
Jérémie Guiochet
Stefano Tonetta
Friedemann Bitsch (Eds.)

LN
CS

 1
41

81

Computer Safety,
Reliability, and Security
42nd International Conference, SAFECOMP 2023
Toulouse, France, September 20–22, 2023
Proceedings

Lecture Notes in Computer Science 14181
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Jérémie Guiochet · Stefano Tonetta ·
Friedemann Bitsch
Editors

Computer Safety,
Reliability, and Security
42nd International Conference, SAFECOMP 2023
Toulouse, France, September 20–22, 2023
Proceedings

Editors
Jérémie Guiochet
University of Toulouse/LAAS-CNRS
Toulouse, France

Friedemann Bitsch
GTS Deutschland GmbH
Ditzingen, Germany

Stefano Tonetta
Fondazione Bruno Kessler
Trento, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-40922-6 ISBN 978-3-031-40923-3 (eBook)
https://doi.org/10.1007/978-3-031-40923-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1285-8974
https://orcid.org/0000-0001-6152-4121
https://orcid.org/0000-0001-9091-7899
https://doi.org/10.1007/978-3-031-40923-3

Preface

This volume contains the papers presented at SAFECOMP 2023, the 42nd International
Conference on Computer Safety, Reliability and Security, held in Toulouse, France, in
September 2023. The “European Workshop on Industrial Computer Systems, Technical
Committee 7 on Reliability, Safety and Security” (EWICS TC7), established the SAFE-
COMP Conference series in 1979. Since then it has contributed considerably to the
progress of the state of the art of dependable computer systems and their application in
safety-related and safety-critical systems, for the benefit of industry, transport, space sys-
tems, health, energy production and distribution, communications, smart environments,
buildings and living.

This year, we received 100 high-quality submissions, and the international Program
Committee (more than 50 members from 16 countries), selected 20 of them for presen-
tation and for publication in the SAFECOMP 2023 Proceedings in the Springer LNCS
Series (LNCS 14181). Each submitted article was single-blind reviewed by at least three
independent reviewers; the decision on the conference program was jointly taken during
the International Program Committee meeting in April 2023.

The program was enriched by three keynotes given by renowned speakers: “De-
signing Software for Certification” by Shankar Natarajan; “Securing the (Open Source)
Software SupplyChain: Challenges andOpportunities” byRobertoDiCosmo; and “Cer-
tification Use Reliance when Integrating Machine Learning Solutions in Safety Related
and/or Critical Systems”, by Emmanuelle Escorihuela and Gary Brown. As in previous
years, the conference was organized as a single-track conference, allowing intensive
networking during breaks and social events, and participation in all presentations and
discussions.

For this edition, we had 6 high-quality workshops in parallel the day before the
main conference: ASSURE,DECSoS, SASSUR, SENSEI, SRToITS andWAISE) These
workshops differed according to the topic, goals and organizing group(s), and are
published in separate SAFECOMP Workshop Proceedings (LNCS 14182).

We would like to express our gratitude and thanks to all those who contributed to
make this conference possible: the authors of submitted papers and the invited speakers;
the ProgramCommitteemembers and the external reviewers; EWICS and the supporting
organizations; last but not least, the Local Organization Committee who took care of the
local arrangements.

We hope that the reader will find these proceedings interesting and stimulating.

Jérémie Guiochet
Stefano Tonetta

Organization

EWICS TC7 Chair

Francesca Saglietti University of Erlangen-Nuremberg, Germany

General Chair

Jérémie Guiochet LAAS-CNRS, Université de Toulouse, France

Conference Program Co-chairs

Jérémie Guiochet LAAS-CNRS, Université de Toulouse, France
Stefano Tonetta Fondazione Bruno Kessler, Italy

General Workshop Co-chairs

Erwin Schoitsch AIT Austrian Institute of Technology, Austria
Matthieu Roy LAAS-CNRS, France

Position Papers Chair

António Casimiro Universidade de Lisboa, Portugal

Publication Chair

Friedemann Bitsch GTS Deutschland GmbH, Germany

Publicity Chair

Barbara Gallina Mälardalen University, Sweden

viii Organization

Industry Chair

Magnus Albert SICK AG, Germany

Web Chair

Joris Guerin Espace-Dev, IRD, Univ. Montpellier, France

Local Organization Committee

Marie Laure Pierucci LAAS-CNRS, France
Isabelle Lefebvre LAAS-CNRS, France
Karama Kanoun LAAS-CNRS, France

International Programme Committee

Eric Alata LAAS-CNRS, France
Magnus Albert SICK AG, Germany
Uwe Becker Drägerwerk AG & Co KGaA, Germany
Peter G. Bishop Adelard, UK
Friedemann Bitsch GTS Deutschland GmbH, Germany
Andrea Bondavalli University of Florence, Italy
Jeroen Boydens Katholieke Universiteit Leuven, Belgium
Jens Braband Siemens Mobility GmbH, Germany
Simon Burton Fraunhofer Institute for Cognitive Systems,

Germany
António Casimiro Universidade de Lisboa, Portugal
Marsha Chechik University of Toronto, Canada
Peter Daniel EWICS TC7, UK
Ewen Denney SGT/NASA Ames Research Center, USA
Felicita Di Giandomenico ISTI-CNR, Italy
Wolfgang Ehrenberger Fulda University of Applied Sciences, Germany
John Favaro Intecs, Italy
Francesco Flammini Linnaeus University, Sweden
Jesús Friginal SCASSI/JUNE, Spain
Barbara Gallina Mälardalen University, Sweden
Georgios Giantamidis United Technologies Research Center, Ireland
Janusz Górski Gdańsk University of Technology, Poland
Lars Grunske Humboldt University Berlin, Germany

Organization ix

Jérémie Guiochet LAAS-CNRS, Université de Toulouse, France
Ibrahim Habli University of York, UK
Maritta Heisel University of Duisburg-Essen, Germany
Andreas Heyl Robert Bosch GmbH, Germany
Yan Jia University of York, UK
Phil Koopman Carnegie Mellon University, USA
Youssef Laarouchi Électricité de France SA, France
John McDermid University of York, UK
Ganesh Pai KBR/NASA Ames Research Center, USA
Philippe Palanque ICS-IRIT, University of Toulouse, France
Yiannis Papadopoulos University of Hull, UK
Michael Paulitsch Intel, Austria
Peter Popov City, University of London, UK
Andrew Rae Griffith University, Australia
Alexander Romanovsky Newcastle University, UK
Matteo Rossi Politecnico di Milano, Italy
Juan Carlos Ruiz Garcia Universitat Politècnica de València, Spain
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Behrooz Sangchoolie RISE Research Institutes of Sweden, Sweden
Christel Seguin Office National d’Etudes et Recherches

Aérospatiales, France
Erwin Schoitsch AIT Austrian Institute of Technology, Austria
Oleg Sokolsky University of Pennsylvania, USA
Wilfried Steiner TTTech Computertechnik AG, Austria
Mark-Alexander Sujan University of Warwick, UK
Kenji Taguchi UL Solutions Japan
Stefano Tonetta Fondazione Bruno Kessler, Italy
Mario Trapp Technical University of Munich, Germany
Elena Troubitsyna KTH Royal Institute of Technology, Sweden
Martin Törngren KTH Royal Institute of Technology, Sweden
Meine van der Meulen DNV, Norway
Hélène Waeselynck LAAS-CNRS, France

Sub-reviewers

Koorosh Aslansefat University of Hull, UK
Gabriel Ballot Électricité de France SA, France
Stylianos Basagiannis United Technologies Research Center, Ireland
Sylvain Bertrand Office National d’Etudes et Recherches

Aérospatiales, France
Marc Carwehl Humboldt University Berlin, Germany

x Organization

Andrea Ceccarelli University of Florence, Italy
David Chemouil Office National d’Etudes et Recherches

Aérospatiales, France
Brent De Blaere Katholieke Universiteit Leuven, Belgium
Lorenzo De Donato University of Naples Federico II, Italy
André Luiz de Oliveira Federal University of Juiz de Fora, Brazil
Martin Eberlein Humboldt University Berlin, Germany
Sara El Makkaoui DNV, Norway
Lucas Georget Électricité de France SA, France
Divya Gopinath SGT/NASA Ames Research Center, USA
Richard Hawkins University of York, UK
Boyue Caroline Hu University of Toronto, Canada
Kuk Jin Jang University of Pennsylvania, USA
Georg Jäger Universidade de Lisboa, Portugal
Tobias Kiecker Humboldt University Berlin, Germany
Livia Lestingi Politecnico di Milano, Italy
Vivian Lin University of Pennsylvania, USA
Kaushik Madala UL Solutions, Japan
Lina Marsso University of Toronto, Canada
Logan Murphy University of Toronto, Canada
Bozheng Pang Katholieke Universiteit Leuven, Belgium
Syed Qutub Intel, Austria
Thomas Robert Télécom Paris, France
Philippa Ryan Conmy University of York, UK
Thomas Santen Formal Assurance, Germany
Usman Sanwal Mälardalen University, Sweden
Irfan Sljivo SGT/NASA Ames Research Center, USA
Jens Vankeirsbilck Katholieke Universiteit Leuven, Belgium
Sammy Verslype Katholieke Universiteit Leuven, Belgium
Torin Viger University of Toronto, Canada
Valeria Vittorini University Federico II of Naples, Italy
Martin Walker University of Hull, UK
Maryam Zahid Mälardalen University, Sweden
Tommaso Zoppi University of Florence, Italy

Organization xi

Gold Sponsor

SICK AG

IMAGINARY

Silver Sponsor

Critical Systems Labs Inc.

Supporting Institutions

European Workshop on Industrial Computer Systems
Technical Committee 7 on Reliability, Safety and Security

xii Organization

Laboratory for Analysis and Architecture of Systems, Carnot Institute

Université de Toulouse

Université Toulouse III Paul Sabatier

Fondazione Bruno Kessler

Organization xiii

Austrian Institute of Technology

GTS Deutschland GmbH

Lecture Notes in Computer Science (LNCS),
Springer Science + Business Media

Technical Group ENCRESS in GI and ITG

Gesellschaft für Informatik (GI)

xiv Organization

Inside Industry Association

Informationstechnische Gesellschaft (ITG) im VDE

Austrian Computer Society

Electronics and Software Based Systems (ESBS) Austria

European Research Consortium for Informatics and Mathematics

Austrian Software Innovation Association

Contents

Safety Assurance

Assurance Case Arguments in the Large: The CERN LHC Machine
Protection System . 3

Laure Millet, Simon Diemert, Chris Rees, Torin Viger, Marsha Chechik,
Claudio Menghi, and Jeffrey Joyce

Identifying Run-Time Monitoring Requirements for Autonomous Systems
Through the Analysis of Safety Arguments . 11

Richard Hawkins and Philippa Ryan Conmy

Redesigning Medical Device Assurance: Separating Technological
and Clinical Assurance Cases . 25

Spencer Deevy, Tiago de Moraes Machado, Amen Modhafar,
Wesley O’Beirne, Richard F. Paige, and Alan Wassyng

Software Testing and Reliability

A Cognitive Framework for Modeling Coincident Software Faults:
An Experimental Study . 41

Bo Zhao, You Song, Wenhao Xu, and Fuqun Huang

A Taxonomy of Software Defect Forms for Certification Tests in Aviation
Industry . 55

Fuqun Huang, Bing Huang, Yikun Wang, and Yichen Wang

Constraint-Guided Test Execution Scheduling: An Experience Report
at ABB Robotics . 64

Arnaud Gotlieb, Morten Mossige, and Helge Spieker

Neural Networks Robustness and Monitoring

A Low-Cost Strategic Monitoring Approach for Scalable and Interpretable
Error Detection in Deep Neural Networks . 75

Florian Geissler, Syed Qutub, Michael Paulitsch,
and Karthik Pattabiraman

xvi Contents

Are Transformers More Robust? Towards Exact Robustness Verification
for Transformers . 89

Brian Hsuan-Cheng Liao, Chih-Hong Cheng, Hasan Esen,
and Alois Knoll

Model-Based Security and Threat Analysis

Model-Based Generation of Attack-Fault Trees . 107
Raffaela Groner, Thomas Witte, Alexander Raschke, Sophie Hirn,
Irdin Pekaric, Markus Frick, Matthias Tichy, and Michael Felderer

MBTA: A Model-Based Threat Analysis Approach for Software
Architectures . 121

Anas Motii

Attribute Repair for Threat Prevention . 135
Thorsten Tarrach, Masoud Ebrahimi, Sandra König,
Christoph Schmittner, Roderick Bloem, and Dejan Ničković

Safety of Autonomous Driving

Probabilistic Spatial Relations for Monitoring Behavior of Road Users 151
Lennart Siefke, Volker Sommer, Murat Can Baylan, and Lars Grunske

Concept and Metamodel to Support Cross-Domain Safety Analysis
for ODD Expansion of Autonomous Systems . 165

Jan Reich, Daniel Hillen, Joshua Frey, Nishanth Laxman,
Takehito Ogata, Donato Di Paola, Satoshi Otsuka, and Natsumi Watanabe

Security Engineering

Pattern-Based Information Flow Control for Safety-Critical On-Chip
Systems . 181

Tobias Dörr, Florian Schade, and Jürgen Becker

From Standard to Practice: Towards ISA/IEC 62443-Conform Public Key
Infrastructures . 196

Michael P. Heinl, Maximilian Pursche, Nikolai Puch,
Sebastian N. Peters, and Alexander Giehl

Contents xvii

AI Safety

The Impact of Training Data Shortfalls on Safety of AI-Based Clinical
Decision Support Systems . 213

Philippa Ryan Conmy, Berk Ozturk, Tom Lawton, and Ibrahim Habli

Data-Centric Operational Design Domain Characterization for Machine
Learning-Based Aeronautical Products . 227

Fateh Kaakai, Sridhar (“Shreeder”) Adibhatla, Ganesh Pai,
and Emmanuelle Escorihuela

Online Quantization Adaptation for Fault-Tolerant Neural Network
Inference . 243

Michael Beyer, Jan Micha Borrmann, Andre Guntoro, and Holger Blume

Neural Networks and Testing

Evaluation of Parameter-Based Attacks Against Embedded Neural
Networks with Laser Injection . 259

Mathieu Dumont, Kevin Hector, Pierre-Alain Moëllic,
Jean-Max Dutertre, and Simon Pontié

Towards Scenario-Based Safety Validation for Autonomous Trains
with Deep Generative Models . 273

Thomas Decker, Ananta R. Bhattarai, and Michael Lebacher

Author Index . 283

Safety Assurance

Assurance Case Arguments in the Large:
The CERN LHC Machine Protection

System

Laure Millet1, Simon Diemert1(B), Chris Rees1, Torin Viger2,
Marsha Chechik2, Claudio Menghi3, and Jeffrey Joyce1

1 Critical Systems Labs, Inc., Vancouver, Canada
{laure.millet,simon.diemert,chris.rees,jeff.joyce}@cslabs.com

2 University of Toronto, Toronto, Canada
{torinviger,chechik}@cs.toronto.edu

3 University of Bergamo and McMaster University, Hamilton, Canada
claudio.menghi@unibg.it

Abstract. Most public assurance arguments are used to introduce, dis-
cuss, and present novel concepts and techniques related to structured
argumentation. These examples often rely on generic claims such as “All
hazards have been identified” and generic patterns of reasoning and are
quite different from their fully developed industrial counterparts. This
practical experience report describes a medium-size assurance case argu-
ment for the CERN Large Hadron Collider Machine Protection System
expressed using Eliminative Argumentation. This assurance case with
509 nodes was created in approximately three months, validated in col-
laboration with CERN experts, and is now publicly available. We also
report on our practical experience in creating this argument and reflect
on the support provided by the features of the collaborative assurance
case editor we used called Socrates.

Keywords: Assurance Case · Large Hadron Collider · Nuclear · Goal
Structuring Notation (GSN) · Tools

1 Introduction

Producing high-quality Assurance Case (AC) arguments for industrial systems is
complex and time-consuming, especially when the system design is highly inno-
vative and experts cannot benefit from a previously established structure for
the argument. Examples of such complex industrial arguments are not generally
publicly available: they are typically proprietary and protected by non-disclosure
agreements. The absence of representative examples of industrial arguments is
a severe limitation to the scientific and industrial communities. Scientists and
researchers need representative examples to evaluate new methods and tech-
niques. Instead, they can only rely on small-scale showcase examples that often

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 3–10, 2023.
https://doi.org/10.1007/978-3-031-40923-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-40923-3_1

4 L. Millet et al.

do not represent the challenges faced by practitioners. On the other side, indus-
try cannot often assess the maturity and applicability of the different research
results since they lack validation on industrial-scale examples.

This problem motivated a collaborative effort involving Critical Systems Labs
(CSL), the University of Toronto, McMaster University, and the European Orga-
nization for Nuclear Research (CERN) to produce a representative assurance
case argument to be publicly shared. We chose the CERN Large Hadron Collider
(LHC) Machine Protection System (MPS) for this case study for four reasons.
First, the MPS is a large safety-critical system that was the result of more than
10 years of effort involving highly knowledgeable and skilled personnel. As such,
it likely shares some similarities with other safety-critical systems. Second, there
is a substantial amount of openly available technical documentation about the
MPS design [11]. Third, some of the authors from CSL were previously involved
in technical reviews of the MPS during its commissioning and were already
familiar with the system [3]. Finally, we could rely on the feedback from CERN
experts to validate our argument.

We prepared this assurance case using the Eliminative Argumentation (EA)
method and notation [4]. We selected EA since it explicitly supports the expres-
sion (and resolution) of doubt about the validity of the argument through the
inclusion of defeaters. We have also used EA to prepare ACs for other safety-
critical systems [1]. Tool support for EA-based arguments is also provided by
Socrates [12], a collaborative assurance case tool developed by CSL.

This paper reports on the following contributions. First, we present our
medium-size EA argument for the MPS and make it freely accessible by mem-
bers of the scientific community and industry [2]. This argument consists of
509 nodes of different types, including 146 claim nodes and 105 defeaters. Sec-
ond, we reflect on features the AC tool we used and their impact collaborative
development of the argument by a geographically distributed team.

The rest of this paper is organized as follows. Following a brief overview
of the CERN Large Hadron Collider MPS (Sect. 2) and an introduction to EA
(Sect. 3), this paper briefly describes the structure of the assurance case argument
for the MPS (Sect. 4). Then we discuss features of the assurance case editor that
facilitated the collaborative development of the argument (Sect. 5). Finally, we
present our conclusions (Sect. 6).

2 The Machine Protection System

Built by the European Organization for Nuclear Research (CERN), the Large
Hadron Collider is the world’s largest particle accelerator and collider. It is
a 27-kilometer ring that contains thousands of superconducting magnets that
increase the energy of two particle beams until they reach nearly the speed
of light, and then make them collide. Collision experiments are performed to
analyze phenomena related to the collision: testing theories and investigating
unanswered questions in particle physics.

The hyper-accelerated particle beams generated during the experiments
release a significant amount of energy which could damage to the system if

Assurance Case Arguments in the Large 5

their trajectories become unstable; this phenomenon is called “beam loss”. The
Machine Protection System (MPS) is a monitoring system composed of several
interdependent sub-systems designed to ensure that the Large Hadron Collider
does not become damaged during operation due to unstable particles [7]. When
a beam loss is detected, the MPS is responsible for performing a “beam dump”
(i.e., extracting all particles before hazardous scenarios occur) within 400µs of
the occurrence of a beam loss event. A beam permit signal is used by components
of the MPS to communicate that the LHC can continue to operate safely.

The MPS is comprised of four main sub-systems: the Beam Loss Monitoring
System (BLMS), the Beam Interlock System (BIS), the Beam Dumping System
(BDS) and the Safe Machine Parameter Controller (SMPC).

• The Beam Loss Monitoring System consists of approximately 4000 monitors
distributed within the LHC to measure the beam loss. It is designed to detect
and communicate beam losses to the Beam Interlock System within 80µs
and uses the Safe Machine Parameter Controller to track beam losses events
accurately. When intolerable beam losses are detected, it signals the Beam
Interlock System to initiate a beam dump by withdrawing the beam permit.

• The Beam Interlock System takes between 20 µs and 120 µs to receive, process,
and transmit a beam permit signal to the Beam Dumping System and trans-
mits loss of the beam permit in at most 100 µs. It also determines whether the
Beam Dumping System should initiate a beam dump due to other conditions,
such as loss of redundancy of critical components.

• The Beam Dumping System is responsible for extracting the beams from
the LHC’s rings without damaging the system. The BDS directs the beams
towards a large graphite sink designed to absorb the beam’s energy. Compo-
nents called “kicker magnets” are used to divert the beams from the main
LHC ring towards the sink. The magnets also disperse the beams into smaller
clusters to reduce the energy density when beam reaches the sink.

• The Safe Machine Parameter Controller computes Safe Machine Parameters
used by the other systems to identify dangerous or spurious beam losses within
the LHC.

Considering the consequence of a failure of the MPS, engineers need to ensure
that risk is properly mitigated. The Eliminative Argumentation (EA) method
and notation for preparing ACs can support engineers in this activity.

3 Eliminative Argumentation for Assurance Cases

Eliminative Argumentation (EA) [4,5] is a graphical notation to express assur-
ance cases. EA allows engineers to reason about properties such as safety or
security and and their confidence in the argument. It is similar to Goal Struc-
turing Notation (GSN) [6,8]. Like GSN, EA uses a directed acyclic graph to
organize the argument structure. EA and GSN arguments both approximate a
tree data structure that starts with (at the “root”) a high-level claim about the
system that is decomposed into sub-claims until it can be directly supported by

6 L. Millet et al.

evidence, thus providing traceability between evidence and the claims. Unlike
GSN, EA enables analysts to express “doubts”, a.k.a., defeaters, they might
have in the validity of claims, evidence, or inferences in an AC. EA is founded
on the notion of ‘defeasible reasoning’ where confidence in the validity of a claim
(or evidence or inference) increases as reasons to doubt that claim are resolved.
Thus, EA defeaters can express doubt about claims, evidence, if it does not
accurately support its parent’s claim, and inference rules to identify doubts one
may have about the the soundness or completeness of the argument.

EA enables analysts to use different types of nodes [1] to build an argument:
claim nodes express statements that must be supported by further argumenta-
tion to demonstrate their validity; evidence nodes express observations, data,
or artifacts that support the argument; strategy nodes describe the approach
used to organize a collection of nodes; inference rules describe how to logically
combine a collection of nodes; context nodes provide background information
or missing details that may be necessary to understand the argument; assump-
tion nodes list conditions related to the system or its operational environment
assumed to be true in the argument, and defeater nodes express doubts about
the validity of an assurance argument.

In EA, confidence in the top-level claim is established by showing that rea-
sons to doubt the case have been resolved. If a doubt not resolved, it is marked
as “residual” and contributes to the overall doubt in the argument. In our expe-
rience, residual doubts are a helpful when communicating sources of risk with
stakeholders, such as management, regulators, or customers [1].

4 The Machine Protection System Assurance Case

This section describes the AC for the Machine Protection System (MPS) created
using the EA. The argument consists of 509 nodes and is publicly available [2]
as both a PDF report and a machine-readable archive (JSON). Among the 105
defeaters that can be found in the argument, 10 expose unmitigated risks in the
MPS that were confirmed to be valid by CERN experts.

Figure 1 presents the high-level structure of the EA argument for the MPS.
The argument starts with a top-level claim (C0001) that asserts that “The MPS
protects the LHC against damage from potential beam losses”. This claim is
decomposed into four sub-arguments (“branches”), one for each MPS sub-system
(see Sect. 2).

For each sub-system, the corresponding sub-argument argues that design is
acceptably safe. The argument relies on various decomposition strategies. For
example, Fig. 2 presents a portion of the argument that decomposes the claim
C0030, that states that “The BIS will transmit loss of the beam permit to the
BDS in less than 100 microseconds”, via strategy S0654, by arguing over the
foreseeable failure modes that may block, delay or otherwise interfere with the
transmission of a beam dump request from the BIS to the BDS. These failure
modes are represented by the defeater nodes D0031, D0036, D0438, and D0512.

Each defeater branch is followed by a sub-argument that addresses how the
associated risk is mitigated (not shown in Fig. 2). For example, the sub-argument

Assurance Case Arguments in the Large 7

Fig. 1. High-level argument structure for the Machine Protection System.

Fig. 2. A portion of the argument for the Beam Interlock System.

rooted at D0031 takes into account the fail-safe design of the mechanism respon-
sible for the transmission of the beam permit including redundancy of critical
components.

Through the argument, each claim is either refined into a set of evidence
nodes or defeaters. Each evidence node is associated with an artifact that directly
references specific details of the MPS design that justifies why the risk is suffi-
ciently mitigated. For example, Fig. 3 shows that the evidence E0543 (“In the
event of one or all transmission lines being damaged, the bean permit loop will
have no 10MHz signal or noise and subsequently result in the request for a beam
dump”) is contained in the document “Architecture of Beam Interlock System”.
In the AC tool Socrates, the user can click to open the corresponding document
on CERN’s file server.

8 L. Millet et al.

Fig. 3. Evidence node E0543 and its reference to its supporting artifact.

In our argument, defeaters that are not resolved are marked as either residual
or undeveloped. Undeveloped defeaters identify doubts for which no resolution
is available. Residual defeaters identify doubts that are not resolved but are
considered acceptable.

5 Lessons Learned from Our Collaborative Development

In this section, we reflect on our practical experience developing an argument by
a geographically distributed team. The development of our AC required approxi-
mately 92 effort-days. It was the output of a collaborative effort from four safety
engineers with various degrees of experience and no prior knowledge of the MPS
system. We developed our argument using Socrates [12], a web-based tool that
enables collaborative AC development. In the following, we discuss our experi-
ence in the context of capabilities of AC tools identified by other authors [9].

Navigation Features. An industrial-scale AC is likely difficult to navigate
without proper tooling. Unlike a figure created using a drawing tool, we devel-
oped our argument using a tool that automatically rendered a data structure
representing the AC. This reduced the effort required from developers to layout
the argument in a visually appealing format. Moreover, the tool we used provides
several navigation features such as the ability to expand or collapse branches of
the argument or the search function to navigate to specific sub-trees. These
navigation features were increasingly useful as the size of the AC increased.

Collaborative Development. Collaborative tools, such as Socrates, enable
developers to work on the AC in parallel, by editing the argument simultane-
ously. This feature was effective in preventing conflicts as this project’s team was
distributed over two continents and four different time zones. Our team exten-
sively used a feature that enables discussion between developers by attaching
comments to nodes in the argument.

Natural Language Processing. From our experience, we learned that tools
with a grammar checker or other basic language processing might be helpful
during the development of an AC. For example, to avoid ambiguous phrasing.
The tool we used offered no language processing support. Like many real-world
ACs, specialized terminology is used in the LHC MPS argument. Inconsistent
use might be avoided by the presence of a built-in glossary.

Linking Artifacts. This feature allows developers to link nodes in the argu-
ment to external artifacts. As with many large ACs for complex systems, one

Assurance Case Arguments in the Large 9

of the main challenges in the development of the MPS argument was mapping
aspects of the argument to details in the documentation. We linked AC nodes
to the documentation that defines or acts as evidence for these nodes.

Version Control. This feature provides the ability for developers to save stable
versions of the AC. When preparing and maintaining an AC, developers often
restructure the argument to improve its understandability or to reflect changes
to the system. In our project, we found this version control useful, especially to
consult previous versions of the AC.

Rule-based Static Analysis. This feature provides rule-based checks on the
argument structure that address both the syntactic correctness of the argument
and detects common “anti-patterns” in the argument. For most of the project
team, this was their first experience with the development of a large AC using
EA. Static analysis does not ensure that an argument is logically sound and
complete, but it helped developers minimize the number of basic errors. The
real-time feedback provided by this feature also helped team members learn EA.

Impact Analysis. Modifying, adding or deleting a node may affect the struc-
ture of the entire sub-argument in which it is contained. In such cases, an analyst
may find it necessary to apply the same modification to other unrelated sub-
arguments that share a similar structure, in order to ensure the overall cohesion
of the argument. Beyond basic search and linking functions, the tool we used
did not offer sophisticated impact analysis functions. However, had these been
available our experience suggests they would have reduced the effort associated
with argument maintenance, particularly in the later stages of development.

Metrics. The tool we used reports metrics about the argument, such as a
timeseries showing how the number of nodes in the argument (stratified by node
type) changed over time. For example, we used the rate at which new defeater
nodes were created to understand when the developers had reached a level of
technical understanding sufficient to pose probing questions to the CERN experts
participating in this project. Overall, this feature helped us to gauge our under-
standing of the LHC’s MPS and the maturity of the AC.

6 Conclusion

This paper presented a medium-size assurance case argument for the CERN
Large Hadron Collider Machine Protection System that is expressed using Elim-
inative Argumentation. We reported on our practical experience in creating this
argument and reflected on the support provided by the capabilities of the col-
laborative assurance case tool that we used.

In future work, we plan to develop a framework that can monitor the activity
of the analysts and provide practical recommendations as mandated by our man-
ifesto, which proposes using assurance cases as data [10]. We are also empirically
studying assurance case development.

Acknowledgements. We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) [funding reference numbers RGPIN-
2022-04622, DGECR-2022-0040, RGPIN-2015-06366].

10 L. Millet et al.

We thank Mateo Delgado and Rolf Lippelt for their contribution, and CERN
experts Jan Uythoven Markus Zerlauth, and Lukas Felsberger for their review and
feedback on the AC.

References

1. Diemert, S., Joyce, J.: Eliminative argumentation for arguing system safety - A
practitioner’s experience. In: International Systems Conference (SysCon), pp. 1–7.
IEEE (2020)

2. LHC MPS argument. www.cds.cern.ch/record/2854725/files/ (02 2023)
3. Ghafari, N., Kumar, R., Joyce, J., Dehning, B., Zamantzas, C.: Formal verification

of real-time data processing of the lhc beam loss monitoring system: a case study.
In: Salaün, G., Schätz, B. (eds.) FMICS 2011. LNCS, vol. 6959, pp. 212–227.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24431-5 16

4. Goodenough, J., Weinstock, C., Klein, A.: Eliminative argumentation: A basis
for arguing confidence in system properties. Tech. Rep. CMU/SEI-2015-TR-005,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2015).
www.resources.sei.cmu.edu/library/asset-view.cfm?AssetID=434805

5. Goodenough, J.B., Weinstock, C.B., Klein, A.Z.: Eliminative Induction: A Basis for
Arguing System Confidence. In: International Conference on Software Engineering
(ICSE), pp. 1161–1164. IEEE (2013)

6. Group, A.C.W.: Goal structuring notation community standard - version 3. Tech.
rep., Safety Critical Systems Club (2021). www.scsc.uk/r141C:1?t=1

7. Holzer, E.B., et al.: Beam loss monitoring for LHC machine protection. Phys.
Procedia 37, 2055–2062 (2012)

8. Kelly, T.P.: Arguing safety-a systematic approach to safety case management.
DPhil Thesis York University, Department of Computer Science (1999)

9. Koopman, P.: The UL 4600 Guidebook: What to Include in an Autonomous Vehicle
Safety Case. Carnegie Mellon University (2022)

10. Menghi, C., Viger, T., Di Sandro, A., Rees, C., Joyce, J., Chechik, M.: Assurance
Case Development as Data: A Manifesto. In: International Conference on Soft-
ware Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 135–139.
IEEE/ACM (2023)

11. CERN Website. www.cern.ch (04 2022)
12. Socrates. www.safetycasepro.com/welcome (04 2022)

www.cds.cern.ch/record/2854725/files/
https://doi.org/10.1007/978-3-642-24431-5_16
www.resources.sei.cmu.edu/library/asset-view.cfm?AssetID=434805
www.scsc.uk/r141C:1?t=1
www.cern.ch
www.safetycasepro.com/welcome

Identifying Run-Time Monitoring
Requirements for Autonomous Systems

Through the Analysis of Safety
Arguments

Richard Hawkins(B) and Philippa Ryan Conmy

Assuring Autonomy International Programme, Department of Computer Science,
University of York, Deramore Lane, York, England YO10 5GH,

{richard.hawkins,philippa.ryan}@york.ac.uk

Abstract. It is crucial that safety assurance continues to be managed
for autonomous systems (AS) throughout their operation. This can be
particularly challenging where AS operate in complex and dynamic envi-
ronments. The importance of effective safety monitoring in ensuring
the safety of AS through-life is already well documented. These current
approaches often rely on utilising monitored information that happens
to be available, or are reliant solely on engineering judgement to deter-
mine the requirements. Instead, we propose to use a systematic analysis
of the safety case as the basis for determining the run-time monitoring
requirements.

Safety cases are created for AS prior to deployment in order to demon-
strate why they are believed to be sufficiently safe to go into oper-
ation. The safety case is therefore inevitably based upon predictions
and assumptions about the system and its operation which may become
untrue due to changes post-deployment. Our approach identifies specific
run-time monitoring requirements for AS based upon a dialectic analysis
of the safety case developed for the system. The advantage of the app-
roach described is that it is systematic (through explicit consideration of
elements of the safety case for the AS) and provides a way to justify the
sufficiency of the resulting monitoring requirements (through creating
explicit links the safety claims made about the AS).

Keywords: Monitors · Safety arguments · Run-time

1 Introduction

It is crucial for the assurance of safety-related and safety-critical systems that
the safety of the system can be demonstrated throughout its entire operational

This work is funded by the Assuring Autonomy International Programme https://
www.york.ac.uk/assuring-autonomy. Parts of this work were undertaken as part of the
“LOPAAS” project of the Fraunhofer-Gesellschaft “ICON” programme.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 11–24, 2023.
https://doi.org/10.1007/978-3-031-40923-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_2&domain=pdf
http://orcid.org/0000-0001-7347-3413
http://orcid.org/0000-0003-1307-5207
https://www.york.ac.uk/assuring-autonomy
https://www.york.ac.uk/assuring-autonomy
https://doi.org/10.1007/978-3-031-40923-3_2

12 R. Hawkins and P. Ryan Conmy

life. Many safety assurance activities (such as design analysis and testing) can be
undertaken during development prior to the deployment of the system to oper-
ation. However, it is also important that safety continues to be managed and
assessed post-deployment, particularly to identify and respond to unanticipated
changes in the system or the operating environment. As part of this it is impor-
tant to ensure that effective monitoring is in place during operation that can
identify when a response is required to ensure acceptable safety is maintained.
Effective monitoring is important for all safety-related systems, however it is of
particular importance for autonomous systems (AS) [3,7], since it is expected
that AS will experience more change during operation. This may be in the form
of changes to the AS itself (updates to machine learning models or unantici-
pated failure modes of system components), or changes in the complex, dynamic
operating environment in which AS are required to operate.

Other work has previously discussed the need for safety monitors for AS. For
example, in [6] the use of safety performance indicators (SPIs) is suggested as a
way of defining safety metrics for an AS that can be monitored during operation.
In [2], the authors propose the use of runtime monitors to assess assurance
properties of AS by measuring confidence/uncertainty in those properties at
runtime. And in [9], the use of probabilistic runtime risk monitors is proposed
as a way of supporting dynamic risk assessment of AS during operation. A lot
of literature relating to run-time monitoring is focused on highly situational
monitoring to mitigate specific hazards. For example, [8] provides a method for
ensuring safe distance between platooning trucks. In [5], the authors propose
a safety concept, which monitors internal health and plausibility checking for
an autonomous driving control system. However, underpinning the successful
use of any safety monitors is the need to be able to identify and justify the
selection of what is required to be monitored, and how the use of the information
from that monitor can be shown to be effective in maintaining safety during
operation. Whereas existing approaches rely largely on engineering judgement to
define monitoring requirements, this paper describes an approach for identifying
specific run-time monitoring requirements for AS based upon an analysis of the
safety case developed for the system.

The advantage of the approach described in this paper is that it is systematic
(through explicit consideration of elements of the safety case for the AS) and it
provides a way to justify the sufficiency of the resulting monitoring requirements
(through creating explicit links to the safety claims made about the AS). The
paper is structured as follows; Sect. 2 introduces our approach based on the use
of dialectic arguments; Sect. 3 discusses the activities required pre-deployment
of the AS in order to identify run-time monitoring requirements; Sect. 4 then
discusses how the monitors are used post-deployment to ensure the validity of
the AS safety case is maintained; We draw conclusions and describe further work
in Sect. 5. We use an illustrative example throughout the paper to illustrate our
approach.

Identifying Run-Time Monitoring Requirements for Autonomous Systems 13

2 Background

Safety cases can be created for systems prior to deployment in order to demon-
strate why they are believed to be sufficiently safe to go into operation [10]. The
safety case for any system is therefore inevitably based upon predictions and
assumptions about the system and its operation. Despite the best efforts of engi-
neers when developing the safety case to ensure all predictions and assumptions
are valid, some of these may turn out to be incorrect during operation, or may
be correct at the point of deployment, but later become incorrect due to changes
during operation. For example, during operation, upredicted emergent proper-
ties of the system may become evident, unanticipated changes may occur in
the external environment, or the operational performance of system components
may start to diverge from predictions. Safety assurance requires that confidence
can be provided in the continued validity of the safety case post-deployment
once the AS is in operation. In order to do this we need to understand what are
the correct things to monitor that will provide the required information about
safety case validity. We also need to know at what point the information obtained
from the monitors indicates that the validity of the safety case may be under-
mined. This requires the definition of triggers associated with each monitor. The
triggers are used to indicate that corrective actions are required to restore the
validity of the safety case. The analysis that we propose in order to define the
safety monitoring requirements for an AS is based around the use of dialectic
argument techniques. Below we introduce dialectic arguments and explain how
we use them in defining safety monitors for AS.

2.1 Dialectic Safety Arguments

Dialectic arguments provide a way of explicitly representing not just the argu-
ment and evidence that support the truth of the claims that are made (as is done
in a conventional safety argument), but also a way of representing argument and
evidence that could undermine the truth of those claims. Dialectic arguments
are created by identifying challenges to elements of the safety argument (claims
evidence, context, assumptions etc.). The challenges can take the form of either
claims that, if true, undermine the argument (challenge claims) or evidence that
undermines the truth of the argument (counter-evidence). The Goal Structuring
Notation (GSN) standard [1] defines a way of documenting counter evidence as
part of a safety argument. Figure 1 shows a simple example of argument chal-
lenges and defeat (a key to the GSN symbology is provided in Fig. 2). The dia-
gram on the left hand side (a), shows a small GSN argument fragment regarding
a claim that an algorithm is correctly implemented. The diagram on the right
hand side (b), shows how various elements of that argument may be challenged.
Challenges are represented by dotted arrows that link from the challenge claim
to the element being challenged. In Fig. 1 challenges are shown to three elements
of the argument: strategy S12, evidence E121 and claim C12. Challenges are
represented as claims (CC12.1, CC121.1 and CC2.1 respectively). For challenges
to be compelling they should be supported by some evidence (referred to as

14 R. Hawkins and P. Ryan Conmy

counter-evidence). In Fig. 1, an example of counter-evidence is shown as EC2.1.
If a challenge presented to the safety case is determined to be valid, then the
challenged element in the safety argument is said to be defeated. Figure 1 shows
an example of how a defeated claim, C12, can be represented.

Fig. 1. A simple example GSN safety argument (a) and a dialectic argument showing
how challenges and defeat of elements of the GSN structure can be represented (b).

In order to identify how the validity of an AS safety case may be under-
mined during operation, we propose that dialectic argumentation can be used
to explicitly identify, prior to deployment of the AS, how the safety argument or
evidence may be challenged at run-time. This enables detailed challenge claims
and counter-evidence specific to the operation of the AS under consideration to
be identified. As this dialectic argument focuses on potential run-time challenges,
we refer to it as an operational dialectic argument. Our approach says that if,
at any point in the lifecycle of the AS, the counter-evidence or challenge-claim
we have identified in the operational dialectic argument exists, then the safety
case is undermined, since elements of that argument become defeated. Therefore
by monitoring explicitly at run-time for occurrence of this counter-evidence, we
can have confidence that the safety case will remain valid during operation.

Once the operational challenges have been identified using the operational
dialectic argument, the mechanisms for successfully monitoring and responding
to the occurrence of that counter-evidence must be determined and implemented.
We discuss this in Sect. 4. Firstly in the next section we look at how an opera-
tional dialectic argument can be created for an AS.

Identifying Run-Time Monitoring Requirements for Autonomous Systems 15

Fig. 2. A key to the GSN symbols used this paper

3 Pre-deployment

In this section we describe the activities required in our approach prior to deploy-
ment of the system in order to identify a sufficient set of run-time monitors and
to be able to justify their sufficiency. This firstly requires the development of an
operational dialectic argument, which is discussed in Sect. 3.1.

3.1 Operational Dialectic Arguments

The starting point for creating a dialectic argument for an AS is the AS safety
case itself. This safety case will have been created prior to deployment of the AS
during the development of the system to demonstrate, through a safety argument
supported by evidence, that the AS is sufficiently safe to operate in its defined
context. There is existing guidance that can be used to help in the creation of
AS safety cases [4]. Figure 3 shows a simplified example of part of the safety case
for an autonomous vehicle that will operate on public roads. The safety case is
represented using GSN.

This part of the safety case shows the argument that a particular safety
requirement (SR1) has been addressed through the design and implementation
of a particular system component (in this case the object detection compo-
nent of the vehicle). The object detection component in this case is responsible
for identifying objects that are present in the operating environment of the

16 R. Hawkins and P. Ryan Conmy

AS. This is demonstrated through supporting two claims. Firstly (G2.1.1) it is
demonstrated through testing evidence that SR1 is satisfied. This argument is
supported through the provision of the relevant test results, as well as claims
regarding the sufficiency of both the test cases and the test platform that was
used. Secondly, it is argued that the manner in which the object detection com-
ponent was developed gives confidence that SR1 is met. This argument considers
the machine learning (ML) model that is used as part of the object detection
component (G2.1.2.1), the appropriateness of the design decisions that were
taken (G2.1.2.2), and the rigour of the development process followed (G2.1.2.3).
Each of these claims is developed further through argument and evidence that is
not shown in Fig. 3. A further claim (G2.1.2.4) shows that no hazardous errors
were identified in the design of the object detection component based on evidence
from a design review.

With the pre-deployment safety case established, the operational dialectic
safety case is then created by using the GSN argument structure to systemati-
cally identify potential run-time challenges to elements of that safety case. These
challenges, at this point, are hypothetical, in that the challenges to the safety case
elements do not, prior to deployment of the AS, exist. If the counter-evidence
that supports a challenge becomes present during the operation of the AS, then
that challenge becomes valid, and the relevant element of the AS safety case may
be defeated. For this reason it is important to be able to know, at run-time, if
any of this counter-evidence exists. Unless sufficient monitoring is put in place
prior to deployment of the AS, then the counter-evidence that can defeat ele-
ments of the safety case may exist without the knowledge of the system operator.
By identifying the potential run-time challenges prior to deployment, sufficient
monitors can be put in place to identify the presence of counter evidence.

Figure 4 shows a simplified version of the argument fragment from Fig. 3 with
the potential run-time challenges and counter-evidence identified (for clarity in
the diagram only those argument elements with challenges are fully represented).
This dialectic argument was created by systematically considering each element
of the safety argument and considering whether any events that could foreseeably
occur during operation of the AS could defeat that element. These challenges
are captured as challenge claims, which are stated as propositions that would
become true in the presence of particular counter-evidence arising during opera-
tion. For example, the claim G2.1 that the object detection component satisfies
the requirement SR1 would be directly challenged at run-time if the performance
that is actually being observed by the system in operation is seen not to meet
that specified by the requirement. This has been captured by the challenge claim
CC1 in Fig. 4. CC1 would be become a valid challenge during operation of the AS
if there was evidence to show that this challenge claim was true. OpEv1 states
the nature of the operation counter evidence that would support this. OpEv1
will therefore be used as the basis for a monitoring requirement in Sect. 3.2 to
ensure that the presence of the counter evidence is known.

Another example provided in Fig. 4 relates to claim G2.1.1.3, that the test
platform represents the actual AV platform on which the component is operating.

Identifying Run-Time Monitoring Requirements for Autonomous Systems 17

Fig. 3. GSN safety argument extract from a safety case for an autonomous vehicle.

This claim could be challenged if the AV platform is changed during operation
such that the test platform is no longer indicative of the AV. Such changes could
mean that the testing results are no longer valid. This has been captured by the
challenge claim CC3 in Fig. 4. CC3 would be become a valid challenge during
operation of the AS if there was evidence to show that such a change had indeed
occurred to the vehicle in operation. OpEv3 identifies change reports as the
mechanism by which evidence of this could be identified. Once again OpEv3 can
be used as the basis for a monitoring requirement in Sect. 3.2.

Each of the items of operational counter-evidence from Fig. 4, along with
other examples from related parts of the wider safety case are listed in Table 1.
It is only by identifying the presence of this counter-evidence at run-time that

18 R. Hawkins and P. Ryan Conmy

Fig. 4. Extract of an operation dialectic argument for an AV.

the existence of challenges to the validity of the safety case can be known. If
such challenges were to occur during operation and the operator of the AS was
unaware that this was the case (due to insufficient monitoring), then the contin-
ued operation of the AS is potentially unsafe. It is therefore important that mon-
itoring requirements are defined for each item of operational counter-evidence to
ensure the necessary information is available during run-time. Then we can use
this to know if a safety argument challenge has occurred and hence an appropri-
ate response can be enacted to ensure the safety of the AS is maintained. The
next section discusses these monitoring requirements.

3.2 Identifying Run-Time Monitoring Requirements

For each item of operational counter-evidence identified, it is necessary to define:

– what needs to be monitored at run-time in order to be aware of the presence
of the counter-evidence?

– what the criteria are that will be used for judging whether what has been
monitored represents counter-evidence?

– what will be used as the trigger for determining the presence of counter-
evidence?

Identifying Run-Time Monitoring Requirements for Autonomous Systems 19

Table 1, shows this information captured in the form of a table for the
counter-evidence identified for the example system. This is captured as ‘Moni-
tor’, ‘Criteria’ and ‘Trigger’ respectively. It can be seen in these examples that
a diverse set of information must be monitored for the AV to ensure that all
the relevant counter evidence will be identified. This includes things such as the
number of missed detections across the fleet of AVs, information about changes
to the vehicle platform, and detection of software errors. Each of these requires
some mechanism to be put in place to obtain that information at run-time. This
may include, for some of the information, the installation of physical sensors on
the AS, but may also include more procedural mechanisms to check and record
events. In this paper we consider all such mechanisms to be run-time monitors.

Table 1. Identifying requirements for run-time monitoring from counter-evidence

Op. Evidence Monitor Criteria Trigger

OpEv1 - [operational
object detection
performance measures]

Number of missed
pedestrian detections
across the vehicle fleet

Missed detections
observed per 1000mi of
operation

#misses/1000 mi exceeds
rate reporting in test
results by 10%

OpEv2 - [observations of
the context of operation]

Input images arising from
the camera for operation
within defined ODD

Measurement of key
parameters within images
(e.g., light levels, surfaces,
colours etc.)

Operational images
outside of test distribution

OpEv3 - [vehicle change
reports]

Physical changes to
vehicle platform (such as
updates to sensors,
processors etc.)

Changes that may impact
software performance

Notification of AV
platform modification

OpEv4 - [Software bug
report]

Software errors discovered
during operation

Errors identified in object
detection during operation

Notification of error found
in object detection

OpEv5 - [AV incident
reports]

Reports raised by
operators of the vehicle

Incidents that relate to
object detection

Notification of object
detection incidents that
may be hazardous

OpEv6 - [Camera
maintenance records]

Calibration of camera Time since last calibration Greater than 6months
since last calibration

OpEv7 - [Camera drift
measurements]

Drift measurement of
camera images

Rate of drift in operation Rate of drifting exceeds
design assumption

OpEv8 - [Object detection
software update]

Software version Change to object
detection software

Non-approved version of
software running

OpEv9 - [Lidar error
status]

Lidar health monitoring Lidar availability Lidar fails to provide
output to object detection
component

We can illustrate the monitoring requirements by considering examples from
Table 1. The operational counter-evidence OpEv1 has been identified as opera-
tional object detection performance measures. It can be seen in Fig. 4 that this
was identified as counter-evidence because it would support a claim that the
observed performance of the component in operation does not satisfy the defined
safety requirement. In order to know if this evidence has arisen, we determined
that it would be necessary to monitor the number of missed detections that
are seen to occur across the fleet of vehicles that are operating. The criteria
that would be used to determine if counter-evidence is observed is the number

20 R. Hawkins and P. Ryan Conmy

of missed detection that are observed in a set period (in this case 1000 mi of
operation). This can then be compared against the defined trigger to determine
if this represents counter-evidence. In setting the trigger we must consider the
context of the safety argument, and the specific element to which the counter-
evidence would relate. In this case we must consider the number of misses per
1000 mi that would represent a deviation from the performance claimed in the
safety case. Here, it would be when the number of misses exceeds what was
demonstrated in the pre-deployment testing of the vehicle. Since in this case
the performance seen in testing comfortably exceeded that required to satisfy
the safety requirement (SR1), we do not need to consider every small deviation
from this as a trigger for counter-evidence. Instead we have set a 10% threshold,
which is still within the safety requirement, but indicates a threat to the validity
of that aspect of the safety case that warrants assessment and potential action
(see Sect. 4).

As a second example we can consider OpEv8, which has been identified as
an update to the object detection software. It can be seen in Fig. 4 that this
was identified as counter-evidence because it would support a claim that the
object detection software that is running on the operational vehicle is not the
software for which the claim about the soundness of the development was made.
In order to know if this has occurred we need to monitor the version of the object
detection software that is running on the operational system. The criteria is if
the version number of the executing software indicates that there has been a
change to the software, and this will trigger counter-evidence if the version that
is running is not approved (since this could mean that we are no longer able to
claim that the development of the object detection software is sufficient). Further
investigation would again be required at this point to determine the nature and
impact of the changes to the software.

Having identified the run-time monitoring requirements prior to deployment
of the AS, those requirements then have to be managed post-deployment to
ensure their effectiveness. This is discussed in Sect. 4.

4 Post-deployment

In this section we discuss in more detail the post-deployment monitoring mecha-
nisms and how they might be implemented in practice. First we need to identify
responsible organisations and create processes to keep track of the specified mon-
itors and triggers (the effectiveness of these also needs to be justified in the safety
case). Second we need to perform those processes when required.

4.1 Organisation and Continual Monitoring Processes

Once the AS is in-service, safety management processes will need to be put in
place to review each of the identified criteria. Whilst the triggers provide clear
thresholds beyond which the safety case can be considered no-longer valid, and
some may be considered higher priority than others, we would expect all of the

Identifying Run-Time Monitoring Requirements for Autonomous Systems 21

criteria to be reviewed regularly as part of planned safety case review. Addi-
tionally, we would expect a periodic review of the safety case in case additional
run-time monitors have been identified, or could be improved over time, e.g., if
there is new technology for monitoring or a changed legal requirement. Further,
there may be other changes in the operating environment which impact on the
safety case. We emphasise that the run-time safety monitoring is a continual
process which evolves during the life of the project.

To be effective, a responsible organisation must be identified, who have the
role of collating the specified run-time monitored information. The precise organ-
isation, or organisations, required to support this may be dependent on the
nature of the run-time monitoring requirements, the type of AS, and the regula-
tory regime. For our autonomous vehicle example this will include fleet owners,
independent servicing centres and/or original manufacturers as well as individ-
uals who own the vehicle. A further complicating factor would be the need to
consider international boundaries, and national requirements.

4.2 Impact Assessment Process

Assuming that data indicates the trigger threshold has been reached, or a
planned review shows concern about a particular trigger, there will need to be
an impact assessment. This will first need to identify areas of potential impact
on the safety case. This will differ depending on the type of issue. At a minimum,
all branches which refer to a particular trigger would need to be reviewed, but
the impact on the case could be more wide ranging, e.g., if a new hazard was
discovered.

For example, if the trigger is Op Ev1 - #misses/1000mi exceeds rate reporting
in test results by 10%, the potential impact of this could include one or more of
the following:

– the validity of the goals below G2.1 in Fig. 4 are challenges, as if the observed
performance relating to SR1 is not as expected which implies a problem with
the test and design evidence

– more specifically, the deployment environment may differ to that anticipated
- implying a further issue for Op Ev2 - observations of the operating context

– the risk of collision with a pedestrian was higher than that anticipated due
to one or more causal subsystems having lower performance than anticipated
and each of these subsystems should be investigated for shortfall

– the Op Ev1 trigger criteria was defined incorrectly, essentially a false positive
problem

– the validity of one or more higher branches of the safety argument above G2.1
are undermined

– the scope of the impact could be an entire fleet of vehicles, or a subset of the
fleet (for example operating in a particular region)

Alternatively, if we consider a low level trigger such as Op Ev 7 - Rate of
drifting exceeds design assumption, the potential safety impact could extend to

22 R. Hawkins and P. Ryan Conmy

the performance of any subsystems using the camera. We should investigate any
claims in the safety argument about the performance of the camera, which might
be in different branches of the case.

Having assessed the impact of the operational counter-evidence on the safety
case and the AS itself, it is necessary to either provide a rebuttal to this, or pro-
pose actions to address the impact. We should do this considering the impacted
claims and their context, rather than considering the trigger in isolation. In
practice a shortfall in measured performance may still be within tolerable safety
limits and be localised to different parts of the case and this should be investi-
gated. To continue our examples, if the trigger for Op Ev1 - #misses/1000mi
exceeds rate reporting in test results by 10% is breached but there have been
no significant incidents or other subsystems are still compensating for shortfall
in one systems performance (e.g. where there are diverse means of detecting
pedestrians) then it may be possible to argue that the AS is still acting well
within tolerable levels of risk. Alternatively, it could be that the trigger has only
been observed in an isolated case with unusual environmental conditions which
it could be argued are unlikely to be seen again. Such rebuttals should be explic-
itly document and could be added to the dialectic argument during operation to
document the resolution of the challenge claim.

If the trigger Op Ev 7 - Rate of drifting exceeds design assumption is
breached, it may be that this results in no significant performance alteration
in any of the systems which are using the camera and/or that a more regular re-
calibration process can be automatically performed without impacting on the AS
user. Again, such rebuttals could be added explicitly to the dialectic argument.

Where the monitors indicate that there is impact on the validity of the safety
case but no rebuttals for the counter-evidence are identified, action must be taken
at run-time to address this. Typical actions could include limitations on use, for
example, avoiding using the AS in a particular environment until an issue is fully
investigated and fixed, or limiting the operating speed. The safety case would
need to be updated for this interim period, with the limitations made explicit
at the top level of the case, and monitoring processes would continue. As an
extreme example, action may require grounding of a fleet of AS. Once the safety
issue was resolved, the safety case would again be updated to reflect this.

5 Conclusions and Further Work

The importance of effective monitoring in ensuring systems remain safe through-
out their operational life is well understood. Due to the nature of AS, it becomes
particularly important that the sufficiency of the monitoring that is in place
at run-time can be justified. It is not sufficient therefore that the monitoring
requirements for an AS be defined in an ad-hoc manner, or relying solely on
engineering judgement. Instead it is important that a systematic and defensi-
ble method for deriving the run-time monitoring requirements is established. In
this paper we have discussed how the continued validity of the AV safety case
should be the focus of the run-time monitoring, with monitors used to identify

Identifying Run-Time Monitoring Requirements for Autonomous Systems 23

if counter-evidence to the safety case occurs during operation, such that mit-
igations can be enacted. The approach we have described uses the concept of
creating dialectic arguments as a way to systematically anticipate and identify
operational counter-evidence, and thus to derive effective run-time monitoring
requirements.

The work presented in this paper will lead to further related work. We have
demonstrated how our approach can be applied in practice using an example
from a self-driving vehicle and have provided simplified examples in this paper.
Further evaluation of this approach will be undertaken through additional case
studies undertaken by independent engineers. We will consider the application of
the approach to different types of AS in other domains in order to show the gen-
eralisabilty of the approach. We will also seek to evaluate, through observation
during operation, the effectiveness of the monitoring requirements arising from
following our approach. The approach we have described in this paper can be
used to enhance the safety case for the operation of the AV, by enabling a com-
pelling argument to be made about the sufficiency of the run-time monitoring.
Further work will develop and demonstrate the structure for such arguments.

We will use the results obtained from case studies in order to investigate
further the nature of the run-time monitoring requirements that are derived from
applying our approach. It was seen in this paper that the nature of the monitoring
requirements can be diverse in nature, and consequently the monitoring and
mitigation mechanisms are also diverse. We will look to characterise the run-
time requirements for AVs as the basis for providing further guidance on their
effective management.

References

1. ACWG: Goal Structuring Notation Community Standard. Tech. Rep. SCSC-141C
v3.0, Safety Critical Systems Club (2021). www.scsc.uk/scsc-141C

2. Asaadi, E., Denney, E., Menzies, J., Pai, G.J., Petroff, D.: Dynamic assurance
cases: a pathway to trusted autonomy. Computer 53(12), 35–46 (2020)

3. Haupt, N.B., Liggesmeyer, P.: A runtime safety monitoring approach for adaptable
autonomous systems. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch,
E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 166–177. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26250-1 13

4. Hawkins, R., Osborne, M., Parsons, M., Nicholson, M., McDermid, J., Habli, I.:
Guidance on the Safety Assurance of Autonomous Systems in Complex Environ-
ments (SACE). arXiv preprint arXiv:2208.00853 (2022)

5. Hörwick, M., Siedersberger, K.H.: Strategy and architecture of a safety concept
for fully automatic and autonomous driving assistance systems. In: 2010 IEEE
Intelligent Vehicles Symposium, pp. 955–960 (2010)

6. Laboratories, U.: UL 4600: Standard for Evaluation of Autonomous Products
(2020). Standard for safety, Underwriters Laboratories (2020)

7. Machin, M., Guiochet, J., Waeselynck, H., Blanquart, J.P., Roy, M., Masson, L.:
SMOF: a safety monitoring framework for autonomous systems. IEEE Trans. Syst.
Man, Cybern.: Syst. 48(5), 702–715 (2016)

www.scsc.uk/scsc-141C
https://doi.org/10.1007/978-3-030-26250-1_13
http://arxiv.org/abs/2208.00853

24 R. Hawkins and P. Ryan Conmy

8. Reich, J., Sorokos, I., Papadopoulos, Y., Kelly, T., Wei, R., Armengaud, E.: Engi-
neering of runtime safety monitors for cyber-physical systems with digital depend-
ability identities. In: Computer Safety, Reliability, and Security, pp. 3–17 (2020)

9. Reich, J., Trapp, M.: Sinadra: towards a framework for assurable situation-aware
dynamic risk assessment of autonomous vehicles. In: 2020 16th European Depend-
able Computing Conference (EDCC), pp. 47–50. IEEE (2020)

10. Sujan, M.A., Habli, I., Kelly, T.P., Pozzi, S., Johnson, C.W.: Should healthcare
providers do safety cases? lessons from a cross-industry review of safety case prac-
tices. Saf. Sci. 84, 181–189 (2016)

Redesigning Medical Device Assurance:
Separating Technological and Clinical

Assurance Cases

Spencer Deevy1(B) , Tiago de Moraes Machado1 , Amen Modhafar2 ,
Wesley O’Beirne2 , Richard F. Paige1 , and Alan Wassyng1

1 McMaster Centre for Software Certification, McMaster University,
Hamilton, Canada

{deevys,machadotiagom,paigeri,wassyng}@mcmaster.ca
2 Arrayus Technologies Inc., Burlington, Canada

{amodhafar,wobeirne}@arrayus.ca

Abstract. The safety and clinical effectiveness of medical devices
depend on their use in specific clinical treatments. Due to the variability
in physiology and genetics, different people react differently to exactly
the same treatment. High-intensity focused ultrasound systems and radi-
ation therapy machines are examples of systems where this needs to be
taken into account. If we use a conventional monolithic assurance case for
such systems, the inherent complexity affects our ability to construct an
argument so that manufacturers and regulators are sufficiently confident
that the device is safe and effective for a given treatment. We propose sep-
arating the assurance of these types of systems into two linked assurance
cases. The first assurance case demonstrates the safety of the medical sys-
tem independent of its clinical effect. The second demonstrates the safety
and clinical effectiveness of the system when it is used within specific clin-
ical treatments. Based on our experience in the ongoing development of
a high-intensity focused ultrasound system, we introduce these separate
assurance cases, and show how to structure them. We present definitions
that are useful in determining boundaries, interfaces and dependencies
between the two assurance cases, and include observations related to the
effectiveness of this approach.

Keywords: Assurance Case · Separation of Concerns · Medical
Devices · Safety-Critical · Software-Intensive · Safety · Certification ·
Focused Ultrasound

1 Introduction

Over the past two years, the McMaster Centre for Software Certification
(McSCert) and Arrayus Technologies Inc., have been working together on con-
structing an effective assurance case (AC) for Arrayus’s new therapeutic focused

Partially supported by the Natural Sciences and Engineering Research Council of
Canada.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 25–38, 2023.
https://doi.org/10.1007/978-3-031-40923-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_3&domain=pdf
http://orcid.org/0000-0003-3331-1668
http://orcid.org/0000-0002-6994-2181
http://orcid.org/0000-0003-4887-2169
http://orcid.org/0000-0002-6531-4057
http://orcid.org/0000-0002-1978-9852
http://orcid.org/0000-0003-4614-3421
https://doi.org/10.1007/978-3-031-40923-3_3

26 S. Deevy et al.

ultrasound (FUS) system. This system emits FUS energy waves to deliver precise
treatment for several medical conditions, including uterine fibroids and pancre-
atic cancer. It uses an external magnetic resonance imaging (MRI) scanner for
the guidance of the treatment and monitoring of the patient. The combination of
such non-invasive technologies forms a software-intensive system of systems com-
monly known as a Magnetic Resonance-guided Focused Ultrasound (MRgFUS)
medical device [8].

Safety cases, a precursor of assurance cases, were introduced more than
50 years ago to help manufacturers document a structured, explicit argument that
the system of interest is acceptably safe [7]. Modern assurance cases have the same
intent, but can be used to guide development as well as document that a system
possesses properties of concern, including but not limited to safety. They are thus
well suited for use in developing and assuring safe and effective medical systems.

McSCert has been researching and developing assurance cases for more than
10 years. The McSCert researchers were confident that they could bring this
expertise to aid Arrayus in assuring the safety and effectiveness of their new
system. After a relatively easy start, progress slowed as the team grappled with
structuring arguments that were both convincing and understandable by the
different readers who need to use the assurance case. Making an argument that
the medical system produces the intended outputs and would not deliver more
ultrasound energy than requested, or outside of the focus area, was similar to
many systems that McSCert researchers had worked on. However, dealing with
the clinical effects of those outputs raised the complexity of the overall argument
to a level that was not useful. The difficulty with systems such as MRgFUS
devices is that there are so many variations in how different people react to
exactly the same system outputs. Dealing with the system and its clinical effects
in a single, monolithic AC seemed the wrong way to handle the assurance.

Out of that realization grew the idea that we now propose – separate the
assurance into two linked assurance cases. The Technological Assurance Case
(TAC) argues the safety and effectiveness of a medical system viewed solely as a
machine that produces deterministic outputs given specific inputs. This is inde-
pendent of the effect these outputs have on a patient during clinical treatment.
The Clinical Assurance Case (CAC) argues the overall safety and effectiveness
of the medical system, and specifically deals with that part of the assurance
as to how the outputs from the medical system affect patients during clinical
treatment. The CAC makes reference to the TAC in that part of the assurance
that depends on the system producing its intended functionality “safely”.

2 Preliminaries

2.1 Background

In discussion related to assurance cases and in the structure of the assurance
case figures, we have used Goal Structuring Notation (GSN) [3] with some minor
changes in terminology. For example, we prefer to talk about claims and evidence
rather than goals and solutions.

Redesigning Medical Device Assurance 27

2.2 Basic Concepts

Prior to delving into our proposed separation of assurance, we need to make
an important distinction between two concepts relating to medical devices. This
distinction provides a basis for our rationale for the separation of assurance
discussed in Sect. 3.

Technological Effects: When considering the technological effects of the medi-
cal device, we consider the device solely as a machine that produces deterministic
outputs given specific inputs. For example, a MRgFUS machine can be viewed
simply as a machine that delivers high-intensity ultrasound energy focused at a
certain location in space as required by its user. Similarly, a radiation therapy
machine can be viewed simply as a machine that delivers radiation energy to a
certain confined location in space as required by its user. In both examples, it
does not include how the outputs of the medical device would affect patients.

Clinical Effects: We are concerned with the use of the medical device for a
particular clinical treatment, in which patient variability leads to variability in
response to the outputs of the medical device. As such, clinical effects of the
device refer to the physiological responses of a human patient to the use of the
medical device and its operating procedures during a specific clinical treatment.
This is meant to cope specifically with the fact that different people can react
differently to the exact same treatment. In our example of the MRgFUS, the
intended clinical effects from using the device refer to how the device can be
used to produce outputs, technological effects, that result in the intended bio-
logical/physiological response for the specific treatment. This includes how the
amount, focus and duration of ultrasound waveforms produced by the machine
may affect a human patient. Operating procedures and treatment plans also
influence the clinical effects. Pre-treatment dietary changes or medication are
actions that can be taken that do not change the behaviour of the medical
device and its technological effects, but may alter how the patient’s physiology
responds to the technological effects. Thus, operating procedures, pre-treatment
and treatment plans are included in how the intended clinical effects are pro-
duced.

The actual definitions of these terms and derivative terminology are shown in
the relevant assurance cases in the following section on the proposed separation
of assurance cases.

3 Separation

We typically create a single, comprehensive AC for engineered systems in non-
medical domains. In these assurance cases, safety is considered in relation to the
overall behaviour of the system and the respective effects produced in a given
environment. This strategy has been applied to medical devices as well, and has
been effective for many of them, but is problematic for those that have to reckon

28 S. Deevy et al.

with the fact that people’s shapes and sizes vary extensively, and their bodies
can respond differently to the same clinical treatment protocol. This variability,
however, is not limited to patient physiology. It may also extend to the types
of treatments a single medical device can perform and the different regions of
the body that can be treated with that medical device. Therapeutic MRgFUS
and radiation therapy machines, as mentioned previously, are examples of how a
complex system may be used to treat a wide variety of medical conditions, over
several regions of the body. All of this makes it difficult to document a compelling
assurance argument. The argument must demonstrate that the machine works as
intended, delivers the correct outputs within a safe range and will not harm the
environment or users of the system. It must also demonstrate that it is unlikely
that any output will be delivered outside of the intended treatment location,
but if it does, it will not cause unacceptable harm to the patient. Finally, it
must show that the system will achieve the desired physiological response for a
particular patient.

While grappling with this, we realized an analogy between this situation
and the complexity inherent in very sophisticated control systems that are also
safety-critical. A number of industries have used separation of concerns to deal
with such problems. For example, many countries have mandated the separa-
tion of control and safety in nuclear power plants. This results in much simpler
safety systems that can then be built and certified to be safe, independent of
what the control system does. This separation is enforced in the system itself.
It occurred to us that for some medical systems, the separation of concerns to
control complexity could be applied to the assurance case.

Thus, instead of constructing a monolithic assurance case, we propose
splitting the argument of safety and effectiveness for certain medical devices
into two linked assurance cases: one based on the “Technological effects” as
defined in Sect. 2.2, and another based on the “Clinical effects”, also as defined
in Sect. 2.2. The former presents the argument pertaining to the safety and the
effectiveness of the medical device and the therapy-agnostic operating proce-
dures in relation to the medical device’s ability to deliver its promised behaviour
independent of any clinical context. The latter presents the argument pertaining
to the safety and the effectiveness of the medical device and therapy-specific
operating procedures/treatment plans in relation to achieving the intended bio-
logical/physiological response required to treat a particular medical indication.
Overall assurance of the medical device used for a specific therapy is obtained
by the combination of two linked ACs. The final assurance is documented in the
AC that is focused on the clinical effects. This is the AC that we have called the
“Clinical Assurance Case”. The CAC is dependent on assurance provided by the
AC that focuses on the technological effects. This is the AC that we have called
the “Technological Assurance Case”.

3.1 The Monolithic Assurance Case

To discuss this separation in more detail we consider the top level of a mono-
lithic assurance case for a MRgFUS device that provides clinical treatment for

Redesigning Medical Device Assurance 29

uterine fibroids, achieved by thermally ablating problematic tissue. This is shown
in Fig. 1, in which the top claim is shown along with its top-level GSN decom-
position. The GSN components are labelled as follows: C indicates a Claim; S
indicates a Strategy ; and X indicates conteXt. We have removed Assumptions
and Justifications in the interest of saving space. The claims with the tabs on the
top left edge are modules. The lower levels of the argument are contained within
those modules. The evidence that supports terminal claims in the argument are
visible only in the content of those modules, and are not described in this paper.

Fig. 1. Top-level of a monolithic assurance case for a MRgFUS system

We now compare this monolithic AC example with the proposed separation
of assurance cases in the following sections.

3.2 Technological Assurance Case

The top claim and top-level decomposition of the TAC is shown in Fig. 2. This
is slightly different from the monolithic version in that it disregards the clinical
application and treats the safety of the system according to its capability in deliv-
ering the technological effects, or outputs, independent of any clinical effect. The
device must be able to focus and deliver ultrasonic energy to a particular loca-
tion in space from its ultrasonic transducers within the required specifications.
Such performance-based properties of the technological effects are referred to

30 S. Deevy et al.

as technological effectiveness. The medical device must also handle safety con-
cerns that affect everyone using the system, for example, not having exposed
wiring, not having sharp edges on the chassis/housing, having power limits that
are enforced, focusing the energy at a designated location within the specified
tolerance, etc. These safety concerns are identified through hazard analyses and
deal with the intended behaviour of the system as well as how the machine inter-
faces with its environment and interacts with other medical devices. These safety
concerns are also independent of any specific clinical effects. The safety-based
properties of the technological effects are referred to as technological safety.

Fig. 2. Top-level of the TAC for a MRgFUS system

Our standard practice in structuring the argument is described in the Strat-
egy, S. This directly leads to the supporting claims shown in C1, C2 and C3. The
context component Xa defines the technological effects, or outputs, provided by
the device. In the TAC for a particular system, this would be complemented by
including references to the manufacturer’s documents that specify the system’s
outputs. Context Xb and Xc define the effectiveness and safety properties associ-
ated with the technological effects, and all three of these terms reinforce that the
effect of the outputs of the medical device on the patient is not considered within
this argument. Those safety and effectiveness concerns are to be separated out
and dealt with in the CAC. It is important to note that C1 and C2 in the TAC

Redesigning Medical Device Assurance 31

assure the original manufacture of the system as well as the maintenance plans
in place so that the system remains safe and effective over its lifetime.

3.3 Clinical Assurance Case

The second assurance case we have called the CAC and its top-level is shown in
Fig. 3. We use the same notation in the CAC as we did in the TAC.

Fig. 3. Top-level of the CAC for a MRgFUS system

As one can see, the top claim in the CAC is different from the top claim
in the TAC, since the concept and meaning of safety and effectiveness for the
CAC addresses the intended clinical effects relevant to the clinical application of
the medical device. The purpose of the MRgFUS device is to perform medical
procedures, so we must cope with therapy-applicable hazards related to using
the system to treat patients. Additionally, clinical safety also takes into account
the safety concerns addressed already in the TAC, but those are expanded within
the context of the planned clinical application. Hence, a clinical safety example
for this particular machine is when it is used to perform thermal ablation of

32 S. Deevy et al.

uterine fibroids in the body. Depending on where the fibroid tissue is, treatment
may or may not result in a hazard caused by the amount of energy deposited in
other critical biological structures within the beam path of the ultrasound wave,
since different biological structures absorb energy differently. If such hazards are
not detected and mitigated in advance, the system can potentially damage the
tissue that was not the intended target.

In practice, we can thus assure the safety of the medical system independent
of its clinical effects in a TAC, and the safety of its clinical application in an
associated CAC. The assurance cases are linked, and both are needed to pro-
vide full assurance for a particular treatment. (There is always the option of
combining multiple clinical treatments in a single CAC, or developing separate
CACs for different clinical applications.) Every CAC builds on the assurance
documented in its associated TAC.. As long as the device documented in the
TAC has the capability to perform the clinical application, the TAC. does not
have to be modified. This presents the basic idea behind the separation of the
TAC. and CAC.

We use a modified version of our standard practice in the strategy S, where
the first subclaim involves showing that abiding by the system requirements
results in a safe and effective treatment (clinical effects), where we build off of
the work that the TAC demonstrated to show that the system is clinically suf-
ficient for a given treatment. Xa, Xb, and Xc give the corresponding definitions
for clinical effects, clinical effectiveness, and clinical safety. These differ from
their corresponding definitions in the TAC in that they are now in the context
of a clinical setting, and more importantly, how the medical device is used to
achieve the intended physiological response in a patient safely and effectively.
The “operating procedures” mentioned in the top claim (C) not only include
therapy-specific usage of the medical device, but also the treatment plan(s) as
mentioned in Sect. 2.2.

Due to space limitations, rather than include additional GSN diagrams, we
now very briefly sketch the claims that support claim C1. C1.1 claims that
the required capability of the system to treat uterine fibroid ablation is known.
C1.2 claims that this required capability is provided by the system, and is
supported by referencing the TAC. C1.3 claims that appropriate treatment plans
for uterine fibroid ablation have been developed, and are compatible with the
system and its operating procedures.

We see in Fig. 3 that claims C4 and C5, that are similar to claims C2 and C3 in
the monolithic assurance case, are dealt with by reference to the associated TAC.
They do not have to be re-argued in the CAC! Clearly, the CAC is dependent
on its associated TAC in that the safety of the machine itself in delivering its
functional outputs is documented in the TAC. This implies that the outputs
of the medical system required for a clinical treatment must be documented
explicitly in the CAC, and then verified as provided by the system as documented
in the TAC. In general, the CAC may reference any items in the TAC. However,
it is crucial that there are no references from the TAC to any dependent CAC.
The diamonds below the claims C4 and C5 are GSN symbols to indicate that

Redesigning Medical Device Assurance 33

the claims are not further developed in the CAC. The required information is
documented in context nodes that support claims C4 and C5.

3.4 Maintenance and Dependencies in the TAC/CAC Combination

ACs are always related to a snapshot in time, and that time is chosen with respect
to what we want to achieve with the AC. A very common snapshot that is useful
for medical systems is when the manufacturer applies to a regulatory body for
approval to market the system. With this example in mind, we can explain how
the TAC/CAC combination is designed to work together in practice.

At this point in time, the manufacturer has iterated on the development
and manufacture of the system so that the TAC describes a technologically safe
and effective system, that can be used for the planned treatment therapy. The
system has been used in practice successfully and the CAC documents that
this is so by showing that the system is both technologically and clinically safe
and clinically effective. In order to proceed to market, the manufacturer has to
demonstrate that there are reporting and maintenance plans that should ensure
that the system remains safe and effective over the lifetime of the system. This
is one aspect of maintenance. Another aspect of maintenance is that “gaps” that
arise in the TAC and/or CAC over time will also lead to maintenance analyses
and possible changes to the system. All of this is included in the monolithic AC
shown in claim C2 in Fig. 1. It is also included in claim C2 in the TAC (Fig. 2),
and in claim C3 of the CAC (Fig. 3). The dependencies between the CAC and
TAC are shown in Fig. 4.

TAC
Assure technological
safety & technological

effectiveness of the device

CAC
Assure clinical
safety & clinical

effectiveness of the device
used in a clinical therapy

DEVICE
MAINTENANCE
Feedback from reporting &

internal maintenance reviews
is used to maintain the device

The CAC can use any entity in the TAC
in its claims & evidence

This is a single direction
connection - the TAC cannot

use entities in the CAC

The CAC documents the
existence of maintenance &
reporting plans that provide
feedback to the manufacturer

Updates to the
 device,

processes &
environment

feed into
a new version

of the TAC

Feedback from
the TAC results
in maintenance

Feedback from the
CAC results in
maintenance

Reporting

Data flow

Fig. 4. Dependencies between the TAC and CAC

In summary, the system itself may need to be updated because of mainte-
nance feedback from evidence generated in either the TAC or the CAC, or by

34 S. Deevy et al.

reporting mechanisms detailed in the CAC. Changes to the system may affect
the TAC, and may flow through into the CAC. There is clearly a dependence
of the CAC on its associated TAC. The arguments in the CAC can refer to
elements (claims/evidence/context/assumptions) in the TAC. The TAC cannot
use elements from the arguments in the CAC.

3.5 Evidence in the TAC and CAC

Traditionally, one of the most important reasons for creating an AC very early
in the development process is that it can direct us to tailor development to
produce the evidence the AC argument requires. In the case of the TAC and CAC
this guidance is especially useful since it separates what needs to be provided
about the system itself, versus what needs to be provided about clinical results.
These simple examples concerning the MRgFUS system used for uterine fibroid
ablation show the differences in the type of evidence in the two ACs. The format
for each example is:
Keywords: Required demo 1 (evidence 1). Required demo 2 (evidence 2). ...

Evidence Required by the CAC:

• Thermally ablate uterine fibroids: Successful thermal ablation of human
uterine tissue (Pre-existing literature, pre-clinical trials). Successful thermal
ablation of uterine fibroids (Clinical trials).

