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Abstract. Machine learning opaque models, currently exploited to
carry out a wide variety of supervised and unsupervised learning tasks,
are able to achieve impressive predictive performances. However, they
act as black boxes (BBs) from the human standpoint, so they cannot be
entirely trusted in critical applications unless there exists a method to
extract symbolic and human-readable knowledge out of them.

In this paper we analyse a recurrent design adopted by symbolic
knowledge extractors for BB predictors—that is, the creation of rules
associated with hypercubic input space regions. We argue that this kind
of partitioning may lead to suboptimum solutions when the data set
at hand is sparse, high-dimensional, or does not satisfy symmetric con-
straints. We then propose two different knowledge-extraction workflows
involving clustering approaches, highlighting the possibility to outper-
form existing knowledge-extraction techniques in terms of predictive per-
formance on data sets of any kind.

Keywords: explainable AI · symbolic knowledge extraction ·
clustering

1 Introduction

Machine learning (ML) models in general – and (deep) artificial neural networks
in particular – are nowadays exploited to draw predictions in almost every appli-
cation area [26]. However, when facing critical domains – e.g., involving human
health, wealth, or freedom – ML models behaving as opaque predictors are not
an acceptable choice. The opaque nature of these models makes them unintelli-
gible for humans and this is the reason why they are called black boxes (BBs).
Nonetheless, explainability can be obtained from BBs via several strategies [17].
For instance, one can rely uniquely on interpretable models [27], or build expla-
nations by applying reverse engineering to the BB behaviour [21]. The former
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option is not always practicable, since interpretable models as linear regressors
and shallow decision trees are not always prediction-effective as more complex
models—for instance, random forests or deep artificial neural networks. On the
other hand, the latter approach allows users to combine the impressive predictive
capabilities of opaque predictors with the human readability proper of symbolic
models.

The majority of present literature offers a wide variety of procedures
explicitly designed to extract symbolic knowledge from opaque ML classi-
fiers [2,13,14,23,24,40,43, for instance]. A smaller set of procedures is dedicated
to BB regressors [20,28,32,35,38,39,41, to cite some], whereas few exceptions
are able to consider both categories [6,7,9,11,22,36]. A large amount of avail-
able techniques depend on the existence of software libraries supporting ML in
general (e.g., Python’s Scikit-Learn1 [25]) and symbolic knowledge extraction in
particular (for instance, PSyKE2 [10,29,31,33]).

Unfortunately, any method offers peculiar advantages, but at the same time,
it is subject to drawbacks and limitations. In the following we focus on the issues
deriving from the extraction of a particular kind of rules from BB classifiers and
regressors. More in detail, we observe that opaque predictors in general – and
regressors in particular – are often explained via a human-interpretable par-
titioning of the input space. A typical design choice is to identify hypercubic
regions of the input feature space enclosing similar instances and then to asso-
ciate symbolic knowledge to each region, for instance in the form of first-order
logic rules [20,28,32]. We agree that rules associated with hypercubic regions
are the best choice from the human-readability perspective since they enable
the description of an input space region in terms of constraints on single dimen-
sions (e.g., 0.3 < X < 0.6, 0.5 < Y < 0.75 for a hypercube in a 2-dimensional
space having features X and Y ). However, this solution may lead to the creation
of suboptimum clusters in several scenarios, for instance, if the partitioning into
hypercubes is performed following some sort of top-down symmetric procedure
on asymmetric data sets, or if the partitioning is bottom-up and performed on
sparse data sets. In this paper we suggest exploiting clustering techniques on the
data set used to train the BB before extracting knowledge from it, in order to
preemptively find and distinguish relevant input regions with the corresponding
boundaries. This theoretically allows extractors to: (i) automatically tune the
number of output rules w.r.t. the number of relevant regions found; (ii) give pri-
ority to more relevant regions, for instance those containing more input instances
or having the largest volume; (iii) avoid unsupervised partitioning of the input
feature space, otherwise leading to suboptimum solutions in terms of readability
and/or fidelity. Given that our proposed workflows are based on the training
data sample distribution and require no knowledge of the adopted opaque pre-
dictor, it may be possible to build pedagogical knowledge-extraction algorithms
adhering to them.

