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Abstract. A fully-explicit stress integration method is comprehensively dis-
cussed via finite element analyses using three different classes of continuum
plasticity models, i.e., anisotropic yield function, anisotropic hardening, and con-
tinuum damage model. A unified but straightforward formulation covers a wide
range of rate-independent plasticity models. High accuracy, numerical robustness,
and great efficiency are achieved through the use of generalized effective plastic
strain and stress projection equations. In order to estimate the stress integration
quality, an associated variable mapping technique, namely, the precision map, is
introduced. Based on the precision map study, the current fully-explicit integra-
tion exhibits excellent accuracy. Furthermore, this non-iterative stress calculation
reduces the computation cost by about 50% compared to conventional iterative
stress update algorithms.
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1 Introduction

Numerical simulations involving metal plasticity significantly contribute to the analy-
sis and optimization of manufacturing processes in various industries. The modeling of
advanced materials demands complex formulations to reproduce unique plastic deforma-
tion mechanisms that are not well described by classical approaches. However, inefficient
computation, poor numerical robustness (or stability), and low-stress integration quality
are obstacles to more widespread use of these advanced formulations.

Conventional stress integration methods (algorithms) show superb performances
in solving non-linear problems involving plasticity. Iterative (implicit) solution-finding
approaches, nevertheless, lead to conditional success in stress integration depending
on the model formalisms, deformation modes, and simulation analysis parameters. In
addition, the classical integration strategies are limited by the shortcomings of the root-
finding process, namely, the Newton-Raphson method. Over the last decade, numerous
efforts have been made such as the line-search method, the residual value control, etc.,
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in order to enhance the numerical performance of these algorithms. However, such
treatments are, in general, accompanied by increased computation costs.

Fully-explicit stress integration approaches are featured with two primary advan-
tages such as high computation speed and numerical robustness. The critical drawbacks,
e.g., poor integration quality and conditional stability mainly stem from the uncertain
fulfillment of the yield condition. Rossi et al. [1] initially utilized a numerical technique,
so-called stress projection, to get the unconditional yield condition satisfaction. Inde-
pendently, Yoon and Barlat [2] suggested the non-iterative stress projection method and
applied it to implicit as well as explicit finite element analyses resulting in impressive
performances.

In this article, the non-iterative stress projection method is briefly introduced. The
stress integration quality is comparatively validated by means of the mapping of a fidelity
parameter on a yield locus. Finally, its performance is estimated via finite element
simulations using a variety of advanced plasticity models.

2 Non-iterative Stress Projection Method
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Fig. 1. Graphical description of the non-iterative stress projection method [2]

The non-iterative stress projection method features (1) a direct stress integration
using elastoplastic tangent operators, (2) a positive-definite effective plastic strain for
high numerical robustness, and (3) a stress projection for yield condition fulfillment.
Figure 1 displays the schematic description of the non-iterative stress projection method.

The stress tensor is instantly updated on the basis of the elastoplastic constitutive
law for the plastic deformation state.

6n+%=on+Aon+% (1a)
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where C;¥ denotes an elastoplastic tangent modulus. The index (n + 1/2) indicates
that the intermediate stress is not a final solution but needed to be corrected later. The
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plastic strain is approximated using the additive decomposition of the total strain, and
the above-calculated stress increment.

Aeﬁ+l ~ Aepy — 8% Ao, L 2)
2

S° represents the elastic compliance tensor. The positive-definite effective strain
increment is acquired from the scalar product of the flow rule.
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The effective plastic strain and internal state variables are explicitly updated making
use of the effective strain increment (Eq. (3)).
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Finally, the intermediate updated stress (Eq. (1a)) is projected onto the updated flow
stress.

H(Ent1)
Onpl = ——— 0, 1 6)
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Note that the current stress projection expression is available only when the yield
condition is a homogeneous function.