• Far field effects at proposed energy levels are safe: Acceptable energy
deposition in the far field in humans (software-based blockers, clinical trials).

• Therapy-specific hazards mitigated: Therapy-specific hazards identi-
fied (known hazards, therapy-specific hazard analysis). Therapy-specific haz-
ards mitigated (mitigation through system safety requirements and therapy-
specific operating procedures and treatment plan guidelines).

• Intended effectiveness: Thermal ablation of uterine fibroid achieved (pain
and fibroid size monitored in clinical trial).

• No unacceptable harm: All harm to patient is acceptable (predicted harm
in risk management acceptable, observed harm in clinical trials within pre-
dicted range and standard of care).

Evidence Required by the TAC:

• System hazards mitigated: System hazards independent of clinical effects
mitigated (safety requirements, design, standard operating procedures, resid-
ual risk analysis).

• All unit tests passed: Syntactic check all unit tests passed (unit test
report).

• Unit test coverage is sufficient: Unit test coverage meets required stan-
dards (unit test report).

• Unit tests correct: Review of unit tests determines correctness (unit test
report review).

Redesigning Medical Device Assurance 35

• Energy level and beam forming within tolerance: Requirements spec-
ify intended output and acceptable tolerances (validation of requirements).
Manufactured system complies with requirements within tolerance (verifica-
tion report).

4 Observations

When we started this work we thought it would be straightforward to define
the boundaries of the TAC and CAC. It was not. We encountered consistent
problems in this regard until we arrived at the current definitions of technological
and clinical effects, safety, and effectiveness. These definitions enabled us to
determine the rules for separating the TAC and CAC that we now use.

For example, the analysis that evaluates whether the benefits of delivering
the treatment outweigh the treatment risks for the patient, has argument com-
ponents split/shared between the TAC and CAC. These definitions helped us
determine more precisely where to document how the company should address
these concerns.

The separation of concerns had a positive side effect. The Arrayus/McSCert
team has held weekly meetings throughout this project. The discussions during
those meetings became much more focused once we separated the TAC and CAC,
as the teams were able to more accurately focus their feedback and revisions
on more concise and specific parts of the overall argument. In effect, this is
what is often seen when reasoning about or analyzing software architectures:
the decomposition into different views lends itself to more focused reasoning,
deeper understanding, and faster improvements during revision.

The separation of a and its associated has been beneficial in detailed discus-
sions on the arguments necessary to support different clinical therapies such as
for uterine fibroids and pancreatic cancer. Those discussions also helped moti-
vate and shape our approach to defining the technological and clinical properties
we need.

We have not had any reason to abandon this approach while constructing
the TAC and CAC for the use of the MRgFUS system for the treatment(s)
of interest. Particularly, as our experience with this style of decomposition for
assurance cases has increased, our effectiveness in addressing assurance questions
and concerns has, in our opinion, improved.

5 Related Work

Increasingly complex software-intensive safety-critical systems have become the
norm, introducing a multitude of challenges in the medical industry [11,12,16].
Previous work in the railway domain has leveraged the modularity of particu-
lar systems to split assurance cases across application-specific subsystems [6], in
effect using the system architecture to define views on the assurance case struc-
ture. Our method is distinct from this strategy in that we are not splitting across
the system itself, but rather, between the outputs of the system and the effects

36 S. Deevy et al.

of those respective outputs on a patient. The assurance of system-level proper-
ties, such as safety of medical devices, has likewise adopted new strategies to
address this complexity. One such strategy involves applying software architec-
tural principles to safety case development, whereby interrelated modular safety
cases may be “composed” to produce a complete safety case [9,15]. In our case,
we are not suggesting that safety, or any other system-level property, is compo-
sitional. We have arranged the TAC and CAC such that they are linked rather
than composed, recognizing that portions of a typical monolithic assurance case
are independent from the clinical effects produced by the outputs of the medical
device.

Assurance cases have also been investigated for their role in medical device
certification [21], where they may be used to improve and expedite the approval
process. The Food and Drug Administration (FDA) has conducted reviews on
assurance cases for insulin pumps [17] and has recognized guidelines for medical
device assurance cases [4], specifically in its applicability to insulin pumps. The
adoption of assurance case templates approved by regulatory bodies would pro-
mote their use in the medical industry. Currently, compliance with relevant stan-
dards [1,2] is used to evaluate the safety and readiness of a medical device to enter
the market. These standards, however, often describe development processes that
should be followed rather than describing acceptance criteria on the artefacts of
the system. A shift in focus towards this product/evidence-based approach has
been suggested, using assurance case templates as standards [19,20].

Dealing with the complexity of software-intensive medical devices and the
need for rapid and thorough certification of such systems necessitates the reuse
of proven assurance where possible. In assurance cases, reuse has been investi-
gated in the form of assurance case patterns [22] and their extension in the form
of assurance case templates [19,20]. One framework for assurance case patterns
involves independent co-assurance [14], where at least two system-level proper-
ties are both assured in parallel, including the influence each property may have
on other properties. This approach has been used to co-assure system safety and
security properties in infusion pumps [14], collaborative industrial robot appli-
cations [10], and in the automotive industry [18]; the ideas are also motivating
novel schemes for assurance case structuring in Industry 4.0 [13].

The FDA has also published guidance for medical devices [5], where they
indicate that validation involving the outputs of the medical device are different
from the validation of the clinical outcomes of using the medical device. This
distinction is central to our proposed separation of assurance, that was designed
in a manner that would focus on the issues specifically associated with medical
device assurance.

6 Conclusion

Monolithic assurance cases for medical devices typically mix technological factors
with clinical factors. The resulting assurance case quickly becomes unwieldy,
especially when new clinical therapies are added to an existing assurance case.

Redesigning Medical Device Assurance 37

We have shown that separation of concerns can be used in assurance cases
to reduce the complexity of demonstrating safety and effectiveness for software-
intensive medical systems, such as the MRgFUS. By separating the demonstra-
tion of system safety in producing the intended deterministic machine output
independent of clinical safety, we believe we can significantly reduce the overall
complexity of the safety assurance argument.

It is common to find that a particular medical device is used for different
clinical procedures as is the case for the MRgFUS that is capable of offering
treatment for several medical conditions. This is similar to the design of product
lines. If we can assure the technological safety and effectiveness of the device
independent of its clinical effects, this raises the possibility that a single TAC
could be used. The TAC can be linked with multiple CACs, to assure the safety
and effectiveness of the device used in multiple clinical treatments.

The TAC and CAC can be developed and maintained separately. To reap the
full benefit of this approach we must ensure that the TAC is not dependent on
the claims and argument in the CAC. However, the CAC will be dependent on
many entities in its associated TAC.

We already noted that an assurance case represents an argument for the
properties of interest at a snapshot in time. We also believe that the assurance
case(s) should be developed as early as possible, should guide development and
be updated as development proceeds. The separation between TAC and CAC
can provide extremely useful guidance on what evidence has to be produced to
provide a solid foundation for the different arguments.

References

1. Medical Devices - Application of Risk Management to Medical Devices (ISO
14971:2019). Standard, International Organization for Standardization, Geneva,
CH, December 2019

2. Medical Device Software - Software Life Cycle Processes (IEC 62304:2006). Stan-
dard, International Electrotechnical Commission, Geneva, CH, May 2006

3. GSN Community Standard (Version 1). Standard, Origin Consulting (York) Lim-
ited, York, GB, November 2011

4. Medical Device Safety Assurance Case Guidance (AAMI TIR38:2019). Standard,
Association for the Advancement of Medical Instrumentation, Arlington, VA, USA,
January 2019

5. Design control guidance for medical device manufacturers: Guidance document.
Food and Drug Administration, Silver Spring, MD, USA, March 1997

6. Althammer, E., Schoitsch, E., Sonneck, G., Eriksson, H., Vinter, J.: Modular certi-
fication support - the DECOS concept of generic safety cases. In: 6th IEEE Inter-
national Conference on Industrial Informatics, pp. 258–263, August 2008

7. Bloomfield, R., Bishop, P.: Safety and assurance cases: past, present and possible
future - an Adelard perspective. In: Dale, C., Anderson, T. (eds.) Making Systems
Safer, SSS 2010, pp. 51–67. Springer, London (2010). https://doi.org/10.1007/978-
1-84996-086-1 4

8. Bradley, W.G., Jr.: MR-guided focused ultrasound: a potentially disruptive tech-
nology. J. Am. Coll. Radiol. 6(7), 510–513 (2009)

https://doi.org/10.1007/978-1-84996-086-1_4
https://doi.org/10.1007/978-1-84996-086-1_4

38 S. Deevy et al.

9. Despotou, G., Kelly, T.: Investigating the use of argument modularity to optimise
through-life system safety assurance. In: Proceedings of the 3rd IET International
Conference on System Safety, November 2008

10. Gleirscher, M., Johnson, N., Karachristou, P., Calinescu, R., Law, J., Clark, J.:
Challenges in the safety-security co-assurance of collaborative industrial robots. In:
Aldinhas Ferreira, M.I., Fletcher, S.R. (eds.) The 21st Century Industrial Robot:
When Tools Become Collaborators. ISCASE, vol. 81, pp. 191–214. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-78513-0 11

11. Gordon, W.J., Stern, A.D.: Challenges and opportunities in software-driven med-
ical devices. Nat. Biomed. Eng. 3(7), 493–497 (2019)

12. Hatcliff, J., Wassyng, A., Kelly, T., Comar, C., Jones, P.: Certifiably safe software-
dependent systems: challenges and directions. In: Future of Software Engineering
Proceedings. FOSE 2014, pp. 182–200. Association for Computing Machinery, New
York, NY, USA, May 2014

13. Jaradat, O., Sljivo, I., Hawkins, R., Habli, I.: Modular safety cases for the assurance
of industry 4.0. In: Proceedings of Safety-Critical Systems Symposium, pp. 105–124
(2020)

14. Johnson, N., Kelly, T.: Devil’s in the detail: through-life safety and security co-
assurance using SSAF. In: Romanovsky, A., Troubitsyna, E., Bitsch, F. (eds.)
SAFECOMP 2019. LNCS, vol. 11698, pp. 299–314. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26601-1 21

15. Kelly, T.: Using software architecture techniques to support the modular certifi-
cation of safety-critical systems. In: Proceedings of the 11th Australian Workshop
on Safety Critical Systems and Software. SCS 2006, vol. 69, pp. 53–65. Australian
Computer Society Inc, Sydney, AU, May 2007

16. Lee, I., et al.: High-confidence medical device software and systems. Computer
39(4), 33–38 (2006)

17. McGowan, R., Stevens, A., Chapman, R.: Food and drug administration review of
safety assurance cases for medical devices. J. Clin. Eng. 39(2), 96–98 (2014)

18. Warg, F., Skoglund, M.: Argument patterns for multi-concern assurance of con-
nected automated driving systems. In: Asplund, M., Paulitsch, M. (eds.) 4th Inter-
national Workshop on Security and Dependability of Critical Embedded Real-Time
Systems (CERTS 2019). OpenAccess Series in Informatics (OASIcs), vol. 73, pp.
3:1–3:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
July 2019

19. Wassyng, A., Joannou, P., Lawford, M., Maibaum, T., Singh, N.K.: New standards
for trustworthy cyber-physical systems. In: Trustworthy Cyber-Physical Systems
Engineering, pp. 337–368 (2016)

20. Wassyng, A., et al.: Can product-specific assurance case templates be used as
medical device standards? IEEE Des. Test 32(5), 45–55 (2015)

21. Weinstock, C., Goodenough, J.: Towards an assurance case practice for medical
devices. Technical report CMU/SEI-2009-TN-018, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, USA, October 2009

22. Yamamoto, S., Matsuno, Y.: An evaluation of argument patterns to reduce pitfalls
of applying assurance case. In: 2013 1st International Workshop on Assurance
Cases for Software-Intensive Systems (ASSURE), pp. 12–17. IEEE, May 2013

https://doi.org/10.1007/978-3-030-78513-0_11
https://doi.org/10.1007/978-3-030-26601-1_21

Software Testing and Reliability

A Cognitive Framework for Modeling
Coincident Software Faults: An Experimental

Study

Bo Zhao2, You Song2, Wenhao Xu2, and Fuqun Huang1(B)

1 Department of Computer Science, Western Washington University, Bellingham, WA 98225,
USA

huangf2@wwu.edu
2 School of Software, Beihang University, Beijing 100191, China
{Sy2021122,songyou,xuwenhao}@buaa.edu.cn

Abstract. The question of when different programmers tend to commit the same
errors is a critical issue for achieving fault diversity in fault tolerance. This problem
is interdisciplinary and related to theories of human error in cognitive psychol-
ogy. This paper proposes a psychological framework that combines Rasmussen’s
performance levels with cross-level errors, represented by post-completion error,
to model situations in which different programmers are prone to making the same
errors. To validate the framework, we conducted an experiment where 200 stu-
dent programmers independently solved the same problem, with the same tool
and language. The results indicate that programmers unlikely commit the same
errors in skill-based performances, most likely make the same errors in rule-based
performances. These findings suggest that natural independent development may
be less effective in preventing common errors in functions involving rule-based
performance and post-completion scenarios, whereas it could be effective in pre-
venting common errors in skill-based and knowledge-based performances. The
results provided new insights into the strategies for avoiding coincident faults in
N-version programming, from a human factor perspective.

Keywords: Software Reliability · Fault Tolerance · Coincident fault · Software
Diversity · Cognitive Model

1 Introduction

Fault tolerance is critical for ensuring operational reliability, where a safety-critical
software system remains functional even in the presence of residual faults. N-version
programming, as one of the two primary approaches for achieving fault tolerance, is
especially effective in tolerating design faults [1]. N-version programming [2, 3] is a
software development practice in which multiple programmers independently create
multiple versions of a program based on the same requirements. It has been widely
adopted as a strategy to achieve fault tolerance and improve reliability in safety-critical
software systems [1]. Recently, N-version programming utilized to enhance the fault
tolerance of deep neural network systems [4] and improve the security of cloud systems
[5].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 41–54, 2023.
https://doi.org/10.1007/978-3-031-40923-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_4&domain=pdf
https://doi.org/10.1007/978-3-031-40923-3_4

42 B. Zhao et al.

Multiple strategies have been proposed and studied in N-version programming, such
as “natural” independent development, where different programmers develop versions
according to the same requirements without communicating to each other [6, 7], using
different languages [8], different algorithms [9], and requirements written in different
ways [10].

An interesting phenomenon has been consistently observed: programmers make the
same mistakes, even though the “external factors” (languages, tools, processes, etc.)
are different. For example, Eckhardt and Lee [6] demonstrated that truly independently
developed versions can fail dependently. In Knight and Leveson’s experiment [7], it was
found that about half of the total faults were coincident faults when the programmers
worked in isolation and developed programs independently. Avižienis, Lyu, and Schütz
[8] found that identical faults were introduced despite the use of different programming
languages. Similarly, Meulen and Revilla’s experiment [11] on a large population of
programs indicated that the benefit of language diversity was low. In Feldt’s experiment
[9], genetic programming was used to force algorithms to differ in various versions, and
the test cases that caused versions to fail with high probabilities were located in specific
areas. These studies suggest that in certain circumstances, programmers tend to make
identical errors, although the underlying cognitive mechanisms are not well understood.

Programming involves significant cognitive activities on the part of programmers,
and understanding the cognitive mechanisms behind how different programmers with
similar backgrounds and using the same language and tool tend to make the same error
is crucial to preventing coincident faults. To the best of our knowledge, there is no
cognitive framework for modeling the likelihood of coincident faults that focuses on the
contribution of the diversity of individual programmers in N-version programming.

This paper proposes a cognitive framework, the Cognitive Framework for
Coincident Faults (CognFCF), for modeling the likelihood of different programmers
introducing the same faults. We evaluated the framework through an experiment involv-
ing 200 student programmers with similar backgrounds. They independently developed
program versions using using the same tool and language. Based on our findings, we
derive an integrated framework for avoiding coincident faults from a human factors
perspective.

2 The Cognitive Framework for Modeling Coincident Faults

2.1 Terminologies

Fault: An incorrect or missing step, process, or data definition in a computer program.
Error: An erroneous human behavior that leads to a software fault [12].
Occurrences (OC) of a fault: The number of programmers in an N-version

programming study who introduced that fault.
The Prevalence of Occurrence (POC) of a fault: The percentage of programmers

who introduced the fault i, defined as:

POCi = OCi/P (1)

where P is the total number of programmers who submitted code for the task. POC
describes how common a fault is, that is, how likely it is to be introduced by different

A Cognitive Framework for Modeling Coincident Software Faults 43

programmers. POC in an experiment is an estimator for the probability of the fault
being inserted by a randomly chosen programmer from the population sampled for the
experiment. For an N-version programming experiment in which P is the same for each
fault, comparing the Occurrences of faults is equivalent to comparing the POCs of faults.

Coincident Fault: A fault whose Occurrences is two or more in N-version
programming, i.e., that was introduced by at least two programmers.

2.2 The Cognitive Framework for Coincident Faults

The proposed cognitive framework for coincident faults (CognFCF) includes four cog-
nitive error levels, based on Rasmussen’s performance framework [13] and Byrne and
Bovair’s Post-Completion Error [14].

There have been many cognition and human error models used in diverse contexts,
for instances, Palanque et al. [15] proposed a taxonomy that covers fault categories
inducing operator (e.g. aircraft pilots) errors, Mohanani et al. [16] summarized a set
of “cognitive biases” in software engineering, Huang et al. proposed human error tax-
onomies for defect root cause analysis [17] and defect early forecasting [18]. These
different taxonomies are proposed for specific application contexts that differ from that
of this paper, or many of them (e.g. in [16] and [17]) can be traced back to human
error modes in classic psychological works, i.e. Reason’s human error taxonomy [12].
As the first cognitive framework for modelling coincident defect, we prefer a classic
fundamental psychological model that has been widely accepted by psychologists and
applied in diverse contexts, while has an appropriate level of granularity that is possible
for application by practitioners who seek software fault diversity.

Rasmussen’s Performance Framework
Rasmussen’s performance framework has been widely accepted as a fundamental the-
ory in psychology [12]. For instance, J. Reason, one of the most well-acknowledged
psychologists in the field of human errors, uses Rasmussen’s framework to integrate
various human error modes discovered by many psychologists [12]. Rasmussen’s per-
formance framework [13] classifies cognitive activities into three levels: skill-based, rule-
based and knowledge-based level. Different performance levels have different cognitive
characteristics, and are associated with different error modes [12].

Skill-based (SB) performance follows from the statement of an intention, “rolls
along” automatically without conscious control. Skill-based activities in programming
include typing a text string, compiling a programbypressing a button in the programming
environment.

Skill-based errors are the human errors occurring in skill-based performances.
Examples of skill-based errors in the psychology domain include such as perceptual
confusions, e.g. taking an object that looks like another. In software development, typos
and entering a wrong letter which looks similar to the correct one (e.g. taking 0 for o)
are typical examples of skill-based errors [18].

Rule-based (RB) performance is applicable for tackling familiar problems. It is
typically controlled by stored rules that have been derived from a person’s experiences.
The mind matches the situation at hand to the preconditions for such stored rules, allow-
ing quick selection of actions. In programming, there aremany rule-based performances,

44 B. Zhao et al.

such as printing of a string line, and defining a variable in one’s familiar programming
language.

Rule-based errors are the errors occurring in rule-based performances. A typical
rule-based error is “strong-but-now-wrong” error: one tends to use a rule that has been
frequently used, but not necessarily matches well with the current situation [12].

Knowledge-based (KB) performance comes into play when individuals face novel
situations, and no rules are available from previous experiences. At this level, actions
must be planned using an analytical process. Errors at this level can arise from resource
limitations and incomplete or incorrect knowledge. In programming, cognitive perfor-
mances such as constructing themental model of the system to understand a specific pro-
gramming task and attempting to figure out a solution for a novel problem are considered
knowledge-based performances.

Knowledge-based errors are human errors that occur in knowledge-based perfor-
mances. Typical knowledge-based errors include “problemswith complexity”, and “con-
firmation bias”–the tendency of people to seek evidence that verifies their hypotheses
rather than refuting them [12].

Cross-Level Errors
Additionally, we introduce Cross-level Errors to include the scenarios that may involve a
combination of multiple levels of performances, though the three levels of performances
are considered orthogonal.

A representative Cross-level errors is the Post-Completion Error (PCE) proposed
byByrne andBovair [14]. Post-completion error refers to the tendency of people to forget
a sub-goal in a specific situation. This occurs when there is an ultimate goal composed
of several sub-goals, a sub-goal is to be carried out at the end of the task, and it is not
a necessary condition for achieving the main sub-goal. Forgetting to attach a file when
sending an email is a typical PCE in daily life.

Post-Completion Error was initially thought to be an error at the skill-based level
[14]. However, recent studies found that it is an error that can occur at all of the three
performance levels. For instances, Li et al. [19] conducted an experiment in the field of
Human-Computer Interface, in which the participants were asked to solve river-crossing
math problems and send the transport vessel back to the other side of the river as the
last step of the solutions. The experiment showed that PCE can also occur in problem-
solving tasks, i.e. math problems. Huang [20] conducted a controlled experiment on
PCE in software development. The experiment showed that software developers are
statistically prone to forgetting a requirement and/or design when the PCE scenario
presents.

In summary, CognFCF includes four levels of cognitive errors: skill-based errors,
rule-based errors, knowledge-based errors, and post-completion errors. These four levels
of cognitive errors originate from four levels of cognitive performances shown in Fig. 1:
skill-based, rule-based, knowledge-based, and cross-level performances, respectively.
It is worth noting that post-completion errors are conceptually a subset of cross-level
errors, and theoretically, there may be more cross-level error modes yet to be discovered
by us and psychologists. Since our study only found post-completion errors at cross-level
performances, we use post-completion errors specifically in the following sections.

A Cognitive Framework for Modeling Coincident Software Faults 45

Fig. 1. The Cognitive Framework for Coincident Faults

3 Research Questions and Hypotheses

The aim of this study is to investigate whether the likelihoods of different programmers
introducing the same faults differ across the four cognitive levels. The following research
questions and hypotheses are proposed.

Research Question (RQ) 1: Do the likelihoods of a fault being a coincident fault differ
across various cognitive levels? RQ1 addresses the overall trend of whether CognFCF
has successfully captured the cognitive features that underlie coincident faults. RQ1 is
answered by testing H1:

H1: The likelihoods of a fault being coincident are equal across the Skill-based,
Rule-based, Knowledge-based, and Post-completion levels.

Research Question (RQ) 2: Do the Occurrences of coincident faults at skill-based,
rule-based, knowledge-based, and post-completion errors differ?

The likelihood of different programmers introducing the same fault is measured by
Occurrences (OC)–the number of programmerswho introduced that fault in anN-version
programming study. RQ2 is further divided into six sub-questions, corresponding to six
hypotheses:

H2.1: The OC of skill-based faults is equivalent to that of rule-based faults.
H2.2: The OC of skill-based faults is equivalent to that of knowledge-based faults.
H2.3: The OC of skill-based faults is equivalent to that of post-completion faults.
H2.4: The OC of rule-based faults is equivalent to that of knowledge-based faults.
H2.5: The OC of rule-based faults is equivalent to that of post-completion faults.
H2.6: The OC of knowledge-based faults is equivalent to that of post-completion

faults.

4 The Experimental Study

To test our hypotheses, we conducted an experiment in which we recruited 200 partici-
pants with similar backgrounds. They independently solve the same problem using the
same language (C language) and tool (an Online Judge platform). It is worth noting that
our experimental setting is not typical of N-version programming in industry, where pro-
grammers may use different languages and/or tools to develop versions and may or may

46 B. Zhao et al.

not communicate with each other. Since we focus on how natural cognitive differences
between individual programmers can contribute to fault diversity, we preferred to set
the external factors (language, tool, training programs, etc.) to be the same to minimize
threats to internal validity.

4.1 The Programming Task

The programming problem we designed is called Super Bubble Sort. The requirements
of the task are described in Fig. 2.

Fig. 2. The requirements specification of the task

4.2 The Participants

Our study involved 200 undergraduate Computer Science students fromBeihangUniver-
sitywho had completed the C Programming course. All participants signed an agreement
to allow us to use their anonymized source code for scientific research, in accordance
with the ethical guidelines of the university.

A Cognitive Framework for Modeling Coincident Software Faults 47

4.3 Data Collection

We included the Bubble Sort problem as one of the eight programming problems in
a 90-min programming exam. The students were encouraged to choose the problems
they felt most confident in solving and to correctly solve as many as possible. They
were ranked based on the number of problems they correctly solved, and their rank was
then transformed into credits, e.g., with the top 10% of participants receiving an A. A
total of 1033 students participated the exam, while we randomly selected the programs
submitted by 200 students who solved the Bubble Sort Problem. There was no specific
time limit for each problem, but we analyzed the submission logs and found that the
200 participants spent an average of 28 min (Min = 9, Max = 62, Standard Deviation
(SD) = 23.6) on the Bubble Sort Problem. The programming tasks were completed in
C language only.

In addition to theDevC++ installed in all the computers used by the participants, an
Online Judge (OJ) systemwas used to submit their program versions. The OJ system is a
reliable online system that supports multiple programmers working on the same problem
concurrently and provides feedback to the programmers when they submit a version.
This system has been used for over 10 years in programming education and contests at
Beihang University. The feedback from the OJ system included the following six types:

Accepted (AC): The output of the program is the same as the standard answer, which
means the program is correct.

Wrong Answer (WA): The output of the program is incorrect.
RuntimeFailure (RF): The programperforms an illegal operation, resulting in failure.

Division by zero and out-of-bounds are examples of run-time failures.
Compilation Problem (CP): Source code fails during compiling.
Presentation Problem (PP): The data output by the program is correct, but the format

does not conform to the requirements.
Time Limit Exceeded (TLE): The program runs for longer than the maximum time

allowed by the online judge system.
The feedback types were obtained by running a total of ten groups of test cases.

These test cases included tests that included normal and exceptional situations. The OJ
system judged whether a program version passed each of these ten groups of test cases.
Only programs that passed all test cases were accepted by the system. The complete set
of test cases can be accessed at https://github.com/CognFCF/data/tree/main/testcases.

4.4 Data Analysis

Out of the 200 students, 154 students successfully solved the Super Bubble Sort problem,
and their final code was judged to be “accepted” by the Online Judge system. Twenty-
nine students didn’t introduce any faults, while 171 students introduced one or more
faults. The 200 participants submitted a total of 706 versions, since each participant
could submit more than one version. The first versions submitted by all participants
had an average of 39 lines of code (LOC) (Min = 18, Max = 71, SD = 9), and their
Cyclomatic Complexity was an average of 9 (Min = 4, Max = 14, SD = 1.7).

Since a participant could revise his/her program based on feedback from the OJ
system, for each participant, we have a series of versions showing the history of how
he/she introduced and fixed faults.

https://github.com/CognFCF/data/tree/main/testcases

48 B. Zhao et al.

We then analyzed the collected programs in two steps. The first step was code inspec-
tion to identify all the faults introduced by the participants. The identified faults were
then integrated, and for each fault, we counted the number of participants who intro-
duced that fault -- occurrences. The second step was to perform cognitive error cause
analysis by classifying each fault with a cognitive error level.

Code Inspection. The first and third authors of the paper performed code inspec-
tions on the 706 versions of programs (submitted by the 200 participants, accessible
through: https://github.com/CognFCF/data/tree/main/sourcecode), each inspected 100
participants’ programs. Some participants submitted more than one version as they
debugged and improved their programs if a submission was not “accepted” by the OJ.

The code inspections were performed in the following procedures: First, the code
inspectors checked all versions of the code and recorded the faults in each version of
their code. Then, for each fault, the number of participants who submitted the fault was
counted. In caseswhere a fault appeared inmultiple versions submitted by a programmer,
the fault counted only once towards the metric “Occurrences”.

The fault list was then integrated, discussed and consensus reached between the two
inspectors, and finally summarized. Due to page limits, we only include a sample of the
faults in this paper, shown in the first three columns of. The full set of faults is openly
available here: https://github.com/CognFCF/data/tree/main/faultlist. In total, the code
inspectors identified 70 faults, of which 31 were coincident faults.

Classifying Cognitive Error Levels. In this study, classifying the cognitive levels of
faults was a crucial step. To minimize researcher bias, two professors who were knowl-
edgeable in C programming and independent of the study performed the classification.
It is worth noting that employing two raters for classification or coding is a common
practice in social and psychological studies [21]. The classification process proceeded
as follows:

First, the first author presented skill-based, rule-based and knowledge-based perfor-
mances, as well as post-completion errors described in Sect. 2.2, to the professors. Next,
the first author explained the programming task and each fault in the fault list (with a
sample shown in) and ensured that both professors comprehended the materials thor-
oughly. Afterwards, the professors independently assigned a cognitive level category to
each of the faults (Table 1).

We compared their classifications and discovered that 10 defects out of 70 were
assigned different cognitive levels. The initial interrater reliability was calculated using
byCohen’s kappa coefficient [21],whichwas 0.80, indicating substantial agreement [21].
Finally, the professors discussed the inconsistent classifications until a perfect agreement
was reached, resulting in a final interrater reliability of 1.00. The final classification
results are presented in the 4th column of.

https://github.com/CognFCF/data/tree/main/sourcecode://github.com/CognFCF/data/tree/main/sourcecode
https://github.com/CognFCF/data/tree/main/faultlist

A Cognitive Framework for Modeling Coincident Software Faults 49

Table 1. A sample of the experiment data

Fault ID Fault Description OC CL OJ

2 Data overflow 122 RB WA

4 The variable is not defined before it is used 3 RB WA

7 Mistook the “%d\n” for “\n%d” 1 SB PP

19 Ignored the rule that the smaller number comes first when the
distances are equal

66 PCE WA

34 In the Bubble Sort algorithm, only the adjacent elements of the
array holding the value (e.g. value[i] and value [i-1]) are
exchanged, whereas the adjacent elements of the distance array are
not exchanged (should be exchanged)

15 KB WA

61 “ = =” is written as “ =” by mistake 11 RB CP

62 A statement is followed by an extra ‘2’ 1 SB CP

64 A “}” is missing 5 PCE CP

OC: Occurrences; CL: Cognitive Level; OJ: Online Judging feedback; SB: Skill-based error; RB:
Rule-based error; KB: Knowledge-based error; PCE: Post-Completion Error.

5 The Results Analysis

We conducted Pearson’s chi-squared test on H1. The chi-square test is an appropriate
statistical method for determining whether there is a significant difference between
expected frequencies and observed frequencies in one or more categories of the
contingency table, as shown in Table 2.

Table 2. The contingency table for Chi-square test

Cognitive levels Whether coincident Total

Non-coincident Coincident

Skill-based error 16 0 16

Rule-based error 10 18 28

Knowledge-based error 13 9 22

Post-completion Errors 0 4 4

Total 39 31 70

The largest category of faults is rule-based, constituting 40% (28/70) of all faults, of
which 64% (18/28) are coincident faults. Knowledge-based faults account for 31.4% of
all faults, of which 41% are coincident faults. Post-completion errors cause fewest faults
(4) but all of them are coincident faults. Skill-based faults make up 23% of all faults, but
there are no coincident fault (0%) at this level.

50 B. Zhao et al.

H1: The likelihoods of a fault being coincident are equal across the Skill-based,
Rule-based, Knowledge-based, and Post-completion levels. H1 is rejected based on
the results of the chi-square test on the data of the Bubble Sort Problem, χ2 (df = 3, N
= 70)= 22.39, p= 0.000. The test shows that the likelihoods of a fault being coincident
fault are significantly different at various cognitive levels.

Finding A: The proposed CognFCF has overall captured the cognitive factors
underlying fault diversity, as the likelihoods of a fault being coincident at various
cognitive levels in CognFCF are statistically significant different.

Next, we analyzed the differences in fault occurrences across cognitive levels by
testing hypotheses H2.1–2.6. We employed Mann-Whitney test, a nonparametric test
used to examine whether the means of two populations differ significantly. Since each
participant’s fault only counts once, our fault samples are independent. The Mann-
Whitney test is appropriate when the samples are independent and the populations are
not normally distributed. We conducted the tests using SPSS Statistics 26. The statistics
for fault occurrences at each cognitive level are presented in Table 3.

Table 3. The Statistics for the occurrences of faults at each cognitive error level

Cognitive Level N Mean Std. Deviation Min Max

Skill-based 16 1.00 0.00 1 1

Rule-based 28 7.75 22.96 1 122

Knowledge-based 22 2.82 3.80 1 15

Post-completion error 4 19.00 31.36 2 66

Total 70 5.30 16.52 1 122

H2.1: TheOccurrences (OCs) of skill-based faults are equivalent to that of rule-
based faults.H2.1 is rejected based on the data of the Bubble Sort Problem (U= 368.00,
N = 44, p = 0.000). The Occurrences of faults at the rule-based level are significantly
higher than that at skill-based level (p ≤ 0.01).

H2.2: The OCs of skill-based faults are equivalent to that of knowledge-based
faults. H2.2 is rejected based on the data of the Bubble Sort Problem (U = 248.00, N =
38, p = 0.004). The occurrences of a fault at the knowledge-based level are significantly
higher than that at the skill-based level (p ≤ 0.01).

H2.3: The OCs of skill-based faults are equivalent to that of post-completion
faults. H2.3 is rejected based on the data of the Bubble Sort Problem (U = 64.00, N =
20, p = 0.000). The occurrences of a post-completion fault are significantly higher than
that at the skill-based level (p ≤ 0.01).

A Cognitive Framework for Modeling Coincident Software Faults 51

Finding B: The occurrences of skill-based faults are significantly lower than that
of faults at any other cognitive levels. We identified a total of 16 faults at skill-
based performances in our experiment; all of them were unique faults (Occur-
rence=1).

The psychological explanation for Finding B is that skill-based errors are caused
by attention and random situational factors, such as interruption. Typical skill-based
performances in programming include typing and running a programby clicking a button
in a programming environment that one is very familiar with. InN-version programming,
where different programmers independently produce various versions of programs, they
are unlikely to be interrupted at the same time or make the same typing errors.

H2.4: The OCs of rule-based faults are equivalent to that of knowledge-based
faults. H2.4 is retained based on the data of the Bubble Sort Problem (U = 237.50, N =
50, p = 0.145). The occurrences of rule-based faults are not significantly different from
that of knowledge-based faults.

H2.5: The OCs of rule-based faults are equivalent to that of post-completion
faults. H2.5 is retained based on the data of the Bubble Sort Problem (U = 81.50, N =
32, p = 0.137). The occurrences of rule-based level faults are not significantly different
from that of post-completion faults.

Rule-based coincident faults constitute 26% (18/70) of all the faults, ranking 1st

among various categories in the contingency table, shown in Table 2. Combining theChi-
square test results (H1), we can see that, the risk of different programmers committing
the same error on a function point corresponding to rule-based performances is highest.
This suggests that software practitioners should pay special attention to those function
points corresponding to rule-based performances.

Finding C: The occurrences of rule-based faults are not significant different
from that of knowledge-based and post-completion faults, however, program-
mers are most likely to introduce coincident faults in rule-based performances.

H2.6: The OCs of knowledge-based faults are equivalent to that of post-
completion faults. H2.6 is rejected based on the data of the Bubble Sort Problem (U =
73.00, N = 22, p = 0.027). The occurrences of a fault due to post-completion error are
significantly higher than that at the knowledge-based level (p < 0.05).

Post-completion faults are an interesting categorywith a low probability of occurring
(6%), but once a post-completion fault occurs, it is most likely to be repeatedly intro-
duced by another programmer: 100% of the post-completion faults are coincident faults.
Statistical tests also show that the occurrences of post-completion faults are significantly
higher than that of faults at skill-based level (H2.3) and knowledge-based level (H2.6).

52 B. Zhao et al.

Finding D: Once a post-completion fault is introduced by a programmer, it is
most likely to be repeated by another programmer (the conditional probability is
the highest).

6 Discussions

6.1 Implications for Avoiding Coincident Faults in N-version Programming

The results and insights gained from this experimental study provide a guideline for
practitioners on how to select various diversity-seeking strategies while reducing costs.
Previous experimental or empirical studies have focused on single strategies such as
independent development [7], use of different programming languages [8], and different
algorithms [9], all of which have been shown to improve fault diversity but still resulted
in coincident faults. An intuitive strategy is to combine multiple approaches, which
was supported by empirical evidence in [22] that combining language diversity and
program structural diversity can improve reliability. However, implementing multiple
“forced diversity” strategies on every function of the requirement can be prohibitively
expensive.

The results of this study suggestwhich parts of the requirements need forced diversity
and which do not. Practitioners can first classify the functions in the requirements into
three performance levels, and then, assess which parts need forced diversity, and which
parts do not need “forced diversity” at all.

For skill-based performances, coincident errors (such as typos and using program-
ming tools) are almost not a concern, so the cost of forcing programmers to use different
programming tools can be saved. Independent development should be highly effective
in preventing coincident faults in skill-based performances.

For knowledge-based performances, natural independent development is recom-
mended, and no extra strategies are implied for seeking fault diversity.

For rule-based performances, forced diversity is recommended, and using different
programming languages could be especially effective since it constitutes a large propor-
tion of rule-based performances. A new strategy derived from this study is to assign two
programmers at different expertise levels, e.g., one at the rule-based level and the other
at the knowledge-based level, if such a pair of programmers available.

Another new strategy gained from this study is for post-completion faults. Once a
post-completion scenario is presented in the requirements or design, it is highly likely to
introduce coincident faults, furthermore, which are difficult to prevent using independent
development alone. Extra cognitive strategies such as highlighting the last step of the
task or changing the steps of the process [18] can be used to prevent coincident faults
due to post-completion errors.

6.2 Limitations and Future Studies

Two limitations exist concerning the extent to which the findings can be generalized.
The experimental study is limited to one single task, i.e. the super bubble sort problem.

A Cognitive Framework for Modeling Coincident Software Faults 53

While the use of a single task has covered all cognitive levels for the participants, it may
limit the generalizability of our findings to other tasks that software developers engage
in, such as refactoring, augmentative and corrective maintenance. The second limitation
is that the participants in this study were undergraduate students.

In the future, we plan to empirically evaluate the derived strategies for avoiding
coincident faults on more programming tasks with experienced programmers. Another
interesting study would be to formally model the prevalence of errors, the relationships
between different types of errors and faults, and faults and failures. This will enable us to
incorporate the proposed cognitive framework into fault diversity modeling for pursuing
fault tolerance of software systems.

7 Conclusion

In this paper, we have presented a cognitive framework for modeling coincident faults
from a human factors perspective. Our experimental study involved 200 student pro-
grammers with similar training backgrounds who were asked to solve a Super Bubble
Sort problem using the same language and tool. Our study provides insights into the con-
tribution of individual diversity of programmers to fault diversity, i.e., the likelihood of
different types of cognitive activities in programming introducing the same faults, while
the external factors (i.e. language, tool and training backgrounds) are the same. Our
results show that skill-based performances are unlikely to introduce coincident faults, and
independent development is recommended for knowledge-based performances. Forced
diversity and a new programmer task assigning strategy are recommended for preventing
rule-based coincident faults. We also proposed a new cognitive strategy to avoid post-
completion errors, which are prevalent and was proposed to avoid such errors. These
findings enable us to derive an integrated framework for avoiding coincident faults that
suggests which proportions of requirements should employ different diversity seeking
strategies. This framework has the potential to reduce costs compared to full-scoped
forced diversity while still achieving the same degree of fault tolerance in critical soft-
ware systems. Future research can further evaluation this framework on more diverse
tasks in industrial settings.

References

1. Lyu, M.R.: Handbook of Software Reliability Engineering. IEEE Computer Society Press,
California (1996)

2. Littlewood, B., Popov, P., Strigini, L.: Modeling software design diversity: a review. ACM
Comput. Surv. 33, 177–208 (2001)

3. Lyu, M.R., Chen, J.-H., Avizienis, A.: Experience in metrics and measurements for N-version
programming. Int. J. Reliab. Qual. Saf. Eng. 1, 41–62 (1994)

4. Xu, H., Chen, Z., Wu, W., Jin, Z., Kuo, S.-y., Lyu, M.: NV-DNN: towards fault-tolerant DNN
systems with N-version programming. In: 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), pp. 44–47. IEEE (2019)

5. Levitin, G., Xing, L., Xiang, Y.: Optimal early warning defense of N-version programming
service against co-resident attacks in cloud system. Reliab. Eng. Syst. Saf. 201, 106969 (2020)

54 B. Zhao et al.

6. Eckhardt, D.E., et al.: An experimental evaluation of software redundancy as a strategy for
improving reliability. IEEE Trans. Software Eng. 17(7), 692–702 (1991). https://doi.org/10.
1109/32.83905

7. John, C.K., Leveson, N.G.: An experimental evaluation of the assumption of independence
in multi-version programming. IEEE Trans. Software Eng. 12, 96–109 (1986)

8. Avzenis, A., Lyu, M.R., Schutz, W.: In search of effective diversity: a six-language study of
fault-tolerant flight control software. In: Proceedings of the 18th International Symposium
on Fault-Tolerant Computing, pp. 15–22. (1988)

9. Feldt, R.: Generating diverse software versions with genetic programming: an experimental
study. IEE Proc., Softw. 145, 228–236 (1998)

10. Yoo, C.S., Seong, P.H.: Experimental analysis of specification language diversity impact on
NPP software diversity. J. Syst. Softw. 62, 111–122 (2002)

11. Meine, J.P., van der Meulen, M.A.R.: Correlations between internal software metrics and
software dependability in a large population of small C/C++ programs. In: 18th IEEE Inter-
national Symposium on Software Reliability Engineering, pp. 203–208. IEEE Computer
Society (2007)

12. Reason, J.: Human Error. Cambridge University Press, Cambridge, UK (1990)
13. Rasmussen, J.: Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions

in human performance models. IEEE Trans. Syst. Man Cybern. 13, 257–266 (1983)
14. Byrne, M.D., Bovair, S.: A working memory model of a common procedural error. Cogn.

Sci. 21, 31–61 (1997)
15. Palanque, P., Cockburn, A., Gutwin, C.: A classification of faults covering the human-

computer interaction loop. In: 39th International Conference Computer Safety, Reliability,
and Security, pp. 434–448. Springer (2020)

16. Mohanani, R., Salman, I., Turhan, B., Rodríguez, P., Ralph, P.: Cognitive biases in software
engineering: a systematic mapping study. IEEE Trans. Software Eng. 46, 1318–1339 (2018)

17. Huang, F., Liu, B., Huang, B.: A taxonomy system to identify human error causes for software
defects. In: The 18th international conference on reliability and quality in design, pp. 44–49.
International Society of Science and Applied Technologies (2012)

18. Huang, F., Strigini, L.: HEDF: amethod for early forecasting software defects based on human
error mechanisms. IEEE Access 11, 3626–3652 (2023)

19. Li, S.Y., Blandford, A., Cairns, P., Young, R.M.: Post-completion errors in problem solving.
In: Proceedings of the Twenty-Seventh Annual Conference of the Cognitive Science Society.
Citeseer (2005)

20. Huang, F.: Post-completion error in software development. In: The 9th InternationalWorkshop
on Cooperative andHumanAspects of Software Engineering, ICSE 2016, pp. 108–113. ACM
(2016)

21. Gisev, N., Bell, J.S., Chen, T.F.: Interrater agreement and interrater reliability: key concepts,
approaches, and applications. Res. Social Adm. Pharm. 9, 330–338 (2013)

22. Popov, P., Stankovic, V., Strigini, L.: An empirical study of the effectiveness of “forcing”
diversity based on a large population of diverse programs. In: 23rd International Symposium
on Software Reliability Engineering, pp. 41–50. IEEE (2012)

https://doi.org/10.1109/32.83905

A Taxonomy of Software Defect Forms
for Certification Tests in Aviation Industry

Fuqun Huang1, Bing Huang2, Yikun Wang3, and Yichen Wang4(B)

1 Department of Computer Science, Western Washington University, Bellingham, WA 98225,
USA

huangf2@wwu.edu
2 School of Computer Science and Engineering, Nanyang Technological University, Singapore,

Singapore
bing.huang@ntu.edu.sg

3 Antares Testing LLC, Beijing, China
echo@antares-testing.com

4 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
wangyichen@buaa.edu.cn

Abstract. The analysis of real software defects data not only helps to identify
problems in a project, company, or industry but also enables continuous improve-
ment in technologies and processes. In the Chinese aviation industry, a rigorous
software quality assurance procedure is implemented, consisting of following a
national process standard, conducting internal tests, expert milestone reviews, and
formal documentation of all activities and results. After these quality assurance
activities are completed, software systems undergo certification tests conducted
by independent third-party centers. Discovering patterns of defects found in certi-
fication tests has significant practical implications for the industry on continuous
improvement. This paper presents a taxonomy of defect forms based on the real
defects found in 10 software systems, using Grounded Theory. The defect forms
contain detailed information on how the defects are formed, compared to existing
defect types.We then applied and validated this taxonomy on 9 additional software
projects, using five software certification engineers independent of this paper. The
results demonstrate that the developed taxonomy can describe the forms of 98%
of defects found in certification tests. We recommend this taxonomy for process
improvement and defect prevention in the aviation industry.

Keywords: Software Defect · Defect Form · Software Reliability · Aviation
Industry

1 Introduction

How to appropriately classify software defects is important for safety-critical industries.
A well-defined defect classification is not only necessary for effective communication,
developers, and quality assurance engineers), but also can promote continuous process
improvement. For instance, defect classification is a necessity for defect prevention [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 55–63, 2023.
https://doi.org/10.1007/978-3-031-40923-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-40923-3_5

56 F. Huang et al.

There are several well-known defect classifications methods. Orthogonal Defect
Classification (ODC) [1] is the most popular defect classification method found in the
literature, in addition to the IEEE Standard 1044–2009 on software Anomalies [2].
These defect classifications have been widely applied in academic research, e.g. defect
prediction [3]. Leszak et al. [4] proposed 18 defect types in three categories (Imple-
mentation, Interface and External) for retrospective analysis of software defect projects,
such as Data design/usage, functionality, and development environment. There have
been several reports on applications of ODC on real safety-critical systems in aerospace
domains. For instance, Lutz and Mikulski [5] used ODC to analyze residual defects
on seven spacecraft systems, and identify the most frequent types appearing in those
systems were “procedures” problems. Silva and Vieira [6] applied ODC on 4 aerospace
systems and found that about one third of defects were difficult to be assigned to one of
the defect types in ODC.

The Chinese aviation industry implements a rigorous process for assuring software
quality [7]. The widely reported classification methods are not used in such certification
tests as they were not suitable for the needs of the domain. Software certification tests are
conducted by qualified and independent third-party software testing centers in the last
phase of software quality assurance for safety-critical software systems. The industry
requires the consistency between documentations and programs, and has a demanding
standard for clearly describing the defects, and requires the classification can be easily
understood andmade consensus betweenmultiple stakeholders, e.g. user representatives
(usually air force administers), developers, project managers, domain experts, and soft-
ware certification testing engineers. Thus, a defect classification method that works for
the defects found in software certification tests is vital.

We approach this problem in an empirical manner by deriving the taxonomy of
defect patterns from real historical data using Grounded Theory, rather than developing
a taxonomy in a predetermined way. Then, we validate the taxonomy by professional
testing engineers independent of this study on another set of real data.

2 Background and Concepts

In the Chinese aviation industry, software certification tests are usually performed by
independent third-party centers. These centers must have proven their capability and
obtained the relevant national qualifications. To certify a software system, a variety of
certification tests must be performed, including system testing, code review, document
review, etc. The defects found in these tests are formally documented, reviewed, and
acknowledged by multiple stakeholders, including the software system’s designers and
developers, the project manager, the representative of the development institute, and the
representatives of potential users.

Before entering such certification tests, a software system is supposed to have gone
through a complete process of quality assurance, including requirement review carried
out by the development institute. Every software project should follow the same national
process standard, perform internal tests including requirements review, code review, unit
test, integration test, and formally document these milestone reviews. Such an “internal”
quality assurance process is guided by national standards and is mandatory [7] for a
software system to be used in a Chinese aircraft.

A Taxonomy of Software Defect Forms for Certification Tests 57

The concepts used in this paper are defined as follows:

Defect: An incorrect or missing step, process, or data definition in software, including
computer programs and documentation (adapted from the definition of “fault” in the
IEEE Standard Glossary of Software Engineering Terminology [8]).

Defect Form (DF): The way how a snippet of software (including computer programs
and documentations) is being a defect. Note that the Defect Form here is not the same as
the “Defect Type” concept commonly used in software engineering, e.g. in “Orthogonal
defect classification” [1]. Defect Form describes “what” a defect is, in more detail than
“Defect Type”.

3 Methodologies

We used the Coding method in Grounded Theory to derive the defect forms from his-
torical defects identified in the certification tests. Subsequently, software certification
testing engineers, whowere independent of this study applied the taxonomy of the defect
forms to another 9 projects. An overview of the methodologies and process employed
in this study is depicted in Fig. 1.

Fig. 1. The overview of the methodology and process of the study

3.1 Grounded Theory and Coding

Grounded Theory, initially developed by Glaser and Strauss [9], is a methodology used
to build new theories based empirical data. The methodology involves a set of strategies,
such as coding and memoing, to analyze data. Grounded Theory is widely used in
various domains, including software engineering [10, 11]. Grounded theory employs an
inductive and iterative process to generate a new theory from empirical data. Inductive
research aims to identify categories and relations fromempirical data andbuild a theory to
explain a phenomenon. The theory-building process is an interactive one, and researchers
continuously assimilate and integrate new information into the existing mental model,
leading to the evolution of the theory during the research process.

58 F. Huang et al.

To construct a new theory using Grounded Theory, major categories of concepts that
can later be used to build the theory must be identified. This process is called Open
Coding [12]. Codes may be derived from the text or created by researchers to provide
meaning to the text. In this study, we used the Open Coding [12] method to derive defect
forms from detailed descriptions of defects found in certification tests.

3.2 The Coder and Data Set

At the time of coding, the first author had over seven years of industrial experience
in software systems verification, validation, and certification in the Chinese aviation
industry, over ten years of experience in scientific research on software defects and
human errors, and sufficient experience in coding [13].

In the first step, the last author reviewed the original data stored in our partner
company, which is an independent third-party center for software verification, validation
and certification. They recorded the following information: all defects for each software
system, defect descriptions (not publishable due to a non-disclosure agreement), how
each defect was fixed, the severity of each defect, and the defect type. The defect type
was originally classified by software testing engineers and reviewed in formal project
reviews by various independent stakeholders not involved in this study. The defect type
includes four categories: Documentation, Program, Design, and Others.

In the second step, the partner company performed data desensitization to remove
any sensitive information contained in the defect descriptions. Then, the first author
summarized the defect forms using Open Coding [12]. The overview of the data for the
empirical study is shown in Table 1.

Table 1. The overview of the data for the empirical study

Software LOC # defects found in certification tests

Critical Major Regular Minor

1 Flight management CPU 75572 0 1 5 0

2 Flight Management MIO 9692 1 0 6 0

3 Inertial Navigation Software 26406 0 1 13 0

4 Inertial Attitude Software 18361 0 3 1 2

5 Anti-jamming all-in-one 21683 0 0 6 9

6 Radio Altimeter Software 7572 1 2 0 0

7 Task management software 20353 0 2 35 3

8 Power management 21947 0 4 3 0

9 Integrated monitoring 49450 0 0 18 3

10 Portable Maintenance Aid 27314 0 3 2 0

Total 278350 2 16 89 17

124

A Taxonomy of Software Defect Forms for Certification Tests 59

3.3 The Coding Results

Using the coding process, the coder extracted 13 defect forms that fully described the
124 defects in these 10 software systems. The defect forms, along with the number of
defects for each form and examples are described as follows:

• DF1-Useless requirements specification (13 defects, 10%): A piece of requirements
specified in the requirements specification document, but it is not implemented in the
program. The defect is fixed by deleting this piece of requirements, and the program
remains unchanged.

• DF2-Missing requirements specification (8 defects, 6%): A piece of function in
a program that has no descriptions in the requirements document. The defect is
fixed by adding description in the requirements document, and the program remains
unchanged.

• DF3-Inappropriately organizing requirement specifications (2 defects, 2%): The
requirements are inappropriately organized. The defect is fixed by adjusting the struc-
ture of the relevant specifications or putting them in another section, but no change
is made to the text.

• DF4-Incorrect requirements specification (1 defect, 1%): The requirements speci-
fication is incorrect, causing the program implementation to be incorrect. The defect
is fixed by changing both the requirement specification and the program.

• DF5-Inconsistency between requirements specification andprogram function (I)
(19 defects, 15%): Inconsistency is found between the requirements specification and
program function, and the defect is fixed by changing the requirements specification
document.

• DF6-Inconsistency between program function and requirements specification
(II) (35 defects, 28%): Inconsistency is found between the requirements and program
function, and the defect is fixed by changing the program, while not changing the
requirements. For instance, the interface protocols specify that the valid atmosphere
altitude is -500 ~ 5000, while in the program it is set as “-500 ~ 6000”. The defect is
fixed by simply changing 6000 to 5000 in the program.

• DF7-Ambiguous requirements specification (2 defects, 2%): The description of a
piece of requirements is not clear. The defect is fixed by clarifying the texts in the
requirements specification document.

• DF8-Calculation error (9 defects, 7%): Some details of a function for calculating
data is incorrect, causing the output of the program to be incorrect. The defect is
fixed by changing the program. For instance, the accuracy of calculating the aircraft
heading angle does not meet the requirements.

• DF9-Algorithmerror (11 defects, 9%):A significant step or the logic of an algorithm
is missing or incorrect, causing the output of the program to be incorrect. The defect
is fixed by changing the program.

• DF10-Assignment error (2 defects, 2%): Inappropriately creating variables or
assigning values to variables.

• DF11-Missing function (10 defects, 8%): A function or step is missing in the
program, and the cause is unclear (not including post-completion error).

• DF12-Exception handling error (10 defects, 8%): Lack ofmechanisms for handling
exceptional conditions or data out of normal range. For instance, missing watchdog
in a searching algorithm in the Radio Altimeter Software.

60 F. Huang et al.

• DF13-Annotation error (2 defects, 2%): This defect formpertains to instanceswhere
the annotations or comments in the program are inaccurate or don’t match with the
code. The defect is fixed by modifying annotations without any changes to the code.

• DF14-Others. DF14 was added for validation purposes only. This defect form
encompasses any defects that cannot be categorized under the above 13 forms.

As can be seen from the above list, a defect form contains more information than
a defect type. Existing defect types (i.e. documentation, program and others) are very
simple and provide little information on what’s going on or what needs to be done for
further improvement.

4 Application and Validation

In this section, we describe the application and validation of the developed taxonomy,
which was offered to software engineers currently involved in software certification tests
in the Chinese aviation industry.

4.1 Participants and Procedures

We recruited five experienced software certification testing engineers, all of whom held
team leader positions at the time of participating the study. The defects data used in the
study were obtained from the projects these engineers were actively involved in, and
they were the most familiar with the defects under classification. The severity level and
defect types were determined by the teams led by the participants. All of the participants
were independent of our study.

We generated a translated version of the defect pattern list and descriptions for each
defect form. We also added another category, DF14-Others, to the list to identify any
defects that could not be classified using the 13 forms.

The participants used the defect form list to reclassify the defects they had found in
the projects they were actively involved in. They were encouraged to raise any issues
if there were any unclear definitions or any defects that could not be classified by the
taxonomy. In particular, we asked them whether they had encountered any defect that
could be classified by more than one defect form to evaluate the degree of mutual
exclusivity between the defect forms.

4.2 The Validation Data

The 5 participants independently applied the taxonomy of defect forms to 9 different
software systems that had completed certification tests. A total of 169 defects were found
in these systems, of which 36 (21%)were Critical defects, 4 (2%)wereMajor, 111 (66%)
were Regular, and 18 (11%) were Minor. Table 2 shows a summary of the defect data
used for the validation of the taxonomy.

A participant assigned one defect form to each defect found in his/her certification
test project. Table 3 summarizes the distribution of defects of different severity levels
across various forms.

A Taxonomy of Software Defect Forms for Certification Tests 61

In total, 166 out of the 169 defects (98%) were accurately described by one of the 13
defect forms in the taxonomy. Only three defects (2%) were classified as DF14-other.
The participants found that 10 out of the 13 defect forms provided a complete and clear
description for the 166 defects.

Of the 169 defects, 55% (93) were originally classified as “Program” type, while
41% related to documentation issues. The remaining 4% were categorized as “other”
defects. The distribution of defects across types and forms is presented in Table 3.

Table 2. The Defects for validating the taxonomy

Softw Cr# Mj# Re# Mi# Total

CJGZKZ 4 0 6 0 10

JZCL 5 0 0 0 5

ZKGL 9 0 16 6 31

TXCL 2 0 5 0 7

HJGL 1 0 13 1 15

BFCC 3 0 2 1 6

IISS 0 4 1 2 7

DXX 5 0 5 5 15

JT 7 0 63 3 73

Total 36 4 111 18 169

Table 3. Defects across Types and Forms

Defect Forms Doc Prog Other Total # #%

DF2 3 - - 3 1.8

DF5 64 - - 64 37.9

DF6 2a 38 - 40 23.7

DF8 - 2 - 2 1.2

DF9 - 4 - 4 2.4

DF10 - 30 - 30 17.8

DF11 - 8 - 8 4.7

DF12 - 9 - 9 5.3

DF13 - - 6 6 3.6

DF14 1 2 - 3 1.8

Total 70 93 6 169 100
a. Comments in the program are inconsistent with requirements

62 F. Huang et al.

5 Results Analysis and Discussions

The evaluation of software defect classification methods typically involves several
criteria, such as clear definition and examples for each category, completeness, and
non-overlapping categories.

To assess the clarity and non-overlapping nature of our taxonomy, we included an
open-ended question in the questionnaire regarding the participants’ experiences with
assigning defect forms, e.g. misunderstanding the defect forms, not sure of which defect
form to be assigned to a defect, or a defect can be assigned with more than one defect
form. Participants reported no issues with the taxonomy.

We estimated the completeness of the taxonomy in describing defects found in the
Chinese aviation industry’s certification tests using Eq. (1):

Completeness =
∑13

1 DFi
∑14

1 DFi
× 100% (1)

where DF14 represents a defect was assigned to “other”. That is, Completeness is esti-
mated based on the number of defects assigned to the 13 defined forms out of all
defects.

Results demonstrate that the taxonomy effectively covered 98% (166/169) of defects
identified in the nine software certification projects. Moreover, participants utilized only
9 out of the 13 available defect forms, with their distribution presented in the sixth
column of Table 3.

As such, we recommend the following 9 defect forms for use in the Chinese aviation
and other safety-critical industries, ranked from highest to lowest frequency:

1) Inconsistency between requirements specification and program function, fixed
by changing requirement documentation, 2) Inconsistency between program function
and requirements specification, fixed by changing program, 3) Assignment error, 4)
Exception handling error, 5) Missing function, 6) Annotation error, 7) Algorithm error,
8) Missing requirements specification, 9) Calculation error.

6 Conclusion

This paper proposed a new concept “defect form” to describe the patterns of defects
found in certification tests in the Chinese aviation industry. We developed a taxonomy
consisting of 13 defect forms derived from 10 software systems using Grounded Theory.
The taxonomy were applied and validated by 5 independent professional certification
testing engineers on another 9 software systems certification projects. Results show that
nine defect forms were able to describe 98% defects. We recommend these defect forms
for various stakeholders to consider in their future projects and strategy making for the
whole Chinese aviation industry. These defect forms could also have implications for
certification tests for safety-critical domains in other countries.

A Taxonomy of Software Defect Forms for Certification Tests 63

References

1. Chillarege, R., et al.: Orthogonal defect classification-a concept for in-process measurements.
IEEE Trans. Software Eng. 18, 943–956 (1992)

2. IEEE Standard Association: IEEE 1044–2009—IEEE Standard Classification for Software
Anomalies (2009)

3. Patil, S., Ravindran, B.: Predicting software defect type using concept-based classification.
Empir. Softw. Eng. 25(2), 1341–1378 (2020). https://doi.org/10.1007/s10664-019-09779-6

4. Leszak, M., Perry, D.E., Stoll, D.: Classification and evaluation of defects in a project
retrospective. J. Syst. Softw. 61, 173–187 (2002)

5. Lutz, R.R., Mikulski, I.C.: Empirical analysis of safety-critical anomalies during operations.
IEEE Trans. Software Eng. 30, 172–180 (2004)

6. Silva, N., Vieira, M.: Experience report: orthogonal classification of safety critical issues.
In: IEEE 25th International Symposium on Software Reliability Engineering, pp. 156–166.
IEEE (2014)

7. Huang, F., Liu, B., Wang, S., Li, Q.: The impact of software process consistency on residual
defects. J. Softw. Evol. Process 27, 625–646 (2015)

8. IEEE: IEEE Standard Glossary of Software Engineering Terminology, vol. l EEE Std
610.121990. The Institute of Electrical and Electronics Engineers, New York (1990)

9. Glaser, B.G., Strauss, A.L.: The discovery of grounded theory: Strategies for qualitative
research. Aldine, Chicago (1967)

10. Sjøberg, D.I.K., Dybå, T., Anda, B.C.D., Hannay, J.E.: Building theories in software engi-
neering. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to advanced empirical software
engineering, pp. 312–336. Springer London, London (2008). https://doi.org/10.1007/978-1-
84800-044-5_12

11. Coleman, G., O’Connor, R.: Using grounded theory to understand software process improve-
ment: a study of Irish software product companies. Inf. Softw. Technol. 49, 654–667
(2007)

12. Saldaña, J.: The coding manual for qualitative researchers. Sage (2012)
13. Huang, F., Smidts, C.: Causal mechanism graph a new notation for capturing cause-effect

knowledge in software dependability. Reliab. Eng. Syst. Saf. 158, 196–212 (2017)

https://doi.org/10.1007/s10664-019-09779-6
https://doi.org/10.1007/978-1-84800-044-5_12

Constraint-Guided Test Execution
Scheduling: An Experience Report

at ABB Robotics

Arnaud Gotlieb1(B), Morten Mossige2, and Helge Spieker1

1 Simula Research Laboratory, Kristian Augusts Gate 23, 0164, Oslo, Norway
{arnaud,helge}@simula.no

2 ABB Robotics, Bryne, Norway
morten.mossige@uis.no

Abstract. Automated test execution scheduling is crucial in modern
software development environments, where components are frequently
updated with changes that impact their integration with hardware sys-
tems. Building test schedules, which focus on the right tests and make
optimal use of the available resources, both time and hardware, under
consideration of vast requirements on the selection of test cases and their
assignment to certain test execution machines, is a complex optimization
task. Manual solutions are time-consuming and often error-prone. Fur-
thermore, when software and hardware components and test scripts are
frequently added, removed or updated, static test execution scheduling
is no longer feasible and the motivation for automation taking care of
dynamic changes grows. Since 2012, our work has focused on transferring
technology based on constraint programming for automating the testing
of industrial robotic systems at ABB Robotics. After having successfully
transferred constraint satisfaction models dedicated to test case genera-
tion, we present the results of a project called DynTest whose goal is to
automate the scheduling of test execution from a large test repository,
on distinct industrial robots. This paper reports on our experience and
lessons learned for successfully transferring constraint-based optimiza-
tion models for test execution scheduling at ABB Robotics. Our expe-
rience underlines the benefits of a close collaboration between industry
and academia for both parties.

1 Introduction

Continuous integration (CI) has been adopted by many companies all around the
world in order to ensure better end-user product quality [3]. As part of CI, auto-
mated testing is crucial to get quicker feedback on the detected defects or regres-
sions of a system under test. When a complete industrial system is tested under
CI, a challenge arises if it relies on hardware and software components, because
they can hardly be tested in isolation. Besides, additional challenges include the

List of authors is given in alphabetical order.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 64–72, 2023.
https://doi.org/10.1007/978-3-031-40923-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-40923-3_6

Constraint-Guided Test Execution Scheduling 65

requirement to generate tests with environmental hazards, the combinatorial
explosion of the number of potential test cases due to parameter interactions,
the automation of test execution scheduling which ensures proper coverage and
diversity of test cases and agents.

This paper reports on our experience in deploying a constraint-guided
test execution scheduling method as part of a CI process at ABB Robotics.
By co-developing an automated testing process named DynTest through
an industrial-academic partnership, the authors have explored the transfer of
advanced constraint programming1 models composed of global constraints and
rotational diversity [9] in a highly automated industrial testing process [2]. Since
2012, multiple models for test case generation [4,5] and selection, test prior-
itization [8] and eventually test execution scheduling [6] have been explored,
evaluated and transferred. Our experience underlines the benefits of a close
collaboration between industry and academia for both parties in the area of
automated testing.

2 Test Execution Scheduling at ABB Robotics

Fig. 1. Overview of the CI cycle and the challenge related to time management

ABB Robotics is an industrial robot supplier and manufacturer company
operating in more than 50 countries around the world. A key objective of the
company is to deliver high-quality products (thus involving an increased focus on
testing robots for reliability and performance) for the benefice of its customers.
Initially, robot testing was done mostly manually and using human-eyes visual
control for checking the results of hand-crafted tests. This restricted the possible
1 Constraint Programming is a declarative programming framework which uses rela-
tions among logical variables and search procedures to find solutions of combinatorial
problems [7].

66 A. Gotlieb et al.

testing time to human-worked hours of test engineers (besides long-running tests,
which could use nighttime and weekends) and did not use available robot to
its full test capability. To reduce the time-to-market of new products and also
improve the quality of these products, the testing process had to be much more
automated. To start with, the test automation process had to be placed within
a Continuous Integration (CI) process.

As shown in Fig. 1, a typical CI cycle includes software developer commit
actions which automatically trigger build, deploy and test activities. The test
results are then passed back to the developers to provide them with feedback.
Typically, the test activity includes the following five steps:

1. Test Case Selection and Generation: Tests are either extracted from an
existing repository or automatically generated from specific requirements;

2. Test Suite Reduction: Test suites that achieve a given objective (e.g., full
requirement coverage) are pruned to eliminate spurious test cases;

3. Test Case Prioritization: Tests are ordered to provide a quick feedback by
using either pre-determined or dynamically-computed priority values;

4. Test Execution Scheduling: Test plans are distributed on different robots,
in a specific order according to a pre-computed test schedule;

5. Test Execution: Tests are then eventually executed according to the spec-
ified schedule, in order to identify defects in the system under test. This
activity is clearly the most demanding as it requires launching the system
with the test cases selected and prioritized in the previous steps.

It is worth noting that, in CI, controlling the test preparation time (i.e., the
four first steps) with respect to the test execution time (i.e., the fifth step) is
crucial. Knowing that the overall time-line allocated to test activities has to
be bounded, we have to keep as much time as possible for test execution. Of
course, an optimized test schedule (computed during test preparation) can lead
to better test execution, but it makes no sense to spend too much time in the
computation of a schedule if it reduces too much the time available for test
execution. As shown in Fig. 1, finding the right trade-off is part of the testing
challenges faced at ABB.

In ABB’s context, a test case aims at verifying a robotized task, which is
performed by a robot under the observation of some sensors. A test can either
fail or succeed; it fails when observations reveal a misfunction, and it succeeds
when no misfunction is observed. A test case is associated with some metadata,
consisting of its average duration, previous execution times, results, and targeted
robots. Each test case execution is non-preemptive, that is, it cannot be inter-
rupted by another test or transferred to another robot during execution. All test
cases are independent, without any dependency on the order in which they are
executed. Still, they can be ordered by using their static priority, which is decided
by the test engineers, and their dynamic priority, which is based on a combi-
nation of their effectiveness to reveal defects in earlier CI cycles and the time
since their last execution. Test cases have furthermore hardware requirements,
meaning that they can only be executed on certain robots.

Test cases are executed by test agents, which are software components that
capture the various schedules computed for each CI cycle. Each test agent has

Constraint-Guided Test Execution Scheduling 67

a limited amount of time available per cycle and a set of compatible test cases,
which it can execute. Computing a test schedule requires to vary the assignment
between test cases and test agents between cycles to achieve a full coverage of
all possible combinations between tests and hardware over time. Fulfilling this
objective balances the confidence in the stability of certain features on different
hardware, while giving room for executing many test cases and not executing
the same tests multiple times during a cycle.

3 Automated Testing Process

Here, we present the approach to automate the testing process within the CI
environment. The testing process is sequential with distributed components,
orchestrated by a central test controller. Starting with data initialization and
acquisition (Sec. 3.1), the process computes the priorities over test cases (Sec. 3.2)
and the test schedules (Sec. 3.3). Test execution is performed by distributing
test plans to each robot (Sec. 3.4) and eventually test execution reporting takes
place (Sec. 3.5). The central test controller, referred to as DynTest, manages
the process, acquires and distributes the necessary data from other sources, and
provides the interface towards the automated testing process. Other components
include a module for test case prioritization, selection, and scheduling, and a
module for controlling test agents executing the test cases.

3.1 Data Initialization and Acquisition

The process is set up with available test cases and agents. Some test cases and
agents are filtered out to exclude scripts and robots under maintenance or having
incompatible hardware requirements. For the remaining test cases, historical
meta-data is extracted from the central data repository. This data includes the
most recent test execution results, their runtime, and previous test agents they
were executed on, etc.

3.2 Test Case Prioritization

The prioritization step is initially designed with a simple approach, to ease the
setup of automation and definition of assigned priorities during integration by
the test engineers. The process iterates through all executable test cases and
assigns each a priority, which is a weighted sum of the time since the last run,
the test case duration, and the most recent last results The weights and number
of considered historical test results are manually chosen during integration, but
that process could be replaced by a self-adaptive method in the future.

3.3 Selection and Scheduling

Selection and scheduling focus on taking the test cases with the highest priorities
and distributing them to the test agents until all time available for testing is used.
Although test case selection and scheduling are often regarded as two separate

68 A. Gotlieb et al.

Fig. 2. The test controller distributes individual test plans to each test agent, which
controls, in turn, one robot and records log information and test outcomes.

tasks in the literature, in practice, we closely integrate both steps. Selection
means to take those test cases from the set of prioritized test cases, which are
most desirable to execute. Because the execution of test cases is constrained,
this selection has to consider which subset of test cases can actually be executed
and at the same time maximizes the available resources (as we want to avoid
idle times). The selection and scheduling step receives a set of prioritized test
cases and a set of available test agents as inputs. During this step, DynTest
creates an execution schedule, where each test case is assigned to one test agent
for execution while preferring to assign high-priority test cases over low-priority
test cases. During selection, test cases which are marked as obligatory to be run,
are always included in the final schedule, regardless of their calculated priority.

We now approach this scheduling task by using Constraint Programming
(CP), even if, in its initial version, only a simple greedy first-fill algorithm was
used. This heuristic algorithm’s first ordered the test cases by descending prior-
ity. Then, successively for each test agent, the test case with the highest priority
was assigned to the test agent until the maximum time limit was reached. How-
ever, we quickly discovered that this too-simplistic approach was not suitable
to ensure sufficient diversity in the selection of test cases and agents. We then
developed a refined model based on CP. CP is a paradigm in which a problem
is not modelled as a sequence of steps to achieve a desired solution, i.e., an
algorithm, but relations between variables are described to formulate properties
of a desired solution (see [7]). CP and its associated optimization methods are
efficient and well-performing techniques for modelling strictly constrained prob-
lems, such as planning and scheduling problems [1]. Using CP for scheduling
enables precise control over the execution time and the trade-offs made between
time looking for a solution and the solution’s quality. We replaced the initial
scheduling method with a dedicated constraint optimization model which fur-
ther optimizes the schedules by ensuring that the assignment between test cases

Constraint-Guided Test Execution Scheduling 69

Fig. 3. Visualization of a test schedule with interactive access to test results.

and test agents changes between test cycles. We called this process rotational
diversity and used global constraints to develop it. Full details on this constraint
model are available in [9].

3.4 Distribution and Execution

Once the test schedule is created, DynTest transforms it into separate, individ-
ual test plans and sends them to the corresponding test agent. An example test
plan is shown in Fig. 3. Each test agent executes all assigned test cases indepen-
dently, as there is no interdependency between test cases and robots. The test
agent records all test results and log files from the test cases and returns them
to the test controller.

Fig. 4. Visualization of a test report for the IPS project and distribution of resource
usage and test case priority among CI cycles for a one-month period.

3.5 Reporting

Reporting aims to communicate the test execution results back to the developer
for failure analysis. An example of a test report is shown in Fig. 4. The report
summarizes the results of a test cycle, allows us to navigate into lower levels
of the test hierarchy and access specific details of single test executions. This
hierarchical structure makes the report accessible to different user groups and
is the first step of debugging and failure analysis. Another goal of the reporting
step is to gather and visualize information about the testing process itself. A
visual report of the scheduling outcome is created as a means for individual

70 A. Gotlieb et al.

run analysis and communication (see Fig. 4). It is built on web technologies and
enables interactive exploration, including access to test case information and
results of recent executions. Exhaustive reporting and data collection enables
better long-term evaluation of the system’s behavior as well as impact evaluation
onto software development, which is an important aspect for tuning the process
in the future.

Besides the reporting of individual test results, monitoring the overall
behaviour of DynTest is performed. Figure 4 shows examples of two such mon-
itoring metrics. The resource utilization monitors how efficiently the available
resources are filled by the test case scheduling algorithm, here most plans should
show a high utilization of close to 100% to make the best use of the available
resources. The distribution of test case priorities shows the variation in relevance
of test cases. Here, there is a large block of highly important test cases with high
priority but also chunks with low priority as well as average priority, indicating
a good overall balance of priorities.

4 Empirical Evaluation

After a development phase where the integration of all steps of the automated
testing process was realized, we performed a one-month empirical evaluation of
an existing subsystem called IPS (Integrated Painting Systems). Even though an
exhaustive quantitative evaluation of the testing process is difficult as it substan-
tially impacts the working processes, we drew some conclusions on the process
by examining the schedules created by DynTest. For the evaluation, we con-
sidered 87 CI cycles of IPS. As stated above, Fig. 4 reports on the resources
utilization and test case priority of the test schedules of IPS. Each schedule
achieves a resource utilization of at least 91 % with the majority having a uti-
lization of 99 % meaning that the available time for testing is used extensively.
An overall utilization of 100 % is not achievable for two reasons. First, the total
duration of test case execution is not guaranteed to sum up to the total available
time. Second, during scheduling, the focus is on assigning highly prioritized test
cases and then filling in the available time with the most important test cases
instead of maximizing the time usage. Regarding test case priority, Fig. 4 shows
that the test cases are spread among the spectrum of possible priorities, with
two noticeable clusters at the lower and upper bound of the spectrum. Hav-
ing a similar number of high- and low-priority test cases stems from the fact,
that high-priority test cases, once they have passed their last execution, tend
to receive a low priority during the next cycle. This behavior distinguishes from
test cases which have not failed during the observed period. After having not
been executed for a while, the priority grows again and these test cases become
likelier to be executed again.

Constraint-Guided Test Execution Scheduling 71

5 Lessons Learned

We report on three lessons learned while developing test automation process.

Automated test scheduling through CI is crucial to improve robot soft-
ware/hardware quality. Automated testing through CI allows us to detect at
an early stage hardware/software defects on robots and avoid the propagation of
failure at customer sites. It also reveals regression issues when the specification
of a new product is not yet finalized. This approach significantly improves the
overall product quality;

Incremental co-development is relevant when complex constraint opti-
mization models have to be developed. We co-developed a test execu-
tion scheduling component as part of DynTest. Starting from a simple version
(based on an inefficient greedy-based scheduling approach), we developed a com-
plex constraint optimization model based on global constraints and rotational
diversity incrementally. This approach was key to fostering the adoption and
maintenance of this complex model by people who do not necessarily have the
expertise to maintain advanced constraint models;

Industry-academic co-development. The outcomes of this co-development
were beneficial for both sides. On one hand, ABB Robotics benefited from the
academic expertise in constraint-based scheduling, which was required to develop
test execution scheduling models. On the other hand, scientists took advantage
of the industrial experience of the test engineers in the test automation processes,
to publish advanced research results with empirical results. Finally, thanks to
this co-development, the transferability of the method was easier.

6 Conclusion

This paper reports on an experience to transfer constraint-based models for
automated test execution scheduling at ABB Robotics. In this work, advanced
constraint-based scheduling models using global constraints and rotational diver-
sity were developed and empirically evaluated, and industrialized as part of a
complete CI process. Further work includes refinement in the description of test
cases to handle specific globally-shared external equipment.

