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Abstract Graphene is a promising nanocarbon material with exceptional features 
such as a large surface area and outstanding electrical and thermal properties. It has 
the potential to be a new creation of reinforcing material for polymer composites 
owing to its low mass density, large specific surface area, excellent compatibility, the 
inexpensive cost to create compared to carbon nanotubes, and attractive flexibility. 
The several approaches for synthesizing graphene and distributing it in polymer 
matrices are explored. This chapter focuses on a summary of the surface alterna-
tion of graphene with various synthetic techniques and the preparation and proper-
ties of graphene-based different polymer nanocomposites. This chapter provides a 
broad overview of the nanocomposite synthesis, properties, and finally prospective 
application of polymer-graphene nanocomposites in various energy storage sectors. 

Keywords Graphene · Graphene surface alternation · Polymer composites ·
Energy storage 

10.1 Introduction 

Nanoscience is a new field that is growing very quickly right now. It can be bene-
ficial to several different sectors, including computing, sensors, biology, and tech-
nology, among others. Nanoparticles of different sizes, shapes, and properties have 
been found, which has led to a lot of interesting progress in this field. Researchers 
have found that nanoscale fillers in polymer nanocomposite composites make them
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better at mechanical, electrical, thermal, and optical performances [1–3]. There are 
various types of multifunctional nanocomposite materials are made with the use 
of nanofillers like carbon nanotubes, nano-clay, graphene, and metal or ceramic 
nanoparticles. Recent years have seen extensive research into conductive nanofillers-
reinforced polymer composites due to their exceptional multifunctional capabili-
ties when compared to those of traditional conductive polymer composites [4–7]. 
However, with the incorporation of electrically conductive nanoparticles into non-
conducting polymers, electron conduction is obtained [8]. Antistatic materials, elec-
tromagnetic interference (EMI) shielding, sensors, and conductors are just a few of 
the many uses for conducting polymer composites, which are advantageous over 
intrinsic conducting polymers due to their ease of production, cost-effectiveness, 
and adaptability in electrical characteristics. Because of the low filler levels possible 
with these conductive fillers, the composites either keep or improve the electrical 
and mechanical recital of the matrix. Thus, the composite system with nanomaterial 
reinforcements ought to have enhanced thermal conductivity [9–11]. The various 
carbon-based allotropes including carbon nanotubes (CNTs) and graphene-based 
materials are used to generate superior-performing electrically directing composites 
[12]. These composites are among the most promising nanofiller materials owing to 
their outstanding mechanical and thermal capabilities, remarkable chemical inert-
ness, and the ability to have their electrical properties modified [13]. There are 
different parameters including complex processing, poor surface chemistry control, 
weak interfacial contact with the polymeric matrix, and agglomeration are some of 
the CNT’s drawbacks [14]. The high cost of producing carbon nanotubes (CNTs) is 
another issue with their use as nanofillers [15]. Thus, it is difficult to mass-produce 
useful composite materials based on CNTs. When carbon fibers will not cut it and 
nanotubes are out of reach due to cost, where does a frugal materials scientist turn 
for a workable conductive composite? [16]. Graphene is the name of the material 
in the issue, and it exists exclusively in a two-dimensional form. Graphene-based 
materials have recently emerged as a viable choice for application in state-of-the-art 
high-performance nanocomposites [12]. 

The growing number of research papers on graphene shows that academics and 
businesses are becoming more interested in this material. Over the past few times, 
the number of graphene patents has steadily grown. These patents have been filed 
for a wide range of uses, such as characterization, polymer composites, transparent 
displays, transistors, capacitors, solar cells, biosensors, conductive inks, windows, 
saturable absorbers, and photodetectors [17]. The total number of newly found 
fullerenes climbed substantially over the decade from 2005 to 2014. Yet, graphene 
is the most recently formed nanocarbon and also shows the greatest rate of growth. 
Although just a few hundred papers were published on graphene in its first three years, 
interest in the material grew rapidly. Graphene studies have increased rapidly in popu-
larity. As compared to articles on carbon nanotubes (CNTs), those on graphene were 
on par in 2013, but in 2014, they substantially exceeded their CNT counterparts. 
In terms of where nanocarbon research has been published, the United States and 
China stand out as the most prolific authors, responsible for well over half of all such 
studies. This is especially true when it comes to the two hottest nanomaterials of



10 Surface Engineering of Graphene-Based Polymeric Composites … 271

the moment, carbon nanotubes (CNTs), and graphene [18]. Significant progress in 
the investigation of graphene polymer nanocomposites is being driven by the revo-
lutionary improvement in polymer properties, such as mechanical, electrical, and 
thermal conductivity, and chemical, optical, and gas impermeability at a low-level 
concentration of filler [19]. There are numerous excellent studies based on unaltered 
graphene-reinforced polymer nanocomposites available. Moreover, surface function-
alization plays an important impact in the enhancement of the electrical and mechan-
ical characteristics of the polymer nanocomposite. This typical chapter focuses on 
graphene and its properties, as well as its production process. The methods utilized 
to covalently and non-covalently change surfaces are analyzed in depth and brought 
up to date in this work. We conclude with a discussion of the varied electronic 
uses for graphene-based polymer nanocomposites and the consequence that surface 
functionalization has on the electrical conductivity of these materials. 

10.2 Graphene-Based Two-Dimensional Nanostructured 
Materials 

Graphene is a two-dimensional carbon allotrope with a thickness of just one atom. It 
is composed of a honeycomb arrangement of hexagonal crystalline structure with sp2 

carbon atoms in a conjugated system. Although graphene was theoretically conceived 
in the 1940s, it lacked the thermodynamic stability required for reliable operation 
in everyday environments [20–22]. In a 2004 tabletop experiment [21], Geim and 
colleagues at Manchester University successfully distinguished individual graphene 
layers. The thinnest known substance has been discovered thanks to this ground-
breaking discovery, which has opened up new avenues of investigation in the domains 
of physics, chemistry, biology, and materials science [22, 23]. Graphene has a low 
coefficient of thermal expansion (CTE), thermal conductivity, young’s modulus (1 
TPa), and superior optical transmittance along with other desirable characteristics 
[20]. This graphene-based material shows more perspective than other nanostructured 
carbon allotropes, like 0D fullerenes and 1D nanotubes. 

10.2.1 Preparation of Graphene-Based Materials 

There are two different techniques for synthesizing graphene: either from the top-
down (a) or from the bottom-up (b) approach. Top-down methods that aim to lessen 
the van der Waals contacts between graphene layers include mechanical (Scotch 
tape), chemical (solution-based exfoliation, graphite oxide exfoliation or reduction), 
and electrochemical (oxidation or reduction and exfoliation) (as shown in Fig. 10.1) 
[24]. On the other hand, graphene is made via bottom-up techniques, which entail the 
assembly of minuscule molecular building blocks into sole or many-layered graphene
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assemblies through catalytic (e.g., CVD), thermal (e.g., SiC breakdown), or chemical 
(e.g., organic synthesizing) processes [25]. Graphene is a 2D carbon allotrope, where 
every single carbon atom connects with every other carbon atom via sp2. Carbon 
atoms arrange themselves in honeycomb crystal symmetry, with a bond length of just 
0.141 nm. A typical density of graphene is 0.77 g/cm3. Graphene’s surface area per 
unit mass is thought to be around 2600 m2/gm2 [20, 26]. Graphene has amazing elec-
trical, thermal, mechanical, electronic, and optical characteristics, making it the most 
appealing nanomaterial today. However, it is the reediest and toughest composite 
ever examined. Tensile strength tests have shown that graphene is comparable to 
or even exceeds that of carbon nanotubes (CNT), and significantly exceeds that of 
steel, Kevlar, and additional polymers [27]. To determine the modulus of elasticity 
of single-layered graphene sheets created by chemically reducing graphene oxide, 
academic and industrial researchers used the tip of an atomic force microscope to 
make a small indentation in the core of a modified sheet of graphene. Moreover, an 
elastic modulus (1TPa) and an inherent strength (130 GPa) have also been calculated 
for a defect-free monolayer graphene sheet [28, 29]. However, the thermal conduc-
tivity of graphene [5000 W/(m3K)] by its electrical conductivity is close to 6000 S/ 
cm [30, 31]. Due to its semi-metallic nature, graphene exhibits several fascinating 
electrical characteristics. The extraordinary thermodynamic and electrical conduc-
tivity of graphene is owing to its exceptionally elevated charge carrier mobility (10 
cm2V s−1) [32]. The edge states and any adsorbed or intercalated species have a 
significant impact on graphene’s magnetic properties [33, 34]. 

