
Imperative Action Masking for Safe
Exploration in Reinforcement Learning

Sumanta Dey(B), Sharat Bhat, Pallab Dasgupta, and Soumyajit Dey

Indian Institute of Technology Kharagpur, Kharagpur, India
{sumanta.dey,sharatbhat}@iitkgp.ac.in, {pallab,soumya}@cse.iitkgp.ac.in

Abstract. Reinforcement Learning (RL) needs sufficient exploration to
learn an optimal policy. However, exploratory actions could lead the
learning agent to safety hazards, not necessarily in the next state but in
the future. Therefore, it is essential to evaluate each action beforehand to
ensure safety. The exploratory actions and the actions proposed by the
RL agent could also be unsafe during training and in the deployment
phase. In this work, we have proposed the Imperative Action Mask-
ing Framework, a Graph-Plan-based method considering a finite and
small look ahead to assess the safety of actions from the current state.
This information is used to construct action masks on the run, filter-
ing out the unsafe actions proposed by the RL agent (including the
exploitative ones). The Graph-Plan-based method makes our framework
interpretable, while the finite and small look ahead makes the proposed
method scalable for larger environments. However, considering the finite
and small look ahead comes with a cost of overlooking safety beyond
the look ahead. We have done a comparative study against the proba-
bilistic safety shield in Pacman and Warehouse environments approach.
Our framework has produced better results in terms of both safety and
reward.

Keywords: Graph-Plan Algorithm · Explainable/Interpretable
Machine Learning · Reinforcement Learning · Exploration considering
Safety

1 Introduction

Reinforcement Learning (RL) is a reward-based learning approach where the
learning agent learns a state-to-action mapping policy based on the reward [19]
accumulated during exploration in the underlying environment. RL, therefore, is
suitable for many real-world scenarios where the underlying environment is not
known a priori. On that account, the exploration is also necessary to capture
the state-to-action-to-reward mapping to learn the highest rewarding policy or
optimal policy. Therefore, while training, the RL agent takes a few actions that
are not optimal according to the current policy, which is called exploratory
actions. However, when RL applies in safety-critical environments, where some

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Calvaresi et al. (Eds.): EXTRAAMAS 2023, LNAI 14127, pp. 130–142, 2023.
https://doi.org/10.1007/978-3-031-40878-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40878-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-40878-6_8


Imperative Action Masking for Safe Exploration in Reinforcement Learning 131

states are unsafe or hazardous, the goal is to learn an optimal policy while
avoiding those unsafe states. Therefore actions that potentially could lead to an
unsafe state, not necessarily in the very next state could be in the near future,
should be avoided. Also, not only the exploratory actions but the action proposed
by the RL agent could be unsafe. Therefore, all actions, whether exploratory or
optimal, should be checked before taking for safety-critical environments.

For example, consider the Pacman Game layout as shown in Fig. 1. Based on
the current position of the Pacman (yellow colored) and the ghost (blue colored),
if the Pacman takes the right action from there, then in the next state, it will
be in the green block, which might be safe for now as the ghost still not able
to catch the Pacman. However, the Pacman will be trapped within the green-
to-red block region, and eventually, the ghost will catch the Pacman. Therefore
the right action from the current position is not safe.

Fig. 1. Pacman Game Layout.

In general, several approaches to reinforcement learning through safe explo-
ration can be broadly classified into Reward Shaping and Action Shaping.
Reward Shaping techniques can be found in [2,6,10,18], where safety constraints
are included in the reward function as a regularization term. On the other hand,
works like [3,7,11,12,14,17] use action-shaping techniques to restrict the RL
agent from taking unsafe actions. Apart from these methods, the possibilities
of safe exploration using safe baselines/backup policies whenever a safety vio-
lation is detected have been demonstrated in [4,13]. On the other hand, in [1],
the author proposes a teacher advice-based technique where the RL agent seeks
expert or teacher advice whenever it detects any unknown/unsafe situation.

Among the action shaping techniques, [14] and [3] are better choices when
safety is the major concern, as these provide a formal safety guarantee even
though they suffer from scalability issues. A scalable implementation of [3] can
be found in [16]. In [16], the authors use a probabilistic model checker to deter-
mine the safety probabilities of the actions, which are later used to filter out



132 S. Dey et al.

the actions having unsafe probabilities beyond a threshold. Using a probabilis-
tic model checker helps to improve scalability but with the cost of safety and
interpretability.

