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Abstract. Open environments require dynamic execution of plans
where agents must engage in settings that include, for example, re-
planning, plan reusing, plan repair, etc. Hence, real-life Plan Recog-
nition (PR) approaches are required to deal with different classes of
observations (e.g., exogenous actions, switching between activities, and
missing observations). Many approaches to PR consider these classes
of observations, but none have dealt with them as deliberated events.
Actually, using existing PR methods to explain such classes of obser-
vations may generate only so-called imperfect explanations (plans that
partially explain a sequence of observations). Our overall approach is to
leverage (in the sense of plan editing) imperfect explanations by exploit-
ing new classes of observations. We use the notation of capabilities in
the well-known Belief-Desire-Intention (BDI) agents programming as an
ideal platform to discuss our work. To validate our approach, we show
the implementation of our approach using practical examples from the
Monroe Plan Corpus.
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1 Introduction

It is generally accepted that an agent system with practical extensions can carry
out tasks that would not otherwise be achievable by its basic reactive system.
Often when the environment is highly dynamic and/or the task is complicated for
the basic reactive behaviour of the agent system, developers resort to extending
or adding new modules to the agent system. A typical example of extending agent
models can be found far and wide in the state-of-the-art Belief-Desire-Intention
(BDI) paradigm [1], including, but not limited to, extending the architecture
with self-awareness [2], automated planning [3], and reconfigurability [4].

Much of the work done on PR involves abductive reasoning (e.g., [5,6], and [7]),
which seeks to abductively infer plans by mapping the observed actions to plan
libraries. A major drawback to Abductive Plan Recognition (APR) is that target
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plans are usually not from the plan library. This can be due to several reasons,
some of which are related to extending the observed agent system with differ-
ent modules, such as the works presented in [2–4]. Actually, appealing to APR
approaches to explain such observed actions would only generate imperfect expla-
nations. An imperfect explanation is one that partially explains a sequence of
actions. Another notion of PR is discovering plans by executing action models (in
the sense of classical automated planning) to best explain the observed actions.
Nevertheless, this can take a great deal of time in complex problems. Our app-
roach is a third way which does not align itself with either notion. Still, it can
potentially improve the explanatory power of plan libraries without the need for
action model execution.

In this paper, we address the problem of leveraging imperfect explanations,
the process of modifying existing hypotheses to explain an observed sequence of
actions. We expect leveraging imperfect explanations to help answer the following
questions:

– What was the agent’s original plan based on its new (or unusual) observed
actions?

– Were the observed changes in a plan execution intentional?

Answering these questions can be useful in understanding the capabilities of
the observed agent. Consider, for example, a system composed of heterogeneous
autonomous agents, some of which are equipped with a form of societal control
(e.g., such as the one described in [8]). In such systems, leveraging imperfect
explanations could be used to gain insight into the actual norm-modification
operators of the observed agents compared to non-normative agents.

We show that when the observed agent operates in a domain model known to
the observer, imperfect explanations can be a valuable guide to explain unknown
plans that involve new classes of observations. Hence, our approach can be seen as
a post-processing stage for various single-agent plan library-based PR techniques.
To avoid arbitrary modification of hypotheses, we also introduce a classification
model that can determine the settings (e.g., noisy or explanatory) in which
an unknown plan has been observed. We demonstrate the performance of the
proposed approach using the Monroe Plan Corpus.

The remainder of this work is organized as follows. Related work is discussed
in Sect. 2. In Sect. 3, we introduce some preliminaries on the notion of capabilities
and BDI agents programming, which are the two main ingredients of our work.
Section 4 presents our running example with pointers to different scenarios. We
formalize the problem of this work in Sect. 5. Section 6 describes our approach
to leveraging imperfect explanations for PR problems. Empirical evaluation is
described in Sect. 7 before we conclude and outline future work in Sect. 8.

2 Related Work

Real-life PR systems are required to deal with domains in which new classes
of observations are frequently observed. Roughly speaking, there are three
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noticeable domains regarding new classes of observations in PR problems: (1)
Exploratory domains - the observed behaviour is a subject of exploratory and
discovery learning (e.g., mistakes, exogenous and repeating activities), (2) Noisy
domains - the observed behaviour is characterized by imperfect observability
(e.g., extraneous, mislabeled and missing activities), and (3) Open domains -
the observed behaviour is characterized by new, deliberated classes of obser-
vations (e.g., reconfigured plans). We concentrate our review on how existing
PR approaches viewed/handled new classes of observations. We then use these
classes in later sections where we describe our approach to leveraging imperfect
explanations.

