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Abstract. The objective of present paper is to examine the plastic anisotropy
behaviour of steel sheet, employing the Barlat´s Yld 2000-2d yield stress criterion
and the corresponding non-associated plastic flow rule. New Barlat´s coefficients
of anisotropy were defined and calibrated frommaterial experimental data of sim-
ple uniaxial tension and equal biaxial stress tests. The new set of coefficients
calculated from the experimental Lankford anisotropy coefficients (r-values), nor-
malized yield stress (s-values), equal biaxial stress parameters (rb and σb) were
numerically obtained using the Newton-Raphson method. The investigated metal
was the highly anisotropic AISI 439 steel sheets found in the literature. In the
results analysis and discussion, the new coefficients of anisotropy of the Barlat´s
non-associated plastic flow rule were calculated and validated by plotting on the
same graph the predicted r-value and s-value curves and the experimental data for
the anisotropic steel sheets. The correlations have revealed that the Barlat´s yield
criterion and the plastic flow stress potential were not coincident. Furthermore,
the predicted limit strain curve of 439 steel correlated better with the experimental
FLCTD transverse curve when using the shear stress fracture criterion and the
non-associated plastic potential than the associated flow rule. Therefore, the Bar-
lat´s Yld 2000-2d non-associated plastic flow rule provides a better fit with the
experimental Lankford and equal biaxial coefficients of anisotropy and the FLCTD
curve results of AISI 439 steel sheets.

Keywords: Plastic anisotropy · Barlat´s Yld 2000-2d non-associated plastic
flow rule · FLC · AISI 439 steel

1 Introduction

In sheet metal forming operations practice, it is well-known that the Formability of
the blank material is greatly influenced by the strain and strain-rate hardening and the
plastic anisotropy coefficients, which can be measured by the Lankford’s coefficients of
anisotropy and the equal biaxial anisotropy coefficient. Metal blanks as received exhibits
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plastic anisotropy with orthotropic symmetry originated from the cold rolling. The three
orthotropic axes of plastic anisotropy are mutually perpendicular and are defined in the
rolling direction RD, transverse TD and normal or thickness ND directions. These are
assumed as the principal axes of orthotropic plastic anisotropy.

One first work to investigate an anisotropic yield stress criterion to describe the
plasticity behaviour of sheet metals with orthotropic symmetry was the paper presented
by Rodney Hill in 1948 [1]. The phenomenological Hill’s 48 yield stress criterion was
an extension of von Mises’s isotropic yield stress criterion. Since then, several other
phenomenological anisotropic yield stress criteria have been proposed. A brief review
of yield stress criteria can be found in the articles by Barlat et al. [2], Yoon et al. [3] and
Bressan et al. [4].

Barlat’s Yld 2000-2d anisotropic yield stress function [5] has been widely applied in
numerical simulations and analytical modelling of cup ears and forming limit strains of
aluminium and steel alloys in sheet metal shaping operations in plane stress conditions.
This yield function was developed from findings of previous works by Hershey [6],
Hosford [7] yield stress criteria for isotropic material and the Yld96 anisotropic yield
stress criterion proposed by Barlat et al. [8]. In 2003, the Yld 2000-2d anisotropic
yield stress criterion applied to sheet metal forming for plane stress condition, pressure
independent metals, orthotropic anisotropy was proposed by Barlat et al. [5] and was
defined as the sum of two scalar non-quadratic functions, which are generated by two
linear transformations of the deviatoric stress tensor.

1.1 Non-associated Plastic Flow Stress Potential

In themodelling of plastic flowbehavior ofmetal, it is commonly postulated and accepted
the associated plastic flow rule or normality rule, bywhich the plastic flow stress potential
function is assumed to be coincident with the yield stress criterion. Thus, it is usually
assumed that both the yield stress surface and themetal plastic strain increments or strain
rate are calculated from a unique yield stress criterion function, which must be a convex
function.