3 Precision Map

In this section, the precision map is introduced to intuitively validate the stress inte-
gration quality of the non-iterative stress projection method (NSPM) for an imposed
time (strain) increment through a comparative study with conventional iterative stress
update algorithms, namely, the closest point projection method (CPPM) and the cutting
plane method (CPM). For the accuracy validation, the R-value, a representative material
anisotropy parameter, is valid only for uniaxial and balanced biaxial modes. Alterna-
tively, the square root of the scalar product of the yield surface gradient is adopted as
the fidelity parameter to cover entire deformation modes.
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The precision map records the fidelity parameters on the normalized yield locus for
numerous deformation modes. The corresponding plane stress tensors are defined by
means of trigonometrical functions. To obtain the entire stress states on the outline of
a yield surface (o012 = 0), a primary angle (61) which is the argument of the trigono-
metrical functions varies from 0° to 360°. The inside of a yield surface is filled out by
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rotating a plane stress tensor on the outline from 0° to 45° using a secondary angle (67).
Finally, 16,606 data points representing the fidelity parameter values are generated for
a single map. Individual data points are determined after the stand-alone simulations
where the major strain component is discretized by a prescribed boundary condition,
and time increment, and the minor components are specified after the manipulation of
the generalized Hooke’s law and a reference stress tensor.
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Fig. 2. Fidelity parameter values (Eq. (7)) of Y1d2000-2d calibrated for AA2090-T3 mapped on
the yield locus where the values are obtained from (a) reference stress state, (b) CPPM (fully
implicit), (c) CPM (semi-explicit), (d) NSPM (fully explicit)

An aluminum-lithium alloy (AA2090-T3) characterized by a non-quadratic
anisotropic yield function (Y1d2000-2d) was selected for this study [2]. For the pre-
cision mapping, a material point is subjected to 0.1 true strain (ggye = 0.1) for each
deformation mode and analyzed with a fixed time increment (At = 0.01). Thereby, the
major strain increment (Agpyajor = 0.001) is evenly imposed at each analysis step. Note
that the strain increment, in general, ranges from 1070 to 1073 for implicit finite element
analysis.

Figure 2 shows the fidelity parameters at every plane stress state after corresponding
simulations using Y1d2000-2d. The magnitude of the parameter is marked blue varying
its intensity. The reference value is obtained from the stress states prescribed by the
trigonometrical functions before running simulations in virtue of the consistency of
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yield surface gradients. Due to the numerical error accumulated during a simulation, the
desired stress tensors are frequently lost after passing stress integration processes. The
discrepancy in the precision maps depends on the integration schemes. According to the
mapping study, NSPM results in the exactly same fidelity parameter pattern as CPPM.
The mapping pattern by CPM is apart from the others.

The distinction between the maps in Fig. 2 is visualized by mapping the relative
errors on the yield condition, so-called the error map (See Fig. 3). The relative error is
calculated below.
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Fig. 3. Relative error patterns which represent the gaps between the reference value and the
fidelity values from (a) CPPM (fully implicit), (b) CPM (semi-explicit), and (c) NSPM (fully
explicit)

NSPM shows the same maximum error value (0.3%) as that of CPPM. In contrast,
CPM results in the highest error (9.3%). This implies that the stress integration quality of
NSPM is very close to CPPM even with such a coarse strain increment (Agmajor = 1073 ).
The error deviation between the considered integration methods may differ depending
on the magnitude of the strain increment and the material anisotropy. In other words,
for the more refined strain increment, CPM will give the same accuracy as the others.
The precision map indirectly exhibits the accuracy of stress integration methods for a
prescribed strain increment, which is very close to the displacement-controlled finite
element analysis. The fidelity parameter can be replaced with other variables for various
purposes. One may find the original source code at [7].

4 Finite Element Analysis

In this section, the numerical performance of NSPM is discussed via finite element sim-
ulations using three classes of plasticity models, i.e., anisotropic yield function (Y1d200-
2d), anisotropic hardening model (Homogeneous anisotropic hardening — HAH»(), and
continuum damage model (Gurson-Tvergaard-Needleman — GTN). Detailed descrip-
tions of model coefficients and finite element modeling are found in the works [2—4].
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The plasticity models are implemented into the finite element program, namely, Abaqus
6.20/explicit through the vectorized user-defined material (VUMAT) subroutine. For
objectivity, simulation results of NSPM are compared to those of CPPM and CPM in
each sub-section. The used VUMAT subroutine code is available at [8].

4.1 Deep Drawing: Y1d2000-2d

A non-quadratic anisotropic yield function (Y1d2000-2d) is exploited to reproduce the
material anisotropy of AA2090-T3 in the deep drawing simulation.