In this context, we propose the Imperative Action Masking framework, a scal-
able and interpretable action-shaping technique. Action Mask filters out unsafe
actions from the current state. Our framework uses the classic Graph Plan algo-
rithm [9] to determine the action mask considering the state space up to a small
finite look ahead. The Graph Plan algorithm is used to improve interpretability,
as the outcomes of this algorithm are easy to interpret by a human. In contrast,
the small finite look ahead helps to increase the scalability, but with the cost of
omitting safety hazards that could occur beyond the look ahead. Therefore, our
framework is suitable for ensuring safety for environments with safety violations
in the near future; however, it can also be used to reduce the chances of safety
violations for environments with very far safety consequences.

In summary, our contributions are as follows:

– We develop a classic Graph Plan-based method to determine the membership
probabilities of a state in each Action Specific Robust Set.

– These probabilities are later used to compute the Action-Masks. The Action
Masks are applied on top of the RL Agent’s decision to ensure safety by
filtering out potential unsafe actions. Thus our method can be applied for safe
exploration in Reinforcement Learning in various discrete state and action
environments.

– The use of the Graph Plan-based method makes the Imperative Action Mask-
ing framework interpretable.

– We demonstrate the effectiveness of our method in Pacman and Warehouse
Environments. We also compare the results of our method over the Proba-
bilistic Shield presented in [16].

The paper is organized as follows. Section 2 outlines the overall problem state-
ment. Section 3 presents the proposed Imperative Action Masking framework.
Experimental environment configuration and results are presented in Sect. 4 and
Sect. 5, respectively. Concluding remarks are given in Sect. 6.

2 Problem Formalization

Given a Constrained MDP (CMDP) as defined in [15], < S,A,P, γ,R, μ, C >,
where S and A represent the set of states and the set of actions, respectively. P is
the transition probability function, γ is the discount factor, and R is the reward
function. μ is the start state distribution, and C = {(ci : S → {0, 1})|i ∈ Z}
is the set of given binary safety constraints; ci : s can take either 0 (safe) or 1
(unsafe). C : s is considered unsafe if any of the ci : s is 1.

We use X to denote the set of safe states where, {∀i, ci : X → 0} and Xu to
denote the set of unsafe states where, {∃i, ci : X → 1}. There can be states (sk

in Fig. 2) in the MDP which does not violate the safety constraints; however,
all the possible combinations of legitimate actions will eventually lead to unsafe



Imperative Action Masking for Safe Exploration in Reinforcement Learning 133

states. We consider this set of states as pseudo-unsafe states Xp and should be
avoided just like the unsafe states. We have defined another two sets of safe
states, namely Action Specific Robust Safe Sets (Xai

I ) and Robust Safe Set (XI)
that is a subset of {X \ Xp}. Figure 2 depicts a schematic relation among these
sets.

Definition 1 (Robust Safe Set). Given an MDP having a set of safe states
X and action set A, the Robust Safe Set is defined as:

XI = {s | ∀s ∈ XI ,∃a ∈ A, ∀s′ ∈ P(s, a), s′ ∈ XI}
Definition 2 (Action Specific Robust Safe Set). Given an MDP having a
set of safe states X and action set A, the Action Specific Robust Safe Set is
defined as:

Xai

I = {s | ∀s ∈ Xai

I , s′ ∈ P(s, ai), s′ ∈ XI}
Hence, the Robust Safe Set (XI) is

⋃

∀a∈A
Xa

I .

Fig. 2. The yellow bordered region represents the set of safe states(X). The blue and
green encircled regions represent the Action Specific Robust Safe Sets for action a1

and a2, respectively. The white, yellow, and gray colored regions represent the Robust
Safe Set (XI), Pseudo Unsafe Set Xp, and set of unsafe states Xu, respectively. (Color
figure online)

We consider using the action masking method to keep the RL agent within
X. The mask value for unsafe actions’ will be zero and omitted from the masked
action list. Hence, the action is chosen from the masked distribution M : π will
always be safe, where M denotes the masking function. Our Imperative Action
Masking problem can be formulated as follows:

Problem 1 (Imperative Action Masking Problem)
Given a CMDP, a state st ∈ X and, current policy π, the Online Imperative
Action Masking Problem is to find an action mask Mst

for the state st such
that the next state st+1 for any action at sampled from the masked distribution
Mst

: π(st) belongs to X, i.e., P(st, at) → st+1 ∈ X.



