis in mice [155]. Considerable 
cellular diversity in the mouse middle ear mucosa was 
observed with identification of 17 distinct cell types, all with 
expression of innate immune genes [155]. The cellular diver-
sity of the middle ear mucosal tissue is further demonstrated 
in the variable types of MEECs identified [156, 157]. In the 
process of MEEC differentiation, approximately 500 genes 
that are associated with secretory proteins and ciliogenesis 
were upregulated [158]. Such findings provide a pathway for 
improving the characterization of the unrestrained responses 
of MEECs with the cellular remodeling that occurs in 
OM. Stabenau et al. (2021) studied human MEECs in OM 
with effusion in comparison with normal mucosal cells and 
identified 1282 differentially expressed genes [159]. The 
functions of identified genes encompassed inflammation, 
bacterial immunity, mucociliary clearance, cellular prolifer-
ation and transformation, and auditory cell differentiation. 
Of these functions, the most upregulated genes involved 
mucin production, immunity, and cell cycle regulation.

�MicroRNAs (miRs)

miRs have diverse actions and targets that are context-
specific. Most commonly, miRs bind to the 3′UTR of an 

mRNA in perfect pairs or with imperfect complementation 
but with additional base pairings at the 5′ of the mRNA 
[160]. miRs have also been observed to bind to 5′UTRs, the 
coding region of RNA, or directly to gene promoters [161–
163]. The complexity in understanding the mechanism of 
miRs is also due to the ability of one miR to bind to numer-
ous distinct mRNAs. Furthermore, one mRNA can be bound 
by different miRs, with each pairing leading to a distinct out-
come [161]. As a result of miR binding to mRNA and 3′UTR, 
translational suppression can occur as deadenylases and 
decapping factors are recruited [164]. With its protective 
ends exposed, the resulting mRNA strand will be prone to 
degradation. Binding of miR to 5′UTR and the coding region 
causes silencing of expression, but its interaction with a pro-
motor region has been observed to lead to transcription [165, 
166]. The presence of miRs in various cellular compart-
ments, the abundance of miRs, mRNAs, and their various 
combinations, and the miRNA-induced silencing complex 
mediating translational inhibition make the function of miRs 
dynamic [162].

The role of miRs in OM is increasingly being examined. 
In vitro analysis of human MEECs revealed differential 
expression of 15 genes as a result of both up- and downregu-
lating functions of miRs. These changes ultimately led to an 
increase in cell differentiation, endocytosis, cellular commu-
nication, IκBK/NF-κB cascade, developmental process, 
complement activation, innate immune response, and cell 
adhesion [167]. miR-146 has been implicated in numerous 
inflammatory diseases owing to its negative regulatory role 
in activating TLRs and its ability to fine-tune signaling cas-
cades. In OM, miR-146 expression increased in response to 
in vitro exposure to pro-inflammatory cytokines, which, in 
turn, was correlated with middle ear mucosal thickness and 
observed decline in the expression of tumor necrosis factor 
receptor (TNFR)-associated factor 6 (TRAF6), a modulator 
in the TLR pathway [168].

Exosomal release of endocytic vesicles leads to extracel-
lular release of mRNAs, miRs, and proteins to be then trans-
ported between cells [169, 170]. Particularly, exosomal miRs 
have been found to influence expressions of distant cells and 
promote positive or negative effects on pro-inflammatory 
signaling of the receiving cell [171–174]. Human MEECs 
produce a baseline level of extracellular miR, the microR-
NAome, which is composed of 110 different miRs during 
in vitro stimulation [175]. For example, stimulation by NTHi 
induces elevation in the levels of five distinct miRs, namely, 
miR-378a-3p  +  miR-378i, miR-200a-3p, miR-378g, 
miR30d-5p, and miR-222-3p, all known to target genes 
related to innate immunity [175–180]. The targeted mRNAs 
are involved in apoptosis, cancer, cell growth, and the IL-8 
pathway mediated by CXCR1/2 that activates NF-κB, oxida-
tive stress, inflammation, chemotaxis, angiogenesis, and 
neutrophil functions [175]. Of the miRs, miR-320e has been 
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further associated with the presence of allergies in children 
with OM [181]. In an exosomal miR analysis in patients with 
middle ear effusion, 17 miRs unique to middle ear effusions 
compared to serum controls were identified, with the most 
abundant being miR-223-3p [170]. These exosomal miRs 
regulate a total of 442 target genes, most of which were 
involved in the IL-8 signaling process and were also medi-
ated by CXCR1/2. miR-223 regulates innate immune 
response, protease activity, and a few key functions of neu-
trophils [182, 183].

Another form of RNA that plays a role similar to miR is 
long non-coding RNA (lncRNA). As the name suggests, it is 
longer than miR with its length greater than 200 nucleotides 
and does not code any proteins [184, 185]. It has the ability 
to interact with DNA, RNA, and proteins and modulate tran-
scription, epigenetic changes, RNA and protein stabilization, 
translation, and posttranslational modifications [186–189]. 
Interestingly, it can also interact with miR to modulate cel-
lular function. In OM, the lncRNA nuclear-enriched abun-
dant transcript 1 (NEAT1) targets miR-495 to activate p38 
MAPK, allowing the release of inflammatory cytokines and 
promoting the expression of genes involved in acute inflam-
matory responses [190–192].

The extent of miR interactions and their functions are still 
in the process of discovery with much to uncover. 
Understanding the role of RNA in the expression of final 
protein products helps delineate complex and dynamic dis-
ease processes such as OM.

�Future Directions

Although prevention and diagnostic and treatment strategies 
are available for OM patients, we still lack the understanding 
of the progression of OM from acute to chronic forms. This 
lack of knowledge undermines efforts to develop novel ther-
apies and fine-tune the current management protocols, par-
ticularly for patients with undiscovered genetic susceptibility 
to OM. To reduce the massive burden on global healthcare 
due to OM, ongoing investigations furthering our under-
standing of the genetic component of OM susceptibility are 
important to ultimately deliver effective therapeutic solu-
tions to patients. We must continue to identify OM-pathogenic 
variants within different populations, especially to include 
underrepresented groups across the world. Advancements in 
technology bring about efficiency and speed in our ability to 
sequence genetic materials, which must be harnessed in 
studying complex diseases with multifactorial contributors 
at play such as OM. Currently, many human studies involve 
patients of European descent. A few available studies on 
minority groups focus on populations with an especially 
high incidence of OM; however, it is equally as important to 
study underrepresented groups without such context. Using 

bioinformatics, we can glean the genetic networks at play in 
various types of OM. The influence of pathogens on gene 
expression requires an in-depth understanding of the micro-
biome and gene expression responses to different pathogens. 
Genetic variations from splicing, epigenetic modifications, 
and different factors that influence production of proteins are 
especially important. It is essential to continue harnessing 
the availability of animal models, especially in studying ther-
apeutic solutions, but even more important is the application 
of the findings from animal models to treating OM in 
humans.
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