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Abstract. Contextual Importance and Utility (CIU) is a model-
agnostic method for post-hoc explanation of prediction outcomes. In this
paper we describe and show new functionality in the R implementation
of CIU for tabular data. Much of that functionality is specific to CIU
and goes beyond the current state of the art.
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1 Introduction

Contextual Importance and Utility (CIU) was presented by Kary Främling in
1992 [1] for explaining recommendations or outcomes of decision support systems
(DSS) in a model-agnostic way. CIU was presented formally in [2,3] and more
recent developments have been presented e.g. in [5]. This paper presents new
functionality of CIU that is implemented in the R package for tabular data, avail-
able at https://github.com/KaryFramling/ciu. An earlier version of the package
was presented at the Explainable Agency in Artificial Intelligence Workshop of
the AAAI conference in 2021 [4].

CIU has a different mathematical foundation than the state-of-the-art XAI
methods SHAP and LIME. CIU is not limited to “feature influence” and therefore
offers richer explanation possibilities than the state-of-the-art methods.

After this Introduction, Sect. 2 resumes the core theory of CIU. Section 3
shows the new functionality, followed by Conclusions that include a brief discus-
sion about CIU versus comparable state-of-the-art XAI methods.

2 Contextual Importance and Utility

Contextual Importance (CI) expresses to what extent modifying the value of
one or more feature(s) x{i} can affect the output value yj (or rather the output
utility uj(yj)). CI is expressed formally as:
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CIj(c, {i}, {I}) = umaxj(c, {i}) − uminj(c, {i})
umaxj(c, {I}) − uminj(c, {I}) , (1)

where c is the studied context/instance, {i} ⊆ {I} and {I} ⊆ {1, . . . , n} and
n is the number of features. uminj and umaxj are the minimal and maximal
output utility values that can be achieved by varying the value(s) of feature(s)
x{i} while keeping all other feature values at those of c.

In classification tasks we have uj(yj) = yj ∈ [0, 1] and for regression tasks
where uj(yj) = Ayj + b (which applies to most regression tasks) we can write:

CIj(c, {i}, {I}) = ymaxj(c, {i}) − yminj(c, {i})
ymaxj(c, {I}) − yminj(c, {I}) , (2)

Contextual Utility (CU) expresses to what extent the current value(s) of given
feature(s) contribute to obtaining a high output utility uj . CU is expressed
formally as:

CUj(c, {i}) = uj(c) − uminj(c, {i})
umaxj(c, {i}) − uminj(c, {i}) (3)

When uj(yj) = Ayj + b, this can again be written as:

CUj(c, {i}) =
∣
∣
∣
∣

yj(c) − yuminj(c, {i})
ymaxj(c, {i}) − yminj(c, {i})

∣
∣
∣
∣
, (4)

where yumin = ymin if A is positive and yumin = ymax if A is negative.

Contextual influence expresses how much feature(s) influence the output value
(utility) relative to a reference value or baseline, here denoted neutral.CU ∈
[0, 1]. Contextual influence is conceptually similar to Shapley value and other
additive feature attribution methods. Formally, Contextual influence is:

φ = CI × (CU − neutral.CU) (5)

where “j(c, {i}, {I})” has been omitted for easier readability.
It is worth noting that CI and CU are values in the range [0, 1] by defini-

tion, which makes it possible to assess whether a value is high or low. Con-
textual influence also has a maximal amplitude of one, where the range is
[−neutral.CU, 1−neutral.CU ]. CIU calculations require identifying yminj and
ymaxj values, which can be done in many ways. The approach used for the
moment is described in [4] and is omitted here due to space constraints.

All CIU equations apply to each feature separately as well as to coalitions
of features {i} versus other coalitions of features {I}, where {i} ⊆ {I} and
{I} ⊆ {1, . . . , n}. Such coalitions can be used to form Intermediate Concepts,
which name a given set of inputs {i} or {I}. Such Intermediate Concepts make
it possible to define arbitrary explanation vocabularies with abstraction levels
that can be adapted to the target user.
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3 New Explanation Functionality with CIU

The source code for producing the results shown here is published at https://
github.com/KaryFramling/EXTRAAMAS2023. The R package source code is
available at https://github.com/KaryFramling/ciu and on CRAN.
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Fig. 1. Left: Generated illustration of CIU calculations. Right: Contextual influence
barplot explanation for “Johnny D”.