Fig. 10.1 Schematic illustration for preparation of materials based on graphene
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10.2.2 Surface Alternation of Graphene 

Graphene-based materials tend to stick together more in a polymer matrix, which 
makes them less friendly to large molecules like polymeric chains [35]. To modify 
their physiochemical characteristics, graphene and its derivatives are often chem-
ically functionalized. The potential benefits of graphene sheets are immense, but 
only if the material can be made operational and widely disseminated. Covalent 
functionalization involves the formation of chemical bonds, while non-covalent 
functionalization relies only on van der Waals forces. 

(a) Covalent Functionalization 

Covalent superficial alteration of graphene causes hybridization of one or additional 
sp2 carbon atoms of the aromatic edifice, leading to forfeiture of electronic conju-
gation and a strain in the plane. As the hybridization has changed, the carbon atoms 
(sp2hybridized) which are ordinarily in a flat plane must now adopt the sp3 tetrahedral 
geometry. Specifically, this is because carbon atoms at the edge of a molecule are 
more likely to undergo covalent addition processes [36]. Graphene’s dispersibility 
in organic solvents and water can be improved by covalent organic functionaliza-
tion, and its characteristics can be combined with those of extra-functional materials 
like chromophores or polymers [37]. Functionalization can transpire on the inter-
face, the boundaries, and the defects of materials. The chemical techniques used to 
create graphene are not without problems, including damage to the carbon lattice, 
structural errors, and the random adsorption of solvent molecules [38, 39]. There 
are various classes of covalent functionalization have been reported in recent times, 
which include free radical adding, atomic radical addition, nucleophilic addition, 
cycloaddition, and electrophilic substitution. 

(i) Cycloaddition Reactions 

In cycloaddition reactions, bond breaking and bond creating occur simultaneously 
deprived of the creation of anions or cations as intermediates, resulting in a cyclical 
motion of electrons. The graphene molecule has undergone cycloadditions [2 + 1], 
[2 + 2], [3 + 2], and [4 + 2]. The most well-known kind of cycloaddition is the 1,3-
dipolar and [3 + 2] cycloaddition reaction [40, 41]. Other cycloaddition reactions 
including (i) [2 + 1] cycloaddition similar to the Bingel reaction, interactions with 
nitrenes and leading to the creation of cyclopropane or aziridine adducts [42], (ii) [2 
+ 2] cycloaddition with an aryne or benzyne [43] and (iii) [4 + 2] cycloaddition are 
two ways to create a cycle with four carbon atoms. An electron-rich diene and an 
electron-poor dienophile can undergo a cycloaddition via the Diels–Alder mechanism 
(electron-deficient species) [44]. Graphene has a wide variety of potential uses owing 
to its capability of functioning as either the diene or dienophile in the Diels–Alder 
process. Graphene has the potential to induce unanticipated consequences, and it 
is notoriously difficult to regulate surface modifications. Nitrides and carbenes, in 
particular, are capable of reacting with solvents as well as one another [45].
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(ii) Free radical Reactions 

Covalent bonds are formed between the aromatic structure of graphene and free 
radicals, which are extremely reactive organic molecules. These modifications have 
been accomplished through thermodynamic or photochemical processes. Though, 
by using superior-energy reactants, unwanted side reactions or lack of homogeneity 
might occur in the functionalization reaction [46]. The use of aryl diazonium salts 
in radical addition reactions is widespread. Peroxide addition, Bergman cycliza-
tion [47], and Kolbe electro-synthesis [48] are a few such processes. The reactivity 
of aryl diazonium salts is the subject of this subsection. Tour and his co-workers 
[49] suggested first successfully putting aryl diazonium salts into graphene. In this 
step, nitrogen removal, the aryl diazonium ion transforms into an aryl radical. It is 
hypothesized that the radical aryl moiety contributes an electron to the sp2-hybridized 
graphene [50]. This process, however, can generate organic radicals that are not only 
capable of covalently reacting with graphene but also of self-polymerizing [51]. The 
amount of graphene sheets has a significant impact on this reaction. Moreover, the 
bi or multilayer graphene, the reactivity of a solitary graphene slip is found to be 10 
times higher, as reported by Strano and his co-workers [52]. 

(iii) Nucleophilic Reactions 

Graphene is the material of choice when it comes to making a nucleophilic addi-
tion that accepts electrons. The chemical reaction between graphene and poly-
9,9'-dihexyfluorene carbazole Nitrogen anions are created on carbazole when it 
is subjected to the action of a base, which results in the formation of the anionic 
moiety. Once the two substances react with one another, a covalent connection is 
created between the nitrogen anion and the surface of the graphene [53, 54]. 

(iv) Reaction with atomic Radii 

By using hydrogen, fluorine, and oxygen from the periodic table instead of organic 
free radicals, the number of unwanted byproducts is kept to a minimum. As a result, 
the functionalized graphene becomes even as well as consistent. Hydrogenation 
makes it facile to procedure the secondary C-H bonding because it changes the 
shape of the lattice when the first hydrogen atom is added. Graphene in its fully 
hydrogenated form is known as graphene. Graphene can be hydrogenated when 
subjected to hydrogen-based plasmas [54]. When you fluorinate graphene, you make 
a single bond between fluorine and carbon, which is similar to hydrogenation but 
much stronger. There is a lot of functionalization after fluorination, much like there 
is after hydrogenation [55]. It has been hypothesized that fluorographene will act 
as an insulator. Typically, one of three techniques is used: The three methods for 
exfoliating bulk graphite fluoride are: (i) by exposing it to XeF2 [56], (ii) by etching 
it with a fluorinated reagent [57], and (iii) by using a liquid phase. 

(v) Electrophilic Reactions 

Graphene’s abundance of free electrons makes it amenable to this class of processes. 
The Friedel–Crafts acylation [58] and the hydrogen–lithium exchange are two types
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of substitution processes. Metal-functionalized aromatics are more reactive than their 
simpler counterparts. Before the hydrogen–lithium exchange, BuLi deprotonates and 
carbometallizes graphene. An electrophile then interacts with the lithium graphene 
derivative. The lithium graphene derivative undergoes an instantaneous reaction upon 
electrophile addition, leading to the conception of covalent bonding [59]. 

(b) Noncovalent functionalization 

Non-covalent interactions, such as hydrophobic, van der Waals, and electrostatic 
interactions, can cause molecules to stick to the surface of graphene [60]. This 
method of functionalization is noteworthy because it allows molecules to be immo-
bilized straightforwardly and reversibly without disrupting the electrical network 
[61]. Functionalized non-covalent is essential for the immobilization of proteins, 
enzymes, medicines, and DNA, particularly in the background of devices, because 
even a small change in the electrical properties of the system could result in an entire 
alteration in the structure and characteristics of the system [62, 63]. There has been 
extensive research into complexes based on graphene, including interactions between 
non-polar gases and H+, cations, and anions. Three parts are responsible for its attrac-
tive strength: electrostatic, dispersive, and inductive interactions. To make sodium 
cholate, cetyltrimethylammonium bromide, polyvinylpyrrolidone, triphenylene, and 
pyrene derivatives are only some of the surfactants that may be employed in an exfo-
liation approach to creating functionalized graphene from graphite without the use of 
covalent bonds [64]. On the other hand, along with the single-layer variety, a sizeable 
amount of few-layered graphene or scattered graphite is likewise produced. Coronene 
carboxylate produces layers around 100 nm thick [65, 66]. For instance, Bai and his 
co-workers have developed larger graphene flakes that can be manufactured using 
perylene derivatives [67, 68]. 