134 S. Dey et al.

3 Imperative Action Masking Framework

To construct Action Mask (Mst
) for a state (st) requires information about the

state’s membership in different Action Specific Robust Safe Sets. The masking
value for an action is decided as follows.

Mst
[at] =

{
1, if st ∈ Xat

I ;
0, Otherwise.

However, it is not computationally feasible for MDPs with huge state space to
calculate the Robust Safe Set for the entire state space, covering all future time
steps. It is also hard to accurately determine future states beyond a particular
horizon if the MDP is not fully known. Therefore, we approximate the member-
ship values of a state st in an Action Specific Robust Safe Set Xat

I by checking
all the possible states up to a small look ahead l. If the next state st+1 for the
action at belongs to X and there exist a trace τ = st+2, ..., st+l from st+1, such
that i = 2..l sti ∈ X then we consider that the state st ∈ Xat

I .

Fig. 3. Membership Check using Graph Plan Algorithm. Each rectangle denotes the
state space of Graph-Plan for a time instance. Whereas Circles denote the states and
Diamonds represent the action. Red circles denote that the state is unsafe or �∈ X and
Green circles denote that the state is safe. As shown in the figure, only the safe states
are expanded for the next time instances of the Graph-Plan Algorithm. (Color figure
online)

We consider the well-established Graph Plan algorithm [9] to efficiently check
for such traces τ . The actions of the MDP are considered the actions for the
Graph Plan algorithm, and the effect of the actions are the next states as shown
in Fig. 3. Two preconditions (¬explored, s ∈ X) for all the actions are also
considered to improve efficiency. To determine the membership of a state st

in the Action Specific Robust Safe Set of action at in the first stage of the
Graph Plan Algorithm, we apply action at only. All the actions that satisfy the
preconditions are applied in the later stages. For non-deterministic MDP, the
membership function F also becomes probabilistic F(Xa

I , s) → [0, 1]. In this
case, the membership probability of only the maximum reachability probability



Imperative Action Masking for Safe Exploration in Reinforcement Learning 135

Algorithm 1: Determining Membership using GraphPlan
Input: Action List A, Safe States X, Current State st, Given Action at, Look

Ahead l
1 Function Membership(A, X, st, at, l):
2 if st �∈ X then
3 return 0
4 F0(st) = 1
5 GPS = {st}
6 GPA = {at}
7 for i = 1 to l do
8 if ∀s ∈ GPS : s �∈ X then
9 return 0

10 GPS ← ExpandGraph(GPS, GPA)
11 for s′ ∈ GPS do
12 if s′ �∈ X then
13 Fi(s

′) = 0
14 else

15 Fi(s
′) = max

[
∀s, a ∈ Parent(s′), Fi(s) × P(s, a, s′)

]

16 end
17 GPA ← A
18 end
19 return max[Fl]

20 Comments:
21 GPS: Current State Set of the Graph-Plan Algorithms
22 GPA: Current Action set for the Graph-Plan Algorithm
23 ExpandGraph: Returns the set of next states from the states in GPS by taking

actions in GAP while satisfying the preconditions
24 Parent(s′): Return all the state, action combination used in GPSt−1 to reach s′

in GPSt.

to all safe states presented in the (t+ l) time step of the Graph Plan algorithm is
considered the membership probability. The membership probability F(Xat

I , st)
is determined as follows:

F(Xat

I , st) = max

[

∀st+l ∈ X,max
[
∀τ, τ [−1] = st+l,

∏

(s,a,s′)∈τ

P(s, a, s′)
]]

Here, τ [−1] returns the last state of the trajectory τ . In the end, it returns maxi-
mum F values among the states of Graph-Plan l-th time step. This membership
value is used to decide the action mask for the state st.

Mst
[at] =

{
1, if F(Xat

I , st) ≥ H;
0, Otherwise.