To begin, we use the Titanic data set, a Random Forest model and an instance
“Johnny D”, as in https://ema.drwhy.ai. “Johnny D” is an 8-year old boy that
travels alone. The model predicts a survival probability of 63.6%. 63.6% is good
compared to the average 32.5%, which is what we want to explain. Figure 1
illustrates how CI, CU and Contextual influence is calculated for the feature
“age” and a Contextual influence plot for “Johnny D” with neutral.CU = 0.325.
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Fig. 2. Left: “Old” visualisation of CI and CU, with CU illustrated using colors. Right:
New visualisation that answers more exactly the counterfactual “what-if” question.

Counterfactual Explanations answer the question “What if?”. Figure 2 shows an
older visualisation with CI as the bar length and CU illustrated with a color.
The new visualisation illustrates CI as a transparent bar and CU as a solid
bar. When CU = 0 (worst possible value), the solid bar has length zero. When
CU = 1 (best possible value), the solid bar covers the transparent bar. This
is called “counterfactual” because it indicates what feature(s) have the greatest
potential to improve the result. In Fig. 2 we can see that being accompanied by
at least one parent (feature “parch”) could increase the probability of survival.

https://github.com/KaryFramling/EXTRAAMAS2023
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Fig. 3. Beeswarm visualisation of CI and Contextual influence for Boston data set.

Beeswarm Visualisation. Beeswarms give an overview of an entire data set
by showing CI/CU/influence values of every feature and every instance. As in
https://github.com/slundberg/shap, we use the Boston data set and a Gradient
Boosting model. The dot color in Fig. 3 represents the feature value. The CI
beeswarm in Fig. 3 reveals for example that the higher the value of “lstat” (%
lower status of the population), the higher is the CI (contextual/instance-specific
importance) of “lstat”. The influence plot reveals that a high “lstat” value lowers
the predicted home price and is nearly identical to the one produced for Shapley
values. We use neutral.CU = 0.390, which corresponds to the average price so
the reference value is the same as for the Shapley value.
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Fig. 4. Left: Top-level explanation for why Ames instance 433 is expensive. Right:
Detailed explanation for Intermediate Concept “House condition”.

Intermediate Concepts. Ames housing is a data set with 2930 houses described
by 81 features. A gradient boosting model was trained to predict the sale price
based on the 80 other features. With 80 features a “classical” bar plot explanation
becomes unreadable. Furthermore, many features are strongly correlated, which
causes misleading explanations because individual features have a small impor-
tance, whereas the joint importance can be significant. Intermediate Concepts
solve these challenges, as illustrated in Fig. 4 that shows the top-level explanation
and an explanation for one of the Intermediate Concepts for an expensive house.
Here, the vocabulary has been constructed based on common-sense knowledge
about houses but it could even be provided by the explainee.

https://github.com/slundberg/shap
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Fig. 5. Left: Contrastive “Why?” explanation for two expensive Ames houses. Right:
Top-level counterfactual explanation for Ames instance 1638.

Contrastive Explanations. Contrastive explanations answer questions such as
“Why alternative A rather than B” or “Why not alternative B rather than A”. Any
value in the range [0, 1] can be used for neutral.CU in Eq. 5, including CU values
of an instance to compare with. Figure 5 shows a contrastive explanation for
why Ames instance #433 ($477919, see Fig. 4) is predicted to be more expensive
than instance #1638 ($439581). Contrastive values are in the range [−1, 1] by
definition, so the differences between the compared instances in Fig. 5 are small.

4 Conclusion

CIU enables explanations that are not possible or available with current state-
of-the-art methods. Notably, Shapley value and LIME are limited to “influence”
values only. Even for influence values, Contextual influence offers multiple advan-
tages such as a known maximal range and adjustable reference value. However,
the emphasis of the paper is to show how CI together with CU can provide coun-
terfactual explanations and give a deeper understanding of the model behaviour
in general, including the possibility to produce contrastive explanations.
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