In the recent literature, the non-associated plastic flow rule approach has been fre-
quently employed in numerical simulations of sheet metal forming processes. The mate-
rial yield stress criterion and plastic flow stress potential were defined by two distinct
functions [9, 10]. One first work to investigate a non-associated plastic stress potential
was presented by Stoughton [9]. The author argued that the associated plastic flow rule
postulation is not rigorously true, revealed by comparing the Hill’s 48 yield stress crite-
rion function for both the associated and the non-associated flow rule approaches for the
experimental data formild steel, Al 2008-T4 andAl 2024-T3 aluminium alloys. Employ-
ing the tensile test experimental data for uniaxial yield stress and the Lankford coefficient
of anisotropy, r-value, at 0°, 45° and 90° to the RD to calibrate the non-associated flow
rule modelling, the author found good fittings for other points for different experimental
tensile test angles with the predicted curves for yield stress and r-values. The curves fit-
ting was poor or failed to correctly predict the uniaxial yield stress and r-value variations
with the angle to RD, using the Hill’s 48 yield criterion as the plastic stress potential or
the associated flow rule.
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Numerical simulations of cylindrical cup drawing and ears formation and its height
profile of highly anisotropic Al 2090-T3 and Al 5042 aluminium sheets were stud-
ied by Park and Chung [10]. The authors used the associated and non-associated Bar-
lat’s Yld2000-2D plastic potential. Numerical simulations, using m = 8 and the non-
associated plastic potential showed good correlations with the experimental results of
ear numbers and height profiles for both materials; better cylindrical cup earing profiles
prediction than the associated flow rule and the Hill 48 yield criterion.

The FLC of AISI 439 steel sheet was investigated by Lian et al. [11], employing
the non-associated Hill’s 48 plastic flow potential and the yield stress criterion, and the
modified maximum force criterion to predict the FLC. The non-associated flow rule
model presented better correlation with the experimental FLC curve than the Hill’s 48
associated flow rule model. As well the predicted punch force versus displacement curve
of the Nakajima equal biaxial stress test showed good correlation with the experimental
data. The authors also presented a short review of recent references that deal with the
application of non-associated plastic potentials.

Safei et al. [12] analyzed the non-associated Barlat’s Yld2000-2D flow stress poten-
tial model, applying to deformation processes of the highly anisotropic Al 2090-T3
alloy and DC06 steel sheets. The predicted s-value and r-value curves as function of
angle to the rolling direction RD have shown good correlation with the experimental
data. Although, the numerical simulation of cylindrical cup deep drawing of Al 2090-T3
alloy showed the same number of ears, the simulations revealed poor fitting with the
experimental results of the earing height profile.

The objective of present work is to examine the Barlat´s Yld 2000-2d stress function
as the anisotropic non-associated plastic flow potential or the flow rule to better describe
the plastic anisotropy coefficients of highly anisotropic AISI 409 steel sheets. New
generalised and exact equations to calculate the eight coefficients of plastic anisotropy
ai of Barlat´s Yld 2000-2d yield stress function have been proposed by Bressan [4].
Thus, to calibrate the Barlat´s coefficients of plastic anisotropy ai, eight experimental
tests and eight material plastic anisotropy parameters are needed. The plastic anisotropic
parameters required are defined as Lankford coefficients of anisotropy r0, r45, r90; yield
stress σ0, σ45, σ90; balanced biaxial coefficient of anisotropy rb and balanced biaxial yield
stress, σb. Newton-Raphson numerical method with relaxation factor were employed to
numerically calculate the ai-values with high accuracy for assumed minimum error. The
calculated eight ai coefficients of anisotropy were validated and calibrated by comparing
the predicted r-values and s-values with the experimental data for aluminium alloys [4]
and present steel sheets.

2 The Non-Associated Barlat’s Yld 2000-2d Anisotropic Plastic
Flow Stress Potential

Defining f
(
σij , ε, ε̇

)
as the yield stress function or yield stress surface and �(σji) the

yield stress criterion, the general loading condition for the onset of plastic straining is,

f
(
σij , ε, ε̇

) = �
(
σij

) − σ
(
εo, ε, ε̇

) = 0 (1)
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and commonly is a first degree homogeneous function of the Cauchy stress tensor, σji
= (1/3) σkk δij + Sij, which defines the yield surface shape (Sij is the stress deviator), σ
is the current equivalent flow stress and is identified as scalar function of the equivalent
plastic strain ε, pre-strain εo and strain rate ε̇. The equivalent flow stress represents
the yield stress surface size and material hardening law. The modified Swift equation

is: σ
(
εo, ε, ε̇

) = σo(1 + ε/εo)
n(ε̇/ε̇o

)M
, where σo is the material yield stress limit.