10.3 Synthesis Process of Graphene-Based Polymer 
Composites 

Graphene-based materials have high strength and high electrical and thermal conduc-
tivity making them a potential contender for usage in an extensive range of commer-
cial products, like polymer composites, conductive coatings, fuel cell batteries, and 
ultra-capacitors. Chemical vapor deposition (CVD), exfoliation, liquid-phase exfoli-
ation, etc., are all examples of top-down ways to make graphene, which can be further 
divided into bottom-up ways. Owing to their outstanding material characteristics, 
including yield métier, robustness, electrical and thermal conductivity, and optical 
properties, polymer nanocomposites (PNC) research has advanced greatly over the 
last decade, and their applications have grown substantially as a result [69–73]. 
Graphene possesses excellent dimensional stability, high thermal stability, high gas 
impermeability, elevated strength and elastic modulus, and high electrical and thermal 
conductivity [72]. Adding graphene to polymers at a tiny volume percentage may 
dramatically enhance their characteristics. Furthermore, graphene may be employed
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at a lower volume percentage since it has a better surface-to-volume ratio than 
carbon nanotubes [73]. It may enhance a wide variety of polymer matrix charac-
teristics. As an example, graphene-based nanocomposites are in high demand for 
use in photovoltaic devices like solar cells because of their low resistivity and high 
carrier mobility, and because (i) used in lithium-ion batteries (LIBs) such as power 
density, energy density, and speed of charging in hydrogen fuel cells, (ii) they are 
used in thermoelectric materials, (iii) used in photovoltaic devices including solar 
cells owing to their low resistivity and high carrier mobility, and (iv) used as an 
electrode to raise the electro-catalytic performances [71]. 

One definition of nanocomposite is a material, which is having any one dimension 
in the nanoscale. It has made strides in the areas of light, electricity, and magnetism 
and has desirable features like thermal stability and mechanical strength. Polymer, 
metal, or ceramic matrices are used to create nanocomposites, which are then filled 
with nanoparticles (graphene, nanotubes, and clays) [74]. The material’s mechanical, 
thermal, and electrical characteristics are all improved by adding fillers. Polymeric 
nanocomposites are the most adaptable of all nanomaterials, finding use in several 
fields such as energy, electronics, health care, and more [71, 72]. Micro-composites, 
intercalated nanocomposites, and exfoliated nanocomposites are the three main cate-
gories of polymer composites based on the distribution of nanosized layers. In the 
micro-composites’ structure, the graphene sheets are disseminated as particles inside 
the polymer matrix, yet the graphene platelets themselves are unharmed [75]. When 
distinct polymer chains are inserted between graphene layers, this creates an intro-
duced structure. The exfoliated amalgams’ graphene films are evenly distributed 
throughout the polymer backbone. Since exfoliation maximizes the surface area 
of contact between the polymer and the filler, it is the preferred morphology for 
nanocomposites. This leads to improved bonding and superior mechanical charac-
teristics [76]. Graphene nanocomposites’ characteristics are affected by a number 
of factors, including the filler’s chemical compatibility with the matrix, the filler’s 
volume fraction, and processing conditions, including dispersion and exfoliation. 
For optimal performance, it is necessary to use suitable manufacturing techniques. 
Additionally, the recital eminence of nanomaterials is closely correlated with the rate 
of dispersity. In-situ polymerization, melt intercalation, and exfoliation adsorption 
are the three main ways to create polymer nanocomposites [75–77]. 

Heat or radiation can be used to start polymerization in place by mixing adapted 
graphene through a monomer or pre-polymer to make a steady chemical bonding 
and then adding the opposite initiator. It improves stress transfer by making sure that 
the filler particles are evenly spread throughout the polymer milieu and by swelling 
the contact between the filler and polymer in the finished composite [46]. These are 
the primary benefits of in-situ polymerization: (a) It is easier to control the filler’s 
distribution and interaction with the polymer’s surface. (b) High-filled composites 
may be cast-off as a master batch and melt-mixed with other polymers to generate 
comparable composites, and (c) they might be utilized to manufacture high-fill and 
ultra-superior relative molecular mass nanocomposites. As it does not involve using 
lots of organic solvents, it is better for the planet than solution intercalation [46, 
78]. However, graphene-based polymer nanocomposites may have their mechanical,
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electrical, and thermal characteristics vastly improved by in-situ polymerization. By 
reacting with the polymer, the functionalized graphene forms a chemical connection 
at the interface that is both robust and long-lasting. The surface of graphene oxide is 
abundant in oxygen-containing functional groups, so polymers are typically selected 
whose monomers or pre-polymers can form stable chemical bonds with these oxygen-
containing functional groups, like polyimide, polyurethane, epoxy resin, polyaniline, 
and polyvinyl alcohol. Polyaniline (PANI) and graphene oxide (GO) films remained 
made via in-situ polymerization by Zhu and his co-workers [79]. With impressive 
water dispersibility qualities and a beneficial synergistic impact on anti-corrosion 
performance, the produced PANI-GO nanocomposite material impressed. In addi-
tion, the coating layer’s ability to prevent water penetration increases, which may 
serve as a kind of electro-active defense. Zhu et al. [80] have cast-off an in-situ poly-
merization method to manufacture a GO-polypyrrole (PPy) nanocomposite flick. 
Waterborne epoxy (WEP) coatings were shown to be more corrosion-resistant after 
being coated with this layer. Passivation by conductive PPy and the impermeable 
property of graphene oxide sheets are both present in the GO-PPy nanocomposites 
that were made. As the first step of in-situ inter-calative polymerization, graphene 
or altered graphene is stretched in the liquid monomer. Typically, polymerization 
instigates with the addition of an appropriate originator, followed by the application 
of heat or radiation [81, 82]. The various composites including polystyrene (PS)– 
graphene [83], polymethylmethacrylate (PMMA)-based expanded graphite (EG) 
[84], polystyrene sulfonate (PSS), polyimide (PI), and polyethylene terephthalate 
(PET)-based layer double hydroxide (LDH) [85–87] have been successfully reported 
by using this technique. 

In this chapter, we have reported many strategies used in the literature to produce 
graphene and characterize its properties. Camphor, graphitic oxide, nanodiamonds, 
and silicon carbide are only a few of the precursors that have been inspected aimed 
at their possible usage in the production of graphene. Graphene aqueous disper-
sals may be manufactured using these methods. A new route for producing graphene 
using the hydrothermal method, cryo-milling, and lyophilization has been described. 
The exfoliation of graphene sheets into individual layers has been achieved by a 
variety of methods, including heat exfoliation and ultrasonication. In addition, the 
numerous characterization techniques used to verify the filler’s nanostructure have 
been discussed. As a result of Geim and his co-worker’s (2004) successful isolation 
of graphene, many methods for its production have been uncovered [88]. Scotch tape 
was proposed as a viable option for physically exfoliating graphite to directly create 
graphene. A piece of graphite was taped together using this method. Repeated folding 
and peeling of the tape produced progressively thinner layers of graphite. Finally, 
a single sheet of carbon called graphene is created by this process. CVD, chemical 
exfoliation, carbon nanotubes (slicing), and the direct sonication of carbon sheets are 
only a few of the methods shown in the many research studies to produce graphene. 
Tkalya et al. [89] created dispersions (aqueous) of graphene by oxidation and exfo-
liation of graphite, trailed by lessening in the occurrence of a surfactant. Graphite 
oxide was manufactured using a method similar to that developed by Hummer and
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used for many years. The Sonic Vibracell VC750, which has a horn with a cylin-
drical tip, was used to exfoliate the graphene oxide (GO). The reduction procedure, 
which used hydrazine, took 72 h, and was conducted at a temperature of 120 °C. 
GO platelets were characterized via atomic force microscopy (AFM). The majority 
of the analyzed platelets had thicknesses of less than 1 nm or two or three atomic 
layers. The results confirmed the efficacy of sonic exfoliation and another case of 
graphene production using a more conventional hydrothermal method. Hummer’s 
method successfully produced graphite oxide, an intermediate in the manufacture 
of graphene. Graphite oxide went through a series of chemical reactions to become 
GO. Sonicating an uneven mixture of GO and water, then reducing it with hydrazine 
hydrate, produced reduced GO. There are two techniques were employed to inves-
tigate the structure of graphene: XRD and FTIR spectroscopy. Reducing GO led to 
the formation of graphene (GR) sheets, as revealed by the presence of characteristic 
FTIR signals indicating the formation of the sp2 carbon structure [90]. Pure graphite 
oxide was synthesized from natural flake graphite powder using Hummer’s method. 
Boiling tetra-ethylene glycol (TEG) was used to dissolve the resultant graphite oxide. 