1 https://scikit-learn.org/stable/index.html.
2 https://github.com/psykei/psyke-python.
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Accordingly, in Sect. 2 an overview of symbolic knowledge extraction in gen-
eral and some techniques in particular is provided. In Sect. 3 the main drawbacks
of existing knowledge-extraction algorithms based on hypercubes are highlighted
and discussed. We then propose novel clustering-based workflows for knowledge
extraction in Sect. 4 and our work is finally summarised in Sect. 5.

2 Related Works

A predictive model can be defined as interpretable if human users are able to
easily understand its behaviour and outputs [12]. Since the majority of modern
ML predictors store the knowledge acquired during their training phase in a sub-
symbolic way, they behave and appear to the human perspective as unintelligi-
ble black boxes. The explainable artificial intelligence community has proposed
a variety of methods to enrich BB predictions with corresponding interpreta-
tions/explanations without renouncing their superior predictive performance.
Usually, the proposed methods consist of creating an interpretable, mimicking
model by inspecting the underlying BB in terms of internal behaviour and/or
input/output relationships. For instance, RefAnn analyses the architecture of
neural network regressors with one hidden layer to obtain information about
the internal parameters and thus build human-readable if-then rules having a
linear combination of the input features as postconditions [39]. This kind of tech-
nique is called decompositional. On the other hand, when the internal structure
of the BB is not considered to build explanations, algorithms are classified as
pedagogical.

Symbolic knowledge-extraction techniques are currently applied in several
critical areas, such as healthcare, credit-risk evaluation, intrusion detection sys-
tems, and many others [3–5,8,16,18,19,34,37,42].

2.1 ITER

The Iter algorithm [20] is a pedagogical technique to extract symbolic knowl-
edge from BB regressors. Iter induces a hypercubic partitioning of the input
feature space following a bottom-up strategy, starting with points in the multidi-
mensional space and expanding them until the final hypercubic output regions.
According to the Iter design, all the produced hypercubes are non-overlapping
and they do not exceed the input feature space.

After the hypercube expansion Iter associates an if-then rule to each cube,
selecting as a postcondition the mean output value of all the instances contained
in the cube. This behaviour may be relaxed to support classification tasks or
regression tasks having outputs described through linear laws by adopting the
generalisation proposed in [30].

The algorithm’s main advantage is to be capable of constructing hyper-
cubes having different sides’ lengths. However, especially when dealing with
high-dimensional data sets, it may present several criticalities related to the
hypercubes’ expansion.
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2.2 GridEx and GridREx

The GridEx algorithm [32] is a different pedagogical technique to extract sym-
bolic knowledge from BB regressors. It is applicable under the same conditions
of Iter and outputs the same kind of knowledge, but they differ in the strategy
adopted during the input space partitioning. GridEx is not a bottom-up algo-
rithm; conversely, it follows a top-down strategy, starting from the whole input
space and recursively partitioning it into smaller hypercubic regions, according
to a user-defined threshold acting as a trade-off criterion between readability
(in terms of the number of extracted rules) and fidelity of the output model
(intended as its ability to mimic the underlying BB).

Also for GridEx it is possible to adopt a generalisation enabling its applica-
tion for classification tasks [30]. On the other hand, the GridREx algorithm [28]
is the extension of GridEx providing linear combinations of the input features
as outputs associated with the identified hypercubic relevant regions.

Amongst the common advantages of GridEx and GridREx there is the ability
to automatically refine the output regions according to the provided threshold,
as well as to perform a merging step after each split, when possible. In particular,
the merging step consists of the pairwise unification of adjacent hypercubes to
reduce the number of output rules (to enhance human readability) and it is
based on the similarity between the samples included in each cube (to avoid
a predictive performance worsening). It is useful since the splitting phase may
create excessive amounts of disjoint but adjacent, similar regions.