We first describe works that assume exploratory domains. With the intention
of inferring students’ plans, Mirsky et al. [7] proposed a heuristic plan recognition
algorithm (called CRADLE) that incrementally prunes the set of possible expla-
nations by reasoning about new observations and by updating plan arguments, in
which explanations stay consistent with new observations. Uzan et al. [9] intro-
duced an off-line PR algorithm (called PRISM) to recognize students’ plans by
traversing the plan tree in a way that is consistent with the temporal order of
students’ activities. Amir et al. [10] proposed an algorithm (called BUILDPLAN)
based on recursive grammar to heuristically generate students’ problem-solving
strategies.

Many prior approaches to PR focused on dealing with noisy domains. Mas-
sardi et al. [11] classified noise in PR problems into three types: missing obser-
vations, mislabeled observations and extraneous actions and proposed a particle
filter algorithm to provide robust-to-noise solutions to PR problems. Sohrabi et
al. [12] transformed the PR problem into an AI planning problem that allows
noisy and missing observations. Ramı́rez and Geffner [13] used classical planners
to produce plans for a given goal G and compare these plans to the observed
behaviour O. The probability distribution P(G|O) can be computed by how the
produced plans are close to the observed behaviour. Sukthankar and Sycara [14]
proposed an approach for pruning and ranking hypotheses using temporal order-
ing constraints and agent resource dependencies.

PR systems are also required to deal with open domains, where the observed
plans are usually not from the used plan library. Avrahami-Zilberbrand and
Kaminka [15] describe two processes for anomalous and suspicious activity recog-
nition: one using symbolic behaviour recognizer (SBR) and one using utility-
based plan recognizer (UPR), respectively. Mainly, SBR filters inconsistent and
ranking hypotheses, while UPR allows the observer to incorporate his preferences
as a utility function. Zhuo et al. [16] also address the problem of PR in open
domains using two approaches: one using an expectation-maximization algorithm
and one using deep neural networks. A notable difference from other approaches
is that the work of Zhuo et al. [16] is able to discover unobserved actions by
constantly sampling actions and optimizing the probability of hypotheses.

Our work is not competing to, but complementing most of the previous works
on PR, where it can be seen as a post-processing task for various single-agent plan
library-based PR techniques. More precisely, leveraging imperfect explanations
for PR problems can be viewed as an activity that occurs just before ruling out
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imperfect explanations or considering an observation as exploratory or noisy. In
contrast with the literature, we focus on improving the explanatory power of plan
libraries by leveraging imperfect explanations and exploiting new classes of obser-
vations.

3 Preliminaries

This section reviews the prior research used in the remainder of this work. First,
we clarify the link between the notion of capability and BDI programming, and
then we describe the representation we use for capabilities and plans.

3.1 BDI Programming and Capabilities

An agent system with BDI architecture [1] commonly consists of a belief base
(what the agent knows about the environment), a set of events (desires that the
agent would like to bring about), a plan library (a set of predefined operational
procedures), and a base of intentions (plans that the agent is committed to
executing).

Fundamentally, the reactive behaviour of BDI agent systems includes the
agent system handling events by selecting an event to address from the set of
pending events, selecting a suitable plan from the plan library, and stacking its
program into the intention base. A plan in the plan library is a rule of the form
ε : ν ← �, where the program � is a predefined strategy to handle the event ε
whenever the context condition ν is believed to be true by the agent. A plan can
be selected for handling an event ε if it is relevant and applicable, i.e., designed
with respect to the event ε, and the agent believes that the context of the plan
ν is a logical consequence of its belief base, respectively. A program � often can
be presented as a set of actions that result in changes in the environment state.
For the purpose of this work, we ignore other elements (e.g., trigger events or
guards) in the plan body. Note that using BDI programming languages such as
Jason [17] and 2APL [18], information on action pre- and post-conditions can
only be defined in a separate file (called simulated environment), making this
information invisible to the agent.