Microwave-assisted solvothermal (MW-ST) reduction was utilized at 300˚C to 
lessen the yellowish-brown colloidal suspension. Indicating that graphite oxide was 
successfully reduced to graphene nanosheets (GNS) and the solution generated 
during the reduction process had a dark black hue [91]. X-ray photoelectron spec-
troscopy (XPS) measurements showed that GO had a higher oxygen concentration 
than graphene did, at 30.2% against 8.3%. These findings agreed with those obtained 
using the hydrazine reduction technique [92, 93]. To add insult to injury, the process 
was conducted in an alkaline medium at a relatively low temperature of around 
180 °C. The process caused a quick change in color from yellow to brown then 
black which indicates that the −ve charged oxygen functional groups of graphite 
oxide were swiftly deoxygenated. In order to make graphite oxide, a variant of 
Hummer’s method was utilized. Ultrasonic exfoliation was used to create GO. To 
produce aqueous graphene dispersion, water, hydrazine, and ammonia solutions were 
mixed chemically together. SEM and TEM pictures were used to examine the micro-
graph of GR sheets. They exhibited that 2D structures can be made thermodynami-
cally stable by bending, and they did it by scrolling and entwining GR sheets. The 
success of the successive exfoliation and reduction of graphite to create graphene 
is shown here. According to the XRD form, the inter-planar spacing of graphene 
(0.36 nm) is greater than that of graphite (0.34 nm) [94]. It has been shown that the 
random orientation (turbostratic) of the GR sheets caused by exfoliation is related to 
the size of the inter-planar spacing and the resulting widening trend [95]. The results 
of X-ray diffraction (XRD) [96] on graphene samples made this way are the same 
as those made by chemical reduction. GNS was made by applying heat exfoliation 
and chemical reduction to graphite oxide made using the Staudenmaier process [97]. 
McAllister et al. [98] have previously shown that a temperature of roughly 1050 °C 
is enough for thermal exfoliation and an in-situ decrease in GO during this method. 
The XRD peaks of GO, pure graphite, and graphene were compared to prove that 
graphene was synthesized. Ripples in the graphene layer plane were perceived in 
the TEM image, a signature of the material due to its thermal variability [99]. GO
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was synthesized from graphite by a variation of Hummer’s method. Using hydrazine 
hydrate as a reductant, graphene was manufactured out of GO [100]. To create the 
exfoliated GO nanosheets, graphene oxide was either subjected to a solvent exfolia-
tion or a heat exfoliation method. The hydrophilicity of graphite oxide makes solvent 
exfoliation possible, since water molecules may be introduced between the stacked 
layers. Mechanical exfoliation, accomplished by ultrasonication or constant stirring, 
was used to fabricate GO sheets. The resulting graphene oxide (GO) nanosheets were 
reduced using reducing chemicals like hydrazine hydrate to create reduced graphene 
oxide (RGO) or graphene [101]. For instance, Patole and his co-workers [102] have  
suggested the process of creating thermally expanded graphene (EG) from expand-
able graphite, as seen in Fig. 10.2. The procedure was supported in a chemical vapor 
deposition apparatus. The size, composition, and structure of EG and GR have been 
investigated using X-ray diffraction, SEM, and TEM. 

In the SEM micrographs, there are several graphene layers were seen in the EG. 
After being subjected to greater temperatures, the EG samples were shown to have a 
reduced number of GR layers. Raman spectroscopy findings reveal that graphene has 
both G and 2D bands. Most graphene 2D bands have a prominent peak at roughly 
2670 cm−1 [103]. When graphene sheet thickness declines, so does the intensity 
of the D band. Raman spectroscopy’s G, D, and 2D bands provide striking visual 
representations of the graphene structure’s sp2 carbon atoms. We adapted Hummer’s 
method, using EG as a starting point. Lyophilization and freeze-drying were used 
to create GNS. Many researchers have employed lyophilization procedures to create

Fig. 10.2 Graphene sheets are gradually modified using PS nanoparticles [102]. Adapted with 
permission from Ref. [102] Copyright (2010) (Elsevier) 
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cellulose nano-whiskers. These nano-whisker powders may be easily redistributed in 
organic environments due to their low van der Waals interactions and loose packing 
[104, 105]. Using the same method, GNS powders were produced and found to 
be easily dispersed in solvents for further functionalization. It was found that the 
resulting GNS granules in this situation were airy and light [106–109]. Core-level-
shifts X-ray photoelectron spectroscopy analysis confirmed that graphite oxide and 
GNS had been decreased. The GNS XRD pattern did not exhibit any peaks, in 
contrast to graphite oxide’s pattern, which included a significant peak at 12 °C. With 
the use of AFM measurements, it was found that the GNS had fully exfoliated [110]. 
Chaturvedi et al. [111] used a powerful oxidizing chemical to treat graphite powder 
before ultrasonic processing in a volatile solvent. Thermal shockwave therapy was 
used to lessen according to the FTIR spectral task of GR, which exhibited a peak at 
1628 cm−1, consistent with the unoxidized graphite realms, GR was not reduced to 
zero after being subjected to thermal shock treatment. Analogous findings were also 
reported by Che et al. [112]. Mechanical exfoliation of graphite on an SU-8 exterior 
yielded graphene with tailor-made atomic layer thicknesses and orientations. Raman 
spectroscopy was used to pinpoint the monolayer in graphene [113]. Graphite oxide 
was created by the response of graphite with H2SO4, HNO3, and potassium chlorate. 
For this procedure, we used a quartz tube with a rubber stopper and a sealed end. 
After a quick flush by argon gas via the elastic plug, the tube was proximately heated 
to roughly 1050 °C in a conduit incinerator. To make GO, graphite was imperiled 
to an adapted Staudenmaier procedure. The resultant graphite oxide was exfoliated 
into GO nanosheets using ultrasonics. The resulting nanosheets were then treated 
with ammonia and glucose in the appropriate proportions, therefore lowering GO. 
Ultraviolet–visible spectroscopy (UV–vis) was measured to confirm the lowering of 
GO with glucose. The disappearance of the C 1/4 O peak indicates a decrease in GO. 
Once GO was reduced, the conjugated C–C bond could once again exist, and this 
change influenced a redistribution of the 14-C bond’s peak. According to Liu et al. 
[114], RGO was synthesized from GO. 

In this case, hydrazine monohydrate was included in the last stages of preparation 
for the RGO-polyaniline (PANI) nanomaterial. GO production has been improved 
by revising Hummer’s methodology [115]. With this method, NaNO3 was removed, 
while KMnO4 concentration was raised, a change inspired by Hummer’s method. 
This reaction, which produced graphite oxide, was agreed out using a solution of 
sulfuric acid and hydrogen phosphate. The graphite oxide produced by this process 
was more oxidized than that produced by Hummer’s technique. Thermal reduction 
at 200 °C for 30 min was used to transform the GO into RGO. The width of the RGO 
sheets was found to be 1.5 nm using AFM. Additionally, 2D thin sheets of RGO 
could be seen in SEM images [116]. Zeng et al. [117, 118] reported the synthesis 
of graphite oxide using a variation of Hummer’s technique. Resin-grafted graphite 
oxide (RGO) was made by further sonicating graphite oxide and then reducing it 
with hydrazine monohydrate. 

There was a significant difference in the BET surface area between camphor, 
graphite, and diamond samples. It was found that the samples could take in up to 
3% by weight of hydrogen. Graphene with a specific surface area of 156 m2 g−1 was



10 Surface Engineering of Graphene-Based Polymeric Composites … 281

found to absorb just 0.4% of the hydrogen; it was subjected to in a separate study. 
In a simple test, the amount that a commercial graphite intercalation compound 
grew when it was heated was measured. The EG intercalation compound was mixed 
with ultrasonic waves in tetrahydrofuran (THF) for 60 min to help it spread out. 
Sonication resulted in the formation of GnPs with a thickness of 3.57 and 0.50 nm, 
respectively. Researchers have seen a potential trend toward using GnPs instead of 
CNTs for making polymer nanocomposite materials [119]. Table 10.1 summarizes 
the methods used to create graphene-based polymer nanocomposites as well as their 
benefits and limitations. 

