®

Check for
updates

MBTA: A Model-Based Threat Analysis
Approach for Software Architectures

Anas Motii(®)

Mohammed VI Polytechnic University, Ben Guerir, Morocco
anas.motii@um6p.ma

Abstract. In the last decade, several efforts have been achieved to
integrate security in the Software Development Life-cycle (SDL). Ana-
lyzing software architecture in order to identify threats is an essential
step in secure software development processes. However, performing this
task manually can result in identifying false positives. It is thus time-
consuming and error-prone. Therefore, there is a need for automated
tool support to perform this task. Existing efforts are limited to spe-
cific, predefined security properties or threats that are checked either
manually or using limited toolsets. In this paper, we present a general
and constructive model-based approach for threat analysis. We employ
domain-specific modeling language techniques to develop a set of mod-
eling languages that enable the specification of the software architecture
structure. We used the Object Constraint Language (OCL) for the pur-
poses of precise specification and verification of security threats as prop-
erties of a modeled system. To validate our work, we explore a set of
representative threats in the context of SCADA systems.

Keywords: Model-Based - OCL - Security - Threat Analysis -
Software architecture

1 Introduction

Our society has become more dependent on software-intensive systems, such
as Information and Communication Technologies (ICTs) systems, not only in
safety-critical areas but also in areas such as finance, medical information man-
agement, and systems using web applications. The complexity of such systems
during their design comes from the involvement of trans-disciplinary concerns. In
addition, security experts, practitioners and researchers from different interna-
tional organizations, associations, and academia have agreed that security should
be treated in the early stages of the software and systems development life-cycle
[8]. Otherwise, security vulnerabilities are more likely to be introduced in various
stages and the cost of protecting them becomes increasingly more important. In
this context, the use and application of security mechanisms through the life-
cycle process would be easier if designers and developers had security guidelines
during development. Architecture threat analysis is the process of identifying

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 121-134, 2023.
https://doi.org/10.1007/978-3-031-40923-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-40923-3_10

122 A. Motii

threats to an architecture. It is very useful when it comes to detecting threats
at early stages. Reported vulnerabilities show that architecture design weak-
nesses represent half of the total vulnerabilities of a system. Several efforts have
been done to assist threat identification [3]. However, the complexity of systems
requires automated tool support.

This work is part of a more general process devoted to incremental pattern-
based modeling and safety and security analysis for correct-by-construction sys-
tems design. In previous works, an approach and its tool support to support
Security, Dependability and Resource Trade-offs using Pattern-based Develop-
ment and Model-driven Engineering have been presented [5]. In this paper, a
Model-Based Threat Analysis approach for software architecture and its tool
support is introduced in order to allow automatic threat detection based on
the Object Constraint Language (OCL). The remainder of the paper is orga-
nized as follows. Section 2 presents the main steps of the MBTA approach. In
Sect. 3, the MDE framework supporting MBSPI is presented. The threat formal-
ization process using OCL is explained step by step. Section 4, MBTA is assessed
over a SCADA (Supervisory Control and Data Acquisition) system case study.
Section 5 identifies related work tackling software architecture threat analysis.
Finally, Sect. 6, concludes and sums up the contributions.

2 MBTA Approach

The approach depicted in Fig. 1 allows the analysis of software architectures in
order to detect existing threats based on formalization. The first step consists
of formalizing threats using OCL! from existing threat classification references
(step 0). Then, the software architecture model is passed to the analysis module
(step 1) which outputs existing threats.

Specifying threats is based on experience in the security domain thus this
activity should be done by security experts. Once formalized, these threats are
stored in a knowledge base. Inputs are existing threat classification references:
OWASP?, STRIDE [6], Common Attack Pattern Enumeration and Classifica-
tion (CAPEC)?, Common Weakness Enumeration (CWE)*. These references
describe informally a set of threats. Each threat has a signature. This signa-
ture specifies the conditions in which a threat can occur. Thus it defines the
threats according to a certain scenario. However, the threats are described infor-
mally, and thus applying them manually is error-prone and time-consuming. The
considered threats are discussed below. This is neither a comprehensive nor a
complete list but two well-known categories which have been used in OWASP’s
top 10:

! https://www.omg.org/spec/OCL/.