Assuming the existence of a plastic flow potential, the plastic strain increments dεij can
be calculated from the plastic flow stress potential �(σij) as,

dεij = dλ
∂ �

(
σij

)

∂ σij
(2)

where dλ is the plastic multiplier increment and σij are the stress tensor components.
Usually, it is assumed that the plastic potential coincides with the yield stress criterion:
�(σij) ≡ �(σij).

As mentioned above, the Barlat’s Yld2000-2d anisotropic yield stress criterion [5]
applied to sheet metal forming for plane stress condition and orthotropic anisotropy was
defined as the sum of two scalar non-quadratic functions, which are generated by two
linear transformations of the deviatoric stress tensor Sij or the Cauchy true stress tensor
σij: S′

ij = C′ Sij = L′
ij σij and S ′′

ij = C ′′ Sij = L′′
ij σij,

� = �′ + �′′ = ∣∣S ′
1 − S ′

2

∣∣m + ∣∣2S ′′
1 + S ′′

2

∣∣m + ∣∣2S ′′
2 + S ′′

1

∣∣m = 2 σm (3)

where σ is the equivalent stress, S ′
j and S ′′

k are the principal values of the transformed
stress tensors S ′

ij and S ′′
ij . Also, the proposed function � is convex for exponent m > 1

[5]. These principal values, in Eq. (3), can be expressed in terms of the Cauchy stress
tensor components by the definition of proposed new coefficients of plastic anisotropy,
ai, assuming (x,y)-axis as the material principal cartesian axis of orthotropic anisotropy
in the sheet plane and the two matrices C′ and C′′ expressed as a function of eight
coefficients of anisotropy, thus [4],

σ′
1 = 2S′′

1 + S′′
2 = (

a1 σxx + a2 σyy
)
/2 + √

�′ (4a)

σ′
2 = 2S′′

2 + S′′
1 = (

a1 σxx + a2 σyy
)
/2 − √

�′ (4b)

σ′′
1 − σ′′

2 = S′
1 − S′

2 = 2
√

�′′ (4c)

where,

�′ =
(
a3 σxx − a4 σyy

2

)2

+
(
a8τxy

)2 ;

�′′ =
(
a5 σxx − a6 σyy

2

)2

+
(
a7τxy

)2
(4d,e)

where ai are the proposed eight new coefficients of material plastic anisotropy [4], which
are related to the original linear transformation coefficients αi. Material plastic isotropy



Application of Barlat’s Yld 2000-2d Yield Stress Function 419

is when ai = αi = 1. The two anisotropy matrices L′
ij and L′′

ij can be expressed as a
function of eight new coefficients of material plastic anisotropy [4],

aij =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

a1 a2 0 0

a3 a4 0 0

a5 a6 0 0

0 0 a7 0

0 0 0 a8

⎤

⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢
⎢⎢⎢⎢⎢
⎣

3
(
L′′
11 + L′′

21

)
3
(
L′′
22 + L′′

12

)
0 0

(
L′′
11 − L′′

21

) (
L′′
22 − L′′

12

)
0 0

(
L′
11 − L′

21

) (
L′′
22 − L′′

12

)
0 0

0 0 L′
66 0

0 0 0 L′′
66

⎤

⎥
⎥⎥⎥⎥⎥
⎦

(5)

Substituting Eqs. (4a-e) into Eq. (3), Barlat’s Yld 2000-2d anisotropic yield stress
function can be written in terms of Cauchy stress tensor components and the coefficients
of plastic anisotropy. The non-associated Barlat’s Yld 2000-2d flow potential is assumed
to be similar to the yield stress criterion function. However, the anisotropy parameters
ai-values will be substituted by ãi-values [4], assuming material with M = 0,