Table 10.1 Graphene-polymer nanocomposites: various preparative methods 

Different 
techniques 

Techniques used for the 
preparation of 
graphene-polymer 
nanocomposites 

Benefits Limitations 

Solution mixing 
technique 

Mechanical mixing, magnetic 
agitation, or large energy 
sonication is used to combine 
the graphene-solvent mixture 
with the polymer solution, 
and in the end, evaporating 
the solvent yields a composite 

Dispersed 
graphene oxide 
composites 

Eliminating solvents is a 
major problem 

In-situ 
polymerization 
technique 

By reacting monomers or 
pre-polymers with graphene 
and graphene-based 
polymeric composites can be 
made 

Consistently 
distributed 
composites with 
enhanced 
characteristics 

The viscosity of 
polymerized materials 
tends to increase during 
the process, making 
them difficult to 
manipulate and reducing 
their load fraction. 
Evaporating away the 
solvent is a challenge 

Melt blending Graphene and polymer 
mixing facilitated by elevated 
temperature 

Sustainable, 
cheap, and 
amenable to 
industrial-scale 
production 

The large shear stress 
may diminish the 
graphene aspect ratios, 
which would prohibit 
the composites from 
achieving their ideal 
minimum percolation 
threshold and good 
electrical conductivity
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10.4 Graphene-Filled Different Polymer Composites 

Several studies on polymer nanocomposites using various nanofillers have been 
published. Nonetheless, additional study into graphene-based nanocomposites for 
high-performance polymers is required. Graphene’s usefulness as a nanofiller is 
demonstrated through the use of a wide variety of polymeric systems. They include 
epoxy, polystyrene (PS), polyaniline (PANI), polyurethane (PU), polyvinylidene 
fluoride (PVDF), Nafion, polycarbonate (PC), polyethylene terephthalate (PET), etc. 
Several academic and industrial researchers have been developing novel polymer-
graphene nanocomposites for a variety of applications and may benefit from the 
subsequent discussion and details on graphene-based polymer nanomaterials. 

10.4.1 Epoxy-Graphene Nanocomposites 

Epoxy composites containing graphene oxide sheets have their thermal expansion 
measured using a thermo-mechanical analyzer. The heat conductivity of the epoxy 
resin was further reduced by the addition of graphene sheets. The embellishments of 
only 1% GO improved the heat conductivity of epoxy resins as much as filling them 
with 1% SWNT. The heat conductivity of an epoxy resin encumbered with GO at a 5 
wt% was 1 W/mK, which is four-fold greater in contrast with the conductivity of raw 
epoxy resin. The values stated in the literature are strengthened by these findings. 
However, 20 wt% of GO, according to the research, might boost thermal conductivity 
to 6.44 W/mK. According to our findings, the graphene composite shows promise as 
a heat-conducting thermal interface material. Below the glass transition temperature, 
thermal extension related to experiments of graphene composites showed a similar 
influence of the SWNTs on the bulk CTEs (Tg). As compared to normal epoxy resin, 
which has a CTE of around 8.2 105 C1, epoxy composites containing 5 wt% graphite 
exhibit a decrease in CTE below Tg of 31.7%. The epoxy/graphene compounds have 
been fabricated on-site, and EMI shielding studies were conducted on them [120]. 
The critical phenomena of the percolation threshold in epoxy-graphene composites 
are described by the DC conductivity, 

m = h(c) t (1), (10.1) 

where the parameters are interchangeable good agreement is found between 
the conductivity of polymer-graphene compounds and the percolation behavior 
perceived by Eq. (10.1). The data-fitting procedure yielded a percolation threshold 
of c = 0.52 vol%. Other two-dimensional fillers and an isocyanate-modified PS-
based GO nanocomposite also achieved a low percolation threshold [121]. This 
occurred because the graphene-based sheets were evenly distributed inside the 
epoxy matrix and had a high aspect ratio. When a consistent graphene-based sheet 
network was constructed conducting in nature in the sequestering epoxy matrix, the
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EMI-defending efficacy improved by enhancing graphene loading over the whole 
frequency assortment. However, the epoxy-based graphene compounds with a 15% 
graphene load attained the desired value (20 dB) for an EMI-defending composite. 
The results showed that polymer-graphene composite material could be used in manu-
facturing as light, operative composites to block electromagnetic radiation. Epoxy-
graphene composites have been made using in-situ polymerization, and their ability 
to block EMI is evaluated [120, 122]. Graphene loading improved EMI shielding 
performance across the board. Thus, epoxy-graphene composite materials might be 
utilized as efficient, lightweight materials for protecting electronic equipment from 
electromagnetic radiation. We utilized a thermo-mechanical analyzer to determine 
the thermal expansion of epoxy composites reinforced with graphene oxide sheets 
[123]. The graphene slips were able to greatly upsurge the heat conductivity of the 
epoxy resin, which was previously quite weak. An epoxy resin filled with 5% GO 
composites has four times the heat conductivity of an unfilled epoxy resin [124]. Heat 
may be dissipated via the use of graphene composites and other thermal interface 
materials. 

10.4.2 Polystyrene (PS)–Graphene Nanocomposites 

The fabrication of polystyrene (PS)-based-isocyanate-modified graphene composites 
in N, N dimethylformamide (DMF) as solvent through a solution mixing approach 
The composites were reduced with dimethyl hydrazine for 24 h at 80˚C. To precipi-
tate the composites, a DMF solution was added very slowly to a very huge capacity of 
violently stirring methanol (10:1 regarding the bulk of DMF cast-off). It seemed that 
almost all of the composites were filled with graphene sheets, despite only having a 
filler loading of 2.4% vol (found in SEM images). The electrical conductivity perco-
lation threshold in PS with 0.1 vol.% GO was achieved. As graphene is so uniformly 
distributed and has such an enormously superior aspect ratio, it exhibits a percolation, 
i.e., three times less compared to that seen for any other two-dimensional filler [125]. 
Thin films loaded at around 0.15 vol.% with the composites met the antistatic criterion 
for conductivity (106 S m−1), which is rather high. The value increased significantly 
between 0.4 and 1% of the load. The material’s electric conduction varied from 0.1 
to 1 Sm−1 at 2.5 vol. PS/GNPIL materials are developed in a manner analogous to 
the development of PS/graphene adapted with isocyanate. Compression-molded thin 
sheets were used to test the composite sample for electrical conductivity and thermal 
stability (2 mm). 

Pure PS has a conductivity of around 1014 S/m when measured using a four-probe 
system. Adding 0.38 vol.% GNPIL significantly raised the electrical conductivity of 
the PS matrix to 5.77 S m1. In this article, the thermal stability of pure polystyrene is 
contrasted with that of the PS/GNPC8P composite material. The 2nd-step depriva-
tion temperature of the PS-GNPC8P composite was almost 50 °C higher compared to 
pure PS. These point to a robust connection among the polymer matrix and GNPC8P 
at the boundary, which might slow down the movement of polymer shackles in the
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proximity of contact which upsurge the nanocomposites’ resistance to heat. Eda 
et al. [126] used a solution mixing method to produce PS-FGS thin films composite 
exhibit semiconducting behavior. The thin film displayed an ambipolar field effect. 
The composite thin films’ 1–24 Sm−1 electrical conductivity was in close pact with 
the known standards for bulk composites. During further cooling, the conduction 
of the reedy coatings increased somewhat once the temperature had fallen to about 
50 K. Thin films of reduced graphene oxide [128] and graphitic flakes [127] exhib-
ited the same peculiar behavior. Below 50 K, electron–phonon scattering may limit 
carrier mobility. Nevertheless, the composite material shifts from n-type to p-type as 
the temperature increases. Each FGS and sheet-to-sheet connection has a flaw that 
makes it hard for carriers to move freely. The performance gap between organic and 
inorganic devices is expected to close as material parameters and reduction condi-
tions are optimized. Hu and his co-workers [129] recently developed in-situ emulsion 
polymerization techniques used in the production of PS-graphene nanosheet (GNS) 
nanocomposites. The creation of PS-GNS nanocomposites is shown in simplified 
form in the diagram below. It was discovered that polystyrene microspheres ranging 
in size from 90 to 150 nm were embedded in the graphene superficially, predomi-
nantly in the crevices between the slanted nanofilms. This demonstrates the compat-
ibility between PS microspheres and GNS, which allows for nanosized dispersion to 
be produced without further surface treatment. When pure GNS (0.37 nm) was put 
next to PS/GNS nanocomposites (0.41 nm), the distance between the layers grew. To 
reduce the strength of the van der Waals forces and increase the inter-planar distance 
between the slanted nanosheets, PS microspheres may be attached to the edges of 
the nanosheets. Raman spectra of pure GNS nanocomposites and PS/GNS hybrids 
are shown. It was determined that pure GNS has two distinct properties, the D band 
at 1331 cm−1 and the G band at 1594 cm−1. The peak intensity ratio, I(D)/I(G), for 
the PS-GNS nanocomposites, was 1.156. As a result, it is possible that the chemical 
grafting of polymers to the GNS surface is facilitated by the presence of localized 
areas of sp3 blemishes within the sp2 network of carbon [130]. Nanocomposites have 
100 °C higher thermal stability than pure PS. Increased Tg may be traced back to 
a strong interaction between the polymer matrix PS and GNS, as seen below. At a 
GNS content of 2.0 wt%, the electrical conductivity of the PS/GNS nanocompos-
ites was found to be 2.9 102 S m1. It was, however, mentioned that pure PS had a 
conductivity of around 1.0 1010 S m1 [131]. It was recently reported that a nanostruc-
tured poly(styrene–isoprene-styrene) block copolymer had PS domains containing 
functionalized graphene sheets (FGS) (SIS). Analysis of AFM images reveals that 
poly(styrene-b-isoprene-b-styrene) is made up of well-ordered, spherical PS block 
domains that are perpendicular to the free surface (SIS). Cylindrical PS domains have 
been found dispersed perpendicular and corresponding to the free exterior in SIS and 
FGS composites. Mean diameters of 20 nm (and their long-range order) were found 
in both the clean matrix and the cylindrical domains of the nanocomposites. Tg for 
the PS block increased from 78 °C for pure SIS to 84 degrees Celsius for the SIS/FGS 
composite, whereas the Tg for the PI block stayed relatively constant at around 58 
degrees Celsius for both materials. Tg increases because chain mobility in PS domains 
is impeded. The researchers claim that by incorporating 2D particles into BC, BC is
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endowed with robust electrical properties that are essential for optoelectronic uses. 
The solution blending method using DMF as the solvent was used to produce modi-
fied graphene composites, including PS and isocyanate [132]. The compounds were 
coagulated by gradually adding DMF to a large volume of CH3OH. These composites 
seemed to be nearly filled using a graphene sheet, although they contained just 2.4% 
filler by volume. The conductivity of a composite material may be understood as a 
function of the volumetric proportion of filler loading. By using a similar method, 
Liu et al. [133] were able to produce a PS-ionic liquid-functionalized graphene 
composite that displayed enhanced electrical conductivity compared to unmodified 
PS. Functionalized graphene sheet (FGS) materials have been developed by solu-
tion amalgamation [126]. Thin layers of semiconducting composites exhibited the 
interfacial field effect. The thin coatings’ conductivity decreased at temperatures as 
high as 50 K and then slightly increased with subsequent cooling. These results were 
also seen in thin films of diminished GO and graphitic flakes [128, 134]. For their 
nanocomposites, Hu and his research team [135] used in-situ emulsion polymer-
ization to make graphene nanosheets (GNS) materials. Including PS microspheres 
with GNS may lead to non-sized dispersion without the need for any further surface 
preparation. The nanocomposite was 100 ˚C more stable at high temperatures than 
pristine PS. The electric conduction process of the PS-GNS nanomaterial is greatly 
more sophisticated than that of pristine PS. 