References

1. Bartak, R., Salido, M.A., Rossi, F.: Constraint satisfaction techniques in planning
and scheduling. J. Intell. Manuf. 21(1), 5–15 (2010)

2. Gotlieb, A., Marijan, D., Spieker, H.: Testing Industrial Robotic Systems: A New
Battlefield! In: Software Engineering for Robotics, pp. 109–137. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-66494-7 4

https://doi.org/10.1007/978-3-030-66494-7_4

72 A. Gotlieb et al.

3. Klotins, E., Gorschek, T., Sundelin, K., Falk, E.: Towards cost-benefit evaluation for
continuous software engineering activities. Empir. Soft. Eng. 27, 157(2022) https://
doi.org/10.1007/s10664-022-10191-w

4. Mossige, M., Gotlieb, A., Meling, H.: Using CP in Automatic Test Generation for
ABB Robotics’ Paint Control System. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol.
8656, pp. 25–41. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-
7 6

5. Mossige, M., Gotlieb, A., Meling, H.: Testing robot controllers using constraint
programming and continuous integration. Inf. Softw. Technol. 57, 169–185 (2015)

6. Mossige, M., Gotlieb, A., Spieker, H., Meling, H., Carlsson, M.: Time-aware test
case execution scheduling for cyber-physical systems. In: Principles and Practice of
Constraint Programming (CP). Springer LNCS, vol. 10416 (2017)

7. Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming (Founda-
tions of Artificial Intelligence). Elsevier Science Inc. (2006)

8. Spieker, H., Gotlieb, A., Marijan, D., Mossige, M.: Reinforcement learning for auto-
matic test case prioritization and selection in continuous integration. In: Proceed-
ings of the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis(ISSTA). pp. 12–22 (2017)

9. Spieker, H., Gotlieb, A., Mossige, M.: Rotational diversity in multi-cycle assignment
problems. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp.
7724–7731 (2019)

https://doi.org/10.1007/s10664-022-10191-w
https://doi.org/10.1007/s10664-022-10191-w
https://doi.org/10.1007/978-3-319-10428-7_6
https://doi.org/10.1007/978-3-319-10428-7_6

Neural Networks Robustness
and Monitoring

A Low-Cost Strategic Monitoring
Approach for Scalable and Interpretable
Error Detection in Deep Neural Networks

Florian Geissler1(B), Syed Qutub1, Michael Paulitsch1,
and Karthik Pattabiraman2

1 Intel Labs, Munich, Germany
{florian.geissler,qutub.syed,michael.paulitsch}@intel.com

2 University of British Columbia, Vancouver, Canada
karthikp@ece.ubc.ca

Abstract. We present a highly compact run-time monitoring approach
for deep computer vision networks that extracts selected knowledge from
only a few (down to merely two) hidden layers, yet can efficiently detect
silent data corruption originating from both hardware memory and input
faults. Building on the insight that critical faults typically manifest as
peak or bulk shifts in the activation distribution of the affected network
layers, we use strategically placed quantile markers to make accurate
estimates about the anomaly of the current inference as a whole. Impor-
tantly, the detector component itself is kept algorithmically transparent
to render the categorization of regular and abnormal behavior inter-
pretable to a human. Our technique achieves up to ∼96% precision and
∼98% recall of detection. Compared to state-of-the-art anomaly detec-
tion techniques, this approach requires minimal compute overhead (as
little as 0.3% with respect to non-supervised inference time) and con-
tributes to the explainability of the model.

1 Introduction

Deep neural networks (DNNs) have reached impressive performance in com-
puter vision problems such as object detection, making them a natural choice
for problems like automated driving [1]. However, DNNs are known to be highly
vulnerable to faults. For example, even small changes to the input such as adding
a customized noise pattern that remains invisible to the human eye, can stim-
ulate silent prediction errors [8]. Similarly, modifying a single out of millions of
network parameters, in the form of a bit flip, is sufficient to cause severe accuracy
drops [14].

Because DNNs are being deployed in safety-critical applications such as
autonomous vehicles (AVs), we need efficient mechanisms to detect errors that
cause such silent data corruptions (SDC). Beyond the functional part, trust in
the safety of the application requires that the error detectors are interpretable
by the user, so that he/she can develop an intuitive understanding of the regular
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 75–88, 2023.
https://doi.org/10.1007/978-3-031-40923-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_7&domain=pdf
https://doi.org/10.1007/978-3-031-40923-3_7

76 F. Geissler et al.

Fig. 1. Monitoring architecture for quantile shift detection.

and irregular behavior of the network [2]. In an AV, for example, a user who
does not trust an automated perception component due to its opaque decision-
making, will not trust a black-box fault monitor either. Therefore, it is important
to build interpretable error detectors for DNNs.

The goal of error detection is to supervise a small, yet representative subset of
activations - during a given network inference - for comparison with a previously
extracted fault-free baseline. This leads to three key challenges: (1) How can one
compress the relevant information into efficient abstractions? (2) How can one
efficiently perform the anomaly detection process, for complex patterns? (3) Can
the anomaly detection decision be understandable to a human, so that insights
are gained about the inner workings of the network?

Unfortunately, no existing approach satisfactorily addresses all three of the
above challenges (Sect. 2). This paper presents an solution using a monitoring
architecture that taps into the intermediate activations only at selected strate-
gic points and interprets those signatures in a transparent way, see Fig. 1. Our
approach is designed to detect SDC-causing errors due to input corruptions or
hardware faults in the underlying platform memory. Our main observation that
underpins the method is that an SDC occurs when a fault injection (FI) either
increases the values of a few activations by a large margin (referred to here as an
activation peak shift), or the values of many activations each by a small margin
(activation bulk shift). As Fig. 2 shows, the former is observed typically for plat-
form faults, while the latter is observed for input faults. We then use discrete
quantile markers to distill the knowledge about the variation of the activation
distribution in a given layer. Conceptually, within a faulty layer, we can expect
a large change of only the top quantiles for activation peak shifts, and small
changes of the lower and medium quantiles for bulk shifts (Fig. 2). This idea
allows us to produce discriminative features for anomaly detection from a small
number of monitored elements, with a single detector.

Monitoring Deep Neural Networks 77

Fig. 2. (a) The feature map appearance is slightly changed with noise and massively
affected by the memory FI. (b) Noise causes a small shift of multiple quantiles from the
affected layer onwards (activation bulk shift). (c) The layer with the memory FI shows
a large shift of the maximum quantile (activation peak shift), which then propagates
to other quantiles.

In summary, we make the following contributions in this paper:

• We demonstrate that even for complex object detection networks, we can
identify anomalous behavior from quantile shifts in only a few layers.

• We identify minimal sets of relevant features and discuss their universality
across models.

• We efficiently differentiate input and hardware fault classes with a single
detector.

• We show that the anomaly detection process can be achieved with algorith-
mically transparent components, such as decision trees.

The article is structured as follows: Sect. 2 discusses related work, while
Sect. 3 describes our experimental setup. We present our method in Sect. 4, and
the results of our evaluation in Sect. 5.

78 F. Geissler et al.

2 Related Work

There are three main categories of related work.

Image-Level Techniques: Input faults can be detected from the image itself
(i.e., before network inference), in comparison with known fault-free data, result-
ing for example in specialized blur detectors [15]. However, these techniques do
not necessarily relate to SDC in the network, as image-level corruptions may be
tolerated by the model.

Activation Patterns: Methods to extract activation patterns range from acti-
vation vectors [5] to feature traces [24,25]. However, these techniques do not
scale well to deeper models as they result in a massive number of monitored
features and large overheads. Zhao et al. [26] attempt to reduce the monitoring
effort by leveraging only activations from selected layers and compressing them
with customized convolution and pooling operations. This leads to a rather com-
plex, non-interpretable detector component, and the selection of monitored layers
remains empirical.

Anomaly Detection techniques establish clusters of regular and anomalous
data to efficiently categorize new input. In single-label problems, such as image
classification, fault-free clusters are typically formed by samples that belong to
the same individual label [12], suggesting that those samples also share com-
mon attributes in the space of intermediate activations. This technique does not
generalize to multi-label problems though, such as object detection, as many
objects (in the form of bounding boxes and labels) are represented in the same
image. More abstracted clustering rules such as the maximum activation range
per layer have been proposed [4,18]. However, these detectors omit more subtle
errors within the activation spectrum, for example resulting from input faults. In
other work [24–26], a secondary neural network is trained to perform the detec-
tion process. This comes at the cost that the detector then does not feature
algorithmic transparency [2] and hence the anomaly decision is not understand-
able to a human. The same limitations are found in the context of detector
subnetworks that are trained to identify adversarial perturbations [19].

Summary: We see that none of the prior techniques satisfactorily address the
challenges outlined earlier. We present a new technique to overcome this problem
in this paper.

3 Experimental Setup and Preliminary Study

Models and Datasets: We use the three classic object detection networks
Yolo (v3), Single Shot Detector (SSD), and RetinaNet from the open-mmlab [3]
framework, as well as the two standard image classification networks ResNet50
and AlexNet from torchvision [21]. Object detection networks are pretrained
on Coco [20] and were retrained on Kitti [6], with the following AP50 base-
line performances: Yolo+Coco: 55.5%, Yolo+Kitti: 72.8%, SSD+Coco: 52.5%,
SSD+Kitti: 66.5%, RetinaNet+Coco: 59.0%, RetinaNet+Kitti: 81.8%. Image

Monitoring Deep Neural Networks 79

classification models were pretrained on ImageNet [17], providing accuracies of
78.0% (ResNet) and 60.0% (AlexNet) for the test setup. The data was split in a
ratio of 2:1 for detector training and testing. All models are run in Pytorch with
the IEEE-standard FP32 data precision [16].

Fault Modes: Input faults are modeled using torchvision [21] transform func-
tions and are applied in three different magnitudes to the raw RGB images. We
select three perturbation patterns that are popular in computer vision bench-
marks such as ImageNet-C [11] for our analysis: i) Gaussian noise due to low
lighting conditions or noise in the electronic signal of the sensor device. Low
(0.1), medium (1), and high (10) noise is tested. ii) Gaussian blur, reflecting
for example a camera lens being out of focus. We choose a kernel size of (5, 9)
and a symmetric, variable standard deviation (0.3, 1, 3). iii) Contrast reductions
simulate poor lighting conditions or foggy weather. We adjust the contrast by
a factor between zero (no contrast, gray image) and one (original image). The
selected models have different vulnerabilities to input faults, for example, the two
image classification models ResNet and AlexNet are highly sensitive to contrast
adjustments, but are rather robust to noise and blur faults. For the remaining
models, the trend is reversed.

Hardware faults are modeled as single bit flips in the underlying memory and
injected using PytorchAlfi [9]. Such flips can occur randomly either in the buffers
holding temporary activation values (neuron fault), or in dedicated memory
which holds the parameters of the network (weight faults). We group both neuron
and weight faults into a single class memory fault. This approach is in line with
previous work [4,7,13,18,23–25]. We target all convolutional layers.

Fault Metrics: First, detectable uncorrectable errors (DUE) can occur when
invalid symbols such as NaN or Inf are found among the activations at inference
time. During fault injection, we observe DUE events only for memory faults, with
rates <1% across all models. DUEs can be generated also at the detector stage,
in the process of adding up feature map sums that contain platform errors. The
rates for such events vary between 0.2% and 5.1% with our method. While DUE
errors may affect the system’s availability, they are considered less critical as they
are readily detectable and there is no need for further activation monitoring [7].

In this article, we are concerned therefore only with silent data corruption
(SDC), events that lead to a silent alteration of the predicted outcome. For
image classification networks, this is represented by a change in the top-1 class
prediction. For object detection systems, we use an asymmetric version of the
IVMOD metric [23] as SDC criterion, i.e., an image-wise increment in the FP
or FN object numbers is counted as SDC. Each experiment was done with a
subset of 100 images of the test data set, running 100 random FIs on each image
individually. For hardware faults, SDC rates are typically low (∼1−3%) since
drastic changes will result only from bit flips in the high exponential bits of the
FP32 data type [7,18]. Therefore, an additional 500 epochs with accelerated FI
only into the three highest exponential bits are performed for both flavors of
memory faults. Overall, the faulty and fault-free data is found to be balanced at
a ratio of about 2:1.

80 F. Geissler et al.

4 Model

Notational Remarks: We use the range index convention, i.e., a vector is
given as x = (xi) = (xi), a matrix reads A = (Aij), and similarly for higher-
dimensional tensors.

Monitoring Approach: Let us denote a four-dimensional activation tensor
that represents an intermediate state of a convolutional neural network as T =
(Tn,c,h,w) ∈ RN×C×H×W , where N is the sample number, C the number of
channels, H the height, and W the width. We list n as running global sample
index, where samples may be further grouped in batches. An output tensor
of a specific layer l ∈ [1, . . . L] shall be given as Tl, with L being the total
number of monitored layers of the model. Subsets of a tensor with fixed n, c
are called feature maps. Our monitoring approach first performs the summation
of individual feature maps and subsequently calculates quantile values over the
remaining kernels, see Fig. 1,

(Fn,c)l =
∑

h,w

(Tn,c,h,w)l, (1)

(qn)l
p =

(
Qp((Fn,c)l)n

)
. (2)

Here Qp is the quantile function for the percentile p which acts on the n-th row
of (Fn,c)l. In other words, Qp reduces the kernel dimensions c to a set of discrete
values where we use the 10-percentiles, i.e., p ∈ [0, 10, 20, 30, . . . , 90, 100]. The
result is a quantile value set, qp, for a given image index n and layer l. Note that
both the summation and the quantile operations (and hence the detector) are
invariant under input perturbations such as image rotations.

Supervised Layers: We intercept the output activations of all convolutional
layers, as those layers provide the vast majority of operations in the selected
computer vision DNNs. Yet, the same technique can be applied to any neural
network layer.

Reference Bound Extraction: Applied to a separate data set Dbnds, the
above technique is used pre-runtime to extract reference bounds which represent
the minimum and maximum feature sums during fault-free operation:

ql
p,min = min

n∈Dbnds

(
(qn)l

p

)
,

ql
p,max = max

n∈Dbnds

(
(qn)l

p

)
,

(3)

For Dbnds, we randomly select 20% of the training data [4].

Anomaly Feature Extraction: For a given input during runtime, Eqs. (1) to
(2) are used to obtain the quantile markers of the current activation distribu-
tion. Those are further processed to a so-called anomaly feature vector which
quantifies the similarity of the observed patterns with respect to the baseline
references of Eq. 3,

ql
p → 1

2
(
fnorm(ql

p, q
l
p,min, q

l
p,max) + 1

)
. (4)

Monitoring Deep Neural Networks 81

Here, fnorm normalizes the monitored quantiles to a range of (−1, 1) by applying
element-wise (ε = 10−8 is a regularization offset)

fnorm(a, amin, amax) =

⎧
⎨

⎩
tanh

(
a−amax
|amax|+ε

)
if a ≥ amin,

tanh
(

amin−a
|amin|+ε

)
if a < amin.

(5)

Intuitively, the result of Eq. 5 will be positive if a is outside the defined minimum
(amin) and maximum (amax) bounds (approaching +1 for very large positive or
negative values). The function is negative if a is within the bounds (lowest when
barely above the minimum), and will become zero when a is of the order of the
thresholds. In Eq. 4, a shift brings features to a range of (0, 1) to facilitate the
interpretation of feature importance. Finally, all extracted features are unrolled
into a single anomaly feature vector q = ((ql)p) = [q10 , q

2
0 , . . . q

L
0 , q110, . . . q

L
100],

that will be the input to the anomaly detector component.

Anomaly Detector: We use a decision tree [10] approach to train an inter-
pretable classifier, leveraging the sklearn package [22]. The class weights are
inversely proportionally to the number of samples in the respective class to com-
pensate for imbalances in the training data. As a measure of the split quality of a
decision node we use the Gini index [10]. To avoid overfitting of the decision tree,
we perform cost-complexity pruning [22] with a factor varying between 1× 10−5

and 2 × 10−5, that is optimized for the respective model.
To investigate fault class identification, we study three different detector

modes with varying levels of fault class abstractions and quantify each mode x ∈
{cls, cat, sdc} by precision, Px = TPx/(TPx+FPx) and recall Rx = TPx/(TPx+
FNx). Here we abbreviated true positives (TP), false positives (FP), and false
negatives (FN). In the class mode (cls), we consider only those detections as
true positives where the predicted and actual fault modes (see Sect. 3) coincide
exactly. Cases where SDC is detected correctly but the fault class does not
match will be counted as either FP or FN in this setting. In the category mode
(cat), those SDC detections are considered true positives where the predicted
and actual fault class fall into the same category of either memory fault or
input fault = {noise, blur, contrast}. That means, fault class confusions within
a category will not reduce the performance in this mode. The final precision and
recall values for the class and category mode are given as the average over all
classes or categories, respectively. Finally, in the mode sdc, we consider all cases
as true positives where SDC was correctly identified regardless of the specific
fault class. This reflects a situation where one is only interested in the presence
of SDC overall, rather than the specific fault class.

5 Results

5.1 Detector Performance

Error Detection: Table 1 shows the precision, recall, and decision tree com-
plexity for the studied detectors and models. When all extracted features are

82 F. Geissler et al.

Table 1. Precision (P), Recall (R), and decision tree (DT) complexity - given as the
number of used features (Nft) and monitored layers (Nl) - for different setups. Every
detector was retrained 10 times with different random seeds and the averages across all
runs are given. We list both the classifiers making use of all extracted quantiles (full)
and the averaged reduced (red) detector models, where guided feature reduction was
applied, see Fig. 3. Best-in-class detectors are highlighted in each column.

Model P(%) R(%) DT

Pcls Pcat Psdc Rcls Rcat Rsdc Nft/Nl

Yolo+Coco

full 95.8 96.4 96.1 98.2 98.6 98.4 825/75

red (avg) 93.3 94.6 93.4 97.4 96.3 96.7 2/2

Yolo+Kitti

full 97.3 97.5 97.4 99.1 99.3 99.2 825/75

red (avg) 92.6 92.1 92.0 97.3 96.4 96.8 3/2

SSD+Coco

full 96.6 97.2 96.6 98.2 98.5 98.3 429/39

red (avg) 95.2 96.3 94.9 96.5 94.5 95.9 3/3

SSD+Kitti

full 96.0 97.1 96.2 98.4 98.7 98.6 429/39

red (avg) 92.8 94.6 92.1 98.0 97.7 98.2 2/2

RetinaNet+Coco

full 96.6 95.7 96.9 97.1 94.9 98.0 781/71

red (avg) 96.6 96.6 96.5 97.0 94.6 98.2 2/2

RetinaNet+Kitti

full 97.5 97.3 97.5 98.6 98.2 98.7 781/71

red (avg) 96.2 96.6 95.9 98.6 97.8 98.9 2/2

ResNet+Imagenet

full 93.9 98.3 97.6 98.1 99.6 99.4 583/53

red (avg) 92.1 97.6 96.7 98.3 99.6 99.5 3/3

AlexNet+Imagenet

full 96.1 98.3 97.3 98.4 99.2 99.0 55/5

red (avg) 93.2 96.8 95.0 98.0 99.0 98.8 4/3

leveraged by the decision tree classifier (referred to as full model), the average
class-wise detection precision varies between 93.9% (ResNet) and 97.5% (Reti-
naNet+Kitti), while the recall is between 97.1% (RetinaNet+Coco) and 99.1%
(Yolo+Kitti). If only the fault category needs to be detected correctly, we find
Pcat > 95% and Rcat > 94%. Correct decisions about the presence of SDC
only are done with Psdc > 96% and Rsdc ≥ 98%. Across models, we observe
(not shown in Table 1) that the most common confusion are false positive noise
detections, leading to a reduced precision in the individual noise class (worst

Monitoring Deep Neural Networks 83

Fig. 3. Precision and recall of class-wise SDC detection when reducing the number of
monitored features (average of 10 independent runs).

case 75.8% for ResNet). The recall is most affected by memory faults (lowest
individual class recall 90.6% for RetinaNet+Coco).

The detection rates of the full model in Table 1 outperform the ones reported
in the comparable approach of Schorn et al. [25] (using feature map tracing)
and the blur detection in Huang et al. [15] in terms of precision and recall.
When using alternative metrics (not shown in Table 1) for comparison with other
detector designs, we find that our method achieves class-wise misclassification
rates ranging between 0.7% and 2.0%, depending on the model, which is on par
with the results for example in Cheng et al. [5]. Similarly, the calculated class-
wise true negative rates vary between 99.6% and 99.8%, reaching or exceeding
the classifier performance in Zhao et al. [26]. Note that all mentioned references
are limited to image classification networks.

Feature Reduction: The number of monitored features can be drastically
reduced without significantly affecting the detection performance. This means
that many quantiles represent similar information and further distillation can be
applied. For feature reduction, we follow two steps: First, all quantile features
of the full model are ranked according to their Gini importance [22] in the deci-
sion tree. Then, we retrain the classifier with a successive number of features,
starting from the most important one only, to the two most important ones, etc.
A reduced model is accepted as efficient if it recovers at least 95% of both the
precision and recall performance of the original model with all features.

Figure 3 shows the results of the feature reduction. Inspecting performance
trends from larger to smaller feature numbers, we observe that the detection rate
stagnates over most of the elimination process, before dropping abruptly when
the number of used features reduces beyond a limit. On average, the number
of monitored features and layers that are required to maintain close-to-original
performance (as defined above) are as few as 2 to 4 and 2 to 3, respectively. For
a model like Yolo, this means that only 2 out of the 75 convolution layers have
to be supervised. The average characteristics of the resulting detector models is
shown in Table. 1 as reduced (red) model.

84 F. Geissler et al.

5.2 Minimal Monitoring Features

Minimal Feature Search: The feature reduction process in Sect. 5.1 demon-
strates that only few strategic monitoring markers are needed to construct an
efficient detector model. In this section, we elaborate further to what extent the
model can be compressed, and which features are the most relevant. We apply
the following strategy, starting from a full classifier model using all quantile fea-
tures: 1) Apply the feature reduction technique described in Sect. 5.1 to identify
minimal monitoring features that maintain at least 95% of the original precision
and recall. This combination of features is added to a pool of minimal model
candidates. 2) A new instance of the full model is initiated and all feature can-
didates from the pool are eliminated. Return to the first step to find alternative
candidates until a certain search depth (we choose 24) is exhausted.

Universal Trends: The identified minimal feature combinations are shown
in Fig. 4. We find that just 2 features from 2 different layers are sufficient to
constitute an efficient error detector for all studied models except for AlexNet
(4 features from 3 layers).

Almost universally, one of the monitored layers needs to be among the very
last layers of the deep neural network. Since memory faults are injected randomly
across the network, errors in the last layers would go unnoticed otherwise. Only
for SSD models, it turns out that most of the SDC faults occur in earlier layers, so
that a supervision of the last layers is less crucial to achieve a similar statistical
detection performance. We observe that it is favorable to supervise a higher
percentile (e.g., q100) in the later layers, especially in more shallow networks
(AlexNet and SSD). This is because in shallow networks, peak shifts have a
shorter propagation path and hence it is more important to intercept faults
directly. This can only be achieved by the highest percentiles. In models with
ReLU activation functions (all except Yolo here), the minimum quantile does
not serve as a meaningful peak shift monitor as negative activations are clipped
automatically.

A second monitoring marker should to be set in the first half of the network
layer stack. This helps to identify input faults (which are interceptable from the
very first layer) and discriminate them from memory faults. Either a low or high
percentile can be chosen for supervision.

Explainability: Given the above generalizable trends and the fully transparent
nature of the classifier, we can make statements about the inner workings of the
DNN that correlate a given input with an anomalous or regular outcome. Those
statements can be interpreted intuitively by a human as a proxy of a decision,
and hence qualify as an explanation [2].

5.3 Overhead

We measure the average inference time per image when running the supervised
model on random input, using the Torch profiler [21]. The profiled overall self
compute time in Fig. 5 is shared between CPU and GPU. Compared to the

Monitoring Deep Neural Networks 85

Fig. 4. Minimal combinations of features as identified by the search process in Sect. 5.2.
All combinations in (a)–(e) constitute a reduced classifier model with at least 95% of
the performance of the respective full model. Inset numbers designate the percentile
numbers (or combinations thereof if multiple combinations are equally valid).

feature map tracing method of Schorn et al. [24,25], the quantile operation intro-
duces additional compute, but at the same time saves the time of storing large
tensors, due to the compression of many feature sums into only a few quantiles.

Between these two opposing trends, full quantile monitoring turns out to
be faster than feature map tracing for all the studied models except for the
shallow AlexNet, as shown in Fig. 5. If only selected layers are monitored to
create a reduced classifier, the overhead can be decreased significantly. We find
that the impact of minimal quantile monitoring on the overall inference time is
between +0.3% and +1.6% for all studied object detection DNNs. For the image
classification networks, on the other hand, quantile monitoring imposes a more
significant overhead of +10.7% (ResNet) and +53.8% (AlexNet). This is because

86 F. Geissler et al.

Fig. 5. Average inference time per image accumulated over CPU and GPU. We com-
pare the original inference, reduced and full quantile monitoring, and feature map
tracing (method of [24,25]). In the setup, we run 100 random images with a batch size
of 10 (with GPU enabled) and repeat 100 independent runs. System specifications:
Intel® CoreTM i9-12900K, Nvidia GeForce RTX 3090.

those networks have a much smaller number of parameters such that the relative
impact of quantile extraction with respect to the total number of operations is
higher. Across all models, minimal quantile monitoring is > 10% faster than
feature map tracing. In absolute numbers, the respective saving in inference
time can be up to ∼10ms, which is a significant improvement for applications
operating at real-time, for example object detection in a self-driving vehicle.

5.4 Comparison with Other Detector Approaches

Alternative to a decision tree, we can deploy a linear machine learning model
for error detection (similar to [24]). We study the feasibility of doing so in this
section. For this setup, we select Yolo+Kitti to train a classifier for 1000 epochs
using the Adam optimizer and cross entropy loss. A batch size of 100 and learning
rates optimized between 1×10−4 and 5×10−3 were chosen. In the simplest form,
with a multi-layer-perceptron, the algorithmic transparency is preserved and we
find Pcls = 86.0% and Rcls = 95.7%. If more hidden linear layers are added,
higher detection rates can be achieved at the cost of explainability. For example,
including one extra hidden layer with 64 neurons [24], we find a performance
of Pcls = 88.9% and Rcls = 96.3%, with three such extra layers we obtain
Pcls = 91.7% and Rcls = 95.1%. Compared to decision trees, however, this
strategy suffers from more complex hyperparameter tuning and large training
times. Therefore, decision trees are a better fit for our use case.

Monitoring Deep Neural Networks 87

6 Summary and Future Work

In this paper, we show that critical silent data corruptions in computer vision
DNNs (originating either from hardware memory faults or input corruptions)
can be efficiently detected by monitoring the quantile shifts of the activation
distributions in specific layers. In most studied cases, it is sufficient to supervise
two layers with one quantile marker each to achieve high error detection rates
up to ∼96% precision and ∼98% recall. We also show that the strategic moni-
toring location can be associated with the concept of intercepting bulk and peak
activation shifts, which gives a novel, unifying perspective on the dependability
of DNNs. Due to the large degree of information compression in this approach,
the compute overhead of the approach is in most cases only between 0.3% and
1.6% compared to the original inference time, and outperforms the compara-
ble state of the art. In addition, we show that the method contributes to the
model’s explainability as the error detection decision is interpretable and trans-
parent. For future work, we can further guide the search for optimized minimal
feature combinations, for example, by taking into account specifics of the model
architecture.

Acknowledgement. We thank Neslihan Kose Cihangir and Yang Peng for helpful
discussions. This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 956123. This work was
partially funded by the Federal Ministry for Economic Affairs and Climate Action of
Germany, as part of the research project SafeWahr (Grant Number: 19A21026C), and
the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

1. Balasubramaniam, A., Pasricha, S.: Object Detection in Autonomous Vehicles:
Status and Open Challenges (2022)

2. Barredo Arrieta, A., et al.: Explainable artificial intelligence (XAI): concepts, tax-
onomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–
115 (2019)

3. Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark.
arXiv:1906.07155 (2019)

4. Chen, Z., Li, G., Pattabiraman, K.: A low-cost fault corrector for deep neural net-
works through range restriction. In: Proceedings - 51st Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, DSN (2021)

5. Cheng, C.H., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activation
patterns. In: Proceedings of the 2019 Design, Automation and Test in Europe
Conference and Exhibition, DATE (2019)

6. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI
dataset. Int. J. Robot. Res. 32(11) (2013)

7. Geissler, F., et al.: Towards a safety case for hardware fault tolerance in convo-
lutional neural networks using activation range supervision. In: CEUR Workshop
Proceedings, vol. 2916 (2021)

http://arxiv.org/abs/1906.07155

88 F. Geissler et al.

8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: 3rd International Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings (2015)

9. Graefe, R., Geissler, F., Syed, Q.: Pytorch application-level fault injector (pytorch-
Alfi) (2022). https://github.com/IntelLabs/pytorchalfi

10. Hastie, T., Tibshirani, R., Friedman, J.: Springer Series in Statistics, vol. 27 (2009)
11. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to com-

mon corruptions and perturbations. In: 7th International Conference on Learning
Representations, ICLR (2019)

12. Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: abstraction-based mon-
itoring of neural networks. Front. Artif. Intell. Appl. 325 (2020)

13. Hoang, L.H., Hanif, M.A., Shafique, M.: FT-ClipAct: resilience analysis of deep
neural networks and improving their fault tolerance using clipped activation. In:
Proceedings of the 2020 Design, Automation and Test in Europe Conference and
Exhibition, DATE (2020)

14. Hong, S., Frigo, P., Kaya, Y., Giuffrida, C., Dumitras, T.: Terminal brain damage:
exposing the graceless degradation in deep neural networks under hardware fault
attacks. In: Proceedings of the 28th USENIX Security Symposium (2019)

15. Huang, R., Feng, W., Fan, M., Wan, L., Sun, J.: Multiscale blur detection by
learning discriminative deep features. Neurocomputing 285 (2018)

16. IEEE: 754–2019 - IEEE Standard for Floating-Point Arithmetic. Technical report
(2019). https://doi.org/10.1109/IEEESTD.2019.8766229

17. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-
scale hierarchical image database. In: IEEE CVPR (2009). https://doi.org/10.
1109/cvprw.2009.5206848

18. Li, G., et al.: Understanding error propagation in Deep Learning Neural Network
(DNN) accelerators and applications. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC
(2017)

19. Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial
perturbations. In: Proceedings of International Conference on Learning and Rep-
resentation (2017)

20. Microsoft: Coco 2017 dataset (2017). https://cocodataset.org/github.com/
cocodataset/cocoapi

21. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. (2011)

23. Qutub, S., et al.: Hardware faults that matter: understanding and estimating the
safety impact of hardware faults on object detection DNNs. In: Safecomp (2022)

24. Schorn, C., Gauerhof, L.: FACER: a universal framework for detecting anomalous
operation of deep neural networks. IEEE ITSC (2020)

25. Schorn, C., Guntoro, A., Ascheid, G.: Efficient on-line error detection and mitiga-
tion for deep neural network accelerators. In: Safecomp (2018)

26. Zhao, F., Zhang, C., Dong, N., You, Z., Wu, Z.: A uniform framework for anomaly
detection in deep neural networks. Neural Process. Lett. 54(4) (2022)

https://github.com/IntelLabs/pytorchalfi
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/cvprw.2009.5206848
https://doi.org/10.1109/cvprw.2009.5206848
https://cocodataset.org/github.com/cocodataset/cocoapi
https://cocodataset.org/github.com/cocodataset/cocoapi

Are Transformers More Robust? Towards Exact
Robustness Verification for Transformers

Brian Hsuan-Cheng Liao1,2(B), Chih-Hong Cheng3, Hasan Esen1, and Alois Knoll2

1 DENSO AUTOMOTIVE Deutschland GmbH, 85386 Eching, Germany
{h.liao,h.esen}@eu.denso.com

2 Technical University of Munich, 85748 Garching, Germany
knoll@in.tum.de

3 Fraunhofer IKS, 80686 Munich, Germany
chih-hong.cheng@iks.fraunhofer.de

Abstract. As an emerging type of Neural Networks (NNs), Transformers
are used in many domains ranging from Natural Language Processing to
Autonomous Driving. In this paper, we study the robustness problem of Trans-
formers, a key characteristic as low robustness may cause safety concerns. Specif-
ically, we focus on Sparsemax-based Transformers and reduce the finding of
their maximum robustness to a Mixed Integer Quadratically Constrained Pro-
gramming (MIQCP) problem. We also design two pre-processing heuristics that
can be embedded in the MIQCP encoding and substantially accelerate its solving.
We then conduct experiments using the application of Land Departure Warning
to compare the robustness of Sparsemax-based Transformers against that of the
more conventional Multi-Layer-Perceptron (MLP) NNs. To our surprise, Trans-
formers are not necessarily more robust, leading to profound considerations in
selecting appropriate NN architectures for safety-critical domain applications.

Keywords: NN verification · Robustness · Transformers · Lane Departure
Warning · Autonomous Driving

1 Introduction

Over the past decade, Neural Networks (NNs) have been widely adopted for many
applications, including automated vehicles (AVs) [2]. Lately, as an emerging type of
NNs, Transformers [29] are often found to be the most effective models, compared
to the more conventional Multi-Layer Perceptrons (MLPs) or their convolutional and
recurrent variants [6], thereby gradually replacing them in these applications. For
instance, Tesla and Cruise use Transformers in their perception units [5,27]. However,
most of the studies and discussions focus on evaluating NNs’ accuracy. Parallel research
has shown that NNs often lack robustness against input changes such as adversarial
attacks or domain shifts, hence hindering the overall dependability of the NN-based
applications [11,14,26].

The above background naturally prompts a question of whether Transformers
are more robust than MLPs, given the often better accuracy and wide applications.

This project has received funding from the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement No 956123 - FOCETA.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 89–103, 2023.
https://doi.org/10.1007/978-3-031-40923-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-40923-3_8

90 B. H.-C. Liao et al.

To answer this question, we study the maximum robustness of the NNs against local
input perturbations commonly modeled by lp-distances, i.e., exact robustness verifica-
tion (where p can be 1,2, ...,∞). Ultimately, the goal is to hold a direct comparison of
the robustness of the two kinds of NNs, Transformers and MLPs, and gain insights from
the results.

In the literature, research efforts have been made to enable exact robustness ver-
ification for MLPs, particularly ones with feed-forward layers and ReLU activation
function [4,7,19,28]. The main approach is to employ an optimization framework,
encode the NNs’ architecture into the constraints, and calculate the exact robustness
within some admissible input perturbation region [4,28]. However, there is still a gap
for Transformers’ exact robustness verification due to the more complex operations in
this kind of NNs, namely the dot product between variables and the activation func-
tion in the Multi-Head Self-Attention (MSA) block [29]. The existing (small volume
of) works handle these operations with approximations during verification yet at the
expense of verification precision [3,25] (more details can be found in Sect. 2).

Our work attempts to close the gap towards exact robustness verification for Trans-
formers but provides merely an interim solution. To elaborate, having formulated a
Mixed Integer Programming (MIP)-based optimization problem, we focus on the Trans-
formers that use Sparsemax (instead of Softmax) for MSA activation. This allows for
precisely encoding the NN into the MIP, or more particularly, Mixed Integer Quadrat-
ically Constrained Programming (MIQCP) due to the remaining quadratic terms. We
provide a comparison study to show that the Sparsemax-based Transformers perform
similarly to their Softmax-based counterparts. Then, to faster solve the MIQCP, we
devise two pre-processing heuristics that lead to a total speedup of an order of mag-
nitude. Notably, these heuristics are not restricted to our work but can be applied to
related studies.

We perform the experiments using a Lane Departure Warning (LDW) application,
which is widely adopted in AVs. Such an LDW application can be used for human
driving assistance or run-time monitoring on separate automated driving functions.
Essentially, an LDW application is a time-series classification and regression task. The
embedded model, usually an NN, has to predict the direction of and the time to a poten-
tial lane departure, given a sequence of past driving information such as the ego vehicle
velocity and estimated time to collision against adjacent vehicles. Our methodology
and experimental results, though limited (similar to the exact robustness verification
works focusing on ReLU-based MLPs), demonstrate that Sparsemax-based Transform-
ers tend to be less robust than similar-sized MLPs despite generally higher accuracy.
Resonating the government publications [8] and industrial guidelines [23], our findings
suggest that conducting thorough studies and providing rigorous guarantees on metrics
beyond accuracy is crucial before deploying an NN-based application. In summary, our
contributions include the following:

– To implement exact robustness verification for Sparsemax-based Transformers;
– To propose two accelerating heuristics for related robustness verification studies;
– To benchmark ATN and MLP accuracy and robustness with an industrial application
(i.e., LDW).

The rest of the paper is organized in the following way. Section 2 browses the rel-
evant literature emphasizing verification methods for general NNs and Transformers;

Towards Exact Robustness Verification for Transformers 91

Sect. 3 introduces the branch of Transformers concerned in this paper. Section 4 details
the problem formulation and our heuristics for robustness verification, whose effective-
ness and efficiency are demonstrated and discussed in Sect. 5. Lastly, Sect. 6 concludes
with a few final remarks.

2 Related Works

This section overviews related works, focusing on robustness verification for ReLU-
based MLPs (i.e., piece-wise linear feed-forward NNs) and Transformers.

2.1 Robustness Verification for Neural Networks

Following the common categorization [28], we introduce two main branches of ver-
ification methods: complete and incomplete. To illustrate the difference, we assume
an adversarial polytope to be the exact set of NN outputs resulting from the norm-
bounded perturbation region. To assert the robustness of the NN within the perturbation
region, complete methods handle the adversarial polytope directly, attaining an adver-
sarial example or a robustness certificate for each query when given sufficient process-
ing time. These methods usually apply Mixed Integer Programming (MIP) [4,19,28] or
Satisfiability Modulo Theory (SMT) [7,16,17], which in turn utilizes Linear Program-
ming (LP) or Satisfiability (SAT) solvers with accelerating techniques such as interval
analysis [4,7,28] or region partitioning [9] in a Branch-and-Bound (BnB) fashion [30].
By contrast, incomplete methods reason upon an outer approximation of the adversar-
ial polytope. Such reasoning typically results in faster verification time, yet possibly
some robust queries being evaluated non-robust due to the over-approximation. Com-
mon methods in this branch include duality [31], abstract interpretation [10] and Semi-
Definite Programming (SDP) [30]. For more details, interested readers are referred to
the survey paper [15].

2.2 Robustness Verification for Transformers

Transformers are typically more challenging to verify because they contain more com-
plex operations than other NNs, such as MLPs. We are only aware of two lines of
existing works [3,25], both conducted with sentiment classification in Natural Lan-
guage Processing. In [25], the authors calculate linear intervals for all operations in a
Transformer to find the lower bound of the difference between the Softmax values of
the ground-truth class and the most-probable-other-than-ground-truth class. If the com-
puted lower bound is larger than zero (within an admissible perturbation region), the
model is guaranteed robust since the prediction remains unchanged. As mentioned, the
effectiveness of such approaches depends heavily on how well the lower bound approx-
imates the actual difference of the Softmax values. Holding a similar strategy, the most
recent work [3] applies abstract interpretation and suggests techniques, such as noise
symbol reduction and Softmax summation constraint, to achieve better speed and pre-
cision during verification.

Our work differs from these verification frameworks in two ways. First, we find
Transfomers’ maximum robustness (i.e., minimum adversarial perturbation) through

92 B. H.-C. Liao et al.

Fig. 1. The Sparsemax-based Transformer under exact robustness verification [6,29].

precise MIP encoding and fasten the procedure with novel tactics, allowing us to com-
pare the robustness with common MLPs. Second, we conduct experiments with LDW,
an industrial application not used before in robustness verification studies.

3 Preliminaries

This section provides a brief description of the Transformer under verification. For a
more elaborate illustration of general Transformers, readers are referred to [6,29].

As shown in Fig. 1, a Transformer typically processes an array of embedded tokens
with alternating blocks of MSA and MLP, which are both preceded by Layer Normal-
ization (LN) and followed by residual connections1. Then, after another LN and token-
wise mean extraction, the network is appended with suitable affine heads for down-
stream predictions such as classification (CLS) and regression (REG). Mathematically,
given an input x ∈ R

N×D, in which N is the number of tokens and D the dimension of
features, we write:

z0 = x (1)

̂z� =MSA(LN(z�−1))+ z�−1, (2)

z� =MLP(LN(̂z�))+ ̂z�, (3)

f CLS(x) = CLS(˜zL) ∈ R
C, (4)

f REG(x) = REG(˜zL) ∈ R, (5)

1 Placing LN before MSA and MLP is found to give better network performance than placing it
after residual addition [32].

Towards Exact Robustness Verification for Transformers 93

in which ˜zL ∈ R
D is the token-wise mean of LN(zL) ∈ R

N×D , C is the number of
predefined classes and � = 1, . . . ,L is the layer index. We define the functions in the
following.

As introduced, we consider Sparsemax-based MSA with the definition:

[Qh,Kh,Vh] = zWQKV
h , (6)

Ah = Sparsemax
(

QhK
�
h /

√
DH

)

, (7)

SAh(z) = AhVh, (8)

MSA(z) = [SA1(z), . . . ,SAH(z)]WMSA, (9)

where z ∈ R
N×D is a general input matrix, Qh,Kh,Vh ∈ R

DH are the query, key and
value matrices for the h-th self-attention head, H is the number of self-attention heads,
DH is the dimension of each head, WQKV

h ∈ R
D×(DH ·3) and WMSA ∈ R

(DH ·H)×D are the
trainable weights, and h = 1, . . . ,H is the head index. Essentially, Sparsemax projects
an input vector u ∈ R

D to an output vector p ∈ R
D, where p1+ · · ·+pD = 1 and pi ≥ 0

for i = 1, . . . ,D (i.e., a probability simplex)2. Technically, it can serve as a piece-wise
linear approximation to Softmax [21]. Algorithm 1 and Fig. 2 provide the calculation
steps for a closed-form solution and the visualization of a 2D input-output relation.

To proceed with the Transformer architecture, MLP is a two-layer NN with ReLU
activation, written as MLP(v) = ReLU(vWMLP

1 + bMLP
1)WMLP

2 + bMLP
2 ∈ R

D, where
v ∈ R

D is the input vector and WMLP
1 ∈ R

D×DMLP , bMLP
1 ∈ R

DMLP , WMLP
2 ∈ R

DMLP×D,
bMLP
2 ∈ R

D the trainable parameters, and + the addition with broadcasting rules in

Fig. 2. Softmax vs. Sparsemax, given an input vector u= [t,0] ∈ R
2 (adapted from [21]).

Algorithm 1. Calculate Sparsemax activation [21]

1: Input: u ∈ R
D

2: Sort u into û, where û1 ≥ ·· · ≥ ûD
3: Find s(û) :=max

{

k ∈ [1,D] | 1+ kûk > ∑k
j=1 û j

}

4: Define τ(û) =

(

∑s(û)
j=1 û j

)

−1

s(û)
5: Output: p ∈ R

D, where pi =max(ui − τ(û), 0)

2 We write here in vector form (c.f. (1)-(3)) as the operations are applied vector-wise essentially.

94 B. H.-C. Liao et al.

common NN implementation libraries (see footnote 5). Similarly, we have the two affine
heads, CLS(v) = vWCLS+bCLS ∈ R

C and REG(v) = v ·WREG+bREG ∈ R, where v=
˜zL ∈R

D andWCLS ∈R
D×C, bCLS ∈R

C,WREG ∈R
D and bREG ∈R. Finally, we note that

a linearized variant of LN is used, i.e., LNi(v) =wi×(vi−μv)+bi, where v∈R
D is the

input vector, μv ∈ R its mean, LNi(v) the i-th element for i= 1, ...,D, and w ∈ R
D and

b ∈ R
D the trainable parameters5. Such modification avoids the division over relatively

small input variance σv in the quadratic LN definition, thereby allowing the variables
to be bounded more tightly [25].

4 Methodology

Having defined the Sparsemax-based Transformer, we now give the robustness prop-
erty for verification. Subsequently, we highlight our MIQCP encoding steps and two
heuristics that shall accelerate the solving of the encoded MIQCP.

4.1 Problem Formulation

We formalize the problem of robustness verification as follows: Let f (·) : RM → R
N

denote the NN under verification, x ∈ R
M the original data point on which the NN is

being verified, and x′ ∈ R
M a perturbed input which tries to deceive the NN, we write:

min
x′ Dp(x′,x) (10)

subject to x′ ∈ Bp(x), (11)

argmax
i

(f CLSi (x)) = gtCLS(x), (12)

argmax
i

(f CLSi (x′)) �= gtCLS(x), (13)

where Dp(·, ·) is the lp-distance with commonly used p ∈ {1,2,∞} and Bp(x) =
{x′ ∣

∣‖x′ − x‖p ≤ ε} the lp-norm ball of radius ε around x, gtCLS(x) ∈ {1, . . . ,C} the
ground-truth class label and f CLSi the i-th element of the classification head output. Con-
ceptually, the optimizer’s main task is to find within an admissible perturbation region a
perturbed data point closest to the original one and fulfills the misprediction constraints.
Due to the space limit, we write only the classification model here, but regression cases
can be derived similarly, as suggested by [3].

4.2 MIQCP Encoding

In the following, we highlight how to encode Sparsemax (i.e., Algorithm 1, Line 2- 4)
into the optimization problem (which will essentially be a MIQCP problem). Encoding
methods for other terms in the Transformer (e.g., affine transformation and ReLU) can
be seen in [4,19,28].

Towards Exact Robustness Verification for Transformers 95

For sorting (Algorithm 1, Line 2), we introduce a binary integer permutation matrix
P ∈ {0,1}D×D and encode the following constraints:

D

∑
i=1

Pi j = 1, for j = 1, . . . ,D; (14)

D

∑
j=1

Pi j = 1, for i= 1, . . . ,D; (15)

û= Pu, (16)

ûi ≥ ûi+1, for i= 1, . . . ,D−1, (17)

where u ∈ R
D is the (perturbed) input vector at Sparsemax and û the sorted output.

For calculating the support (Algorithm 1, Line 3), we first define a vector ρ ∈ R
D,

where ρk = 1+ kûk −∑k
j=1 û j (k = 1, . . . ,D), and then introduce another binary integer

vector ζ ∈ {0,1}D such that:

ζk =

{

1, if ρk > 0;

0, otherwise.
(18)

It can be seen that finding the support is equivalent to summing up the vector as
s(û) = ∑D

k=1 ζk. However, we actually need to implement the step function in (18) in
the MIQCP. For this, we introduce the Big-M method [12] with large positive constants

M+/−
k and a small positive constant η (e.g., 10−6) such that:

ρk ≤ M+
k ×ζk, (19)

−ρk+η ≤ M−
k × (1−ζk). (20)

We now provide two lemmas to explain how M+/−
k are set.

Lemma 1. For all k = 1, . . . ,D, the smallest value for the Big-M encoding in (19) is
optM+

k = 1.

Proof. We first rewrite ρk = 1+ kûk − ∑k
j=1 û j = 1+∑k

j=1(ûk − û j). Now, with the
sorting result (i.e., û1 ≥ û2 ≥ . . . ≥ ûD), it follows that 1 = ρ1 ≥ ρ2 ≥ ·· · ≥ ρD, hence
the lemma. �
Lemma 2. For all k = 1, . . . ,D, let the input of Sparsemax be bounded as uk ∈
[uk,uk] and η = 10−6. We first define λ ∈ R

D : λk = 1+ (k − 1)(u − u), where
u = min(u1, . . . ,uD) and u = max(u1, . . . ,uD). Then, the smallest value for the Big-M
encoding in (20) is optM−

k = |λk|+η , if λk ≤ 0; otherwise, (20) needs not be imple-
mented.

Proof. After sorting on u, we can only rely on vector-wise bounds for estimating û,
i.e., ûk ∈ [u,u]. Considering the result of sorting (i.e., û1 ≥ û2 ≥ . . . ≥ ûD), we can then
derive ρk = 1+ kûk − ∑k

j=1 û j = 1+∑k
j=1(ûk − û j) ≥ 1+(k− 1)(u− u) = λk. Now,

there are two cases: If λk ≤ 0, then the smallest value for (20) is optM−
k = |λk|+η .

Otherwise, ρk ≥ λk > 0 and (20) is not needed. �
Lastly, Algorithm 1 Line 4 can be encoded with a linear constraint for the summation
term and a quadratic constraint for the division. As such, we arrive at a plain MIQCP
encoding for quantifying the Sparsemax-based Transformer’s robustness.

96 B. H.-C. Liao et al.

4.3 Acceleration Heuristics

As related works indicate, one usually needs several acceleration heuristics to solve an
encoded MIP problem efficiently [4,19,28]. We present our proposals in this section.

Interval Analysis Interval analysis has been widely studied and proven effective in aid-
ing MIP solving [4,28]. The central idea is that with tight interval bounds propagated
across the network, non-linear functions such as ReLU or max can be constrained to
certain behaviors, thus avoiding undetermined variables. We extend this line of thought
by finding a novel bounding technique over Sparsemax3. Denoting the activation func-
tion as σ , (perturbed) input vector as z∈R

D, output vector as a, upper and lower bounds
as upper and lower bars, we have:

ai ∈ [ai, ai] =[σi(z1, . . . ,zi, . . . ,zD),
σi(z1, . . . ,zi, . . . ,zD)],

(21)

where i = 1, . . . ,D. Essentially, this formula stems from the observation that the lower
(upper) bound of the output of an element can be calculated by applying the activation
to a vector consisting of this element’s input lower (upper) bound and other elements’
input upper (lower) bounds. In our evaluation, we generally see much tighter intervals
(usually one-tenth of the simple probability interval [0,1]) with this technique.

Progressive Verification with Norm-Space Region Partitioning. Region partition-
ing shares a similar goal to interval analysis, attempting to tighten variable bounds and
generate faster solutions. Related works have focused on how to do partitioning and
prioritizing [9]. Our work differs slightly by exploiting the formulation of the optimiza-
tion problem and the observation that adversarial examples usually appear close to the
clean inputs. Hence, we propose a progressive verification procedure based on norm-
space region partitioning. To illustrate, given ε , the radius of the lp-norm ball, and a
partition step 0 < εstep ≤ ε , we first create a sub-region with a lower bound εmin = 0
and an upper bound εmax = εmin+ εstep and then run verification on this sub-region. If
the verifier cannot find a solution in the current sub-region, we move on to the next one
by setting εmin += εstep and εmax += εstep until the entire admissible region is covered.
As such, we generally obtain a tighter interval for the perturbed input variable (taking
p= 1, for instance):

0 ≤ εmin ≤ ‖x′ −x‖1 = ‖δ‖1 ≤ εmax ≤ ε (22)

⇒ εmin ≤
D

∑
d=1

|δd | ≤ εmax (23)

⇒ 0 ≤ |δd | ≤ εmax (24)

⇒ − εmax ≤ δd ≤ εmax (25)

⇒ x′
d ∈

[

x′
d , x′

d

]

=
[

xd − εmax, xd + εmax
]

, (26)

3 This technique also applies to Softmax.

Towards Exact Robustness Verification for Transformers 97

where d = 1, . . . ,D. The tightness of the variable intervals depends on the value of εmax.
If εmax grows towards ε , the variable intervals shall fall back to the original regions.
Nonetheless, considering adversarial examples often appear closely around the clean
inputs, we conjecture that early sub-regions would already contain one, offering a high
possibility for a quick solution.

We summarize the progressive procedure in Algorithm 2. Additionally, to prevent
the verifier from executing unboundedly, we place a pre-defined time limit tlimit on the
algorithm. We employ Gurobi 9.5 [13] to solve the progressively encoded MIQCPs
M . As shown in Line 3, for each call on a sub-region, the solver returns an interim
tuple including the optimization status s (being optimal, timeout or infeasible), solution
count n, objective ob j, counterexample x′, solving gap α and execution time texec. Based
on the interim tuple, we check if the verification is done optimally (OPT), timed out
with a sub-optimal solution (SAT), timed out with no solution (UNDTM), unsatisfied
(UNSAT), or to be continued with the next sub-region. Each of these conditions will be
appended with corresponding data from the interim tuple to form the final verification
result. Notably, apart from fastening the verification process, another advantage of such
a progressive procedure is that one can still attain a good lower bound of the optimal
objective if a timeout occurs (i.e., Algorithm 2, Line 9).

Algorithm 2. Verify an NN model with norm-space region partitioning
1: procedure VERIFYMODEL(f ,x,gt(x),ε,εstep,εmin,εmax, tlimit)
2: Encode f ,x,gt(x) into an MIQCPM with εmin and εmax
3: SolveM with Gurobi under tlimit and obtain an interim tuple (s,n,ob j,x′,gap, texec)
4: if s is optimal then
5: return (OPT, ob j, x′)
6: else if s is timeout and n > 0 then
7: return (SAT, ob j, x′, α)
8: else if s is timeout and n= 0 then
9: return (UNDTM, εmin)
10: else if s is infeasible then
11: tlimit -= texec
12: εmin += εstep
13: εmax = min(εmax+εstep, ε)
14: if εmin > ε then
15: return (UNSAT)
16: else
17: return VERIFYMODEL(f ,x,gt(x),ε,εstep,εmin,εmax, tlimit)
18: end if
19: end if
20: end procedure
21: Input: f , x, gt(x), ε , εstep, tlimit
22: Initialize: εmin ← 0, εmax ← εstep
23: veri f ication result = VERIFYMODEL(f ,x,gt(x),ε,εstep,εmin,εmax, tlimit)
24: Output: veri f ication result

98 B. H.-C. Liao et al.

5 Experimental Results and Discussions

This section presents the experimental results of the proposed method and techniques.
We first introduce the Lane Departure Warning (LDW) application, then show an accu-
racy benchmark, and finally present an ablation study on the heuristics and a robustness
comparison.

5.1 Lane Departure Warning

The LDW application performs a time-series joint classification and regression
task [20]. For training and evaluating the NNs, we utilize the High-D dataset4 [18],
a drone-recorded bird’s-eye-view highway driving dataset. For each vehicle in the
recordings, we process raw data into trajectory information, including the past ten
steps of time-wise features x ∈ R

10×14 (spanning across one second), the direction
gtCLS ∈ {0,1,2} of the lane departure (where 0 is no departure, 1 a left departure, and
2 a right departure), and the time gtREG ∈ [0,1] to the lane departure. More specifically,
the 14 features include left and right lane existence (2), ego distance to lane center (1),
longitudinal and latitudinal velocities and accelerations (4), and time-to-collision to sur-
rounding vehicles excluding the following one (7). Based on these features, the NN’s
task is to predict a potential lane departure direction (i.e., classification) and timing (i.e.,
regression) up to one second in the future.

5.2 Accuracy Benchmark

As a side experiment, we evaluate the accuracy of different NNs for LDW. For clas-
sification, the model is accurate if the predicted direction matches the ground-truth
direction; for regression, it is accurate if the predicted timing falls within 0.1 s from
the ground-truth timing. For the Transformers, we set H = 2,DH = 4,DMLP = 8 (as per
Sect. 3). For the MLPs, we replace the MSA within the Transformer with another MLP
of hidden-layer dimension DMLP = 16, resulting in similar numbers of network param-
eters. We implement the NNs with PyTorch [22], train them using the Adam optimizer
and a fixed learning rate of 0.003 for 50 epochs, and report the best results in Table 1.

As observed, even for a relatively small application (considering the variable dimen-
sions), the Transformers generally perform better than MLPs regarding accuracy. Addi-
tionally, NNs with piece-wise linear activation functions (i.e., Sparsemax and ReLU)
are on a par with, if not stronger than, the ones with Softmax or Tanh. This result corre-
sponds well with the original Sparsemax paper [21] and justifies the piece-wise linear
activation functions in exchange for better verifiability (as also suggested in [25]).

5.3 Ablation Study

We now conduct an ablation study on the acceleration heuristics described in Sect. 4.3,
using the Sparsemax-based Transformer with L= 1 and linearized LN. During our ver-
ification, we only allow the final token of the input variable x to be perturbed, resulting

4 The utilization of the High-D dataset in this paper is for knowledge dissemination and scientific
publication and is not for commercial use.

Towards Exact Robustness Verification for Transformers 99

Table 1. Accuracy of various NNs in LDW: Transformers tend to be more accurate than MLPs.
L denotes the number of layers in the NN as defined in Sect. 3. For LN, 2 denotes the quadratic
variant, 1 the linear variant, and 0 no layer normalization. Within each column, we mark the best
model overall in bold and the best model by its type (i.e., Transformer or MLP) in italic fonts.

Network Activation LN L= 1 L= 2

CLS REG CLS REG

Transformer Sparsemax 2 98.01% 87.24% 98.50% 91.49%

1 98.31% 88.46% 98.52% 91.39%

0 98.34% 90.38% 98.54% 92.31%

Softmax 2 98.01% 87.11% 98.55% 91.88%

1 97.95% 87.56% 98.61% 91.52%

0 98.21% 88.03% 98.64% 91.21%

MLP ReLU 2 97.62% 83.81% 97.81% 84.70%

1 97.46% 83.55% 97.89% 85.04%

0 97.68% 84.27% 97.92% 84.81%

Tanh 2 97.80% 83.20% 97.99% 84.63%

1 97.32% 82.93% 97.69% 84.81%

0 97.23% 83.02% 97.85% 85.14%

Table 2. Ablation study on the proposed acceleration heuristics, including interval analysis with-
out and with Sparsemax bounding (IA and IA-σ) and norm-space region partitioning with differ-
ent epsilon steps (RP-0.001, RP-0.005 and RP-0.01): Our two heuristics can give a total speedup
of up to one order of magnitude. We set ε = 0.05 in all experiments. We mark the best-performing
numbers of each sub-group in italic fonts if they are better than the control and further mark
the best-performing numbers across all heuristics in bold fonts. For the three listed samples, we
specify optimally solved cases asOPT and augment undetermined cases (UNDTM) with a lower
bound of the minimum adversarial distortion (better if higher) and satisfied cases (SAT) with the
MIQCP solution gap (better if lower).

Techniques Time elpased (s) Nodes explored Random samples

Mean Best Worst Mean Best Worst No. 1 No. 2 No. 3

Control 2367.14 89.63 3602.50 9326275 118329 16395255 (UNDTM, 0.0) (SAT, 1.0) OPT

IA 1703.65 330.26 3605.29 5370138 911639 13103193 (UNDTM, 0.0) OPT OPT

IA-σ 950.37 127.33 2936.72 3061462 247916 10298216 OPT OPT OPT

RP-0.001 755.66 7.08 3609.83 849968 11517 4058680 (UNDTM, 0.005) OPT OPT

RP-0.005 278.20 15.41 1276.86 276310 13734 1255818 OPT OPT OPT

RP-0.01 793.76 51.39 1556.72 1825979 70243 3429947 OPT OPT OPT

IA-σ+RP-0.001 852.67 5.36 3608.60 1689582 14557 6573066 (UNDTM, 0.004) OPT OPT

IA-σ+RP-0.005 296.90 7.74 1413.32 505555 7156 2413044 OPT OPT OPT

IA-σ+RP-0.01 222.68 59.56 644.10 494973 99642 1479260 OPT OPT OPT

100 B. H.-C. Liao et al.

in an encoded MIQCP with roughly 4000 linear constraints, 700 quadratic constraints,
400 general constraints (e.g., max or absolute operations) and 2500 binary variables.
We test the heuristics with five random samples from the curated dataset and summa-
rize the results in Table 2. All experiments are run with an Intel i9-10980XE CPU @
3.0GHz using 18 threads and 20 GB of RAM.

It is observed that the novel activation bounding technique is effective. Likewise,
progressive verification with norm-space region partitioning further reduces verifica-
tion time. However, the best epsilon step might vary among test cases as its magni-
tude does not necessarily correlate to the best-case verification speed. A reason behind
this might be the excessive number of MIP instances created by smaller epsilon steps.
Notably, combining interval analysis and progressive verification delivers a speedup of
approximately an order of magnitude.

5.4 NN Robustness Comparisons

For robustness comparisons, we first verify and compare the robustness of the afore-
mentioned Sparsemax-based Transformer and the similar-sized ReLU-based MLP.
They respectively achieve 98.31% and 97.46% in accuracy for classification in
Sect. 5.25. We set ε = 0.03 and p= 1 for the admissible �p-ball6 and enable IA-σ+RP-
0.01 from the previous section during verification. We collect results from 60 random
data points (on which the Transformer and MLP predict correctly before perturbation)
and plot the robustness comparison diagram in Fig. 3. Overall, excluding 2 points where
they draw, the Transformer is more robust than the MLP on 26 points yet less robust
on 32. The result shows that the Transformer is not necessarily more robust despite the
higher accuracy.

We further train and verify the robustness of five Transformers and five MLPs, each
on 20 data points, giving 100 samples for each NN type. For faster verification, we
set ε = 0.01 as the threshold for being robust and surprisingly find that the MLPs are
verified robust on all data points. In contrast, the Transformers are verified robust on
69 data points and have a mean robustness value of 0.0041 (excluding the robust ones).
Our finding is a counterexample to several testing results on vision tasks, which suggest
that Transformers are generally more robust [1,24]. Accordingly, it is believed that NNs
may perform differently in diverse domain tasks, and it is vital to rigorously evaluate
both accuracy and robustness before deploying NN-based applications.

5 Verifying the MLP follows similar steps in Sect. 4 except that the encoding is relatively simple
and can be solved by Mixed Integer Linear Programming (MILP).

6 The admissible perturbation region can be derived from input feature values analytically for
better physical interpretability. For example, we can set ε as the normalized value of ego car
lateral acceleration, considering it a decisive feature for LDW. Perturbations in this context can
stem from sensor noises or hardware faults. The binary features are not perturbed.

Towards Exact Robustness Verification for Transformers 101

Fig. 3. Robustness of the Transformer and MLP on 60 random data points (better if larger). The
dashed line highlights where they perform equally. There are 2 points on the dashed line, 26 in
the lower triangle and 32 in the upper one. Since verifying the Transformer still takes much time,
we report the lower bounds of the robustness values for the data points requiring more than one
hour to verify. This means the points marked by “lower” can be further pushed to the right if the
verifier is given more time. Nonetheless, this does not affect the overall observation as we ensure
all such cases are points where the Transformer performs more robustly already.

6 Conclusion

This paper works towards exact robustness verification for ATNs. Specifically, we focus
on Sparsemax-based ATNs, encode them into a MIQCP problem, and propose acceler-
ating heuristics for solving the problem faster. When applied, our proposals fasten the
verification process roughly one order of magnitude. We conduct experiments with a
Lane Departure Warning application and find that ATNs are less robust than MLPs in
our settings.

This initial study opens some interesting directions for further exploration. First,
as we consider only Sparsemax-based ATNs, we are exploring further techniques to
improve the bounds on Softmax that may facilitate its exact robustness verification.
Second, we evaluate only small-scale networks (approximately 1600 neurons) on one
dataset (with inputs of 14×10 dimensions). Whether our observations remain true for
larger-scale networks and more datasets is yet to be explored. Third, our problem for-
mulation only examines point-wise robustness verification for NNs. Such analyses can
be combined with systematic sampling and testing methods to give formal and statis-
tical guarantees on safety-critical applications. Lastly, our verification requires ground
truths and works only in design time. How to utilize the studied techniques in a run-time
setting remains an open question.

References

1. Bhojanapalli, S., Chakrabarti, A., Glasner, D., Li, D., Unterthiner, T., Veit, A.: Understanding
robustness of transformers for image classification. In: ICCV (2021)

2. Bojarski, M., et al.: End to end learning for self-driving cars (2016)
3. Bonaert, G., Dimitrov, D.I., Baader, M., Vechev, M.: Fast and precise certification of trans-

formers. In: PLDI (2021)

102 B. H.-C. Liao et al.

4. Cheng, C.H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural networks.
In: ATVA (2017)

5. Cruise: Cruise Under the Hood 2021, https://youtu.be/uJWN0K26NxQ?t=1342
6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition

at scale. In: ICLR (2021)
7. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: ATVA

(2017)
8. European Commission: EU AI Act (2021), https://artificialintelligenceact.eu/
9. Everett, M., Habibi, G., How, J.P.: Robustness analysis of neural networks via efficient par-

titioning with applications in control systems. IEEE Control Syst. Lett. 5, 2114–2119 (2021)
10. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: Ai2:

safety and robustness certification of neural networks with abstract interpretation. In: SP
(2018)

11. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
In: ICLR (2015)

12. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming tech-
niques. Optim. Eng. 3, 227–252 (2002)

13. Gurobi Optimization, LLC: Gurobi optimizer reference manual (2021)
14. Hu, B.C., Marsso, L., Czarnecki, K., Salay, R., Shen, H., Chechik, M.: If a human can see

it, so should your system: Reliability requirements for machine vision components. In: ICSE
(2022)

15. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks: Verifi-
cation, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37,
100270 (2020)

16. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.
In: CAV (2017)

17. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: An efficient SMT
solver for verifying deep neural networks. In: CAV (2017)

18. Krajewski, R., Bock, J., Kloeker, L., Eckstein, L.: The highD dataset: a drone dataset of nat-
uralistic vehicle trajectories on German highways for validation of highly automated driving
systems. In: ITSC (2018)

19. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward relu neural
networks (2017)

20. Mahajan, V., Katrakazas, C., Antoniou, C.: Prediction of lane-changing maneuvers with
automatic labeling and deep learning. TRR J. 2674, 336–347 (2020)

21. Martins, A.F.T., Astudillo, R.F.: From softmax to sparsemax: A sparse model of attention
and multi-label classification. In: ICML (2016)

22. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In:
NeurIPS (2019)

23. Poretschkin, M., et al.: AI assessment catalog (2023), https://www.iais.fraunhofer.de/en/
research/artificial-intelligence/ai-assessment-catalog.html

24. Shao, R., Shi, Z., Yi, J., Chen, P.Y., Hsieh, C.J.: On the adversarial robustness of vision
transformers. In: UCCV (2021)

25. Shi, Z., Zhang, H., Chang, K.W., Huang, M., Hsieh, C.J.: Robustness verification for trans-
formers. In: ICLR (2020)

26. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE
Trans. Evol. Comput. 23, 828–841 (2019)

27. Tesla: Tesla AI Day 2022, https://www.youtube.com/live/ODSJsviD SU?feature=share&
t=4464

28. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with mixed integer
programming. In: ICLR (2019)

https://youtu.be/uJWN0K26NxQ?t=1342
https://artificialintelligenceact.eu/
https://www.iais.fraunhofer.de/en/research/artificial-intelligence/ai-assessment-catalog.html
https://www.iais.fraunhofer.de/en/research/artificial-intelligence/ai-assessment-catalog.html
https://www.youtube.com/live/ODSJsviD_SU?feature=share&t=4464
https://www.youtube.com/live/ODSJsviD_SU?feature=share&t=4464

Towards Exact Robustness Verification for Transformers 103

29. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
30. Wang, S., et al.: Beta-crown: efficient bound propagation with per-neuron split constraints

for complete and incomplete neural network verification (2021)
31. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the convex outer

adversarial polytope. In: ICML (2018)
32. Xiong, R., et al.: On layer normalization in the transformer architecture. In: ICLR (2020)

Model-Based Security and Threat
Analysis

Model-Based Generation of Attack-Fault
Trees

Raffaela Groner1 , Thomas Witte1 , Alexander Raschke1(B) , Sophie Hirn1,
Irdin Pekaric2,3 , Markus Frick2, Matthias Tichy1 ,

and Michael Felderer2,4,5

1 Institute of Software Engineering and Programming Languages, Ulm University,
Ulm, Germany

{raffaela.groner,thomas.witte,alexander.raschke,sophie.hirn,
matthias.tichy}@uni-ulm.de

2 Department of Computer Science, University of Innsbruck, Innsbruck, Austria
{irdin.pekaric,markus.frick,michael.felderer}@uibk.ac.at

3 Department of Information Systems and Computer Science,
University of Liechtenstein, Vaduz, Liechtenstein

4 Institute for Software Technology, German Aerospace Center (DLR),
Cologne, Germany

5 Department of Mathematics and Computer Science, University of Cologne,
Cologne, Germany

Abstract. Joint safety and security analysis of cyber-physical systems
is a necessary step to correctly capture inter-dependencies between these
properties.

Attack-Fault Trees represent a combination of dynamic Fault Trees
and Attack Trees and can be used to model and model-check a holistic
view on both safety and security. Manually creating a complete AFT for
the whole system is, however, a daunting task. It needs to span multiple
abstraction layers, e.g., abstract application architecture and data flow
as well as system and library dependencies that are affected by various
vulnerabilities.

We present an AFT generation tool-chain that facilitates this task
using partial Fault and Attack Trees that are either manually created or
mined from vulnerability databases. We semi-automatically create two
system models that provide the necessary information to automatically
combine these partial Fault and Attack Trees into complete AFTs using
graph transformation rules.

Keywords: AFT · CPS · safety analysis · security analysis

1 Introduction

As cyber-physical systems (CPS) become more and more ubiquitous, safety and
security analysis of such systems must take new and emerging problems into con-
sideration. The proliferation of connected and smart devices, their interaction,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 107–120, 2023.
https://doi.org/10.1007/978-3-031-40923-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_9&domain=pdf
http://orcid.org/0000-0001-8744-9203
http://orcid.org/0000-0001-5391-7419
http://orcid.org/0000-0002-6088-8393
http://orcid.org/0000-0002-0706-3202
http://orcid.org/0000-0002-9067-3748
http://orcid.org/0000-0003-3818-4442
https://doi.org/10.1007/978-3-031-40923-3_9

108 R. Groner et al.

and constantly changing software (e. g., due to over-the-air updates) leads to new
safety and security problems. In particular, the increasing inter-connectivity of
CPSs has a significant impact on their security. The amount of reported vulnera-
bilities increases year by year1. Each vulnerability can cause a failure of (parts of)
the system, which in turn may affect its safety. In consequence, safety and secu-
rity analysis in isolation, and without consideration of the specific environment
the system is used in, usually cannot capture inter-dependencies between these
concerns easily. The heterogeneity of CPSs in terms of hardware, but especially
in terms of operating system versions with different installed package versions,
requires that the deployed CPSs are analyzed and constantly monitored during
operation.

Attack-Fault Trees (AFT) as a combination of Attack Trees and dynamic
Fault Trees enables the joint analysis of safety and security properties in a single
modeling formalism [1,7]. The AFT model can then be checked using existing
model-checking techniques, e. g., critical path analysis or calculation of failure
rates and probabilities. Generating large AFTs for realistic systems by hand,
however, is error-prone and infeasible. It is much easier for safety experts to
model Fault Trees on a system level and for security experts to create Attack
Trees for used components [5].

These partial models are often on very different levels of abstraction. On the
one side, a Fault Tree for a safety hazard ends on the level of logical system
components and data channels. On the other side, vulnerabilities are reported
on the level of packages and libraries and not on the level of components. The
creation of an Attack Tree for a component thus requires intimate knowledge
of the implementation of this component. Our approach attempts to bridge this
gap of abstraction levels by deriving system dependency models from a running
system and combining Fault Trees and Attack Trees into an AFT on this basis.
Since we allow the extension of the generated models by manual models at each
modeling level, we refer to our approach as semi-automatic.

In this paper, we present our toolchain (Fig. 1) and preliminary evaluation
for the semi-automatic generation of AFTs, previously outlined in [22]: As an
input, we use Attack and Fault Trees created by security and safety experts
respectively as well as additional Attack Trees, that are automatically mined
from vulnerability databases for components, tools and libraries found on the
analyzed system. Compared to [22], which provided a vision of the approach,
this paper provides a complete running pipeline.

In order to combine these partial models into a single AFT, we use infor-
mation from two system models. Separate models for the logical system archi-
tecture and dataflow (Dataflow Model), and the deployment and dependencies
of these logical components (Deployment Model) are automatically derived from
the running system and used to provide the necessary information to combine
higher-level Fault Trees with system-level Attack Trees.

We then use graph transformation rules inferred from typical attack and
fault propagation patterns to identify and generate missing AFT fragments to

1 https://www.cve.org/About/Metrics.

https://www.cve.org/About/Metrics

Model-Based Generation of Attack-Fault Trees 109

bridge the abstraction gap between the partial attack and Fault Trees. To reduce
the number of candidate Attack Trees to attach to the partial Fault Trees, we
annotate basic events with impact requirements for potential attacks. These
requirements are then propagated and matched with the impact scores of basic
attack steps derived from vulnerability databases.

Fig. 1. Overview of the AFT generation toolchain and its models. Data sources for
model generation are shown on the left and resulting models on the right.

We evaluate our implementation by analyzing a quadcopter system: the quad-
copter pose is tracked using multiple cameras. Flight trajectories that avoid
obstacles are generated on a PC and then sent to the quadcopter. Our toolchain
connects to the system, automatically gathers dataflow and deployment informa-
tion of the system, mines vulnerability databases for found library and system
dependencies, and generates initial Attack Trees. Then it combines these models
with manually created Fault Trees, using dataflow and deployment information
to complete the Fault Trees to full AFTs that include potential system vul-
nerabilities. On the intentionally not updated operating system, our approach
successfully found some possible attacks that might lead to the hazards modeled
in the Fault Trees and created meaningful AFTs for this scenario.

However, we identified some possible improvements especially with respect
to the mapping of software packages to vulnerabilities in CVE-databases and
related the precise decision, which of the generated Attack Trees can be applied
to an AFT to minimize the amount of false positives.

The outline of the paper is as follows: Sect. 2 shortly introduces besides nec-
essary background on safety and security models, security metrics, and the robot

110 R. Groner et al.

operation system, a running example used in the remaining paper. In Sect. 3, we
present our approach to combined safety and security modeling and analysis fol-
lowed by a discussion of its chances and limitations in Sect. 4. Section 5 compares
the presented approach to related ones before Sect. 6 concludes the paper.

2 Background

This section provides a short overview of safety and security models used in
the following sections. We also provide a short overview of common vulnera-
bility metrics and the robot operating system (ROS), the system platform our
demonstrator focuses on.

2.1 Fault/Attack Trees and Their Combination

Fault Trees (FT) are a popular model formalism from safety analysis that is
used to model possible hazards and their causes [21]. There are several variants
of FTs [15], but we will restrict ourselves to a model formalism including complex
gates like SAND or PAND similar to dynamic FTs [3] for modeling.

Attack Trees (AT) [10,18] are models used to represent adversary actions
regarding how a certain system or component can be targeted. Vertices present
intermediate targets or attack steps (i. e., various types of exploits or vulner-
abilities). Edges represent dependencies among the actions and (intermediate)
targets. By introducing logical gates (AND, OR, PAND, SAND, etc.) more com-
plex attack scenarios can be modeled. A path from a leave to the root of an AT
is called an attack path [8]. Moreover, weights can also be assigned to edges to
include costs, probability, risks, or other metrics.

Automatic generation of (simple) ATs is a complex task that can be achieved
by employing various existing databases that include vulnerability, library,
attack, and severity data.

Attack-Fault Trees (AFT) [7,11] integrate Attack Trees within Fault Trees.
This is achieved by redefining the basic events of a FT which now describe not
only accidental events (e.g., the sudden failure of a component) but also the
failure of a component due to the malicious actions of an attacker. While ATs
usually describe a general attack pattern, the Attack Trees attached to FTs must
be directed at a specific target. Therefore, it is necessary to make the definition
of ATs more specific for this purpose, as described in [11].

In our approach, an attack event consists of a description of the attack, a
reference to a model element from the deployment or the dataflow model (see
Sect. 3.1) and a requirement in the form of minimum CIA values (see Sect. 2.2)
that an attack on the linked component must possess in order to trigger the
attack. Adapted from the external events from Vesely et al. [21], we use a house
shape to represent our attack events graphically.

Model-Based Generation of Attack-Fault Trees 111

2.2 Vulnerability Metrics

In the following, we discuss vulnerability-related terms that are utilized in the
proposed modeling approach. CVE2 data is used to uniquely distinguish differ-
ent vulnerabilities. CWE3 entries represent specific higher-level groups to which
CVEs are assigned in order to provide a hierarchy for vulnerability data. There
exist two main hierarchies, which divide them into software and hardware weak-
ness types. Most of the CVEs contain a CVSS4 vector. It provides various types
of qualitative scores related to the severity of the vulnerability. Besides some
more detailed information assessing the severity, it contains information about
the impact of a CVE, the so-called CIA triad [16].

CPEs5 represent various systems, software, and platforms, which are repre-
sented using syntax for Uniform Resource Identifiers (URI) including a specific
version of a software or library. This allows security engineers and researchers
to exactly know which software is affected by a certain CVE. In cyber-security,
attacks can also occur by exploiting multiple vulnerabilities, which form attack
chains. Some of these chains are similar in a way that they address CVEs
that belong to the same CWE or they have corresponding mechanics. In order
to represent these similarities, CAPEC6 entries were created, which allow an
easy understanding of common attacker actions. The aforementioned databases
present a solid foundation for the proposed approach since they include vulner-
abilities, weaknesses, platforms, and attack patterns.

2.3 Robot Operating System (ROS)

While our safety and security analysis toolchain is technology and system agnos-
tic, we implemented specific dataflow and deployment generators for the Robot
Operating System (ROS). ROS [9] is a middleware for component-based robotic
applications. It consists of various helper libraries, e.g., for message transport,
standardized interfaces, and tools. Components, called Nodes, communicate over
named and typed channels (Topics) and via RPC (Services). Application com-
ponents can use multiple implementation languages; 3rd party components pro-
vided by, e.g., hardware manufacturers might act as black boxes, showcasing
heterogeneous systems in need of joint safety and security analysis of the system
as a whole.