�(σxx, σyy, τxy, ãi) = 1

2m

∣∣∣∣ ã1σxx + ã2σyy +
[(

ã3σxx − ã4σyy
)2 + (

2 ã8τxy
)2]1/2

∣∣∣∣

m

+ 1

2m

∣∣∣
∣ ã1σxx + ã2σyy −

[(
ã3σxx − ã4σyy

)2 + (
2 ã8τxy

)2]1/2
∣∣∣
∣

m

+
∣∣∣
(
ã5σxx − ã6σyy

)2 + (
2 ã7τxy

)2∣∣∣
m/2 = 2σ̄m = 2σm

o (1 + ε̄/εo)
nm

(6)

2.1 Coefficients of Anisotropy from the Non-associated Plastic Potential

For a standard tensile test specimen cut at angle θ to RD, loading in uniaxial tensile
stress σθ in the x’-axis of tensile direction and y’-axis the width direction, for plane
stress condition, the stress components and strain increments in the anisotropy (x,y)-
axis or (RD,TD)-axis can be obtained. For a standard tensile test specimen under a uni-
axial tensile stress σθ, the equivalent stress can be expressed as σ = A σθ , where
A = {

2mF + |B + C |m + |B − C |m}1/m
/21+ 1/m. Then, assuming Barlat´s non-

associated flow rule and applying the Euler’s identity theorem for a homogeneous stress
function of degree ‘m’ to the Barlat’s yield stress criterion function �

(
σxx, σyy, τxy, ãi

)
,

after rearranging, the Lankford´s coefficient of anisotropy and the equal biaxial stress
coefficient of anisotropy can be calculated by [4],

rθ = dεwidth
dεthickness

= ∂�/∂σy′ y′

∂�/∂σzz
= 2mAmσm−1

θ
∂�
∂σxx

+ ∂�
∂σyy

− 1 (7)

rb = dεTD
dεRD

= dεyy
dεxx

= ∂�/∂σyy

∂�/∂σxx
(8)

The derivatives of the stress function �
(
σxx, σyy, τxy, ãi

)
seen in Eqs. (7–8) are

obtained from Eq. (6), considering the derivative chain rule and the derivative sign for
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the modulus function, thus, they are calculated by [4],

∂�

∂σxx
=

{
2mE ã5 + m

2m
(B + C)m−1(ã1 + Dã3) + m

2m
(B − C)m−1(ã1 − Dã3)

}
σm−1

θ

(9)

∂�

∂σyy
=

{
−2mE ã6 + m

2m
(B + C)m−1( ã2 − Dã4) + m

2m
(B − C)m−1(ã2 + Dã4)

}
σm−1

θ

(10)

Finally, substituting into Eqs. (7–8), the generalized Lankford’s coefficient of
anisotropy rθ and the equal biaxial coefficient of anisotropy rb are calculated by,

rθ = 2mF + |B + C|m + |B − C|m
2m+1E(ã5 − ã6) + (B + C)m−1(A + D34) + (B − C)m−1(A − D34)

− 1 (11)

rb = 2m|ã5 − ã6|m + |(ã1 + ã2) + |ã3 − ã4||m + |(ã1 + ã2) − |ã3 − ã4||m
2m+1LBã5 + Gm−1

1 (ã1 + H34 ã3) + Gm−1
2 (ã1 − H34ã3)

− 1 (12)

Where,

A = ã1 + ã2;B = ã1 cos
2θ + ã2 sin

2θ (13a,b)

C =
[(

ã3cos
2θ − ã4sin

2θ
)2 + 4 ã28sin

2θcos2θ

]1/2

(13c)

D =
(
ã3cos

2θ − ã4 sin
2θ

)
/C;D34 = D(ã3 − ã4) (13d,e)

E =
((

ã5cos
2θ − ã6sin

2θ
)2 + 4 ã27sin

2θcos2θ

)(m/2)−1(
ã5cos

2θ − ã6 sin
2θ

)

(13f)

F =
∣∣∣∣
(
ã5cos

2θ − ã6sin
2θ

)2 + 4ã27sin
2θcos2θ

∣∣∣∣

m/2

(13g)