To reason about actions and their specifications, we need to access infor-
mation about the preconditions and postconditions of all available actions. We
shall refer to capability as an explicit specification of action preconditions and
postconditions. A capability has been understood in intelligent agent studies as
having at least one way to achieve some state of affairs, where it can be used
only if its preconditions are believed to be true [2,19]. For the purposes of this
work, we shall concentrate mostly on the plan library. We do not, therefore,
discuss other issues related to integrating the notion of capabilities into the BDI
paradigm. For a detailed introduction to integrating the notion of capabilities
into the BDI system, the reader is referred to [2,19].
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3.2 Capability and Plan Representation

Our representation of agent capabilities is closely related to [2,19], but signif-
icantly influenced by the action theory found in classical automated planning,
such as what has been presented in situation calculus [20] and STRIPS reason-
ing [21]. Following this representation, we use a language of propositional logic
L over a finite set of literals L = {l1, . . . , ln} to represent the set of states of the
environment S in which the agent is situated, such that each state of the envi-
ronment s ∈ S is a subset of L, i.e., li ∈ s defines that the propositional literal li
holds at the state s. As mentioned before, a capability specification describes an
action that a BDI agent can carry out along with its pre- and post-conditions.
Notationally, capability specification is triple subsets of L, which can be written
as a rule of the form {pre(c)}c{post(c)}, where

– {pre(c)} is a set of predicates whose satisfiability determines the applicability
of the capability,

– c is the capability, and
– {post(c)} is a set of predicates that materialize with respect to the execution

of the capability.

It is not hard to see that, by sequentially grouping capabilities that are
dedicated to bringing about some state of affairs, the sequence C = 〈c1, . . . , cn〉
can be seen as an operational procedure to resolve that state. Consider the plan
p, we use

– {pre(p)} as the conditions under which the plan is applicable,
– C = 〈c1, . . . , cn〉 as the plan body, and
– {post(p)} as the conditions associated with the end event of the plan,

As such, we use the notation p = {pre(p)}C{post(p)} to represent plan p speci-
fications.

For the purpose of reasoning about the execution of agent capabilities, we
work with a simple representation of the possible ways the plan can be executed,
which we term normative plan traces. A normative plan trace is one such that (1)
the specification of capabilities completely determines the transition on states
in S, i.e., if s ∈ S and c is applicable to s, then it produces another state s′ ∈ S,
(2) the capabilities are guaranteed to execute sequentially, e.g., knowing that
capability c2 immediately follows capability c1, then c2 cannot be executed until
post(c1) holds, and (3) a plan execution can not be interleaved with other plans.

4 Running Example

As a running example, we consider variants of Monroe County Corpus for emer-
gency response domain [22].

Example 1. As shown in Fig. 1, the agent aims to provide medical attention to
patients. It just receives requests from medical personnel, drives to the patient’s
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location (loc), loads the patient (pt) into the ambulance (amb), drives back to the
hospital (h), and takes the patient out of the ambulance. Moreover, the agent
is also equipped with capabilities related to the emergency response domain
problem.

Fig. 1. Providing medical attention plan and capabilities.

We argue that existing APR applications are inadequate in settings where the
observed agent is characterized by extensibility and deliberation. To illustrate
this, let us consider the following example.

Example 2. Consider the following scenarios that may arise in this emergency
response domain:

i After arriving at the scene, the agent performed CardioPulmonary Resusci-
tation (CPR) on the patient and loaded the patient into the ambulance.

ii The agent called an air ambulance and drove back to the hospital without
loading the patient into the ambulance due to rough terrain, poor weather,
etc.

iii The agent drove back to the hospital without loading the patient into the
ambulance as the patient went missing.

Although simple, Example 2 is far from trivial. First of all, it is not diffi-
cult to recognize that the basic reactive behaviour of the BDI agent system
(described in the previous section) cannot produce the behaviours depicted in
these scenarios on its own, since it does not have those plans in its plan library.
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Arguably, there is at least an extension to the system that enabled such edits in
the agent behaviour. Indeed, the state-of-the-art BDI agent framework exhibits
a large number of extensions to the reactive behaviour of the BDI agent sys-
tem. For example, the behaviour illustrated in scenario (i) involves an insertion
edit (where the agent added CPR execution into the plan). It is possible for the
agent to add an action(s) to a plan by incorporating automated planning into its
system, such as in [3]. Scenario (ii) involves a substitution edit (where the agent
replaced loading the patient into the ambulance with calling an air ambulance).
It is possible for the agent to replace a capability with another one by leverag-
ing an extension such as reconfigurability [4]. Finally, scenario (iii) represents a
deletion edit (where the agent dropped loading and taking the patient into and
out of the ambulance from the plan), which is doable if the agent is equipped
with a task aborting mechanism, such as the one presented in [23].