2 https://owasp.org/www-project-top-ten/.
3 https://capec.mitre.org)/.

4 https://cwe.mitre.org/.

https://www.omg.org/spec/OCL/
https://owasp.org/www-project-top-ten/
https://capec.mitre.org/
https://cwe.mitre.org/

MBTA: A Model-Based Threat Analysis Approach 123

1
Software .
e Q? Analysis module } I;’) Threats

]

Threat

scenarios
(ocL)

T

i‘ |:> . Formalization }

of threat scenarios

Threat classification references
(STRIDE, CAPEC, CWE)

Fig. 1. Threat Analysis Process

— Man-In-The-Middle (MITM): is responsible for relaying or altering mes-
sages between two parties. The signature of this threat is the lack and/or
weakness of encryption and Authenticity mechanisms.

— Injection: is responsible for passing malicious inputs to gain higher priv-
ileges, alter data, or crash the system. The signature of this threat is the
lack and/or weakness of input validation and the secure development of an
application.

OCL is a formal language used to describe rules on UML models. We have
used OCL to formalize the aforementioned threats as invariants. The analysis
allows the detection of threats over the architecture. If an invariant is violated
then the corresponding threat is relevant. In order to evaluate the formalized
threats, the precision metric is used. It measures the soundness of the results. A
high precision rate means that the detected threats contain more True Positives
(TP) i.e., valid results than False Positives (FP) i.e., false results. It is computed

as follows: Tp
Precision = TP+ FP (1)

3 Model-Driven Development

We now present the MDE framework supporting the previous approach and we
detail its construction from the system architecture and security perspectives.
For the system architecture aspects, we used a UML-Like® modeling language
to describe software architecture using the component-port-connector fashion.
The security perspective which consists of three iterations introduces additional
architectural elements and uses OCL for the specification and analysis of the
security threats.

5 https://www.omg.org/spec/UML/.

https://www.omg.org/spec/UML/

124 A. Motii

3.1 Modeling the Architecture: ComponentUML

In the context of Component-Based Development (CBD), the UML profile
“ComponentUML” in Fig.2 has been defined in order to model the applica-
tion. The need to define this profile occurred during OCL formalization using
OCL. The OCL rules were difficult when using UML because concepts that were
not relevant appeared. Hence this profile was used for a matter of simplification.
The UML profile has been defined based on the following concepts: Structured-
Classifiers, Messages and Deployments from UML.

«Stereotype»
Application

-

¥ + components | *
«Stereotype»

+ports 2| «Stereotyper «Stereotype»

i Port + ports Component
1.* 1

+ input

1+ msqlin «Stereotype»

«Stereotype» pbvds
Message

deployedOn

1+ msg_out]

+ message 1 + interface 1
+ operation
1 «Stereotype» + channel * +node . + node

«Stereotype» Interface Stereotypes 1
« yper

Operation | T hannels *
operations channels + nodes 2|
o Channel Node

+ interface

«Stereotype» «Stereotype»
Send Receive

<<true>>

Fig. 2. UML profile for component-based software architectures

Working Example: Metamodel Instantiation. Figure 3 shows the software archi-
tecture of a three-tier web application®. The architecture consists of three com-
ponent types: Page, Webapp and Database. Each component is associated with
ports, interfaces, data types and messages, accordingly. For instance, a compo-
nent webpage of type Page uses a Port Client Server for the communication with
component webapp of type Webapp. For that, component webapp uses a port
Port Server Client. The comments in blue show the different messages: mI to
model the request sent to the application, m2 to model the response from the
application, m& to model the request sent to the database and m4 to model the
response from the database. From the deployment perspective, the underlying
platform consists of three nodes: Browser hosting webpage, Server (exposed to
Internet) hosting wepapp and Back to host database. The software architecture
model for the web application has been made intentionally not secure to test
the OCL constraints. In fact, the model does not contain any sort of security

5 https://www.ibm.com/topics/three-tier-architecture.

https://www.ibm.com/topics/three-tier-architecture

MBTA: A Model-Based Threat Analysis Approach 125

mechanisms: encryption and input validation. Hence it is vulnerable to injection
and MITM attacks. The objective is to detect: one injection and one MITM
threat.