G1 = (ã1 + ã2) + |ã3 − ã4|;G2 = (ã1 + ã2) − |ã3 − ã4| (13h,i)

LB = (ã5 − ã6)
m−1;H34 = (ã3 − ã4)/|ã3 − ã4| (13k,l)

For a tensile test specimen under uniaxial tensile stress σθ, the equivalent stress of Eq. (6)
is σ = A σθ . Consequently, the normalized yield stress at any angle θ to RD is,

σθ

σo
= 21+1/m(1 + ε̄/εo)

n

{
2mF + |B + C|m + |B − C|m}1/m (14)

where σo is the material yield stress limit. Assuming the current equivalent flow stress,
σ = σo(1 + ε/εo)

n, at any current yielding condition, hence, the normalized equal
biaxial stress, σxx = σyy = σb and τxy = 0, is calculated by,

σb

σo
= 21+1/m(1 + ε̄/εo)

n

{
2m(a5 − a6)m + |(a1 + a2) + |a3 − a4||m + |(a1 + a2) − |a3 − a4||m

}1/m

(15)
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Substituting into Eq. (6) the boundary conditions for a uniaxial tensile test specimen
under loading at 0° RD, the stress components are σxx = σ0 and σyy = τxy = 0, thus,

|2a5 |m + |a1 + a3 |m + |a1 − a3 |m − 21+m(1 + ε̄/εo)
n = 0 (16)

Similarly, for a specimen under pure shear stress test, the stress components are
σxx = σyy = 0 and τxy = τo = k, where τ0 = k is the material shear yield stress limit,
the Eq. (6) is reduced to: a7 = ±2(1/m)−1(σo/τo) = ±2(1/m)−1σo/k.

2.2 The FLC Strain Path in the MPLS Map

The linear strain path β to calculate the FLCRD curve in the Map of Principal Surface
Limit Strains (MPLS) is obtained from Eqs. (9–10). Assuming the principal coordinate
axis coincident with the principal direction of anisotropy axis, (1,2)-axis = (x,y)-axis =
(RD,TD), and defining the stress ratio X = σ2/σ1, the linear strain path is [4],

β = dε2
dε1

= ∂�/∂σyy

∂�/∂σxx
= −2m+1L ã6 + (K1)

m−1(ã2 − M34 ã4) + (K2)
m−1( ã2 + M34 ã4)

2m+1L ã5 + (K1)
m−1(ã1 + M34 ã3) + (K2)

m−1( ã1 − M34 ã3)
(17)

where,

L = |ã5 − ã6X|m−2(ã5 − ã6X);K1 = (ã1 + ã2X) + |ã3 − ã4X|;
K2 = (ã1 + ã2X) − |ã3 − ã4X|;M34 = (ã3 − ã4X)/|ã3 − ã4X| (18a,b,c,d)

2.3 The Shear Stress Fracture Criterion to Predict FLCTD in the MPLS Map

The Bressan-Williams shear stress fracture criterion [13] was proposed firstly in 1983
to predict ductile local necking in sheet metal forming. It is an instability stress point
of maximum in a critical shear stress just when local necking initiate by shear bands
formation. This maximum shear stress is a critical value that acts in a plane inclined
through the sheet thickness and in the direction of pure shear strain, namely τ cr , that
is a material property which depends on temperature and strain rate. Considering the
experimental observations of fast shear rupture without visible local necking in sheet
metal shaping of strain-rate-independent materials, M = 0, this approach was modified
by Bressan and Barlat [14], using the anisotropic Barlat´s Yld-2000-2d yield criterion.