2.4 Running Example

As a running example, we present the following scenario: an autonomous drone
might pose an injury hazard to a bystander in case of a collision. This can be

2 Common Vulnerabilities and Exposures, https://cve.mitre.org/.
3 Common Weakness Enumeration, https://cwe.mitre.org/.
4 Common Vulnerability Scoring System, https://www.first.org/cvss/.
5 Common Platform Enumerations, https://nvd.nist.gov/products/cpe.
6 Common Attack Pattern Enumeration and Classification, https://capec.mitre.org/.

https://cve.mitre.org/
https://cwe.mitre.org/
https://www.first.org/cvss/
https://nvd.nist.gov/products/cpe
https://capec.mitre.org/

112 R. Groner et al.

caused through a mechanical malfunction causing the accident, or as a result of
an attack on the control system of the drone.

The drone control system in our quadcopter lab consists of a camera array for
optical tracking, that calculates the exact position and orientation of the drone at
a high frequency. This pose data is then sent to a ROS application, which consists
of several components that implement trajectory planning, obstacle avoidance,
and position control, among others. The quadcopter is connected via WiFi and
control commands are sent to it using the AR.Drone SDK, closing the position
control loop.

We create a Fault Tree to model the injury hazard: if one or more components
or channels in the position control loop fail, a drone operator standing near
the drone might be injured. Refining this FT and figuring out which software
vulnerabilities, exploits or weaknesses might be applicable to trigger these fault
events is done using our proposed AFT generation toolchain. An excerpt of the
generated AFT is shown in Fig. 3. Two potential attacks that might lead to a
failure of the position controller are identified and attached based on libraries
used by this component.

3 SafeSec Attack-Fault Tree Generation Toolchain

We developed the SafeSec Attack-Fault Tree Generation Toolchain (SAFT-GT)
(Fig. 1) to semi-automatically create and analyze AFT models for self-adaptive
systems. Our toolchain uses dataflow (Sect. 3.1), and deploymentmodels(Sect. 3.2)
to capture the state of the system and uses this information to automatically com-
bine generated Attack Trees (Sect. 3.3) and manually created Fault Trees that use
different abstraction levels. A set of combination rules is used to find and con-
nect theseAFT fragments (Sect. 3.4). The complete toolchain including themodels
used for the running example can be downloaded here: https://www.uni-ulm.de/
in/sp/research/projects/safesec/

3.1 Dataflow Model

Our dataflow model captures the logical components and dataflow of the system.
We separate this logical view on the system from the actual implementation and
deployment in the deployment model. The meta-model of the dataflow model
is rather simple: it consists of components – entities that provide, transform
or process data – and channels – ways for components to communicate, send
messages or observe the state of other components.

This high level of abstraction is necessary to easily map basic fault events
to system components and channels. A safety engineer manually creating Fault
Trees for the system needs to specify the origin of basic fault events by annotating
respective components and channels.

We designed the model to be simple to generate for systems using different
middlewares or frameworks. Our model simplifies the ROS component meta-
model similar to the abstract component meta-model in [4] in order to easily

https://www.uni-ulm.de/in/sp/research/projects/safesec/
https://www.uni-ulm.de/in/sp/research/projects/safesec/

Model-Based Generation of Attack-Fault Trees 113

generate and integrate dataflow models from ROS systems as well as other sys-
tems. ROS nodes are mapped to components while ROS topics, services, and
actions are mapped to channels. Additionally, the model is designed to be man-
ually extensible: additional components and channels can be defined manually
and interface with the rest of the model. For example, the camera system and
infrastructure to optically track quadcopters might be manually added including
an optical channel from the quadcopter to the camera components to model the
optical tracking of the quadcopter position.

Our implementation includes a dataflow model generator for ROS2 systems.
ROS nodes do not define their interface statically, but connect to topics and ser-
vices dynamically. Therefore, our generator consists of a single ROS node, that
can be triggered to collect architecture and dataflow data using ROS’ introspec-
tion capabilities at runtime. Due to its design as a daemon that collects data at
runtime, the generation of the dataflow model is fast and captures exactly the
current state of the system. The generator can be triggered repeatedly in order
to monitor the system for changes or architecture reconfigurations. Deriving
the dataflow model from a static configuration/composition description instead
would require complex static analysis and access to the source code of all nodes.

3.2 Deployment Model

In order to bridge the gap between the high-level dataflow model and the compo-
nents that are deployed on a certain system, we introduce a so-called deployment
model. This model contains the information which component is running on
which system. Our toolchain automatically extends this initial information with
the files and ultimately the libraries, a component depends on. Dependencies
that cannot be derived automatically (e.g., because the platform a component
runs on cannot be reached by our analysis tool) can be given manually.

Unlike other existing tools, such as snyk7, we do not rely on component source
code to obtain dependency information. Instead, our tool uses information about
the open files of a component’s running processes.

Fig. 2. Simplified meta-model of deployment model.
7 https://snyk.io.

https://snyk.io

114 R. Groner et al.

Figure 2 shows a slightly simplified meta-model of the deployment model.
Due to limited space, the Channels are shown but not described further below.
A Deployment Element is either a newly defined Component or a reference to
a dataflow component (RefComponent). Each component has a type (e.g., File,
Library, Package, Platform, OS, HW, Sensor, Actor, ...) and arbitrary properties
(key/value-pairs whose interpretation depends on the type). A (low level) com-
ponent might have a CPE entry or CVSS requirements. If these requirements
are met by an appropriate attack, the component can be considered as corrupted
(see Sect. 3.4).

Each deployment element can be executed on another element. In our run-
ning example most ROS nodes run on a PC called “rosbox”. The properties of
this “rosbox”, including information how our analysis tool can reach this PC,
are used to gather more detailed information about the components running
on it. A deployment element can also depend on other elements. For instance,
the component “default_FARFETCH_bebop_position_control” of our running
example depends on library “fast_dds” in version 2.1.1 (compare Fig. 3). This
dependency information is generated recursively by our analysis tool via the used
files and libraries of a component returned by Unix tools like lsof and ldd. Sys-
tem specific package managers like apt and dpkg abstract this information into
package names for which CVEs can be found. So far, the tool supports Ubuntu
and Gentoo as platforms, but its architecture includes several abstraction layers
to facilitate the integration of other platforms.

The next step is to find the corresponding CPE for each identified pack-
age. For this purpose, we use the tool CPEguesser8 in combination with some
heuristic preprocessing like shortening names, removing additional version infor-
mation, etc. Both lists, CPEs and all packages for which no CPE entry can be
found, are then passed to the Attack Tree Generator to find possible CVEs for
these pieces of software.

3.3 Attack Tree Generation

The Attack Tree generator searches for vulnerabilities for a given set of software
packages and generates (simple) ATs for each. Common CVE databases are
utilized for this purpose. The selection of public information security databases
was conducted based on the studies by Sauerwein et al. [17] and Pekaric et al.
[13]. As a result, NVD and MITRE databases were chosen as the most current
and credible sources. For faster querying, all CVEs of these databases (including
meta-information like CVSS) are cached in a local database.

For CPEs, a specific query can be executed, while for general packages, a
full-text search is performed. Once one or several CVEs are found for an entry,
an Attack Tree containing all identified attack paths is generated using our self-
defined DSL.

In order to obtain a more extensive list of related CVEs, the CWE data, its
hierarchy, and especially their relationship information like PeerOf, CanFollow,

8 https://github.com/cve-search/cpe-guesser.

https://github.com/cve-search/cpe-guesser

Model-Based Generation of Attack-Fault Trees 115

and CanPrecede is considered in order to create attack chains in which multiple
CVEs are linked using SAND, AND, and OR gates, telling the combination
in which different CVEs must be exploited to conduct more complex attacks.
Besides these automatically generated Attack Trees (ATs), more complex attack
scenarios are only in a later step with the help of manually predefined AFT
fragments.

3.4 Attack-Fault Tree Generation

Fig. 3. Generated AFT for the running example (truncated for readability).

The AFT generation, as shown in Fig. 1, mainly consists of combining fragments
using model transformations based on our different input models. Overall, the
AFT generation can be divided into three phases. First, the FT that forms the
upper part of an AFT is copied into a new AFT model. Second, the newly
generated AFT model is extended using manually (pre-)defined AFT fragments,
which represent generic, common attack patterns. Third, appropriate ATs are
attached at the leaves of the created AFT model.

To decide whether an AFT fragment or an AT can replace an attack event
and thus be attached to the AFT we use the information about the system
provided by the dataflow and the deployment model. Since copying the FT into
the AFT is trivial, we will present only the last two phases of AFT generation.

AFT Fragments-Phase: The goal of the second phase is to create a bridge
between the more abstract FTs, which are based on events caused by corrupted

116 R. Groner et al.

logical data flow or components, and the very technical ATs, which model, e.g.,
attacks on individual hardware or protocols. This bridge is formed by our AFT
fragments. These fragments represent different attack patterns that help to break
down the more abstract attack events of the FT to the same level as the ATs.
Such a fragment describes for example the individual steps, which are necessary
to perform an adversary in the middle attack (AiTM) or another one describes
the relationship that when a sender is corrupted its associated channel on which
it transmits is also corrupted.

We have defined two types of preconditions for each AFT fragment, which
must be fulfilled, to replace an attack event in the AFT. The first type of pre-
condition defines the context of an attack event, namely the dataflow and/or
components of the underlying system necessary to perform an attack. The con-
text of an attack event is defined by the referenced deployment model element or
dataflow model element. For example, an attack event must reference a channel
from the dataflow model and the deployment model must define a communica-
tion over TCP/IP or UDP for the channel to be prone to an AiTM attack and
thus allow to attach the respective fragment. In order to attach the AFT frag-
ment describing the relationship between a corrupted sender and its channel, an
attack event needs to reference a channel and there needs to be a component in
the dataflow model which writes to this channel.

The second type of precondition is the expected impact of an AFT fragment
to the confidentiality, the integrity and the availability (CIA triad) of the com-
ponent or channel referenced by an attack event. Each of the three aspects can
take one of four values, namely * (any), L (low), N (neutral) and H (high). A CIA
value required by an attack event is satisfied if the attack described by an AFT
fragment provides the same or a higher impact for a given aspect. For this we
use the following order of the values: * < L < N < H. For example, the attack
event “VRPN data is not transmitted” from our original FT defines that it can be
replaced by an AFT fragment whose attack has a low impact on the confidential-
ity and a more than neutral impact on the integrity and availability. Thus, even if
the context is correct, an AiTM attack which aims to obtain data cannot replace
this attack event since the confidentiality value of this AiTM attack is high and its
integrity and availability values are low. Our AFT fragment describing the rela-
tionship between a corrupted sender and its channel, defines that such an attack
towards a sender has a high impact on the integrity and a neutral impact on the
confidentiality and availability. Thus, this AFT fragment satisfies both types of
preconditions specified by the attack event “VRPN data is not transmitted” from
our initial FT and is attached to the AFT, as shown in Fig. 3.

AFT fragments can also introduce new attack events, which then can be
further replaced with other AFT fragments or ATs. For example, “Sender is cor-
rupted” in Fig. 3 is an attack event introduced by our AFT fragment describing
the relationship between a corrupted sender and its channel.

In our proof of concept implementation, we manually defined five AFT frag-
ments and their preconditions, which we have developed based on our expertise
in modeling AFTs and ROS. We also analyzed the available list of CAPEC

Model-Based Generation of Attack-Fault Trees 117

entries to identify entries that are suitable as a basis for AFT fragments and,
e.g., used the CAPEC-94 [2] as basis for our AiTM AFT fragment.

Append AT-Phase: In the last phase of AFT generation, we attempt to replace
attack events that were not replaced in the previous phase or are newly added
by the AFT fragments with generated ATs. In order to decide whether an AT
is suitable to replace an attack event or not we use the same two types of pre-
conditions, namely the context and the CIA values defined the respective attack
event.

Since we generate the ATs, their preconditions regarding their context are
much simpler than for the AFT fragments we define manually. For an AT, the
precondition for its context is already fulfilled if the context referenced by the
attack event is mentioned in the description, the CPE or the name of the AT. If
an attack event references a deployment model element, it is checked whether this
referenced element or one of its subcomponents is affected by the attack described
in the AT. If the attack event references a dataflow element, the deployment
model is first searched for a more precise system description for the referenced
dataflow model element. If a corresponding element is found in the deployment
model, it is checked as before whether this element or one of its subcomponents
is affected by the attack described in the AT.

To decide whether the values of the CIA triad are fulfilled by the attack we
use the corresponding values from the CVSS vector of the generated AT and the
same rules as already used to attach our AFT fragments. In our example, the
attack event “The position controller does not work” defines that an attack must
have at least one low impact on the confidentiality and at least a neutral impact
on the integrity and availability. This requirement is fulfilled by two generated
ATs since according to its CVSS vector the AT “Insufficient Control of Network
Message Volume” contains the value high for confidentiality and availability and
a neutral one for the integrity. The CVSS vector for the AT “Untrusted Search
Path” even possesses a value high for all three CIA values. Since we rely on CIA
values, our approach is limited to ATs that possess a CVSS vector.

4 Discussion

We have modeled two different FTs to demonstrate the feasibility of our app-
roach. The first one describes the possible injury of a person by a drone, we
have also used this FT in our running example. The second FT describes how a
privacy violation by a drone can occur due to errors or malicious behavior. We
performed our AFT generation for both FTs in the context of our quadcopter
lab. In total, the three phases of the AFT generation took approx. 15 s for the
first and 10 s for the second FT on a Intel Core i7-3770 CPU with 16GB RAM.

Based on these results and a manual review of the generated AFTs, we can
conclude that the whole pipeline, starting with the automated dataflow extrac-
tion of a (intentionally not updated) running ROS system generates correct
and useful AFTs in a reasonable time. The most time consuming part is the
search for vulnerabilities, especially in the case of full-text search. To improve the

118 R. Groner et al.

performance, the intermediate results could be cached and only recalculated, if
new CVEs are reported and/or new package/file (versions) are detected.

Unfortunately, some of the generated and attached attacks are false posi-
tives: The AT “Untrusted Search Path” fulfills all our preconditions, but the
described attack does not apply to our system. The reason for this is that identi-
fying software and software versions and mapping them to vulnerability data is
hard. CPEs mitigate this problem by uniquely identifying affected software and
software versions. However, to our knowledge, no mapping between arbitrary
OS packages and CPEs exists and not all CVE entries contain affected CPE
information. Our fallback to a full-text search may result in wrong or incom-
plete mappings due to different package names (e.g., software split into multiple
packages, OS specific package naming), different versioning (e.g., due to addi-
tional applied patches), or renamed software projects. We only applied some
simple heuristics, and thus the results can definitely be improved by using more
sophisticated mining techniques such as NLP and/or by merging more detailed
package databases. We think, this is an interesting research field that many other
CVE-related research approaches could benefit from.

Moreover, our precondition consisting of the consideration of the three CIA
values may be too vague to decide reliably whether an AFT fragment or an
AT should be attached or not. Here, a solution could be to include the other
metrics provided by a CVSS vector in the decision. In addition, we have defined
only a few AFT fragments and we did not yet conduct a structured review of all
CAPEC mechanisms and other related taxonomies of common attack patterns to
derive and evaluate a complete set of general AFT fragments. We envision future
iterations of our toolchain to provide a core set of general AFT fragments that
can then be tailored toward specific domains and application areas by adding
additional, more specific, AFT fragments.

5 Related Work

The research field of combined security and safety analysis in software and sys-
tems engineering is huge [14]. For this reason, we will concentrate on the aspect
of Attack/Fault Tree generation in our discussion of related work and only briefly
address other aspects.

The idea of generating fault- or attack graphs is not new. Swiler et al. [20]
present a tool that generates attack graphs based on an assessment of security
attributes and vulnerabilities in computer networks. Similar to our presented
approach the authors use vulnerability scanning tools and attack templates.
They mention the integration of an attacker profile might be interesting but
also do not take this into account. Besides their focus on network attacks, the
main difference to our approach is our attempt to combine the generated Attack
Trees with Fault Trees. The configuration files introduced by Swiler et al. are
similar to our dataflow and deployment models, but we generate these partially
automatically.

Kotenko et al. [6] utilize in their approach for Attack Tree generation similar
techniques as proposed by us: CPEs are used to identify CVEs for components

Model-Based Generation of Attack-Fault Trees 119

and CAPECs are employed for the generation of more complex attack scenarios.
However, the main difference is their focus on network scenarios. Therefore, they
use network security detection tools to identify possible vulnerabilities. Instead,
we build upon software packages of a running (ROS) system. Similarly, Ou et
al. [12] generate attack graphs for network topologies using logic programming.
One disadvantage of their approach is that all information of the system must
be given manually in advance by “facts” in the logical programming language.

Our combination of FTs and ATs into AFTs follows the general approach
stated by Steiner et al. [19] which is in accordance with the work of Fovino et
al. [11]. They describe the introduction of so-called “security events” in FTs in
contrast to the existing “safety events”. In contrast, Stoelinga et al. [7] introduce
new model elements in order to combine FTs with ATs.

6 Conclusion and Future Work

In this paper, we presented our automated tool pipeline for generating AFTs
based on generated and manually supplemented models. To bridge the gap
between high level Fault Trees and low-level Attack Trees, we introduce dif-
ferent intermediate models that describe the data flow between components and
system dependencies. Using these models, we extend manually created FTs with
generic and specific AFT fragments, and then attach generated ATs to the cre-
ated AFT. The advantage of this combined approach is the possibility to add
manually created (partial) models at any stage. This allows this approach to be
used even if the level of automation in a particular environment is not yet very
high.

At the moment, however, we see potential for improvement with respect to
the mapping of used software packages and their vulnerabilities and the decision
of whether an AT can be attached to the AFT or not. Here, we see several
possibilities for improvement we plan to investigate in the future, from which also
other research approaches can benefit from. Also the extension of our approach
towards other operating systems and software platforms besides ROS2 is an
interesting future research direction.

Acknowledgements. This work was partially supported by the Austrian Science
Fund (FWF): I 4701-N and the German Research Foundation (DFG): 435878599.

References

1. André, É., Lime, D., Ramparison, M., Stoelinga, M.: Parametric analyses of attack-
fault trees. Fund. Inform. 182, 69–94 (2021). https://doi.org/10.3233/FI-2021-
2066

2. CAPEC-94: Adversary in the Middle (AiTM). https://capec.mitre.org/data/
definitions/94.html. Accessed 13 Feb 2023

3. Dugan, J., Bavuso, S., Boyd, M.: Dynamic fault-tree models for fault-tolerant
computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992). https://doi.org/
10.1109/24.159800

https://doi.org/10.3233/FI-2021-2066
https://doi.org/10.3233/FI-2021-2066
https://capec.mitre.org/data/definitions/94.html
https://capec.mitre.org/data/definitions/94.html
https://doi.org/10.1109/24.159800
https://doi.org/10.1109/24.159800

120 R. Groner et al.

4. Gherardi, L.: Variability modeling and resolution in component-based robotics
systems. Ph.D. thesis (2013)

5. Giese, H., Tichy, M.: Component-based hazard analysis: optimal designs, product
lines, and online-reconfiguration. In: Górski, J. (ed.) SAFECOMP 2006. LNCS,
vol. 4166, pp. 156–169. Springer, Heidelberg (2006). https://doi.org/10.1007/
11875567_12

6. Kotenko, I., Chechulin, A.: A cyber attack modeling and impact assessment frame-
work. In: CYCON 2013, pp. 1–24 (2013)

7. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: HASE 2017, pp. 25–32 (2017). https://doi.org/10.1109/HASE.2017.
12

8. Lallie, H.S., Debattista, K., Bal, J.: A review of attack graph and attack tree visual
syntax in cyber security. Comput. Sci. Rev. 35, 100219 (2020)

9. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W.: Robot operating
system 2: design, architecture, and uses in the wild. Sci. Robot. 7(66), eabm6074
(2022)

10. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727_17

11. Nai Fovino, I., Masera, M., De Cian, A.: Integrating cyber attacks within fault
trees. Reliab. Eng. Syst. Saf. 94(9), 1394–1402 (2009). https://doi.org/10.1016/j.
ress.2009.02.020

12. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gen-
eration. In: 13th ACM Conference on Computer and Communications Security.
CCS ’06, pp. 336–345. Association for Computing Machinery, New York, NY, USA
(2006). https://doi.org/10.1145/1180405.1180446

13. Pekaric, I., Felderer, M., Steinmüller, P.: VULNERLIZER: cross-analysis between
vulnerabilities and software libraries. In: HICSS, pp. 1–10 (2021)

14. Pekaric, I., et al.: A Systematic Review on Security and Safety of Self-Adaptive
Systems (2022). https://dx.doi.org/11.2139/ssrn.4029617, preprint at SSRN

15. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015). https://doi.
org/10.1016/j.cosrev.2015.03.001

16. Samonas, S., Coss, D.: The CIA strikes back: Redefining confidentiality, integrity
and availability in security. J. Inf. Syst. Secur. 10(3) (2014)

17. Sauerwein, C., Pekaric, I., Felderer, M., Breu, R.: An analysis and classification of
public information security data sources used in research and practice. Comput.
Secur. 82, 140–155 (2019)

18. Schneier, B.: Modeling security threats. Dr. Dobb’s J. 24(12) (1999)
19. Steiner, M., Liggesmeyer, P.: Combination of safety and security analysis - finding

security problems that threaten the safety of a system. In: SAFECOMP 2013.
Workshops and Tutorials: CARS, SASSUR, DECS, ASCOMS (2013)

20. Swiler, L., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph generation
tool. In: DISCEX’01, vol. 2, pp. 307–321 (2001). https://doi.org/10.1109/DISCEX.
2001.932182

21. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook.
Technical report, Nuclear Regulatory Commission Washington DC (1981)

22. Witte, T., Groner, R., Raschke, A., Tichy, M., Pekaric, I., Felderer, M.: Towards
model co-evolution across self-adaptation steps for combined safety and security
analysis. In: SEAMS 2022, pp. 106–112 (2022). https://doi.org/10.1145/3524844.
3528062

https://doi.org/10.1007/11875567_12
https://doi.org/10.1007/11875567_12
https://doi.org/10.1109/HASE.2017.12
https://doi.org/10.1109/HASE.2017.12
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://doi.org/10.1016/j.ress.2009.02.020
https://doi.org/10.1016/j.ress.2009.02.020
https://doi.org/10.1145/1180405.1180446
https://dx.doi.org/11.2139/ssrn.4029617
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1109/DISCEX.2001.932182
https://doi.org/10.1109/DISCEX.2001.932182
https://doi.org/10.1145/3524844.3528062
https://doi.org/10.1145/3524844.3528062

MBTA: A Model-Based Threat Analysis
Approach for Software Architectures

Anas Motii(B)

Mohammed VI Polytechnic University, Ben Guerir, Morocco

anas.motii@um6p.ma

Abstract. In the last decade, several efforts have been achieved to
integrate security in the Software Development Life-cycle (SDL). Ana-
lyzing software architecture in order to identify threats is an essential
step in secure software development processes. However, performing this
task manually can result in identifying false positives. It is thus time-
consuming and error-prone. Therefore, there is a need for automated
tool support to perform this task. Existing efforts are limited to spe-
cific, predefined security properties or threats that are checked either
manually or using limited toolsets. In this paper, we present a general
and constructive model-based approach for threat analysis. We employ
domain-specific modeling language techniques to develop a set of mod-
eling languages that enable the specification of the software architecture
structure. We used the Object Constraint Language (OCL) for the pur-
poses of precise specification and verification of security threats as prop-
erties of a modeled system. To validate our work, we explore a set of
representative threats in the context of SCADA systems.

Keywords: Model-Based · OCL · Security · Threat Analysis ·
Software architecture

1 Introduction

Our society has become more dependent on software-intensive systems, such
as Information and Communication Technologies (ICTs) systems, not only in
safety-critical areas but also in areas such as finance, medical information man-
agement, and systems using web applications. The complexity of such systems
during their design comes from the involvement of trans-disciplinary concerns. In
addition, security experts, practitioners and researchers from different interna-
tional organizations, associations, and academia have agreed that security should
be treated in the early stages of the software and systems development life-cycle
[8]. Otherwise, security vulnerabilities are more likely to be introduced in various
stages and the cost of protecting them becomes increasingly more important. In
this context, the use and application of security mechanisms through the life-
cycle process would be easier if designers and developers had security guidelines
during development. Architecture threat analysis is the process of identifying
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 121–134, 2023.
https://doi.org/10.1007/978-3-031-40923-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-40923-3_10

122 A. Motii

threats to an architecture. It is very useful when it comes to detecting threats
at early stages. Reported vulnerabilities show that architecture design weak-
nesses represent half of the total vulnerabilities of a system. Several efforts have
been done to assist threat identification [3]. However, the complexity of systems
requires automated tool support.

This work is part of a more general process devoted to incremental pattern-
based modeling and safety and security analysis for correct-by-construction sys-
tems design. In previous works, an approach and its tool support to support
Security, Dependability and Resource Trade-offs using Pattern-based Develop-
ment and Model-driven Engineering have been presented [5]. In this paper, a
Model-Based Threat Analysis approach for software architecture and its tool
support is introduced in order to allow automatic threat detection based on
the Object Constraint Language (OCL). The remainder of the paper is orga-
nized as follows. Section 2 presents the main steps of the MBTA approach. In
Sect. 3, the MDE framework supporting MBSPI is presented. The threat formal-
ization process using OCL is explained step by step. Section 4, MBTA is assessed
over a SCADA (Supervisory Control and Data Acquisition) system case study.
Section 5 identifies related work tackling software architecture threat analysis.
Finally, Sect. 6, concludes and sums up the contributions.

2 MBTA Approach

The approach depicted in Fig. 1 allows the analysis of software architectures in
order to detect existing threats based on formalization. The first step consists
of formalizing threats using OCL1 from existing threat classification references
(step 0). Then, the software architecture model is passed to the analysis module
(step 1) which outputs existing threats.

Specifying threats is based on experience in the security domain thus this
activity should be done by security experts. Once formalized, these threats are
stored in a knowledge base. Inputs are existing threat classification references:
OWASP2, STRIDE [6], Common Attack Pattern Enumeration and Classifica-
tion (CAPEC)3, Common Weakness Enumeration (CWE)4. These references
describe informally a set of threats. Each threat has a signature. This signa-
ture specifies the conditions in which a threat can occur. Thus it defines the
threats according to a certain scenario. However, the threats are described infor-
mally, and thus applying them manually is error-prone and time-consuming. The
considered threats are discussed below. This is neither a comprehensive nor a
complete list but two well-known categories which have been used in OWASP’s
top 10:

1 https://www.omg.org/spec/OCL/.
2 https://owasp.org/www-project-top-ten/.
3 https://capec.mitre.org/.
4 https://cwe.mitre.org/.

https://www.omg.org/spec/OCL/
https://owasp.org/www-project-top-ten/
https://capec.mitre.org/
https://cwe.mitre.org/

MBTA: A Model-Based Threat Analysis Approach 123

Fig. 1. Threat Analysis Process

– Man-In-The-Middle (MITM): is responsible for relaying or altering mes-
sages between two parties. The signature of this threat is the lack and/or
weakness of encryption and Authenticity mechanisms.

– Injection: is responsible for passing malicious inputs to gain higher priv-
ileges, alter data, or crash the system. The signature of this threat is the
lack and/or weakness of input validation and the secure development of an
application.

OCL is a formal language used to describe rules on UML models. We have
used OCL to formalize the aforementioned threats as invariants. The analysis
allows the detection of threats over the architecture. If an invariant is violated
then the corresponding threat is relevant. In order to evaluate the formalized
threats, the precision metric is used. It measures the soundness of the results. A
high precision rate means that the detected threats contain more True Positives
(TP) i.e., valid results than False Positives (FP) i.e., false results. It is computed
as follows:

Precision =
TP

TP + FP
(1)

3 Model-Driven Development

We now present the MDE framework supporting the previous approach and we
detail its construction from the system architecture and security perspectives.
For the system architecture aspects, we used a UML-Like5 modeling language
to describe software architecture using the component-port-connector fashion.
The security perspective which consists of three iterations introduces additional
architectural elements and uses OCL for the specification and analysis of the
security threats.
5 https://www.omg.org/spec/UML/.

https://www.omg.org/spec/UML/

124 A. Motii

3.1 Modeling the Architecture: ComponentUML

In the context of Component-Based Development (CBD), the UML profile
“ComponentUML” in Fig. 2 has been defined in order to model the applica-
tion. The need to define this profile occurred during OCL formalization using
OCL. The OCL rules were difficult when using UML because concepts that were
not relevant appeared. Hence this profile was used for a matter of simplification.
The UML profile has been defined based on the following concepts: Structured-
Classifiers, Messages and Deployments from UML.

Fig. 2. UML profile for component-based software architectures

Working Example: Metamodel Instantiation. Figure 3 shows the software archi-
tecture of a three-tier web application6. The architecture consists of three com-
ponent types: Page, Webapp and Database. Each component is associated with
ports, interfaces, data types and messages, accordingly. For instance, a compo-
nent webpage of type Page uses a Port Client Server for the communication with
component webapp of type Webapp. For that, component webapp uses a port
Port Server Client. The comments in blue show the different messages: m1 to
model the request sent to the application, m2 to model the response from the
application, m3 to model the request sent to the database and m4 to model the
response from the database. From the deployment perspective, the underlying
platform consists of three nodes: Browser hosting webpage, Server (exposed to
Internet) hosting wepapp and Back to host database. The software architecture
model for the web application has been made intentionally not secure to test
the OCL constraints. In fact, the model does not contain any sort of security

6 https://www.ibm.com/topics/three-tier-architecture.

https://www.ibm.com/topics/three-tier-architecture

MBTA: A Model-Based Threat Analysis Approach 125

mechanisms: encryption and input validation. Hence it is vulnerable to injection
and MITM attacks. The objective is to detect: one injection and one MITM
threat.

Fig. 3. Web application software architecture model and types (Color figure online)

3.2 Modeling the Security Solutions as Security Patterns

As introduced in Sect. 1, our work is part of a general approach to building
secure software at high-level design stage using patterns (PBSE). We developed
a UML profile called SepmUML, as depicted in Fig. 4 using UML notations
(not all classes and attributes are shown on the diagram to avoid cluttering).
SepmUML contains the necessary stereotypes for modeling a security pattern in
UML environments (stereotypes in white). The solution of the security pattern
is modeled using ComponentUML (stereotypes in grey). In addition pattern
integration-related concepts (stereotypes in blue). The specification of the UML
profile is out of scope this paper and is detailed in [5].

In the context of this work, during the formalization process, we considered
the following security mechanisms:

– Firewall: This mechanism is responsible for input validation.
– Encryptor: encrypts transmitted messages using a key.
– Decryptor: decrypts received messages using a key.
– Signer: produces for each message a signature that guarantees the authen-

ticity and integrity of the message. It is sent together with the message.
– Verifier: verifies the integrity and authenticity of the message via its accom-

panied signature.

126 A. Motii

Fig. 4. SepmUML UML profile (Color figure online)

3.3 Formalizing the Threats Using OCL

The main objective of this work is to analyze software architectures allowing
the detection of threats according to formalized threats. In this section, the
integration-related detecting threats are described. As we shall see, this has
required additional concepts in ComponentUML in Fig. 5. At each iteration,
threats are formalized using OCL. The evaluation through the precision rate
(TP and FP) is measured in the context of the working example from Sect. 3.1.
Iteration 1 starts with the initial ComponentUML. Man-In-The-Middle (MITM)
and Injection threats are formalized. Iteration 2 adds the concept of trust level
to ComponentUML. Last but not least, Iteration 3 adds the concept of port kind
is added i.e., if the port is external (public) or internal (private).

Iteration 1. Man-In-The-Middle (MITM) and injection threats are formalized
using OCL. MITM exploits the lack of encryption and integrity protection mech-
anisms. Injection threats exploit the lack of input validation. In Listing 1.1 and
Listing 1.2 are given the OCL constraints of MITM and injection, respectively.
1 Context Appl i cat ion inv Man−In−The−Middle v1
2 s e l f . components−>s e l e c t (c1 |
3 s e l f . components−>e x i s t s (c2 |
4 not (c1 . oclIsKindOf (Pa t t e rnPro f i l e : : SecurityMechanism))
5 and
6 not (c2 . oclIsKindOf (Pa t t e rnPro f i l e : : SecurityMechanism))
7 and
8 /∗ i f c1 and c2 are d i f f e r e n t ∗/
9 c1 . ’<> ’(c2)

10 and
11 /∗ i f c1 and c2 are deployed in d i f f e r e n t nodes ∗/
12 (c1 . nodlater > ’(c2 . node) and c1 . node . channels−>e x i s t s (ch | c2 . node .

channels−>i n c l ud e s (ch))

MBTA: A Model-Based Threat Analysis Approach 127

13 and
14 /∗ c1 and c2 communicate ∗/
15 (c1 . ports−>e x i s t s (inp | c2 . ports−>e x i s t s (inpt2 | inpt2 . communication

= inp . communication)))
16 and
17

18 /∗ The s e c u r i t y mechanisms e x i s t : encryptor , decryptor , s i g n e r and
v e r i f i e r ∗/

19 (s e l f . components−>s e l e c t (enc | s e l f . components−>e x i s t s (dec , mac1
| s e l f . components−>e x i s t s (mac2 |

20

21 enc . oclIsKindOf (Pa t t e rnPro f i l e : : Encryptor) and dec . oclIsKindOf (
Pa t t e rnPro f i l e : : Decryptor) and mac1 . oclIsKindOf (Pa t t e rnPro f i l e
: : S igner) and mac2 . oclIsKindOf (Pa t t e rnPro f i l e : : V e r i f i e r)

22 and
23 (enc . node = c1 . node) and (dec . node = c2 . node) and (mac1 . node = c1 .

node) and (mac2 . node = c2 . node)
24))))))−>s i z e ()

Listing 1.1. Man-In-The-Middle (MITM) threat formalized using OCL

The constraint in Listing 1.1 explores the application model via the stereotypes
applied on them. For a given application, components are parsed and only those
that are not security mechanisms are checked. For each two different compo-
nents c1 and c2 deployed on different nodes and which can communicate. The
constraint checks if the following security mechanisms (described in Sect. 3.2):
“encryptor”, “decryptor”, “signer” and “verifier” exist and are deployed in the
same nodes as c1 and c2. The second constraint is commented on Listing 1.2.

1 Context Appl i cat ion inv I n j e c t i o n v1
2 s e l f . components−>s e l e c t (c1 |
3 /∗ Fi r ewa l l e x i s t s and i s deployed on the same node as c1 ∗/
4 s e l f . components−>s e l e c t (f i r e w a l l | f i r e w a l l . oclIsKindOf (F i r ewa l l)

and f i r e w a l l . node = c1 . node
5))−>s i z e ()

Listing 1.2. Injection threat formalized using OCL

Results. Table 1 gives the number of threats, TPs, FPs. The actual version of the
threats has a Precision of 60%. The precision rate indicates that 40% are FPs.

Table 1. Number of detected threats, TPs and FPs (iteration 1)

Threat Category Detected TP FP

Man-In-The-Middle 2 1 1

Injection 3 2 1

Total 5 3 2

After investigating, three injection threats were detected for the three compo-
nents: web page, web application and DBMS. The third one is an FP because an
injection threat is more likely to happen when components are exposed. Hence,
in iteration 2 a new concept is added in iteration 2: “port type”.

128 A. Motii

Two MITM threats were detected: (1) between the browser and the web
application and (2) between the web application and DBMS. The second one is
an FP because a MITM is more likely to happen on “untrusted” zone. Hence,
in iteration 3, the concept of “Trust Level” is added.

Iteration 2. In this iteration, the concept of trust level is added to Compo-
nentUML in order to check if components are in a trusted network zone or
not. Figure 5 shows ComponentUML model with the TrustLevel enumeration
with two literals trusted and untrusted. The application model is modified and
considers that DBMS node is in a “trusted” node while the web page and web
application are in an “untrusted” node. In addition, the constraint does not only
check for the existence of security mechanisms but that they are correctly used.
This is done by verifying that the transmitted messages between two compo-
nents are encrypted/unecrypted and signed/verified. The application model in
Fig. 3 is modified. In this version the web page and application are considered
in “untrusted” node while the DBMS is in an “untrusted” node. In addition,
the OCL in Listing 1.1 constraint is modified. Listing 1.3 gives an extract of
the OCL constraint. The lines that have already explained have been removed
intentionally for matter of simplicity.

Fig. 5. Augmented ComponentUML model

1 Context Appl i cat ion inv Man−In−The−Middle v2
2 s e l f . components−>s e l e c t (c1 |
3 s e l f . components−>e x i s t s (c2 |
4 /∗ c1 or c2 are deployed in an untrusted node ∗/
5 (c1 . node . t r u s t l e v e l= TrustLevel : : untrusted or c2 . node . t r u s t l e v e l =

TrustLevel : : untrusted)
6 and

MBTA: A Model-Based Threat Analysis Approach 129

7 /∗ c1 and c2 two components communicating deployed in d i f f e r e n t
nodes

8 [. . .]
9 and

10 /∗ The s e c u r i t y mechanisms e x i s t : encryptor , decryptor , s i g n e r and
v e r i f i e r and Mechanisms are connected to components ∗/

11 [. . .]
12 /∗ The mechanisms are c a l l e d c o r r e c t l y ∗/
13 c1 . ports−>s e l e c t (i np c1 c2 | i np c1 c2 . msg out . ’<> ’(nu l l) and c2 .

ports−>e x i s t s (inpt2 | inpt2 . communication = inp c1 c2 .
communication))−>f o rA l l (i np c1 c2 | mac1 . ports−>e x i s t s (s i g n i n
| c1 . ports−>e x i s t s (c1 inp | c1 inp . communication = s i g n i n .
communication)

14 and
15 (enc . ports−>e x i s t s (enc in | c1 . ports−>e x i s t s (c1 s ignorEnc |
16 −− case 1 : message f low encrypt and then s i gn
17 (c1 s ignorEnc . communication = enc in . communication and

s i g n i n . msg out = inp c1 c2 . msg out and s i g n i n . msg in =
enc in . msg out and enc in . msg in = c1 s ignorEnc . msg out)

18 or
19 −− case 2 : message f low s i gn and then encrypt
20 [. . .]

Listing 1.3. Man-In-The-Middle (MITM) threat version 2 formalized using OCL

The constraint explores the application model via the stereotypes applied
on them. For each two different components c1 and c2, the constraint checks if
they are deployed in an ”untrusted” node (lines 5–7). It checks also if they are
connected to the aforementioned security mechanisms (line 5–7). Then, it checks
if they are calling the security mechanisms and that they are correctly used in
message flows (lines 10–20). Two cases have been identified:

– The message sent from c1 to c2 is encrypted then signed
– The message sent from c1 to c2 is signed then encrypted

Results. Table 2 shows the results after checking the new version of the OCL
constraints over the working example. The results show that three threats have
been detected and are TPs and only one is an FP. Hence, the precision have
increased to 75%.

Table 2. Number of detected threats, TPs and FPs (iteration 2)

Threat Category Detected TP FP

Man-In-The-Middle 1 1 0

Injection 3 2 1

Total 4 3 1

Iteration 3. In this iteration, the concept of port kind is added. Figure 5 shows
ComponentUML with the PortKind enumeration with two literals external (pub-
lic ports) and internal (private ports). The application model in Fig. 3 is modi-
fied. In this version, the web page and application ports are considered “exter-
nal” while the DBMS port is “internal”. In addition, Listing 1.2 is modified.

130 A. Motii

Listing 1.4 gives an extract of the new version of the OCL constraint. The lines
that have already been explained have been removed intentionally for a matter
of simplicity. Only line 3 was kept and considers external ports.

1 Context Appl i cat ion inv I n j e c t i o n v2
2 /∗ Pub l i c l y a c c e s s i b l e port ∗/
3 s e l f . components−>s e l e c t (c1 | c1 . ports−>e x i s t s (pub l i c po r t | (

pub l i c po r t . portk ind = PortKind : : e x t e rna l)
4 and
5 /∗ Checks i f Fi r ewa l l e x i s t s and i s connected to component c1 and

message f low i s c o r r e c t ∗/
6 [. . .]
7)−>s i z e ()

Listing 1.4. Injection threat formalized using OCL

Results. As depicted in Table 3, the third version of the threats formalized with
OCL has a precision of 100%. Of course, this is specific to the working example
that has been presented which is a very simple example. In addition, the results
are specific to the threats that have been considered.

Table 3. Number of detected threats, TPs and FPs (iteration 3)

Threat Category Detected TP FP

Man-In-The-Middle 1 1 0

Injection v2 2 2 0

Total 3 3 0

4 Case Study: SCADA System

This section assesses the feasibility of the contributions of our work through the
modeling and analysis of a SCADA (Supervisory Control And Data Acquisition)
system. SCADA system applications are different from classical ITs (i.e., web
applications) and have strong security requirements.

4.1 Description and Modeling

SCADA systems are meant to continuously control, monitor processes and
acquire field information. In our experiment, we consider an adapted and sim-
plified version of SCADA used in the context of smart grids [9]. In this context,
the controlled process is power distribution. The control center consists of a
control and a corporate network. The corporate network provides the opera-
tor with a Human-Machine Interface (HMI) that allows access to system data,
SCADA servers, and databases that store operational and financial information.
The SCADA server controls and gathers field information from geographically

MBTA: A Model-Based Threat Analysis Approach 131

distributed substations or Remote Terminal Units (RTUs). The software com-
ponents perform the following functions: (1) Perform control, (2) Poll Data, (3)
System Start-up/shutdown, (4) Adjust Parameter Settings, (5) Log Field Data,
(6) Archive Data, (7) Trigger Alarm, (8) Perform Trending: Select Parameters,
Display Parameters, Zooming, Scrolling. Figure 6 depicts the software architec-
ture model. In addition, ports, interfaces, data types, and transmitted messages
are specified to provide a more detailed model of the application. The platform
is also modeled to specify the relationship between components and nodes.

Fig. 6. SCADA software architecture model

4.2 Comparison of MBTA and ASTORIA

To assess MBTA, The obtained results are compared to the work of [9]. The latter
proposes a framework named ASTORIA for attack scenario simulation for smart
grid systems. The selection of the framework was motivated by the fact that
ASTORIA is a simulation framework whereas ours is a formal verification-like
framework. The ASTORIA team has simulated attack scenarios and evaluated
their impact on the smart grid system to discover existing threats. In addition
to the two threats presented previously, two more threats were formalized: Tam-
pering and Denial of Service. Their formalization was omitted for simplification
purposes. However, we give a brief explanation. Denial of Service (DoS) can
make the system resources unavailable for authorized users. The signature of
this threat is the lack or weakness of Firewall, Authentication, and Authoriza-
tion mechanisms. Tampering is responsible for altering data at rest or in transit.
The signature of this threat is the lack or weakness of Authenticity mechanisms.

132 A. Motii

Results. Table 4 presents the results obtained with the ASTORIA framework and
“MBTA”. For each asset, we conclude that all the detected threats are TPs. In
addition, MBTA detected at the level of RTUs and communication new threats
i.e., Tampering and Injection. FNs, i.e., threats that were not detected are due
to different reasons. Some attack scenarios were simply not formalized or out
of scope of our framework. For instance, Phishing is an attack scenario that
attempts to obtain sensitive information such as credentials, and credit card
details by using emails. This attack exploits social engineering which is out of
scope of the study. Some attack scenarios are of the same kind or are pre-attacks
of some formalized threats. For instance, replay attacks are a kind of Man-In-
The-Middle attacks where the attacker maliciously or fraudulently repeats or
delays a valid data transmission. Ping sweeps are generally used to check if a
node is alive or dead. Some attack scenarios are at a lower stage (implementation)
such as malicious software. In fact, we deal with software architecture analysis
and not with code analysis.

Table 4. Threat Analysis results comparison

Assets ASTORIA [9] MBTA

Control Center Injection Injection

Denial of Service Denial of Service

Malware, Phishing, Port scanning, Replay

RTU Denial of Service Denial of Service

Malware, Phishing, Port scanning, Replay Injection

Communication Man-In-The-Middle Man-In-The-Middle

Sniffing, Eavesdropping, Denial of Service, Replay Tampering

Discussion. After analyzing the case study and the conducted assessment, some
lacks in the current version of MBTA have been identified and are left for future
work. Threat analysis can be generalized by replacing ComponentUML with
OMG standards for Component-Based Development particularly UCM7. The
second step is to construct a library of helpers to easily formalize threats. The
specification of threats was done using OCL. OCL is a general language for
constraining UML models. The goal is to enable security experts to contribute
to the threat knowledge-base, who are not necessarily familiar with OCL and
with less effort. In this context, we can inspect DSMLs for specifying these rules
and then study mappings towards OCL.

5 Related Work

Security architecture assessment approaches can be categorized into two groups:
scenario-based and property-based approaches. Scenario-based Analysis. focuses
7 https://www.omg.org/spec/UCM.

https://www.omg.org/spec/UCM

MBTA: A Model-Based Threat Analysis Approach 133

on modeling security scenarios and then analyzing the architecture with regard
to these scenarios. In literature, most of these works [1,2,7] have limitations in
formalizing scenarios, in reusing and extending them, in automatizing the veri-
fication process and they also lack tool support. Recently Maidl et al. [4] have
proposed a model-based threat modeling approach for Cyber-Physical Systems.
It is based on a two-dimensional taxonomy that links system components and
relevant attacks. The formalization language is OCL. The tool helps in prefilter-
ing relevant attack actions and their documentation. In [7], the authors propose
a framework for detecting architectural flaws in a code and introduce SCORIA
as a formalization language. It starts by generating a graph describing a run-
time architecture using static analysis. Then they assign security properties to
the graph of objects. The constraints in this approach are highly dependent on
the application and are not generic or reusable. The aim of “MBTA” is to foster
reuse. In [2], the authors present a framework for detecting flaws in the code. The
formalization language is OCL. The code is first transformed in STRIDE Data
Flow Diagrams (DFDs) using static analysis. Then based on a ’best practice’
repository where threat patterns are stored, an automatic check is performed
to detect the threats and security measures that may be applied as annotations
to DFDs to mitigate these threats. Property-Based Analysis. focuses on formal-
izing security properties to assess a software architecture. They defined a set
of modularity properties used for analyzing the architecture. Table 5, compares
“MBTA” to the aforementioned ones mainly: Almorsy et al. [1], Vanciu et al.
[7] and Berger et al. [2] according to the following criteria: (C1) Foster reuse of
the formalized threats, (C2) Verify that the architecture has the right security
mechanisms, (C3) Verify that these security mechanisms are used correctly, and
(C4) and Have a list of well-known threats.

Table 5. Positioning of the contribution with regards to other approaches

Approaches (C1) (C2) (C3) (C4)

MBTA ✓ ✓ ✓ ✓

Maidl et al. [4] ✓ ✕ ✓ ✓

Almorsy et al. [1] ✓ ✓ ✕ ✓

Vanciu et al. [7] ✕ ✓ ✓ ✓

Berger et al. [2] ✓ ✓ ✕ ✓

6 Conclusion

In this paper, a model-based threat analysis for software architecture “MBTA”
has been introduced. The contribution of this work is twofold. First, the approach
enables detailed exploration of the software architecture. The formalized threats
allow not only the verification of the existence of security mechanisms but also

134 A. Motii

the verification of their correct usage. The second aspect is that the threats are
reusable and extensible. OCL has been used to formalize Injection and Man-
In-The-Middle threats. The formalization process has been explained through
three iterations. For each iteration, the precision is evaluated. The formalized
threats are not application dependent. They can be further extended if a threat
exploits new vulnerabilities and weaknesses. The next step of this work consists
of defining a correct-by-construction pattern-based security engineering process.
It aims to provide the correct-by-construction integration of security patterns
into an application while offering a certain degree of liberty to the designer
using it. In order to be able to validate the integration, a formal specification
of the pattern must be constructed, i.e., its properties, constraints, and related
validation artifacts, as input to the pattern-based development process. Here, the
concepts behind the formalized threats will be used and combined with patterns,
to integrate security solutions in the application model and perform a security
analysis within other types of threats.

References

1. Almorsy, M., Grundy, J., Ibrahim, A.S.: Automated software architecture security
risk analysis using formalized signatures. In: Proceedings of the 2013 International
Conference on Software Engineering, ICSE 2013, pp. 662–671. IEEE Press (2013)

2. Berger, B.J., Sohr, K., Koschke, R.: Extracting and analyzing the implemented
security architecture of business applications. In: 2013 17th European Conference
on Software Maintenance and Reengineering, pp. 285–294. IEEE (2013)

3. Fernandez, E.B., Yoshioka, N., Washizaki, H.: Modeling misuse patterns. In: 2009
International Conference on Availability, Reliability and Security, pp. 566–571
(2009)

4. Maidl, M., Münz, G., Seltzsam, S., Wagner, M., Wirtz, R., Heisel, M.: Model-based
threat modeling for cyber-physical systems: a computer-aided approach. In: van
Sinderen, M., Maciaszek, L.A., Fill, H.-G. (eds.) ICSOFT 2020. CCIS, vol. 1447,
pp. 158–183. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83007-6 8

5. Motii, A., Hamid, B., Lanusse, A., Bruel, J.M.: Guiding the selection of security
patterns for real-time systems. In: 21st International Conference on Engineering of
Complex Computer Systems, ICECCS 2016, pp. 155–164. IEEE (2016)

6. Shostack, A.: Experiences threat modeling at Microsoft. In: Proceedings of the
Workshop on Modeling Security, vol. 413, pp. 5:1–5:12. CEUR-WS.org (2008)

7. Vanciu, R., Abi-Antoun, M.: Finding architectural flaws using constraints. In: 2013
28th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 334–344 (2013)

8. Weiss, M., Mouratidis, H.: Selecting security patterns that fulfill security require-
ments. In: 2008 16th IEEE International Requirements Engineering, RE 2008,
September 2008, pp. 169–172 (2008)

9. Wermann, A.G., Bortolozzo, M.C., da Silva, E.G., Schaeffer-Filho, A., Gaspary,
L.P., Barcellos, M.: ASTORIA: a framework for attack simulation and evaluation
in smart grids. In: NOMS 2016–2016 IEEE/IFIP Network Operations and Manage-
ment Symposium, April 2016, pp. 273–280 (2016)

https://doi.org/10.1007/978-3-030-83007-6_8

Attribute Repair for Threat Prevention

Thorsten Tarrach1, Masoud Ebrahimi2, Sandra König1,
Christoph Schmittner1, Roderick Bloem2, and Dejan Ničković1(B)

1 AIT Austrian Institute of Technology, Vienna, Austria
dejan.nickovic@ait.ac.at

2 Graz University of Technology, Graz, Austria

Abstract. We propose a model-based procedure for preventing security
threats using formal models. We encode system models and threats as
satisfiability modulo theory (SMT) formulas. This model allows us to ask
security questions as satisfiability queries. We formulate threat preven-
tion as an optimization problem over the same formulas. The outcome
of our threat prevention procedure is a suggestion of model attribute
repair that eliminates threats. We implement our approach using the
state-of-the-art Z3 SMT solver and interface it with the threat analysis
tool THREATGET. We demonstrate the value of our procedure in two
case studies from automotive and smart home domains.

1 Introduction

The proliferation of communication-based technologies requires engineers to have
cybersecurity in mind when designing new applications. Historically, security
decisions in the early stages of development have been made informally. The
upcoming requirements regarding security compliance in soon-to-be-mandatory
standards such as the ISO/SAE 21434 call for more principled security assess-
ment of designs and the need for systematic reasoning about system security
properties have resulted in threat modeling and analysis tools. One example of
this new perspective is the Microsoft Threat Modelling Tool (MTMT) [8], devel-
oped as part of the Security Development Lifecycle. MTMT provides capabilities
for visual system structure modelling. Another example is THREATGET [3,12],
a threat analysis and risk management tool, originally developed in academia
and following its success, commercialized and used today by leading world-wide
companies in automotive and Internet-of-Things (IoT) domains. Threat mod-
eling and analysis significantly reduces the difficulty of a security assessment,
reducing it to accurate modeling of the systems and the security requirements.

Existing methods use ad-hoc methods to reason about the security of systems.
As a result, it is not easy to extend such tools with model repair capabilities.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreements No. 956123 (FOCETA), No. 871385
(TEACHING) and from the program “ICT of the Future” of the Austrian Research
Promotion Agency (FFG) and the Austrian Ministry for Transport, Innovation and
Technology under grant agreements No. 867558 (project TRUSTED).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 135–148, 2023.
https://doi.org/10.1007/978-3-031-40923-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_11&domain=pdf
https://doi.org/10.1007/978-3-031-40923-3_11

136 T. Tarrach et al.

Although a trial-and-error method is always possible, it does not provide a sys-
tematic exploration of the space of possible prevention measures and leaves the
question of optimizing the cost of the prevention to the designer’s intuition. As
a result, remedying a potential threat remains cumbersome and simple solutions
may be missed, especially in presence of multiple interacting threats.

This paper proposes a procedure for preventing threats based on a formal
model of the structure of the system and a logic-based language for specifying
threats. The use of rigorous, formal languages to model the system and specify
threats allows us to automate threat prevention. More specifically, we reduce the
problem of checking presence of threats in the system model to a satisfiability
modulo theory (SMT) check. A threat specification defines a class of potential
threats and a witness of a system model that satisfies a threat specification
defines a concrete threat in the model. This allows us to frame the problem of
preventing concrete threats as an attribute parameter repair.

The attributes of system components define a large spectrum of security
settings and, in presence of a threat, of possible preventive actions. This class of
repairs enables simple and localized measures whose cost can easily be assessed
by a designer. We formulate attribute repair as a weighted maximum satisfiability
(MaxSAT) problem with a model of cost of individual changes to the system
attributes. This formulation of the problem allows us to find changes in the
model with minimal cost that result in removing as many threats as possible.

We introduce threat logic as a specification language to specify threats. We
formalize the system model as a logic formula that consists of a conjunction of
sub-formulas, called assertions, parameterized by attributes that specify secu-
rity choices. The conjunction of the system model formula and a negated threat
formula is satisfiable iff there are no threats in the system. We introduce clauses
that change the specific instantiation of model attributes to a different value
and associate a weight with each assertion. Then, the MaxSAT solution of this
formula is the set of changes to system model attributes with minimum cost that
ensure the absence of the threat. Given an incorrect system, we can choose the
weights so that we compute the set of changes to system model attributes with
the minimal cost to remove the existing threats from the model. To ensure that
our method scales to industrial size models, we also define a heuristic that pro-
vides partial threat prevention by addressing repairable threats and explaining
the reason why the others cannot be repaired. We believe that this method, even
though partial and approximate in general, can compute near optimal repairs
for many real-world problems.

We implemented the threat prevention method in the THREATGET tool
and evaluated it on two case studies from the automotive and the IoT domains.

Motivating Example. We motivate this work with a smart home application
from the IoT domain, depicted in Fig. 1. The smart home architecture consists
of 7 typed elements: (1) a control system, (2) an IoT field gateway, (3) temper-
ature and (4) motion sensors, (5) a firewall, (6) a web server and (7) a mobile
phone. The elements are interconnected using wired and wireless connectors.

Attribute Repair for Threat Prevention 137

The elements and connectors have associated sets of attributes that describe
their configuration. For instance, every connector has attributes Encryption,
Authentication and Authorization. The attribute Encryption can be assigned
the values No, Yes and Strong. We associate to each attribute a cost of changing
the attribute value, reflecting our assessment of how difficult it is to implement
the change. In this example, the temperature and the motion sensor communi-
cate wirelessly with the gateway. If the motion sensor detects a movement, the
user is notified by phone. It is possible to override the behavior, e.g., the heating
can be turned on remotely in case of late arrival. The web server allows for access
and information exchange from and to the smart home. The IoT sub-system pro-
tected by the firewall defines a security boundary called the IoT Device Zone.
Communication should be confidential and encrypted outside the IoT Device,
which is represented by the two associated assets.

Fig. 1. Smart Home IoT model.

Threats in this smart home system are characterized by logical relations
between elements, connectors and their attributes. Consider two potential
threats that are applicable to this example: Threat 1: The web server enables
data logging functionality without encrypting the data, and Threat 2: The
mobile phone device is connected to the web server, without the web server
enabling data logging. Assume that the web server has data logging enabled,
but no data encryption, thus matching Threat 1. If we consider this threat in
isolation, we can either repair it by turning off the data logging, or by implement-
ing the data encryption on the web server. The first repair results in matching
Threat 2. Only the second repair results in the removal of all security threats.
Given two data encryption algorithms with costs c1 and c2, where c1 > c2, imple-
menting the latter is the cost-optimal option. We see that an optimal preventive
solution must consider simultaneous repair of multiple threats.

138 T. Tarrach et al.

2 Threat Modelling

A threat model consists of two main components, a system model and a database
of threat rules. A system model provides an architectural view of the system
under investigation, representing relevant components, their properties, as well
as relations and dependencies between them.

System Model. A system model M consists of:

– a set E of elements: an element e ∈ E is a typed logical (software, database,
etc.) or physical (ECUs, sensors, actuators, etc.) component.

– a set C of connectors: a connector c ∈ C is a direct interaction between two
elements, a source s(c) ∈ E and a target element t(c) ∈ E.

– a set A of security assets: an asset a ∈ A describes logical or physical object
(such as an element or a connector) of value. Each element and connector
can hold multiple assets. Similarly, each asset can be associated to multiple
elements and connectors.

– a set B of security boundaries: a boundary b ∈ B describes a separation
between logically, physically, or legally separated system elements.

– a set A of attributes: an attribute a ∈ A is a property that can be associated
to system elements, connectors and/or assets. Each attribute a can assume a
value from its associated domain Da. We denote by v(x, a) the value of the
attribute a associated to the element/connector/asset x. We finally define an
attribute cost mapping wx,a(v, v′) associated to (x, a) pairs that defines the
cost of changing the attribute value v ∈ Da to v′ ∈ Da.

Given a system model M , we define a path π in M as an alternating sequence
e1, c1, e2, c2 · · · , cn−1, en of elements and connectors, such that for all 1 ≤ i ≤ n,
ei ∈ E, for all 1 ≤ i < n, ci ∈ C, s(ci) = ei, and t(ci) = ei+1 and for all
1 ≤ i < j ≤ n, ei �= ej . We note that we define paths to be acyclic, since acyclic
paths are sufficient to express all interesting security threats.

We use the notation elements(π) and connectors(π) to define the sets of all
elements and of all connectors appearing in a path, respectively. The starting
and the ending element in the path π are denoted by estart(π) = s(c1) and
eend(π) = t(cn−1), respectively. We denote by P (M) the set of all paths in M .

Threat Logic. We provide an intuitive introduction of threat logic for specifying
potential threats1. The syntax of threat logic is defined as follows:

ϕ := R(X ∪ P) | ¬ϕ | ϕ1 ∨ ϕ2 | ∃p.ϕ | ∃x.ϕ,

where X = E ∪ C ∪ A ∪ B, x ∈ X, P is a set of path variables, p ∈ P , and
R(X ∪ P) is a predicate. The predicate R(X ∪ P) is of the form:
1 THREATGET uses its own syntax and semantics to express threats [3]. We use

instead predicate logic to facilitate the encoding of the forthcoming algorithms
into SMT formulas. Our implementation contains an automated translation from
THREATGET syntax to threat logic.

Attribute Repair for Threat Prevention 139

1. type(x) = t - the type of x ∈ X is t;
2. x in p - the element or the connector x ∈ E ∪ C is in the path p ∈ P ;
3. connector(e, c) - the element e ∈ E is either the source or the target of the

connector c ∈ C;
4. src(c) = e - the source of the connector c ∈ C is the element e ∈ E;
5. tgt(c) = e - the target of the connector c ∈ C is the element e ∈ E;
6. src(p) = e - the source of the path p ∈ P is the element e ∈ E;
7. tgt(p) = e - the target of the path p ∈ P is the element e ∈ E;
8. crosses(c, b) - the connector c ∈ C crosses the boundary b ∈ B;
9. contained(x, b) - the element or boundary x ∈ E ∪ B is contained in the

boundary b ∈ B;
10. holds(x, a) - the element or the connector x ∈ E ∪ C holds the asset a ∈ A;
11. val(x, att) = v - the valuation of the attribute att associated to x ∈ E∪C∪A

is equal to v.

Example 1. Consider a requirement that there exists a path in the model such
that all the elements in that path are of type Cloud. It is expressed with the
threat logic formula: ∃p.∀e.(e in p =⇒ type(e) = Cloud).

We define an assignment ΠM as a partial function that assigns element,
connector, asset, security boundary and path variables to concrete elements,
connectors, assets, security boundaries and paths from the system architecture
model M . We denote by ΠM [x
→ i] the item assignment in which x is mapped
to i and otherwise identical to ΠM . Similarly, we denote by ΠM [p
→ π] the
path assignment in which p is mapped to π and otherwise identical to ΠM . The
semantics of threat logic follow the usual definitions of predicate logic.

We say that a threat logic formula is closed when all occurrences of element,
connector, asset and security boundary variables are in the scope of a quantifier.
Any closed threat logic formula is a valid threat specification. Given a system
model M and a closed threat logic formula ϕ, we say that M witnesses the threat
ϕ, denoted by M |= ϕ iff ΠM |= ϕ, where ΠM is an empty assignment.

From Threat Logic to First Order Logic (FOL). We interpret threat logic
formulas over system models with a finite number of elements and connectors,
and hence we can eliminate path quantifiers by enumerating the elements and
connectors in the path. We thus obtain an equisatisfiable FOL formula that can
be directly used by an SMT solver.

Example 2. We formalize the two threats described in Sect. 1:
Threat 1 ∃e.(type(e) = WebServer ∧ val(e, Data Logging) = Yes)

∧val(e, Data Encryption) = No)
Threat 2 ∃p, e1, e2.src(p) = e1 ∧ tgt(p) = e2∧

type(e2) = WebServer ∧ type(e1) = MobilePhone ∧
val(e2, Data Logging) �= Yes)

140 T. Tarrach et al.

3 Automated Threat Prevention

We now present our main contribution – a procedure to automatically repair a
system model with one or more threats. We restrict our attention to the class of
attribute repairs that consists in changing the model attribute values and show
how to encode the problem using optimization modulo theories. We first present
an exact algorithm for the minimal attribute repair using an SMT solver, and
then propose a more scalable heuristic for partial repair.

3.1 Attribute Repair

In this work, repairing a model that has one or multiple threats consists in
changing the attribute valuation function of the model. Not every model can be
attribute repaired. For a threat model M we denote by M [v′\v] the threat model
in which the attribute value assignment v is replaced by another assignment v′.

Definition 1 (Threat-repairable model). Given a model M with an
attribute valuation function v that witnesses a threat ϕ, M |= ϕ, we say that
M is attribute repairable wrt ϕ iff there exists a v′ such that M [v′\v] �|= ϕ.

We specifically aim at finding the optimal repair, which has the minimal
repair cost. To reason about this quantitative repair objective, Definition 2 spec-
ifies the distance d(v, v′) between two attribute valuation functions v and v′ as
the sum of altered attribute costs for attributes that differ in the two valuations.

Definition 2 (Attribute valuation distance). Let M be a system model
with attribute valuation v and attribute cost w. Let v′ be another attribute valu-
ation. The distance d(v, v′) between v and v′ is defined as:

d(v, v′) =
∑

x∈X,a∈A

wx,a(v(x, a), v′(x, a)) s.t. v(x, a) �= v′(x, a).

For instance, for the attribute ‘Encryption’ the cost of changing from ‘None’
to ‘Weak’ may be 20, but to change ‘None’ to ‘Strong’ may cost 30. A change
from ‘Weak’ to ‘Strong’ could cost 15, but a change from ‘Weak’ to ‘None’ may
only cost 1. Sensible cost functions will adhere to some restrictions (such as a
variant of the triangle inequality) that we do not formalize here.

Definition 3 (Minimal attribute repair). Let ϕ be a threat logic formula
and M a system model such that M |= ϕ and M is attribute repairable w.r.t. ϕ.
The minimal attribute repair of M is another threat model M [v′\v] s.t.:

v′ ∈ arg min{d(v, v′′)|M [v′′\v] �|= ϕ}
Other Notions of Minimal Repair. There are at least two other natural notions
of minimal repair. In the first one, costs are associated with the attribute itself.
This means that every change of the attribute carries the same cost. We can
model this by assigning the same cost to all possible combinations of previous

Attribute Repair for Threat Prevention 141

and new value for an attribute. Alternatively, engineers are often not interested
in minimizing the overall real cost, but rather in minimizing the number of
attributes that need to be repaired. We can model this restricted variant of the
problem by associating the fixed cost of 1 each attribute in the model, thus
effectively counting the number of individual attribute repairs. Both variants
can be implemented in a straightforward manner in our framework.

3.2 Attribute Repair as Weighted MaxSMT

We encode the attribute repair problem (see Sect. 3.1) as a weighted MaxSMT
problem, in which F represents a (hard) assertion, while F1, . . . , Fm correspond
to soft assertions and every soft assertion Fi has an associated cost cost i.

Definition 4 (Weighted MaxSMT [1]). Given an SMT formula F, a set of
SMT formulas F1, . . . , Fm and a set of real-valued costs cost1, . . . , costm, the
weighted MaxSMT problem consists in finding a subset K ⊆ M of indices with
M = {1, . . . , m} such that: (1) F∧ ∧

k∈K Fk is satisfiable, and (2) the total cost∑
i∈N\Kcost i is minimized.

We now sketch the encoding of the minimal attribute repair problem into
weighted MaxSMT. We assume that we have a MaxSMT solver object, with the
following functionality: push() - push new context to solver stack, pop() - pop
context from solver stack, add(ϕ) - add new hard assertion ϕ, add soft(ϕ, c) -
add new soft assertion ϕ with weight c, solve() - check if formula is satisfiable,
max solver() - check if formula is max-satisfiable, and model() - generate and
return a model witnessing satisfaction of a formula.

Given a system model M and a set of threat logic formulas Φ = {ϕ1, . . . , ϕn},
we compute the MaxSMT formulas F that represents the hard assertion F =
FM ∧ ∧n

j=1 ¬ϕj conjoins FM that encodes the entire system model except its
attribute valuations and costs with the negation of each threat logic formula ϕj .
We also define one soft assertion Fx,a,v for each element x, attribute a of x and
possible value v of a, stating intuitively that v(x, a) = v. These soft attributes
are mutually exclusive if they assert different values for the same attribute. We
set up the costs of each Fx,a,v in such a way that asserting Fx,a,v leads to cost
corresponding to changing the value of a to v. (The exact value of the cost
function can easily be computed by solving a linear system of equations.)

We use the weighted MaxSAT solver max solve(FM ∧∧n
j=1 ¬ϕj ∧∧

Fx,a,v) to
obtain the satisfiability verdict and the optimization cost. Informally, the solver
can return three possible verdicts:2

– sat verdict with total cost 0: the system model M does not contain a potential
threat defined by any of the threat formulas ϕi,

– sat verdict with total cost k: the system model M contains a set of potential
threats defined by a subset of threat formulas and can be repaired by changing

2 We ignore here a fourth possible verdict unknown that can arise in practice and that
happens if the solver is not able to reach a conclusion before it times out.

142 T. Tarrach et al.

the values of model attributes with total cost k. The solver returns a model,
which defines a possible repair, i.e., the altered attribute values that render
the formula satisfiable,

– unsat verdict: the system model M is not attribute repairable with respect
to at least one threat formula ϕi.

The encoding of the attribute repair into this MaxSMT problem provides an
effective solution to the minimum attribute repair problem.

Theorem 1. Let M be a system model and {ϕ1, . . . , ϕn} a set of closed threat
logic formula. We have that max solve(FM ∧ ∧n

i=1 ¬ϕi ∧ ∧
F∈Ψ F) provides the

solution to the minimum attribute repair problem.

3.3 Partial Repair of Unrepairable Models

The problem with the approach from Sect. 3.2 arises if there is a formula ϕi

for which M is not attribute repairable. In that case, the entire problem is
unsatisfiable, even if other threats could be repaired. This outcome, although
correct, is not of particular value to the security engineer. Ideally, the objective
is to repair attributes for threats that can be repaired and explain the others.

We observe that attribute-unrepairable threats have a particular form and
correspond to formulas without constraints on attribute valuations. An inductive
visit of the formula allows a syntactic check has attr(ϕ) whether a threat formula
ϕ has any constraint on attribute valuations. The MaxSMT algorithm from
Sect. 3.2 can be adapted to compute a partial repair of M with respect to a
subset of repairable threat formulas. The procedure removes all threat logic
formulas that are satisfied by the model and that are known to be unrepairable,
before computing MaxSMT.

The partial repair procedure implies that the MaxSAT applied to the subset
of (potentially) repairable threat formulas corresponds to the minimum attribute
repair restricted to that subset of threat formulas.

Corollary 1. Let M be a system model, Φ = {ϕ1, . . . , ϕn} a set of closed threat
logic formulas and G ⊆ Φ a subset of repairable threats, i.e. for all ϕ ∈ G, M �|= ϕ
or has_attr(ϕ) is true. We have that max solve((FM ∧ ∧

ϕ∈G ¬ϕ) ∧ ∧
F∈Ψ F)

provides the solution to the minimum attribute repair problem restricted to the
set G of threat formulas.

Explaining Unrepairable Threats: The partial repair method is useful in the pres-
ence of threats that cannot be addressed by attribute repair only. The SMT
solver can be used to provide in addition an explanation of why a threat cannot
be repaired – the solver assigns values to variables in threat logic formulas that
witness its satisfaction (i.e. the presence of that threat). This witness explains
exactly why that formula is satisfied and locates in the system model the one set
of items that are responsible for that verdict. The threat may match at multi-
ple locations of the model, which could be discovered by multiple invocations of
the solver (while excluding the previously found sets). Note that the MaxSMT

Attribute Repair for Threat Prevention 143

will repair all occurrences though, because the threat is negated there and the
negated existential quantifier becomes a forall quantifier.

Algorithm 1 Approximate partial repair: HPartialRepair

Input : M , {ϕ1, . . . , ϕn}, FM , Ψ
Output: Repair status and cost, set of repaired and non-repaired threats,

repaired set of attributes
1 nothreat ← ∅ ; repairable ← ∅ ; totalcost ← 0 ;
2 solver ← SMTMaxSolver() ;
3 solver. add(FM) ;
4 for ϕ ∈ {ϕ1, . . . , ϕn} do
5 solver. push() ;
6 for F ∈ Ψ do
7 solver. add(F) ;
8 solver. add(T (ϕ)) ;
9 status ← solver. solve() ;

10 solver. pop() ;
11 if status = unsat then
12 nothreat ← nothreat ∪ {ϕ} ;
13 else if status = sat then
14 if has attr(ϕ) then
15 solver. push() ;
16 for F ∈ Ψ do
17 solver. add soft(F, cost(F)) ;
18 solver. add(¬T (ϕ)) ;
19 status ← solver. max solve() ;
20 if status = sat then
21 m = solver. model() ;

22 Ψ̂ , c ← repair(m, Ψ) ;
23 solver. pop() ;
24 solver. push() ;
25 solver. add(

∨
ϕ′∈repairable∪nothreat T (ϕ′)) ;

26 for F ∈ Ψ̂ do
27 solver. add(F) ;
28 status ← solver. solve() ;
29 if status = unsat then
30 repairable ← repairable ∪ {ϕ} ;

31 Ψ ← Ψ̂ ;
32 totalcost ← totalcost + c ;

33 solver. pop() ;

34 return status, totalcost, repairable, nothreat, Ψ

We propose a heuristic procedure for partial repair in Algorithm 1. The pro-
posed procedure works for the important subset of system models in which all the
(item, attribute) pairs are assigned the same attribute cost. For every threat logic
formula ϕ, the procedure first checks if that threat is present in the system model
using the SMT solver (lines 5–10). If the threat is absent, it is added to the set
of formulas that do not represent any threat (lines 11–12). Otherwise, the proce-
dure attempts to compute a repair for that particular threat (lines 13–33). It first

144 T. Tarrach et al.

checks whether the threat logic formula refers to any attribute valuations (line 14).
If not, the formula is unrepairable. Otherwise (lines 15–19), the formula is added
as a hard assertion, and the set of attribute valuations are added as soft assertions
are added as soft assertions to the solver, and the MaxSMT solver is invoked. If the
solver gives unsat verdict, it means that the model cannot be repaired to satisfy
the threat logic formula. Otherwise (lines 20–32), we use the model witnessing the
satisfaction of the threat logic formula to compute the partial repair for that for-
mula (line 22). The outcome of the repair method is a the repaired set of attribute
assertions and the number of assertions that needed to be altered. The procedure
checks that this partial repair is consistent with the previous repairs (i.e. that it
does not lead to violation of other previously processed threat logic formulas), and
the repair is accepted only upon passing this last consistency check (lines 24–32).

4 Implementation and Case Studies

We did a prototype implementation of the proposed methods in Java and inte-
grated it to THREATGET. We used THREATGET’s threat database from auto-
motive and IoT domains originating from multiple sources, including security-
related standards and previously discovered threats. The tool imports system
models as JSON files and threat descriptions as THREATGET rules, translates
both to FOL SMT formulas and uses Z3 as the MaxSMT solver. The MaxSMT
solver’s results are used to compute the repair suggestions. While THREATGET
is a proprietary software (with a free academic license), our threat repair exten-
sion is distributed under the BSD-3 license. We assume the default attribute
change cost 1 and allow the user to change it using a CSV file. We apply our
tool to two case studies from two domains: the smart home IoT application
introduced as our motivating example in Sect. 1, and the vehicular telematic
gateway.

Smart Home IoT Application. This case study was introduced in Sect. 1.
In this section, we report on the experimental results obtained by applying our
threat repair approach. The model has been analysed against 169 IoT-related
threat descriptions given in the form of threat log formulas. We applied both
the full MaxSMT optimization procedure and its heuristic variant.

Both the model and the database of IoT threat formulas are publicly avail-
able. Table 1 summarizes the outcomes. To accurately report the number of
repairable formulas we implement Algorithm 1 without line 31. The cost reflects
the number of attributes (per item) changed in the model because we set the
cost per attribute to 1 in our experiments. We can observe that the heuristic
procedure was able to repair 27 out of 36 found threats in less than 50 s.

We illustrate the repair process on two threats from the database of IoT
security threats. We first consider the threat with the title “Attacker can deny the
malicious act and remove the attack foot prints leading to repudiation issues”.

Attribute Repair for Threat Prevention 145

Table 1. Results of attribute repair applied to Smart Home IoT case study.

verdict SAT # formulas w/t threat 133

total # formulas 169 total cost 77

repairable formulas 27 time (s) 46.7

unrepairable formulas 9

This threat is formalized using the threat logic formula

∃e. type(e) = Firewall ∧ (v(e,Activity Logging) �= Yes ∨
v(e,Activity Logging) = Missing).

The SMT solver finds that the model satisfies the above formula and hence
has a threat. The witness shows that one element of type ‘Firewall’ has the
‘Activity Logging’ attribute set to ‘undefined’, thus explaining the threat. The
proposed repair consists in implementing the activity logging functionality. This
repair was found to be consistent with the other ones and is reported as part
of the overall repair suggestion. The second threat has the title “Spoofing IP”
and is reported as an irreparable threat. It is formalized using the threat logic
formula

∃c.∃e1.∃e2 type(c) = Internet Connection ∧ src(c) = e1 ∧ tgt(c) = e2.

This threat cannot be repaired by changing the model attributes. On the con-
trary, this threat formula states that any connection to the internet constitutes
a potential IP spoofing threat.

Vehicular Telematic Gateway. This study is based on an industrial-strength
model of a vehicular telematic gateway (VTG) [9]. The VTG connect internal
elements of the vehicle with external services. it offers vehicle configuration and
entertainment and navigation to the user. An item is a term introduced by ISO
26262, describing a system or combination of systems, enabling a function on
the vehicle level. The industrial company that devised the THREATGET model
develops such systems for usage by different vehicle manufacturer so that the
item is developed based on assumptions about the vehicle that need validation.

We consider a telematic ECU that offers remote connectivity for the on-
board network to support various remote services including data acquisition,
remote control, maintenance, and over-the-air (OTA) software update. It also
provides a human-machine interface (HMI) for navigation, configuration, and
multimedia control. HMI represents the central element in a vehicle, connecting
the control system to the human operator and the backend. It has cellular and
wireless local area network (WLAN) interfaces for wireless connectivity. For
local connectivity, it includes a USB port for software updates and application
provision. The telematics system is also connected to other onboard ECUs.

For our analysis we considered two variants of time-triggered control. A sim-
plified model contains 15 elements, 24 transitions and 5 assets, while the full

146 T. Tarrach et al.

model has 25 elements, 48 transitions and 5 assets. The presence of two models
reflects the iterative design process in which the high-level simplified model was
refined into the complete model based on the previous analysis.

The results of the attribute repair are presented in Table 2. We see that the
tool is able to scale to large industrial models. It analyses 95 threat formulas in
497s, repairing 19 out of 42 threats with the cost 57. The same set of rules were
repaired in 127s on the simplified model. The main complexity in repairing large
models comes from the threat formulas that contain quantification over path.
This is not surprising because each such formula corresponds to a bounded model
checking (reachability) problem. To confirm this observation, we analysed the
full model without formulas with quantification over paths. The analysis of 82
such formulas was done in less than 118s, resulting in the repair of 18 out of 39
threats.