10.4.3 Polyaniline (PANI)-Graphene Nanocomposites 

To synthesize PANI-based graphene composite paper, aniline was electro-
polymerized in-situ on graphene paper (GPCP) [136]. A three-electrode anodic 
electro-polymerization cell was used to conduct the polymerization. Graphite paper 
was used as the active electrode, while a Pt plate was used as the counter electrode 
and a standard calomel electrode (SCE) as the reference electrode. The electrolyte 
was composed of aniline and sulphuric acid (at a concentration of 0.5 m) (0.05 M). 
During a long length of time, PANI was electro-polymerized in situ on graphene paper 
using a constant potential of 0.75 V against the SCE (60, 300, and 900 s). However, 
the GPCP’s morphology was studied with electron energy loss spectroscopy (EELS). 
The presence of homogeneous PANI coatings on a single graphene sheet was demon-
strated by the identification of nitrogen, carbon, and oxygen that were uniformly 
distributed throughout the whole surface of the PANI-graphene sheet. In contrast to 
the regular arrangement of PANI on each 2D graphene, the 3D structure of GPCP 
is inhomogeneous. The results from cyclic voltammetry (CV) on graphene paper 
(GP) and graphene-enhanced carbon nanotubes (GPCP). It is because of the transi-
tion between quinone and hydroquinone classes, GP has a single redox peak. It is 
observed that the two groups of redox peaks were seen in the GPCP, indicating the 
presence of pseudo-capacitive PANI in the composites [136]. 

The redox characteristics of GP and GPCP are examined in a Nyquist plot 
(Fig. 10.3a). The higher resistance is owing to the increased concentration of GPCP,
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and this may be owing to the build-up of poorer conducting PANI. On the other hand, 
GPCP demonstrated much higher cycle stability than GP (Fig. 10.3b). An excellent 
composite of PANI-graphene electrodes was developed using a spin coating method 
[136, 137]. However, a pure aqueous dispersion of GO sheets was deposited via a 
deep coating method on a quartz substrate and then thermally reduced to create a 
graphene layer. The graphene sheets were then spin-coated with a dark blue PANI 
solution in NMP. According to morphological tests, the PANI-graphene electrodes 
had far smoother surfaces than that of the indium tin oxide (ITO) or PANI-ITO elec-
trodes. The current density of the CV at the PANI-ITO electrodes reduced dramati-
cally after being subjected to 100 cycles at 20 mV s−1 in 1 mol L−1 H2SO4, and the 
potential change among the oxidation and reduction increased from 87 to 106 mV. 
When applied to a PANI-graphene electrode, the same process showed negligible 
impact on the material’s overall qualities. So, when making electrochromic devices, 
the PANI-graphene electrode is better than an ITO electrode. After a few cycles of 
potential switching, the ITO electrode’s performance significantly decreased, despite 
its initial high optical contrast and short switching time. However, when the voltage 
was altered, the electrochromic devices using graphene electrodes showed only a 
slight decrease in performance. The PANI-GNS-CNT composite was fabricated 
using in-situ polymerization [136, 138]. Electrodes were made by dissolving electro-
active materials like carbon black and polytetrafluoroethylene (PTFE) in ethanol. The 
resulting slurry was spread with a spatula on a nickel substrate before being baked 
at 100 °C for 12 h under a vacuum. The specific capacitance of the synthesized 
PANI composites and pure PANI is presented in Fig. 10.4 as a function of scan rates. 
The PANI-GNS-CNT composites greatly outperformed pure PANI and PANI-CNT 
composites in terms of specific capacitance. An increased specific capacitance was 
attributed to a synergistic effect between GNS and PANI [136, 139]. 

Fig. 10.3 Comparison of cyclic voltammograms captured in 1 M H2SO4 at rates ranging from 2 to 
20 mV/s (a). The Nyquist plots of the G-paper and GPCP (60 s, 300 s, and 900 s) (b), with stability 
at 50 mV/s cycling [136]. Adapted with permission from Ref. [136] Copyright (2010) (Elsevier)
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Fig. 10.4 Capacitance data 
at varying scan rates for 
polyaniline, carbon nanotube 
polyaniline, graphene 
nanosheets polyaniline, and 
graphene nanosheet carbon 
nanotube polyaniline. The 
GNS-PANI electrode 
material was found to be 
superior since it had the 
largest specific capacitance 
[136]. Adapted with 
permission from Ref. [136] 
Copyright (2010) (Elsevier) 

10.4.4 Nafion-Graphene Nanocomposites 

Graphene and Nafion were combined in a solution to create an electrode modi-
fied with tris(2,2-bipyridyl) ruthenium (II) (Ru(bpy)3 2+) [140]. The electrode was 
soaked for 30 min in a 1 M Ru(bpy)3 2+ solution to produce a Ru(bpy)3+ modi-
fied electrode. The cyclic voltammetry (CV) of the modified Nafion-graphene elec-
trode suggests that graphene’s conductivity improves in electron transport. Electro-
chemical catalysis of TPA oxidation by the Ru(bpy)3 2+)-Nafion-graphene composite 
film is demonstrated by an increase in the anodic peak current upon addition of 
TPA. With the modified electrode, oxalate ions were detected with high sensi-
tivity, selectivity, and stability. Graphene-Nafion-tris(2,21-bipyridyl)ruthenium(II) 
(Ru(bpy)3]2+) Graphene and Nafion were combined in a solvent to create special-
ized electrodes [141, 142]. The synthesized electrode was subsequently exposed 
to 1 M [Ru(bpy)3]2+ solution. The responsiveness, selectivity, and stability of the 
modified electrode significantly increased. 