However, assuming the maximum loading axis of specimen coincident with the
transverse direction of anisotropy axis, (2,1)-axis = (TD,RD)-axis, and defining the
stress ratio XT = σ1 /σ2, linear strain path is βT = de1/de2, the governing equation of
fast shear stress fracture criterion to calculate FLCTD curve in the MPLS map is [14],

σ2 =
∣∣∣(2 + βT)/

√
1 + βT

∣∣∣ τcr (19)

where σ2 > 0 is the maximum principal in-plane true stress coincident with TD, τcr the
critical shear stress. Assuming materials exhibiting planar anisotropy and strain hard-
ening behavior only, strain rate sensitivity exponent is neglected, M = 0, the equivalent
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flow stress for linear deformations is described by the Swift’s law, σ = K (εo + ε)n,
where K is the material strength coefficient,ε the equivalent strain, εo the pre-strain, n
the material strain hardening exponent. Assuming the equivalent plastic strain increment
calculated from the definition of equivalent plastic work increment, using the previous
definition of strain path βT and stress ratio XT, is obtained,

dε = (σ2/σ) (1 + XT βT)dε2 (20)

Assuming linear plastic strain path up to the transverseFLCTD curve, thus, integrating
Eq. (20), the predicted major true plastic strain limit ε2f is calculated by [14],

ε2f =
{
1

2

(∣
∣∣∣
σ ′′
1 − σ ′′

2

σ2

∣
∣∣∣

m

+
∣
∣∣∣
σ ′
1

σ2

∣
∣∣∣

m

+
∣
∣∣∣
σ ′
2

σ2

∣
∣∣∣

m)} 1+n
mn

∣
∣∣∣
2 + βT√
1 + βT

∣
∣∣∣

1
n (τcr/K)

1
n

(1 + XTβT)

−
{
1

2

(∣∣
∣∣
σ ′′
1 − σ ′′

2

σ2

∣∣
∣∣

m

+
∣∣
∣∣
σ ′
1

σ2

∣∣
∣∣

m

+
∣∣
∣∣
σ ′
2

σ2

∣∣
∣∣

m)} 1
m εo

(1 + XTβT)

(21)

The non-dimensional critical shear stress parameter τcr/K is a material property,
which can be obtained and calibrated from experimental bulge test or the plane strain
point, FLCo, in the forming limit strain curve point at the minor true strain ε1 = 0.

3 Materials and Experimental Anisotropy Parameters

The experimental data ofAISI 439 steel available in the literature [11] for simple uniaxial
tension and equal biaxial stress tests are shown in Tables 1.. The plastic anisotropy
parameters used to calibrate themodel were: Lankford coefficient of anisotropy r-values,
normalized tensile yield stress s-values (=σθ/σ0.19), and equal biaxial stress parameters
rb and σb at strain ε = 0.19, according to Barlat et al. [6, 8].

Table 1. Mechanical plastic anisotropy parameters of studied AISI 439 steel [11].

Metal alloy Anisotropy coefficients, r-values

ro r15 r30 r45 r60 r75 r90 rb

AISI 439 [11] 1.60 1.45 1.16 1.03 1.45 2.25 2.53 1.32

Normalized yield stress calibrated at ε = 0.19, s-values (= σθ/σ0 and σb/σ0)

σ0 σ15 σ30 σ45 σ60 σ75 σ90 σb

AISI 439 [11] 1.00 1.008 1.031 1.059 1.059 1.027 1.008 1.238

The plastic strain hardening law of the AISI 439 steel sheet of thickness 1.0 mm
were obtained from experimental tests, which was applied to calculate the theoretical
transverse FLCTD curves: the average tensile tests: σ = 732 (0.009 + ε)0.235 MPa,
according to the uniaxial experimental results by Lian et al. [11].
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4 Results and Discussions

The system of exact non-linear equations, Eq. (11), Eq. (12), Eq. (14), Eq. (15) and
Eq. (16), constitute a set of eight equations with eight experimental anisotropy properties
and the unknownvariables: the anisotropy coefficients ãi, i=1,..8. Thedetails ofNewton-
Raphson numerical method were presented in the paper by Bressan and Donadon [4].
Therefore, it is necessary to choose among these, eight independents equations and eight
experimental parameters to form a system of non-linear equations to find numerically
the anisotropy coefficients ãi. The Newton-Raphson method with a relaxation factor is
a robust, accurate and reasonably fast numerical method which was employed to solve
this system of non-linear equations within a given tolerance.