Table 2. Results of attribute repair for two vehicular telematic gateways.

with flow w/o flow

simple full full

verdict SAT SAT SAT

total # formulas 95 95 82

repairable formulas 15 19 18

unrepairable formulas 25 23 21

formulas w/t threat 55 53 43

total cost 29 57 57

time (s) 127 497 118

One repaired threat was Spoofing Sensors by External Effects. It was present
because a CAN interface is connected to an ECU (the secondary CPU) and they
both hold an asset (the Communication Interface). It represents the possibility
that the assets could be attacked to send incorrect data to vehicle sensors (i.e.,
radar signals). That could lead to giving incorrect decisions based on the tam-
pered input signal, affect the safe operation of the vehicle, or impact on usual
vehicle functionalities. Our tool suggests to this threat by implementing an input
validation on the Secondary CPU, which enables the CPU to detect false data.

5 Related Work

Threat Modeling and Analysis has received increasing interest in the
recent years, both in academia and industry. A plethora of commercial and
open-source threat modeling tools have been developed, including THREAT-
GET [3,12], Microsoft Threat Modeling Tool [8], ThreatModeler [15], OWASP
Threat Dragon [7] and pytm [17], Foreseeti [6], Security Compass SD Ele-
ments [14] and Tutamen Threat Model Automator [16]. These tools can be
divided into three categories: (1) manual approaches based on excel sheets or

Attribute Repair for Threat Prevention 147

questionnaires [16], (2) graphical modelling approaches without an underlying
formal model [7,8,14,15], and (3) model-based system engineering tools with
an underlying formal model [3,6,12,17]. The first class of tools does not admit
automated threat analysis and any threat prevention measure must be manually
identified and selected. Several tools from the second and third class [3,6,8,12]
provide some limited form of hard-coded measures that are associated to indi-
vidual threats or assets, without considering threat inter-dependencies nor mit-
igation costs and are not able to compute a global and consistent set of threat
prevention measures. Hence our threat prevention approach could be integrated
to theses classes of tools.

Optimization Modulo Theories (OMT) combine SMT solvers with opti-
mization procedures [2,4,5,10,13]. to find solutions optimizing some objective
function Parameter synthesis using SMT solvers does not require optimization
objectives in general. Bloem et al. [11] synthesized parameter values ensuring
safe behavior of cyber-physical systems through solving an ∃∀ SMT formula. In
this work, users specify safe states in terms of state and parameter values; then,
the synthesizer attempts to compute correct parameter values conforming to an
invariant template such that for all possible inputs all reachable states are safe.

6 Discussion and Future Work

We presented a framework that enables automated threat prevention by repair-
ing security-related system attributes. Although widely applicable, attribute-
value repair is not enough to cover all interesting preventive procedures. For
example, protecting safety-critical components connected to a Controller Area
Network (CAN) bus in a vehicle cannot be done just by encrypting messages.
In fact, encryption is not part of the CAN protocol. The preventive measure
would require separating trusted (safety-critical) part of the system from the
untrusted one (entertainment system, etc.) with a firewall, a measure that is
beyond the attribute-value repair. Despite a few similar examples, attribute
repair remains a suitable repair strategy for the majority of threats present
in common architectures. Intuitively, this is the case because the attributes
document the counter-measures taken against common classes of threats, e.g.,
authentication as a counter-measure against escalation of privilege. The more
general model repair problem can addresses the limitations illustrated by the
CAN example by enabling addition and removal of elements in the model. Unre-
stricted alteration of models would lead to trivial and uninteresting repairs, e.g.
it suffices to disconnect all elements in the model from each other to disable the
vast majority of threats. Hence, model repair requires a restriction of repair oper-
ations and even just identifying a set of useful repair operations is a challenging
task. The more general model repair is a separate research problem that differs
in several key aspects from the attribute-value repair and we plan to tackle it as
future work.

148 T. Tarrach et al.

References

1. Bjørner, N., Phan, A.: νz - maximal satisfaction with Z3. In: 6th International
Symposium on Symbolic Computation in Software Science, SCSS 2014, Gammarth,
La Marsa, Tunisia, December 2014, pp. 1–9. EasyChair (2014)

2. Bjørner, N., Phan, A., Fleckenstein, L.: νZ - an optimizing SMT solver. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. Lecture Notes in Computer Science, vol. 9035,
pp. 194–199. Springer, London, UK (2015)

3. Christl, K., Tarrach, T.: The analysis approach of ThreatGet. CoRR,
abs/2107.09986 (2021)

4. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach
to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013.
LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39071-5 12

5. Dillig, I., Dillig, T., McMillan, K.L., Aiken, A.: Minimum satisfying assignments
for SMT. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
394–409. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 30

6. Foreseeti AB. Foreseeti (2020). Online. Accessed 29 Nov 2020
7. Goodwin, M., Gadsden, J.: OWASP threat dragon (2020). Online. Accessed 29

Nov 2020
8. McRee, R.: Microsoft threat modeling tool 2014: identify & mitigate. ISSA J. 39,

42 (2014)
9. Mürling, M.W.: Security by design: new “THREATGET” tool tests cyber security

in vehicles and systems (2021). Online Article
10. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.

In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814948 18

11. Riener, H., Könighofer, R., Fey, G., Bloem, R.: SMT-based CPS parameter syn-
thesis. In: Frehse, G., Althoff, M. (eds.) 3rd International Workshop on Applied
Verification for Continuous and Hybrid Systems, ARCH@CPSWeek 2016, Volume
43 of EPiC Series in Computing, Vienna, Austria, pp. 126–133. EasyChair (2016)

12. El Sadany, M., Schmittner, C., Kastner, W.: Assuring compliance with protection
profiles with ThreatGet. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch,
E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 62–73. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26250-1 5

13. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo the-
ories. J. Autom. Reason. 64(3), 423–460 (2018). https://doi.org/10.1007/s10817-
018-09508-6

14. Security Compass Ltd.: Security compass SD elements (2020). Accessed 29 Nov
2020

15. ThreatModeler Software, Inc.: ThreatModeler (2020). Online. Accessed 29 Nov
2020

16. Tutamantic Ltd.: Tutamen threat model automator (2020). Online. Accessed 29
Nov 2020

17. Was, J., Avhad, P., Coles, M., Ozmore, N., Shambhuni, R., Tarandach, I.: OWASP
pytm (2020). Online. Accessed 29 Nov 2020

https://doi.org/10.1007/978-3-642-39071-5_12
https://doi.org/10.1007/978-3-642-39071-5_12
https://doi.org/10.1007/978-3-642-31424-7_30
https://doi.org/10.1007/978-3-642-31424-7_30
https://doi.org/10.1007/11814948_18
https://doi.org/10.1007/978-3-030-26250-1_5
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.1007/s10817-018-09508-6

Safety of Autonomous Driving

Probabilistic Spatial Relations
for Monitoring Behavior of Road Users

Lennart Siefke1,2(B) , Volker Sommer1 , Murat Can Baylan1 ,
and Lars Grunske2

1 Berliner Hochschule für Technik, Luxemburger Straße 10, 13353 Berlin, Germany
lennart.siefke@informatik.hu-berlin.de, volker.sommer@bht-berlin.de
2 Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

grunske@informatik.hu-berlin.de

Abstract. Safe autonomous driving requires monitoring the movement
of other road users to detect potential problems as early as possible. Road
users and regions of interest can be modeled as time-dependent areas.
However, current algorithms for monitoring spatial relations between such
areas do not consider uncertainty. Thus, they are not able to cope with
sensor inaccuracy and errors in trajectory prediction, which can lead to
false verdicts regarding possible collisions. In this paper, spatial relations
between regions are generalized using a probabilistic approach to treat
uncertainties. This makes verdicts of monitored movements more reli-
able, especially when the positions or boundaries of spatial regions are not
known precisely. Therefore, this allows monitoring inherently uncertain
spatial relations, like collision estimations or insight into regions of interest
using range sensors. The applicability of the presented probabilistic spa-
tial relations is demonstrated by monitoring a potentially hazardous turn
maneuver simulated with the Open Urban Driving Simulator CARLA.

Keywords: Runtime Monitoring · Spatial Relations · Uncertainty ·
Road Traffic

1 Introduction

Monitoring behavior of road users during runtime is an important step to the
goal of safe autonomous driving. Potential problems could be detected early,
which allows vehicles to adapt their behavior. However, uncertainties in local-
ization, perception, and prediction are a major issue when evaluating correctness
of behavior. Nevertheless, such uncertainties need to be considered during mon-
itoring to obtain reliable verdicts.

Formal languages are suitable to specify and monitor behavior during run-
time. Commonly, formal languages based on temporal logic are used in the
domain of software or hardware systems [18]. In contrast to such systems,
autonomous vehicles are cyber-physical systems moving through space. To spec-
ify behavior of movements, spatio-temporal logic can be applied [20]. However,
literature does not provide spatial relations between areas in which locations and
boundaries are not known precisely.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 151–164, 2023.
https://doi.org/10.1007/978-3-031-40923-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_12&domain=pdf
http://orcid.org/0000-0002-2605-4643
http://orcid.org/0000-0002-4879-8061
http://orcid.org/0000-0003-2475-351X
http://orcid.org/0000-0002-8747-3745
https://doi.org/10.1007/978-3-031-40923-3_12

152 L. Siefke et al.

This work generalizes spatial relations operating on two-dimensional geomet-
ric objects using probabilistic evaluations. The contributions of this paper are:

– Introducing probabilistic geometric objects, which allow modeling uncertain-
ties caused by localization and trajectory prediction (Subsect. 3.1),

– Generalizing spatial relations between areas using probabilistic geometric
objects (Subsects. 3.2 and 3.3),

– Applying probabilistic spatial relations in general (Sect. 4) and in road traffic
scenarios to monitor collision probability (Sect. 5).

2 Related Work

Runtime monitoring is a technique to observe, whether a system behaves accord-
ing to its specifications [11]. The specifications are evaluated automatically using
current observations. Therefore, specifications need to be written using machine-
readable formal languages. Temporal logic is a common foundation for such spec-
ification languages, as time-dependent states are common in a lot of systems [18].
Signal Temporal Logic (STL) allows specifying real-valued properties on metric
time [21].

In addition to time-dependant states, autonomous mobile systems carry
space-dependent states, such as location or range sensors. To reason about such
spatial properties, spatial logic can be used [2]. Clementini et al. [8,9] introduced
spatio-topological relations between points, lines, and areas. Examples of these
spatio-topological relations are, among others, overlaps, disjoints, meet, covers,
and covered_by. The geometric objects are defined by three sets of points: inte-
rior, boundary, and exterior points. Each point in space is uniquely associated to
one of those sets regarding one geometric object. Therefore, those relations are
not able to cope with uncertainties in the objects and map the verdict to truth
values. These relations were extended by Vazirgiannis to quantify how much
those relations are satisfied, e.g., A overlaps B significantly [24]. To specify behav-
ior of road users on multi-lane roads (e.g., merging), Hilscher et al. [15] developed
multi-lane spatial logic to reason about occupancy of lane segments. Runtime
monitoring of spatio-temporal properties in cyber-physical systems with support
for uncertainties was proposed by Visconti et al. [25]. Their work introduces
spatio-temporal reach and escape logic, which supports evaluation of distance
relationships, but does not support evaluation of spatio-topological relationships
between regions. Thus, spatio-topological relations between regions with uncer-
tain positions and boundaries are still missing in literature.

Uncertainty is a broad term in context of cyber-physical systems [26]. In the
context of possible crashes in the nearby future, uncertainty can be understood
as a probability of occurrence. On the other hand, uncertainty can be under-
stood as errors in sensor measurements or lack of knowledge about the behavior
of other road users for example. With regard to uncertainties in traffic scenarios,
localization [22] and trajectory prediction [19] for road users require probabilis-
tic estimation by nature. In this paper, we use the terms path and trajectory as
described by Kant [16]: A path is a geometric object; a trajectory contains addi-
tional temporal information as well. Predicting future positions and their arrival

Probabilistic Spatial Relations for Monitoring Behavior of Road Users 153

times can be useful for further navigation. Trajectory prediction is an active field
of research. The input of prediction algorithms usually depends on the method,
whereas the output can be modeled as a ordered set of time-dependant poses
Xt = {X1,X2, ...,XTobs

} [19]. A pose describes the position and the orientation
of an object in two- or three-dimensional space. In a 2D-plane, poses can be
modeled as X = [x, y, θ] with θ representing the orientation. Note that the pre-
dicted poses describe points whereas the shape of the spatial objects is ignored.
Modeling road users as point-shaped during trajectory prediction causes algo-
rithms to become less complex. Predictions are inherently uncertain, as future
movements cannot be known perfectly in advance. To quantize the uncertainty
of a predicted pose, the pose can be modeled as a random variable using a prob-
ability distribution. The approaches for trajectory prediction in literature can be
broadly categorized, whether they are based on neural networks [7] or dynamic
Bayesian networks [12,17]. Additionally, many approaches are specialized to con-
crete scenarios, like highways [3] or dense traffic in urban areas [6].

Approaches for estimating collision probabilities usually do not build up on
predicted trajectories, as with such trajectory predictions vehicles are considered
as point-shaped usually, whereas the shapes of vehicles are crucial for estimating
collision probabilities. Althoff et al. [4,5] developed stochastic reachable sets,
which are probability distributions over all possible regions the mobile system
can reach from its current position. For example, the stochastic reachable sets
are constrained by the maximum acceleration, deceleration, and driving style. To
estimate the collision probability of two vehicles, each possible future position is
checked for overlap with the position of the other car at the same future time. If
they do overlap, the probabilities for the vehicles being located at the same time
and location are multiplied. The sum of all those probabilities is the estimation
of the collision probability. Hermann and Schroven [13,14] extend this approach
by using more information to build the stochastic reachable sets.

Predicted severity of upcoming collisions is of great interest as it allows vehi-
cles to change steering just before an unavoidable crash with the goal of mini-
mizing the severity. Parseh et al. [23] partitioned cars into two-dimensional zones
and use these to rate severity of unavoidable crashes. They assume positions and
trajectories of the vehicles to be known without uncertainty. Their approach tells
the severity of the upcoming crash, but not the probability of this crash to actu-
ally occur with this severity. Composing predictions of severity with estimating
whether the crash will actually occur would enable the vehicle to make more
sophisticated decisions during motion planning.

3 Probabilistic Spatial Relations

The spatial relations which are enriched with probabilistic concepts in this paper
are overlaps, disjoints, covers, and covered_by, as defined in [9] and visualized
in Fig. 1. Classic spatial relations operate on regions consisting of points, which
belong to either the regions’ interior, boundary, or exterior. To define spatial
relations considering uncertainty, the uncertainty must be modeled within the
spatial regions.

154 L. Siefke et al.

Fig. 1. Spatio-topological relations: disjoints(a, b) in (a), overlaps(a, b) in (b), covers
(a, b) or covered_by(b, a) in (c)

3.1 Probabilistic Geometric Objects

We define probabilistic geometric objects (PGOs) to evaluate spatial relations
between regions and support modeling of uncertainties in poses or boundaries
of those regions. A PGO is a model of a region, with each point of the PGO is
mapped to a value in the interval [0, 1] ∈ R. A value of 1 indicates the point
certainly belongs to the region; a value of 0 indicates the point to certainly not
belong to the region. Therefore, a two-dimensional PGO is defined as follows:

PGO : (x × y) → [0, 1] ∈ R (1)

PGOs are not probability functions, as the integral can be not equal to 1, when
the area of the region is not equal to 1. The area is defined as the set of all
coordinates (x, y), where PGO(x, y) > 0:

area(PGO) = {(x, y) ∈ R × R | PGO(x, y) > 0} (2)

PGOs are useful to model the boundary of areas spawned by distance sensors
with the uncertainty described in the sensors’ data sheet, for example.

Note that there are more spatial relations defined on regions, such as
a meets b, which is true if and only if there is an overlap on their boundaries but
nowhere else. To evaluate overlaps on boundaries, a definition for the boundary
of a PGO is required. Since this is an ambiguous question it is thus omitted from
this paper and left for future work.

3.2 Probabilistic Disjoints and Overlaps

Given two PGOs a and b, which are located in the same coordinate system, the
probability of disjoints(a, b) and overlaps(a, b) can be estimated. The result of
those relations is a probabilistic value, therefore we can note:

disjoints(a, b) → [0, 1] ∈ R (3)
overlaps(a, b) → [0, 1] ∈ R (4)

Overlaps(a, b) is the probability of the PGOs to occupy the same region. The
size of this region is not considered, overlaps(a, b) evaluates whether two regions
overlap in at least one point. We know that overlaps(a, b) is the converse prob-
ability of disjoints(a, b) and vice versa, therefore:

overlaps(a, b) = 1 − disjoints(a, b) (5)

Probabilistic Spatial Relations for Monitoring Behavior of Road Users 155

To calculate, whether a single point (x, y) is occupied by each object, the product
of each PGO at the according coordinate is used:

disjointspoint(a, b, (x, y)) = 1 − a(x, y) · b(x, y) (6)
overlapspoint(a, b, (x, y)) = a(x, y) · b(x, y) (7)

Building upon this, we extend the formulas to evaluate the probability of
overlaps(a, b) and disjoints(a, b) in any points in the two-dimensional plane:

disjoints(a, b) = min
(x,y)∈R×R

1 − a(x, y)b(x, y) (8)

overlaps(a, b) = max
(x,y)∈R×R

a(x, y)b(x, y) (9)

Correctness of Eq. 8 is supported using the following special cases. First,
when a and b overlap at any point where both PGOs have a probability of 1,
then disjoint(a, b) = 0. Second, when a and b do not overlap in any point,
disjoint(a, b) is expected to be 1.
Example. Disjoints(a, b) is 0 if there is a point (x, y) exists where a(x, y) =
b(x, y) = 1. The disjoint probability for this is calculated using Eq. 6:
disjointpoint = 1 − 1 · 1 = 0. Inside Eq. 8, the minimum disjoint probability
found in any point is set to the disjoint probability of the two regions. As the
disjoint probability per point cannot be lower than 0, the disjoint probability of
two regions equals 0 when they share a probability of 1 in at least one coordinate.
Example. Disjoints(a, b) is 1 if there is no overlapping area, e.g., there is no
point (x, y) where a(x, y) > 0 ∧ b(x, y) > 0. In this case, the product in Eq. 8 is
always 0 and the formula evaluates to 1.

3.3 Probabilistic Covers and CoveredBy

To describe whether a spatial region is located completely inside another region,
the relations covers and covered_by are used. The expressions covers(a, b) and
covered_by(a, b) are read as “a covers/is covered_by b”, the order is important as
the relations are not commutative. When a covers b, b is covered by a, therefore:

covers(a, b) = covered_by(b, a) (10)

covers(a, b) is true, if and only if a and b overlap and no point of b is located in the
exterior of a. To consider uncertainties when evaluating, the probability of a and
b to overlap is multiplied with the converse probability of encountering b outside
the area of a. This way, the probability of covers(a, b) increases when there
is an overlapping, but decreases when b covers area outside of a. To calculate
the probability of b occupying a specific area, we need to adjust the boundaries
of the max operation. The boundaries for encountering b outside a is set as
area(b)\area(a). Formally, this operation is represented in Eq. 11.

The probability of covered_by(a, b) is calculated similarly as in Eq. 12. The
factor overlaps(a, b) stays, but the other factor is replaced with the converse

156 L. Siefke et al.

probability of encountering a outside of b.

a covers b = { max
(x,y)∈a∪b

a(x, y)b(x, y)} · {1 − max
(x,y)∈b\a

b(x, y)} (11)

a covered_by b = { max
(x,y)∈a∪b

a(x, y)b(x, y)} · {1 − max
(x,y)∈a\b

a(x, y)} (12)

Finally, the spatial relations and their probabilistic generalizations are col-
lated in Table 1.

Table 1. Spatial relations and their generalized probabilistic spatial relations.

Operator Boolean
Condition

Probabilistic Condition

overlaps a ∩ b �= ∅ max(x,y)∈R2 a(x, y)b(x, y)

disjoints a ∩ b = ∅ min(x,y)∈R2 1 − a(x, y)b(x, y)

covers a ∩ b = b {max(x,y)∈a∪b a(x, y)b(x, y)} · {1 − max(x,y)∈b\a b(x, y)}
covered_by a ∩ b = a {max(x,y)∈a∪b a(x, y)b(x, y)} · {1 − max(x,y)∈a\b a(x, y)}

3.4 Example

As an example, we define two rectangular regions a with (3×2)m and b with
(1×1)m. The uncertainty of the positions of both objects is modeled using a 2D
normal distribution parameterized with σx = σy = 0.1. This uncertainty in the
poses leads to the following situation: The area of points which certainly belong
to the objects, i.e., PGO(x, y) = 1, is smaller than the ground-truth area of the
objects. However, the objects now have a non-sharp boundary of points which
belong to the object with a probability of 0 < PGO(x, y) < 1. Because of this
boundary, the PGOs define a greater area than the ground-truth area of the
region. First, the PGOs are located next to each other without overlapping. The
smaller object b will be moved along the x-axis until it is located at the other
side of a. This movement is visualized with the arrow in Fig. 2a.

For every distance b is moved, the relations overlaps(a, b), disjoints(a, b),
covers(a, b) and covered_by(a, b) are evaluated. The obtained probabilities in
relation to the distance PGO b is moved are visualized in Fig. 2b. We see that
overlaps(a, b) increases immediately as the boundaries start overlapping. As
expected with Eq. 5, disjoints(a, b) and overlaps(a, b) are converse to each other,
which leads to the probabilities being mirrored at p = 0.5. covers(a, b) increases
when the left boundary of a overlaps with the left boundary of b. The probability
of covered_by(a, b) is always 0, which is caused by the area of a being much larger
than the area of b.

4 Building Probabilistic Geometric Objects

In this section, we first describe how to model uncertainty caused by localization
errors into probabilistic geometric objects (PGOs). Building on this, uncertain-
ties caused by predicted trajectories are modeled into PGOs. From now on, the
two-dimensional space is discretized to allow efficient processing of PGOs and
probabilistic spatial relations using computers.

Probabilistic Spatial Relations for Monitoring Behavior of Road Users 157

Fig. 2. The small PGO b is moved through the bigger PGO a, as visualized with the
arrow in (a). The color indicates the probability to meet a point of the PGO at the
coordinate. The probabilities of the spatial relations depending on the distance b is
moved are visualized in (b).

4.1 Model Uncertainties Caused by Pose Errors

Knowledge about poses of road users is subject to uncertainty, which is usu-
ally described by probability distributions. The pose of the ego vehicle can be
obtained using sensors and localization algorithms, whereas poses of other road
users can be obtained using sensors and tracking algorithms for example. As
measurements of sensors are subject to uncertainty, the poses of road users are
also subject to uncertainty. In simplified cases, the unimodal normal distribution
is suitable to model pose errors. However, our algorithms work with any dis-
crete probability distributions. This makes the approach composable with any
localization- or tracking algorithm, providing poses as random variables using a
probability distributions.

First, the assumptions we made are explained. We assume the vehicles to be
equipped with sensors to measure and estimate the positions of themselves and
other road users. Road users can be considered as two-dimensional geometric
objects given by an orthographic projection from above. One method to obtain
shape of other vehicles is to assume the vehicles as symmetric when two sides
are obtained using sensor data. We operate in the local coordinate frame of the
object. In the local coordinate frame, the center of the object is the coordinate
origin and the orientation of the coordinate frame is equal to the orientation
of the object. Uncertainties in the transformation between a global coordinate

158 L. Siefke et al.

frame and the local coordinate frame do not affect the method presented in
this section. For example, when the ego vehicle tracks the shapes and poses
of two other vehicles and evaluates a spatial relation between their PGOs, the
coordinate frame of the ego vehicle would be appropriate to use. Thus, the pose
error of the ego vehicle in the global coordinate frame would not influence the
spatial relation.

To build a PGO, the probability distribution of the pose error p(x, y) is
required. As an example, we use the two-dimensional normal distribution without
covariance, and therefore ρ = 0, to describe the pose error. Depending on the
standard deviation [1], Eq. 13 can be used to calculate the error probabilities.

p(x, y|ρ = 0) =
1

2π · σx · σy
· e

− 1
2

(
x2

σ2
x
+ y2

σ2
y

)
(13)

This probability distribution has to be normalized so that the sum of all values
equals 1. This is due to the discrete space we work with. For this purpose, each
cell of the matrix is divided by the sum over all values in the matrix, as described
in Eq. 14 and 15. The axis-aligned distances between the center of the normal
distribution to the boundaries are called xmax and ymax.

norm =
xmax∑

x=−xmax

ymax∑

y=−ymax

p(x, y) (14)

p(x, y) =
p(x, y)
norm

(15)

Fig. 3. Pose error p(x) described by a discrete probability function (a) is modeled
into a probabilistic geometric object using convolution (b). For convenience, the one-
dimensional space is used in this figure.

Using the road users shape and the pose error, we can build a two-dimensional
PGO(x, y), which probability values state whether the road user occupies the
according coordinate values. An important assumption is that the whole geomet-
ric object is subject to the same pose error, otherwise the geometric object will

Probabilistic Spatial Relations for Monitoring Behavior of Road Users 159

be distorted with the following method. To model the uncertainty in the pose,
the rasterized shape of the road user and the discrete probability distribution
describing the pose error are required. When the shape is known, each point in
the plane has a probability of either 0 or 1 to belong to the geometric object
GO(x, y). Figure 3a shows the pose error, Fig. 3b shows how the pose error affects
the PGO. For convenience, the one-dimensional space is used in the figure. The
probability value of each raster cell belonging to the geometric object is mul-
tiplied with each probability value of the pose error, whereas the products are
shifted spatially by an offset. The offset is the distance of the according raster
cell of the pose error to its center. Then, the resulting PGO(x, y) is obtained by
summing up all probability values which overlap at the same coordinate. This
sum at each coordinate expresses the probability to meet an arbitrary point of
the geometric object at this coordinate. Equation 16 realizes this method.

PGO(x, y) =
xmax∑

x̃=−xmax

ymax∑

ỹ=−ymax

p(x̃, ỹ) · GO(x − x̃, y − ỹ) (16)

This mathematical operation is known as two-dimensional convolution. To be
concise, the pose error p(x, y) is convoluted with the shape of the road user
PGO(x, y) to model the uncertainty into PGO(x, y), as described in Eq. 17.

PGO(x, y) = p(x, y) ∗ ∗ GO(x, y) (17)

The ground truth size of the area modeled by a PGO can be obtained as
follows. Using Fubini’s theorem, we see that the sum over a PGO will not change
after convolution with a probability function as the integral over a probability
function equals 1 and

∫
(f ∗g)(x)dx = (

∫
f(x)dx)(

∫
g(x)dx). This integral, which

is a sum in discrete space, over a rasterized shape of a region multiplied with
the area each discrete cell occupies, equals the area of the shape:

∑

(x,y)

PGO(x, y) · cell_area = area_geometric_object (18)

Figure 4 shows the 2D convolution of PGOshape(x, y) with the normal distri-
bution p(x, y) describing the pose error. The pose error is modeled asymmetrical
in this example with σx = 0.1 and σy = 0.02. The resulting PGO consists of
all raster cells, which contain a part of the geometric object with a probability
above zero. In this example the two-dimensional shape of a road user served as
the geometric object. However, the method works for any geometric area which
is known with subject to a pose error.

4.2 Model Uncertainties Caused by Trajectory Predictions

Modeling errors in predicted trajectories is similar to modeling pose errors caused
by localization or object tracking. However, the convolution needs to be applied
multiple times and the coordinate transformation to the predicted poses will be

160 L. Siefke et al.

Fig. 4. Creating a probabilistic geometric object to model an error in localization. The
shape of the road user is shown in (a). The distribution of the pose error is shown
in (b). The convolution of the shape with the pose error shows the area (c), where the
road user can be encountered.

considered now. The vehicle follows a trajectory, which is spatially discretized
using n poses. Each pose carries the estimated timestamped pose and its prob-
ability distribution p(x, y). The approach is composable with any external tra-
jectory prediction, providing a probability function to describe the uncertainty
of the predicted pose. A PGO is modeled for each pose of the trajectory. This is
done by recursively applying the convolution on the PGOs of neighbored poses
with a discrete probability function, p(x, y) as shown in Eq. 19. For the first
predicted pose, the current PGO will be used.

PGOi+1(x, y) = PGOi(x, y) ∗ ∗ p(x, y) (19)

Figure 5 presents the effect of the recursive algorithm. The dashed line rep-
resents the predicted trajectory; the dots represent the poses. The x- and y-
coordinates are local coordinates. Beginning with i = 0, the PGO already com-
prises a certain pose error. For i = 1 and i = 2, the inflation of the PGOs due
to the recursive convolution is visible. To evaluate spatial relations, PGOs need
to be transformed into the same coordinate transformations. The coordinate
transformations into a global coordinate system are given by the poses of the
trajectory. This approach assumes the uncertainty of poses to increase or stay
constant in successive timesteps in the future. In the case of predicted trajecto-
ries which contain a pose with lower uncertainty than the previous pose, a new
probability distribution needs to be initialized to convolute with the shape of
the according road user.

Fig. 5. Probabilistic geometric objects built for each pose of a predicted discrete tra-
jectory. Poses farther away have a greater prediction error, which is visible by means
of the inflated PGOs.

Probabilistic Spatial Relations for Monitoring Behavior of Road Users 161

5 Application in Road Traffic

To demonstrate applicability of the proposed methods, the overlaps(a, b) oper-
ator is used to monitor collision probabilities in road traffic. Using CARLA,
a simulator for autonomous driving systems [10], we investigate the situation
shown in Fig. 6. Two vehicles are moving toward an intersection, we call the
blue vehicle ‘Blue’ and the red vehicle ‘Red’. Red wants to turn left, Blue drives
straight. According to the road traffic regulations, Blue has the right of way on
the intersection and Red must wait. However, if Blue is slow or far away, Red
can turn before blue. This scenario is simulated repeatedly, with Blue having
a different speed in each simulation and constant configuration otherwise. The
speed of Blue is set to values in the interval [15, 35] km/h, Red has a constant
speed of 30 km/h.

For each vehicle, a discrete trajectory will be predicted at every point in time.
The predicted trajectories are based on the planned trajectories and assume the
vehicles to stay in their lanes. Uncertainty is assumed in the moment the vehi-
cles will reach predicted poses, as perfectly constant speed cannot be assumed in
reality. To consider these assumptions, the poses of the trajectory are modeled
using a normal distribution. The standard deviation oriented along the direc-
tion of motion increases by 0.75 per meter, and 0 orthogonal to the direction of
motion. Neighbored poses have a distance of 0.5m to each other. The length of
the predicted trajectories is 9m, which is approximately the braking distance for
a car driving with 30 km/h ignoring reaction time. The vehicles strictly follow
their planned trajectory, even if an unacceptable collision probability is pre-
dicted, as we are interested in monitoring and not interested in control.

To estimate the risk of collision in this turn maneuver, we monitor and esti-
mate the collision probability using the approach presented in Sect. 4.2 and the

Fig. 6. Monitoring behavior at an intersection benefits from estimating collision prob-
ability. The red car wants to turn, either before (a) or after the blue car passes the
intersection (b). Blue has a speed of 20.3 km/h in (a) and a speed of 30.1 km/h in (b).
Planned trajectories are visualized in green. (Color figure online)

162 L. Siefke et al.

Fig. 7. Estimated collision probabilities using probabilistic overlaps(a, b) operator in
relation to the speed of the blue vehicle. Whether a collision happens is presented with
the dotted line. The dashed line shows the minimum distance between the vehicles at
any point in time per simulation. (Color figure online)

probabilistic overlaps-operator for i = [0.5, 1, ..., 9]:

overlapsi(PGOred,i, PGOblue,i) (20)

This spatio-temporal relation is evaluated every 16.6ms for each pose in the
predicted trajectory. Note that a turn is not necessarily safe when no collision
happens: The vehicles could pass each other very closely. The maximum overlap-
ping probabilities predicted at any future point in time per simulation are visu-
alized in Fig. 7. With speed of Blue inside the interval [20.3, 30.1] km/h, a crash
happens. The severity of the crash is not accounted here though the crashes at
both ends of the interval are probably less severe than the other crashes. Inter-
estingly, the collected data shows the collision estimations being asymmetric.
This is caused by the spatial arrangement on the intersection. In the case of
Red turning after Blue, the vehicles are closer to each other for a longer time
on the intersection and the minimum distance between the vehicles at any time-
point tends to be shorter. The PGOs of both vehicles therefore overlap in the
nearby future more frequently. As the prediction error is smaller in nearby future,
the probability values of the PGOs are greater. As a consequence, the collision
estimation tends to be higher when Red turns after Blue. The graph showing
the collision probabilities is not very smooth, which is due to the distance of
0.5m between the poses in the predicted trajectory. Using a smaller distance,
the graph would be smoother and the collision estimations more correct. The
estimated collision probability at vBlue = 20.3 km/h and vBlue = 30.1 are less
than 1. Certain collisions are not estimated as such, which is plausible as the
vehicles could still avoid the collision by replanning their behavior shortly. In the
end, most, if not all, simulations would be at least uncomfortable to experience
in reality. This condition is visible in the collected data.

6 Conclusion

The presented probabilistic spatial relations allow for the consideration of uncer-
tainties in poses and boundaries of regions. Therefore, evaluation of such spatial

Probabilistic Spatial Relations for Monitoring Behavior of Road Users 163

relations is not a binary decision anymore and becomes more reliable. A use case
is monitoring the behavior of road users, which are permanently subject to rela-
tionships between themselves and other spatial objects. Those spatial objects
might be other road users or regions of interest on the road. Formal specifica-
tions of a road users’ behavior are now able to express the acceptable risk of
spatial relations between objects to occur. Further work is needed to validate
the usage of probabilistic geometric relations alongside state-of-the-art meth-
ods from localization, tracking and trajectory prediction to estimate collision
probabilities in realistic scenarios.

Acknowledgements. This research was funded by the Berlin Institute for Applied
Research (IFAF Berlin) within the CARS-project.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables, vol. 55. US Government Printing Office
(1948)

2. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics.
Springer, Netherlands (2007). https://doi.org/10.1007/978-1-4020-5587-4

3. Altché, F., de La Fortelle, A.: An LSTM network for highway trajectory prediction.
In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems
(ITSC), pp. 353–359 (Oct 2017). https://doi.org/10.1109/ITSC.2017.8317913

4. Althoff, M., Stursberg, O., Buss, M.: Stochastic reachable sets of interacting traffic
participants. In: 2008 IEEE Intelligent Vehicles Symposium, June 2008, pp. 1086–
1092 (2008). https://doi.org/10.1109/IVS.2008.4621131

5. Althoff, M., Stursberg, O., Buss, M.: Model-based probabilistic collision detection
in autonomous driving. IEEE Trans. Intell. Transp. Syst. 10(2), 299–310 (2009).
https://doi.org/10.1109/TITS.2009.2018966

6. Chandra, R., Bhattacharya, U., Roncal, C., Bera, A., Manocha, D.: RobustTP:
end-to-end trajectory prediction for heterogeneous road-agents in dense traffic
with noisy sensor inputs. In: Proceedings of the 3rd ACM Computer Science in
Cars Symposium, CSCS 2019, October 2019, pp. 1–9. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3359999.3360495

7. Chandra, R., et al.: Forecasting trajectory and behavior of road-agents using spec-
tral clustering in graph-LSTMs, August 2020

8. Clementini, E., Di Felice, P., van Oosterom, P.: A small set of formal topological
relationships suitable for end-user interaction. In: Abel, D., Chin Ooi, B. (eds.)
SSD 1993. LNCS, vol. 692, pp. 277–295. Springer, Heidelberg (1993). https://doi.
org/10.1007/3-540-56869-7_16

9. Clementini, E., Sharma, J., Egenhofer, M.J.: Modelling topological spatial rela-
tions: strategies for query processing. Comput. Graph. 18(6), 815–822 (1994).
https://doi.org/10.1016/0097-8493(94)90007-8

10. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning, October 2017, pp. 1–16. PMLR (2017)

11. Havelund, K., Ro, G.: Java PathExplorer - a runtime verification tool. In: Inter-
national Space Conference, p. 8 (2001)

https://doi.org/10.1007/978-1-4020-5587-4
https://doi.org/10.1109/ITSC.2017.8317913
https://doi.org/10.1109/IVS.2008.4621131
https://doi.org/10.1109/TITS.2009.2018966
https://doi.org/10.1145/3359999.3360495
https://doi.org/10.1007/3-540-56869-7_16
https://doi.org/10.1007/3-540-56869-7_16
https://doi.org/10.1016/0097-8493(94)90007-8

164 L. Siefke et al.

12. Hermes, C., Wohler, C., Schenk, K., Kummert, F.: Long-term vehicle motion pre-
diction. In: 2009 IEEE Intelligent Vehicles Symposium, June 2009, pp. 652–657
(2009). https://doi.org/10.1109/IVS.2009.5164354

13. Herrmann, S.: Kollisionswarnung im urbanen Straßenverkehr auf Basis einer prob-
abilistischen Situationsanalyse. Logos Berlin, Berlin, July 2013

14. Herrmann, S., Schroven, F.: Situation analysis for driver assistance systems at
urban intersections. In: 2012 IEEE International Conference on Vehicular Elec-
tronics and Safety, ICVES 2012, July 2012, pp. 151–156 (2012). https://doi.org/
10.1109/ICVES.2012.6294295

15. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving
safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24559-6_28

16. Kant, K., Zucker, S.W.: Toward efficient trajectory planning: the path-velocity
decomposition. Int. J. Robot. Res. 5(3), 72–89 (1986). https://doi.org/10.1177/
027836498600500304

17. Lambert, A., Gruyer, D., Saint Pierre, G.: A fast Monte Carlo algorithm for colli-
sion probability estimation. In: Robotics and Vision 2008 10th International Con-
ference on Control, Automation, December 2008, pp. 406–411 (2008). https://doi.
org/10.1109/ICARCV.2008.4795553

18. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing, USA (2002)

19. Leon, F., Gavrilescu, M.: A review of tracking and trajectory prediction methods
for autonomous driving. Mathematics 9(6), 660 (2021). https://doi.org/10.3390/
math9060660

20. Loreti, M., Bortolussi, L., Bartocci, E., Nenzi, L.: A logic for monitoring dynamic
networks of spatially-distributed cyber-physical systems. Log. Meth. Comput. Sci.
18 (2022)

21. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3_12

22. Panigrahi, P.K., Bisoy, S.K.: Localization strategies for autonomous mobile robots:
a review. J. King Saud Univ. Comput. Inform. Sci. 34(8, Part B), 6019–6039
(2022). https://doi.org/10.1016/j.jksuci.2021.02.015

23. Parseh, M., Asplund, F., Svensson, L., Sinz, W., Tomasch, E., Törngren, M.: A
data-driven method towards minimizing collision severity for highly automated
vehicles. IEEE Trans. Intell. Veh. 6(4), 723–735 (2021). https://doi.org/10.1109/
TIV.2021.3061907

24. Vazirgiannis, M.: Uncertainty handling in spatial relationships. In: Proceedings of
the 2000 ACM Symposium on Applied Computing, SAC 2000, Como, Italy , pp.
494–500. ACM Press(2000). https://doi.org/10.1145/335603.335928

25. Visconti, E., Bartocci, E., Loreti, M., Nenzi, L.: Online monitoring of spatio-
temporal properties for imprecise signals. arXiv:2109.08081 [cs], September 2021

26. Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.: Understanding
uncertainty in cyber-physical systems: a conceptual model. In: Wąsowski, A., Lönn,
H. (eds.) ECMFA 2016. LNCS, vol. 9764, pp. 247–264. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42061-5_16

https://doi.org/10.1109/IVS.2009.5164354
https://doi.org/10.1109/ICVES.2012.6294295
https://doi.org/10.1109/ICVES.2012.6294295
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1177/027836498600500304
https://doi.org/10.1177/027836498600500304
https://doi.org/10.1109/ICARCV.2008.4795553
https://doi.org/10.1109/ICARCV.2008.4795553
https://doi.org/10.3390/math9060660
https://doi.org/10.3390/math9060660
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1016/j.jksuci.2021.02.015
https://doi.org/10.1109/TIV.2021.3061907
https://doi.org/10.1109/TIV.2021.3061907
https://doi.org/10.1145/335603.335928
http://arxiv.org/abs/2109.08081
https://doi.org/10.1007/978-3-319-42061-5_16

Concept and Metamodel to Support
Cross-Domain Safety Analysis for ODD
Expansion of Autonomous Systems

Jan Reich1(B), Daniel Hillen1, Joshua Frey1, Nishanth Laxman1, Takehito Ogata2,
Donato Di Paola2, Satoshi Otsuka3, and Natsumi Watanabe3

1 Fraunhofer Institute for Experimental Software Engineering IESE, Kaiserslautern, Germany
{jan.reich,daniel.hillen,joshua.frey,
nishanth.laxman}@iese.fraunhofer.de

2 European Research and Development Centre, Hitachi Europe, London, UK
{takehito.ogata,donato.di-paola}@hitachi-eu.com
3 Research and Development Group, Hitachi, Ltd., Omika City, Japan

{satoshi.otsuka.hk,natsumi.watanabe.jv}@hitachi.com

Abstract. Automated driving systems (ADS) can improve efficiency in logistics
and last-mile delivery, but a major challenge is ensuring safety for operational
design domain (ODD) expansion or cross-domain deployment. Various ontolo-
gies and formats exist for modeling and representing the operational environment.
However, their structuring schemes are not suitable for safety engineering activi-
ties, as the safety-relevant aspects of the environment differ from those relevant for
other purposes, e.g., simulation scenario representation. This paper addresses the
problem of effectively supporting safety engineers in performing environmental
safety analyses considering cross-domain aspects and the impact of environmental
changes. We contribute a concept for modeling and comparing operational design
domains as well as algorithms for semi-automatically analyzing change impact.
The approach is model-based, integrated within the Digital Dependability Identity
(DDI) framework, and has been evaluated qualitatively for ADS cross-deployment
from a logistic warehouse to urban environments. The evaluation suggests that the
approach is a suitable starting point for explicitly linking ontological domainmod-
eling with safety engineering. It also helps safety engineers to think about ODDs
in a structured way, performing change impact analyses regarding specification
gaps, and enabling cross-domain learning.

Keywords: SOTIF · safety assurance · autonomous system · autonomous vehicle

1 Introduction

Context. Automated driving systems (ADS) promise economic and societal benefits in
various use cases such as smart logistics warehouses, last-mile delivery, or passenger
transport services. The lack of methods for systematically analyzing the impact of a
given operational environment on ADS safety is a significant challenge to enabling

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 165–178, 2023.
https://doi.org/10.1007/978-3-031-40923-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-40923-3_13

166 J. Reich et al.

the benefits [1]. To manage operational domain complexity, manufacturers develop their
systems for a constrained environment, the operational design domain (ODD). TheODD
specifies “operating conditions underwhich a given driving automation systemor feature
thereof is specifically designed to function” [2]. Thus, the ODD specifies the context for
engineering, validating and arguing the system’s safety.

In practice, manufacturers start with small controllable ODDs and gradually extend
them to more complex situation classes in line with increasing technology maturity and
experience [3]. In contrast, Tier 1 suppliers developing ADS technology are interested in
efficiently performing cross-domain deployment [4]. For instance, ADS technology can
be used both in smart logistics warehouses and urban environments to realize different
use cases. Although there are many differences regarding the environments, there are
many common concepts with similar impacts on safety, too. To realize the two use cases,
both OEM and suppliers need efficient methods for analyzing the impact of an extended
or changed ODD on safety.

SotA Deficiencies. Analyzing the impact of ODD changes on safety requires two com-
ponents: a representation of the ODD and a way to compare multiple ODD representa-
tions regarding their impact on safety artifacts. Rich ADS environment ontologies like
the 6-layer model [5], BSI PAS 1883 [6] or the ADS operational world model ontology
[7] have been proposed to inform ODD specification. In addition, ASAM OpenODD
[8] specifies a format capable of representing a defined ODD. The main focus of these
approaches is to enable ADS verification and validation, i.e. to derive validation scenar-
ios covering the ODD. However, the relationship to other important safety engineering
artifacts such as hazard analysis and risk assessment (HARA) or safety requirements is
not considered. In addition, analyzing the impact of extended or changed ODD repre-
sentations on these artifacts is still an open problem. These gaps lead to the necessity
to research how to support safety engineers in terms of a) linking ODD representations
to safety engineering artifacts and b) performing change impact analyses for changed
ODDs. Without systematic model-based approaches, it will be hardly possible to man-
age changes in complex ODDs with both acceptable efficiency and adequate confidence
in the safety analyses.

Contribution. In this paper, we propose a model-based method to address the research
gaps. To that end, we introduce a metamodel that supports explicit traceability between
safety artifacts and their dependencies on an ODD representation, independent of the
environment ontology used. Cross-domain safety analysis is enabled through hierar-
chization and domain abstraction concepts. Based on the metamodel, an algorithm is
defined that enables the identification of safety artifacts and associated context elements
needing attention by safety engineers. The method has been qualitatively evaluated with
industry experts from Hitachi in a use case, where an ADS safety monitor assured for a
logistics warehouse intersection is to be cross-deployed to an urban intersection.

Paper Structure. Section 2 briefly summarizes the related work surrounding exist-
ing models and methods for ODD specification and analysis. Section 3 introduces the
concepts to enable environmental safety analysis. In Sect. 4, the formalization of the con-
cepts in a metamodel and a change impact analysis algorithm are explained. Section 5

Concept and Metamodel to Support Cross-Domain Safety Analysis 167

describes the results of the industrial case study along with a critical discussion of the
results. Section 6 concludes the paper and highlights future research.

2 Related Work

A common approach to modeling the operational environment is the use of ontologies
for structuring and instantiating the model. BSI PAS 1883 [6] defines a standardized
minimal set of categories and elements that should be defined in theODDfor autonomous
vehicles. Another environment structuring approach has been proposed by Scholtes et al.
with the 6-layer model. A more detailed ontology is provided by Czarnecki [7] which is
structured like the 6-layer model but has five layers. Furthermore, a list of elements is
provided for each layer. These environmentmodels describe the automotive environment
and focus on structuring the elements for verification and validation, but they are not
tailored toward safety engineering activities.

To enable practical use, ontologies and environment models must be formalized.
Two large initiatives are working on defining standardized technical formats for mod-
eling the environment. OpenODD [8] defines a language for specifying an ODD via
allowed or restricted operating conditions on top of the elements of an assumed ontol-
ogy. The OpenXOntology [9] project defines a standardized ontology for scenarios in
the automotive domain. For OpenODD, an initial proposal is publicly available and
OpenXOntology is still under development. While these formats enable engineers to
model the operational domain and its ODD subset, there is no support for explicitly
linking environment elements to other safety artifacts.

In Kemmanns’ [10] dissertation, a method is proposed for creating environment
models to support model-based hazard analysis and risk assessment in the context of
ISO 26262. A metamodel and ontologies for structuring the environment are proposed
in the OASIS framework (Ontology-based Analysis of Situation Influences on Safety).
The concepts by Kemmann are a foundation for the work presented in this paper. While
he focuses on HARA and thus on scenarios in the context of ISO 26262, our concept is
more generic as it is not restricted to functional safety artifacts only.

The approaches described above are related to safety-driven environment modeling
and do not explicitly consider ODD expansion scenarios. Gyllenhammar [11] proposed
an approach for the continuous development and management of ODDs where use
cases are connected to operating conditions. When extending the environment, new use
cases arise that are linked to operating conditions. Only if all operating conditions are
located within the ODD can the AV drive safely within the use case. Therefore, a change
impact analysis could identify whether new use cases are located within the ODD so
that operation is safe. This approach can be implemented with our concept by linking
use case-specific artifacts to environmental elements.

SotAGap Summary. Avariety of research provides support for environment modeling
of verification and validation activities, such as describing scenarios for simulation.
However, thesemodels are not yet sufficiently connected and tailored for safety activities.
While creating environment ontologies is an important contribution, only their formal
connection to safety engineering processes will solve the broader challenge of safe ODD

168 J. Reich et al.

change management. These gaps lead to the necessity to research how to support safety
engineers in terms of a) linking ODD representations to safety engineering artifacts and
b) performing change impact analyses for changed ODDs.

3 Concept

3.1 Method Overview

This section describes the methodological big picture of the steps required to engineer
a safety-driven environment model suitable for analyzing the change impact on safety
engineering artifacts (see Fig. 1).

The assumed safety engineering process for ADS consists of common activities such
as hazard analysis and risk assessment (HARA), the derivation of safety requirements
realizing the safety goals, and the allocation of the requirements to architectural elements.
It is especially challenging for ADS that the safety artifacts have complex dependencies
to elements of the ODD. For instance, safety requirements are dependent on the presence
of particular situations containing various context element combinations out of a large
set of possibilities. Thus, managing the possible situation space and its impact on safety
engineering gets top priority. Operational domain ontologies describing the relevant
concepts of the particular mobility domain are an important input to the ODD modeling
process performed by domain experts. Unfortunately, an ontology’s adequacy is highly
dependent on the goals of its usage. Existing ontologies decompose the world into
concepts relevant to enable scenario-based validation. In contrast, the goal of the method
described in this paper is to bring environment models closer to a representation that is
more suitable for safety engineering.

Fig. 1. Overview of method for creating & analyzing safety-driven environment representations

The key contribution to achieving this is an integrated metamodel that supports
expressing the dependencies between safety engineering artifacts and the safety-driven

Concept and Metamodel to Support Cross-Domain Safety Analysis 169

environment. Since ODD extensions or changes between multiple mobility domains
are a practical challenge, concepts are provided to support creating a mobility domain
abstractionmodel, which is then refined intomore concrete safety-targetedODDmodels.
For instance, a priority signal is an abstract concept relevant to many concrete mobil-
ity domains. In logistics warehouses, orange blinking lights realize priority signaling,
while in urban environments, there are pedestrian or vehicle traffic lights. If there is a
safety requirement for handling the right of way, the environmental dependencies can be
leveraged to analyze relevance. Thus, the domain abstraction model is a key element to
enable conceptual similarity comparison of context elements when ODDs are changed.
To support safety engineers in performing this analysis, an analysis algorithm is defined
based on the introduced concepts. The result is a set of efficiently generated insights on
environment-induced assurance gaps, e.g., in the shape of context elements, for which
no safety requirements have been specified yet. Section 3.2 introduces the required mod-
eling concepts with an example. In this paper, we focus only on the modeling aspects. A
method for enhancing environment models, which are then formally specified through
the metamodel, will be presented in a future publication.

3.2 Concepts for Safety-Driven Environment Representation

Figure 2 visualizes the three conceptual features used to create a safety-driven envi-
ronment representation that can be referenced, from safety engineering artifacts. The
concepts build upon each other logically, i.e., concept 2 assumes the presence of concept
1, and concept 3 assumes the presence of concepts 1 and 2.

Fig. 2. Illustration of concepts for safety-driven environment representation

170 J. Reich et al.

Concept 1: Linking Safety Engineering Artifacts to Context Elements they Refer
to is theBasis forAnalyzing theSafety Impact of aChangingODD. Thefirst step is to
explicitly express the dependencies between safety artifacts such as safety requirements
and the context elements they refer to. On the one hand, this enables navigation to all
referenced context elements of any safety requirement. This is useful when specifying
the relevance or irrelevance of context elements in different domains. Children appear
in automotive environments and ADS therefore need to consider them. In warehouses,
process measures usually ensure that children do not get access and thus no special
requirements are needed for ADS. On the other hand, explicit context elements enable
providing an additional specification of context elements by adding attributes.

Concept 2: Hierarchization Enables Representing Shared Ontological
Concepts. Existing environment ontologies are structured hierarchically. This allows
engineers to group ontology elements with similar attributes and according to conceptual
dimensions relevant for achieving particular inference goals. An additional value of hier-
archization in the safety engineering context is that safety artifacts can be bound to parent
context elements, thereby subsuming child context elements. For instance, in Fig. 2, a
high-level safety requirement demands keeping a safe distance from dynamic objects.
The hierarchical structure of the environment model enables algorithmic reasoning that
the relevant concrete dynamic objects are pedestrians and vehicles. Note that the hierar-
chization concept can be applied separately for multiple semantical domains, e.g. for an
automotive ODD or a warehouse ODD.

Concept 3: Shared Domain Abstraction Enables Similarity Specification. Concept
3 builds on concepts 1 and 2 to enable operationalizing a model structure supporting the
analysis of the impact of differentODDson safety artifacts. In Fig. 2, the starting point is a
safety requirement bound to aHumanWorker context element in a warehouse ODD. The
question to answer is whether a Pedestrian in the automotive environment is a) covered
by the requirement, b) irrelevant to the requirement, or whether c) a new requirement
needs to be specified. To answer this question, a similarity metric is required that enables
comparing the equality of Pedestrians and Human Workers in the context of the safety
requirement. Our solution to this problem is the use of domain abstraction to create a
model that is independent of concrete warehouse and automotive elements but specifies
common safety-relevant concepts in a generic mobility domain. For instance, a human
at risk is such a concept capturing the notion of humans, who might get endangered by
ADS and therefore need to be protected. In different concrete operational environments,
this concept is present for many different concretizations, e.g., Pedestrian, Bicyclist,
Police Officer in automotive orHuman Worker, Warehouse Leader, Maintenance Person
in warehouses.

The concepts in the domain abstraction model allow capturing essential aspects
relevant to safety engineering in the mobility domain and thus grouping concrete con-
text elements in different domains according to these aspects. Thus, to determine the
similarity of context elements in different concrete domains in the context of a safety
requirement, we look for a shared parent concept in the domain abstraction. While this
criterion may be sufficient for classifying humans at risk, it may be not so obvious
for other safety-relevant abstract concepts like vulnerability or predictability. There,
the equivalence is dependent on the concretely considered safety artifact. Therefore, a

Concept and Metamodel to Support Cross-Domain Safety Analysis 171

modeling approach needs to provide the possibility to explicitly specify the presence or
absence of equivalence for two context elements, despite them being grouped under a
similar abstract concept. This acknowledges the common theme that safety engineering
is often case-dependent and (un-)setting context element equivalence with a documented
rationale allows tracing and analyzing the decision at any later point in time.

In summary, the three introduced concepts enable us to conceptually bridge the
gap between environment ontologies created by domain experts for different mobility
domains and the artifacts created by safety engineers during the safety engineering
process for an ADS. To make the concepts practically usable by safety engineers and
consumable by an algorithm, a formalmetamodel and algorithmare introduced in Sect. 4.

4 Concept Formalization

4.1 Metamodel

Figure 3 shows the metamodel with the elements and relationships necessary to formally
represent the introduced concepts.

Fig. 3. Metamodel for integrating environment models with safety artifacts

Context Representation. The fundamental basis for making environmental elements
referencable is a representation of context elements, realized by the orange elements
and relationships. An EnvironmentPackage is the container of ContextElements, which
can be further specified by ElementAttributes. EnvSituations capture a set of Context
Elements representing higher-level situations.

Safety Artifact Reference. Concept 1 of Sect. 3.2 is realized by the blue elements and
relationships. There existmanySafetyArtifacts in a safety engineering lifecycle, therefore
concrete artifacts like SafetyRequirements inherit from SafetyArtifact. This is the point
where the expressiveness of the Open Dependability Exchange (ODE) metamodel for
extensively capturing and relating artifacts of the safety engineering lifecycle can be
realized (see Sect. 5 for details). The SafetyArtifact.relatedContextElements relationship
enables binding SafetyArtifacts to ContextElements.

172 J. Reich et al.

Hierarchization Concept. Concept 2 of Sect. 3.2 is realized by the red elements and
relationships. To represent hierarchization, the ContextElementGeneralization element
is used. The element represents a relationship between two ContextElements. It inherits
a rationale attribute from InterContextElementRelationship, which is used to give a
rationale forwhy the twoContextElements are in a hierarchy relationship. This is required
for documentation and process traceability purposes. Navigating from a child Context
Element to its parent is possible viaContextElement.generalizations. The multiplicity of
this relationship makes it possible to relate a child Context Element to multiple parents.
This is required because a child context element needs to be related to multiple parents
in the context of the safety-driven domain abstraction concept 3.

DomainAbstractionConcept. Concept 3 of Sect. 3.2 is realized by the green elements,
relationships, and attributes. Domain abstraction implies the presence of concrete Envi-
ronmentPackages and an abstract EnvironmentPackage. This is modeled by the Environ-
mentPackage.isAbstractSafetyDomainEnvironmentpackage attribute and enables mod-
ular specification of the domain abstraction model and its reuse in different projects.
ContextElements from concrete EnvironmentPackages can be linked via ContextEle-
mentGeneralization to ContextElements in abstract EnvironmentPackages. Figuratively
spoken, this concept enables modeling an interconnected and modularized environment
model, where the modules are either abstract or concrete.

Concept 3 introduced the notion of equivalence between concrete ContextElements
in different concrete EnvironmentPackages, which share a parent ContextElement in an
abstract EnvironmentPackage. The EquivalentLink element represents the equivalence
relationship between ContextElements and is used to explicitly specify two ContextEle-
ments as equivalent or not equivalent (EquivalentLink.inverted= true). This is necessary
for workshops where safety engineers and domain experts need to determine equiva-
lence in the context of a particular SafetyArtifact. Since this determination may lead to
important consequences, e.g., requiring a ContextElement to be sufficiently covered by
a SafetyRequirement, documentation of the (non-)equivalence rationale via the inherited
InterContextElementRelationship.rationale is necessary.

4.2 Analysis Algorithm

The change impact analysis can be supported by algorithms that are defined on the
metamodel. There are two main steps, (i) preparation and (ii) analysis. The preparation
step (i) requires as input the environment model of the old and the new domain as
well as the abstract environment model. The algorithm should output lists of context
elements that are exclusive to (a) the old domain and (b) the new domain, as well as
(c) a list of candidates containing pairs of inter-domain siblings, i.e., two elements of
a different domain having the same parent in the abstract model. The algorithm first
retrieves all elements and then decides based on the attached generalization link and its
environment package whether it is exclusive to one domain. This is the case if the lowest-
level abstract parent element has no child from a different domain. As an intermediate
step, the algorithm creates a mapping between the lowest-level abstract parent element
and a list of connected concrete context elements. Then it can filter for elements of
different domains and the same parent. Additionally, the algorithm collects all safety

Concept and Metamodel to Support Cross-Domain Safety Analysis 173

artifacts that have a reference to the context element by iterating over the artifacts and
gathering those that are referenced to the specific context element. For elements in list
(a), the algorithm will further retrieve the referenced safety artifacts. These elements
require no further action because they are irrelevant when deploying the system in the
new domain. Related safety requirements therefore do not need to be fulfilled. Elements
in list (b) are not relevant in the old domain, so new safety artifacts must be created.
List (c) is the input for another expert analysis. Each pair of siblings is enriched with
safety artifacts that reference the element from the old domain. Safety engineers must
actively determine whether the siblings are equivalent between domains in the context
of the safety artifact. The enhanced model instance then serves as input for the next step.

The analysis algorithm (ii) retrieves all elements that have an equivalent link attached.
It can provide a list of elements that are (d) equivalent between domains and (e) explicitly
non-equivalent even though they have the same parent. For elements in list (d), no new
safety artifacts need to be created; the existing ones can be reused. Last, safety engineers
know that no reusable safety artifacts exist for elements of list (e). For those elements,
new artifacts must be created.

The metamodel is an enabler for script-based change impact analysis. The described
algorithms support engineers in analyzing the environment and identifying reuse poten-
tial. The algorithm output therefore does not generate artifacts but proposes elements
and artifacts so that engineers do not need to collect the relevant information manually.

5 Case Study

Case Study Introduction. The case study for demonstrating and evaluating the devel-
oped concepts targets a use case, where an ADS system is assumed to be assured for
straight crossing of an intersection in a logistics warehouse environment (Fig. 4). This
means that safety artifacts such as safety requirements exist and consider the relevant
context elements of the warehouse ODD. The ODD is to be expanded such that the ADS
can be safely deployed to an intersection in an automotive urban environment. Thus, the
safety engineers need to determine the change impact of the ODD expansion in terms
of the need to modify existing safety requirements and/or specify new requirements for
automotive-specific context elements, and the warehouse-specific requirements that are
irrelevant for the automotive ODD and thus do not require revalidation.

Evaluation Method. To apply the method described in Sects. 3 and 4, we instantiated
both domain-specific ODD models with domain experts from Hitachi in separate work-
shops for each domain. The experts used a mobility domain abstraction model, which
had been created previously inspired by the PEGASUS 6-layer model, as input and
concretized the abstract concepts for each concrete ODD. For the warehouse domain,
example safety requirements were derived and linked to the respective context elements
of the warehouse ODDmodel. Afterwards, context elements from automotive and ware-
housewith shared abstract concepts were algorithmically determined and analyzed in the
context of the particular requirements regarding their equivalence. Then equivalent links
were created for elements that are similar in both domains. These processes resulted in
the target models, which were subsequently analyzed utilizing the change impact algo-
rithm. The safety engineers are then provided with the algorithm results showing safety

174 J. Reich et al.

requirements and context elements relevant to required safety modifications for the
ODD expansion. The results were evaluated qualitatively by industry experts regarding
their benefits and drawbacks compared to a non-model-based approach as a baseline.
Given the early stage of the research conducted, an empirical evaluation was deemed
inappropriate due to the cost-benefit imbalance.

Fig. 4. Case study context: assuring expansion of an ODD from warehouse to automotive

Implementation. The proposedmodel-basedmethodwas realized technically and inte-
grated with the Digital Dependability Identity (DDI) framework [12]. The framework
contains the Open Dependability Exchange (ODE) metamodel with integrated capabil-
ities to express the artifacts of the safety engineering lifecycle. In addition, a scripting
engine based on the Eclipse Epsilon framework [13] enables executing algorithms on
technicalDDI instances conforming to theODE.Our environment representation extends
the ODEmetamodel so that we can link context elements to specific safety artifacts. The
change impact algorithmwas realized in the Epsilon Object Language (EOL). Note that,
although the case study focuses on safety requirements, the change impact analysis can
be easily extended to analyze environmental dependencies of other safety artifacts, e.g.,
from HARA, due to the ODE’s expressiveness.

5.1 Creation and Analysis of Safety-Driven Environment Representation

Figure 5 shows an excerpt of the models created within the case study. For the sake of
clarity, it only contains the case study elements needed to illustrate the working principle
of the approach. These include the domain abstraction model (top), two domain-specific
safety-targeted ODDmodels (distinguished by color – purple: warehouse, blue: automo-
tive), and safety requirements referencing the context elements. The domain abstraction
model is realized as EnvironmentPackage with isAbstractSafetyDomainEnvironment-
Package set to true. The domain-specificmodels are alsoEnvironmentPackages, but non-
abstract. All elements in the EnvironmentPackages areContextElements hierarchized by
ContextElementGeneralization, and in the bottom layer are Safety Requirements. In the
following, four scenarios are described to highlight the features of the models.

Concept and Metamodel to Support Cross-Domain Safety Analysis 175

Fig. 5. Excerpt of the safety-targeted ODD models with implications on safety requirements
(Color figure online)

Irrelevant Requirements. Safety Requirement SR1 refers to the context element Item
Rack, which is part of thewarehouse package and a concretization of the abstract concept
Indirectly Harmful Objects. If the domain experts would find a context element in the
automotive domain concretizing this concept, there would be another child element for
Indirectly Harmful Objects. Since this is not the case, SR1 is deemed irrelevant for
the automotive domain, so no revalidation, and validation effort is saved. This case
illustrates the general comparison concept: The potential similarity of two concrete
context elements is indicated via the abstract concept of a common parent.

New Requirements. The context element Firetruck in the automotive package is a
concretization of the abstract concept Emergency Vehicles. For this abstract concept, no
concrete concept exists in the warehouse package. The conclusion is that a firetruck was
not envisioned to exist in warehouses and consequentially, no safety requirement existed
for its assured deployment in the warehouse ODD. Thus, a new safety requirement SR5
needs to be specified to address Firetruck. Note that the safety requirement would not
be generated automatically, but the lack of consideration of Firetruck would be reported
to the safety engineer.

Common Abstract Concept – Covered by Req. The next two scenarios deal with
abstract conceptswith concretizations in both domains. Safety requirement SR2 demands
a safe distance from Human Workers in the warehouse. The relevant abstract concept
within SR2 is that Human Workers can be endangered by ADS and are thus Humans
at Risk. In the automotive domain, a Police Officer is equally deemed to be a Human
at Risk, expressed by the ContextElementGeneralization relationship. Merely using the
common parent concept as a sufficient criterion to indicate equality may be hazardous.
Therefore, an extra step has been introduced in that the safety engineers and domain
experts discuss the concrete case in the context of the concrete safety requirement and
actively set the EquivalentLink, documenting of the rationale within the link’s rationale
attribute. After equality is determined, coverage of SR2 forPoliceOfficer can be assumed
and no new requirement is needed.

176 J. Reich et al.

Common Abstract Concept – New Req. This scenario starts with safety require-
ment SR3 linking toWarehouse Leader, concretizing the abstract conceptRule-Imposing
Object. Police Officer is a Rule-Imposing Object in the automotive domain. Thus, one
could assume SR3 already covers the Police Officer. However, this is not the case in
reality, as Police Officer imposes rules on the ADS, while the rules imposed by Ware-
house Leaders only indirectly affect the ADS via the Human Worker behavior. Thus, a
new requirement SR4 is required. This scenario illustrates the importance of the manual
equivalence analysis step. The modeling formalism and the algorithm can automatically
constrain the number of cases to be analyzedmanually based on the common abstraction.

Fig. 6. Snapshot of the output of the automated model-based change impact analysis algorithm

Figure 6 shows the output of the script execution realizing the change impact analysis
algorithm based on the introduced metamodel. The script output consists of exactly the
context elements deemed relevant or irrelevant in the illustrative scenarios in Fig. 5. The
output is structured by the specific call to action for the engineers.

5.2 Discussion

The case study demonstrates the capability of the presented approach to filter and cate-
gorize relevant ODD model parts to efficiently support safety engineers in performing
ODD change impact analyses. The baseline approach against which this paper’s app-
roach was evaluated was a non-model-based approach that uses the BSI PAS 1883 ontol-
ogy to identify the impact of ODD changes on requirements. The evaluation feedback
revealed that especially the domain abstraction model and the introduction of safety-
motivated intermediate abstract concepts like Indirectly Harmful Object, Humans at
risk, rule-imposing objects, or emergency vehicles improved the quality of the domain-
specific ODD models. The clear separation of abstract safety-driven mobility concepts
and domain-specific concepts facilitates reuse and even learning across domains. For
instance, when a new abstract concept is formulated based on a new concrete domain,
domain experts can reflect on whether this abstract concept might be concretizable in

Concept and Metamodel to Support Cross-Domain Safety Analysis 177

other concrete domains and thus reveal gaps. The algorithm’s output was deemed appro-
priate for enabling safety engineers to identify concrete next steps (identification of new
requirement, context element equivalence analysis, documentation of coverage rationale
or requirement irrelevance).

One issue that emerged in the case study was the termination criterion for context
concretization, i.e., when to stop differentiating a particular concept. The conclusion was
that this is highly dependent on which safety artifact is concerned: While for behavioral
requirements, the predictability or vulnerability aspects regarding humans are relevant,
appearance aspects are more relevant for perception requirements. This means that the
modeling formalism should be extended in the future to condition context element con-
cretization by aspects particularly relevant to the questions appearing in different safety
engineering processes. This will enable the definition of improved methodological sup-
port to create safety-targeted ODD models in which high confidence in completeness
can be argued.

The introduced approach provides the means to make existing domain ontologies
more safety-targeted. However, the suitability of intermediate safety-driven abstract con-
cepts to provide a complete decomposition of ontological aspects has not been evaluated.
An evaluation of a real-world system is planned in the upcoming iteration.

6 Conclusion and Future Work

For safety engineers, it is a challenge to integrate existing ADS environment ontologies
into ODD models and systematically analyze the impact of extended or changed ODDs
on safety engineering artifacts. Therefore, we explored the conceptual needs for an ODD
representation that is suitable for integration into safety engineering processes. The
result is a formalized metamodel that provides means to model (a) links between safety
engineering artifacts and context elements; (b) hierarchical context element structures to
express shared ontological concepts; and (c) abstract domain structures to make similar
context elements in different concrete ODDs like warehouses or urban environments
comparable through abstraction.

In addition, we introduced an algorithm that leverages the introduced formalisms to
identify safety artifacts and their linked context elements requiring attention by safety
engineers in an extended ODD specification. The benefit of using our approach is that
manual reanalysis can be avoided in those cases where context elements in the extended
ODD share similar concepts with context elements in the previous ODD. The industrial
evaluation demonstrated that the proposed model-based approach is a suitable starting
point for systematically integrating environment modeling and analysis activities in an
overall safety engineering process. In addition, using the mobility domain abstraction
model makes it easier to create environment models for new concrete ODDs and even
support cross-domain learning. Thanks to the independence of concrete environment
ontologies, safety engineers can instantiate the approach with existing ontologies such
as [5, 7, 14], then run the algorithms to analyze the impact on safety changes. In parallel
to exploring suitable formalisms for the representation and analysis of ODDs, a concrete
model for safety-driven ADS domain abstraction has been created, which can be used
to accelerate the creation of ODDmodels for new mobility environments by refinement.
This model will be the subject of another publication.

178 J. Reich et al.

The case study revealed an important open issue: Since every safety engineering task
needs a different perspective on the ODD, it is necessary to support safety engineers in
constructively creating task-specific environment models that are sufficiently complete.
We believe this can be achieved by adding task-specific guiding questions that prompt
domain experts to cognitively think about the ODD from the perspective of a particular
safety engineering task. In future work, we want to research what such methodological
guidance for instantiating the models presented in this paper might look like.

Acknowledgment. Part of this work for writing the article has been funded by the project Lay-
ers of Protection Architecture for Autonomous Systems (LOPAAS) funded by the Fraunhofer
Gesellschaft.

References

1. Burton, S., Hawkins, R.: Assuring the safety of highly automated driving, state-of-the-art and
research perspectives, Assuring Autonomy International Programme, Report (2020)

2. SAE International, SAE J3016:2021 Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles. https://doi.org/10.4271/J3016_202104

3. Templeton, B.: Will it be hard or easy for self-driving cars to expand their territory? (2021).
https://www.forbes.com/sites/bradtempleton/2021/03/30/will-it-be-hard-or-easy-for-self-dri
ving-cars-to-expand-their-territory/?sh=3ea1a8996fc4 Accessed: 20/02/2023

4. Reich, J., et al.: Engineering dynamic risk and capability models to improve cooperation effi-
ciency between human workers and autonomous mobile robots in shared spaces. In: Seguin,
C., Zeller, M., Prosvirnova, T. (eds.) IMBSA 2022. Lecture Notes in Computer Science, vol.
13525, pp.251 Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15842-1_17

5. Scholtes, M., et al.: 6-layer model for a structured description and categorization of urban
traffic and environment. IEEE Access 9, 59131–59147 (2021). https://doi.org/10.1109/ACC
ESS.2021.3072739

6. British Standards Institution (BSI), PAS 1883:2020: Operational Design Domain (ODD)
taxonomy for an automated driving system (ADS) - Specification

7. Czarnecki, K.: Operational design domain for automated driving systems - taxonomy of basic
terms (2018). https://doi.org/10.13140/RG.2.2.18037.88803

8. ASAM OpenODD Project. https://www.asam.net/standards/detail/openodd/. Accessed 20
Feb 2023

9. ASAMOpenXOntology Project. https://www.asam.net/project-detail/asam-openxontology/.
Accessed 20 Feb 2023

10. Kemmann, S.: SAHARA-a structured approach for hazard analysis and risk assessments.
Dissertation. Technical University Kaiserslautern, Germany (2015)

11. Gyllenhammar, M., et al.: Towards an operational design domain that supports the safety
argumentation of an automated driving system. In: 10th European Congress on Embedded
Real Time Software and Systems (ERTS), TOULOUSE, France (2020). 〈hal-02456077〉

12. DEISConsortium:Dependability Engineering Innovation forCyber-Physical SystemsProject
Dissemination. http://www.deis-project.eu/dissemination/. Accessed 20 Feb 2023

13. Eclipse Epsilon Framework. https://www.eclipse.org/epsilon/. Accessed 20 Feb 2023
14. Westhofen, L., Neurohr, C., Butz, M., Scholtes, M., Schuldes, M.: Using ontologies for the

formalization and recognition of criticality for automated driving. IEEEOpen J. Intell. Transp.
Syst. 3, 1 (2022). https://doi.org/10.1109/OJITS.2022.3187247

https://doi.org/10.4271/J3016_202104
https://www.forbes.com/sites/bradtempleton/2021/03/30/will-it-be-hard-or-easy-for-self-driving-cars-to-expand-their-territory/?sh=3ea1a8996fc4
https://doi.org/10.1007/978-3-031-15842-1_17
https://doi.org/10.1109/ACCESS.2021.3072739
https://doi.org/10.13140/RG.2.2.18037.88803
https://www.asam.net/standards/detail/openodd/
https://www.asam.net/project-detail/asam-openxontology/
http://www.deis-project.eu/dissemination/
https://www.eclipse.org/epsilon/
https://doi.org/10.1109/OJITS.2022.3187247

Security Engineering

Pattern-Based Information Flow Control
for Safety-Critical On-Chip Systems

Tobias Dörr(B) , Florian Schade, and Jürgen Becker

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{tobias.doerr,florian.schade,juergen.becker}@kit.edu

Abstract. Implementing safety-critical systems on heterogeneous mul-
ticore platforms is a challenging task. Especially in mixed-criticality
scenarios, it requires fine-grained control over potentially feasible infor-
mation flows. This paper presents a design-time procedure to achieve
such control. Following the X-by-Construction (XbC) paradigm, it per-
forms an automatic configuration of on-chip isolation units and employs
a lattice-based integrity propagation mechanism to support developers in
the creation of sufficiently isolated system implementations. The proce-
dure is integrated into the XANDAR toolchain for safety-critical system
design and illustrated using an automotive example scenario based on
the Zynq UltraScale+ MPSoC platform.

Keywords: X-by-Construction · On-chip isolation · Information flow
tracking · Multiprocessor system-on-chip · Safety pattern

1 Introduction

Modern embedded systems are increasingly characterized by the consolidation
of functions on shared hardware. In the automotive domain, for example, the
ongoing shift to zonal architectures is associated with various benefits [2].

Fig. 1. Block schematic of a heterogeneous MPSoC platform.

Heterogeneous multiprocessor system-on-chip (MPSoC) platforms, such as
the one shown in Fig. 1, are usually equipped with an on-chip interconnect that
gives every core cluster (CPU1, . . . ,CPUn) access to shared on-chip resources.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 181–195, 2023.
https://doi.org/10.1007/978-3-031-40923-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_14&domain=pdf
http://orcid.org/0000-0001-8165-4679
https://doi.org/10.1007/978-3-031-40923-3_14

182 T. Dörr et al.

We consider these resources to be random access memory (MEM) and memory-
mapped registers (REG), which represent units such as input/output (I/O) con-
trollers. MPSoCs offer benefits in terms of cost and area efficiency [8] but come
with various safety-related challenges. A core cluster with write access to the
global address space, for example, can interfere with any other application on
the chip. In mixed-criticality systems that run less trusted runtime environments
such as a general-purpose operating system, this is a crucial issue.

Therefore, the on-chip interconnect of modern MPSoCs is often equipped
with runtime-configurable isolation units to control transactions based on, e.g.,
their source and their destination. In the following, such a unit will be referred
to as access protection unit (APU). One example of an APU is the XMPU of
the Zynq UltraScale+ MPSoC [13]. APUs can contribute to the required on-chip
isolation, but they are often difficult to configure [6] and must be combined with
other techniques to address the full set of isolation requirements.

This paper is based on the XANDAR toolchain for safety-critical system
design [12] and tackles the described isolation issue from a safety point of view.
As part of this, it presents three main contributions:

1. A lattice-based integrity framework that allows designers to describe accepted
information flows in a safety-critical on-chip system.

2. A strategy to auto-generate APU configurations for heterogeneous MPSoCs
from a target deployment performed by the XANDAR toolchain.

3. A design-time technique to verify that certain entities in the APU-protected
system receive inputs with a sufficient integrity level.

They address the impact that information flow due to random and systematic
faults has on safety-critical on-chip components, e.g., due to an erroneous write
to a system-level control register. Timing interferences are beyond the scope
of the paper, but state-of-the-art approaches to achieve timing isolation, such
as [17], are conceptually compatible with our contributions.

The proposed concept follows the X-by-Construction (XbC) paradigm [3] to
generate implementations that meet certain safety requirements by construction.
It is integrated into the XbC pattern library of the XANDAR toolchain and will
therefore be referred to as information flow control (IFC) pattern.