10.4.5 Poly(Vinyl Alcohol) (PVA)-Graphene Nanocomposites 

Liang and his co-workers [143] have reported that the poly(vinyl alcohol) (PVA)-
based graphene nanocomposites comprise GO as fillers, PVA as a polymer matrix, 
and water as the processing solvent. The synthesized GO and PVA-based GO 
nanocomposites were analyzed by X-ray diffraction studies (as shown in Fig. 10.5). 
It was found that the peak at 20.9° that crystallized matched the GO and suggested 
that the GO had exfoliated into individual sheets.

It is reported that the PVA-based graphene nanocomposites performed better 
mechanically than pure PVA. However, the tensile strength was observed to increase 
by 76% (from 49.9 to 87.6 MPa) and Young’s modulus by 62% (from 2.13 to
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Fig. 10.5 X-ray diffraction 
(XRD) patterns of 
a graphene oxide (GO), 
b graphene-polyvinyl 
alcohol (PVA) 
nanocomposite with 0.5 wt% 
of GO, and c neat PVA 
[143]. Adapted with 
permission from Ref. [143] 
Copyright (2009) (Willey)

3.45 GPa), when the GO loading was increased from 0% to 0.7 wt% (0.41 vol.%). 
There are various factors for the molecular-level dispersion of graphene sheets in the 
PVA matrix and their strong interfacial adhesion owing to their H-bonding with the 
PVA matrix. The incorporation of 0.7 wt% of GO into PVA-graphene nanocom-
posites corresponded with a rise in glass transition temperature (Tg) from 37.5 
to 40.8 °C. This raise in Tg may be due to the H-bonding of graphene and PVA 
matrix. It has been found that DSC can be used to detect the hydrogen bonding of 
graphene and PVA. These nanocomposites have better crystallographic and thermal 
stability than neat PVA. Further, these graphene nanosheets and extensively exfoli-
ated PVA-based nanocomposites were made using a facial aqueous solution [149]. 
When graphene nanosheets were mixed into the PVA matrix, the resulting compos-
ites showed increased strength. A tensile strength of 42 MPa was demonstrated by 
the composite containing 1.8% graphene by volume, an increase of 150% over the 
corresponding pure PVA sample. The addition of more graphene relatively signifi-
cantly raised the tensile strength from 42 to 43 MPa. When graphene loading was 
increased, the composites’ elongation at break reduced dramatically and unexpect-
edly. The presence of 1.8 vol. % graphene reduced the elongation at break from 220% 
in the neat sample to 98% in the composite. The study found that graphene-based 
nanocomposites have a high aspect ratio and well contact with the polymer matrix 
slowed down the chain’s mobility. 

10.4.6 Polyurethane (PU)-Graphene Nanocomposites 

Nanocomposites made from FGS and water-based polyurethane were produced 
using an in-situ approach (WPU). The morphological analysis of the nanocomposite 
showed that the FGS particles were spread out evenly over the WPU matrix. These
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nanocomposites have superior electrical conductivity owing to their uniform distribu-
tion of FGS particles throughout the WPU matrix. However, the percolation threshold 
was reached at a loading of only 2% FGS. Once an electrically conducting channel 
formed in the polymer matrix, the electrical conductivity of the polymer changed. 
Lee and his co-workers have made FGS-WPU nanocomposites that have a higher 
conductivity [144]. A DSC study found that adding FGS to nanocomposites raises 
both the melting temperature and the heat of fusion (Hm) of the soft segment of 
WPU. In contrast, hard segment crystallinity decreased with increasing FGS loading 
in the nanocomposites. 

Besides, three different nanocomposites were developed by Liang et al. through 
the use of solution mixtures. They used graphene that had been treated with 
isocyanate, sulfonate, or reduction as the nanofiller and thermoplastic polyurethane 
(TPU) as the matrix polymer [145]. According to TGA testing, the thermal break-
down rate of TPU nanocomposites made from reduced and sulfonated graphene 
was much lower than that of isocyanate-modified graphene. Graphene sheets that 
have been sulfonated have fewer functional groups attached than graphene that 
has been changed with isocyanate. The infrared-triggered actuation performance 
of TPU-graphene nanocomposites comprising 1 wt.% sulfonated graphene was 
fascinating and durable. When exposed to infrared light, this infrared-responsive 
nanocomposite decreased and rapidly raised a 21.6 g weight of 3.1 cm (0.21 N). 
There are several cycling tests yielded a maximum energy density of 0.40 Jg−1. 
Furthermore, the isocyanate-modified graphene-TPU nanocomposites exhibited a 
poor shape recovery rate and IR-triggered actuation (Fig. 10.6), whereas TPU-
sulfonated graphene nanocomposites had improved electrical and mechanical perfor-
mances. Nanocomposites made with 1% TPU-sulfonated graphene had their tensile 
strength (100% strain) rise by 75%, and their Young’s modulus goes up by 120%. 
This improvement in mechanical characteristics may be due to the uniform dispersion 
of graphene in the polymer matrix.

10.4.7 Poly(Vinylidene Fluoride) (PVDF)-Graphene 
Nanocomposites 

Graphene oxide and expanded graphite (EG) were used in a solution processing and 
compression molding process to create a PVDF based on functionalized graphene 
sheets (FGS) [146]. The structure and thermal stability of the composites were 
analyzed through X-ray diffraction and dynamic scanning calorimetric technique. 
However, it is observed that modified composites have superior mechanical perfor-
mance than those of pristine polymer and unmodified ones. It is noticed that at 
25 °C, pure PVDF had a storage modulus of 1275 MPa, but adding 2 wt% FGS or 
EG raised it to 1859 or 1739 MPa. Further, with the incorporation of 4 wt% filler into 
the PVDF matrix, the storage modulus rises to 2460 and 2695 MPa, respectively. The 
DMA results demonstrated that the nanofiller’s reinforcing impact contributed to the
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Fig. 10.6 Infrared optical pictures of nanocomposites using graphene as the active material [145]. 
Adapted with permission from Ref. [145] Copyright (2009) (American Chemical Society)

nanocomposites’ improved Tg. At a loading of 5% EG in PVDF-FGS composites 
and 2% FGS in PVDF-EG composites, the percolation of electrical conductivity was 
shown to be very significant, owing to their larger aspect ratio, FGS has a lower 
percolation threshold and a better-conducting network than EG. The influence of 
temperature on the electrical conductivity of the PVDF-EG nanocomposites was 
also studied at temperatures ranging from 20 to 170 °C. This nanocomposite resis-
tivity increased steadily with increasing temperature, increasing rapidly after the 
polymer melt. As the filler particles are so much farther apart at melting, they offer 
considerably more resistance. It was thought that nanocomposite materials could 
be used as positive temperature coefficient (PTC) materials because the resistivity 
changes by three orders of magnitude as the amount of EG changes. 

10.4.8 Poly(3,4-Ethyldioxythiophene)-Graphene 
Nanocomposites 

Using in-situ polymerization, a composite of poly (3,4-ethyl dioxythiophene) 
(PEDOT) and sulfonated graphene was developed [147]. This novel hybrid mate-
rial has excellent transparency, electrical conductivity, outstanding flexibility, and 
high thermal stability, and it can be easily treated in both aqueous and organic 
solvents. Optical transmittances at 550 nm were found to be 96%, 76%, 51%, and
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Fig. 10.7 Graphene oxide, sulfonated graphene, and graphene-PEDOT FTIR spectra [147]. 
Adapted with permission from Ref. [147] Copyright (2009) (Springer Nature) 

36% for PEDOT-graphene films of thicknesses of 33, 58, 76, and 103 nm, respec-
tively (Fig. 10.7). The conductivity of the composite films produced on quartz and 
PMMA substrates was 7 and 10.8 Sm−1, respectively, regardless of the film thickness. 
PEDOT-graphene composites are favorable owing to their superior thermal stability. 
Moreover, the temperature of 297 and 325 °C, the composite material exhibits mass 
loss, and below 325 °C, mass loss reached roughly 19%. The PEDOT-graphene 
composite also showed improved thermal stability over PEDOT-PSS composites. 