Fig. 1. Comparisons of predicted r-ralue and s-value curves for the associated and the non-
associated Barlat’s Yld 2000-2d yield stress with experimental results for tensile tests of AISI
439 [11], exponent m = 6, using Newton-Raphson method with experimental calibration param-
eters: a) associated rule, 4s- and 4r-values: σ0, σ45, σ90, σb, ro, r45, r90, rb and b) non-associated
plastic potential, 6s- and 2r-values: σo, σ30, σ45, σ75, σ90, σb, r45, r90; c) non-associated plastic
potential, 7r-values and 1s-value: r0, r15, r45, r60, r75, r90, rb, σ45.

In Fig. 1, comparison of predicted curves for r-values and s-values versus angle
θ to RD with experimental points of AISI 439, using the Barlat’s Yld 2000-2d yield
criterion and corresponding associate flow rule and employing the recommended mate-
rial selection of calibration parameters: 4 r-values and 4 s-values (r0, r45, r90, rb, σ0,
σ45, σ90 and σb), plotted in the same graph. Although the curve fitting passes exactly
through the previously selected 4 r-values and 4 s-values points, for others experimental
points the correlation is poor, particularly for s-values points, indicating the necessity
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of better curve fit. The curve fit is noticeably increased when selecting 6 s-values points
for calibration of the normalized yield stress and 7 r-values points for calibration of
the Lankford coefficients of anisotropy. Therefore, the yield stress criterion and plastic
potential functions are not coincident, but are two distinct functions. The calculated ai
and ãi plastic anisotropy coefficients of Barlat Yld 2000-2d stress functions for curve fit-
ting of Fig. 1 are seen in Table 2.. Comparison between the calculated and experimental
balanced biaxial plasticity parameters are shown in Table 3..

Table 2. The calculated plastic anisotropy coefficients for the Barlat Yld 2000-2d yield stress
criterion �(σij, ai) and the independent non-associated Barlat Yld 2000-2d plastic stress potential
�(σij, ãi) of AISI 439 steel, using m = 6 and experimental points.

Exper a1 a2 a3 a4 a5 a6 a7 a8

�:4s + 4r 0.067310 1.443596 0.926687 0.657302 1.120455 0.907724 0.906021 1.180186

�:6s + 2r 0.046876 1.215132 1.545069 1.004261 1.077962 0.583045 0.917654 1.214749

Exper ã1 ã2 ã3 ã4 ã5 ã6 ã7 ã8

�: 7r + 1s -1.457668 0.408759 0.096955 2.187854 −1.356585 −1.091135 .000663 0.506318

Table 3. The comparison between the experimental and calculated balanced biaxial plasticity
parameters of AISI 439 steel for the numerical cases.

Experimental points m rb exp σb exp rb calculated σb calculated

� ≡ �: 4s + 4r 6 1.320 1.238

�: 6s + 2r 6 1.32 1.238 0.038 1.239

�: 7r + 1s 6 1.32 0.871

Comparisons of the predicted and experimental FLCTD of AISI 439 steel [11] are
seen in Fig. 2. The Bressan-Barlat critical shear stress criterion was calibrated with the
experimental data at the plane strain condition point: FLCo = 0.271 and m = 6. The
calibrated normalized critical shear stress obtained was: for associated τcr/K = 0.532
and τcr/K = 0.335 for the and non-associate Barlat’s plastic potential case. The non-
associatedBarlat´s Yld 2000-2d plastic flowpotential calibratedwith 7 r-values provided
a better fit with the experimental FLCTD transverse curve of AISI 439 steel.
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Fig. 2. Comparisons of the predicted and experimental FLCTD of AISI 439 steel sheet [11], using
the Bressan´s shear stress fracture criterion. The Bartlat´s Yld 2000-2d yield stress function was
employed for the associated (4r) and the non-associated plastic stress potential (7r).

5 Conclusions

Prediction of the forming limit strain curve of AISI 439 steel was improved substantially
whencalibrating thenon-associatedBarlat´sYld2000-2dplastic potentialwith 7 r-values
and using the Bressan-Barlat shear stress fracture criterion. Furthermore, Barlat´s Yld
2000-2d non-associated flow rule provides a better fit with the experimental Lankford
and equal biaxial coefficients of anisotropy than the associated rule.
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