«Application»
E WebApplication

ntnt (1 port Server_Client: Serverlnt (1) + Port Server_DB: DBInt [1 + Port BD Server: DBint [1

-
+— = + database: Database [1]
0 [

Application Diagram £

Bo 5 DataTypes

E Page £ Webapp [S Database | [Ebata
S <Message» + mL: Date [1]| = «Messages + m2: Data [1]| [oMessage» + md: Data [1)
& «Message» + m3: Data [1]

nterfaces
1 DBInt
@ +request()

#3 Application_Types &

Fig. 3. Web application software architecture model and types (Color figure online)

3.2 Modeling the Security Solutions as Security Patterns

As introduced in Sect.1, our work is part of a general approach to building
secure software at high-level design stage using patterns (PBSE). We developed
a UML profile called SepmUML, as depicted in Fig.4 using UML notations
(not all classes and attributes are shown on the diagram to avoid cluttering).
SepmUML contains the necessary stereotypes for modeling a security pattern in
UML environments (stereotypes in white). The solution of the security pattern
is modeled using ComponentUML (stereotypes in grey). In addition pattern
integration-related concepts (stereotypes in blue). The specification of the UML
profile is out of scope this paper and is detailed in [5].

In the context of this work, during the formalization process, we considered
the following security mechanisms:

— Firewall: This mechanism is responsible for input validation.

— Encryptor: encrypts transmitted messages using a key.

Decryptor: decrypts received messages using a key.

— Signer: produces for each message a signature that guarantees the authen-
ticity and integrity of the message. It is sent together with the message.

— Verifier: verifies the integrity and authenticity of the message via its accom-
panied signature.

126 A. Motii

«Stereotype»
Pattern
" [& + context: String 1] 1 1+ solution
) + problem: String [1] «Stereotype»
=+ solution: Solution [1] Solution
) + relatedPattern: Pattern [*)

] t t + behavior
+ constraints * + structure

+ properties T '
prop 1. «Stereotype» «Stereotype»

Structure Behavior

«Stereotype»
Constraint « >
1 Stereotype:
Propert

1
+ patternparticipant ; J 1+ structurecontainer
«Stereotype» 1

®StructureContainer
* participant « communication
«Stereotype»

Participant ” «Stereotype»

curityMechanism + 1

ification

S + refines: Property [1]

1 «Stereotype» 1
«Stereotype» Crp e i
Play

+[integrity
+ authefticity

1
% + component 1
+ play
«Stereotype»

«Stereotype» Message
Castings

Fig. 4. SepmUML UML profile (Color figure online)

3.3 Formalizing the Threats Using OCL

The main objective of this work is to analyze software architectures allowing
the detection of threats according to formalized threats. In this section, the
integration-related detecting threats are described. As we shall see, this has
required additional concepts in ComponentUML in Fig.5. At each iteration,
threats are formalized using OCL. The evaluation through the precision rate
(TP and FP) is measured in the context of the working example from Sect. 3.1.
Iteration 1 starts with the initial ComponentUML. Man-In-The-Middle (MITM)
and Injection threats are formalized. Iteration 2 adds the concept of trust level
to ComponentUML. Last but not least, Iteration 8 adds the concept of port kind
is added i.e., if the port is external (public) or internal (private).

Iteration 1. Man-In-The-Middle (MITM) and injection threats are formalized
using OCL. MITM exploits the lack of encryption and integrity protection mech-
anisms. Injection threats exploit the lack of input validation. In Listing 1.1 and
Listing 1.2 are given the OCL constraints of MITM and injection, respectively.