The remainder of this paper is structured as follows: Sect. 2 reviews related
work, before Sect. 3 introduces the XANDAR design methodology and moti-
vates the proposed IFC pattern. Its concept and implementation are described
in Sect. 4 and Sect. 5, respectively. Section 6 closes the paper with conclusions
and remarks on future research directions.

2 Related Work

Dynamic information flow tracking is an established technique to detect and
prevent prohibited information flows during the runtime of a program [19].
Following a similar goal, the constructive strategy presented in [18] facilitates
the creation of programs that are guaranteed to meet certain confidentiality

Pattern-Based Information Flow Control 183

Fig. 2. Excerpt of the XANDAR software architecture metamodel.

requirements. The lattice-based methodology from [16] generalizes this strategy
to achieve information flow control for both confidentiality and integrity by con-
struction, i.e., without the need for post-hoc information flow analyses. While
these approaches focus on information flows within programs, the presented pat-
tern is concerned with information flows at the on-chip integration level.

Information flow tracking can also be applied at the gate level to reason about
interactions at the granularity of individual bits [10,14] and has been extended
to support a lattice-based treatment of information flows [9].

The model-based methodology presented in [15] generates system-on-chip
designs in which applications of different criticality levels are isolated by ded-
icated hardware wrappers. It does not leverage runtime-configurable isolation
units and, therefore, needs to be applied during the hardware design phase.

The model-based frameworks proposed in [1] and [4] target component-based
embedded systems. While they focus on the security aspect, our work targets
safety-critical systems and, therefore, considers random and systematic faults of
hardware units or software stacks explicitly.

The proposed concept is similar to the methodology we describe in [6], which
also performs an automatic APU configuration. In comparison to this work,
the IFC pattern tracks information flow at the granularity of individual ports
and has explicit support for mixed-criticality systems.

3 Background and Motivation

This section gives an overview of the XANDAR design methodology, presents the
target deployment strategy that this work is built upon, and uses an automotive
case study to motivate the IFC pattern in detail.

3.1 The XANDAR Design Methodology

To develop an embedded system using the XANDAR toolchain, a designer first
describes the envisaged software architecture using the metamodel in Fig. 2.

184 T. Dörr et al.

Fig. 3. Software architecture of the automotive case study.

Software components (SWCs) exchange data by writing to and reading from their
ports. A port exhibits either sampling or queuing behavior, must be declared as
either an input or an output and, in addition, as either internal or external.
A channel represents a sender-receiver relationship between an internal output
and an internal input port. External ports are used for the interaction with the
environment, e.g., by reading a sensor value from an I/O controller.

Given code for each SWC, this architecture is then automatically deployed
to a possibly distributed network of target platforms. In this work, we consider
a particular deployment strategy of the XANDAR toolchain:

Definition 1 (deployment strategy). The deployment strategy maps a soft-
ware architecture to a platform with core clusters {CPU1, . . . , CPUn} such that:

1. Every core cluster CPUi with i ∈ {1, . . . , n} executes a runtime environ-
ment RTEi such as a bare-metal hypervisor.

2. Each specified SWC is executed by exactly one runtime environment.
3. To each RTEi with i ∈ {1, . . . , n}, a dedicated memory region Mi and a

dedicated set of memory-mapped registers Ri is assigned.
4. For each pair of runtime environments {RTEi, RTEj} with i, j ∈ {1, . . . , n}

and i �= j, a dedicated memory region Mi↔j is assigned to this pair if and
only if RTEi and RTEj communicate to implement a channel.

5. Every runtime environment RTEi with i ∈ {1, . . . , n} implements time and
space partitioning for its SWCs. It forwards selected portions of Mi and Ri

for exclusive use to a SWC, but all other resources assigned to RTEi are
managed by itself, e.g., to implement channels between SWC ports.

The partitioning and management capabilities given in Item 5 can be subject to
systematic and random faults. They are trusted only to a certain extent, which
we will later quantify using a provided integrity level.

3.2 Automotive Case Study

Consider the software architecture visualized in Fig. 3, where rectangles repre-
sent SWCs, triangles represent ports, and solid or dashed lines represent chan-
nels. The head unit (sH) and the console controller (sC) implement convenience
applications that allow users to interact with the vehicle, e.g., via their smart-
phone. The body controller (sB) uses its external message output to control
features such as exterior lights or the position of the driver’s seat, which have

Pattern-Based Information Flow Control 185

a potential safety impact. Therefore, the message output of sB must be pro-
tected, most importantly, from failures of the convenience applications. In the
remainder of this work, we further assume that the vehicle status controller (sV)
is sufficiently trusted to interact with the safety-critical features.

Fig. 4. Sample deployment performed by the XANDAR toolchain.

For the Zynq UltraScale+ MPSoC, which is equipped with n = 2 core clus-
ters, assume that the deployment strategy from Definition 1 returned the target
deployment shown in Fig. 4. Here, the non-critical applications are implemented
on RTE1, while the safety-critical body controller runs on RTE2. Furthermore,
suppose that RTE1 is expected to fail in an unpredictable manner at any time,
while RTE2 is trusted.

Example 1 If the dashed channel in Fig. 3 is not implemented, then there is no
specified information flow path from RTE1 to the body controller. Nevertheless,
without a suitable APU configuration in place, failures of RTE1 can cause the
contents of M2 to become corrupted. Since this is the memory region RTE2

stores its kernel-space data in, such events might cause the safety-critical body
controller application to fail. This issue can be solved by using the APU to grant
each core cluster access to only those resources that are allocated to it.

Example 2 If the channel visualized using a dashed line in Fig. 3 is imple-
mented, RTE2 reads from M1↔2 and might forward potentially erroneous data
to the driver pos port of sB, which requests the body controller to trigger an
adjustment of the driver’s seat. Due to the safety-related nature of this fea-
ture, the body controller code is expected to ensure that potentially erroneous
inputs are processed safely. This can be achieved, for example, by triggering seat
adjustments only if the vehicle is standing still.

Such software-based protection mechanisms complementing the APU protec-
tion are an integral part of this paper. We refer to them as flow barriers and
will formally define them at a later point in time.

Example 3 If register set R1 contains a system-level control register that
allows RTE1 to trigger a reset of the entire MPSoC, a failure of RTE1 can again
have a significant effect on the body controller. The allocation of such registers
to an RTE is therefore a critical aspect that the IFC pattern must consider.

In the following, we will use the scenario outlined in Example 2 (with the
channel from sC to sB and the flow barrier in place) as a running example.

186 T. Dörr et al.

4 Concept and Input Modeling

The presented IFC pattern is integrated into the XANDAR toolchain as visu-
alized in Fig. 5. One of its inputs is the software architecture model that the
toolchain user defines according to the metamodel described above. Furthermore,
the XANDAR toolchain provides it with a target deployment automatically cre-
ated according to Definition 1. As a mechanism to specify acceptable informa-
tion flows in a formal manner, we have complemented the software architecture
metamodel with a lattice-based integrity level framework. A formal description
of these inputs is given in Sect. 4.1 and Sect. 4.2, respectively.

Fig. 5. Process steps and toolchain integration of the IFC pattern.

The pattern itself performs the three steps shown in Fig. 5. It uses knowl-
edge of the software architecture and the associated target deployment to gen-
erate an APU configuration for the considered MPSoC (1), which is fed back
to the XANDAR toolchain in the form of C code. Following this, it creates
a flow graph capturing relevant information flow paths that remain possible
with the APU configuration in place and, using provided integrity levels anno-
tated by the designer, determines the least trusted source that is able to affect
potentially safety-relevant system portions (2). Finally, this knowledge about
the least trusted source is compared to the integrity requirements of internal
and external SWC ports (3). The result of this check is then reported back to
the XANDAR toolchain as a binary success value.

4.1 Formalization of Inputs from XANDAR

For the purposes of this paper, we formalize a software architecture that conforms
to the metamodel excerpt in Fig. 2 as follows:

Definition 2 (software architecture). A software architecture is given as

(S, P, C, ϕ0, ϕs, ϕd) ,

Pattern-Based Information Flow Control 187

where S is a set of software components, P is a set of ports, and the rela-
tion C ⊆ P × P describes channels. ϕ0 : P → S maps every port to its SWC.
The function ϕs : P → {int, ext} specifies whether a port is an internal or an
external one, while ϕd : P → {in, out} indicates the direction of a port.

The pattern handles both sampling and queuing ports in a uniform manner.
Therefore, the formal definition does not distinguish between them. Furthermore,
the XANDAR toolchain defines and enforces additional constraints on how chan-
nels can be used, e.g., that ϕs(p1) = ϕs(p2) = int holds for every (p1, p2) ∈ C.
A full list of these constraints is skipped for the sake of brevity.

Based on the software architecture (and further inputs beyond the scope of
this paper), the pattern receives a deployment that we formalize as follows:

Definition 3 (target deployment). A target deployment is given by

(Ω, λ, ΨM1, ΨM2, ΨR, μ, μ′),

where Ω = {RTE1, . . . , RTEn} denotes the set of deployed runtime environ-
ments and λ : S → Ω maps every SWC to the RTE it is executed on. ΨM1, ΨM2,
and ΨR are sets of utilized on-chip resources.

ΨM1 and ΨR contain resources managed by a particular RTE or forwarded
to a specific SWC. In the ΨM1 case, these resources are portions of the memory;
in the ΨR case, they are memory-mapped registers. For elements from these two
sets, the mapping is given by μ : (ΨM1 ∪ ΨR) → (Ω ∪ S).

ΨM2 contains memory portions allocated to a pair of RTEs for the purposes
of inter-RTE communication. The mapping from such a resource to its RTE pair
is given by the function μ′ : ΨM2 → {{ω1, ω2} : ω1, ω2 ∈ Ω}.

4.2 Lattice-Based Integrity Framework

Inspired by the lattice-based information flow model proposed by Denning [5]
and our previous work in [7], the integrity framework facilitates the specification
of accepted information flows in a software architecture. Therefore, it expects
the designer to specify an integrity lattice defined as follows:

Definition 4 (integrity lattice). An integrity lattice is a bounded lower semi-
lattice of integrity levels (L,≤), i.e., a partially ordered set L such that (1) every
subset {x, y} ⊆ L has a greatest lower bound and (2) the lattice has a greatest
element. They will be referred to as x ∧ y and 	, respectively.

The fundamental idea of the framework is to let the designer annotate pro-
vided integrity levels to the MPSoC itself, every runtime environment, every
output port, and values read from external input ports. Furthermore, it allows
required integrity levels to be specified for values written to the environment
and internal input ports of SWCs in the system.

188 T. Dörr et al.

Example 4. For the set of integrity levels L = {0, 1, 2, 3} following the usual
order ≤ of N0, the greatest elements is 	 = 3. It corresponds to the highest
integrity in the system. A provided integrity of 3 can therefore be assigned
to an output port written by SWC code that meets the requirements of the
highest ASIL rating [11] in an automotive system.

In the flow graph, all these entities will later be represented by two classes
of vertices: integrity providers and integrity receivers.

Definition 5 (integrity provider). The set of integrity providers is given by

VP = VI ∪ VK ∪ Pout,

where a vertex in VI represents the environment read by an external port. VK con-
tains n + 1 vertices representing every RTE and the MPSoC itself, and the
set Pout = {p ∈ P : ϕd(p) = out} contains all SWC output ports.

Definition 6 (integrity receiver). The set of integrity receivers is given by

VR = VO ∪ Pin,

where a vertex in VO represents the environment written by an external port and
the set Pin = {p ∈ P : ϕd(p) = in} refers to all SWC input ports.

Before the formal definition of the integrity specification itself can be given,
we must formalize isolation capabilities potentially integrated into trusted SWC
code, such as the safety check discussed in Example 2.

Definition 7 (flow barrier). A flow barrier between an input p1 ∈ P and an
output p2 ∈ P of a SWC is a mechanism integrated into the SWC code to ensure
that potentially faulty values received via p1 do not have a safety-related effect
on p2. Since it is implemented by the SWC code writing to p2, it automatically
inherits the provided integrity specified for p2.

Flow barriers are an opt-in mechanism that should be used sparingly and
require a careful safety analysis of relevant SWC code. With this definition, we
can describe the full set of inputs to be provided by the designer:

Definition 8 (integrity specification). The integrity specification is a
tuple (B, �P , �R), where B ⊆ P × P (with ϕ0(p1) = ϕ0(p2) for all (p1, p2) ∈ B)
describes flow barriers, the function �P : VP → L maps every integrity provider
to the integrity level it provides, and the partial function �R : VR ⇀ L can be
used to map an integrity receiver to the integrity level it requires.

Pattern-Based Information Flow Control 189

1 ifc_pattern: {
2 lattice: "demo_lattice",
3 flow_barriers: [
4 { swc: "body_ctrl", output: "message", input: "driver_pos" },
5],
6 provided_integrity: [
7 { provider: "mpsoc", level: 3 },
8 { provider: "port", name: "vehicle_status.speed", level: 1 },
9 { provider: "port", name: "body_ctrl.message", level: 3 },

10 // 5 entries hidden for brevity...
11],
12 required_integrity: [
13 { receiver: "env", port: "body_ctrl.message", level: 1 },
14],
15 }

Listing 1. Sample integrity specification using the JSON5 notation of XANDAR

As part of this work, a textual JSON5 notation to express integrity specifi-
cations was developed and integrated it into XANDAR toolchain, which is built
on Kotlin for the Java Virtual Machine (JVM). The notation is currently limited
to numerical integrity lattices such as the one presented in Example 4.

Example 5. The excerpt in Listing 1 shows a possible integrity specification for
the running example. It is based on an integrity lattice with L = {0, 1, 2, 3},
which is referenced as demo lattice in line 2 of the specification. Based on this
lattice, in line 13, the required integrity level of data body ctrl writes to the
environment via its message port is set to �P = 1, for instance.

5 Pattern Implementation

Based on the input set described in Sect. 4, which includes an integrity specifi-
cation such as the one shown in Listing 1, the IFC pattern performs the three
steps covered in the following subsections.

5.1 APU Configuration

As an integral part of the isolation strategy, the pattern automatically generates
an APU configuration that is as prohibitive as possible but allows every RTE to
access the resources assigned to it. In general, this is a platform-specific proce-
dure that must be implemented for every supported MPSoC.

Example 6. In the deployment shown in Fig. 4, the set of memory-mapped reg-
isters allocated to RTE2 was visualized as R2. If, for example, this set contains
a timer that RTE2 needs to schedule SWCs and an I/O controller that one of
its SWCs uses to read from a sensor, the APU must be configured accordingly.
The pattern receives these requirements towards the APU configuration as part
of ΨR and μ from the target deployment.

190 T. Dörr et al.

As a proof of concept, this work considers the APU configuration proce-
dure for the Zynq UltraScale+ MPSoC [13]. On this platform, the aforemen-
tioned XMPU and a unit referred to as the XPPU complement each other, where
the XMPU focuses on on-chip and external DDR memory, while the XPPU pro-
tects units such as timers, I/O controllers and system-level control registers.
The address information encoded into each x ∈ (ΨM1 ∪ ΨM2) is therefore used
to configure a corresponding region in the XMPU. The core cluster used to exe-
cute the software that μ or μ′ point to is then given full (read/write) access to
this region. Entries in ΨR are associated with a unique identifier (such as ttc0
for a timer or uart1 for a UART controller) rather than with address bound-
aries. Each identifier corresponds to a fixed aperture register of the XPPU. For
all x ∈ ΨR, this aperture register is used to give the core cluster pointed to
by μ(x) full access to the resource. For all remaining XMPU regions and XPPU
apertures, read and write access by any master is disallowed.

The result of this design-time procedure is C code executable on any core
cluster of the MPSoC; it writes to the XMPU and the XPPU to set up the
automatically generated protection. The task of integrating this code into the
system implementation is finally delegated to the XANDAR toolchain.

Note that the integrity specification is not required to generate the APU con-
figuration. This step depends solely on the availability of the target deployment
from Definition 1 and, implicitly, knowledge of the SWCs.

5.2 Integrity Propagation

The goal of this step is to determine the effective integrity of every v ∈ V ,
where V = VP ∪ VR is referred to as the set of integrity vertices.

Definition 9 (effective integrity). The effective integrity of v ∈ V is the
greatest �′ ∈ L that fulfills the following condition: for every u ∈ VP with a
potentially safety-related impact on v, �′ ≤ �P (u) holds.

The result of the integrity propagation will therefore be a function �′ : V → L.
Its determination is performed based on the following graph:

Definition 10 (flow graph). In the flow graph G = (V, E) of integrity ver-
tices, a directed edge (q, r) ∈ E represents a direct information flow path limiting
the effective integrity of r to �′(q), i.e., the effective integrity of q.

The procedure to generate G from a software architecture and a target
deployment is given in Algorithm 1, which will be explained in the following.

Pattern-Based Information Flow Control 191

Algorithm 1. Creation of the flow graph G = (V, E)
1: V ← VP ∪ VR, E ← C � Vertices and explicit channels
2: E ← E ∪ {(k0, k(ω)) : ω ∈ Ω} � MPSoC to all RTEs
3: E ← E ∪ {(k(ω), p) : p ∈ P, ω = λ(ϕ0(p))} � RTE to all of its ports
4: E ← E ∪ {(q, r) ∈ Pin × Pout : ϕ0(q) = ϕ0(r)} \ B � SWC-internal flows
5: E ← E ∪ {(v, e(v)) : v ∈ VI} ∪ {(e(v), v) : v ∈ VO} � External inputs/outputs
6: for all x ∈ ΨR do � Implicit paths via registers
7: Δ ← ReachableUnits(x)
8: if |Δ| ≥ 0 ∧ μ(x) /∈ Ω then return null
9: E ← E ∪ {(k(μ(x)), δ) : δ ∈ Δ}

10: return (V, E)

Since every channel facilitates information flow that can have a safety-related
impact on the receiving input port, edges from C are transferred to E in line 1.
This assignment makes use of the premise that by default, every runtime envi-
ronment manages reads from and writes to SWC ports in a correct manner.

Fig. 6. Simplified flow graph G for the running example.

The edges added in lines 2 and 3 are related to VK = {k0, k1, . . . , kn},
where k0 represents the MPSoC and ki with i ∈ {1, . . . , n} represents RTEi.
The helper function k : Ω → VK maps every RTE to its associated vertex in VK .
Since the MPSoC’s provided integrity limits the effective integrity of every RTE,
edges are added from k0 to k1 through kn in line 2. Afterwards, for each ω ∈ Ω,
an edge from this RTE to all ports of its executed SWCs is added. This represents
the fact that whenever the RTE fails, it is no longer justified to trust, e.g., its
scheduling of SWCs or management of SWC ports.

In line 4, every input-output pair of a SWC is connected unless a correspond-
ing flow barrier is in place. The assignment in line 5 connects every external SWC
port to the VI or VO vertex that represents the data read from or written to the
environment. Here, the helper function e : {p ∈ P : ϕs(p) = ext} → (VI ∪ VO)
maps each of these ports to its associated environment vertex.

192 T. Dörr et al.

Finally, the loop in line 6 creates edges to capture implicit information flows
enabled by the assignment of registers to RTEs. Therefore, it makes use of the
platform-specific ReachableUnits function, which returns a list of RTEs that
are implicitly affected by writes to a given register. Since the current version of
the flow graph does not model SWCs itself, registers with such side effects can
be assigned to RTEs only. Line 8 ensures that this constraint is met.

Example 7. The graph in Fig. 6 is a simplified version of G for the running
example. It is simplified in the sense that edges from an RTE vertex to its ports
are not drawn individually; they are replaced by one edge from an RTE vertex
to a wrapper around all ports mapped to RTE. The notation used to label a
port makes use of a superscript letter to indicate its SWC and a subscript letter
to indicate the name of the port within the letter. For example, the speed port
of the vehicle status is represented by the pVs vertex. Data written to the
environment via pBm is represented by eb ∈ VO. It is important to understand
that this graph reflects, among other things, the protection provided by the APU.
This protection prevents RTE1 from writing to the memory region that RTE2

uses to implement the channel from pVs to pBv . Therefore, a directed edge from k1
to pBv does not exist. Since this protection will fail if the entire MPSoC fails,
however, a directed path from k0 via k2 to pBv exists. Note that the flow barrier
between pBd and pBm is reflected by the missing edge between these vertices.

Fig. 7. Flow graph with provided and effective integrity levels.

The integrity propagation algorithm we apply to the flow graph has been
adapted from the work in [7] and is shown in Algorithm 2.

Algorithm 2. Integrity propagation via flow graph edges
1: for all v ∈ V do 	′(v) ← if v ∈ VP then 	P (v) else �
2: Q ← Queue(VP) � Queue of vertices in V
3: while NotEmpty(Q) do
4: u ← Dequeue(Q) � Get the next vertex to handle
5: for v ∈ V : (u, v) ∈ E do
6: 	′

0 ← 	′(v)
7: 	′(v) ← 	′(u) ∧ 	′(v) � Propagate its 	′ to successor v
8: if 	′(v) �= 	′

0 then Enqueue(v) � Enqueue v if its 	′ value changed

Pattern-Based Information Flow Control 193

First, the algorithm initializes the �′ function to provided integrity levels for
vertices from VP and to the greatest integrity level, 	 ∈ L, for vertices from VR.
Using a queue, �′ values are then iteratively propagated through the flow graph
until a steady state is reached.

Example 8. A possible result of the integrity propagation step for the running
example is given in Fig. 7. Edges connecting an RTE vertex to its ports are now
drawn using dashed arrows to set them off visually. Every v ∈ VP is labeled with
the provided and the effective integrity level using the notation “�P (v) ⇒ �′(v)”.
Analogously, every v ∈ VR is labeled with the notation “⇒ �′(v)”.

From the depicted �′ values, the effective integrity available to the body
network, for example, can be obtained as �′(eb) = 1. Various platform-specific
details, such as the fact that the APU prohibits RTE1 from accessing the memory
regions assigned to RTE2, contribute to this specific value.

5.3 Integrity Verification

Finally, the integrity verification step of the IFC pattern determines whether or
not the specified system (with the APU configuration in place) meets its integrity
requirements. Therefore, the pattern considers every integrity receiver v ∈ VR,
i.e., every SWC input port or environment writer. Whenever an integrity require-
ment is specified for such a vertex of the flow graph, the underlying integrity
lattice is consulted to ensure that the effective integrity (propagated to the ver-
tex using Algorithm 2) is not lower than the required level. By requiring all these
checks to succeed, the pattern derives the following binary result:

Definition 11. The verification result is a value σ ∈ {true, false}, which
is true if and only if the following condition is fulfilled: for each v ∈ VR such
that �R(v) is defined, �R(v) ≤ �′(v) holds.

Example 9. For the effective integrity levels shown in Fig. 7, an integrity spec-
ification that contains �R(eb) = 1 as its only integrity requirement will lead
to a positive verification result (σ = true). If, however, the integrity required
to write to the body network is raised to �R(eb) = 2, a negative verification
result (σ = false) is reported back to the XANDAR toolchain.

If inputs provided to the IFC pattern are accurate and the generated APU
configuration is applied, a positive verification result guarantees the fulfilment of
all specified integrity requirements. Therefore, the pattern reduces the challeng-
ing problem of implementing a logical isolation for software on complex MPSoC
platforms to the more manageable task of defining flow barriers as well as pro-
vided and required integrity levels.

6 Conclusions and Future Work

To achieve a fine-grained on-chip isolation on heterogeneous MPSoCs, capabili-
ties of APUs often need to be combined with safety mechanisms in application

194 T. Dörr et al.

software and detailed knowledge about implicit information flow paths within
the underlying platform, e.g., via a system-level control register.

The presented IFC pattern automates the APU configuration process and
ensures that feasible information flows in the resulting system are acceptable
from an integrity point of view. While timing interferences and confidential-
ity considerations are beyond the scope of this paper, we used an automotive
example scenario to show that the pattern is successfully able to protect a safety-
critical software component from failures caused by, e.g., a less trusted runtime
environment running on the same multicore platform.

A promising direction for future work is to make the pattern applicable to
a broader set of deployment strategies, e.g., by lifting the restriction to target
deployments that map a SWC directly and statically to the RTE of a core cluster.
Furthermore, a tool-supported integration with functional safety standards such
as ISO 26262 [11] is another topic for future research.

Acknowledgments. This work is part of a project that has received funding from
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 957210.

References

1. Abdellatif, T., Rouis, N., Säıdane, W., Jarboui, T.: Enforcing the security of
component-based embedded systems with information flow control. In: 2010 Inter-
national Conference on Wireless and Ubiquitous Systems (2010)

2. Bandur, V., Selim, G., Pantelic, V., Lawford, M.: Making the case for centralized
automotive E/E architectures. IEEE Trans. Veh. Technol. 70(2) (2021)

3. ter Beek, M.H., Cleophas, L., Schaefer, I., Watson, B.W.: X-by-construction. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03418-4 21

4. Ben Said, N., Abdellatif, T., Bensalem, S., Bozga, M.: Model-driven information
flow security for component-based systems. In: Bensalem, S., Lakhneck, Y., Legay,
A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp. 1–20. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54848-2 1

5. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

6. Dörr, T., Sandmann, T., Becker, J.: Model-based configuration of access protection
units for multicore processors in embedded systems. Microprocess. Microsyst. 87,
104377 (2021)

7. Dörr, T., Sandmann, T., Mohr, H., Becker, J.: Employing the concept of multi-
level security to generate access protection configurations for automotive on-board
networks. In: 2021 24th Euromicro Conference on Digital System Design (2021)

8. Hassan, M.: Heterogeneous MPSoCs for mixed-criticality systems: challenges and
opportunities. IEEE Design Test 35(4), 47–55 (2018)

9. Hu, W., Mu, D., Oberg, J., et al.: Gate-level information flow tracking for security
lattices. ACM Trans. Des. Autom. Electron. Syst. 20(1), 1–25 (2014)

10. Hu, W., Oberg, J., Irturk, A., et al.: Theoretical fundamentals of gate level infor-
mation flow tracking. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 30(8),
1128–1140 (2011)

https://doi.org/10.1007/978-3-030-03418-4_21
https://doi.org/10.1007/978-3-642-54848-2_1

Pattern-Based Information Flow Control 195

11. ISO 26262-1:2018: Road vehicles—Functional safety—Part 1: Vocabulary (2018)
12. Masing, L., Dörr, T., Schade, F., et al.: XANDAR: exploiting the X-by-construction

paradigm in model-based development of safety-critical systems. In: 2022 Design,
Automation & Test in Europe Conference & Exhibition (2022)

13. McNeil, S., Schillinger, P., Kolarkar, A., et al.: Isolation methods in Zynq Ultra-
Scale+ MPSoCs (2021). Xilinx, XAPP1320, v4.0

14. Oberg, J., Hu, W., Irturk, A., et al.: Information flow isolation in I2C and USB.
In: Proceedings of the 48th Design Automation Conference (2011)

15. Pellizzoni, R., Meredith, P., Nam, M.Y., et al.: Handling mixed-criticality in SoC-
based real-time embedded systems. In: Proceedings of the Seventh ACM Interna-
tional Conference on Embedded Software (2009)

16. Runge, T., Kittelmann, A., Servetto, M., Potanin, A., Schaefer, I.: Information flow
control-by-construction for an object-oriented language. In: Schlingloff, B.H., Chai,
M. (eds.) SEFM 2022. LNCS, vol. 13550, pp. 209–226. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-17108-6 13

17. Saeed, A., Dasari, D., Ziegenbein, D., et al.: Memory utilization-based dynamic
bandwidth regulation for temporal isolation in multi-cores. In: 28th Real-Time
and Embedded Technology and Applications Symposium (2022)

18. Schaefer, I., Runge, T., Knüppel, A., Cleophas, L., Kourie, D., Watson, B.W.:
Towards confidentiality-by-construction. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11244, pp. 502–515. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03418-4 30

19. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via
dynamic information flow tracking. SIGOPS Oper. Syst. Rev. 38(5) (2004)

https://doi.org/10.1007/978-3-031-17108-6_13
https://doi.org/10.1007/978-3-030-03418-4_30
https://doi.org/10.1007/978-3-030-03418-4_30

From Standard to Practice: Towards
ISA/IEC 62443-Conform Public Key

Infrastructures

Michael P. Heinl1,2(B) , Maximilian Pursche1,2 , Nikolai Puch2 ,
Sebastian N. Peters2 , and Alexander Giehl1,2

1 TUM School of Computation, Information and Technology, Department of
Computer Engineering, Technical University of Munich, Munich, Germany

2 Department Product Protection and Industrial Security, Fraunhofer AISEC,
Garching near Munich, Germany

michael.heinl@aisec.fraunhofer.de

Abstract. Public key infrastructures (PKIs) are a cornerstone for the
security of modern information systems. They also offer a wide range
of security mechanisms to industrial automation and control systems
(IACS) and can represent an important building block for concepts like
zero trust architectures and defense in depth. Hence, the ISA/IEC 62443
series of standards addresses the PKI paradigm, but there is little prac-
tical guidance on how to actually apply it to an IACS. This paper ana-
lyzes ISA/IEC 62443 for explicit and implicit requirements regarding
PKI deployment to provide a guideline for developing and operating a
standard-conform PKI. For this purpose, the analyzed requirements and
IACS-specific constraints are combined with current research and best
practices. To assess its viability, a tangible PKI use case is implemented in
a test environment. The evaluation of this use case shows that common
IACS components are capable of supporting PKI, but that important
features are missing. For instance, the handling of PKI turns out to be
time-consuming and involves many manual operations, a potential factor
to render large-scale operations impractical at this point in time.

Keywords: PKI · ISA/IEC 62443 · IACS · Security Engineering ·
Zero Trust

1 Introduction

The Industrial Internet of Things (IIoT) increasingly connects operational tech-
nology (OT) involved in production processes to the business IT network and
even the internet. This enables new types of value creation, ranging from more
efficient processes to individual made-to-order production. However, it also leads
to an increased risk of cyber attacks. The ISA/IEC 62443 series of standards pro-
vides guidance on the question what has to be done to reduce such risks to an
acceptable level considering the special characteristics of Industrial Automation
and Control Systems (IACS), e.g., the long life cycles and rigorous availabil-
ity requirements. One measure is to apply the paradigm of public key infras-
tructures (PKIs) to IACS. This way, security services, such as encryption and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 196–210, 2023.
https://doi.org/10.1007/978-3-031-40923-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_15&domain=pdf
http://orcid.org/0000-0002-1094-4828
http://orcid.org/0009-0003-1010-7741
http://orcid.org/0009-0000-6259-9846
http://orcid.org/0009-0007-6421-4023
http://orcid.org/0000-0001-7648-3895
https://doi.org/10.1007/978-3-031-40923-3_15

Towards ISA/IEC 62443-Conform Public Key Infrastructures 197

authentication, can be utilized by OT devices as well, establishing a basis for
security models like defense-in-depth and zero trust architectures. The goal of
this paper is to specify how the different aspects related to PKI should be applied
by providing a guideline with recommendations for a PKI concept that can be
practically used to secure IACS in accordance with ISA/IEC 62443. For this,
the paper synthesizes current research, best practices learned from the WebPKI,
and requirements from ISA/IEC 62443. The viability is then evaluated by deriv-
ing a PKI concept for a tangible use case within a physical IACS testbed. The
corresponding research questions answered in this paper are:

RQ 1: Which ISA/IEC 62443 requirements are relevant for PKIs?
RQ 2: Which aspects have to be considered when designing a PKI for IACS?
RQ 3: To what extent is PKI currently supported in industrial environments?

2 Related Work

Scientific papers dealing with PKI in industrial environments are scarce. In
2007, Hanke [11] analyzed PKI use cases within IACS without considering
ISA/IEC 62443 or its predecessor ISA99. A more recent paper from 2021 [44] pro-
vides recommendations for PKI in IACS with regards to post-quantum security.
While some general recommendations may overlap with the suggestions given
during the course of this paper, their focus is solely on post-quantum attacks
that PKI systems might face and which cryptographic algorithms are needed
to correspondingly protect IACS environments. Apart from these publications,
other relevant papers focus on ISA/IEC 62443 threat analysis [9] and its applica-
tion in engineering projects [23,24] without specifically addressing PKIs. There
are other sectors like automotive which address domain-specific challenges by
applying PKI [22], e.g., the U.S. Department of Transportation’s Security Cre-
dential Management System (SCMS) [42]. Although some challenges seem to be
similar, a thorough comparison is out of scope of this paper.

3 Requirements Analysis

In order to develop a guideline for an ISA/IEC 62443-conform PKI, it is nec-
essary to extract the requirements the standard places on a PKI. The focus of
this paper is on technical requirements [18,19]. Depending on the fact whether
the asset owner itself or a service provider operates the PKI, additional policy
requirements may apply [15,16]. It is important to note that ISA/IEC 62443 does
neither consider a PKI as a System under Consideration (SuC) nor a component
of an IACS. Rather, a PKI is considered a security measure. Therefore, require-
ments are rarely imposed on the PKI itself but on how the IACS components
and subsystems shall interact with it. Nevertheless, directions for the design of
a PKI can be directly or indirectly derived from the selected requirements cov-
ered in Table 1. In addition, it is paramount that the architecture of the PKI
does not hinder any security- or safety-related operation and that it integrates

198 M. P. Heinl et al.

Table 1. PKI Architecture Requirements.

Requirement Name PKI-related Content

PKI Architecture Requirements SR/CR 1.8 Public key
infrastructure
certificates

A PKI has to follow best practices and the company’s Certificate Policy
(CP). A Certificate Policy (CP), for example, defines network locations of
PKI entities or trust store configurations. RFC 3647 [32] is explicitly
mentioned for guidance. Secure processes for the operation of the PKI
need to be in place and should not negatively affect the system’s
performance

SR/CR 1.9 Strength of public
key authentication

The IACS and its components must, e.g., be able to validate signatures
and the chain of trust up until a trusted (CA) certificate and check the
certificate’s revocation status. Components must also ensure that the
used key and signature algorithm follows cryptographic guidelines. The
number of roots of trust (RoT) has to be minimized and the secrecy of
private keys ensured. There is an RE requiring hardware security for
public key authentication, e.g., TPMs

SR/CR 2.8 Auditable events IACS and components must be able to produce audit logs for
security-related events, incl. PKI operations. An RE requires the IACS to
have the capability to maintain a centrally managed, system-wide audit
trail and export in standardized formats

SR/CR 4.2 Information
persistence

It must be ensured that decommissioned systems and components do not
leak confidential information. This implies the presence of certificate/key
life cycle processes including proper sanitization

SR/CR 4.3 Use of
cryptography

Cryptography and key management shall follow international standards
and best practices, e.g., by U.S. National Institute of Standards and
Technology [26,28]. The strength of keys and algorithms should be chosen
appropriate to the information it protects

SR/CR 5.1 Network
segmentation

Network segmentation must be possible to support the zone model and to
break connections between segments during an incident without essential
functions failing. This means that zones, components, and PKI entities
like CA or RA should withstand being cut off from each other. Two REs
require independence from non-control system networks and logical and
physical isolation of critical networks from non-critical networks

SR 5.2 Zone boundary
protection

Traffic between zones must be monitored and only allowed if necessary.
REs require communication between zones being preventable in case of an
incident (island mode) or operational failure (fail close)

SR/CR 7.3 Control system
backup

IACS, components, and PKI entities must be able to perform backups
without endangering confidential information like private keys. This
implies either the exclusion of keys or encryption of backups

SR/CR 7.4 IACS recovery and
reconstitution

Recovery to a secure state after disruption must be possible, incl.
configuration loaded from backup. A PKI must ensure the valid state of
time-sensitive data after reconstitution, e.g., renew expired certificates
before resuming operation

PKI End Entity/Relying Party
Requirements

SR/CR 1.5 Authenticator
management

IACS and components shall be able to initialize, change/refresh, and
protect authenticators (including certificates and corresponding private
keys) from disclosure in transit and storage. Components that are unable
to meet this CR cannot use PKI security functionalities

SR/CR 2.11 Timestamps Timestamps are required for audit logs. Two REs require IACS-internal
time synchronization with a central time source and the protection of
time source integrity, which is also necessary to check expiration of time
sensitive PKI information like certificates or CRLs

SR/CR 3.3 Security
functionality
verification

Testing of security functions must be supported, e.g., authentication and
proper handling of revoked certificates as well as test cases for further
PKI-related functions

SR/CR 3.7 Error handling Error handling shall support remediation without revealing sensitive
information to adversaries

SR/CR 4.1 Information
confidentiality

The confidentiality of sensitive information at rest and in transit must be
protected. This extends SR/CR 1.5 by including PKI process information
and configuration to impede reconnaissance

SR/CR 7.1 Denial of service
protection

IACS and components shall be able to maintain essential functions in case
of Denial of Service events and manage communication load from
component flooding according to an RE. Another RE requires IACS to
limit DoS effects to other systems or networks. Hence, PKI-related
communication must not cause DoS events

SR/CR 7.2 Resource Mgmt. Security functions have to be managed in a resource-efficient way to
prevent overload and delay

HDR/EDR/ NDR 3.12 Provisioning
product supplier
RoT

Host, embedded, and network components must be capable of being
provisioned with supplier’s RoT and protecting their integrity,
authenticity, and confidentiality

HDR/EDR/ NDR 3.13 Provisioning asset
owner roots of trust

These types of components must also be capable of being provisioned
with and protecting the owner’s RoT without reliance external to their
own security zone

well into the environment of the IACS. As a basis for the actual requirements,
ISA/IEC 62443 defines three common control system security constraints gen-
eralizing the high availability and integrity requirements of IACS [18]. The first
constraint, support of essential functions, is crucial when designing a PKI for
IACS as it dictates that security measures shall not negatively impact health,
safety, environment (HSE), or the availability of the system. As an example,

Towards ISA/IEC 62443-Conform Public Key Infrastructures 199

ISA/IEC 62443 stipulates that failure of a PKI service shall not interrupt or
significantly delay essential IACS communication. Compensating countermea-
sures means that security requirements the system or component should fulfill
can also be fulfilled by an external component if an appropriate interface is
given. In case of an PKI, this could be, e.g., an Online Certificate Status Pro-
tocol (OCSP) OCSP responder providing Validation Authority (VA) services.
Eventually, least privilege specifies that permissions concerning resources and
information of the IACS must only be mapped to a specific role if they are
necessary to fulfill the role’s intended purpose. Based on this, ISA/IEC 62443
defines seven Foundational Requirements (FRs) [18,21]. Each FR is detailed
by a set of System Requirements (SRs) [18] and Component Requirements
(CRs) [19]. SRs/CRs consist of a baseline requirement and possible Require-
ment Enhancements (REs). SRs and CRs are often similar but there can be
differences. Moreover, some CRs have specific variations depending on the type
of the respective component, i.e., software application (SAR), embedded device
(EDR), host device (HDR), or network device (NDR). Each SR/CR is associ-
ated with Security Levels (SLs) [18]. These SLs range from SL 1 to SL 4. The
higher the SL, the better the corresponding protection. To accomplish a higher
SL, a system/component often needs to meet REs in addition to the baseline
requirement.

4 PKI Guideline

This section discusses the major structural and procedural aspects of a PKI. A
PKI primarily targeting Machine-to-Machine (M2M) authentication faces differ-
ent challenges than a PKI targeting Human-to-Machine (H2M) (H2M) authen-
tication. While a lot of architectural requirements are similar, an H2M PKI
requires additional processes during operation, e.g., addressing identification
and fluctuation of employees. Although employment of a PKI targeting H2M
is a valid use case for IACS, it is beyond the scope of this paper.

ISA/IEC 62443’s two central requirements directed towards PKI are SR/CR
1.8 describing how to handle PKI operation and 1.9 detailing how systems
and components should interact with certificates. The most important point
in SR/CR 1.8 is the requirement to follow best practices and a Certificate Policy
(CP). It points towards RFC 3647 [32] that assists in writing a CP and a Certifi-
cate Practice Statement (CPS). A CP is a document that defines roles, duties,
and requirements for entities within a PKI, for example, Certificate Authority
(CA), Registration Authority (RA), and End Entity (EE). It also provides legal
and liability statements. A CPS, on the other hand, is more practical and pro-
vides details on how a PKI meets the set requirements. To employ a PKI in an
IACS to the best possible extent, one would have to first define a CP based on
security standards, best practices, and laws applicable to the industry. Subse-
quently, a CPS details how to fulfill each requirement set by the CP depending
on the technical and organizational environment of the PKI. This paper dis-
cusses key points and gives recommendations to meet the requirements set by
ISA/IEC 62443, enriched by best practices [4,5,7,8].

200 M. P. Heinl et al.

4.1 PKI Structure

A fundamental consideration that needs to be evaluated is whether to integrate
the own PKI into a public PKI or to utilize a private PKI. SR/CR 1.8 mentions
both possibilities. A public PKI has the advantage that a lot of the security
recommendations are ideally already met, revocation procedures are in place,
and certificates issued by most commercial CAs are publicly trusted, meaning
their root CA certificate is present in most trust stores. Component and system
configuration with such certificates is usually easier. This is especially advanta-
geous, if EEs are to provide a public service or communicate with third-party
entities. It means, however, to invest a certain amount of trust in the used CA.
A way to qualitatively evaluate and compare the trustworthiness of CAs is to
analyze their CPs and CPSs. Complementarily, Heinl et al. [12] demonstrated
a method of assessing trustworthiness of CAs quantitatively. Utilizing a private
PKI provides more sovereignty in terms of architecture, procedures, and opera-
tion. It is more transparent and thus trustworthy to the operator at the cost of
securing such PKI is the operator’s own liability and will take more effort.

Fig. 1. Simplified CA hierarchy mapped to zone model based on ISA/IEC 62443 [18].

PKI Hierarchy. A PKI is inherently hierarchical with trust delegated from the
root CA down to EE certificates. The recommended hierarchy structure includes
at least three levels: a root CA, issuing CA(s), and EE(s). In a more complex
PKI, there are often additional intermediate CAs. The root CA is the central
trust source and should not be used to sign EE certificates [5]. Instead, it issues
SubCA certificates that can be used as intermediate or issuing CAs. Intermediate
CAs can, e.g., be used for different company branches. Their main advantage is
the division of responsibility in a complex technical or organizational structure.
Issuing CAs sign and issue EE certificates. In the context of ISA/IEC 62443,
this hierarchy is advantageous, since the IACS environment is divided into zones
according to use case and security requirements. If applicable, each zone should
be provided with its own issuing CA, exemplified in Fig. 1. This allows revocation
of an entire zone without affecting other zones in case of a security incident [44]
as implicitly required by SR/CR 5.1 [18,19].

Towards ISA/IEC 62443-Conform Public Key Infrastructures 201

Roles and Responsibilities. When designing a PKI, trusted roles as well as
their responsibilities and necessary permissions need to be identified on every
level of the PKI hierarchy. While it may not be feasible that every role is covered
by a different person, separation of duty and the principle of least privilege
are crucial to prevent misuse of power and to provide non-repudiation among
privileged roles [4,8]. For example, a role only entrusted with certificate issuance
should only be able to use but not to read/export the issuing CA’s private key.
If relevant employees leave or change roles within the company, administration
keys and passwords have to be changed [4]. Since PKI centralizes trust, CAs
(especially the root CA) represent a potential single point of failure (SPoF) and
special protection must be in place to secure them.

Certificate Profiles. Certificates should only be issued for a certain purpose
defined in a certificate profile encompassing the X.509v3 certificate fields and
extensions [33]. After an ISA/IEC 62443 risk assessment [17] comes to the con-
clusion which PKI services have to be employed in which zone, corresponding
certificate profiles must be defined, depending on PKI hierarchy level as well as
zone. There are three important extensions restricting what certificates can be
used for. The first one is the Basic Constraints extension. It includes the CA field,
indicating if the key pair can be used to sign other certificates. This must never
be true for EE certificates, but needs to be set for CA certificates [5,33] along
with the KeyCertSign and CRLSign bits of the second extension, Key Usage. If
OCSP is utilized by this CA, DigitalSignature must be set, too. Other pur-
poses should not be set for CA certificates to ensure that they are used for signing
certificates and revocation procedures only [5]. For EE certificates, this exten-
sion should be adjusted to the intended application. For example, a typical TLS
certificate will have DigitalSignature and KeyEncipherment set. Another use
case leveraging DigitalSignature in combination with NonRepudiation would
be signing audit logs sent to a central log server (cf. SR 2.8 RE 1). The final
extension, Extended Key Usage, contains use case restrictions like server or client
authentication within the TLS protocol and is not limited to the options spec-
ified in RFC 5280 [33]. While certificates that are used within a public context
must adhere to this specifications, some extensions can be repurposed in a pri-
vate IACS environment, e.g., to authenticate license keys. However, if an RFC
5280-compliant certificate parser cannot process an extension with the critical
flag set to true, it will reject such certificate [33].

Network Segmentation. When a network utilizes PKI for a critical service,
e.g., secure communication between critical components, it should not cause loss
of availability when communication between network segments is broken or the
zone goes into island mode. E.g., a network that should fulfill SR 5.1 RE 2 will
need to have its issuing CA and revocation method within its own segment. To
reduce the exposure of the PKI when CAs are deployed to every zone, it is useful
to restrict the certificates a SubCA can issue. The field PathLenConstraint in
the Basic Constraints extension enforces a maximum number of CA certificates

202 M. P. Heinl et al.

that may follow in the certificate chain [33]. This should be 0 for all issuing CAs,
since they shall only issue EE but not CA certificates. The extension NameCon-
straints restricts the name space for which a CA can issue certificates. To utilize
it in an IACS, its name spaces should reflect the zone partitions.

Computer Security. Computers hosting PKI services must be hardened, e.g.,
running only tested and trustworthy software, changing or disabling default
accounts/credentials [4,7], and require personalization and multi-factor authen-
tication for all privileged roles [8]. Patch management shall be established [20]
and security patches be implemented no later than six months after they became
available, unless they conflict with other functionality or dependencies [4].

Physical Security. Zones or networks with high security requirements, e.g., an
offline root CA, should be physically protected. E.g., only authorized personnel
should have access, every entry and exit be logged, and portable media containing
sensitive information not be brought out without authorization [4,8].

Monitoring and Logging. Monitoring must cover all PKI entities, incl. net-
work reachability, CPU utilization, disk capacity, and logging processes [4,7]. In
case of failure, responsible personnel should be alerted. Audit logs are a common
way to detect security incidents and to provide accountability [7]. PKI-related
events, e.g., certificate issuance, revocation, as well as general security events
should be logged [5] and centrally aggregated (cf. SR 2.10 RE 1). This allows
the detection and timely response to events. The retention period should be
sufficiently long, e.g., at least two years [5], to enable post-incident forensics.

Cryptographic Recommendations. A PKI is built upon cryptographic prim-
itives with a lot of research and development going on. In general, commonly
accepted recommendations, e.g., by NIST [26–28] or the BSI [1–3], shall be
followed to stay on top of these developments. However, there are environment-
specific aspects, e.g., regarding key pair generation or signature algorithm, which
have to be considered in the design phase of the PKI due to potential trade-offs
between security and factors like performance, latency, and cost.

RSA has the advantage that most networked IACS components support it
out of the box. Drawbacks are relatively long public keys and computationally
expensive key operations like signature generation and decryption [25,43]. This
stands in contrast to real-time constraints of IACS. The most prevalent alter-
native to RSA is Elliptic Curve Cryptography (ECC) needing a significantly
smaller key size to achieve a similar effective key length (security strength),
e.g., 256 bit (ECC) compared to 3072 bit (RSA) for a security strength of 128
bit [1,3,28]. ECC is often faster (with exceptions, e.g., signature validation),
more energy-efficient, and the shorter key lengths make key handling easier for
components [25,43]. Hence, depending on the application, RSA can be recom-
mended for heterogeneous environments and a focus on time-critical signature

Towards ISA/IEC 62443-Conform Public Key Infrastructures 203

validation whereas ECC can be recommended if there are constraints regarding
storage, bandwidth, power consumption, and little to no legacy devices. It is
recommended to use key lengths with at least 128 bit of security strength for
both RSA and ECDSA as well as a SHA-2 or SHA-3 hash function with the
same security strength for digital signatures [3,28]. For environments requiring
post-quantum (PQ) security, entirely different algorithms have to be used [1,44].
Methods which can provide a smooth transition to PQ cryptography include
hybrid certificates [30] and mixed certificate chains [31].

Long-term keys should be stored in a trusted platform module (TPM) or a
hardware security module (HSM). They provide hardware-based protection and
often functionality like binding a key pair to a device (TPM) or a multi-user
authorization scheme (HSM) for very sensitive keys, e.g., of the root CA.

4.2 PKI Processes

Besides the structure, procedural aspects must also be evaluated.

Deploying EE Certificates. After defining a certificate profile, the key pair
and a corresponding certificate signing request has to be generated. Key gener-
ation can either be done by the EE or by the CA in case the EE itself is not
able to due to a missing cryptographically secure random number generator. The
latter allows for key recovery, however, it also impairs non-repudiation. Once the
certificate is signed, the EE certificate, the certificate chain, and the keys must
then be transported to the EE via a secure channel [8]. While it seems desirable
to deploy certificates to as many devices and utilize them as often as possible,
their employment must be carefully considered. ISA/IEC 62443 classifies keys as
authenticators and sensitive data which results in additional operational require-
ments. If a device does not handle sensitive data in terms of confidentiality or
integrity, the operational effort by handling certificates may outweigh optional
security functionality.

Long validity periods may be acceptable in IACS. If an ISA/IEC 62443 risk
assessment [17] comes to a different conclusion for specific zones, then regu-
lar renewal of certificates may be necessary. In this case, automation protocols,
like SCEP [37] or EST [36], which allow EEs to automatically obtain a cer-
tificate from a CA, should be taken into consideration. If components support
such automatism, it can reduce operational effort and minimize human error
while enabling short certificate life times. However, it must be ensured that
the employed mechanisms meet the set requirements, especially regarding avail-
ability. Otherwise, manual renewal of certificates can mean serious operational
overhead and even downtime. SR/CR 1.9 does not explicitly cover checks of a
certificates’ validity period because for some applications with very high avail-
ability requirements, communication with an expired certificate can be more
acceptable than unsecured or no communication at all. In these cases, expired
certificates may be accepted as a fallback under exceptional circumstances [29]
as long as they are not revoked and their keys provide adequate protection.

204 M. P. Heinl et al.

Revocation. Revocation mechanisms like Certificate Revocation Lists (CRLs)
[33] and OCSP [35] fulfill the purpose of indicating lost or otherwise compro-
mised key material, that should not be accepted or used by any entity within
the PKI [5,8]. While validity period checks may not be necessary within IACS,
revocation status must be evaluated in every step of the certificate path (cf.
SR/CR 1.9). CRLs are the basic form of revocation and are relatively indepen-
dent from CA uptime or other PKI services by deploying the lists to every EE.
Their main disadvantage is the update and maintenance process. A CRL can
grow quite large and must be redeployed to every component once another cer-
tificate is added. Delta CRLs only containing certificates revoked since the last
base CRL [33] can be an alternative to reduce overhead. In static environments,
where communication only happens within a security zone, the disadvantages
of CRLs might not matter as much, since they will be short and updates are
unlikely. The most prevalent alternative to CRLs is OCSP, centralizing revo-
cation checking in an OCSP reponder. EEs query the responder for the status
of certificates they process, decreasing storage and computation effort of EEs
but increasing network traffic and representing a potential SPoF. OCSP sta-
pling [34] can solve some of the potential problems of OCSP by offering a signed
and timestamped revocation status to certificate holders who can then present
it to relying parties during authentication. This way, the revocation status can
be verified without direct communication with the OCSP responder decreasing
the communication load and availability constraints. Currently, OCSP stapling
is only standardized as a TLS extension, but the principle could be used in other
protocols as well.

Backup and Recovery. PKI entities need to be included in backup proce-
dures following commonly accepted standards [4,15]. Confidential information
has to be excluded from a component backup or encrypted [8,18,19]. Recovery
procedures should be regularly tested, to ensure that IACS can resume opera-
tion [5] even if certificates are invalid at the time of restore. In such a case as
well as for component backups excluding private keys, a certificate issuing pro-
cess should be included into the restore procedure. There might be PKI entities
depending on each other’s configuration, for example an OCSP responder and
the corresponding CA, that have to be backed up and restored together. Such
dependencies should be analyzed and documented [7].

End of Life Procedures. When devices reach their end of service, processes
must be in place to ensure that sensitive information, e.g., private keys, is purged
(cf. SR/CR 4.2), including from backups and potential redundant systems
[3,5,8]. If it cannot be ensured that all copies of a private key are destroyed,
the corresponding certificate has to be revoked in addition.

Compliance and Auditing. Risk assessments, zone definitions, and usage
evaluations should not only be done before initial deployment, but regularly [17].

Towards ISA/IEC 62443-Conform Public Key Infrastructures 205

Guidelines and requirements for PKIs will change and should be reviewed on a
regular basis in order to incorporate them into the security program.

5 Implementation

This section describes a practical PKI implementation with the goal to test the
feasibility of PKI usage in a representative IACS testbed. It builds on previous
research [10], which identified possible attacks on the present IACS. The imple-
mentation focuses on preventing one of the identified attacks by implementing
TLS on top of an existing communication protocol and outlines possible chal-
lenges that need to be considered when employing PKI in an IACS. Due to the
feasibility study character and the limited scope of this format, a risk assessment
as prescribed by ISA/IEC 62443 3-2 [17] is intentionally omitted.

Fig. 2. Testbed setup.

The testbed represents a small
production facility consisting of three
production isles. Each isle is made
up of a base and an application
module. Modules are composed of
components, with the base usually
consisting of a main Programmable
Logic Controller (PLC) SIMATIC
ET 200SP, a Human-Machine Inter-
face (HMI) SIMATIC HMI TP700
Comfort, and a conveyor belt. The
application modules have compo-
nents specific to their task and may
contain additional PLCs. The main
PLCs are connected to a router via
Ethernet, which connects them to
the Manufacturing Execution System
(MES) which is the central control unit of the IACS. The MES runs the MES4
software by Festo for managing manufacturing orders as well as the TIA por-
tal (version 15.1) and CODESYS (version 3.5.14) to program the PLCs of the
associated manufacturer. The implementation focuses on the station shown in
Fig. 2, housing a storage application and marking the starting point of the man-
ufacturing process. A smaller version of the main PLC from Siemens (SIMATIC
S7-1200) controls the storage unit. The MES and the main PLC communicate
via TCP/IP. The demonstrated attack [10] targets this communication channel
by initially obtaining a MitM position using ARP spoofing and then altering data
sent on the TCP layer. This results in full control of the application, including
picking wrong starting materials from the storage without the MES noticing. To
prevent this kind of attack, TLS is implemented.

206 M. P. Heinl et al.

5.1 Existing PKI Interfaces

Before implementing TLS, existing interfaces for certificate deployment are iden-
tified to provide an overview of the extent to which PKI can be deployed and
which use cases are already implemented. The MES is Windows 10-based allow-
ing to import any X.509v3 certificate to authenticate users, e.g., via smart
card [13], using the Windows certificate utility. The MES software (MES SW)
does neither have any documented certificate interfaces nor does it utilize the
built-in Windows certificate store. The SIMATIC ET 200SP has a certificate
store that can be configured via the TIA portal’s central certificate manager [39].
It has two modes: the centrally managed, project-wide certificate store and an
independent mode. When using the independent mode, certificates cannot be
imported and only self-signed certificates can be created. The centrally managed
certificate store comes with an own root CA and allows the issuance of device
certificates signed by this very root CA or import of other certificates. A PLC’s
possible certificate usage depends on the built-in CPU. The used SIMATIC ET
200SP allows for four certificate use cases: TLS communication either as server
or client, OPC UA authentication, securing PLC to HMI communication, and
employment of the HTTPS protocol for the PLC-hosted web server [40,41]. The
smaller SIMATIC S7-1200 has a S7-1200 CPU built in and does not have any
configurable certificate store. The only documented certificate utilization is a
self-signed certificate used for HTTPS access to the web server running on the
device [38]. This certificate could not be configured, regardless of whether the
global certificate manager is employed or not. The Festo PLC CECC-LK can be
configured via CODESYS with the option to secure the production PLC code
with an X.509 certificate, encrypting or signing the project by utilizing the Win-
dows certificate manager. Similar to the TIA portal, the used CODESYS version
3.5.14 supports certificates for OPC UA but no other use cases. In 2020, version
3.5.16 was released enabling TLS with configurable certificates [6].

5.2 Selecting a PKI Tool

In order to make an informed tool selection, the landscape of open-source PKI
software solutions is analyzed regarding security, usability, as well as scalability
and integration. Table 2 shows the results of the four most promising candi-
dates, namely Dogtag, EJBCA, OpenXPKI, and Step-CA, indicating that none
of them can be seen as a clear favorite. Eventually, EJBCA is chosen for the
implementation, especially due to its modular architecture.

Towards ISA/IEC 62443-Conform Public Key Infrastructures 207

Table 2. Open-source PKI tool decision matrix.

Groupings Selection Criteria Weights Dogtag EJBCA Step-CA OpenXPKI

Rating Weighted Rating Weighted Rating Weighted Rating Weighted

Security Confidentially (in transit and DB) 25,00 % 5 1,25 5 1,25 5 1,25 5 1,25

Integrity in Database 25,00 % 5 1,25 5 1,25 5 1,25 5 1,25

Access and Rights Management 25,00 % 5 1 5 1,25 2 0,5 5 1,25

Release and Patch Cycle 25,00 % 4 1 5 1,25 5 1,25 4 1

Usability GUI Usability 20,00 % 4 0,8 4 0,8 0 0 4 0,8

CLI Functionality 20,00 % 4 0,8 4 0,8 5 1 5 1

Documentation 35,00 % 4 1,4 4 1,4 4 1,4 3 1,05

Vendor Support 25,00 % 1 0,25 5 1,25 5 1,25 5 1,25

Scalability and Integration Variety of Supported Components 15,00 % 4 0,6 3 0,45 4 0,6 5 0,75

Automation Possibilities 25,00 % 4 1 4 1 5 1,25 5 1,25

Availability Concepts 30,00 % 3 0,9 4 1,2 2 0,6 3 0,9

Multi Instance Operation 30,00 % 5 1,5 4 1,2 3 0,9 4 1,2

Total Score 11,75 13,1 11,25 12,95

5.3 PKI Installation and Configuration

EJBCA is installed including CA, RA, and VA functionality. Subsequently, the
PKI is configured including the generation of certificate profiles as well as root
CA and SubCA certificates. Eventually, two PKCS #12-formatted EE certifi-
cates are issued in the RA web GUI and the CA certificate chain is exported.
Due to a lack of support for management protocols, e.g., SCEP or EST, the cer-
tificates have to be transferred to the TIA portal to assign them to the SIMATIC
PLCs. For this purpose, the previously exported CA certificate chain as well as
the PKCS#12 file containing the certificate and private key for the PLC are
imported, requiring a restart of the device. The TIA portal limits the usage of
certificates to RSA with SHA-1 or SHA-2. Certificates issued by the TIA por-
tal’s own CA use SHA-1 and 2048 bit RSA keys by default. The max. length
for keys generated by the TIA portal is 3072 bit but it can handle larger keys
if certificates are imported. Attempts to import ECDSA keys/certificates were
rejected. Neither CRLs nor any other revocation method are supported [41].

5.4 Communication Configuration

Fig. 3. TLS communication with the help of stunnel.

The communication between
PLC (client) and MES SW
(server) utilizes two TCP/IP
sessions. One session is used
for order inquiries (query
session) while the other
transmits status informa-
tion to the MES (state ses-
sion). Once the query ses-
sion is established, it is only used when a sled reaches the storage application.
The PLC then queries the MES SW for instructions regarding the next opera-
tion. The state session communicates runtime information to the MES including
production mode and error codes. Mutually authenticated TLS is implemented
on both sessions to secure communication between MES SW and PLC. Since

208 M. P. Heinl et al.

the existing proprietary MES SW does not provide TLS capabilities, the TLS
wrapper stunnel is used on the MES to tunnel the unencrypted communication
through a secure channel as illustrated by Fig. 3. The SIMATIC PLC is pro-
grammed via the TIA portal which utilizes STEP 7, an IEC 61131-compliant [14]
software for programming PLCs. In STEP 7 V14, the datatype TCON IP V4 SEC
was added to support TLS 1.2. The unsecured MES communication took place
on TCP ports 2000 (query session) and 2001 (state session). These ports are now
used internally via loopback interface, while TCP ports 2005/2006 are used for
the external TLS connection via stunnel. Since revocation checking is not sup-
ported by the SIMATIC ET 200SP, it is done server-sided. stunnel is therefore
configured with a CRL that is checked when a certificate is verified.

6 Evaluation

The probably most serious limitation for a PKI implementation within the
present IACS, is the inability of the PLC to check certificate revocation status.
With no standardized revocation method supported, the only available mech-
anism to limit the damage compromised keys can cause, are short certificate
lifetimes. Maintaining short lifetimes, in turn, is not a trivial task because cer-
tificates can only be imported manually into the PLCs. Moreover, the PLCs
need to reboot on reconfiguration, halting production. This makes short certifi-
cate lifetimes operationally unmanageable in a complex IACS comprising many
similarly constrained devices. Another missing feature is the support of ECC.
The shorter keys and faster computations could lower the strain on components’
resources. Interestingly, the PLC uses ECDHE for the session key exchange dur-
ing the TLS handshake which suggests that ECC operations are implemented
in the PLC’s firmware. Other security-relevant aspects are the missing crypto
agility and weak default parameters of the used TIA portal version.

7 Conclusion

This paper collected direct and indirect technical requirements of ISA/IEC 62443
and contextualized them with more tangible recommendations and best prac-
tices. With its hierarchical structure, PKI fits well into the ISA/IEC 62443 zone
concept. However, there is also a discrepancy between the security requirements
for the WebPKI and a PKI for IACS environments. This is mainly due to the
different prioritization of the security goals resulting in some interesting dif-
ferences, e.g., regarding certificate validity periods. The implementation shows
that it is possible to implement a PKI use case with common IACS components.
However, it also reveals that PKI support is rudimentary and lacks important
features, e.g., certificate revocation. Overall, it confirmed the impression that
IACS are only slowly evolving due to their proprietary devices and long life
cycles. However, the rapidly increasing importance of ISA/IEC 62443 suggests
that stakeholders are aware of these circumstances, which in turn might also
lead to more capable components enabling fully compliant PKI deployments. It

Towards ISA/IEC 62443-Conform Public Key Infrastructures 209

must be considered that recommendations and requirements are not static. Once
ISA/IEC 62443 or best practices change, this guideline has to be revised.

Acknowledgment. This work was supported by the German Federal Ministry for
Economic Affairs and Climate Action (BMWK) under grant no. 13I40V010A.

References

1. BSI: Kryptographische Verfahren: Empfehlungen und Schlüssellangen (2022)
2. BSI: Kryptographische Verfahren: Empfehlungen und Schlüssellangen Teil 2 - Ver-

wendung von Transport Layer Security (TLS) (2022)
3. BSI: Kryptographische Vorgaben für Projekte der Bundesregierung Teil 4: Kom-

munikationsverfahren in Anwendungen (2022)
4. CA/Browser Forum: Network & Certificate System Security Requirements (2021)
5. CA/Browser Forum: Baseline Requirements for the Issuance and Management of

Publicly-Trusted Certificates (2022)
6. CODESYS GmbH: Features and Improvements CODESYS V3.5 SP16 (2020)
7. ETSI EN 319 401 V2.3.1: Electronic Signatures and Infrastructures; General Policy

Requirements for Trust Service Providers (2021)
8. ETSI EN 319 411-1 V1.3.1: Electronic Signatures and Infrastructures; Policy and

security requirements for Trust Service Providers issuing certificates; Part 1: Gen-
eral requirements (2021)

9. Fockel, M., et al.: Designing and integrating IEC 62443 compliant threat analysis.
In: EuroSPI 2019 (2019)

10. Hagen, B.: Security analysis of an interconnected industrial automation testbed
(production line). Master’s thesis, Hochschule Augsburg (2022)

11. Hanke, M.: Embedded PKI in industrial facilities. In: ISSE/SECURE 2007 (2007)
12. Heinl, M.P., et al.: MERCAT: a metric for the evaluation and reconsideration of

certificate authority trustworthiness. In: CCSW 2019 (2019)
13. Hughes, L.E.: Issue and manage windows logon certificates. In: Pro AD Certificate

Services: Creating & Managing Digital Certificates for Use in MS Networks. Apress
(2022)

14. IEC 61131-3:2013: Programming languages (2013)
15. IEC 62443-2-1:2010: Establishing an IACS security program (2010)
16. IEC 62443-2-4:2015: Sec. program requirements for IACS service providers (2015)
17. IEC 62443-3-2:2020: Security risk assessment for system design (2020)
18. IEC 62443-3-3:2013: System security requirements and security levels (2013)
19. IEC 62443-4-2:2019: Technical security requirements for IACS components (2019)
20. IEC TR 62443-2-3:2015: Patch management in the IACS environment (2015)
21. IEC TS 62443-1-1:2009: Terminology, concepts and models (2009)
22. Khan, S., et al.: Survey on issues and recent advances in vehicular public-key

infrastructure (VPKI). IEEE COMST 24(3) (2022)
23. Leander, B., et al.: Applicability of the IEC 62443 standard in Industry 4.0/IIoT.

In: ARES 2019 (2019)
24. Maidl, M., et al.: A comprehensive framework for security in engineering projects

- based on IEC 62443. In: IEEE ISSREW 2018 (2018)
25. Maletsky, K.: RSA vs. ECC Comparison for Embedded Systems (Microchip) (2020)
26. NIST: FIPS 140-3: Security Requirements for Cryptographic Modules (2019)

210 M. P. Heinl et al.

27. NIST: SP 800-57 Part 2 Rev. 1 - Recom. for Key Management: Part 2 - Best
Practices for Key Management Organizations (2019)

28. NIST: SP 800-57 Part 1 Rev. 5 - Recom. for Key Management: Part 1 - General
(2020)

29. OPC UA Foundation: Practical Security Recommendations for building OPC UA
Applications. Whitepaper Security Working Group (2018)

30. Paul, S., et al.: Towards post-quantum security for cyber-physical systems: inte-
grating PQC into industrial M2M communication. In: ESORICS 2020 (2020)

31. Paul, S., et al.: Mixed certificate chains for the transition to post-quantum authen-
tication in TLS 1.3. In: ASIA CCS 2022 (2022)

32. RFC 3647: Internet X.509 PKI Certificate Policy & Certification Pract. Framew.
(2003)

33. RFC 5280: Internet X.509 PKI Certificate and CRL Profile (2008)
34. RFC 6066: Transport Layer Security (TLS) Extensions: Extension Definitions

(2011)
35. RFC 6960: X.509 Internet PKI Online Certificate Status Protocol (2013)
36. RFC 7030: Enrollment over Secure Transport (2013)
37. RFC 8894: Simple Certificate Enrolment Protocol (2020)
38. Siemens AG: SIMATIC S7-1200 Programmable controller (2015). https://cache.

industry.siemens.com/dl/files/121/109478121/att 851433/v1/s71200 system
manual en-US en-US.pdf

39. Siemens AG: Using Certificates with TIA Portal (2019). https://
support.industry.siemens.com/cs/attachments/109769068/109769068
CertificateHandlingTIAPortal V1 0 en.pdf

40. Siemens AG: Config. of TLS-based PG/HMI Com. and the Protection of
Confidential PLC Config. Data (2021). https://support.industry.siemens.com/cs/
attachments/109772940/s71200 system manual en-US en-US.pdf

41. Siemens AG: SIMATIC S7–1500, ET 200MP, ET 200SP, ET 200AL, ET
200pro Communication (2021). https://cache.industry.siemens.com/dl/files/942/
84133942/att 1098064/v1/et200sp manual collection en-US.pdf

42. U.S. Department of Transportation: Security Credential Management System
(SCMS). https://www.its.dot.gov/factsheets/pdf/CV SCMS.pdf

43. Vahdati, Z., et al.: Comparison of ECC and RSA algorithms in IoT devices. JATIT
(2019)

44. Yunakovsky, S.E., et al.: Towards sec. recommendations for PKIs for production
environments in the post-quantum era. EPJ Quantum Technol. 8(1) (2021)

https://cache.industry.siemens.com/dl/files/121/109478121/att_851433/v1/s71200_system_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/121/109478121/att_851433/v1/s71200_system_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/121/109478121/att_851433/v1/s71200_system_manual_en-US_en-US.pdf
https://support.industry.siemens.com/cs/attachments/109769068/109769068_CertificateHandlingTIAPortal_V1_0_en.pdf
https://support.industry.siemens.com/cs/attachments/109769068/109769068_CertificateHandlingTIAPortal_V1_0_en.pdf
https://support.industry.siemens.com/cs/attachments/109769068/109769068_CertificateHandlingTIAPortal_V1_0_en.pdf
https://support.industry.siemens.com/cs/attachments/109772940/s71200_system_manual_en-US_en-US.pdf
https://support.industry.siemens.com/cs/attachments/109772940/s71200_system_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/942/84133942/att_1098064/v1/et200sp_manual_collection_en-US.pdf
https://cache.industry.siemens.com/dl/files/942/84133942/att_1098064/v1/et200sp_manual_collection_en-US.pdf
https://www.its.dot.gov/factsheets/pdf/CV_SCMS.pdf

AI Safety

The Impact of Training Data Shortfalls
on Safety of AI-Based Clinical Decision

Support Systems

Philippa Ryan Conmy1(B) , Berk Ozturk1, Tom Lawton2, and Ibrahim Habli1

1 Department of Computer Science, University of York, York, UK
{philippa.ryan,berk.ozturk,ibrahim.habli}@york.ac.uk

2 Bradford Royal Infirmary, Bradford Institute for Health Research, Bradford BD9
6RJ, UK

Abstract. Decision support systems with Artificial intelligence (AI)
and specifically Machine Learning (ML) components present many chal-
lenges when assuring trust in operational performance, particularly in a
safety-critical domain such as healthcare. During operation the Human
in/on The Loop (HTL) may need assistance in determining when to
trust the ML output and when to override it, particularly to prevent
hazardous situations. In this paper, we consider how issues with training
data shortfalls can cause varying safety performance in ML. We present a
case study using an ML-based clinical decision support system for Type-2
diabetes related co-morbidity prediction (DCP). The DCP ML compo-
nent is trained using real patient data, but the data was taken from a
very large live database gathered over many years, and the records vary
in distribution and completeness. Research developing similar clinical
predictor systems describe different methods to compensate for train-
ing data shortfalls, but concentrate only on fixing the data to maximise
the ML performance without considering a system safety perspective.
This means the impact of the ML’s varying performance is not fully
understood at the system level. Further, methods such as data imputa-
tion can introduce a further risk of bias which is not addressed. This
paper combines the use of ML data shortfall compensation measures
with exploratory safety analysis to ensure all means of reducing risk are
considered. We demonstrate that together these provide a richer pic-
ture allowing more effective identification and mitigation of risks from
training data shortfalls.

Keywords: Machine Learning · Training Data · Medical device safety

1 Introduction

Safety-related decision support systems incorporating Artificial intelligence (AI)
and specifically Machine Learning (ML) components are increasingly being
developed and deployed [18]. These can have many potential benefits, such as
providing faster and richer computational support to complex tasks. However,
developing a robust and fit-for-purpose ML algorithm is reliant on good training
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 213–226, 2023.
https://doi.org/10.1007/978-3-031-40923-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_16&domain=pdf
http://orcid.org/0000-0003-1307-5207
https://doi.org/10.1007/978-3-031-40923-3_16

214 P. Ryan Conmy et al.

data, which reflects the required task. Even with a robust training regime, poor
data will influence the performance, and safety of the output from the ML. Given
that comprehensive verification of ML across all operating scenarios is typically
impossible, these errors may be undetected until it is too late.

During operation the Human In/On The Loop (HTL) working with the sys-
tem may need assistance in determining when to trust the ML output and when
to override it, particularly in cases where there is a safety related outcome. For
example, clinical advisory systems typically have a workflow allowing the clin-
ician to override the output, but it may not be clear what the limitations or
strengths are of the ML components, making it difficult to trust or ignore cer-
tain predictions [22]. This is particularly problematic where there is a difference
of opinion between the ML predictor and clinician. Whilst there is research into
the impact of different methods to manage training data shortfalls, these con-
centrate on maximising the ML performance with respect to certain metrics,
and do not considering the different risks of varying performance at the system
level. Thus the safety impact of data shortfalls is not well understood, nor are
all means of reducing risk explored. We argue that taking a systems perspective
is necessary for safety critical environments.

In this paper we examine how issues with training datasets, and means to
compensate for them, can impact on safety performance. We combine the use
of training data shortfall compensation methods and exploratory safety analysis
to ensure all means of reducing risk are considered. We apply this combina-
tion to a diabetes comorbidity predictor (DCP), implemented using ML, used
to support clinical decision making. The DCP is trained using a dataset which
contains the real clinical records of the patients taken from the Connected Brad-
ford database [21]. The dataset consists of over 42,000 rows of data for Type-2
diabetic patients from different backgrounds and over 14,000 different types of
clinical records (features). Since the dataset records are obtained from differ-
ent care centres, this causes differences in recorded data. When patients do not
attend their visits regularly there can be changes/deficiencies in the recorded
laboratory results, which causes the dataset to have a great number of missing
values. This makes it critical to conduct systematic safety analysis to prevent
and mitigate for misleading outcomes in the manner of patient safety.

This paper is laid out as follows. In Sect. 2 we describe this real world problem
in more detail and describe some related work used to develop our approach. In
Sect. 3 we describe the case study, training data issues and safety analysis. We
discuss our results and findings in Sect. 4, and finally in Sect. 5 we present our
conclusions.

2 ML Training Data and Safety

Increasingly, safety-critical systems with machine learning components are being
developed and deployed [8]. Examples include autonomous cars (with or with-
out a safety driver), drones, medical diagnosis systems and agricultural robots.
There are many different approaches to machine learning, including supervised,

Safety of AI-Based Clinical Decision Support Systems 215

semi-supervised and unsupervised training methods and models such as neural
networks or decision trees. However, a core requirement for each is a set of valid
training data which is pre-processed to tailor it for the task and model. For a
safety-critical system, poor quality training data can lead to latent faults which
can lead to hazardous behaviour. This is illustrated in Fig. 1. The top chain of
elements indicates the ML training and system integration process. The lower
row indicates how the error can propagate throughout the training lifecycle. A
training data shortfall can mean the ML doesn’t have complete or correct per-
formance with respect to the system requirements. This may not be picked up
in verification, as performing complete verification of ML is impossible in all but
the most trivial cases. The same issue will affect testing during system integra-
tion but it may also be difficult to control the test space (e.g., real world testing
of a drone cannot be done in controlled weather conditions), which means a
latent failure could lead to a hazard during operation.

Fig. 1. Causal chain of failure events from training data shortfalls.

Consider the following examples. A classifier for an autonomous vehicle object
detection system is trained using supervised learning. This uses a labelled set
of training data, including images marked with labelled boxes. This data set
includes a number of examples of dogs, but even though the training examples
are properly labeled and framed, they only show dogs from a side view. The
object detector may then fail to detect a dog facing forwards, contributing to
a collision. A similar issue contributed to the fatal autonomous vehicle crash in
Tempe, Arizona, 2018 [16], where a bicycle was not consistently recognised from
the side, and the autonomous driving controller was unable to predict the path of
the pedestrian pushing it quickly enough. Another example, would be a decision
component determining whether an unmanned drone should return to base if
the conditions are unfavourable may be trained using semi-supervised learning.
For this, each training sample is marked as safe or unsafe, and contains a series
of atmospheric readings on waypoints for the planned path. The ML training
process is designed to allow it to look for patterns in the readings/predictions
which can be matched to either safe or unsafe. However, the training set has very
few samples where the temperature dipped below zero celsius, where icing could
be a problem, and each of these samples contained very different sets of other
readings making it hard to generalise. Therefore the ML might incorrectly decide
it was safe to continue when in fact there was a severe risk the physical systems

216 P. Ryan Conmy et al.

of the drone would fail and it would crash e.g., due to ice and low temperature
impacting battery power.

When looking for shortfalls we need to consider the source of the data as
this may impact on the types encountered. In some situations, the training data
can be entirely user generated, such as when simulation software is used. The
advantage of this approach is that the data scientist or engineer will have a very
high degree of control over the data generated, but it may not be realistic without
careful modelling and analysis. However, the opposite approach may be taken,
where an off-the-shelf dataset is acquired and curated for the ML training. Real-
world sampling will help assure the validity of the data, but the disadvantage
is that there are likely to be missing cases or bias to certain situations, or even
deliberate data poisoning. Our analysis considers both the normal case for data,
where the sample may be valid but overall distribution introduces bias, and the
failure case, where the sample may be corrupted in some way.

2.1 Methods for Managing Data Shortfalls

As noted previously there are different types of data shortfalls which may vary
depending on the way the training data has been gathered and curated. For
example, there are issues of missing data, poorly labelled data, data validity
and data distribution [8]. These may be intrinsically linked, for example, if we
compensate for missing data using data imputation methods we must ensure
the generated data is valid. In this section we examine related literature on
data imputation, concentrating on papers where it has been applied to similar
prediction problems such as diabetes [7,11] and Covid-19 [4].