5 Problem Formulation

A plan library H is a set of BDI plans, each of which contains a sequence of
capabilities 〈c1, . . . , cn〉 as its body, where each ci, 1 ≤ i ≤ n, is the capability
name and a list of typed parameters. We assume the presence of a capability
library, denoted by A , comprises the set of all available capabilities specifications
related to the domain problem. An observation of an unknown plan p is denoted
by O = 〈o1, . . . , on〉, where oi ∈ A ∪ {∅}, i.e., the observation oi is either a capa-
bility in A or an empty capability ∅ that has not been observed. Note that the
plan p is not necessarily in H, and thus mapping O to the H may generate only
imperfect explanations.

When reasoning about new classes of observation, one can classify an
observed capability by four types: (1) match, when the capability is correctly
observed, (2) insertion edit, when the observed capability is added to a norma-
tive plan trace, (3) deletion edit, when the observed capability is dropped from a
normative plan trace, (4) substitution edit, when a capability that is to be exe-
cuted as part of a normative plan trace is replaced with another one. We propose
to describe these three edits in plan execution using operations as follows.

Definition 1 (Abductive edit operation, sequence). Let p with
C = 〈c1, . . . , cn〉 as its body be an imperfect explanation for the observation
O = 〈o1, . . . , on〉. An abductive edit operation is the insertion, deletion, or sub-
stitution of capabilities in C according to the observations in O. An abductive
insertion of an observed capability oi is denoted by (∅ → oi), deletion of ci is
denoted by (ci → ∅) and substitution of ci with oi is denoted by (ci → oi). An
abductive edit sequence AES = 〈ae1, . . . , aen〉 is a sequence of abductive edit
operations. An AES derivation from C to O is a sequence of sequences C0, . . . ,Cn,
such that C0 = C and Cn = O and for all 1 � i � n, Ci−1 → Ci via aei.

Definition 2 (Extended plan library). An Extended plan library is a couple
EPL = (H,AES), where

1. H is a plan library, and
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2. AES is a sequence of abductive edit operations.

Definition 3 (APR problem). Considering our settings, the APR problem
can be defined by a 4-tuple APR = (EPL,O, explain, A ), where:

1. EPL is an extended plan library,
2. O is an observed trace of capabilities,
3. explain is a map from plans and sub-plans of H to subset of O, and
4. A is a library of capability specifications.

As such, the solution to APR is to discover an unknown plan p, which is a
plan with an edited sequence of capabilities as its body that best explains O given
EPL and A . Again, this can be challenging since the plan p is not necessarily in
H, and thus mapping O to the H may generate only imperfect explanations.

6 Approach

Our approach to leveraging imperfect explanations consists of four phases, as
shown in Fig. 2. These phases are (1) Classification of unknown plans, (2) Abduc-
tive editing of imperfect explanations, (3) Reasoning about the validity of the
edited plan, and (4) Abductive updating of imperfect explanations. We describe
each of these steps in greater detail in the following sub-sections. Note that solid
arrows refer to leveraging imperfect explanations phases and dotted arrows refer
to required inputs.

Fig. 2. Overview of the approach.

As illustrated in Fig. 2, leveraging imperfect explanations takes as inputs

1. An unknown plan,
2. An approximation of the plan(s) that have been used to generate input (1),

and
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3. A set of all available capabilities specifications related to the domain problem.

While inputs (1) and (2) are used in the classification and updating phases,
inputs (2) and (3) are used in the editing and validation phases. Note also that
our approach still requires an external plan recognition mechanism to provide
imperfect explanations (hence the dotted arrow from agent plans to the classifi-
cation phase).

6.1 Classification

Given an unknown plan, before any decision can be made concerning leveraging
imperfect explanations, it is first necessary to determine the characteristic of the
environment in which the unknown plan has been carried out (i.e., we do not
want to build on noisy or exploratory observations). To that end, we use decision
tree learning to classify unknown plans. Although decision trees are not the only
means of classification, they are highly interpretable models [24]. Following the
classification described in Sect. 2, the following taxonomy for classification is
proposed:

EE Exploratory environment - observed behaviour is a subject of exploratory or
discovery learning. Much of the work done on PR for exploratory domains
considers trial-and-error, activity repeating and interleaving as features of
exploratory behaviours [7,9,10].

NE Noisy environment - observed behaviour is characterized by imperfect
observability. Previous studies (e.g., [12] and [11]) reported noisy obser-
vations as those that cannot be explained by the actions of any plan for any
given goal (computing all possible plans for a given goal is fully described
in [6]).

OE Open environment - observed behaviour is characterized by extensibility.
Many studies on intelligent agents (e.g., [4,25,26]) consider rational changes
in plan execution (see Sect. 6.3 for how rational changes are validated) as a
feature of engaging the agent with open environments.