3 Limitations of Existing Knowledge-Extraction Methods

In order to point out the main limitations affecting existing symbolic knowledge-
extraction techniques based on hypercubic partitioning a clear insight into how
the partitioning is performed has fundamental importance. For this reason the
behaviour of Iter, GridEx and GridREx is further detailed in the following
with the aim of spotting their major drawbacks and providing possible solutions.
Examples of these knowledge-extraction algorithms applied to real-world data
sets are also reported to strengthen our argumentation. Iter’s examples are
considered on the Istanbul Stock Exchange data set3 [1], describing a regression
task with 7 continuous input features plus another input feature representing a
timestamp. Examples for GridEx are based on the Wine Quality data set4 [15],
composed of 13 continuous input features.

3.1 ITER

The Iter procedure is exemplified for the Istanbul Stock Exchange data set in
Fig. 1, where only the 2 most relevant input features are reported, i.e., the stock
market return index of UK (FTSE) and the MSCI European index (EU). The

3 https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE.
4 https://archive.ics.uci.edu/ml/datasets/wine.

https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE
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(a) Starting cubes. (b) Cubes at iteration i. (c) Temporary cubes.

(d) Best temporary cube. (e) Merge (iteration i). (f) Merge (iteration i+ 1).

Fig. 1. Example of Iter hypercube expansion.

figure is a mere sketch depicting a possible undesired execution scenario of the
algorithm, starting from random points belonging to negligible input regions.

During the execution of Iter a certain number of infinitesimally small hyper-
cubes (i.e., multidimensional points) are created within the input feature space
(cf. Fig. 1a) and they are iteratively expanded until some stopping criteria are
met – i.e., the whole space is covered or it is not possible to expand the existing
cubes nor to create new ones –, or after a specified amount of iterations.

The expansion follows this strategy, for a generic iteration i (cf. Fig. 1b):

1. build adjacent temporary cubes around the existing ones (2 temporary cubes
per input dimension per existing cube; cf. Fig. 1c, temporary cubes are rep-
resented with dashed perimeter);

2. select the best temporary cube—i.e., the most similar to the corresponding
adjacent existing cube (cf. Fig. 1d, the best temporary cube is highlighted
with red perimeter);

3. merge the best temporary cube with the existing one (cf. Fig. 1e, the merged
region is highlighted with red hatches);

4. repeat from step 1 for every successive iteration (cf. Fig. 1f).

The temporary cube selected to be merged may become instead a new inde-
pendent cube if the similarity w.r.t. its adjacent cube is below a user-defined
threshold. The number of starting cubes as well as the size of the temporary
cubes and the maximum number of allowed iterations are other hyper-parameters
to be provided by users. Conversely, the position of the initial cubes is randomly
chosen, so it represents a source of non-determinism.
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It is important to notice that at each algorithm iteration, only one hypercube
amongst all the available temporary cubes is merged. The others are discarded
and the majority of them are created again without modifications during the
successive iteration. This may lead to an enormous waste of computational time
and resources due to the repetition of (the same) useless calculations, other than
the possibility to exceed the maximum allowed iterations without having con-
vergence. The absence of convergence results in a non-exhaustive partitioning
of the input feature space, which in turn implies the inability to predict output
values of data samples belonging to regions that are not covered by a hypercube
(i.e., there are no human-interpretable predictive rules associated with uncov-
ered regions). Conversely, the coverage of the whole input feature space enables
drawing predictions for any input instance.

Given the existence of the non-exhaustivity issue, it is of paramount impor-
tance the ability to focus on relevant input space subregions first, actually miss-
ing in the Iter design, since cubes are initialised randomly and expanded regard-
less of the subregion relevance. A naive notion of relevance for an input space
subregion may be the amount of contained data set samples. If a training data
set is representative of a certain task, it is admissible to envisage that if an
input space subregion has no training instances, then probably there will not
be data samples belonging to that same region to be predicted in the future, so
the region is negligible, or at least not compelling. We highlight that it is not
sufficient to build the starting cubes around existing training samples randomly
chosen, since these may still be outliers. Conversely, the notion of region rele-
vance should be intertwined with that of instance density and therefore the most
relevant regions should be those containing more training instances. Since Iter
is actually unaware of the sample density, we believe that this procedure could be
improved by making the hypercube initialisation and expansion density-driven,
or at least density-aware, without neglecting the pivotal similarity criterion of
the original design.