There are different types of data imputation methods to deal with the missing
values, and these methods have been used for different domains. In [7,23] the
authors take means of the full set of a particular feature to fill the missing
values. However, only taking the average of the entire column and replacing the
missing values with the average of the column may lead some bias or misleading
outcomes. An issue with both these papers is that they focus purely on the
ML performance indicators, and do not consider risk mitigation from a system
safety perspective. Maximising the performance may not be required if other
risk mitigation measures, such as explainability and transparency [13], are used.

In [5], the authors use kNN Imputation method to deal with the missing
values in their dataset. In [1], four different imputation methods (case deletion,
mean imputation, median imputation, and kNN Imputation) have been applied
to compare these methods. Then, the authors concluded that the kNN Imputa-
tion performs better providing a better Mean Squared Error (MSE) value to deal
with the missing values. In [24], multiple imputation methods have been com-
pared, and it has been concluded that kNN Imputation has better than mean
and median imputation methods. kNN imputation looks for similar cases and
nearest neighbours, thus reduces bias from extreme outlying values or overall
distribution. Again, the authors concentrate on ML fitness in isolation of the
whole system.

Safety of AI-Based Clinical Decision Support Systems 217

An alternative method is described in [3,4,14] where the authors use the
Bag Imputation method to fill the missing values in the dataset. This is a more
sophisticated, and computer intensive, nearest neighbour method which uses
additional ML to predict missing values, and to avoid overfitting and bias in
the dataset [11]. Because we have a large amount of missing values and aim
to prevent bias, we have decided to investigate bag imputation as a way to
compensate for missing values in our dataset.

2.2 Safety Data Analysis Method

We argue that a system safety perspective is necessary to ensure that the risks
associated with data shortfalls are methodically understood. By this we mean
considering the impact on the effectiveness of the ML, and then considering how
or if this might affect performance at the system level in combination with other
information and actors. We also consider other activities during the training
process which might reduce the risk. Further, we need to identify and assess the
additional risks that using data imputation may introduce.

In Fig. 1 we show the ML training and operation lifecycle. There are oppor-
tunities to reduce risk at every stage, including controls on how training data is
selected, adding specific verification/integration tests for known issues, and how
information is presented to the operator, e.g., using explainability, so that they
are given a richer picture for individual decisions.

To support the system safety perspective we need an exploratory safety anal-
ysis technique which could be effective in identifying types of data shortfall, such
as for particular clinical features of importance and how they could propagate.
Therefore, we considered bottom-up/inductive analysis safety analysis methods
rather than top-down/deductive techniques e.g., Fault Tree Analysis. We argue
that by concentrating on the data issues as a starting point we can understand
their causal impact more holistically.

Typical inductive safety analysis methods include Failure Modes and Effects
Analysis (FMEA) [12], and HAZard and OPerability Studies (Hazops) [15].
Hazops uses particular guidewords, e.g., more, less, early, to provide general
categories of failures to engineers performing the analysis. It was originally used
in the chemical processing industry but has been successfully used for computer
based analysis, both on data flows (such as training data to ML training) and on
control flows. On the other hand FMEA is more traditionally applied to physi-
cal system safety so we did not consider it further. In [15,19] the authors have
successfully used Hazops to identify safety issues in systems with ML. An alter-
native version to Hazops is Software Hazard Analysis and Resolution in Design
(SHARD) [12] is demonstrated in [9] for a medical decision support system. We
note the findings in [15] that SHARD is better suited for scalar data, and given
that we are interested in data quantities, using a Hazops type approach may be
more meaningful. Therefore, we used Hazops guidewords for our approach.

218 P. Ryan Conmy et al.

To summarise, training data shortfalls can lead to latent faults in an ML
system which can in turn lead to hazardous behaviour. Whilst there are many
methods to manage training data shortfalls, they can themselves introduce fur-
ther issues such as bias. It may be impossible to train the ML effectively with-
out their use when we are dealing with real-world data. The approach for our
case study uses a combination of ML data shortfall compensation methods and
exploratory Hazop style system safety analysis to identify and consider means
to reduce these risks.

3 Case Study: ML-Based Clinical Decision Support
System for Type II Diabetes-Related Co-Morbidity
Prediction

In this section we describe a clinical case study which uses our approach of
combining ML data shortfall compensation methods and safety analysis. For
this we used training data which contains real clinical patient data from the
Connecting Bradford database [21]. The dataset consists of over 42,000 rows
for patients with type 2 diabetes mellitus from different backgrounds and over
14,000 different types of clinical records (features). Type 2 diabetes is a life-
long health condition and is the most common type of diabetes in the world.
This health condition may cause the level of sugar (glucose) in the blood to
become very high, and if not managed properly, it may progress by causing
serious comorbidities [2]. When Type-2 diabetes progress, this causes numerous
different comorbidities affecting the heart, brain, kidney, and other diseases.

The most frequently recorded disease/condition in our dataset is hyperten-
sion. It is known that hypertension is the precursor of the other potential dis-
eases, and having both Type-2 diabetes and hypertension are synergistically
dangerous. Hence, this is very critical to make a proper prediction for the risk
level of having hypertension. High or low-risk thresholds are calculated using
the National Institute for Health Care Excellence (NICE) guidelines used by
clinicians [20].

The decision support system is designed to provide a clinician with an inde-
pendent prediction of whether a patient is at high or low risk of hypertension
(e.g., in the next six months), and hence support their decision of whether inter-
vention is required. The clinical workflow is summarised in Fig. 2. The DCP will
use the most recent patient data set provided as input. It will provide a predic-
tion as to whether the patient is at high or low risk of hypertension, as well as
explanation of the prediction. Additionally, the clinician will gather information
through discussion with the patient. We discuss provision of contextual infor-
mation later in the paper, as there are issues of patient confidentiality. In this
paper we are specifically considering hypertension which increases the risk of
other comorbidities, however the general safety analysis principles discussed can
apply to any of the predictions training pathways. Our future work will consider
other co-morbidity predictions.

The hazards related to the system are

Safety of AI-Based Clinical Decision Support Systems 219

Fig. 2. Clinical workflow using DCP.

– false positive where a patient is categorised as high risk and given interven-
tion that they do not require, possibly including medication with harmful side
effects. For hypertension treatment may range from recommended lifestyle
changes to specific medication. Common medications can have a range of
minor side-effects (dizziness, headache, cough) to much more severe effects
(e.g., angio-oedema). The clinician using the DCP would be making the deci-
sion of which medication to administer, and there is no requirement on the
DCP to recommend treatment.

– false negative where a patient is categorised as low risk and no treatment is
provided, leading to the condition not being managed. For hypertension this
would mean medication specifically not being provided, potentially putting
the patient at risk of severe outcomes such as heart attacks or stroke.

Classical risk analysis expects a combination of severity and likelihood to deter-
mine tolerability. Risk severity will depend on the particular comorbidity and
potential outcomes of the false positive and false negative clinical decisions. In
the case of hypertension, there is a potentially catastrophic outcome of heart
attack and death if it is not treated. Calculating the likelihood of an incorrect
prediction will require an understanding of the ML’s performance for that par-
ticular comorbidity, but we note that there may be certain groups or individual
patients where the predictions are less or more reliable. This may be due to
weaknesses in the training data used or issues with specific information about
an individual patient. An additional consideration is that the clinical decision
may be influenced by other predictions from the DCP. As it is infeasible to assess
likelihood of incorrect prediction for each individual patient, or to calculate over-
all likelihood with accuracy, we instead consider means to reduce the risk as far
as possible at each stage of development and use.

3.1 The DCP Training Data

As noted, the training dataset consists of over 42,000 rows with 14,000 variables
(features). A row represents a visit of the Type-2 diabetic patient and each

220 P. Ryan Conmy et al.

feature represents the observations or test results gained during the visits. Some
of the patients have been attending for many years so have many rows in the
database, whereas newer patients only have a few rows. We need to consider
whether too many samples from the same patient would introduce bias.

Data shortfalls will impact on training effectiveness, but not all of the features
will impact safety any may be irrelevant or of low importance. Given the large
number of features in the database (14,000) it is infeasible to perform safety
analysis for each of them. Further, using ML across the 14,000 would have a
very high calculation cost, and may not be meaningful. Hence we need to reduce
this set to be more meaningful.

Since the record types differ according to the different sites, or if patients
were not able to attend their appointments regularly, we have a large amount of
missing values in our dataset (typically over more than half for each feature). We
need to compensate for this during training, using data imputation, in order to
train the ML. It is of note that missing data may itself be significant (see Sect. 4)
however understanding the varying reasons for missing data, which could be
clinically significant or simply due to different reporting practice across multiple
clinics, would be difficult to infer without guidance, and lead to more uncertainty
in the quality of outputs of the DCP.

An additional problem we cannot compensate for is that there may be groups
of patients which are completely missing, e.g. from certain age groups or back-
grounds. Also, we cannot compensate for validity issues, as whilst we can run
some simple sanity checks e.g. for negative values for BMI, the issue of plausible
but wrong data remains. Training data issues are illustrated in Fig. 3.

Fig. 3. Training data issues.

The systematic data pre-processing techniques applied for our study are
shown in Fig. 4. First, a data frame has been prepared from the stored data.
We have determined the most 20 frequent which are related to Type 2 diabetes
FOIs and use these as a sub-set.

All the patients have been filtered by Type-2 diabetes, and duplicated or
mistyped records have been deleted. When it has been ensured that we have
unique records for each patient, the records are checked for the missing values.
To fill all the missing values, we have used bag imputation method (see Sect. 2.1)

Safety of AI-Based Clinical Decision Support Systems 221

incorporated in the R-Studio suite, as it reduces the risk of bias, and overfitting
by predicting the missing values using ML. After dealing with all the missing
values, we have normalized the dataset to fit all the values between 0 and 1 and
to prevent from bias caused by the variation of the features. After finishing all
the filtering and the necessary data pre-processing steps, the training dataset
has been trained by the ML model.

Fig. 4. Work-flow of the ML-based Type-2 Diabetes Progression Prediction.

After training the ML model, the feature importance of each variable has
been calculated. Figure 5 shows us each variable’s weighted importance levels to
predict the output. This provides us some level of explainability of the model and
also helps us to have a better understanding of the reasons behind of the model’s
predictions. Further, it allows us to focus the exploratory safety analysis on the
FOIs. In order to ensure the validity at this stage, these FOIs were reviewed to
confirm that they are plausible. Body Mass Index (BMI) is considered a good
predictor, and was our highest FOI, so we have concentrated on that for this
paper. Some of the other FOIs may be caused by hypertension, rather than being
predictive. Note that the FOIs were gathered using an ensemble of different ML
methods (including neural networks and random forests [17]), and future work
is looking at comparing these individually.

3.2 Hazop Analysis

In this section we present an extract of the exploratory safety analysis of the
FOIs as identified in the previous section and shown in Fig. 5. We have used
a hazops style analysis (see Sect. 2.2) to consider how shortfalls in the training
dataset could lead to hazards on output if not mitigated for each FOI, or groups
of FOIs. The “flow” was interpreted as the flow of data into the ML training
process. We used standard Hazop guidewords as inspiration for possible issues.
We note that additional guidewords may be needed to capture unusual data
shortfalls, although we did not identify any in this analysis. Some examples of
how we interpret the guidewords are as follows.

222 P. Ryan Conmy et al.

Fig. 5. Feature Importance Levels.

– More - indicates a bias in the data, e.g., over representation of particular
patient group in the dataset

– No or Not - FOI or set of FOIs are missing
– Less - fewer examples of FOI than are desirable for good performance are

present
– Early/Before - indicates that a FOI may be present but out of date with

respect to the co-morbidity presenting itself
– Late/After - indicates that a FOI is present, but the overall patient data

sample might be late in progression of the co-morbidity and hence not a
useful predictor

– Part of - indicates missing data which needs to be compensated for
– Reverse - opposite diagnosis provided (i.e., False positive/negative)
– Instead - indicates the wrong FOI being used
– As well as - no interpretation

In Table 1 we show an extract of our analysis considering BMI as FOI, as
this is the most critical. We list the guideword, identified deviation in the train-
ing data set, possible causes, effect on system safety and means to mitigate the
deviation. Note that this analysis focuses on training data only, it may be useful
to do a similar analysis for problems on the data used for an actual prediction as
part of the overall safety assurance case, e.g. when there is no FOI in the patient
record. The analysis has uncovered a number of risk mitigation measures which
could be used, where practical, to reduce the risk of a latent failure caused by
shortfalls in the training data leading to an incorrect prediction. These include
technical approaches to data imputation and data sampling, but also manual
data review, and explanations provided to the clinician. We have also included
the discussion that the clinician would have with the patient as a mitigation

Safety of AI-Based Clinical Decision Support Systems 223

(Fig. 2) to emphasise that the ML decision is not used in isolation of other inde-
pendent data sources. From the analysis we have a much richer understanding
of risks and their mitigations.

Table 1. Extract of Hazop analysis of BMI FOI in Training Data.

Guideword Deviation Cause Effect Mitigation

No or not Samples for ethnic

group not

included in

training data

(TD)

No/limited

patients of ethnic

group were

patients

ML not trained or

verified adequately for

ethnic group with

higher genetic risk of

hypertension

Manual review of DB by

expert, show clinician

prototypical examples,

patient discussion

Part of Partially missing

BMI in TD

samples

BMI not

consistently

recorded

ML performance biased

based on the data

imputation method

used, leads to poor

performance for high or

low BMI patients

Use bag imputation for

TD records to reduce

bias, recommend

collection of BMI for

future TD, show

clinician prototype

examples, patient

discussion

More Over

representation in

TD of high BMI

patients

Most patients

examined had

high BMI

Prediction biased

towards patients with

high BMI, meaning

patients with low BMI

have less accurate

predictions

Manual review of DB by

expert, training samples

picked across all ranges,

show clinician

prototype examples,

patient discussion

More Over

representation in

TD of certain

ethnic group

Over diagnosis by

trained ML for

patients of other

ethnic groups

TD dominated by

ethnic group with

genetic disposition to

hyper tension

Manual review of DB by

expert, show clinician

prototype examples,

patient discussion

Early/

Before and

More

BMI data is out of

date and training

patients have

changed BMI by

time of diagnosis

DB not kept up to

date, TD sampled

from wrong part

of patient history

ML underestimates

likelihood of

hypertension

TD selected from

samples near to

hypertension diagnosis,

manual review of DB by

expert, patient

discussion

Instead BMI value no

longer highest

FOI for some FOI

distribution

Performance

outlier from ML

Wrong prediction for

hypertension

Show clinician FOI from

training and for each

prediction at point of

use, patient discussion

4 Discussion

In the previous section we presented a case study combining system safety anal-
ysis with ML data shortfall compensation measures. In this section we discuss
the findings in more depth.

It was infeasible to review all the potential features in the training data as
there were over 14,000 of these. This meant that performing safety analysis prior
on the data prior to pre-processing was not possible. Instead, it was necessary
to reduce the set to 20 FOIs. The initial ML training (using data imputation to
manage missing values) was performed to prioritise features and focus the safety
analysis. However, it may be the case that training the ML using a much larger

224 P. Ryan Conmy et al.

set of features would uncover a link or pattern of causes of hypertension which
had not been considered previously. This is an avenue for further research.

When undertaking the safety analysis (Table 1) we suggested a number of risk
mitigation methods which require further thought. One method for reducing the
risks is a manual review of the patient database, for example to look for missing
ethnic groups of patients or ensure up to date records have been kept. In practice
this may be difficult to do effectively given the size of the database and some
automation would be needed.

Another operational mitigation is to show the clinician similar patients from
the TD to the one which the predictor has been applied to (i.e., prototypical
examples as described in [10]). This would allow the clinician to review similar
cases, their progression, and provides context to a particular prediction. How-
ever, the raw training data cannot be presented to the clinician for reasons of
patient confidentiality and would need to be anonymised or obfuscated in some
way. An avenue for further research is to consider whether using methods such
as k-anonymise [6] would reduce the effectiveness such that this isn’t a useful
mitigation/explainability method for DCP.

Finally, it was noted by our clinical expert that missing data can be an
important indicator of an underlying problem, for example if the patient was ill
with another condition they may not have attended the clinic. In our clinical
workflow (Fig. 2) we see this can potentially be considered via discussion with
the patient. Another consideration is the progression of the comorbidity in the
patient and whether this can improve predictive performance. Both cases may
require a different and more complex ML model and training regime.

5 Conclusions

In this paper we have demonstrated that using a combination of ML data short-
fall compensation measures, and exploratory safety analysis provides an effective
method for the identification and mitigation of risks from training data short-
falls for a DCP. This takes a whole system perspective on risk identification and
mitigation that is not found in similar literature in the area.

We have identified a number of avenues for further work including applying
this methodology to an expanded predictor with multiple comorbidities (e.g., for
brain diseases). Another is to review performance of different ML models with
respect to bias from the different data imputation methods whilst balancing
optimal performance against risk mitigations. Additional issues raised by the
case study included balancing patient confidentiality with explainability, and
wider contextual issues such as the clinical importance of missing data in the
training data.

Acknowledgements. This work was supported by the Engineering and Physical Sci-
ences Research Council (EP/W011239/1) and the Assuring Autonomy International
Programme, a partnership between Lloyd’s Register Foundation and the University of
York.

Safety of AI-Based Clinical Decision Support Systems 225

References

1. Acuña, E., Rodriguez, C.: The treatment of missing values and its effect on classi-
fier accuracy. In: Banks, D., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classifica-
tion, Clustering, and Data Mining Applications. STUDIES CLASS, pp. 639–647.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-17103-1 60

2. Alonso-Morán, E., et al.: The prevalence of diabetes-related complications and
multimorbidity in the population with type 2 diabetes mellitus in the Basque
country. BMC Public Health 14, 1059 (2014). https://doi.org/10.1186/1471-2458-
14-1059

3. Bourdon, C., et al.: Metabolomics in plasma of Malawian children 7 years after
surviving severe acute malnutrition: “ChroSAM” a cohort study. EBioMedicine
45, 464–472 (2019)

4. Churpek, M.M., et al.: Hospital-level variation in death for critically ill patients
with COVID-19. Am. J. Respir. Crit. Care Med. 204(4), 403–411 (2021)

5. Driss, K., Boulila, W., Batool, A., Ahmad, J.: A novel approach for classifying
diabetes’ patients based on imputation and machine learning. In: 2020 Interna-
tional Conference on UK-China Emerging Technologies (UCET), pp. 1–4 (2020).
https://doi.org/10.1109/UCET51115.2020.9205378

6. Emam, K.E., Dankar, F.K.: Protecting privacy using k-anonymity. J. Am. Med.
Inform. Assoc. 15 (2008)

7. Hasan, M.K., Alam, M.A., Das, D., Hossain, E., Hasan, M.: Diabetes prediction
using ensembling of different machine learning classifiers. IEEE Access 8, 76516–
76531 (2020). https://doi.org/10.1109/ACCESS.2020.2989857

8. Hawkins, R., Paterson, C., Picardi, C., Jia, Y., Calinescu, R., Habli, I.: Guidance
on the assurance of machine learning in autonomous systems (AMLAS). arXiv
preprint arXiv:2102.01564 (2021)

9. Jia, Y., Lawton, T., Burden, J., McDermid, J., Habli, I.: Safety-driven
design of machine learning for sepsis treatment. J. Biomed. Inform.
117, 103762 (2021). https://doi.org/10.1016/j.jbi.2021.103762. https://www.
sciencedirect.com/science/article/pii/S1532046421000915

10. Jia, Y., McDermid, J., Lawton, T., Habli, I.: The role of explainability in assuring
safety of machine learning in healthcare. IEEE Trans. Emerg. Top. Comput. 10(4),
1746–1760 (2022). https://doi.org/10.1109/TETC.2022.3171314

11. Luo, F., et al.: Missing value imputation for diabetes prediction. In: 2022 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2022)

12. McDermid, J.A., Nicholson, M., Pumfrey, D.J., Fenelon, P.: Experience with the
application of HAZOP to computer-based systems. In: IEEE proceedings of the
10th Conference on Computer Assurance Systems Integrity, Software Safety and
Process Security, pp. 37–48 (1997)

13. McDermid, J.A., Jia, Y., Porter, Z., Habli, I.: Artificial intelligence explainability:
the technical and ethical dimensions. Phil. Trans. R. Soc. A 379(2207), 20200363
(2021)

14. Modabbernia, A., Janiri, D., Doucet, G.E., Reichenberg, A., Frangou, S.: Multi-
variate patterns of brain-behavior-environment associations in the adolescent brain
and cognitive development study. Biol. Psychiat. 89(5), 510–520 (2021)

15. Molloy, J.J., McDermid, J.A.: Safety Assessment for Autonomous Systems’ Per-
ception Capabilities. arXiv abs/2208.08237 (2022)

16. National Transportation Safety Board: Collision Between Vehicle Controlled by
Developmental Automated Driving System and Pedestrian, Tempe, Arizona,

https://doi.org/10.1007/978-3-642-17103-1_60
https://doi.org/10.1186/1471-2458-14-1059
https://doi.org/10.1186/1471-2458-14-1059
https://doi.org/10.1109/UCET51115.2020.9205378
https://doi.org/10.1109/ACCESS.2020.2989857
http://arxiv.org/abs/2102.01564
https://doi.org/10.1016/j.jbi.2021.103762
https://www.sciencedirect.com/science/article/pii/S1532046421000915
https://www.sciencedirect.com/science/article/pii/S1532046421000915
https://doi.org/10.1109/TETC.2022.3171314

226 P. Ryan Conmy et al.

March 18, 2018, NTSB/HAR-19/03 (2019). https://www.ntsb.gov/investigations/
accidentreports/reports/har1903.pdf

17. Ozturk, B., Lawton, T., Smith, S., Habli, I.: Predicting progression of type 2 dia-
betes using primary care data with the help of machine learning. In: Medical Infor-
matics Europe 2023 (2023)

18. Picardi, C., Hawkins, R., Paterson, C., Habli, I.: A pattern for arguing the
assurance of machine learning in medical diagnosis systems. In: Romanovsky, A.,
Troubitsyna, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 165–
179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26601-1 12

19. Qi, Y., Conmy, P.R., Huang, W., Zhao, X., Huang, X.: A hierarchical HAZOP-like
safety analysis for learning-enabled systems. In: AISafety 2022 (2022)

20. Ritchie, L.D., Campbell, N.C., Murchie, P.: New NICE guidelines for hypertension
(2011)

21. Sohal, K., et al.: Connected bradford: a whole system data linkage accelera-
tor. Wellcome Open Res. 7, 26 (2022). https://doi.org/10.12688/wellcomeopenres.
17526.2. https://europepmc.org/articles/PMC9682213

22. Sujan, M., et al.: Human factors challenges for the safe use of artificial intelligence
in patient care. BMJ Health Care Inform. 26(1), e100081 (2019)

23. Wei, S., Zhao, X., Miao, C.: A comprehensive exploration to the machine learn-
ing techniques for diabetes identification (2018). https://doi.org/10.1109/WF-IoT.
2018.8355130

24. Zainuri, N.A., Jemain, A.A., Muda, N.: A comparison of various imputation meth-
ods for missing values in air quality data. Sains Malaysiana 44(3), 449–456 (2015)

https://www.ntsb.gov/investigations/accidentreports/reports/har1903.pdf
https://www.ntsb.gov/investigations/accidentreports/reports/har1903.pdf
https://doi.org/10.1007/978-3-030-26601-1_12
https://doi.org/10.12688/wellcomeopenres.17526.2
https://doi.org/10.12688/wellcomeopenres.17526.2
https://europepmc.org/articles/PMC9682213
https://doi.org/10.1109/WF-IoT.2018.8355130
https://doi.org/10.1109/WF-IoT.2018.8355130

Data-Centric Operational Design Domain
Characterization for Machine

Learning-Based Aeronautical Products

Fateh Kaakai1, Sridhar (“Shreeder”) Adibhatla2, Ganesh Pai3(B) ,
and Emmanuelle Escorihuela4

1 Thales, 3 Avenue Charles Lindbergh, 94628 Rungis, France
fateh.kaakai@thalesgroup.com

2 Rockdale Systems LLC, Cincinnati, OH 45246, USA
shreeder@rockdalesystems.com

3 KBR/NASA Ames Research Center, Moffett Field, CA 94401, USA
ganesh.pai@nasa.gov

4 Airbus Operations (SAS), 316 Route de Bayonne, 31060 Toulouse, France

emmanuelle.escorihuela@airbus.com

Abstract. We give a first rigorous characterization of Operational
Design Domains (ODDs) for Machine Learning (ML)-based aeronauti-
cal products. Unlike in other application sectors (such as self-driving
road vehicles) where ODD development is scenario-based, our approach
is data-centric: we propose the dimensions along which the parameters
that define an ODD can be explicitly captured, together with a catego-
rization of the data that ML-based applications can encounter in opera-
tion, whilst identifying their system-level relevance and impact. Specifi-
cally, we discuss how those data categories are useful to determine: the
requirements necessary to drive the design of ML Models (MLMs); the
potsince operating outside the flightential effects on MLMs and higher
levels of the system hierarchy; the learning assurance processes that may
be needed, and system architectural considerations. We illustrate the
underlying concepts with an example of an aircraft flight envelope.

Keywords: Aeronautical products · Development assurance · Machine
learning · Operational design domain · System safety

1 Introduction

Artificial Intelligence (AI)-enabling technologies like Machine Learning (ML)
have the potential to transform the aviation industry by creating new products
and services, and by enhancing the existing ones. However, ML introduces a
new paradigm for design activities since the intended behavior of a function is

G. Pai—Contribution to the paper with support from the System-wide Safety project
under the Airspace Operations and Safety Program of the NASA Aeronautics Research
Mission Directorate.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 227–242, 2023.
https://doi.org/10.1007/978-3-031-40923-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_17&domain=pdf
http://orcid.org/0000-0002-9848-3754
https://doi.org/10.1007/978-3-031-40923-3_17

228 F. Kaakai et al.

inferred from a body of data using statistical learning algorithms, rather than
being specified and programmed. Data is thus central to the implementation of
a final product design.

In traditional aviation domain systems engineering, operational requirements
capture the conditions under which an end-product is expected to fulfill its mis-
sions. Those requirements, which are an expression of stakeholder needs, con-
tain parameters and values that define an operational environment, or opera-
tional domain (ODs), in which an aviation system must properly operate. When
requirements are elicited from and allocated to different layers of the system
design—namely: function or system, subsystem, and eventually item1—the OD is
also correspondingly allocated, resulting in operational design domains (ODDs)
corresponding to those layers.

Motivation and Contributions. Specifying, refining, and allocating ODs to
the system layers that will eventually integrate ML are activities not as well-
understood as they are when going from a system/function layer to lower layers
in conventional aviation systems development processes. Thus, a key challenge
for the aviation systems domain is how to define, analyze, and manage the ODDs
resulting from the allocation of the OD to the system layers integrating ML.2

Addressing this challenge is especially important because it not only drives the
data collection activities needed to ensure that a dataset representative of the
intended operations is gathered, but also it influences the design of those layers
and the underlying ML Models (MLMs).

To that end, this paper makes the following main contributions: (i) in Sect. 2,
an identification of the dimensions along which the parameters that define an
ODD for ML-based aeronautical products can be explicitly captured; (ii) in
Sect. 3, a rigorous data-centric characterization of ODDs based on categorizing
the data that ML-based functionality can encounter in operation. An aircraft
flight envelope example also concretizes the underlying concepts; and (iii) in
Sect. 4, an illustration of how the identified data categories can be used to deter-
mine the potential effects on the system layer integrating ML, along with the
learning assurance activities and the system architectural considerations needed
to mitigate those effects.

The approach in this paper is one of the cornerstones of a future process
guidance document [15] for the development and certification/approval of safety-
related aeronautical products implementing AI. That guidance is currently being
developed through an aviation industry-based consensus process, jointly by the
SAE Committee for AI in Aviation (G-34), and the EUROCAE working group
for AI (WG-114).

1 We use the standard aviation domain terminology for the layers of a system hierar-
chy/design.

2 Additional related challenges (not in scope for this paper), such as the need to adapt
requirements definition and validation processes to account for dataset requirements,
have been comprehensively elaborated in [6].

Data-Centric ODD Characterization for ML-Based Aeronautical Products 229

Related Work. The concept of ODD was initially introduced and developed
by the automotive systems industry [16]. As such, the current literature on spec-
ifying, developing, and using ODDs is largely in an automotive systems appli-
cation context. For example, ODD specification for automated driving systems
(ADSs) can be aided by a domain-specific language (DSL) using structured natu-
ral language founded on a formal, machine-processable domain model, to support
both human comprehension and programmatic manipulation [7]. A divide-and-
conquer approach to automotive function ODD development can be employed
using a concept of so-called µODD [11] that partitions an ODD to place useful
bounds on various safety-relevant parameters. Such partitions can then be tied
to validation tests, whilst also encoding situation-specific parameter informa-
tion. This approach is closest to our work, although the partitioning we achieve
is data-centric, and orthogonal to µODD-based partitions. In [17], a hierarchical
ODD definition is used to develop a scenario-based test framework for ADSs.

The ODD concept is being progressively matured in the automotive indus-
try via ODD-related standards [1,9], as well as automotive system-centric safety
standards concerning ML and AI [8,18]. Each of those guidance documents gives
a mutually consistent definition for the ODD concept, emphasizing its relation-
ship to safety. Nevertheless, automotive domain guidance cannot be directly
applied to safety-critical aeronautical products owing to a variety of constraints,
including: (a) differences in the regulatory approach between the automotive and
aviation sectors; (b) the need for standards to be compatible with aviation reg-
ulations and regulatory acceptance of the associated compatibility arguments;
(c) the stringency of assurance requirements in the aviation sector; and (d) con-
sistency with the existing ecosystem of recommended engineering practices, e.g.,
for safety assessment [13], and aviation system development [14].

All of those factors, besides the key challenge discussed earlier, have addi-
tionally motivated the work in this paper. Next we give our notion of ODD.

2 System-Level Considerations

Operational Domains (ODs). When designing a product system, it is an
established and well-understood aviation systems engineering practice to cap-
ture and analyze stakeholder needs at an early stage, along numerous dimen-
sions such as the mission to be fulfilled, the expected performance in different
system operating phases, and specific environmental conditions encountered. An
OD is one of the results of such early-stage analysis, and it is embodied by the
operational requirements for that system. In other words, the OD is captured
in the form of requirements via a specification activity of a well-defined require-
ments development process. Thus, we consider an OD to be a specification of all
foreseeable operating conditions under which an end-product is expected (and

230 F. Kaakai et al.

should be designed) to fulfill its missions. For instance, a flight envelope specifies,
at a minimum, a combination of altitude and Mach number3 values that define
an operational environment in which an aircraft type must properly operate.

Operational Design Domains (ODDs). We define the allocation of an OD
to be the operational design domain (ODD). This is largely aligned with other
definitions of ODD [12,15,16,18]. Just as requirements are allocated across the
different layers of the system design, and then refined with various criteria in
mind, e.g., safety, architectural options, implementation choices, and physical
considerations, an OD is also allocated to the lower design layers, and further
refined so that each layer has its own ODD, i.e., the portion of the associated
OD in which it should properly function. Such refinement can potentially (but
not always) lead to rich and complex ODDs.4 The principles and procedures
governing OD allocation rely upon established aerospace practices [14]. As such,
we can allocate the entire OD or a portion thereof to the subsystems that will be
implemented using ML technologies (which we refer to, henceforth, as ML-based
subsystems). Moreover, refining requirements as indicated earlier will bring forth
corresponding enhancements of the OD reflecting the same considerations.

Describing ODs and ODDs. To describe an OD or ODD we elicit a variety
of parameters, their range of admissible values, and, when relevant, distributions
of occurrences over particular time intervals. In general, these define a multi-
dimensional region. In practice, an OD or ODD is often likely to be a subset of
that region. Although there are many ways to group parameters, the following
is typical in practice:

– Environmental Parameters: These are variables outside the product (e.g., air-
craft) system boundary, including weather conditions (ambient air temper-
ature and pressure, wind conditions, humidity/rain/snow/ice, dust or sand
levels, etc.) as well as application-specific parameters, e.g., brightness, con-
trast levels, and blur levels for optical sensor systems.

– Operational Parameters: These are parameters within the system boundary,
examples of which include altitude and Mach number limits specified by a
flight envelope, as well as ranges for angle of attack, pitch, roll, yaw angles,
or their rates of change.

– System Health Parameters: These specify whether the system is expected to
work only under nominal (non-failure) conditions, or whether it should be
able to handle deterioration over time, sensor failures, or failures in speci-
fied system components (e.g., a failed actuator or a damaged flight control
surface).

3 Mach number is the ratio of true airspeed to the local speed of sound.
4 Characterizing the complexity of an ODD is not in scope for this paper.

Data-Centric ODD Characterization for ML-Based Aeronautical Products 231

ML Constituent (MLC). Traditional systems engineering activities need to
transition to ML activities at a certain stage of system development when inte-
grating ML. In light of this, current regulatory guidance for introducing ML tech-
nologies into safety-related aeronautical applications [5], as well as ongoing stan-
dardization activities [15] have introduced a concept of ML Constituent (MLC)
for systems integration purposes.

Effectively, an MLC represents the lowest-level of a functional decomposition
from a system perspective that supports a subsystem function. It is a grouping of
hardware and/or software items implementing one or more ML Models (MLMs)
and their associated data pre- and post-processing items. Pre-processing may
include (but is not restricted to) data cleanup, normalization, and feature com-
putation. Similarly, post-processing may involve, among other actions, denor-
malization and blending of outputs from sub-models.

We qualify the ODD based on its allocation. Thus, allocating an OD to an
MLC gives an MLCODD (i.e., the design space for an MLC), and likewise, the
allocation to an MLM results in an MLMODD. An MLMODD may be identical
to the MLCODD, though in practice it may be smaller. Additionally, an MLC
can contain multiple MLMs each of which have their respective MLMODDs.
Also, an MLMODD (or MLCODD) may be the same as the OD for the system,
its superset (to provide robustness), or a subset thereof (to limit the design to a
feasible region).

Thus, when a product will eventually integrate ML (e.g., as software
whose design was learned through an ML training process) understanding the
MLCODD is crucial to ensure that: (1) the data used for training is represen-
tative of that OD; and (2) the ML designer comprehends the complexity of the
portion of the OD that has been allocated to machine learned functionality.

3 New ODD Concepts for Aviation

From the preceding narrative, it should be evident that developing an OD/ODD
is itself not a new phenomenon in aviation systems engineering practice. How-
ever, it is the transition from an OD/ODD description to data collected for
MLM training that is the major change relative to the way ODs are typically
specified during conventional (i.e., non-ML based) product development. This
change requires alternative approaches that are the focus of learning assurance
processes [5,10].

We now give a data-centric conceptual characterization for ODDs, that par-
titions them based on categories and kinds of data. Henceforth, when we refer
to “ODD” and “ML”, we mean the MLMODD (or MLCODD), and the MLM
(or MLC), respectively, and we will qualify our usage of those terms when it is
not clear from context.

232 F. Kaakai et al.

Categories and Kinds of Data. We define the following data categories:

(i) Nominal : Set of data points that lie in the interior of an ODD statistical
distribution, that is correct with respect to the corresponding ML require-
ments.

(ii) Outlier : Set of data points outside an ODD. Some data can be mistaken to
be Outlier data when they should have been Nominal data, had that ODD
been correctly characterized by including at least one additional parameter.

(iii) Edge Case: Set of data points on an ODD boundary where exactly one
ODD parameter has a valid extreme (maximum and minimum) value.

(iv) Corner Case: Set of data points where at least one ODD parameter is at
their respective extremum (minimum and maximum value) of the range of
values for those parameters that are admissible (or valid) for a given ODD
(see Fig. 1 for examples). There are two types of Corner Case data:
– Feasible: those that are part of the functional intent and, thus, within a

given ODD (specifically at the vertices5 of that ODD);
– Infeasible: those that are not part of the functional intent and, thus,

outside the ODD. Note that all Infeasible Corner Case data are a special
case of Outlier data.

(v) Inlier (InL): Set of data that lie in the interior of the ODD following an
error during data management, e.g., due to incorrect usage of units and
dimensions. Inlier data are difficult to distinguish from Nominal data, and
hence difficult to detect/correct.

(vi) Novelty : Set of data within an ODD according to the parameters used to
describe that ODD, but which should have been considered to be Outlier
data, had that ODD been correctly described by introducing at least one
additional ODD parameter. In this sense, Novelty data points for an ODD
could be seen as duals of those data points that are mistakenly considered to
be Outlier data, when they should, in fact, have been Nominal data for that
ODD. Novelty data usually arise from insufficient ODD characterization.

We can group the Inlier, Outlier (including Infeasible Corner Case), and
Novelty categories into a single Anomaly data category. Data drawn from all
the aforementioned categories may also be characterized as among the following
kinds of sets:

(a) In-Sample (InS): Data used during MLM learning which the implementa-
tion of the MLM will have to process during inference in operation.

(b) Out-of-Sample (OutS): Data not used during MLM learning that the imple-
mentation of the MLM will have to process during inference in operation.
It is on out-of-sample data that acceptable generalization behavior (and
a corresponding guarantee) of the implemented MLM can be reasonably
expected.

5 ODDs without vertices e.g., an oval region, will therefore not have feasible corner
cases.

Data-Centric ODD Characterization for ML-Based Aeronautical Products 233

(c) In-MLMODD (InMOD): Data that the implemented MLM will have to pro-
cess during inference in operation. In-MLMODD data contribute to the
intended function(s) of the MLM. We have: InMOD = InS ∪ OutS and
InS ∩ OutS = ∅

(d) Out-of-MLMODD (OutMOD): Data not seen during MLM learning that the
implemented MLM should not process during inference in operation. Out-of-
MLMODD data contributes to the intended function(s) of the MLC, e.g.,
specific processing to detect anomalies (see Sect. 4 for more details). We
have: InMOD ∩ OutMOD = ∅.

(e) In-MLCODD (InCOD): Data contributing to the intended function(s) of the
MLC. We have: InCOD = InMOD ∪ OutMOD.

(f) Out-of-MLCODD (OutCOD): Data not seen during MLM learning that the
implemented MLC should not process during inference in operation. Out-
of-MLCODD data contributes to the intended function(s) of the ML-based
subsystem. We have: InCOD ∩ OutCOD = ∅.

Real Data in Operation (and their associated statistical distributions), RDO,
can now be defined as the set of all data seen in operation: RDO ⊇ (InCOD\InL)∪
OutCOD.

The preceding concepts will serve as reference terms in forthcoming aviation
industry specific guidance [15]. Nevertheless, we believe they are generic enough
to be applicable in other domains, although there are some differences, e.g., our
concept of Edge Case data differs from what is considered in [18].

Illustrative Example (Aircraft Flight Envelope). We now give an illus-
trative example of an aircraft flight envelope to concretize the preceding con-
cepts. Informally, a flight envelope specifies the allowable combinations of two
parameters—altitude (Alt) and airspeed, given here as a Mach number (Mach)—
at which an aircraft design should function. Intuitively, this characterization of
a flight envelope represents an Operational Domain (OD) of the aircraft system,
and we refer to it, henceforth, as the system OD (SOD). This is closely related to
a functional OD for the system which may include a specification of, for exam-
ple, aircraft takeoff gross weights, the city pairs between which flight operations
are intended, the routes (flight paths) that aircraft of a particular type design
are expected to fly, the airports involved, the climb segments, and the landing
approaches to be followed.

Figure 1 presents a notional flight envelope covering all phases of flight (shown
as the irregular hexagonal region A). Mach and Alt values within this SOD are
allowed, and therefore they are expected to be encountered in operation. Values
of those parameters outside the SOD are disallowed since operating outside the
flight envelope is usually dangerous in most circumstances.

234 F. Kaakai et al.

Fig. 1. An example flight envelope (region A) representing an aircraft system OD,
whose refinement and allocation to an MLC and MLM give, respectively, an As-operated
MLCODD (region B), containing an As-specified MLCODD (region C), itself contain-
ing the MLMODD (region D), for the takeoff regime. The shapes representing the
different ODDs are practically congruent, but have been shown slightly offset here to
differentiate each from the other. Zoomed-in views of the respective ODDs highlight
the different categories and kinds of data used to characterize them.

Consider that a portion of this SOD is allocated to an ML-based subsystem
to be used during the takeoff flight phase. Its ODD (not shown in Fig. 1) is the
takeoff regime at the bottom of the SOD which, in turn, we refine and allocate
to an MLC (contained by that ML-based subsystem). The resulting MLCODD
parameters are: 0 ≤ Mach ≤ 0.4 and −1300 ft ≤ Alt ≤ 15000 ft. In Fig. 1,
this As-specified MLCODD is the irregular pentagon with the solid dark border
(region C).

For this ODD, observe that the upper bound for the airspeed parameter is
Mach 0.4. However, aircraft with greater maximum takeoff weights, e.g., cargo
aircraft, can often exceed this bound during takeoff. Thus, there are two possi-
bilities: either the design was to be restricted to non-cargo aircraft, or there is a

Data-Centric ODD Characterization for ML-Based Aeronautical Products 235

missing requirement that would be discovered in operation with cargo aircraft.
For the latter case, the as-operated MLCODD would then have an increased
upper bound on airspeed, e.g., 0 ≤ Mach ≤ 0.5. In Fig. 1, this is the irregular
pentagon (region B) that includes the earlier As-specified MLCODD (region C).
Now, further consider that there is insufficient takeoff data for altitudes below
sea-level to apply ML. Hence, we restrict the MLM to takeoff operations for
Alt ≥ 0 ft. Thus, the MLMODD is a sub-region of the MLCODD allocated to
the MLM contained in the MLC. In Fig. 1, this is the irregular pentagon with
the dashed border (region D), with the same range for Mach as its containing
MLCODD, but with sea-level as the lower bound on Alt. Figure 1 also zooms
into these regions to give examples of the various categories and kinds of data
described earlier.

Data inside the MLMODD (and/or MLCODD) can be drawn from the Nom-
inal, Edge Case, Feasible Corner Case, Inlier, and Novelty data categories. The
following observations are noteworthy: first, the MLM must demonstrate gen-
eralization from Nominal, In-Sample training data to Nominal, In-Sample test
data, as well as to Nominal, Out-of-Sample data, all of which are In-MLMODD.
Moreover, the MLM must exhibit correct behavior (i.e., the behavior meets the
allocated requirements) on Edge Case as well as Feasible Corner Case data.

Next, the preceding data categories are disjoint relative to a specific alloca-
tion. For example, Outlier data for an MLM cannot also be a Feasible Corner
Case for that MLM, though it can be one for the containing MLC. In Fig. 1,
the data point (Mach 0.4, Alt : − 1300 ft) is one such example of an Outlier
for the MLMODD that is also an Out-of-Sample, Feasible Corner Case for the
containing As-specified MLCODD.

We associate data points with specific categories relative to an allocation. In
Fig. 1 for instance, the data point at (Mach 0.1, Alt : 0 ft) is an Edge Case for
the MLMODD, but is Nominal data for the containing As-specified MLCODD.
Similarly, each of the data points at (Mach 0, Alt : 0 ft), and (Mach 0.4, Alt : 0 ft)
is a Corner Case from an MLMODD perspective but an Edge Case for the
MLCODD.

Likewise, we can have Outlier data to the MLMODD that are within the
MLCODD. In Fig. 1, examples of this case comprise any data point in the
region of the As-specified MLCODD not included in the MLMODD, i.e., in
the region defined by 0 ≤ Mach ≤ 0.4, and −1300 ft ≥ Alt > 0 ft. As shown,
such points are Outlier data for the MLMODD, but can be Nominal, Edge Case
or Feasible Corner Case data for the MLCODD. In the same way, points in
the rectangular region of the takeoff envelope between 0.4 < Mach ≤ 0.5 and
0 ft ≤ Alt ≤ 15000 ft are Outlier data to both the MLMODD, and the As-
specified MLCODD, but are within the As-operated MLCODD. For example,
the data point at (Mach 0.5, Alt : − 1300 ft) is a Feasible Corner Case for the
As-operated MLCODD.

Recall that Infeasible Corner Case data are a special case of Outlier data
that may not be reasonably encountered in operation, where two or more ODD
parameters simultaneously take the extreme values admissible for that ODD.

236 F. Kaakai et al.

Figure 1 (bottom right) shows one such example: the corner case at (Mach 0.0,
Alt : 15000 ft) is infeasible for both the MLMODD and MLCODD because no
airport runways exist at 15000 ft altitude.

Inlier data are within the MLCODD and/or MLMODD due to errors in data
processing, scaling, normalization, and usage of incorrect units. In Fig. 1, the
Inlier data point at (Mach 0.35, Alt : 2000 ft) is the result of a data preparation
and scaling error of the Outlier data point at (Mach 0.35, Alt : 20000 ft). The
result of processing such Inlier data is an incorrect response from the MLM, for
example a flight control parameter value appropriate for the outlier data point
is incorrectly produced at a lower altitude within the takeoff envelope.

Novelty data are within the MLMODD (and thus, also within the MLCODD),
but are, in fact, data that should have been Out-of-MLMODD (or MLCODD).
Novelty data are not excluded from the MLMODD due to an insufficiency in the
number and variety of parameters used to specify the MLMODD. In Fig. 1, the
data point (Mach 0.3, Alt : 14000 ft) is Novelty data producing a response appro-
priate for the Nominal data point at (Mach 0.225, Alt : 14000 ft). This occurs
because the SOD and, in turn, the MLCODD and MLMODD have been specified
using only two parameters (altitude and airspeed), either ignoring the effect of
additional parameters such as air temperature, or implicitly assuming that the
operations occur in the same environment as that in which the in-sample data
were collected. In this example, operating in warmer air temperatures results in
a lower Mach number, due to which the MLM receives an input that is invalid
for the operating context, but is nonetheless Nominal.

In general, discovering data from the Inlier, Novelty, and Outlier categories
that should be part of the required (or intended) MLCODD or MLMODD, occurs
either during testing, during validation of the relevant ODDs, or from analysis of
the data gathered from in-service experience. That usually results in re-defining
the respective ODDs, e.g., by expanding its dimensions by including additional
parameters, or modifying the admissible range of existing parameter values.

4 Support for System-Level Analysis

The combination of the category and kind of real data in operation, RDO, facil-
itates partitioning an MLMODD (and equivalently, an MLCODD) at a higher
level than, say, partitioning by equivalence classes of inputs.6 Then, from a safety
standpoint for example, for each such partition we can analyze the contribution
of the MLM (or the corresponding MLC) to system hazards in terms of the
effects produced in response to inputs drawn from that partition. Examples of
such effects include: an underperformance of the MLM; a hazardous failure con-
dition; MLM or MLC malfunction; or, more generally, MLM and MLC failure
modes and hazard contribution modes [3].

6 In fact, we can combine those two ways of partitioning an ODD, e.g., by selecting
an equivalence class of inputs within a nominal, out-of-sample, and In-MLMODD
partition.

Data-Centric ODD Characterization for ML-Based Aeronautical Products 237

Subsequently, we can establish the (high-level) requirements that an MLM
and its containing MLC should fulfill. These can include, for instance, restric-
tions on MLM behavior, constraints on data processing, limitations of use, as
well as requirements necessary to manage the safety impact of the identified
effects. The latter, in turn, also informs the selection of the mitigation mea-
sures appropriate for sufficient safety assurance. Such mitigations include the
application of learning assurance processes (at the MLM layer), architectural
mechanisms (at the MLC, ML-based subsystem, and system layers), as well as
traditional development assurance processes as appropriate.

The tables given in Fig. 2 and Fig. 3 illustrate how we can use the partitions of
an ODD to analyze the impact on an MLC and MLM: the row and column labels
for a cell in the table correspond to the kinds and categories of data, respectively,
and their combination is the partition of RDO we analyze. The content of a cell
describes the results of a particular analysis for that partition, i.e., the effects

Fig. 2. Assessing the impact of an ODD on an MLM and the corresponding MLC in
relation to the partitions induced by the categories and kinds of real data in opera-
tion (specifically the Nominal, Edge Case, and Feasible Corner Case data categories)
described in terms of the potential effects (E) of the data, the requirements (R) induced,
the learning assurance (L) processes that may be needed, and candidate architectural
(A) options for mitigation.

238 F. Kaakai et al.

of encountering data from that partition, and the considerations that emerge on
the requirements, architectural mitigations, and on learning assurance. When
the analysis is common to multiple partitions, we show this in a cell that spans
multiple columns. Note that these kinds of analyses can be applied to any ML-
based subsystem, MLC, or MLM, and is agnostic to their allocated function.
Also note that Fig. 2 and Fig. 3 are mainly examples, hence they are not com-
prehensive or complete. Thus, some effects (and the corresponding architectural
options) can be common to the different partitions.

For brevity, here we highlight some specific example options from a com-
bination of analyses. In practice, however, each analysis would be separately
undertaken since the identified learning assurance techniques only apply during
design, whereas the identified architectural options are primarily relevant in use.

Figure 2 shows an analysis from a safety standpoint: the potential effects of
the ODD partition characterized by In-MLMODD, In-Sample, Nominal data
include MLM underperformance on specific inputs (as observed during training
and testing). In some applications, the exact inputs from that partition may
also be encountered in operation. Thus, architectural mitigations for such data
can include monitoring to detect those specific inputs, together with input value
replacement, masking, or filtering, and/or failover.

Similarly, other partitions of the ODD can be characterized by In-MLMODD,
Out-of-sample, Edge Case (or Feasible Corner Case) data. Figure 2 shows these
combined into a single partition since the high-level effects (such as MLM mal-
function), as well as the corresponding architectural mitigations (e.g., extreme
value monitoring, or envelope protection and failover) are similar for each. How-
ever, we note that for particular applications involving a specific MLM, the
individual effects (and therefore the necessary architectural mitigations) from
Edge Case inputs are likely to differ from those resulting from Feasible Corner
Case inputs.

Likewise, a common requirement is induced by the ODD partition(s) formed
by (each of) the In-MLCODD, Out-of-MLMODD, Nominal data (and Edge
Case, or Feasible Corner Case data respectively). For example, an MLM shall
not receive and process input data drawn from those partitions of the ODD. Con-
sequently, the architectural options available are also largely similar, although
extreme value monitoring mainly applies to Edge Case and Feasible Corner Case
data, rather than to Nominal data. Additionally, note that for Out-of-MLCODD
kind of data, there is no distinction between Nominal, Edge Case and Corner
Case data from an MLC standpoint. However, those categories are distinct from
the perspective of the OD allocated to the containing ML-based subsystem,
which induces distinct architectural mitigations as shown.

Figure 3 shows a similar analysis from a system development standpoint for
the Novelty, Outlier (including Infeasible Corner Case), and Inlier data cate-
gories. Such data are not part of the functional intent, and therefore a require-
ment on MLM development is to exclude such data for model training. As such,
the learning assurance process must include data selection and management
activities to assure that the training data indeed excludes inputs drawn from

Data-Centric ODD Characterization for ML-Based Aeronautical Products 239

Fig. 3. Assessing the impact of ODDs characterized by Anomaly data, i.e., Novelty,
Outlier (including Infeasible Corner Case), and Inlier data categories, similar to the
assessment in Fig. 2.

those data categories to preclude an MLM from producing responses that are
inconsistent with the functional intent.

The partitions of the ODD characterized by In-MLMODD, Out-of-sample,
Novelty (and likewise In-MLMODD, Out-of-Sample, Inlier) data need special
attention: specifically, Novelty data may not be detectable through operational
monitoring. Indeed, if such data could be detected at runtime, the relevant fea-
tures would then have been included in the set of MLMODD parameters, ren-
dering such data Nominal rather than Novelty. Inlier data are also similarly
difficult to detect in operation. To mitigate MLM failure conditions resulting
from the former, learning assurance activities are particularly important, espe-
cially those facilitating a rigorous and comprehensive identification of MLMODD
parameters and features.

240 F. Kaakai et al.

In some circumstances, it may be possible to detect and recover from the
effects of Novelty data if the responses produced result in a range violation.
For those situations a range of output monitoring, masking, replacement, and
failover mechanisms offer an architectural solution to risk mitigation. To miti-
gate the effects of Out-of-Sample, In-MLMODD, Inlier data, dissimilar and/or
independent inputs with cross-checking is a candidate architectural pattern.

An MLM cannot receive In-MLMODD, Out-of-Sample, Outlier data since
those are, by definition, Out-of-MLMODD. However, in a similar vein to Nov-
elty and Inlier data, the ODD partition characterized by In-MLCODD, Out-
of-MLMODD, Outlier data also needs particular attention: as we saw earlier
(Sect. 3, Fig. 1), it is possible to encounter Outlier data that ought to have been
included in the MLCODD—and by allocation, also in the MLMODD—but were
not. This situation can occur due to an error in the requirements, a deficiency in
the data collection process, or a lack of knowledge (epistemic uncertainty). This
induces a learning assurance feedback step (see Fig. 3) to analyze Outlier data
to validate and potentially update both the MLMODD and the MLCODD from
in-service experience.

5 Conclusions and Future Work

We have clarified the dimensions along which the parameters that define an
ODD for an ML-based aeronautical product can be captured, whilst identify-
ing the categories and kinds of data that can be encountered in operation. We
have concretized the underlying concepts using an aircraft flight envelope exam-
ple considering its allocation to an ML Model (MLM) for the takeoff regime.
Our data-centric ODD characterization gives a useful framework to identify and
organize system development, safety, and assurance activities, which we have
illustrated through examples of some high-level effects of the data both on the
MLM and its containing ML Constituent (MLC), along with the architectural
options available for mitigation.

The work described here has emerged from an ongoing, aviation industry-
led, consensus based effort. As such, validating the relevance, applicability, and
utility of the underlying concepts and approach largely relies on a committee
consensus agreement and, eventually, regulatory endorsement. To that end, avi-
ation industry practitioners are applying the approach to a variety of real-world
applications such as airborne collision avoidance [2], safe flight termination7, and
time-based separation of transport aircraft in terminal approaches [4]. These use
cases corroborate our earlier assertion (see Sect. 4) that the work in this paper
is sufficiently generic to be applicable to ML-based aeronautical products used
both in airborne systems, and for air traffic management/navigation services. As
a key avenue of future work, we are committed to take the lessons learned from
those validation efforts—of the successes, insights, and possible gaps—to refine
and further mature our approach. A related, crucial aspect of our future effort is
to leverage the concepts and approach presented here to define a rigorous process
7 See: https://safeterm.eu/.

https://safeterm.eu/

Data-Centric ODD Characterization for ML-Based Aeronautical Products 241

for MLCODD development and validation, and MLCODD coverage verification
(to be elaborated in a forthcoming paper). Such a process does not yet exist
in the prevailing aviation standards and guidance on recommended practices.
Thus, it will represent a concrete extension to the state-of-the-practice.

Our data-centric ODD characterization (Sect. 3), though rigorous, would ben-
efit from a formalization of the identified categories and kinds of data, and their
interrelations. This could facilitate assessing whether certain desirable proper-
ties hold, e.g., that the data categories cover an ODD in some formally defined
sense, and that they are internally complete. This paper has mainly considered
singleton MLMs and MLCs. We intend to extend our approach to the situations
of multiple MLCs within a single ML-based subsystem, and multiple sub-MLMs
within a single MLC. These cases have interesting safety and architectural impli-
cations from which we expect to gain a deeper insight into hazardous behavior
emerging from the interactions of multiple MLMs and MLCs. In a similar vein,
the support for system-level analysis (Sect. 4) can be further elaborated towards
a more comprehensive and complete description of the potential effects of real
data encountered in operation, together with the requirements induced, archi-
tectural options available for mitigation, and the learning assurance activities
necessary.

This paper has given a new data-centric characterization for ODDs that is
not an extension, enhancement, or tailoring of prior automotive domain ODD
concepts. A related avenue of future work is to compare and contrast our ODD
concept and principles with those of other safety-critical domains such as auto-
motive, healthcare, rail, and space. We remain cautiously optimistic that our
work is sufficiently general to be adopted, extended, and applied in those domains
by the associated subject-matter experts.

Acknowledgments. We thank the members of the ODD working group of the joint
EUROCAE WG-114 and SAE G-34 committees who contributed to the discussions
that shaped the concepts and approach in this paper. We are additionally grateful to
the anonymous reviewers whose comments aided us in improving the paper.

References

1. BSI Standards Ltd.: Operational Design Domain (ODD) Taxonomy for an Auto-
mated Driving System (ADS) - Specification. BSI PAS 1883:2020, August 2020

2. Damour, M., et al.: Towards certification of a reduced footprint ACAS-XU system:
a hybrid ML-based solution. In: Habli, I., Sujan, M., Bitsch, F. (eds.) SAFECOMP
2021. LNCS, vol. 12852, pp. 34–48. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-83903-1 3

3. Denney, E., Pai, G., Smith, C.: Hazard contribution modes of machine learning
components. In: Espinoza, H., et al. (eds.) Proceedings of the AAAI Workshop on
Artificial Intelligence Safety (SafeAI). AAAI, CEUR Workshop Proceedings (2020)

4. EUROCONTROL: COAST (Calibration of Optimised Approach Spacing Tool)
with Use of Machine Learning Models. White Paper V1.1, April 2021

5. EASA: First Usable Guidance for Level 1 Machine Learning Applications. EASA
Concept Paper Issue 01 (December 2021)

https://doi.org/10.1007/978-3-030-83903-1_3
https://doi.org/10.1007/978-3-030-83903-1_3

242 F. Kaakai et al.

6. G-34, Artificial Intelligence in Aviation Committee: AIR 6988, Artificial Intelli-
gence in Aeronautical Systems: Statement of Concerns. SAE International, April
2021

7. Irvine, P., Zhang, X., Khastgir, S., Schwalb, E., Jennings, P.: A two-level abstrac-
tion ODD definition language: part I. In: 2021 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 2614–2621 (2021)

8. ISO/TC 22/SC 32: Road Vehicles - Safety and Artificial Intelligence. ISO/AWI
PAS 8800 (Under development) (2021)

9. ISO/TC 22/SC 33: Road vehicles - Test Scenarios for Automated Driving Systems
- Taxonomy for Operational Design Domain. ISO/DIS 34503 - Draft International
Standard (2023)

10. Kaakai, F., Adibhatla, S., et al.: Toward a machine learning development lifecycle
for product certification and approval in aviation. SAE Int. J. Aerosp. 15 (2022)

11. Koopman, P., Osyk, B., Weast, J.: Autonomous vehicles meet the physical world:
RSS, variability, uncertainty, and proving safety. In: Romanovsky, A., Troubitsyna,
E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 245–253. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26601-1 17

12. NHTSA, US Department of Transportation: Automated Driving: A Vision for
Safety. Report No. DOT HS 812 442, September 2017

13. S-18, Aircraft and System Development and Safety Assessment Committee: ARP
4761, Guidelines and Methods for Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment. SAE International, December 1996

14. S-18, Aircraft and System Development and Safety Assessment Committee: ARP
4754A, Guidelines for Development of Civil Aircraft and Systems. SAE Interna-
tional, December 2010

15. SAE G-34 Committee for AI in Aviation and EUROCAE WG-114 for AI: Pro-
cess Standard for Development and Certification/Approval of Aeronautical Safety-
Related Products Implementing AI. AS 6983 Draft Standard Work In Progress,
February 2023

16. SAE International: Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles. Surface Vehicle Recommended
Practice J3016 (2018)

17. Thorn, E., Kimmel, S., Chaka, M.: A Framework for Automated Driving System
Testable Cases and Scenarios. Report No. DOT HS 812 623, National Highway
Traffic Safety Administration, September 2018

18. Underwriter Laboratories Inc.: ANSI/UL 4600 Standard for Safety for the Evalu-
ation of Autonomous Products, April 2020

https://doi.org/10.1007/978-3-030-26601-1_17

Online Quantization Adaptation
for Fault-Tolerant Neural Network

Inference

Michael Beyer1,2(B) , Jan Micha Borrmann1 , Andre Guntoro1 ,
and Holger Blume2

1 Bosch Corporate Research, Robert Bosch GmbH, Renningen, Germany
{michael.beyer2,janmicha.borrmann,andre.guntoro}@de.bosch.com
2 Institute of Microelectronic Systems, Leibniz University Hannover,

Hannover, Germany
blume@ims.uni-hannover.de

Abstract. Neural networks (NNs) are commonly used for environmen-
tal perception in autonomous driving applications. Safety aspects in such
systems play a crucial role along with performance and efficiency. Since
NNs exhibit enormous computational demands, safety measures that rely
on traditional spatial or temporal redundancy for mitigating hardware
(HW) faults are far from ideal. In this paper, we combine algorithmic
properties with dedicated HW features to achieve lightweight fault tol-
erance. We leverage that many NNs maintain their accuracy when quan-
tized to lower bit widths and adapt their quantization configuration dur-
ing runtime to counteract HW faults. Instead of masking computations
that are performed on faulty HW, we introduce a fail-degraded operat-
ing mode. In this mode, reduced precision computations are exploited
for NN operations, as opposed to fully losing compute capability. This
allows us to maintain important synapses of the network and thus pre-
serve its accuracy. The required HW overhead for our method is minimal
because we reuse existing HW features that were originally implemented
for functional reasons. To demonstrate the effectiveness of our method,
we simulate permanent HW faults in a NN accelerator and evaluate the
impact on a NN’s classification performance. We can preserve a NN’s
accuracy even at higher error rates, whereas without our method it com-
pletely loses its prediction capabilities. Accuracy drops in our experi-
ments range from a few percent to a maximum of 10%, confirming the
improved fault tolerance of the system.

Keywords: Fault Tolerance · Neural Network Hardware · Neural
Networks · Quantization · Approximate Computing · Automotive

1 Introduction

The exceptional performance of neural networks (NNs) in visual perception
tasks comes at a high computational cost. For environmental perception sys-
tems in autonomous driving, dedicated hardware (HW) accelerators are a suit-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 243–256, 2023.
https://doi.org/10.1007/978-3-031-40923-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_18&domain=pdf
http://orcid.org/0009-0003-1258-3020
http://orcid.org/0009-0005-2781-0307
http://orcid.org/0000-0003-4144-0283
http://orcid.org/0000-0002-0640-6875
https://doi.org/10.1007/978-3-031-40923-3_18

244 M. Beyer et al.

able solution to fulfill energy efficiency and throughput requirements. Conse-
quently, they are often selected over more general purpose HW such as CPUs
or GPUs. Since such systems are vital for object detection and classification
tasks, integrity of processed data as well as availability of compute resources
have to be ensured. However, with shrinking transistor structure sizes, inte-
grated circuits have become more susceptible to hardware faults [1]. Besides
transient faults such as bit flips, process variation and aging can lead to perma-
nent HW faults [4]. These faults are irreversible and can lead to a complete loss
of functionality, which is not acceptable in the targeted safety-critical applica-
tions. However, ensuring availability by means of traditional temporal or spatial
redundancy-based approaches is not desirable due to the increased complexity
and costs (e.g., area, power).

In this paper we tackle the challenge of efficiently improving fault tolerance of
NN accelerators by introducing a fail-degraded operating mode. Our approach is
motivated by the fact that NNs tolerate computations with reduced precision and
maintain their accuracy. Instead of masking computations that are performed
on faulty HW, we adapt the precision of computations during runtime and reuse
faulty HW. This dual-use via reusing existing HW features allows us to introduce
lightweight fault tolerance and thus improve overall availability of the accelerator
system. To summarize, our contributions are:

– We propose a lightweight HW extension for circumventing hardware faults
by adapting a NN’s quantization configuration during inference. By reusing
existing HW features of NN accelerators, we keep the required HW overhead
low. Our method increases the fault tolerance of the system without retraining
the network or adapting how it is mapped on HW.

– We analyze different rounding techniques for reducing bit widths of values
online during NN processing. We assess their effectiveness for maintaining
the contributions of highly relevant synapses of the NN when computing with
reduced precision.

– Using extensive simulations, we evaluate our proposed method on a scalable
vector processor accelerator. The performance of our method is assessed based
on the classification accuracy of ResNet18 and VGG16 NNs with varying
hardware defect rates on two datasets. The results confirm the benefits of our
method.

This document is structured as follows. We introduce our error mitigation
method in Sect. 2. Then we outline our experimental setup and evaluate our
method with two image classification NNs. Finally, we compare our method
with related work in Sect. 4 and conclude our paper in Sect. 5.

2 Online Quantization Adaptation

To achieve efficient fault tolerance, we leverage that NNs can often tolerate com-
putations with reduced precision without deteriorating their algorithmic per-
formance (e.g., classification accuracy). Our method adapts the precision with

Online Quantization Adaptation for Fault-Tolerant Neural Network Inference 245

which computations are performed during runtime. A typical NN accelerator
consists of several processing elements (PE) that perform multiply-accumulate
(MAC) operations. PEs of recent accelerators can support computations with
varying precision to increase flexibility [3,8,21]. This feature enables HW sup-
port for mixed-precision NNs, where data of individual layers can be quantized
differently. Compared to a uniform bit width for the whole NN, mixed-precision
allows for a better tradeoff between a smaller memory footprint and NN accu-
racy [23]. A reduced bit width also results in fewer data transfers to the acceler-
ator, which is key to improving the energy efficiency of the system [25]. Further-
more, the compute performance is increased by processing multiple low-precision
data words simultaneously. Support for computations with different bit widths
can be achieved by integrating several low-precision functional units. For a given
input data word, each functional unit executes operations on subword level. Com-
putations requiring higher precision (i.e., the full width of the input word) are
performed by combining partial results of multiple functional units.

Processing Element

× ×
× ×

a0a1

b 0

b 1

+

c0c1

b

a

n
2

/

OQA

configOQA /

b

a

n

<< d
n

Dynamic bit
shift and padding

/

Valid data after OQA Hardware fault

Fig. 1. Hardware schematic for online quantization adaptation (OQA). Processing ele-
ment supports computations with the full or half the original bit width. After HW
faults are detected, remaining still functioning low-precision functional units within
the PE are used to uphold compute capability. The OQA block adapts bit widths of
values and adjusts how inputs are fed into the PE. Flexibly remapping the inputs of
the PE allows to circumvent faulty subunits. Output values are padded and shifted to
match the original fixed-point format before OQA.

In Fig. 1, a PE is shown that supports computations with either the full
or half the original bit width. For simplicity, we opt for two bit widths in this
example. Our method, however, is not limited to this design or configuration.
Considering the two inputs a and b shown in Fig. 1, the PE performs

c = c + a · b (1)

for computations using the full precision and

c1,0 =

{
c1 := c1 + a1 · b1
c0 := c0 + a0 · b0

(2)

246 M. Beyer et al.

for computations with reduced precision. Regardless of the desired precision,
operations are always performed on subword level. Computations requiring full
precision are obtained by combining partial results:

a · b = a1 · b1 · 2n + a1 · b0 · 2n
2 + a0 · b1 · 2n

2 + a0 · b0, (3)

where n is the bit width and multiplications with 2i are bit shifts. PEs essen-
tially have built-in redundancy for the reduced precision functional units. Con-
sequently, after HW faults have been detected, remaining still functioning units
can be used to uphold the compute capability, albeit with a lower quality. Our
proposed method is to truncate bits of original full-width values and round
toward zero before they are fed to partially faulty PEs. Computations are then
performed with reduced precision on fault-free subunits within the PE. In con-
trast to simply masking computations that are performed on faulty HW [30],
the key idea is to maintain highly relevant synapses of the NN, i.e., connections
with a large weight value associated to it. By keeping contributions to feature
extraction made by those connections, at least in part, we achieve better fault
tolerance. Without our solution, complete PEs or even the entire accelerator
would have to be turned off.

Simply truncating least significant bits (LSBs) is a straightforward and well-
known solution to reduce the bit width of data. This approach, however, is not
ideal. Since values after truncation will always be lower than or equal to the
original value, this operation adds a bias and results in a quantization error
with non-zero mean [14]. While NNs can tolerate perturbations in the processed
data without requiring error correction [17], variances in the weights affect entire
output channels of a layer and thus the overall performance of the NN. We opt
for rounding to zero after truncation, as this has the advantageous property of
attenuating values rather than overestimating them. Other rounding techniques
such as convergent rounding [14], where ties are rounded to the nearest even
value, can lead to higher-than-original contribution of individual weights. This
skews the distribution of a layer’s parameters and thus can affect the performance
of the NN.

Fig. 2. Comparison of different rounding modes for reducing precision of values.

Online Quantization Adaptation for Fault-Tolerant Neural Network Inference 247

In Fig. 2, we show a histogram of a given NN layer’s weights that is quantized
from floating-point to an 8-bit fixed-point format. We compare different modes
where weight values are truncated to 4 bits and, depending on the rounding
mode, rounded and rescaled to 8-bit for comparison. When rounding to zero, a
lot more values become zero, but the overall distribution of weights is preserved.
Truncating without rounding and convergent rounding lead to a distortion and
over-/underestimation of values.

In Fig. 1 our proposed modification to a PE is shown. During normal oper-
ation, the PE’s input values are not modified by the online quantization adap-
tation (OQA) block. If a HW fault is detected by an arbitrary error detection
mechanism, e.g., periodic checks or checksums [16], the fail-degraded operating
mode is configured using the configOQA configuration parameter. For clarity, we
bundle several sub-configuration data in this configuration signal parameter in
Fig. 1. The signal specifies whether the OQA HW block is active and configures
the PE such that HW error(s) are circumvented. When OQA is active, values are
truncated and rounded toward zero. The number of truncated bits is a design
time parameter and depends on the capabilities of the PE. Rounding to zero
is accomplished by adding one to negative values after truncation. Afterward,
functional units detected as faulty are circumvented by adjusting how inputs are
fed into the PE after OQA. In Fig. 1, the PE has four multipliers that operate
on n/2 bits each and the multiplier on the bottom left is affected by a HW fault.
Consequently, the input values a and b are truncated to n/2 bits and placed into
the lower subwords of the PE’s input registers. The top right multiplier is then
selected by configOQA as the result of the multiplication.

Since other, potentially still fully functional PEs in the accelerator expect
input values with the original fixed-point format and precision, the output c
has to be rescaled to the initial format. This is done by means of shifting and
padding. For our example in Fig. 1, the n/2-bit result is padded with n/2 zeros
as LSBs to obtain the final n-bit result d. The fixed-point format can be dif-
ferent for each layer in a quantized NN. Consequently, reducing the bit width
and thus modifying the fixed-point format has to be done with care as some
operations require fixed points to be aligned. During NN inference, PEs have no
information on the fixed-point representation of the processed data. Therefore,
correct handling of the data has to be ensured during processing when adapting
the quantization configuration online. The number of truncated bits ntruncated

when switching to a lower precision is a design-time parameter. Consequently,
any required bit shifts during processing can be translated to the new fixed-point
format with the following equation:

snew = sdesired − ntruncated, (4)

where sdesired is the desired shift amount and snew the new shift amount. A
positive number means shifting to the left, a negative number shifting right.

In Fig. 1 we show only one possible fault configuration. However, by flexibly
remapping the inputs of the PE after OQA, also other fault configurations can
be addressed. This allows us to effectively reuse remaining functional units to
improve the fault tolerance and thus availability of the accelerator. By enabling

248 M. Beyer et al.

dual use of HW features that were originally added for performance and efficiency
reasons, the added HW complexity of our method is kept low. OQA is realized
using MUXes and an adder circuit for each input. Since the addition is targeting
low bit widths, additional latency from this operation is minimal. Selecting the
PE’s output can also be realized with MUXes and shifting the PE output is
achieved by extending existing shifting logic.

3 Experiments

3.1 Experimental Setup

We evaluate our method using the two popular classification benchmarks CIFAR-
10 [11] and the German Traffic Sign Recognition Benchmark (GTSRB) [24].
CIFAR-10 consists of a training and test subset with 40 000 and 10 000 32 × 32
RGB images. They are categorized in 10 different classes ranging from animals to
objects such as cars or airplanes. GTSRB contains images of 43 different German
traffic signs and is split into training and testing subsets with 39 209 and 12 630
RGB images. Since the images exhibit an unbalanced variation in brightness,
we normalize them across RGB channels and resize each to a uniform size of
32 × 32 pixels. We train the two state-of-the-art neural network architectures
ResNet18 [9] and VGG16 [22] on both CIFAR-10 and GTSRB and use 20% of the
training dataset for validation during training. The training data is normalized
to have zero mean and unit variance and is augmented by horizontal flipping of
images and adding Cutout patches of size 16 [6]. Cutout is a simple regularization
technique that masks sections of the input to NNs which has shown to improve
the model’s robustness and classification performance. For GTSRB, horizontal
flipping is not performed as this can change the meaning of some images. The
networks are trained with stochastic gradient decent with a learning rate of 0.025
and a momentum of 0.9. During training, the learning rate is annealed down to
10−8 using cosine annealing [13]. Each network is trained for 100 epochs and a
batch size of 96. Afterward, the models are quantized to 8-bit [29].

Our proposed OQA method is implemented as a custom TensorFlow layer in
our simulation framework ProxSim [18] which enables fast and efficient evalua-
tion of quantized NNs using GPUs. The custom layer models convolution oper-
ations in fixed-point format as they would be performed on HW. Additionally,
we implement a fine-granular selection of different quantization modes for each
element of its output tensor using a configurable mask. This approach allows
us to simulate how convolutions are mapped on an accelerator. Consequently,
different accelerator HW architectures and fault configurations can be modeled
efficiently by defining the appropriate mask.

As a hardware target, we use a scalable vector processor accelerator. Figure 3
shows an overview of our accelerator system [15,28]. The accelerator consists of
clusters of vector units. Vector units have two vector lanes, the actual PEs, and
a configurable local memory that can be accessed by lanes in the unit. Addition-
ally, each vector lane has a register file scratchpad. We consider a PE architecture
where computations with different bit widths are realized by combining partial

Online Quantization Adaptation for Fault-Tolerant Neural Network Inference 249

DMA

Vector Lane

Vector Lane

L
o
ca

l
M
em

o
ry

Vector Lane

Vector Lane

L
o
ca

l
M
em

o
ry

Vector Units

DMA

Vector Lane

Vector Lane

L
o
ca

l
M
em

o
ry

Vector Lane

Vector Lane

L
o
ca

l
M
em

o
ry

Vector Processor Accelerator

Clusters

External Memory

RISC-V

D
M

A
In

st
ru

c
ti
o
n
s

V
e
c
to

r
In

st
r.

DMA

Vector Lane

Vector Lane

L
o
ca

l
M
em

o
ry

Vector Lane

Vector Lane

L
o
ca

l
M
em

o
ry

Vector Units

DMA

Vector Lane

Vector Lane

L
o
ca

l
M
em

o
ry

Vector Lane

Vector Lane

L
o
ca

l
M
em

o
ry

. . .

. . .

Fig. 3. Schematic of our targeted vector processor for NN acceleration [28].

. .
. ∗

. .
.

. .
.

= . .
.

Unit 0

L
a
n
e
0

L
a
n
e
1

. . .

Unit j

L
a
n
e
0

L
a
n
e
1

Cluster i

Unit 0

L
a
n
e
0

L
a
n
e
1

. . .

Unit j

L
a
n
e
0

L
a
n
e
1

Overview Convolution

step k

step k

step k

step k

step k + 1

Fig. 4. Mapping of convolutions on our accelerator. Arrows indicate the assignment of
feature map segments to vector lanes. As there are usually more segments to process
than there are lanes, each lane is responsible for multiple segments. For clarity, segment
for step k + 1 is only shown for one lane.

results of several low bit-width functional units (e.g., 8-bit precision is realized
by combining multiple 4-bit computations. See Fig. 1, cf. [3]). Computations are
orchestrated by a RISC-V processor, which generates DMA and vector instruc-
tions that are broadcast to all clusters, units, and lanes. We map convolutions
on the accelerator using an output stationary data flow. Larger feature maps
that do not fit in on-chip memory are split into multiple segments. Individual
segments of a layer’s output are then computed on each vector lane as shown in
Fig. 4. Since there are usually more segments to process than there are vector
lanes, each lane is responsible for multiple segments.

3.2 Error Model

To analyze the effectiveness of our method, we perform stochastic fault injec-
tion experiments. In this work, we focus on permanent hardware faults modeled
as stuck-at faults, where individual bit values are stuck at either one or zero.
Transient errors, such as bit-flips, are not the focus of our experiments. They are
non-permanent and non-destructive errors that can be fully removed by reset-
ting the system or rewriting affected memory cells [4]. Consequently, they have

250 M. Beyer et al.

no effect on compute availability. Permanent hardware faults have an impact on
all computations that are performed on the erroneous HW, which significantly
affects computed values and thus a NN’s accuracy.