Here, H is the safety threshold range between [0,1]. The H value is a design
choice. However, with the higher value of H exploration process becomes more



136 S. Dey et al.

conservative. Algorithm 1 outlines the overall process flow to find the member-
ship values. Line 2 of the algorithm checks if the state st is in X or else it returns
the membership value as zero (Line 3). If the state st is in X, the membership
value is initialized with one (Line 4). The Graph Plan State list (GPS) and
Graph Plan Action list (GPA) are also initialized with the current state and
action. Then the graph is expanded (Line 10) up to depth l (look ahead value)
(Line 7–18). However, after each level expansion, the new states of that level
are checked if those states are in X, or else the membership for those states is
assigned to zero (Line 13). If the states are in X, then their temporary member-
ship values up to layer i are updated with the maximum value of their parent
states (i − 1 layer) value times corresponding transition probability, as shown in
Line 15. Finally, in Line 19, the maximum temporary membership value among
the last graph plan layer or l − th layer states are returned as the membership
value of state st in the corresponding Robust Set of Action at.

Graph Plan [9] is a simple and intuitive graph-based planning algorithm. The
use of the Graph Plan-based algorithm for determining whether the action is safe
or unsafe in our framework also makes the process intuitive and interpretable.
For example, consider the Pacman example shown in Fig. 1. Here based on the
current situation, our Imperative Action Masking Framework is able to identify
the Left action as Safe even though the Left action may lead the agent to a trap
or dead-end (colored in red) from which it cannot run away from an optimal
ghost, but it also has a safe state (colored in green) from which it can run away
from the ghost. Determining all these action labels (safe/unsafe) is quite intuitive
and interpretable.

4 Environment Setup

In order to demonstrate the working of our method, we have used two different
environments: (1) Pacman and (2) Warehouse. We have also presented a perfor-
mance comparison analysis of our method with the Probabilistic Safety Shield
for both environments. Table 1 describes the values of the hyperparameters used
in the experiments, and we consider the default reward settings for all the envi-
ronments. All the hyperparameter values used here are chosen empirically while
keeping the environment settings or parameters like reward settings as default.
Our implementation is uploaded as a public GitHub repository1.

4.1 Pacman

In this environment, [5], the Pacman (Learning Agent) navigates through the
grid as shown in Fig. 4 aims to collect all the pellets/food in the maze in the
least possible steps without getting caught by the chasing ghosts (Adversarial
Agents). The Pacman receives a positive reward of +10 for collecting a pellet
and a negative reward of -1 at each time step. A large positive reward of +500

1 https://github.com/sumantasunny/ImperativeActionMasking.git.

https://github.com/sumantasunny/ImperativeActionMasking.git.


Imperative Action Masking for Safe Exploration in Reinforcement Learning 137

Table 1. Hyper-parameter values used in the experiments.

Hyper-Parameters Values

Discount Factor γ 0.8

Learning Rate α 0.2

Initial/Min ε 0.90/0.05

ε-Decay 0.90

Max Steps/Episode 10000

Safety Threshold H 1

is received on collecting all the dots, and on getting caught by the ghosts, a
large negative reward of -500 is received. Then the game restarts. We have used
directional ghosts (Probability of following the Pacman = 0.9), thus enabling a
more severe safety-critical environment. We have chosen two types of layouts -
Grid Trap (Fig. 4b) is a layout with dead-ends (traps), while Original Classic
(Fig. 4a) and Medium Classic (Fig. 5a) layouts are without dead-end (no traps)
for better comparison.

Fig. 4. (a) Original Classic Pacman Layout. (b) Grid Trap Pacman Layout. The yellow
bot is the Pacman, controlled by the RL Agent. (Color figure online)

4.2 Warehouse

This environment, as shown in Fig. 5b, consists of a warehouse floor plan con-
taining packages on the shelves and an exit. The yellow fork-lifter (Learning
Agent) has to collect all the packages from the respective shelves and deliver
them at the exit by navigating through the narrow corridors. It has to make
sure that it does not collide with other fork-lifters, similar to the setup in [8].