3.2 GridEx and GridREx

The GridEx algorithm applied to the Wine Quality data set is visually shown in
Fig. 2 to highlight its weaknesses. Only 2 out of 13 input features are reported
in the figure to avoid a chaotic representation, i.e., the most relevant for the
classification task.

GridEx considers the data point distribution during its execution, intended
as the location of the data points inside the input feature space, but it neglects
the output value of the training instances during the assignment of a priority to
input feature space subregions. Indeed, it identifies 3 kinds of subregions:

negligible regions i.e., those without training instances belonging to them.
These regions may be neglected without a noticeable impact on the overall
extractor performance since the probability of existing instances enclosed by
them is very low;
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(a) Data set. (b) 1 cut per axis. (c) 2 cuts per axis.

(d) 3 cuts per axis. (e) 2 cuts (x) + 3 cuts (y). (f) 3 cuts (x) + 2 cuts (y).

Fig. 2. Example of GridEx hypercubic partitioning.

permament regions i.e., those containing training samples and for which the
estimated predictive error is below the user-defined threshold. These regions
have a satisfying predictive performance from the user standpoint and require
no further partitioning;

eligible regions i.e., those containing training data but having an associated
predictive error beyond the user-defined threshold. These regions require to
be refined with further splitting since they hinder the overall predictive per-
formance of the model.

By following this strategy the complete coverage of the input feature space is
not granted. Nonetheless, very high coverage rates are achieved when predicting
new unknown instances.

For the examples reported in Fig. 2 only actual GridEx instances performing
a single iteration are considered. This means that the eligible regions do have
not the possibility to be further refined. By observing Figs. 2b to 2f it is possible
to notice that the cuts performed by GridEx are perpendicular to the axes and
create for each dimension a set of partitions having the same size, even if the
number of cuts may differ for each dimension (cf. Figs. 2e and 2f). To apply a
different amount of cuts for each input dimension it is necessary to adopt the
adaptive version of GridEx, selecting a number of slices that are proportional to
the dimensions’ relevance.

The symmetric strategy is the main disadvantage of GridEx, in its base and
adaptive versions, and the same occurs with GridREx, since it follows the same
hypercubic partitioning strategy of GridEx. This design choice may lead to a
drop in the predictive performance if the identified hypercubes include portions
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of separated input regions. Given the symmetric nature of the algorithm, there
is no certainty that the predictive error measured for the hypercubic regions can
be reduced by augmenting the number of partitions, since a more fine-grained
partitioning may lead in any case to a poor approximation on asymmetric data
sets. We believe that GridEx and GridREx may be improved by performing slices
that are not blindly symmetric, but somehow aware of the training data points’
outputs. More in detail, cuts should avoid splitting into different regions training
samples that are similar, as well as avoid creating regions containing too different
training instances. To achieve this goal clustering may be performed before the
cuts in order to identify different clusters of data and therefore avoid cuts in the
proximity of the clusters’ centroids. Conversely, cuts in correspondence of the
intersection of two clusters should be encouraged.

4 Clustering-Based Approaches

Density and similarity estimates inside the training set input space may be
obtained, for instance, via the application of clustering techniques to the avail-
able data. With reference to Fig. 1, three clusters may be identified: one enclosing
the data points in the bottom-left part of the plot, one for the middle samples
and the other for the top-right instances. On the other hand, for Fig. 2 the clus-
ters may be defined according to the output expected classes and therefore also
in this case three distinct clusters are identified.

An ideal extraction technique should be able to identify relevant clusters of
data in a fast and flawless way, especially if clusters are linearly separable. An
ideal procedure should also be able to approximate these clusters according to a
human-interpretable format, for instance with hypercubic regions, enclosing the
training data points without overlaps between approximated regions. We stress
that this is only a desideratum, since real-world data sets seldom contain linearly
separable classes of instances, but the design of a clustering-based knowledge
extractor should take this ideal goal into account.

Bottom-up strategies like the one adopted by Iter generally result in time-
consuming executions in the n-dimensional domain, with large n. This may result
in a very slow convergence or even incomplete input space coverage. It is possible
to fasten the Iter convergence by acting on the algorithm parameters, but
at the expense of a coarser partitioning. This latter inconvenience is the same
encountered by using GridEx, since it induces an equally spaced grid not always
able to capture the properties of the data distribution inside the input feature
space. If a grid cell only contains instances belonging to a single cluster, the
predictive error will be small. Otherwise, it will be less or more large depending
on the amount of contamination of each grid cell.