In our experiments, we inject random stuck-at faults into registers of PEs
based on a specified bit error rate (BER). The BER is a common metric used
in stochastic fault injection experiments for assessing the performance of NNs
under the effect of errors [12,17,19]. We consider a single fault to be sufficient
to trigger the error mitigation mechanism. Each mechanism is evaluated based
on the resulting classification performance of the NN. Similar to [12], we analyze
the impact of hard faults on PE level of the accelerator architecture and convert
the BER to a PE specific error rate (PER). Each MAC unit has a total of 64
bits, comprising two 8-bit input registers, one 16-bit intermediate register, and
a 32-bit accumulator. Consequently, the PE specific error rate is defined as:

PER = 1 − (1 −BER)nbits = 1 − (1 −BER)64 . (5)

With common BER values ranging from 10−7 to 10−3 [12,17,19], the PER ranges
from 0% to 6%. Each PER defines the probability of a permanent fault for a
PE of the accelerator. We investigate the classification performance of NNs for
different PERs. Each PER is evaluated in 200 individual stochastic fault injection
simulations, where a HW fault configuration is generated for each simulation
run based on the PER (i.e., the NN’s classification accuracy is evaluated for a
given HW fault configuration and the configuration is reset after each run). In
this work, the focus is not on reproducing accurate error rates or real errors in
hardware. Instead, a worst-case behavior is investigated which can help making
design decisions and evaluating the fault tolerance of the system.

In our experiments we investigate two error mitigation mechanisms for com-
putations that are performed on faulty PEs:

1. Online Quantization Adaptation: Values are requantized online, as described
in Sect. 2, and computations are performed with reduced precision.

2. Discard : Values are discarded and set to zero.

We use the second case as a baseline to compare our method. Similar to related
work [30], this approach is essentially masking all computations that are per-
formed on faulty PEs. For OQA, we assume that reducing precision from 8-bit to
4-bit is always possible for computations performed on faulty PEs. As outlined
in Sect. 2, this is achieved using remaining functional units in the PE.

3.3 Results

The results of our fault injection experiments for ResNet18 and VGG16 are
shown in Figs. 5 and 6. The results of all our experiments are presented using
box plots for the NN’s classification accuracy on the respective test subset over
200 stochastic fault injection simulations for each PER. We opt for box plots
instead of solely focusing on the mean accuracy. This allows us to draw further
conclusions about the robustness of the NN’s classification performance over

Online Quantization Adaptation for Fault-Tolerant Neural Network Inference 251

Fig. 5. Results of the fault injection simulations for CIFAR-10. Higher median and
lower variability is better. Abbreviations at the top indicate the hardware configuration,
where nCkU represents n clusters and k units.

all performed fault injection simulations. In each plot, the NN’s classification
accuracy is denoted on the y-axis and the PER on the x-axis. We investigate
three different hardware configurations of our accelerator, ranging from a larger
one with eight clusters and eight units (8C8U, 128 vector lanes in total) to a
smaller one with four clusters and four units (4C4U, 32 vector lanes in total).

In Fig. 5a the results for ResNet18 trained on CIFAR-10 are shown. When
discarding values computed on erroneous PEs, the accuracy decreases rapidly.
At a PER of 2.1%, the median accuracy drops already by more than 10% for
the configurations 8C8U and 4C8U. The predictions become random guesses at
a PER of 5.5% where the accuracy drops to 50% for all HW configurations. For
the small configuration 4C4U, the median accuracy is still equal to the baseline
without faults at lower error rates. Since each PE’s probability for a HW fault is
based on the PER in our experiments, fewer total PEs mean a lower fault count
for a smaller accelerator configuration compared to a larger one at a given PER.
Overall, however, hardware faults have a greater impact on the classification
accuracy of a NN for the 4C4U configuration. The whiskers and outliers in the
plots show that a complete loss of classification performance is possible already at
a small error rate where a single lane is faulty. As outlined in Fig. 4, computations

252 M. Beyer et al.

for output segments of each layer are mapped on individual lanes. With fewer
total lanes available in a smaller HW configuration, each lane is responsible for
multiple segments in the output feature map of a layer. Consequently, even a
single erroneous lane affects multiple segments in a layer’s output. This results
in a greater impact on the overall accuracy compared to a single faulty lane in a
larger HW configuration. The high variability of the data shows that not all HW
faults necessarily lead to a drastic reduction of a NN’s classification accuracy.
However, with an interquartile range (IQR) of 27% to 37% at a PER of 6.2%,
discarding values computed on erroneous PEs is not a universally applicable
mechanism for achieving fault tolerance. When using our OQA method, the rapid
accuracy drop can be prevented. Only at a high PER of 6.2% an accuracy drop
of 10% can be observed. Furthermore, the dispersion of the data is considerably
lower. There are still outliers present, but overall, the classification performance
over all 200 runs is considerably more consistent with an IQR ranging around a
few percent and a maximum of 9% to 17% at a PER of 6.2%.

VGG16 is a bigger model with more parameters and filters for each layer
compared to ResNet18. For comparison, layers of ResNet18 start with 16 chan-
nels and have 64 channels in deeper layers, whereas the first convolution layers
of the VGG16 already have 64 channels and reach 512 for deeper ones. Con-
sequently, the model exhibits a higher data redundancy of extracted features.
Therefore, as Fig. 5b shows, discarding values does not impact the accuracy as
drastically. At a PER of 6.2%, the model’s median classification accuracy drops
by approximately 16%, but it still manages to retain an accuracy of 75% for all
HW configurations. Nevertheless, the variability of the model’s classification per-
formance and the number of outliers are also increasing rapidly with increasing
PER. With OQA, the accuracy decreases by only 4% in the worst case for the
tested configurations. Furthermore, the dispersion of the data is significantly
lower with a maximum IQR of only 4% to 7% compared to the 17% to 28%
without applying OQA.

The results for GTSRB shown in Fig. 6 are similar to CIFAR-10 for both
models. Overall, the accuracy does not degrade as fast for this classification
task, especially for VGG16. Both models have a higher baseline accuracy on this
dataset. The regular shapes of traffic signs compared to the varying shapes and
colors of objects and animals make GTSRB an easier classification task. This
has a positive effect on the model’s robustness to perturbations, which has also
been observed by related work focusing on transient HW faults [2]. ResNet18
exhibits an accuracy loss of approximately 10% at a PER of 2.8% with an IQR
of 21%–29% when values are discarded. Similar to CIFAR-10, the variability
of ResNet18’s prediction quality starts to increase quickly with an increasing
error rate. At higher error rates, well-founded predictions are no longer possible.
Discarding values is more beneficial for VGG16 on this dataset. The accuracy
is decreased by approximately 4% with an IQR of 4%–7% at a PER of 6.2%.
However, the high number of outliers illustrates that discarding is not a suitable
error mitigation mechanism in this case either. With OQA, the accuracy of
ResNet18 drops only by 5%–7% at a PER of 6.2% with an IQR of 9%–17%. For

Online Quantization Adaptation for Fault-Tolerant Neural Network Inference 253

Fig. 6. Results of the fault injection simulations for GTSRB. Higher median and lower
variability is better. Abbreviations at the top indicate the hardware configuration,
where nCkU represents n clusters and k units.

VGG16, we are able to practically absorb all faults. The accuracy loss at a PER
of 6.2% is less than a percent with a maximum IQR of 1%.

Overall, the results show that our OQA method can preserve a NN’s clas-
sification performance and thus can significantly improve the fault tolerance of
the system. Discarding values computed on erroneous HW is generally a valid
approach where NNs can maintain their accuracy. However, the variability of the
data shows that a complete loss of classification accuracy is possible even at low
error rates. Ensuring that important connections of the NN contribute at least
partially to feature extraction has shown to be highly beneficial. For all tested
NN’s, the accuracy can be preserved consistently. Furthermore, the variability
of a NN’s prediction performance in our experiments is decreased considerably.
Compared to discarding values, the IQR for OQA is smaller for both NNs and
both datasets. This allows for higher confidence in predictions made by a NN
when executed on faulty HW. Although outliers also occur with our method,
they can be easily handled in subsequent processing steps. In video-based per-
ception systems, for example, objects are tracked over time and predictions can
be made over multiple input frames. Considering the top two predictions is also
beneficial. In this scenario, we are able to retain at least the original error-free

254 M. Beyer et al.

accuracy for all tested NNs at a PER of 6.2%. Since the accuracy loss when using
OQA is predictable, it can be determined offline during design time. Therefore,
the drop in classification accuracy can be reduced when considering the OQA
feature during quantization of a NN. We think that this is a promising direction
for future work.

4 Related Work

Leveraging the homogeneous HW architecture of NN accelerators to improve
fault tolerance has been investigated by recent work. Since NN accelerators
have a regular architecture consisting of several identical PEs, spare PEs can
be added to the accelerator which take over computation tasks of faulty ones.
For array-like accelerators [5], this is achieved by adding PEs to individual rows
or columns of the PE array [26,27]. Since redundant PEs in rows or columns
can only mitigate certain fault configurations, the authors in [12] propose a
dot-production processing unit (DPPU) that can cover any faulty PE in the
accelerator. The aforementioned approaches are considerably more efficient than
complete redundancy. Nevertheless, the NN’s prediction performance degrades
significantly once faults exceed the number or capabilities of spare resources.
Instead of excluding faulty PEs from computations, our method builds on
exploiting remaining functional units to maintain important synapses of the net-
work. This dual-use of existing HW features enables our method to be lightweight
compared to other approaches. We do not require additional HW resources that
are not necessarily used during normal, fault-free operation. Consequently, addi-
tional costs (e.g., power or silicon area) can be avoided.

Returning zeros for computations performed on faulty PEs is a straightfor-
ward approach to mask HW faults [30]. As our experiments show, this does not
guarantee that the NN’s prediction accuracy is maintained. Fault-aware training
has been proposed to alleviate this issue [10,30]. However, current accelerators
are designed for fast and efficient inference of NNs. Consequently, retraining a
NN for a given fault configuration is not possible and especially not during run-
time. In contrast, our method does not require retraining of the NN to achieve
fault tolerance. We can adapt to a given fault configuration during runtime. The
possible performance degradation of the NN (e.g., accuracy) when using OQA
can be determined offline. Therefore, optimizing a NN’s quantization configura-
tion while considering OQA could further minimize accuracy degradation.

Adapting how NNs are mapped on HW such that faulty PEs are not involved
in computations has been proposed in [7]. This is a more complex solution which
may cause that safety or system related timing constraints are no longer met. Our
method is completely transparent to software and does not require rescheduling
of the workload. However, we think that this approach can be used in addition to
our method. Rescheduling can be limited to critical computations as suggested
in [20]. Mapping computations that are highly relevant for preserving a NN’s
accuracy on still functioning PEs and more resilient ones to PEs with reduced
precision can further limit the impact on classification accuracy.

Online Quantization Adaptation for Fault-Tolerant Neural Network Inference 255

5 Conclusion

In this paper, we have proposed a new method to effectively mitigate the impact
towards compute availability of HW faults in NN accelerators. To the best of
our knowledge, we are the first to exploit HW features that are generally added
for functional reasons to improve fault tolerance. This dual-use of existing HW
makes our method lightweight compared related approaches. We evaluate our
method with stochastic fault injection simulations using two NNs trained on
two datasets. The results confirm the effectiveness of our method in preserving
a NN’s classification performance.

Acknowledgements. This work is supported by the German federal ministry of edu-
cation and research (BMBF), project ZuSE-KI-AVF (grant no. 16ME0062).

References

1. Baumann, R.: Radiation-induced soft errors in advanced semiconductor technolo-
gies. IEEE Trans. Device Mater. Rel. 5(3), 305–316 (2005)

2. Beyer, M., Schorn, C., Fabarisov, T., Morozov, A., Janschek, K.: Automated hard-
ening of deep neural network architectures. In: ASME International Mechanical
Engineering Congress and Exposition (IMECE), vol. 13 (2021)

3. Camus, V., Mei, L., Enz, C., Verhelst, M.: Review and benchmarking of precision-
scalable multiply-accumulate unit architectures for embedded neural-network pro-
cessing. IEEE J. Emerg. Sel. Top. Circuits Syst. 9(4), 697–711 (2019)

4. Castano, V., Schagaev, I.: Resilient Computer System Design. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15069-7

5. Chen, Y.H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient recon-
figurable accelerator for deep convolutional neural networks. IEEE J. Solid-State
Circuits 52(1), 127–138 (2017)

6. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552 (2017)

7. Gambardella, G., et al.: Efficient error-tolerant quantized neural network acceler-
ators. In: 2019 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), pp. 1–6. IEEE (2019)

8. Ghodrati, S., Sharma, H., Young, C., Kim, N.S., Esmaeilzadeh, H.: Bit-parallel
vector composability for neural acceleration. In: 2020 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6. IEEE (2020)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778. IEEE (2016)

10. Kim, S., Howe, P., Moreau, T., Alaghi, A., Ceze, L., Sathe, V.S.: Energy-efficient
neural network acceleration in the presence of bit-level memory errors. IEEE Trans.
Circuits Syst. I 65(12), 4285–4298 (2018)

11. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Technical
report (2009)

12. Liu, C., et al.: HyCA: a hybrid computing architecture for fault tolerant deep
learning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 41(10), 3400–
3413 (2022)

https://doi.org/10.1007/978-3-319-15069-7
http://arxiv.org/abs/1708.04552

256 M. Beyer et al.

13. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts.
In: International Conference on Learning Representations (2017)

14. Menard, D., Novo, D., Rocher, R., Catthoor, F., Sentieys, O.: Quantization mode
opportunities in fixed-point system design. In: 2010 18th European Signal Process-
ing Conference, pp. 542–546. IEEE (2010)

15. Nolting, S., Giesemann, F., Hartig, J., Schmider, A., Paya-Vaya, G.: Application-
specific soft-core vector processor for advanced driver assistance systems. In: 2017
27th International Conference on Field Programmable Logic and Applications
(FPL), pp. 1–2. IEEE (2017)

16. Ozen, E., Orailoglu, A.: Sanity-check: boosting the reliability of safety-critical deep
neural network applications. In: 2019 IEEE 28th Asian Test Symposium (ATS),
pp. 7–75. IEEE (2019)

17. Ozen, E., Orailoglu, A.: Boosting bit-error resilience of DNN accelerators through
median feature selection. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
39(11), 3250–3262 (2020)

18. De la Parra, C., Guntoro, A., Kumar, A.: ProxSim: GPU-based simulation frame-
work for cross-layer approximate DNN optimization. In: 2020 Design, Automation
and Test in Europe (DATE), pp. 1193–1198. IEEE (2020)

19. Reagen, B., et al.: Ares: a framework for quantifying the resilience of deep neu-
ral networks. In: 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pp. 1–6. Association for Computing Machinery (2018)

20. Schorn, C., Guntoro, A., Ascheid, G.: Accurate neuron resilience prediction for
a flexible reliability management in neural network accelerators. In: 2018 Design,
Automation and Test in Europe (DATE), pp. 979–984. IEEE (2018)

21. Sharma, H., et al.: Bit fusion: bit-level dynamically composable architecture for
accelerating deep neural network. In: 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pp. 764–775. IEEE (2018)

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

23. Song, Z., et al.: DRQ: dynamic region-based quantization for deep neural net-
work acceleration. In: 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pp. 1010–1021 (2020)

24. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking
machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332
(2012)

25. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural
networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

26. Takanami, I., Fukushi, M.: A built-in circuit for self-repairing mesh-connected pro-
cessor arrays with spares on diagonal. In: 2017 IEEE 22nd Pacific Rim International
Symposium on Dependable Computing (PRDC), pp. 110–117 (2017)

27. Takanami, I., Horita, T.: A built-in circuit for self-repairing mesh-connected pro-
cessor arrays by direct spare replacement. In: 2012 IEEE 18th Pacific Rim Inter-
national Symposium on Dependable Computing (PRDC), pp. 96–104 (2012)

28. Thieu, G.B., et al.: ZuSE-KI-AVF: application-specific AI processor for intelligent
sensor signal processing in autonomous driving. In: 2023 Design, Automation and
Test in Europe (DATE) (2023)

29. Vogel, S., Springer, J., Guntoro, A., Ascheid, G.: Self-supervised quantization
of pre-trained neural networks for multiplierless acceleration. In: 2019 Design,
Automation and Test in Europe (DATE), pp. 1094–1099. IEEE (2019)

30. Zhang, J.J., Basu, K., Garg, S.: Fault-tolerant systolic array based accelerators for
deep neural network execution. IEEE Des. Test 36(5), 44–53 (2019)

http://arxiv.org/abs/1409.1556

Neural Networks and Testing

Evaluation of Parameter-Based Attacks
Against Embedded Neural Networks

with Laser Injection

Mathieu Dumont1,2, Kevin Hector1,2, Pierre-Alain Moëllic1,2(B),
Jean-Max Dutertre3, and Simon Pontié1,2

1 CEA Tech, Centre CMP, Equipe Commune CEA Tech - Mines Saint-Etienne,
13541 Gardanne, France

{mathieu.dumont,kevin.hector,pierre-alain.moellic,simon.pontie}@cea.fr
2 Univ. Grenoble Alpes, CEA, Leti, 38000 Grenoble, France

3 Mines Saint-Etienne, CEA, Leti, Centre CMP, 13541 Gardanne, France
dutertre@emse.fr

Abstract. Upcoming certification actions related to the security of
machine learning (ML) based systems raise major evaluation challenges
that are amplified by the large-scale deployment of models in many hard-
ware platforms. Until recently, most of research works focused on API-
based attacks that consider a ML model as a pure algorithmic abstrac-
tion. However, new implementation-based threats have been revealed,
emphasizing the urgency to propose both practical and simulation-based
methods to properly evaluate the robustness of models. A major concern
is parameter-based attacks (such as the Bit-Flip Attack - BFA) that
highlight the lack of robustness of typical deep neural network models
when confronted by accurate and optimal alterations of their internal
parameters stored in memory. Setting in a security testing purpose, this
work practically reports, for the first time, a successful variant of the
BFA on a 32-bit Cortex-M microcontroller using laser fault injection. It
is a standard fault injection means for security evaluation, that enables
to inject spatially and temporally accurate faults. To avoid unrealistic
brute-force strategies, we show how simulations help selecting the most
sensitive set of bits from the parameters taking into account the laser
fault model.

Keywords: Hardware Security · Fault Injection · Evaluation and
certification · Machine Learning · Neural Network

1 Introduction

The massive deployment of Machine Learning (ML) models in a large spectrum
of domains raises several security concerns related to their integrity, confidential-
ity and availability. For now, most of the research efforts are essentially focused
on models seen as abstractions, i.e. the attack surface is focused on so-called

M. Dumont—At SGS Brightsight after paper submission: mathieu.dumont@sgs.com.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 259–272, 2023.
https://doi.org/10.1007/978-3-031-40923-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_19&domain=pdf
https://doi.org/10.1007/978-3-031-40923-3_19

260 M. Dumont et al.

API-based attacks, excluding threats related to their implementation in devices
that may be physically accessible by an adversary, as it the case for embedded
ML models. The flaws intrinsically related to the models and the physical ones
may be used jointly to attack an embedded model or exploit data leakages.

A typical and well-known API-based attack are the adversarial examples [1]
that aims at fooling the prediction of a model with input-based alterations at
inference time. However, recent works demonstrated that physical attacks are
realist threats by targeting critical elements of a model such as activation func-
tions [2] or its parameters (parameter-based attacks) [3] as studied in this work.

In such a security context, with the demonstration of worrying attack vec-
tors, there is an urgent need of certification for AI-based systems more especially
for critical ones1. Therefore, alongside the demonstration of new attacks and
the development of defenses, an important challenge relies on the availability of
proper robustness evaluation and accurate characterization methods in addition
to both simulation and experimental tools and protocols. Model robustness eval-
uation is one of the most important challenge of modern artificial intelligence
and several remarkable works from the Adversarial Machine Learning commu-
nity have already raised major issues for adversarial examples [4], with many
defenses relying on weak evaluations [5].

Dealing with embedded neural network models and weight-based adversarial
attacks, this challenge encompasses both safety and security concerns: parame-
ters stored in memory may be altered by random faults because of hostile envi-
ronments or strong energy consumption limitations [6] and also be the target of
an adversary that aims at optimally threatening a model.

2 Related Works and Objectives

2.1 Parameter-Based Attacks

Implementation-Based Threats. An important part of the ML security
literature concerns algorithmic or so-called API-based attacks that exploit
input/output pairs and additional knowledge from the model in case of white-
box attacks. A large body of work shows that these threats concern every stage of
the ML pipeline [7] and threaten the confidentiality (model and data), integrity
and availability of the models. However, these attacks do not consider that the
adversary may have a direct interaction with the algorithm as it can be the
case for an embedded AI system. Implementation-based attacks precisely exploit
software or hardware flaws as well as the specific features of the device. For
example, side-channel analysis [8] have been demonstrated for model extraction
as an efficient way to extract information from the model architecture or the
values of the parameters [9]. Alongside safety-related efforts that evaluate the
robustness of ML models against random faults [6], some works demonstrate
that models are highly sensitive to fault injection analysis [10] that alter the
data, the parameters as well as the instructions flow [2,11].

1 See the European AI Act: https://artificialintelligenceact.eu/.

https://artificialintelligenceact.eu/

Evaluation of Parameter-Based Attacks Against DNN with LFI 261

Weight-Based Adversarial Attacks. New attack vectors have been high-
lighted and more essentially parameter-based attacks (also named weight-based
adversarial attacks). Let’s consider a supervised neural network model MW (x),
with parameters W (also referred as weights), trained to optimally map an input
space X = R

d (e.g., images) to a set of labels Y. M is trained by minimizing
a loss function L(

MW (x), y
)

(typically the cross entropy for classification task)
that quantifies the error between the prediction ŷ = MW (x) and the correct label
y. As formalized in [3] or [6] with Eq. 1, a parameter-based attack aims at maxi-
maizing the loss (i.e., increase mispredictions) on a small set of N test inputs. As
for the imperceptibility criterion of adversarial examples, the attacker may add
a constrain over the perturbation by bounding the bit-level Hamming distance
(HD) between the initial (W) and faulted parameters (W ′), corresponding to
an adversarial budget S.

max
W ′

N−1∑

i=0

L
(
M

(
xi;W ′), yi

)

︸ ︷︷ ︸
mispredictions

s.t.

advbudget
︷ ︸︸ ︷
HD(W ′,W) ≤ S (1)

A state-of-the-art parameter-based attack is the Bit-Flip Attack (hereafter
BFA) [3] that aims to decrease the performance of a model by selecting the most
sensitive bits of the stored parameters and progressively flip these bits until
reaching an adversarial goal. In [3] or [12], the objective is to ultimately degrade
the model to a random-guess level. The selection of the bits is based on the
ranking of the gradients of the loss w.r.t. to each bit ∇bL, computed thanks to a
small set of inputs. First, each selected bit is flipped (and restored) to measure
the impact on the model accuracy. Then, the most sensitive bit is permanently
flipped according to the gradient ascendant as defined in [3].

Adversarial Goals. Parameter-based attacks are not limited to the alteration
of the target model integrity. BFA has been recently demonstrated for powerful
model extraction in [13] with an Intel i5 CPU platform: RowHammer is used to
perform a BFA on the parameters of a model stored in DRAM (DDR3). The
threat model in [13] follows a typical model extraction setting: the adversary
knows the model’s architecture but not the internal parameters and has only
access to a limited portion of the training dataset (< 10%). His goal is to build
a substitute model as close as possible as the target model. Interestingly, this
joint use of RowHammer and BFA is performed in a side-channel analysis fash-
ion: the observation of the induced faults enables to make assumptions on the
value of some bits of the parameters. Then, the knowledge of these bits enables
to efficiently train a substitute model, by constraining the value range of the
parameters, with high fidelity compared to the target model. We discuss this
goal in Sect. 4.4.

2.2 Scope and Objectives

Because parameter-based attacks are the basis of both powerful integrity and
confidentiality threats, their practical evaluation on the different platforms where

262 M. Dumont et al.

fault injection may occur is becoming a critical need for present and future
standardization and certification actions of critical AI-systems. We position our
work on a different set of platforms than the main works related to the BFA
(CPU platforms with DRAM), that is MCU platforms (Cortex-M with Flash
memory), yet a very important family of embedded AI systems regarding the
massive deployment of ML models on MCU-based devices for a large variety of
domains. Our main positioning is as follows:

– We set this work in a security evaluation and characterization context. There-
fore, we do not position ourselves through an adversary but an evaluator point
of view.

– Our scope is parameter-based threats for neural network embedded in 32-bit
microcontroller (hereafter MCUs).

– For that purpose, we use Laser Fault Injection (hereafter LFI) as an advanced
and very spatially and temporally accurate injection means, a reference tech-
nique that is used in many security evaluation centers.

State-of-the-art is focused on simulation-based evaluations or on RowHam-
mer attacks (i.e., exclusively DRAM platforms that excludes MCU). To the best
of our knowledge, this work is the first to demonstrate the practicability and suit-
ability of the characterization of a weight-based adversarial perturbation against
Cortex-M MCU thanks to LFI.

2.3 Related Works

Since the presentation of the BFA in [3], several works analyzed the intrinsic
mechanisms of the attack as well as potential protections [12,14] and evaluated
its properties according to the threat model, training parameters and model
architecture [15]. The standard BFA is untargeted since the induced misclassi-
fications are not chosen by the adversary. Therefore, some works also proposed
targeted versions [16] with specific target inputs and/or labels. Other recent
works propose alternative methods to efficiently select the most sensitive param-
eters to attack [6]. For our work, we use and adapt (for LFI) the standard BFA
of [3] as it is the state-of-the-art baseline for weight-based adversarial attacks.

To the best of our knowledge, the only work related to laser injections for
MCU-based platform against embedded neural networks has been proposed
in [2]. Our work differs significantly by the target device and the elements we tar-
get in the model. In [2], the authors used an 8-bit microcontroller (ATMega328P)
and a 32-bit neural network implemented in C (a multilayer perceptron trained
on the MNIST data set). They only focused on the activation functions by induc-
ing instruction skips (i.e., the faulted instructions are not executed, as if they
were skipped). They used a laser and only targeted the last hidden layer. We
used a Cortex-M 32-bit microcontroller and embedded 8-bit quantized neural
network thanks to a state-of-the-art open source library (Neural Network on
Microcontrollers2, hereafter NNoM) for model deployment. Our attack vector
2 https://github.com/majianjia/nnom/.

https://github.com/majianjia/nnom/

Evaluation of Parameter-Based Attacks Against DNN with LFI 263

(BFA-like attack) and fault model enable to evaluate the robustness of a model
against an advanced adversary that aims at significantly altering the perfor-
mance of a model with a very limited number of faults or extract information
about parameter values for model extraction.

Thus, our work is also closely linked to [11] that demonstrated at USENIX’20
a complete exploitation of the BFA with RowHammer on an Intel i7-3770 CPU
platform. Although we target a different type of platforms with 32-bit MCU and
another fault injection means (LFI), we share the same objective to go beyond
simulations and propose a complete practical evaluation of a parameter-based
attacks against embedded quantized DNN models.

3 Evaluator Assumptions and Experimental Setups

3.1 Goal and Evaluator Assumptions

Objectives. The main objective of the evaluator is to evaluate the robustness of
a model against precise fault injections by decreasing the average accuracy on a
labelled test set. More precisely, the scenario corresponds to a generic untargeted
case (i.e., the incorrect labels are not controlled by the evaluator). Note that
a targeted scenario (for specific test samples or target labels) is possible [16]
but out of the scope of our experiments. A secondary objective is to minimize
the evaluation cost with a strategy that reduces the number of faults to be
injected (i.e., avoid an exhaustive search that may be unrealistic according to
the complexity of the target model).

Evaluator Hypothesis. Classically for security testing, the evaluator simulates
a worst-case adversary that has a perfect knowledge of the model (white-box
attack) and is able to query the model without limitation. The evaluator has a
full access to the device (or clones of the device) and can perform elementary
characterizations to adapt and optimize the fault injection set-up.

3.2 Single Bit-Set Fault Model on Flash Memory

We consider an accurate fault model relevant for LFI previously explained and
demonstrated for NOR-Flash memory of Cortex-M MCU by Colombier and
Menu [17]: the bit-set fault model. As its name suggests, the fault sets a targeted
bit to a logical 1: when the bit was already at 1 the fault has no effect. When
targeting a Flash memory at read time with a laser pulse, the induced bit-set
is transient: it affects the data being read at that time while the stored value is
left unmodified. Authors from [17] explained the underlying mechanism of the
bit-set fault injection with the creation of a photoelectric current induced by the
laser in a floating-gate (FG) transistor that flows from its drain to the ground.
This current is added to the legitimate one so that the total current is above the
reference that makes the bit read as a logical 1.

LFI is a local fault injection means: its effect is restricted to the bit line
connected to the FG transistor inside the laser spot area. More precisely several
current components are induced in the affected transistors, depending on the
laser spot diameter: up to two adjacent bits can be faulted simultaneously [17].

264 M. Dumont et al.

3.3 Target and Laser Bench Setup

Device Under Test (DUT). Our target board embeds an ARM Cortex-M3
running at 8 MHz. It includes 128 kB of Flash memory and is manufactured in
the 90 nm CMOS technology node. The dimension of the chip is 3 x 2.5 mm. Since
LFI requires the surface of the die being visible, the microcontroller packaging
was milled away with engraving tools to provide an access to its laser-sensitive
parts. The chip was then mounted into a test board compatible with the Chip-
Whisperer CW308 platform.

Laser Platform. Our laser fault analysis platform integrates two independent
laser spots with a near infrared (IR) wavelength of 1, 064 nm, focused through the
same lens. Each laser spot has a diameter ranging from 1.5 to 15µm depending
on the lens magnification. Both spots can move inside the whole field of view
of the lens with minimum distortion. The laser source can reach a maximum
given power of 1, 700 mW. The delay between the trigger and the laser shot can
be adjusted with a step of a few nanoseconds. An infrared camera is used to
observe the laser spot location on the target and a XY stage enables to move
the objective above the entire DUT surface.

3.4 Datasets and Models

Although simulation-based works exclusively used complex deep neural networks
trained for vision tasks (e.g., ResNet on ImageNet), it does not represent a large
part of real-world applications that take benefit from classical fully-connected
architecture (or multilayer perceptron, hereafter MLP) that fit and perform well
on the widespread constrained platforms we studied in this paper.

We considered two classical datasets. The IRIS dataset consists of 150 sam-
ples, each containing 4 real-value inputs and labelled according to 3 different iris
species. We trained two simple models that provide an easy insight on the bit-
set fault model effect: IRIS A and IRIS B are both composed with one hidden
layer with one neuron and four neurons respectively. IRIS B has 96% accuracy on
the test set. MNIST dataset is composed of gray-scale handwritten digits images
(28× 28 pixels) from 0 to 9. Our model (noted MNIST) is a MLP with one hidden
layer of 10 neurons. Inputs are compressed toR50 with a classical principal compo-
nent analysis. The resulting model has 620 trainable parameters and reaches 92%
of accuracy on the test set. All models use ReLU as activation function.

3.5 Model Implementation on MCU

Models were trained with TensorFlow. Few tools are available to embed pre-
viously trained models in microcontroller boards such as TensorFlow Lite, X-
Cube-AI or NNoM. We chose NNoM as it is an efficient and convenient open
source platform that fits our security testing objectives. NNoM offers 8-bit model
quantization (with a standard uniform symmetric powers-of-two quantization
scheme) and a complete white-box access to the inference code that enables to

Evaluation of Parameter-Based Attacks Against DNN with LFI 265

� �
1 while (rowCnt){
2 //pA : address , stored input
3 //pB : address , stored weight
4 for (int j = 0; j < dim_vec; j++)

{ //loop on all neuron
parameters

5 q7_t inA = *pA++; //load
input to inA , address increment

6 q7_t inB = *pB++; //load
weight to inB , address increment

7 ip_out += inA * inB; // neuron
weighted sum

8 }
9 *pO++ = (q7_t)__NNOM_SSAT ((ip_out

>> out_shift), 8);
10 rowCnt --;}

� �

(a) C code of the weighted-sum computa-
tion in a fully-connected layer.

� �
1 ;q7_t inB = *pB++ ;Weight n+1

initialization
2 ldr r3, [r7, #80] ;Loading the

address of the weight n
3 adds r2, r3 , #1 ;Next weight

address
4 str r2, [r7, #80] ;Input value

loading into r2 reg
5 ldrsb.w r3 , [r3] ;Weight value

loading. LASER SHOT
6 strb r3, [r7 ,#23] ;Store of the

weight in SRAM reg
� �

(b) Assembler code of line 6 of listing 1a.
Our target is the load instruction, line 5.

Fig. 1. C and Assembler codes from the NNoM inference. (Color figure online)

draw a timing profile of the sensitive operations we target (reading values from
the Flash memory).

Listing 1a is an extract of the C code source of the core calculation of an infer-
ence from NNoM, that is the weighted sum between the inputs (i.e. the input
data or the outputs of the previous layer) and the model parameters before
the non-linear activation is applied. It consists in loading the neuron input and
weight values (inA and inB, line 5 and 6), then process the multiplication and
accumulation in an intermediate output value (ip out, line 7). Line 9 corre-
sponds to the quantization. The assembler code in Listing 1b corresponds to the
weight initialization of Listing 1b, line 6. The weight value, stored into the Flash
memory, is loaded into register r3 (line 5 in red). Based on our single bit-set fault
model, if a laser beam is applied during the execution of the load instruction, a
bit-set could be induced directly on the loaded value. To characterize the impact
of the laser pulse, we synchronize the laser thanks to a trigger signal in the C
code before line 6 and monitor the parameter value before and after the trigger
using UART communication.

4 A Parameter-Based Attack with LFI

To analyze the efficiency and practicality of LFI we first demonstrated the accu-
racy of the induced faults on a single neuron composed of four weights. Then,
we scaled up to functional models trained on IRIS and MNIST to analyze the
impact at a model-level.

4.1 Initial Characterization on a Neuron

An important preliminary experience is to set up our laser bench on our DUT.
For conciseness purpose, we do not detail all the Flash memory mapping pro-
cedure neither the selection of the laser parameters. For that purpose, we thor-
oughly followed the experimental protocol from [17] and fixed the laser power to

266 M. Dumont et al.

170 mW and the pulse width to 200 ns. By selecting the lens magnification ×5,
we chose a spot diameter of 15µm to have a wide laser effective area.

Then, we implemented a 4-weights neuron. We set the Y-position to 100µm
to only focus on the X-axis motion. Figure 2a shows that, when moving along
the X-axis of the Flash memory, bit-sets are induced one after another on the
whole 32-bit word line and the four quantized weights are precisely faulted.
We repeated this experience with different weight values and noticed a perfect
reproducibility, as also reported in [17]. By noticing positions of weights and their
most significant bit (MSB), we easily conclude the little endian configuration of
the Flash memory. Figure 2b illustrates how the weights are stored according to
the laser bench X-axis.

(a)
(b) m is the mth word-line

Fig. 2. (a) Bit-set faults (red dots) induced on the 4 weights of a neuron (IRIS A model).
(b) Flash memory schematic section filled with quantified weights. (Color figure online)

4.2 Target Multilayer Perceptron Models

Since we can change the value of parameters related to a neuron, the next step
consisted in analyzing the impact of such faults on the integrity of a target
model and in measuring the potential drop of accuracy. For that purpose, we
used the IRIS B model. For each X-step, we evaluated the robustness of the
model by feeding it with 50 test samples (i.e., 50 inferences). Classically, we
computed the adversarial accuracy by comparing the output predictions to the
correct labels and measure the accuracy drop in comparison to the nominal
performance without faults.

During one inference, all the weight loading instructions triggered a laser shot
(i.e. in total 40 shots for the hidden layer). By targeting one bit line at a given
X-position of the laser, only weights on the same address column are faulted with
a bit-set. For illustration, as pictured in Fig. 2b, LFI actually induced bit-sets in
the MSBs of weights w0, w4, w8, w4m (with m the mth word-line), which belong
to the targeted bit line.

Figure 3a shows the impact of the laser shots on the model accuracy (blue
curve) on the test set. The red curve provides the number of faulted bits. The

Evaluation of Parameter-Based Attacks Against DNN with LFI 267

(a) LFI with one spot (b) LFI with two spots

Fig. 3. Impact on the accuracy of LFI on IRIS B model. Average accuracy over 50
inferences (blue) and number of faulted bits (red). (Color figure online)

X-axis corresponds to the position of the laser in the Flash memory. Four regular
patterns of accuracy drop corresponding to the four stored weights are clearly
visible. The observed accuracy drops (5 to 6 per pattern) match the coordinates
of the MSBs with a decreasing correlation. For MSB bits, the model is close to a
random-guess level (i.e. around 30%). On average, around 6 bit-sets are induced
and the most harmful configuration corresponds to only 5 bit-sets (at 790µm)
leading to an adversarial accuracy of 30%.

One limitation is that only 1/4 of all weights could be faulted during one
inference. However, since our laser platform integrates a second spot, we exper-
imented a configuration where one spot targets the first bit line (i.e the MSB of
the weight column w3 in Fig. 2b) and the second spot targets the bit line #16
(i.e. the MSB of the weight column w1). As a result, two weight columns can be
targeted during one inference, and half of the weights are likely to be faulted. As
reported in Fig. 3b more bit-set faults were injected (up to 12), and the accuracy
drop for non-MSB bits is more important.

To extend the previous experiments, we embedded the MNIST model that
gathers 620 weights (i.e. 4,960 bits) and strictly kept the same experimental
setup. Results are presented in Fig. 4. On average, we observe more induced bit-
sets with the most important drop of accuracy (65.5%) reached with only 25
bit-sets at X = 1, 100µm. We also point out that, in some cases, a very slight
improvement of the accuracy appeared.

In comparison with IRIS B (Fig. 3a), we note that bit lines are less distinctive.
Indeed, even if the position of the most significant bits can be identified, other
bits are difficult to distinguish. Actually, in Fig. 2b the bit line (green box)
represents all single bit lines connected to the same bit index for different 32-bit
words addresses. Since the MNIST model has more parameters, almost all bit
lines are linked to a weight parameter value stored in Flash memory. The laser
spot, with a size of 15µm, is larger than a single bit line, explaining why bit
line indexes are hardly discernible. Moreover, depending on the laser position,
the effective area of the spot can encompass two different bit line indexes.

268 M. Dumont et al.

Fig. 4. Impact on the accuracy of LFI on a MLP model trained on MNIST. Average
accuracy over 100 inferences (blue) and number of faulted bits (red). (Color figure
online)

4.3 Advanced Guided-LFI

Adapt BFA to LFI. So far, we exhaustively attacked all the parameters stored
in memory. This brute-force strategy may be impractical with deeper models.
Therefore, an important objective for an evaluator is to optimally select the most
sensitive bits to fault. For that purpose, as in [11], we adapted the bit selection
principle of the standard BFA3 to our fault model. We refer to this adapted
attack as BSCA (Bit-Set Constrained Attack). We also adapted the adversarial
objective by introducing an adversarial budget [6,15] representing a maximum of
faults the evaluator is able to process. Indeed, the random-guess level objective
of [3] overestimates the number of faults and raises variability issues because of
the last necessary bit-flips needed to ultimately reach the objective [15]. There-
fore, we set the adversarial budget to 20 bit-sets.

As inputs, the BSCA has the target model MW , its parameters W , the weight
column index m in the Flash memory, the bit line index b and the adversarial
budget S. The output of the BSCA is a new model Mm,b

W ′ with W ′ and W that
differ only by at most S bit-sets. Then, we can compute an adversarial accuracy
on Mm,b

W ′ and measure the accuracy drop compared to the nominal performance
of Mm,b

W . The BSCA proceeds through the following steps:

1. The BFA ranks the most sensitive bits of W according to ∇bL.
2. Exclude the bits already set to 1 and not related to m and b.
3. Pick the best bit-set and perform the fault permanently in M .
4. Repeat the process until reaching S. The output is the faulted model Mm,b

W ′ .

3 [3]: https://github.com/elliothe/BFA/.

https://github.com/elliothe/BFA/

Evaluation of Parameter-Based Attacks Against DNN with LFI 269

Finally, we perform BSCA over all the weight columns and bit line and keep the
faulted model, simply referred as MW ′ , with the worst accuracy (Acc) evaluated
on a test set

(
Xtest, Y test

)
: MW ′ = arg minm,b Acc(M

m,b
W ′ ,Xtest, Y test)

We used the MNIST model and simulated the BSCA to find the 20 most sig-
nificant weights to fault for each weight column. For illustration purpose, Fig. 5a
shows the effect of bit-set induced on the 8 bits of a weight only for the second
weight column (with the MSB refered as Bit #0). Among the most sensitive
weights from the second column, only few bit-sets on the most significant bits
efficiently alter the model performance, bit-sets on other bits have less or even
no influence.

Experiments and Results. The basic idea is to use the BSCA to guide the
LFI. For that purpose, we need to put to the test that LFI reach (near) identical
performance than what expected by simulations. We ran a BSCA simulation (in
Python) over all the weight columns and bit lines that pointed out the MSB
of the second column weight as the most sensitive. Therefore, contrary to the
previous experiments, the laser source was triggered only when the 20 most
sensitive weights were read from the Flash. The laser location was set accordingly
(X = 760µm) and the power increased to 360 mW to ensure a higher success
rate on weights stored in distant addresses.

The blue curve in Fig. 5b represents our experimental results (mean accuracy
over 100 inferences) while the red one is the BSCA simulations for the MSB.
First, we can notice that experimental and simulation results are almost similar,
meaning that we can guide our LFI with high reliability and confidence4. For
an adversarial budget of only 5 bit-sets (0.1% faulted bits) the embedded model
accuracy drops to 39% which represents a significant loss and a strong integrity
impact compared to the nominal performance of 92%. Moreover, after 10 bit-sets
(accuracy to 25%), the most effective faults have been injected and the accuracy
did not decrease anymore. In a security evaluation context, this observation
positions the level of robustness of the model according to the adversarial budget.

4.4 Exploitation of LFI for Model Extraction

To illustrate the diversity of the adversarial goal an evaluator aims to evaluate
(Sect. 2.1), we propose a first insight of the use of LFI and BSCA for model
extraction. At S&P 2022, Rakin et al. [13] demonstrated how to exploit BFA
with RowHammer (i.e., exclusively DRAM platforms) in a model extraction
scenario. The goal is to steal the performance of a model of which an adversary
knows the architecture and a small part of the training data but not the internal
parameters. The idea of [13] is to guess the value of the maximum of MSBs of
the model thanks to rowhammer (bit-flip) and then to train a substitute model
with these values as a training constraint.

4 The fact that experimental results are slightly more powerful than simulations may
be explained by the impact of the width of the laser spot on nearby memory cells.

270 M. Dumont et al.

(a) Influence of the faulty bit number on
the accuracy for the weight column 2 (sim-
ulation results).

(b) LFI BSCA attack targeting the 20
most sensitive MSB of the 2nd weight col-
umn.

Fig. 5. Guided-LFI on a MLP model trained on MNIST. (Color figure online)

Even though we rely on a different fault model (bit-set with LFI), it is rela-
tively straightforward to follow the same extraction method as in [13]. Indeed,
by comparing the outputs of the model on a set of inputs (that could be random
ones) with and without LFI we can guess the value of the targeted bit: if the
faulted outputs are not strictly identical than the nominal ones, that means the
bit-set has an effect and therefore the bit was at 0. Otherwise, the bit value was
already to 1 or the bit-set has no influence on the outputs. We simulated the
BSCA to a deeper MNIST model with 3 layers with respectively 128, 64 and 10
neurons (109K parameters) and used 500 random input images to compare the
outputs with and without bit-set faults on the MSB of each weight. To remove
ambiguity, we made the simple assumption that working with enough inputs, a
bit-set on a MSB at 0 has always an impact on the outputs. With that method,
we managed to extract 91.9% of the MSB of the model parameters, which is
enough to efficiently trained a substitute model, consistently to [13]. Further
analysis and experiments (more particularly, impact of the model architecture
and the input set) should be the subject of future dedicated publications.

5 Conclusion

This work aims to contribute to the development of reliable evaluation protocols
and tools for the robustness of embedded neural network models, a growing
concern for future standardization and certification actions of critical AI-based
systems. We conclude by highlighting some research tracks that may pursue this
work and fill some limitations with further analysis on other model architectures
and platforms (e.g., system-on-chip).

First, our results are not limited by the model complexity (BFA has been
demonstrated on state-of-the-art deeper models with millions of parameters) but
by the complexity of the MCUs. Indeed, the challenge is to characterize how the

Evaluation of Parameter-Based Attacks Against DNN with LFI 271

Flash memory is organized so that the evaluator can precisely target the weight
columns and bit lines. Therefore, further experiments would be focused to other
targets (e.g., Cortex M4 and M7).

Second, contrary to adversarial examples with recent attacks specifically
designed for robustness evaluation purposes [18], parameter-based attack still
lacks of maturity and recent works highlight limitations of the BFA [6,15] and
propose improvements or alternatives. Thus, considering or combining more
attack methods would improve the evaluation by simulating a more powerful
adversary.

Finally, this work could be widen to the practical evaluation of protections
against weight-based adversarial attacks. Additionally to traditional generic
countermeasures against fault injection [10], specific defense schemes against
BFA encompass weight clipping, clustering-based quantization [2], code-based
detectors [19] or adversarial training [6]. To the best of our knowledge, none of
these defenses have been practically evaluated against fault attack means such
as RowHammer, glitching or LFI. As for adversarial examples (with so many
defenses regularly broken afterwards) the definition of proper and sound eval-
uations of defenses against parameter-based attacks is a research action of the
highest importance.

Acknowledgment. This work is supported by (CEA-Leti) the European project
InSecTT (www.insectt.eu, ECSEL JU 876038) and by the French ANR in the
Investissements d’avenir program (ANR-10-AIRT-05, irtnanoelec); and (MSE) by the
ANR PICTURE program (https://picture-anr.cea.fr). This work benefited from the
French Jean Zay supercomputer with the AI dynamic access program.

References

1. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Con-
ference on Learning Representations (2014)

2. Hou, X., Breier, J., Jap, D., Ma, L., Bhasin, S., Liu, Y.: Security evaluation of
deep neural network resistance against laser fault injection. In: Proceedings of
the International Symposium on the Physical and Failure Analysis of Integrated
Circuits, IPFA, pp. 1–6 (2020)

3. Rakin, A.S., He, Z., Fan, D.: Bit-flip attack: crushing neural network with pro-
gressive bit search. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019

4. Carlini, N., et al.: On evaluating adversarial robustness. arXiv preprint
arXiv:1902.06705 (2019)

5. Tramer, F.: Detecting adversarial examples is (nearly) as hard as classifying them.
In: International Conference on Machine Learning, pp. 21692–21702. PMLR (2022)

6. Stutz, D., Chandramoorthy, N., Hein, M., Schiele, B.: Random and adversarial
bit error robustness: energy-efficient and secure DNN accelerators. IEEE Trans.
Pattern Anal. Mach. Intell. (2022)

7. Papernot, N., McDaniel, P., Sinha, A., Wellman, M.P.: SoK: security and pri-
vacy in machine learning. In: IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 399–414 (2018)

www.insectt.eu
https://picture-anr.cea.fr
http://arxiv.org/abs/1902.06705

272 M. Dumont et al.

8. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, New York (2007). https://doi.org/10.1007/978-0-387-
38162-6

9. Joud, R., Moëllic, P.-A., Pontié, S., Rigaud, J.-B.: A practical introduction to side-
channel extraction of deep neural network parameters. In: Buhan, I., Schneider,
T. (eds.) CARDIS 2022. LNCS, vol. 13820, pp. 45–65. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-25319-5 3

10. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012)

11. Yao, F., Rakin, A.S., Fan, D.: DeepHammer: depleting the intelligence of deep
neural networks through targeted chain of bit flips. In: 29th USENIX Security
Symposium, pp. 1463–1480 (2020)

12. He, Z., Rakin, A.S., Li, J., Chakrabarti, C., Fan, D.: Defending and harnessing
the bit-flip based adversarial weight attack. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14095–14103 (2020)

13. Rakin, A.S., Chowdhuryy, M.H.I., Yao, F., Fan, D.: Deepsteal: advanced model
extractions leveraging efficient weight stealing in memories. In: 2022 IEEE Sym-
posium on Security and Privacy (SP), pp. 1157–1174. IEEE (2022)

14. Liu, L., Guo, Y., Cheng, Y., Zhang, Y., Yang, J.: Generating robust DNN with
resistance to bit-flip based adversarial weight attack. IEEE Trans. Comput. (2022)

15. Hector, K., Moëllic, P.-A., Dumont, M., Dutertre, J.-M.: A closer look at evaluating
the bit-flip attack against deep neural networks. In: IEEE 28th International Sym-
posium on On-Line Testing and Robust System Design (IOLTS), pp. 1–5 (2022)

16. Rakin, A.S., He, Z., Li, J., Yao, F., Chakrabarti, C., Fan, D.: T-BFA: targeted bit-flip
adversarial weight attack. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2021)

17. Colombier, B., Menu, A., Dutertre, J.M., Moellic, P.A., Rigaud, J.B., Danger,
J.L.: Laser-induced single-bit faults in flash memory: instructions corruption on a
32-bit microcontroller. In: IEEE International Symposium on Hardware Oriented
Security and Trust, HOST (2019)

18. Liu, Y., Cheng, Y., Gao, L., Liu, X., Zhang, Q., Song, J.: Practical evaluation of
adversarial robustness via adaptive auto attack. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 15105–15114 (2022)

19. Javaheripi, M., Koushanfar, F.: Hashtag: hash signatures for online detection of
fault-injection attacks on deep neural networks. In: IEEE/ACM International Con-
ference On Computer Aided Design (ICCAD), pp. 1–9 (2021)

https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-031-25319-5_3

Towards Scenario-Based Safety Validation
for Autonomous Trains with Deep

Generative Models

Thomas Decker1,2(B), Ananta R. Bhattarai1,3, and Michael Lebacher1

1 Siemens AG, Munich, Germany
2 Ludwig Maximilians Universität, Munich, Germany
3 Technical University of Munich, Munich, Germany

{thomas.decker,michael.lebacher}@siemens.com, ananta.bhattarai@tum.de

Abstract. Modern AI techniques open up ever-increasing possibilities
for autonomous vehicles, but how to appropriately verify the reliability of
such systems remains unclear. A common approach is to conduct safety
validation based on a predefined Operational Design Domain (ODD)
describing specific conditions under which a system under test is required
to operate properly. However, collecting sufficient realistic test cases to
ensure comprehensive ODD coverage is challenging. In this paper, we
report our practical experiences regarding the utility of data simulation
with deep generative models for scenario-based ODD validation. We con-
sider the specific use case of a camera-based rail-scene segmentation sys-
tem designed to support autonomous train operation. We demonstrate
the capabilities of semantically editing railway scenes with deep genera-
tive models to make a limited amount of test data more representative.
We also show how our approach helps to analyze the degree to which a
system complies with typical ODD requirements. Specifically, we focus
on evaluating proper operation under different lighting and weather con-
ditions as well as while transitioning between them.

Keywords: Operational Design Domain (ODD) · Safety Validation ·
Deep Generative Models · Autonomous Train · Rail-Scene
Segmentation

1 Introduction

Artificial Intelligence (AI) enables technologies that can process vast amounts of
data from various sources in real time and its potential for autonomous vehicles
is progressively transforming the transportation industry. This is especially true
for the railway domain, where driverless trains are associated with various eco-
nomic and societal benefits [14]. Moreover, fully automated trains are already
in service for many years in constrained and well-controlled environments such
as metro lines with platform screen doors [2]. However, enabling operation in
general open settings is significantly more demanding as trains are constantly
required to perceive and interact with the current environment. While AI has

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 273–281, 2023.
https://doi.org/10.1007/978-3-031-40923-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40923-3_20&domain=pdf
https://doi.org/10.1007/978-3-031-40923-3_20

274 T. Decker et al.

shown promising capabilities in this regard [12], it is still unclear how to rig-
orously assure the safety of such systems from a regulatory and legal perspec-
tive [2]. A popular approach to conduct safety validation of automated vehicles is
scenario-based testing [10]. Ideally, fully automated trains are expected to handle
any environmental conditions and even unexpected events in a safe and robust
manner, but the resulting space of possible scenarios is infeasible to test glob-
ally. As a consequence, scenario-based testing is typically performed considering
a predefined Operational Design Domain (ODD) [5] which refers to all specific
conditions under which a system is strictly required to behave properly including
physical, geographical and regulatory constraints [4]. While there already exist
proposals regarding ODD specifications for railway applications [13], collecting
sufficient test cases covering all relevant aspects and systematically conduct-
ing appropriate evaluations still remains challenging. However, AI-powered data
generation in the form of deep generative models has demonstrated remarkable
capacities to realistically simulate complex data structures [1]. In this work,
we propose a framework to systematically leverage deep generative models for
scenario-based testing and summarize our practical experiences. Specifically, we
create high-resolution image data with conditional Generative Adversarial Net-
works (cGANs) [15] allowing us to fix high-level image contents, such as the
position of rails or other objects while altering different ODD-related character-
istics during simulation. In this way, we can make a limited number of test cases
more representative for the purpose of safety validation. We further apply our
approach to test a camera-based rail-scene segmentation model that is imple-
mented via a deep neural network [17]. Such systems enable accurate perception
of the frontal environment which is crucial for safe train operation and obstacle
detection [11]. We demonstrate how to perform a systematic model evaluation
under natural perturbations like different lighting and weather conditions as
well as while transitioning between them. Such an analysis complements clas-
sical robustness certification [6,9] and provides an additional tool to validate
system safety in a comprehensive way.

2 Background

GANs Generative adversarial networks (GANs) are a popular category of deep
generative models that have been extensively studied in computer vision and
demonstrate remarkable capabilities to simulate realistic images and videos [7].
GANs consist of two neural networks, a generator and a discriminator, that are
trained in concert to create new samples resembling the training data. Condi-
tional GANs (cGANs) are extended versions that allow controlling the proper-
ties of generated data via additional input arguments. For images, cGANs enable
semantic editing, style translation or creating images with specific details [8].

Semantic Segmentation and RailSem19 Semantic segmentation describes
the task of dividing an image into semantically distinct sub-regions and assigning
them a corresponding label. Deep neural networks attain state-of-the-art perfor-
mances for this purpose and have also been applied in corresponding railway

Towards Scenario-Based Safety Validation for Autonomous Trains 275

Fig. 1. Proposed approach for scenario-based ODD validation with cGANs.

applications [11]. Such models are typically trained via labeled training data
comprising images and matching ground truth semantic label masks. A popular
metric to evaluate segmentation performance is the Intersection over Union (IoU)
score ranging from 0 to 1, where a score of 1 indicates a perfect match between
ground truth and the predicted regions and 0 means no overlap. RailSem19 [16]
is a publicly available dataset for semantic segmentation of railway scenes. It
contains 8500 high-resolution images of real train and tram front views together
with pixel-wise semantic labels corresponding to 19 different classes. The pro-
vided labels allow to distinguish a variety of different safety-critical objects such
as rails, cars, humans or other on-rail vehicles. The dataset also covers various
different operation environments, illuminations and weather conditions which all
resemble typical components of ODD descriptions for railway applications [13].

3 Proposed Methodology

The goal of our approach is to leverage deep generative models in a systematic
way to validate if an AI-powered model fully complies with specific ODD require-
ments given only a limited amount of test cases. Our proposed methodology is
illustrated in Fig 1. As usual for safety validation, we suppose access to a prede-
fined ODD description as well as a set of representative scenario data (a). In our
use case, an ODD might among other things also require models to work well
under changing lighting conditions and the extensive RailSem19 dataset pro-
vides corresponding scenarios. As a second step, we utilize the scenario data for
training a cGAN to enable conditional generation of new relevant scenarios (b).
In particular, we choose the pix2pixHD architecture [15] that enables the cre-
ation of high-resolution images via a generator G receiving two distinct inputs.
First, the semantic structure of the desired image can be controlled by provid-
ing a semantic label mask s informing G where in the image specific objects or

276 T. Decker et al.

Fig. 2. Styles represented by cluster centers of class Sky: cloudy, sunny and night.

Fig. 3. Synthesizing snowfall by altering features of different semantic categories.

structures should appear. Second, a separate encoder network E was designed to
grasp the stylistic characteristics of different semantic categories. More precisely,
E encodes low-level details of regions in x into low-dimensional feature vectors
z forming a numerical style space. This setup allows us to semantically manipu-
late a given scenario to increase test capacities and improve ODD coverage. To
do so, we first run the trained encoder on all instances in the training set and
save the resulting feature vectors. Following [15], we perform clustering on these
features for each semantic category to localize ODD-related concepts in the style
space (c). For instance, the cluster centers for the category Sky can encode styles
such as sunshine, cloudiness or night. This enables us to synthesize new realis-
tic images with identical high-level structures determined by s but exhibiting
different stylistic properties, like the same railway scene under varying lighting
conditions. Moreover, we can also simulate continuous transitioning between two
styles by interpolating the corresponding style encodings during image genera-
tion. To systematically test how well a model complies with an ODD requirement
we can semantically manipulate available scenarios to exhibit specific properties
and evaluate its effect on the model’s performance (d). In the case of rail-scene
segmentation this methodology allows us for instance to explicitly validate if a
model works sufficiently well under sunny, cloudy or nighttime illumination.

4 Results and Experiences

Scenario Simulation To simulate test scenarios we trained the proposed cGAN
on RailSem19 based on the default implementation provided by the authors [15].

Towards Scenario-Based Safety Validation for Autonomous Trains 277

Fig. 4. Top: Original image, and synthesized versions with minor artifacts. Bottom:
Original image, and synthesized versions with significant artifacts.

Applying k-means clustering to all style encoding indeed enables us to locate
k=10 distinct regions in the style space that correspond to different lighting and
weather conditions. Figure 2 shows some styles represented by cluster centers for
the sky class, which we refer to as prototypical cloudy, sunny, and night dur-
ing our experiments. To manipulate illumination, we replace the feature vector
of the sky instance in a given image with desired cluster center and synthesize
a new image as outlined in Sect. 3. Changing the weather to snowfall involves
manipulating several instances in the railway scene individually. Therefore, we
replace the original style features of all semantic classes with their respective
cluster centers that best depict the snowfall weather condition. Figure 3 shows
how the features of each semantic category are altered to translate an original
weather condition into snowfall. Overall, images with a significant amount of
sky, vegetation, terrain or rails are of high quality, e.g. Fig 4. However, we also
observed significant artifacts while encoding images with buildings, people and
cars. Figure 4 shows such an example where also the simulation of snow fails.
Hence, model evaluations on synthesized examples should ideally be comple-
mented by manual human inspection on a case-by-case basis to ensure sound
conclusions.

Model Evaluation For our experiments we use the PSPNet [17], which we
train on RailSem19 similarly to the procedure in [16]. Out of the 8500 available

278 T. Decker et al.

images we randomly selected 7140 for training and fine-tuning leaving us only
1360 for rigorous testing. On this test set, we achieve a mean IoU of 0.65 over
all classes which is comparable with the reference performance reported in [16].
To validate if the model also complies with the ODD-related requirements of
proper operation under different lighting conditions and snow we applied our
proposed methodology to create 4 new versions of the original test set where
we modified the style of all images accordingly. The corresponding IoU scores
per segmentation class are reported in Fig. 5. Our evaluation reveals that in all
scenarios the model performs well with respect to the detection of tram/rail
tracks or trackbeds but seems to struggle with traffic lights/signs or trucks.
Also, simulating nighttime conditions seems to be particularly detrimental to
the model performance, as for instance indicated by the significant IoU drops
for segmenting cars, humans, construction sites or other on-rail vehicles. Since
accurate detection of corresponding objects is potentially safety-critical our eval-
uation possibly reveals a crucial deficiency. To verify if this is indeed the case or
just due to simulation artifacts we can also evaluate the model behavior on indi-
vidual examples transitioning from their original style to night mode. Figure 6
displays an image with an on-rail vehicle in front of the train, that is accurately
detected under the original illumination. Progressively moving to night causes
the model to miss the object, but its visual appearance also becomes unnatural
requiring closer inspection by a human auditor. Moreover, by evaluating other
images under style transition we can demonstrate other deficiencies. In Fig. 7
the model performs well on the original image. Since it is already sunny, the
synthesized sunny version is quite similar but the rail tracks are perceived as
tram tracks by the model. Surprisingly, when transitioning towards night con-
ditions the prediction suddenly turns correct at some point, although the visual
appearance of the rails changes only marginally. Similarly in Fig. 8, moving to
snow causes the model to suddenly confuse rail and tram tracks despite the high
visual similarity of the tracks in all pictures.

Fig. 5. Class-wise IoU results of the trained segmentation model on test data.

Towards Scenario-Based Safety Validation for Autonomous Trains 279

Fig. 6. Change in IoU for an on-rail object when changing the original lighting to
night-time. Huge performance decline when going from 6b to 6c.

Fig. 7. Change in IoU of rail tracks when moving from original to night illumination.
Unstable performance when going from 7a to 7b and 7c to 7d.

Fig. 8. Change in IoU of the rail tracks when changing the original weather condition
to snow. Despite similarity, performance drops from 8b to 8c.

5 Conclusion

In this work we report our experiences with cGANs to validate if an AI-powered
model complies with typical ODD requirements, especially varying weather and
lighting conditions. We intend to expand the approach to also enable the render-
ing of new objects such as obstacles, persons or vehicles on the rails. Comparing
the simulation quality of similar generative model types, such as variants of
recently popularized Diffusion Models [3] is also relevant for future work.

280 T. Decker et al.

Acknowledgement. We acknowledge the support from the Federal Ministry for Eco-
nomic Affairs and Climate Action (BMWK) via grant agreement 19I21039A.

References

1. Bond-Taylor, S., Leach, A., Long, Y., Willcocks, C.G.: Deep generative modelling:
A comparative review of VAEs, GANs, normalizing flows, energy-based and autore-
gressive models. IEEE Trans. Pattern Anal. Mach. Intell. 44, 7327–7347 (2021)

2. Flammini, F., De Donato, L., Fantechi, A., Vittorini, V.: A vision of intelligent
train control. In: Reliability, Safety, and Security of Railway Systems. Modelling,
Analysis, Verification, and Certification: 4th International Conference, RSSRail
2022, Paris, France, June 1–2, 2022, Proceedings. pp. 192–208. Springer (2022)
https://doi.org/10.1007/978-3-031-05814-1 14

3. Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Dekel, T., Mosseri, I., Irani,
M.: Imagic: Text-based real image editing with diffusion models. arXiv preprint
arXiv:2210.09276 (2022)

4. Koopman, P., Fratrik, F.: How many operational design domains, objects, and
events? Safeai@ aaai 4 (2019)

5. Koopman, P., Wagner, M.: Toward a framework for highly automated vehicle safety
validation. SAE Technical Paper, Tech. Rep (2018)

6. Li, L., Xie, T., Li, B.: Sok: Certified robustness for deep neural networks. In: 44th
IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA, USA, pp.
22–26 (2023). IEEE (2023)

7. Liu, M.Y., Huang, X., Yu, J., Wang, T.C., Mallya, A.: Generative adversarial
networks for image and video synthesis: algorithms and applications. Proc. IEEE
109(5), 839–862 (2021)

8. Pang, Y., Lin, J., Qin, T., Chen, Z.: Image-to-image translation: methods and
applications. IEEE Trans. Multimedia 24, 3859–3881 (2021)

9. Paterson, C., Wu, H., Grese, J., Calinescu, R., Păsăreanu, C.S., Barrett, C.: Deep-
Cert: Verification of Contextually Relevant Robustness for Neural Network Image
Classifiers. In: Habli, I., Sujan, M., Bitsch, F. (eds.) SAFECOMP 2021. LNCS,
vol. 12852, pp. 3–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
83903-1 5

10. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-
based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020)

11. Ristić-Durrant, D., Franke, M., Michels, K.: A review of vision-based on-board
obstacle detection and distance estimation in railways. Sensors 21(10), 3452 (2021)

12. Tang, R., De Donato, L., Besinović, N., Flammini, F., Goverde, R.M., Lin, Z.,
Liu, R., Tang, T., Vittorini, V., Wang, Z.: A literature review of artificial intel-
ligence applications in railway systems. Transp. Res. Part C Emerging Technol.
140, 103679 (2022)

13. Tonk, A., Boussif, A., Beugin, J., Collart-Dutilleul, S.: Towards a specified opera-
tional design domain for a safe remote driving of trains. In: Proceedings of the 31st
European Safety and Reliability Conference, Angers, France. pp. 19–23 (2021)

14. Trentesaux, D., et al.: The autonomous train. In: 2018 13th Annual Conference on
System of Systems Engineering (SoSE). pp. 514–520. IEEE (2018)

15. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-
resolution image synthesis and semantic manipulation with conditional GANs. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 8798–8807 (2018)

https://doi.org/10.1007/978-3-031-05814-1_14
http://arxiv.org/abs/2210.09276
https://doi.org/10.1007/978-3-030-83903-1_5
https://doi.org/10.1007/978-3-030-83903-1_5

Towards Scenario-Based Safety Validation for Autonomous Trains 281

16. Zendel, O., Murschitz, M., Zeilinger, M., Steininger, D., Abbasi, S., Beleznai, C.:
Railsem19: A dataset for semantic rail scene understanding. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.
pp. 0–0 (2019)

17. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 2881–2890 (2017)

Author Index

A
Adibhatla, Sridhar (“Shreeder”) 227

B
Baylan, Murat Can 151
Becker, Jürgen 181
Beyer, Michael 243
Bhattarai, Ananta R. 273
Bloem, Roderick 135
Blume, Holger 243
Borrmann, Jan Micha 243

C
Chechik, Marsha 3
Cheng, Chih-Hong 89

D
de Moraes Machado, Tiago 25
Decker, Thomas 273
Deevy, Spencer 25
Di Paola, Donato 165
Diemert, Simon 3
Dörr, Tobias 181
Dumont, Mathieu 259
Dutertre, Jean-Max 259

E
Ebrahimi, Masoud 135
Escorihuela, Emmanuelle 227
Esen, Hasan 89

F
Felderer, Michael 107
Frey, Joshua 165
Frick, Markus 107

G
Geissler, Florian 75
Giehl, Alexander 196

Gotlieb, Arnaud 64
Groner, Raffaela 107
Grunske, Lars 151
Guntoro, Andre 243

H
Habli, Ibrahim 213
Hawkins, Richard 11
Hector, Kevin 259
Heinl, Michael P. 196
Hillen, Daniel 165
Hirn, Sophie 107
Huang, Bing 55
Huang, Fuqun 41, 55

J
Joyce, Jeffrey 3

K
Kaakai, Fateh 227
Knoll, Alois 89
König, Sandra 135

L
Lawton, Tom 213
Laxman, Nishanth 165
Lebacher, Michael 273
Liao, Brian Hsuan-Cheng 89

M
Menghi, Claudio 3
Millet, Laure 3
Modhafar, Amen 25
Moëllic, Pierre-Alain 259
Mossige, Morten 64
Motii, Anas 121

N
Ničković, Dejan 135

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
J. Guiochet et al. (Eds.): SAFECOMP 2023, LNCS 14181, pp. 283–284, 2023.
https://doi.org/10.1007/978-3-031-40923-3

https://doi.org/10.1007/978-3-031-40923-3

284 Author Index

O
O’Beirne, Wesley 25
Ogata, Takehito 165
Otsuka, Satoshi 165
Ozturk, Berk 213

P
Pai, Ganesh 227
Paige, Richard F. 25
Pattabiraman, Karthik 75
Paulitsch, Michael 75
Pekaric, Irdin 107
Peters, Sebastian N. 196
Pontié, Simon 259
Puch, Nikolai 196
Pursche, Maximilian 196

Q
Qutub, Syed 75

R
Raschke, Alexander 107
Rees, Chris 3
Reich, Jan 165
Ryan Conmy, Philippa 11, 213

S
Schade, Florian 181
Schmittner, Christoph 135
Siefke, Lennart 151
Sommer, Volker 151
Song, You 41
Spieker, Helge 64

T
Tarrach, Thorsten 135
Tichy, Matthias 107

V
Viger, Torin 3

W
Wang, Yichen 55
Wang, Yikun 55
Wassyng, Alan 25
Watanabe, Natsumi 165
Witte, Thomas 107

X
Xu, Wenhao 41

Z
Zhao, Bo 41

	 Preface
	 Organization
	 Contents
	Safety Assurance
	Assurance Case Arguments in the Large: The CERN LHC Machine Protection System
	1 Introduction
	2 The Machine Protection System
	3 Eliminative Argumentation for Assurance Cases
	4 The Machine Protection System Assurance Case
	5 Lessons Learned from Our Collaborative Development
	6 Conclusion
	References

	Identifying Run-Time Monitoring Requirements for Autonomous Systems Through the Analysis of Safety Arguments
	1 Introduction
	2 Background
	2.1 Dialectic Safety Arguments

	3 Pre-deployment
	3.1 Operational Dialectic Arguments
	3.2 Identifying Run-Time Monitoring Requirements

	4 Post-deployment
	4.1 Organisation and Continual Monitoring Processes
	4.2 Impact Assessment Process

	5 Conclusions and Further Work
	References

	Redesigning Medical Device Assurance: Separating Technological and Clinical Assurance Cases
	1 Introduction
	2 Preliminaries
	2.1 Background
	2.2 Basic Concepts

	3 Separation
	3.1 The Monolithic Assurance Case
	3.2 Technological Assurance Case
	3.3 Clinical Assurance Case
	3.4 Maintenance and Dependencies in the TAC/CAC Combination
	3.5 Evidence in the TAC and CAC

	4 Observations
	5 Related Work
	6 Conclusion
	References

	Software Testing and Reliability
	A Cognitive Framework for Modeling Coincident Software Faults: An Experimental Study
	1 Introduction
	2 The Cognitive Framework for Modeling Coincident Faults
	2.1 Terminologies
	2.2 The Cognitive Framework for Coincident Faults

	3 Research Questions and Hypotheses
	4 The Experimental Study
	4.1 The Programming Task
	4.2 The Participants
	4.3 Data Collection
	4.4 Data Analysis

	5 The Results Analysis
	6 Discussions
	6.1 Implications for Avoiding Coincident Faults in N-version Programming
	6.2 Limitations and Future Studies

	7 Conclusion
	References

	A Taxonomy of Software Defect Forms for Certification Tests in Aviation Industry
	1 Introduction
	2 Background and Concepts
	3 Methodologies
	3.1 Grounded Theory and Coding
	3.2 The Coder and Data Set
	3.3 The Coding Results

	4 Application and Validation
	4.1 Participants and Procedures
	4.2 The Validation Data

	5 Results Analysis and Discussions
	6 Conclusion
	References

	Constraint-Guided Test Execution Scheduling: An Experience Report at ABB Robotics
	1 Introduction
	2 Test Execution Scheduling at ABB Robotics
	3 Automated Testing Process
	3.1 Data Initialization and Acquisition
	3.2 Test Case Prioritization
	3.3 Selection and Scheduling
	3.4 Distribution and Execution
	3.5 Reporting

	4 Empirical Evaluation
	5 Lessons Learned
	6 Conclusion
	References

	Neural Networks Robustness and Monitoring
	A Low-Cost Strategic Monitoring Approach for Scalable and Interpretable Error Detection in Deep Neural Networks
	1 Introduction
	2 Related Work
	3 Experimental Setup and Preliminary Study
	4 Model
	5 Results
	5.1 Detector Performance
	5.2 Minimal Monitoring Features
	5.3 Overhead
	5.4 Comparison with Other Detector Approaches

	6 Summary and Future Work
	References

	Are Transformers More Robust? Towards Exact Robustness Verification for Transformers
	1 Introduction
	2 Related Works
	2.1 Robustness Verification for Neural Networks
	2.2 Robustness Verification for Transformers

	3 Preliminaries
	4 Methodology
	4.1 Problem Formulation
	4.2 MIQCP Encoding
	4.3 Acceleration Heuristics

	5 Experimental Results and Discussions
	5.1 Lane Departure Warning
	5.2 Accuracy Benchmark
	5.3 Ablation Study
	5.4 NN Robustness Comparisons

	6 Conclusion
	References

	Model-Based Security and Threat Analysis
	Model-Based Generation of Attack-Fault Trees
	1 Introduction
	2 Background
	2.1 Fault/Attack Trees and Their Combination
	2.2 Vulnerability Metrics
	2.3 Robot Operating System (ROS)
	2.4 Running Example

	3 SafeSec Attack-Fault Tree Generation Toolchain
	3.1 Dataflow Model
	3.2 Deployment Model
	3.3 Attack Tree Generation
	3.4 Attack-Fault Tree Generation

	4 Discussion
	5 Related Work
	6 Conclusion and Future Work
	References

	MBTA: A Model-Based Threat Analysis Approach for Software Architectures
	1 Introduction
	2 MBTA Approach
	3 Model-Driven Development
	3.1 Modeling the Architecture: ComponentUML
	3.2 Modeling the Security Solutions as Security Patterns
	3.3 Formalizing the Threats Using OCL

	4 Case Study: SCADA System
	4.1 Description and Modeling
	4.2 Comparison of MBTA and ASTORIA

	5 Related Work
	6 Conclusion
	References

	Attribute Repair for Threat Prevention
	1 Introduction
	2 Threat Modelling
	3 Automated Threat Prevention
	3.1 Attribute Repair
	3.2 Attribute Repair as Weighted MaxSMT
	3.3 Partial Repair of Unrepairable Models

	4 Implementation and Case Studies
	5 Related Work
	6 Discussion and Future Work
	References

	Safety of Autonomous Driving
	Probabilistic Spatial Relations for Monitoring Behavior of Road Users
	1 Introduction
	2 Related Work
	3 Probabilistic Spatial Relations
	3.1 Probabilistic Geometric Objects
	3.2 Probabilistic Disjoints and Overlaps
	3.3 Probabilistic Covers and CoveredBy
	3.4 Example

	4 Building Probabilistic Geometric Objects
	4.1 Model Uncertainties Caused by Pose Errors
	4.2 Model Uncertainties Caused by Trajectory Predictions

	5 Application in Road Traffic
	6 Conclusion
	References

	Concept and Metamodel to Support Cross-Domain Safety Analysis for ODD Expansion of Autonomous Systems
	1 Introduction
	2 Related Work
	3 Concept
	3.1 Method Overview
	3.2 Concepts for Safety-Driven Environment Representation

	4 Concept Formalization
	4.1 Metamodel
	4.2 Analysis Algorithm

	5 Case Study
	5.1 Creation and Analysis of Safety-Driven Environment Representation
	5.2 Discussion

	6 Conclusion and Future Work
	References

	Security Engineering
	Pattern-Based Information Flow Control for Safety-Critical On-Chip Systems
	1 Introduction
	2 Related Work
	3 Background and Motivation
	3.1 The XANDAR Design Methodology
	3.2 Automotive Case Study

	4 Concept and Input Modeling
	4.1 Formalization of Inputs from XANDAR
	4.2 Lattice-Based Integrity Framework

	5 Pattern Implementation
	5.1 APU Configuration
	5.2 Integrity Propagation
	5.3 Integrity Verification

	6 Conclusions and Future Work
	References

	From Standard to Practice: Towards ISA/IEC 62443-Conform Public Key Infrastructures
	1 Introduction
	2 Related Work
	3 Requirements Analysis
	4 PKI Guideline
	4.1 PKI Structure
	4.2 PKI Processes

	5 Implementation
	5.1 Existing PKI Interfaces
	5.2 Selecting a PKI Tool
	5.3 PKI Installation and Configuration
	5.4 Communication Configuration

	6 Evaluation
	7 Conclusion
	References

	AI Safety
	The Impact of Training Data Shortfalls on Safety of AI-Based Clinical Decision Support Systems
	1 Introduction
	2 ML Training Data and Safety
	2.1 Methods for Managing Data Shortfalls
	2.2 Safety Data Analysis Method

	3 Case Study: ML-Based Clinical Decision Support System for Type II Diabetes-Related Co-Morbidity Prediction
	3.1 The DCP Training Data
	3.2 Hazop Analysis

	4 Discussion
	5 Conclusions
	References

	Data-Centric Operational Design Domain Characterization for Machine Learning-Based Aeronautical Products
	1 Introduction
	2 System-Level Considerations
	3 New ODD Concepts for Aviation
	4 Support for System-Level Analysis
	5 Conclusions and Future Work
	References

	Online Quantization Adaptation for Fault-Tolerant Neural Network Inference
	1 Introduction
	2 Online Quantization Adaptation
	3 Experiments
	3.1 Experimental Setup
	3.2 Error Model
	3.3 Results

	4 Related Work
	5 Conclusion
	References

	Neural Networks and Testing
	Evaluation of Parameter-Based Attacks Against Embedded Neural Networks with Laser Injection
	1 Introduction
	2 Related Works and Objectives
	2.1 Parameter-Based Attacks
	2.2 Scope and Objectives
	2.3 Related Works

	3 Evaluator Assumptions and Experimental Setups
	3.1 Goal and Evaluator Assumptions
	3.2 Single Bit-Set Fault Model on Flash Memory
	3.3 Target and Laser Bench Setup
	3.4 Datasets and Models
	3.5 Model Implementation on MCU

	4 A Parameter-Based Attack with LFI
	4.1 Initial Characterization on a Neuron
	4.2 Target Multilayer Perceptron Models
	4.3 Advanced Guided-LFI
	4.4 Exploitation of LFI for Model Extraction

	5 Conclusion
	References

	Towards Scenario-Based Safety Validation for Autonomous Trains with Deep Generative Models
	1 Introduction
	2 Background
	3 Proposed Methodology
	4 Results and Experiences
	5 Conclusion
	References

	Author Index