A given unknown plan is classified into one of the classes {EE, NE, OE},
each representing the settings in which the unknown plan has been executed.
An unknown plan is assigned to a class membership based on its characteristic
features by comparing it to its imperfect explanation (i.e., approximation of the
unknown plan). For example, unknown plans that contain actions that any plan
for any given goal cannot explain are labelled as NE, whilst unknown plans that
contain rational edits compared to their imperfect explanations are labelled as
OE. Historical instances are labelled manually while the test data is not labelled,
so the decision tree can classify whether the unknown plan is a result of EE,
NE, or OE.

According to state-of-the-art PR and intelligent agents [4,6,7,9–12,25,26],
we initially extracted a number of features related to EE, NE, and OE.

1. Unreliable action: This binary feature represents whether an unknown plan
contains action(s) that any plan for any given goal cannot explain.
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2. Trial-and-error: This binary feature represents whether an unknown plan
contains multiple attempts to achieve a desirable effect using different activ-
ities.

3. Action repeating: This binary feature represents whether an unknown plan
contains multiple attempts to achieve a desirable outcome using the same
activity with different parameters.

4. Activity interleaving: This binary feature represents whether an unknown
plan contains the execution of an activity while waiting for the results of the
current activity.

5. Rational editing: This binary feature represents whether an unknown plan
contains rational edit(s) compared to its normative plan traces.

Classification takes place as a supervised multi-class classification making
use of the features described above. Classification of unknown plans is applied
before the actual process of leveraging imperfect explanations due to avoid use-
less wait (i.e., we do not want to build on noisy or exploratory observations). If
an unknown plan is classified as OE, the plan will be taken as input. Continuing
with our running example, both scenarios (i) and (ii) were classified as OE. This
is due to containing the feature of rational changes, which strongly correlates to
OE. Whiles scenario (iii) was classified as a NE because any plan of the given
goal could not explain it.

In this section, we have seen one possible way of classifying changes in plan
execution by attending to the settings in which it has been carried out (i.e.,
noisy, explanatory and open). However, in fact, many other features can be
adopted to classify these changes hence a better understanding of what the target
agent is actually doing and why. For example, these changes can be divided into
mistakes and exploratory activities in exploratory domains. Another example,
noisy observations can be classified as sensor failure or programming errors (e.g.,
inappropriate belief revision). However, such classifications are outside the scope
of the present work, since this is, in general, an intractable problem.

6.2 Abductive Editing

Our guiding intuition here is that a plan that serves as an imperfect explanation
for an observed behaviour could possibly be edited (modified) according to that
observation, thus improving the explanatory power of the plan library. We real-
ize a computational solution to leveraging imperfect explanations by appealing
to the optimal edit distance [27] between an unknown plan and its imperfect
explanation and using its corresponding edit sequence.

Let plan p with body C = 〈c1, . . . , cn〉 be an imperfect explanation of the
observations O = 〈o1, . . . , om〉, with the former having length n and the latter
length m. Recall that turning the plan body C into O requires a sequence of
edit operations. Each of these operations can be weighted by a cost function,
denoted by w(ae). For example, one can set the cost function to return 0 when
the capability is correctly observed and to return 1 otherwise.

With a cost function in hand, the abductive plan edit distance between C
and O is given by a matrix d of size n × m, defined by the recurrence.
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d[i, 0] = i
d[0, j] = j

d[i, j] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d[i − 1, j − 1] (correctly observed)

min

⎧
⎪⎨

⎪⎩

d[i − 1, j] + w(∅, oi) (insertion edit)
d[i, j − 1] + w(ci, ∅) (deletion edit)
d[i − 1, j − 1] + w(ci, oi) (substitution edit)

After filling the matrix, the value in the bottom-right cell of the d, or d[m, n],
will represent the minimum cost to turn the plan body C into the observation
sequence O, and this cost is the abductive plan edit distance. For the correspond-
ingAES to be computed, we need to traceback the choices that led to the minimum
edit cost in the above recurrence. Hence, turning the imperfect explanation p into
an unknown plan p that best explains the observations in O can be seen as apply-
ing an AES that corresponds to the abductive plan edit distance of p.

Example 3. Continuing with our running example, assume the imperfect expla-
nations h1 with a body as shown below:

drive_to(loc),get_in(pt,amb),drive_to(loc),get_out(pt,amb).