1 Context Application inv Man—In—The—Middle_v1

2 self.components—>select(cl |

3 self.components—>exzists(c2 |

4 not(cl.ocllsKindOf(PatternProfile :: SecurityMechanism))
5 and

6 not(c2.o0cllIsKindOf(PatternProfile :: SecurityMechanism))
7 and

8 /+ if cl and c2 are differentx/

9 cl..”<>"(c2)

10 and

11 /% if ¢l and c¢2 are deployed in different nodesx/

12 (cl.nodlater >’(c2.node) and cl.node.channels—>ezists(ch | c2.node.

channels—>includes (ch))

MBTA: A Model-Based Threat Analysis Approach 127

13 and

14 /* cl and c2 communicate */

15 (cl.ports—>exzists(inp| c2.ports—>exists(inpt2 | inpt2.communication
= inp.communication)))

16 and

17

18 /% The security mechanisms exist: encryptor, decryptor, signer and
verifier =/

19 (self.components—>select(enc | self.components—>ezists(dec , macl
| self.components—>ezists (mac2|

20

21 enc.ocllIsKindOf(PatternProfile:: Encryptor) and dec.ocllIsKindOf(
PatternProfile :: Decryptor) and macl. oclIsKindOf(PatternProfile
:: Signer) and mac2. oclIsKindOf(PatternProfile:: Verifier)

22 and

23 (enc.node = cl.node) and (dec.node = c¢2.node) and (macl.node = cl.
node) and (mac2.node = c¢2.node)

24))))))—>size ()
Listing 1.1. Man-In-The-Middle (MITM) threat formalized using OCL

The constraint in Listing 1.1 explores the application model via the stereotypes
applied on them. For a given application, components are parsed and only those
that are not security mechanisms are checked. For each two different compo-
nents cl and ¢2 deployed on different nodes and which can communicate. The
constraint checks if the following security mechanisms (described in Sect. 3.2):
“encryptor”, “decryptor”, “signer” and “verifier” exist and are deployed in the
same nodes as cl and ¢2. The second constraint is commented on Listing 1.2.

1 Context Application inv Injection_vl

2 self.components—>select(cl |

3 /+* Firewall ezists and is deployed on the same node as clx/

4 self.components—>select(firewall | firewall.oclIsKindOf(Firewall)
and firewall.node = cl.node

5))—>size ()

Listing 1.2. Injection threat formalized using OCL

Results. Table 1 gives the number of threats, TPs, FPs. The actual version of the
threats has a Precision of 60%. The precision rate indicates that 40% are FPs.

Table 1. Number of detected threats, TPs and FPs (iteration 1)

Threat Category Detected | TP | FP
Man-In-The-Middle | 2 1 |1
Injection 3 2 |1
Total 5 3 |2

After investigating, three injection threats were detected for the three compo-
nents: web page, web application and DBMS. The third one is an FP because an
injection threat is more likely to happen when components are exposed. Hence,
in iteration 2 a new concept is added in iteration 2: “port type”.

128 A. Motii

Two MITM threats were detected: (1) between the browser and the web
application and (2) between the web application and DBMS. The second one is
an FP because a MITM is more likely to happen on “untrusted” zone. Hence,
in iteration 3, the concept of “Trust Level” is added.

Iteration 2. In this iteration, the concept of trust level is added to Compo-
nentUML in order to check if components are in a trusted network zone or
not. Figure5 shows ComponentUML model with the TrustLevel enumeration
with two literals trusted and untrusted. The application model is modified and
considers that DBMS node is in a “trusted” node while the web page and web
application are in an “untrusted” node. In addition, the constraint does not only
check for the existence of security mechanisms but that they are correctly used.
This is done by verifying that the transmitted messages between two compo-
nents are encrypted/unecrypted and signed/verified. The application model in
Fig. 3 is modified. In this version the web page and application are considered
in “untrusted” node while the DBMS is in an “untrusted” node. In addition,
the OCL in Listing 1.1 constraint is modified. Listing1.3 gives an extract of
the OCL constraint. The lines that have already explained have been removed
intentionally for matter of simplicity.