138 S. Dey et al.

Fig. 5. (a)Medium Classic Pacman Layout. (b) Warehouse Grid Layout. The RL Agent
controls the yellow robot. (Color figure online)

The yellow fork-lifter receives a positive reward of +20 on respectively loading
and delivering each package and a negative reward of -1 at each time step. On
delivering all the packages, a large positive reward of +500 is received, and on
collision with other fork lifters, it gets a large negative reward of -500. All the
fork lifters have only one exit in the entire floor plan, creating a safety-critical
condition at the exit.

5 Results

The experimental results were produced in a Ubuntu 20.04 OS with 16 GB
physical memory and Intel Core-i7 8th Gen processor. As a programming lan-
guage, we use Python 3.7. As both environments are discrete, we use Tabular
Q-Learning-based RL Agents. The used hyper-parameters are given in Table 1.

The RL algorithm has been trained for 300 episodes in each environmental
setup, and each episode runs till termination. The discount factor γ = 0.8, learn-
ing rate α = 0.2, and ε = 0.05 in the ε-greedy exploration policy are used as
hyper-parameters. The safety threshold H = 1 is used throughout the experi-
ment, i.e., if the action is not completely safe, it is masked. We have taken the
plots of the respective agents’ average scores and winning rates in their respective
environmental setups during training over different look ahead values, which can
be seen in Fig. 6, 8. The comparison of the training scores over several episodes
in each environmental setup using various action-masking methods can be seen
in Fig. 7, 9.

5.1 Pacman

We can observe from Fig. 6a and Fig. 6b that for all grids, the training scores and
winning rates are very low when the look ahead is either very small or very large.
This is because, for a smaller look ahead, the action masker fails to mask those
actions that could be potentially hazardous in the future, if not immediately.



Imperative Action Masking for Safe Exploration in Reinforcement Learning 139

Fig. 6. Training Results on different look ahead for different Pacman grids. (a) Pac-
man’s average training score over different look ahead. (b) Pacman’s average winning
rate over different look ahead.

Fig. 7. Training Results on different Pacman grids. (a) Training Scores on original
classic Pacman. (b) Training Scores on medium classic Pacman. (c) Training Scores on
Pacman grid containing traps.

On the other hand, for a larger look ahead, the action masker becomes over-
conservative and thus may end up masking even those actions which practically
may not be unsafe. As a result, we see an optimal look ahead, leading to the
optimal performance of the Pacman in each of the grids.

Figure 7 compares the scores of RL approaches using our method of
GraphPlan-based look ahead shield to the unshielded RL approaches and RL
approaches using probabilistic shield constructed via model checker as in [16].
Figure 7a and Fig. 7b correspond to the grid without traps (dead ends), while
Fig. 7c corresponds to the grid with traps (dead ends). While outperforming the
unshielded RL method in the first two scenarios, our method performed better in
the third scenario, whereas the model checker-based probabilistic shield method
could not. Where our method is able to accumulate an average of +200 reward,
the model checker-based probabilistic shield performs similarly to the unshielded
RL method with an average of -400 reward.



140 S. Dey et al.

Fig. 8. Training Results on different look ahead for the warehouse floor plan (a) Fork-
lifter’s average training score over different look ahead. (b) Fork-lifter’s average winning
rate over different look aheads.

Fig. 9. Training Scores on warehouse environment.

5.2 Warehouse

Just like in the Pacman environment, as we can see from the overall trend of
the graphs in Figures Fig. 8a and Fig. 8b, the reward and winning rate increases
with the look ahead. However, after reaching a peak, the reward and winning
rate start decreasing with the further increase of look ahead length. A large look
ahead leads to overprotective scenarios and may end up masking not-so-unsafe
action, as shown in Fig. 8a and Fig. 8b.

The comparison of the scores of the RL approach using Graph Plan-based
look ahead shield of look ahead (l) 4 to the unshielded RL approach and RL
approach using probabilistic shield constructed via model checker as in [16] has
been shown in Fig. 9 where it is clearly visible that both the shield approach
performs much better than the unshielded RL method. Also, our RL with the



Imperative Action Masking for Safe Exploration in Reinforcement Learning 141

look ahead-based shielding approach performs slightly better in terms of rewards
than the RL with the probabilistic shield.