An optimum, fast bottom-up hypercubic-based extraction technique can be
obtained by performing the following steps:

1. apply a clustering technique to the data set and therefore identify the different
relevant regions;
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(a) Initial clustering. (b) Starting cubes. (c) Final partitioning.

Fig. 3. Example of an ideal bottom-up clustering- and hypercube-based symbolic
knowledge extraction.

2. construct hypercubes to include the whole found regions, or a part of them,
since this shape can be straightforwardly represented in a symbolic and
human-readable format;

3. refine the hypercubes to enhance coverage and predictive performance of the
explainable model, for instance by expanding the approximated regions;

4. remove the overlaps amongst the hypercubic regions, or impose an order to
avoid ambiguity in evaluating the membership of instances to regions;

5. describe each hypercube in terms of the input features and then associate a
corresponding human-interpretable output value to obtain the final explain-
able model.

The described workflow for an ideal bottom-up clustering-based extractor per-
forming hypercubic partitioning of the input feature space is depicted in Fig. 3.

Conversely, an effective and fast top-down extraction technique based on
hypercubic partitioning can be performed by substituting the middle steps of
the workflow described above:

2. cut the input feature space in order to separate different clusters while avoid-
ing spreading instances of a single cluster over multiple regions;

3. create hypercubic regions approximating the identified optimum cuts, avoid-
ing overlapping cubes;

4. refine the hypercubes by recursively repeating the previous steps for each
cube, to enhance the predictive performance of the explainable model.

The corresponding workflow for an ideal top-down knowledge-extraction proce-
dure based on clustering is depicted in Fig. 4. Both Fig. 3 and Fig. 4 are concep-
tual sketches highlighting the fundamental steps of the aforementioned work-
flows, with the goal of guiding the future development of procedures adhering
to the presented concepts.

4.1 Open Issues

Extraction techniques may surely benefit from cluster-aware partitioning meth-
ods. Accuracy in the selection of different clusters and in the construction
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(a) Initial clustering. (b) Optimum cuts. (c) Final partitioning.

Fig. 4. Example of an ideal top-down clustering- and hypercube-based symbolic knowl-
edge extraction.

of clustering-based hypercubes may enable the achievement of the following
desiderata: extracting the minimum number of different predictive rules (one
per cluster) having the lowest possible predictive error. However, a number of
challenges arise from the aforementioned workflows. For instance:

i. How to select the correct number of clusters to identify, if unknown?
ii. How to handle outliers in the construction of hypercubes for the found

regions and in deciding where to cut the input space?
iii. How to build hypercubes around clusters associated with overlapping hyper-

cubic regions?
iv. How to discern amongst different clusters approximated by the same hyper-

cubic region?

We believe that powerful strategies to describe non-trivial clusters may
exploit difference cubes – e.g., regions of the input feature space having a non-
cubic shape and described by the subtraction of cubic areas – and hierarchical
clusters. We stress that the importance of adopting hypercubes to describe input
regions depends on the possibility to define a hypercube in terms of single vari-
ables belonging to specific intervals, in a highly human-comprehensible form.
This is not true when dealing with other representations—e.g., oblique rules,
M-of-N rules.

5 Conclusions

In this paper we propose two clustering-based workflows to enhance the symbolic
knowledge extraction from BB predictors in terms of computational complexity,
fidelity, and predictive performance. The former is based on a bottom-up hyper-
cubic approximation of the input feature space, resulting in a density-driven fast
partitioning. Conversely, the latter is a top-down cutting of the input feature
space providing hypercubic partitioning as well. Our methods can be exploited
to build interpretable regions associated with human-readable logic rules based
on an upstream clustering technique. In our future works we plan to implement
and include in the PSyKE framework different knowledge extractors adhering to
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the presented concepts and capable of handling complex situations—e.g., out-
liers, clusters with challenging shapes, non-linearly separable clusters.

Acknowledgments. This work has been supported by the EU ICT-48 2020 project
TAILOR (No. 952215).
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