10.4.9 Polyethylene Terephthalate and Polycarbonate-Based 
Graphene Nanocomposites 

Melt compounding was used to create graphene nanocomposites based on polyethy-
lene terephthalate (PET) [148]. The morphological analysis of the nanocomposites 
revealed that the graphene network is composed of several thin stacks of a few sheets 
of monolayer graphene. The wrinkly, overlapping graphene sheets that come out of 
this process may have a high electrical conductivity because they connect the indi-
vidual graphene sheets well and move a lot of current [149]. Melt compounding was 
used to make composites of polycarbonate (PC) and functionalized graphene sheets 
(FGS) or graphite. The structural, morphological, and rheological study of the PC-
FGS composites revealed that the FGS layers were significantly exfoliated and had 
viscoelastic properties. After being annealed for 10,000 s, the PC-FGS composites 
show stiffness percolation at 1wt% to 1.5t5 of FGS loading into the PC matrix. In
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contrast, a graphite loading of 3–5 wt% was sufficient to achieve this percolation. 
These composites with a weight percentage of (0.5 wt %) of FGS contents have inter-
esting reversibility among solid and liquid performance, and this is impacted by prior 
processing. However, the electrical properties of the resultant composites with lower 
FGS loadings might still result in electrical conductivity percolation, in comparison 
with utilizing graphite filler. It has been found that PC-FGS nanocomposites have 
a greater tensile modulus than pure PC. Because of the FGS loading, the CTEof 
the composites was also greatly diminished. Graphite- and FGS-reinforced polycar-
bonate films were subjected to N2 and He penetration tests at 35 °C. Both enhancers 
have the potential to make nitrogen and helium in the air less harmful. However, 
FGS composites had significantly lower permeability than graphite composites. Gas 
molecules diffuse slower across membranes because a uniform distribution of FGS 
with a large aspect ratio may produce complex routes, lowering the cross-sectional 
area available for penetration [150]. 

10.5 Application of Polymer-Graphene Composites 
for Energy Storage Devices 

In recent times, one of the most promising methods of energy storage is the super 
capacitor since it has a high power density, is quick to charge and discharge, and 
has a long cycle life. The electrodes in super capacitors would be made from a 
3D graphene-based conductive structure owing to its elevated specific charge, low 
density, and superior surface area. The optimum electrode materials for pseudocapac-
itors are typically mixtures of conducting polymers (PANI and PPy) and graphene that 
have a high theoretical capacitance owing to their unique redox characteristics [151]. 
However, the conducting polymer to 3D graphene for supercapacitors stabilizes the 
polymer chain in the network, increases electrolyte ions’ surface accessibility, mini-
mizes their diffusion distance, and improves the composite performance [152]. The 
3D graphene-based polymer nanocomposites can be created by cross-linking organic 
molecules with 3D graphene using a self-assembled method followed by in-situ poly-
merization. Liu et al. [153] also made a graphene supercapacitor that can withstand 
a lot of pressure. They also came up with a way to make 3D PPy-graphene (PPy-G) 
foam in place by cross-linking organic molecules. The good porosity, conductivity, 
and mechanical durability of PPy-G foam electrodes kept their CV curves and capac-
itive even after 1000 recorded cycles with a 50% strain. Moreover, the compact PPy 
sheets and pure 3D graphene have specific capacitances that are substantially lower 
than the discharge slope prediction of 350 F/g−1. Figure 10.8 shows different appli-
cation analyses of graphene, from conductive ink to chemical sensors to LEDs to 
composites to energy to touch screens and high-frequency electronics.

Kulkarni et al. [154] used an in-situ polymerization technique to fabricate PANI 
nanofibers with a diameter of 20–100 nm using a 3D graphene template. With a 
current density of 4 mA/cm2, it was thought that the battery would keep 86.5%
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Fig. 10.8 Use of graphene-based materials in a variety of disciplines

of its original capacity after 5000 cycles of charging and discharging. The active 
PANI nanofibers have huge specific surface area and the graphene backbone’s effi-
cient conducting routes enhanced cycle stability and rate capability, resulting in 
a surprising synergistic efficiency for better super capacitive performance. When 
scanned from 150 to 800 mV at 10 mV s−1, composite electrodes had a maximum 
specific capacitance of 1024 F g−1 in 1 M H2SO4. Another study that used soni-
cation or reduction to make a 3D graphene-poly(anthraquinonyl sulfide) (PAQS) 
composite was conducted by Zhang et al. [155]. This composite could be used as a 
bendable cathode in LIBs and NaIO2 batteries (SIBs) if it was put under mechanical 
pressure. As a result of the stacking relationship between the graphene sheets, the 
polymer particles (100–200 nm) were evenly dispersed across the graphene surface 
and enclosed within the graphene sheets. The improved composite has very good 
cycling stability (71.4% capacity retention after 1000 cycles at 0.5 °C) and excellent 
rate performance (102 mAh g−1 for LIBs at 20 °C and 72 mAh g−1 for SIBs at 
5 °C). To make it easier for active polymers to react electrochemically, PAQS parti-
cles were spread out evenly and encased in 3D graphene with a porous structure that 
was built up in layers [156]. This allowed for reliable ion transport channels and a 
viable electron transport path. The microbial fuel cell (MFC) used as a bio-oxidation 
method is another way to turn chemical energy from organic substrates like sugar, 
fatty acids, and proteins into electricity [157, 158]. However, the high porosity in the
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3D graphene structures allows the bacteria and a growth medium access to the inside 
of the electrode. Yang et al. [159] have reported that the hydrophilic conducting 
polymer PANI is on 3D graphene by polymerizing it. This made it easier for bacteria 
to stick to the surface and form biofilms [160]. Bacteria colonized the PANI-coated 
graphene surface and established an extensive biofilm. The middle PANI polymers 
acted as conductive nanowires to increase extracellular electron transport between 
the electrode and the microorganisms by engaging directly with the redox-active 
proteins on the bacterial membrane [161, 162]. It has been reported that after 150 h 
(Fig. 10.9a), the power density of the graphene-PANI MFC as still significantly 
higher than that of carbon cloth. Furthermore, the charge-transfer resistance of the 
graphene-PANI MFC was only around 100 (as shown in Fig. 10.9a). Moreover, the 
3D graphene-PANI MFC composites reached a maximum power density of about 
768 mW/m2 (Fig. 10.9b). Figure 10.9c demonstrates that the high bacterial loading 
and efficient EET gave the 3D graphene-PANI anode a naturally high output power 
density (extracellular electron transfer). Chitosan was used as a backbone for 3D-
GPNCs along with conducting polymers because it is biocompatible, can absorb, and 
is good for the environment. Chen et al. [162] made a 3D chitosan-vacuum-stripped 
graphene scaffold using a self-assembly method. The hierarchically porous structure 
with layered, branched macropores, mesopores, and micropores increased bacterial 
colonization and electron transfer from redox-active compounds. The highest power 
density in MFC came from a 50% graphene scaffold at 1530 mWm−2, and this is 78 
times more powerful than a carbon cloth anode. 

Xia and his co-workers [163] have made a composite material by decorating func-
tionalized graphene sheets with Fe2O3 quantum dots (QDs, 2 nm) (FGS) through a 
facile technique and used it as a supercapacitor electrode (as shown in Fig. 10.10). 
The specific capacitance of these Fe2O3 QDs-FGS composites in 1 M Na2SO4

Fig. 10.9 a MFCs with carbon cloth or graphene-based PANI foam anodes have different power 
density output time courses, b polarization curves of the two MFC types (I-V relation inset) c This 
picture shows S. oneidensis MR-1 bacteria and a 3D graphene-PANI monolith electrode interacting 
with each other [162]. Adapted with permission from Ref. [162] Copyright (2012) (American 
Chemical Society)
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Fig. 10.10 A schematic representation of the creation of an asymmetric supercapacitor and design 
of the composite electrodes

between -1 and 0 V vs Ag–AgCl can reach up to 347 F/g−1. The Fe2O3-FGS-MnO2-
FGSasymmetric supercapacitor has a power density of 100 W kg−1 and an energy 
density of 50.7 Wh kg−1, and it has outstanding cycling stability. 

10.6 Conclusions 

Graphene research and development is progressing at a breakneck pace right now, 
with huge breakthroughs being made every day. Recent progress in our under-
standing of graphene polymer nanocomposites can be traced to the dramatic improve-
ments in polymer properties, such as mechanical, electrical, thermal conductivity, 
chemical, optical, and gas impermeability, which can be made with low concentra-
tions of filler. In this chapter, we focused on the precise incorporation of surface-
functionalized graphene into different polymer matrices to realize their potential 
applications in fields of energy storage sectors including electronics and composite 
materials. The enhanced characteristics are a result of the uniform distribution of 
changed graphene and improved polymer-graphene compatibility via a variety of 
reactive functional groups on modified graphene. Graphene’s emergence as viable 
nanofillers has ushered in a new era in the development of low-cost, high-performance 
composites for a wide variety of uses. 
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