6 Conclusion

We have presented an interpretable safe exploration method in safety-critical
environments with discrete state action in RL. We use the classic Graph Plan
algorithm to calculate the membership probabilities in each Action Specific
Robust Safe Set for all states up to a small finite look ahead. The Graph Plan
algorithm helps to improve the interpretability where the small finite look ahead
helps to increase the scalability. Using membership probabilities to construct
Action Masks in our proposed framework helps ensure safety with a certain
probability. We have also presented various experiments that empirically vali-
date that our method incurs fewer safety incidents while achieving higher rewards
than the Probabilistic Safety Shield technique.

References

1. Abbeel, P., Coates, A., Ng, A.: Autonomous helicopter aerobatics through appren-
ticeship learning. Int. J. Robot. Res. 29, 1608–1639 (2010)

2. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In:
International Conference on Machine Learning (2017)

3. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: AAAI Conference on Artificial Intelligence
(2017)

4. Amodei, D., Olah, C., Steinhardt, J., Christiano, P.F., Schulman, J., Mané, D.:
Concrete problems in AI safety. arXiv abs/1606.06565 (2016)

5. Berkeley, U.: UC Berkeley CS188 Intro to AI reinforcement learning. http://ai.
berkeley.edu/reinforcement.html Accessed 14 Jun 2023

6. Berkenkamp, F., Moriconi, R., Schoellig, A.P., Krause, A.: Safe learning of regions
of attraction for uncertain, nonlinear systems with gaussian processes. In: 2016
IEEE 55th Conference on Decision and Control (CDC), pp. 4661–4666 (2016)

7. Bharadhwaj, H., Kumar, A., Rhinehart, N., Levine, S., Shkurti, F., Garg, A.:
Conservative safety critics for exploration. arXiv abs/2010.14497 (2020)

8. Bit-Monnot, A., Leofante, F., Pulina, L., Ábrahám, E., Tacchella, A.: Smartplan:
a task planner for smart factories. arXiv abs/1806.07135 (2018)

9. Blum, A., Furst, M.L.: Fast planning through planning graph analysis. In: Inter-
national Joint Conference on Artificial Intelligence (1995)

10. Chow, Y., Nachum, O., Duéñez-Guzmán, E.A., Ghavamzadeh, M.: A lyapunov-
based approach to safe reinforcement learning. In: Neural Information Processing
Systems (2018)

11. Dey, S., Dasgupta, P., Dey, S.: Safe reinforcement learning through phasic safety
oriented policy optimization. In: SafeAI@AAAI Conference on Artificial Intelli-
gence (2023)

12. Dey, S., Mujumdar, A., Dasgupta, P., Dey, S.: Adaptive safety shields for reinforce-
ment learning-based cell shaping. IEEE Trans. Netw. Serv. Manage. 19, 5034–5043
(2022)

https://arxiv.org/abs/1606.06565
http://ai.berkeley.edu/reinforcement.html
http://ai.berkeley.edu/reinforcement.html
https://arxiv.org/abs/2010.14497
https://arxiv.org/abs/1806.07135


142 S. Dey et al.

13. Feghhi, S., Aumayr, E., Vannella, F., Hakim, E.A., Iakovidis, G.: Safe reinforce-
ment learning for antenna tilt optimisation using shielding and multiple baselines.
arXiv abs/2012.01296 (2020)

14. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In: AAAI Conference on Artificial Intelli-
gence (2018)

15. Garćıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16, 1437–1480 (2015)

16. Jansen, N., Könighofer, B., Junges, S., Serban, A.C., Bloem, R.: Safe reinforcement
learning using probabilistic shields (invited paper). In: International Conference on
Concurrency Theory (2020)

17. Nikou, A., Mujumdar, A., Orlic, M., Feljan, A.V.: Symbolic reinforcement learning
for safe ran control. In: Adaptive Agents and Multi-Agent Systems (2021)

18. Perkins, T.J., Barto, A.G.: Lyapunov design for safe reinforcement learning. J.
Mach. Learn. Res. 3(null), 803–832 (mar 2003)

19. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)

https://arxiv.org/abs/2012.01296

	Imperative Action Masking for Safe Exploration in Reinforcement Learning
	1 Introduction
	2 Problem Formalization
	3 Imperative Action Masking Framework
	4 Environment Setup
	4.1 Pacman
	4.2 Warehouse

	5 Results
	5.1 Pacman
	5.2 Warehouse

	6 Conclusion
	References