(a) CPPM (b) CPM (c) NSPM

Fig. 4. Effective stress (SDV2) distribution of Y1d2000-2d in deep drawing explicit finite element
simulations integrated using (a) CPPM (fully-implicit), (b) CPM (semi-explicit), and (c) NSPM
(fully-explicit)

Figure 4 shows the distribution of effective stress after explicit deep drawing simu-
lation. The stress prediction by NSPM is identical to the other methods. The obtained
earing profiles are completely overlapped with one another (See Fig. 5(a)). The com-
putation time with NSPM is reduced by as much as 64% compared to CPPM although
the latter requires only 1 or 2 iterations for algorithmic convergence (See Fig. 5(b)). The
high efficiency of NSPM likely results from the simple formulation in addition to the
zero iteration.

4.2 S-rail Forming: HAHj

NSPM is also available for any type of anisotropic hardening when a morphological
change of yield surface is incorporated in an elastoplastic tangent operator. The mor-
phologic component contributes to the instant but an accurate calculation of the effective
strain increment in the present method as well as other algorithms. A distortional plas-
ticity hardening model (HAHjyo) [5] is used for plasticity modeling of dual-phase steel
(DP780) under non-proportional loading conditions and applied to an industrial scale
simulation, namely, the S-rail forming.

NSPM results in an effective stress distribution in Fig. 6 in excellent agreement with
those obtained from CPPM and CPM after the forming simulations. Figure 7(a) indicates
that all the springback profiles are in excellent agreement as well. Figure 7(b) shows that
the analysis time with NSPM is reduced by 46% without loss of accuracy after forming
and springback simulations (See Fig. 7(b)). In this application, CPPM and CPM require
2 or 3 iterations to complete the stress integration.
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Fig. 5. (a) Earing profiles after deep drawing simulations and (b) computation costs obtained
from CPPM (fully implicit), CPM (semi-explicit), and NSPM (fully explicit)
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Fig. 6. Effective stress (SDV2) distribution of HAHj( in S-rail forming explicit finite element
simulations integrated using (a) CPPM (fully-implicit), (b) CPM (semi-explicit), and (c) NSPM
(fully-explicit)

4.3 Hole Expansion: Modified GTN

The modified GTN model [6] is employed for failure prediction in a conical hole expan-
sion simulation. The model coefficients are calibrated based on the fracture behavior of
dual-phase steel (DP980).

Figure 8 exhibits the equivalent stress of the modified GTN when the strain local-
ization initiates. The stress pattern and the localization positions show reasonable agree-
ment. The deviations among the load-displacement curves in Fig. 9(a) might result
from the extraordinarily large strain increment when the localization is initiated. CPPM
demands 3 to 7 iterations for the algorithm convergence, and CPM 2 to 5. Consequently,
NSPM boosts the simulation time by 60%.
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Fig. 7. (a) Springback profiles after S-rail forming simulations and (b) computation costs obtained
from CPPM (fully-implicit), CPM (semi-explicit), and NSPM (fully-explicit)
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Fig. 8. Effective stress (SDV2) distribution of the modified GTN in the hole expansion explicit
finite element simulations integrated using (a) CPPM (fully-implicit), (b) CPM (semi-explicit),
and (c) NSPM (fully-explicit)
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Fig. 9. (a) Load-displacement curves in conical hole expansion simulations and (b) computation
costs obtained with CPPM (fully implicit), CPM (semi-explicit), and NSPM (fully explicit)
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5 Conclusions

In this article, the non-iterative stress projection method (NSPM) is comprehensively
studied, from formulation to application. For a strict evaluation of the integration quality,
a precision mapping technique is introduced. NSPM exhibits outstanding numerical
performance in terms of computation speed, stress integration accuracy, and robustness.
The main results of this work are summarized as follows:

e A chronic shortcoming of the fully-explicit stress integration method is resolved by
employing the stress projection technique.

e The stress integration quality of NSPM is comparable to that of the return mapping-
based stress update algorithm according to the precision map results.

e The excellent numerical performance of NSPM is qualitatively demonstrated based
on a variety of finite element simulations and plasticity models.
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