«Stereotype»
Application

N

+ components | *
«Stereotype»
s

+ ports 2 «Stereotype» «Stereotype»
I Port +ports Component
ifput " 1

1
)
+ input + portkind
: «Stereotype>
1+ msglin Stereotype:

st N Platform i

r\j::ygze L) portKind ||9ePoyedOn
internal
= external

1+ msg_out 3

+message 1 + interface 1
+ operation
1 «Stereotype» + channel +node +rode

«Stereotype» Interface :
Operation r «Stereotype»

+ operations i channels * 4 nodes
.e% Channel 2] Node
‘ + intprface

«Stereotype» «Stereotype»
Send Receive

<<true>>

+ trustlevel

= TrustLevel
= untrusted
= trusted

Fig. 5. Augmented ComponentUML model

Context Application inv Man—In—The—Middle_v2

self.components—>select(cl |

self.components—>exzists(c2 |

/* ¢l or c¢2 are deployed in an untrusted node x*/

(cl.node. trustlevel= TrustLevel:: untrusted or c2.node.trustlevel =
TrustLevel :: untrusted)

[N R

6 and

MBTA: A Model-Based Threat Analysis Approach 129

7 /* ¢l and c¢2 two components communicating deployed in different
nodes

s [...]

9 an

10 /* The security mechanisms exist: encryptor, decryptor, signer and
verifier and Mechanisms are connected to components x*/

(ST

12 /% The mechanisms are called correctly x/

13 cl.ports—>select(inp-cl_.c2 | inp_cl_c2.msg_out._’<>’(null) and c2.
ports—>ezists (inpt2 | inpt2.communication = inp_cl_c2.
communication))—>forAll (inp-cl_c2 | macl.ports—>exists(sign_in
|cl.ports—>exzists(cl_inp| cl_inp.communication = sign_in.
communication)

14 and

15 (enc.ports—>exzists(enc_.in | cl.ports—>exists(cl_signorEnc |

16 — case 1: message flow encrypt and then sign

17 (cl_.signorEnc.communication = enc_-in.communication and

sign_in.msg_out = inp-cl_c2.msg_out and sign-in.msg_.in =
enc_in.msg_out and enc_in.msg_in = cl_signorEnc.msg_out)

18 or

19 — case 2: message flow sign and then encrypt

20 [...]

Listing 1.3. Man-In-The-Middle (MITM) threat version 2 formalized using OCL

The constraint explores the application model via the stereotypes applied
on them. For each two different components cl and c2, the constraint checks if
they are deployed in an ”untrusted” node (lines 5-7). It checks also if they are
connected to the aforementioned security mechanisms (line 5-7). Then, it checks
if they are calling the security mechanisms and that they are correctly used in
message flows (lines 10-20). Two cases have been identified:

— The message sent from cl to c2 is encrypted then signed
— The message sent from cl to c2 is signed then encrypted

Results. Table2 shows the results after checking the new version of the OCL
constraints over the working example. The results show that three threats have
been detected and are TPs and only one is an FP. Hence, the precision have
increased to 75%.

Table 2. Number of detected threats, TPs and FPs (iteration 2)

Threat Category Detected | TP | FP
Man-In-The-Middle | 1 1 0
Injection 3 2 1
Total 4 3 1

Iteration 3. In this iteration, the concept of port kind is added. Figure 5 shows
ComponentUML with the PortKind enumeration with two literals ezternal (pub-
lic ports) and internal (private ports). The application model in Fig. 3 is modi-
fied. In this version, the web page and application ports are considered “exter-
nal” while the DBMS port is “internal”. In addition, Listing 1.2 is modified.

130 A. Motii

Listing 1.4 gives an extract of the new version of the OCL constraint. The lines
that have already been explained have been removed intentionally for a matter
of simplicity. Only line 3 was kept and considers external ports.

1 Context Application inv Injection_v2

2 /«*Publicly accessible portx/

3 self.components—>select(cl | cl.ports—>exzists(public_port | (
public_port.portkind = PortKind:: external)

4 and

5 /+ Checks if Firewall ezists and is connected to component cl and
message flow is corrects*/

6 [...]

7)7$'size)

Listing 1.4. Injection threat formalized using OCL

Results. As depicted in Table 3, the third version of the threats formalized with
OCL has a precision of 100%. Of course, this is specific to the working example
that has been presented which is a very simple example. In addition, the results
are specific to the threats that have been considered.

Table 3. Number of detected threats, TPs and FPs (iteration 3)

Threat Category Detected | TP | FP
Man-In-The-Middle | 1
Injection v2 2
Total 3

4 Case Study: SCADA System

This section assesses the feasibility of the contributions of our work through the
modeling and analysis of a SCADA (Supervisory Control And Data Acquisition)
system. SCADA system applications are different from classical ITs (i.e., web
applications) and have strong security requirements.

4.1 Description and Modeling

SCADA systems are meant to continuously control, monitor processes and
acquire field information. In our experiment, we consider an adapted and sim-
plified version of SCADA used in the context of smart grids [9]. In this context,
the controlled process is power distribution. The control center consists of a
control and a corporate network. The corporate network provides the opera-
tor with a Human-Machine Interface (HMI) that allows access to system data,
SCADA servers, and databases that store operational and financial information.
The SCADA server controls and gathers field information from geographically

MBTA: A Model-Based Threat Analysis Approach 131

distributed substations or Remote Terminal Units (RTUs). The software com-
ponents perform the following functions: (1) Perform control, (2) Poll Data, (3)
System Start-up/shutdown, (4) Adjust Parameter Settings, (5) Log Field Data,
(6) Archive Data, (7) Trigger Alarm, (8) Perform Trending: Select Parameters,
Display Parameters, Zooming, Scrolling. Figure 6 depicts the software architec-
ture model. In addition, ports, interfaces, data types, and transmitted messages
are specified to provide a more detailed model of the application. The platform
is also modeled to specify the relationship between components and nodes.

«Application
SCADA_systen

+ Airm_DB_pre: DBInt

“Component
{2+ alarm Handler Alarm Hand] + ot B
—
oo mca Component
[«Component 1 1] = +logDB: LogDB
t + log_Handler: Log_Handle + Logb_pr: Delne!

+ Arch_ DB prt: DBInt

«Component

+ archiveDB: ArchiveDI
H + ArchDB pre: Dbt — o OIS

il «Component RortGn_RTDB prt: DBIn «Component
s + report_Generation: Report Generath-I)=+ RTDB: RTDB
+ ERTM RpriG_prt: RepdiGen |
f—— + RTDB_Prt: DIt
«Component L | . . -
+ LogDisplay: LogDispla PrE ERMIoGDISply: LogDlspley. FTEventitna. «Component
+ dataProcessing: DataProcessi [
+ ERTM Prcss prt: RTEventMng dataPldcesfing
+ data_R_W: Data R W

«Component 1
| + AlarmDisplay: AlarmDispler——{]
4 prl_ERM_AImD: AlarmDisplay_RTEventhing
}

T
+ RO grivert_prt rnvert 3 L+ AW arver2 prtaverie 3 |+ s prt drverr
5 Fortt: <Undefinec
«Component «Component «Component
+ driverl: Driver | + drive2: Driver2| = + driver3: Driver3|

=1

+ anverz pcz T e atvers pics pr: ALC It
B

«Component
+ archive: Archive

<Component] [e oo
+ Trending: Trending: it +prt [ERM Trm: Trend RTEventMng i C

+ Prcss RW_prt: data AW

«Component
+ RW_press_prt:data_RW_Ir

+ driver ple1_prPLC T |

+ plelprt PLC Ink
«Component
= +pLCL: PLCL

i3 Prt PLC Int
«Component
+pLC3: PLC3

+pLC2: PLC2

Fig. 6. SCADA software architecture model

4.2 Comparison of MBTA and ASTORIA

To assess MBTA, The obtained results are compared to the work of [9]. The latter
proposes a framework named ASTORIA for attack scenario simulation for smart
grid systems. The selection of the framework was motivated by the fact that
ASTORIA is a simulation framework whereas ours is a formal verification-like
framework. The ASTORIA team has simulated attack scenarios and evaluated
their impact on the smart grid system to discover existing threats. In addition
to the two threats presented previously, two more threats were formalized: Tam-
pering and Denial of Service. Their formalization was omitted for simplification
purposes. However, we give a brief explanation. Denial of Service (DoS) can
make the system resources unavailable for authorized users. The signature of
this threat is the lack or weakness of Firewall, Authentication, and Authoriza-
tion mechanisms. Tampering is responsible for altering data at rest or in transit.
The signature of this threat is the lack or weakness of Authenticity mechanisms.

132 A. Motii

Results. Table 4 presents the results obtained with the ASTORIA framework and
“MBTA”. For each asset, we conclude that all the detected threats are TPs. In
addition, MBTA detected at the level of RTUs and communication new threats
i.e., Tampering and Injection. FNs, i.e., threats that were not detected are due
to different reasons. Some attack scenarios were simply not formalized or out
of scope of our framework. For instance, Phishing is an attack scenario that
attempts to obtain sensitive information such as credentials, and credit card
details by using emails. This attack exploits social engineering which is out of
scope of the study. Some attack scenarios are of the same kind or are pre-attacks
of some formalized threats. For instance, replay attacks are a kind of Man-In-
The-Middle attacks where the attacker maliciously or fraudulently repeats or
delays a valid data transmission. Ping sweeps are generally used to check if a
node is alive or dead. Some attack scenarios are at a lower stage (implementation)
such as malicious software. In fact, we deal with software architecture analysis
and not with code analysis.

Table 4. Threat Analysis results comparison

Assets ASTORIA [9] MBTA
Control Center | Injection Injection
Denial of Service Denial of Service

Malware, Phishing, Port scanning, Replay

RTU Denial of Service Denial of Service
Malware, Phishing, Port scanning, Replay Injection
Communication | Man-In-The-Middle Man-In-The-Middle

Sniffing, Eavesdropping, Denial of Service, Replay | Tampering

Discussion. After analyzing the case study and the conducted assessment, some
lacks in the current version of MBTA have been identified and are left for future
work. Threat analysis can be generalized by replacing ComponentUML with
OMG standards for Component-Based Development particularly UCM?. The
second step is to construct a library of helpers to easily formalize threats. The
specification of threats was done using OCL. OCL is a general language for
constraining UML models. The goal is to enable security experts to contribute
to the threat knowledge-base, who are not necessarily familiar with OCL and
with less effort. In this context, we can inspect DSMLs for specifying these rules
and then study mappings towards OCL.

5 Related Work

Security architecture assessment approaches can be categorized into two groups:
scenario-based and property-based approaches. Scenario-based Analysis. focuses

7 https://www.omg.org/spec/UCM.

https://www.omg.org/spec/UCM

MBTA: A Model-Based Threat Analysis Approach 133

on modeling security scenarios and then analyzing the architecture with regard
to these scenarios. In literature, most of these works [1,2,7] have limitations in
formalizing scenarios, in reusing and extending them, in automatizing the veri-
fication process and they also lack tool support. Recently Maidl et al. [4] have
proposed a model-based threat modeling approach for Cyber-Physical Systems.
It is based on a two-dimensional taxonomy that links system components and
relevant attacks. The formalization language is OCL. The tool helps in prefilter-
ing relevant attack actions and their documentation. In [7], the authors propose
a framework for detecting architectural flaws in a code and introduce SCORIA
as a formalization language. It starts by generating a graph describing a run-
time architecture using static analysis. Then they assign security properties to
the graph of objects. The constraints in this approach are highly dependent on
the application and are not generic or reusable. The aim of “MBTA” is to foster
reuse. In [2], the authors present a framework for detecting flaws in the code. The
formalization language is OCL. The code is first transformed in STRIDE Data
Flow Diagrams (DFDs) using static analysis. Then based on a ’best practice’
repository where threat patterns are stored, an automatic check is performed
to detect the threats and security measures that may be applied as annotations
to DFDs to mitigate these threats. Property-Based Analysis. focuses on formal-
izing security properties to assess a software architecture. They defined a set
of modularity properties used for analyzing the architecture. Table 5, compares
“MBTA” to the aforementioned ones mainly: Almorsy et al. [1], Vanciu et al.
[7] and Berger et al. [2] according to the following criteria: (C1) Foster reuse of
the formalized threats, (C2) Verify that the architecture has the right security
mechanisms, (C3) Verify that these security mechanisms are used correctly, and
(C4) and Have a list of well-known threats.

Table 5. Positioning of the contribution with regards to other approaches

—~

C1)

—~

02)

—~

C3)

—
Q
=~

Nt

Approaches
MBTA

Maidl et al. [4]
Almorsy et al. [1]
Vanciu et al. [7]

NIXISNINIS
NSNS XIS
XIS XSS
NISNININIS

Berger et al. [2]

6 Conclusion

In this paper, a model-based threat analysis for software architecture “MBTA”
has been introduced. The contribution of this work is twofold. First, the approach
enables detailed exploration of the software architecture. The formalized threats
allow not only the verification of the existence of security mechanisms but also

134 A. Motii

the verification of their correct usage. The second aspect is that the threats are
reusable and extensible. OCL has been used to formalize Injection and Man-
In-The-Middle threats. The formalization process has been explained through
three iterations. For each iteration, the precision is evaluated. The formalized
threats are not application dependent. They can be further extended if a threat
exploits new vulnerabilities and weaknesses. The next step of this work consists
of defining a correct-by-construction pattern-based security engineering process.
It aims to provide the correct-by-construction integration of security patterns
into an application while offering a certain degree of liberty to the designer
using it. In order to be able to validate the integration, a formal specification
of the pattern must be constructed, i.e., its properties, constraints, and related
validation artifacts, as input to the pattern-based development process. Here, the
concepts behind the formalized threats will be used and combined with patterns,
to integrate security solutions in the application model and perform a security
analysis within other types of threats.

References

1. Almorsy, M., Grundy, J., Ibrahim, A.S.: Automated software architecture security
risk analysis using formalized signatures. In: Proceedings of the 2013 International
Conference on Software Engineering, ICSE 2013, pp. 662-671. IEEE Press (2013)

2. Berger, B.J., Sohr, K., Koschke, R.: Extracting and analyzing the implemented
security architecture of business applications. In: 2013 17th European Conference
on Software Maintenance and Reengineering, pp. 285-294. IEEE (2013)

3. Fernandez, E.B., Yoshioka, N., Washizaki, H.: Modeling misuse patterns. In: 2009
International Conference on Availability, Reliability and Security, pp. 566-571
(2009)

4. Maidl, M., Miinz, G., Seltzsam, S., Wagner, M., Wirtz, R., Heisel, M.: Model-based
threat modeling for cyber-physical systems: a computer-aided approach. In: van
Sinderen, M., Maciaszek, L.A., Fill, H.-G. (eds.) ICSOFT 2020. CCIS, vol. 1447,
pp. 158-183. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83007-6_8

5. Motii, A., Hamid, B., Lanusse, A., Bruel, J.M.: Guiding the selection of security
patterns for real-time systems. In: 21st International Conference on Engineering of
Complex Computer Systems, ICECCS 2016, pp. 155-164. IEEE (2016)

6. Shostack, A.: Experiences threat modeling at Microsoft. In: Proceedings of the
Workshop on Modeling Security, vol. 413, pp. 5:1-5:12. CEUR-WS.org (2008)

7. Vanciu, R., Abi-Antoun, M.: Finding architectural flaws using constraints. In: 2013
28th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 334-344 (2013)

8. Weiss, M., Mouratidis, H.: Selecting security patterns that fulfill security require-
ments. In: 2008 16th IEEE International Requirements Engineering, RE 2008,
September 2008, pp. 169-172 (2008)

9. Wermann, A.G., Bortolozzo, M.C., da Silva, E.G., Schaeffer-Filho, A., Gaspary,
L.P., Barcellos, M.: ASTORIA: a framework for attack simulation and evaluation
in smart grids. In: NOMS 2016-2016 IEEE /IFIP Network Operations and Manage-
ment Symposium, April 2016, pp. 273-280 (2016)

https://doi.org/10.1007/978-3-030-83007-6_8

	MBTA: A Model-Based Threat Analysis Approach for Software Architectures
	1 Introduction
	2 MBTA Approach
	3 Model-Driven Development
	3.1 Modeling the Architecture: ComponentUML
	3.2 Modeling the Security Solutions as Security Patterns
	3.3 Formalizing the Threats Using OCL

	4 Case Study: SCADA System
	4.1 Description and Modeling
	4.2 Comparison of MBTA and ASTORIA

	5 Related Work
	6 Conclusion
	References