An observation sequence O from scenario (ii) as shown below:

drive_to(pt),call(air_amb),drive_to(h)

And let w(ae) = 0 when the capability is correctly observed and w(ae) = 1
otherwise. Based on the above inputs, the abductive edit operations needed to
turn the body part of plan h1 into O are:

1. get in(pt, amb) → call(air amb), and
2. get out(pt, amb) → ∅.

Example 3 illustrates how imperfect explanations can be leveraged merely by
editing. Although edits in Example 3 sound rational, they may be invalid in other
scenarios. Hence, there are two important questions yet to be discussed: how to
ensure (1) that the edited plan is consistent and (2) at the end of its execution,
the goal is achieved. We will address these two questions in the following sub-
section.

6.3 Validity Checking

We build on the approach of monitoring plan validity proposed by [28]. Our
theory of edited plan validity uses the accumulative effects (denoted as accum)
of [29] and ensures consistency during the process of plan editing, given the
capability library A . To monitor an edited plan validity, two plans are generated
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for every PR problem - one with the minimum edit cost, i.e., the imperfect
explanation, and one that explains O completely, i.e., explain(p) = O. Assuming
an idealised execution environment, plan validity can be defined as follows.

Definition 4 (Valid Plan). Consider the capability library A and a plan spec-
ification p = {pre(p)}C{post(p)} for plan p with body C = 〈c1, . . . , cn〉, we say
that the plan p is valid in the state s if

1. A |= (〈pre(c1), . . . , pre(cn)〉, s), and
2. accum(p) |= post(p).

As such, with respect to A and the current state of the world s, the precondi-
tions of each capability in the plan body of p will be satisfied, and the final effect
scenario accum(p) associated with the end state event of the plan p execution
entails its post-condition specifications. An important detail of this definition is
that a single edit can impact the consistency of the plan. Also, it can change the
final effect scenario associated with the end state of the plan. We now identify
a valid edited plan.

Definition 5 (Valid edited plan). Consider the plan p = {pre(p)}C{post(p)}
as an imperfect explanation of O. Let p be an edited plan that has identical pre-
and post-conditions to p except that p has an edited sequence of capabilities C.
We say that the edited plan p preserves the validity of p if p = {pre(p)}C{post(p)}
is valid.

Where it is possible for the plan recognition model to find two or more
different imperfect explanations that have the same edit cost and are valid,
further post-processing may be required for more reliable results. We overtake
this problem by seeking stronger goal entailment and consistency conditions,
such as the plan internal analysis described in [30].

6.4 Abductive Updating

Now, we consider the problem of what needs to be done to improve the explana-
tory power of the plan library when an edited plan is found valid according to
the checks described above. An easy solution is to create a new plan that has
identical triggering and context parts to the imperfect explanation, except that
p has an edited body C that explains O, i.e., explain(p) = O. However, this may
increase the complexity of determining applicable plans at run-time. More inter-
estingly, we offer a semi-automated solution for merging an edited plan with its
imperfect explanation.
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Procedure 1 (Abductive Updating). Consider the imperfect explanation p
and its edited plan p and let AES = 〈ae1, . . . , aen〉 be a derivation from p to p.

1: For each aei in AES:
2: Replace ci with subgoal sgi
3: Create two subplans p1 and p2, and let
4: triggering(p1) = triggering(p2) = sgi
5: switch(aei):
6: case(ci → oi)
7: context(p1) = pre(ci)
8: context(p2) = pre(oi)
9: body(p1) = ci
10: body(p2) = oi
11: case(ci → ∅)
12: context(p1) = pre(ci)
13: context(p2) = not pre(ci)
14: body(p1) = ci
15: body(p2) = true
16: case(∅ → oi)
17: context(p1) = not pre(oi)
18: context(p2) = pre(oi)
19: body(p1) = true
20: body(p1) = oi

Procedure 1 facilitates the merging between an imperfect explanation, i.e.,
one with the minimum edit cost, and its edited plan, i.e., one that explains
O completely. Fundamentally, for each aei in AES, the procedure replaces the
corresponding capability with a sub-goal sgi (line 2), for which two sub-plans p1
and p2 are created (line 3–4). Our guiding intuition behind creating two sub-
plans is to improve the explanatory power of the plan library while maintaining
its construction.

Recall that there are three ways in which a plan can be edited: deletion,
insertion, and substitution. Hence, there are three ways in which sub-plans can
be created (line 5). For example, let us consider the substitution edit (line 6): In
this case, plan p1 takes the corresponding capability ci as its body and pre(ci) as
its context part (lines 7 and 9). While p1 takes the corresponding observation oi
as its body and pre(oi) as its context part (lines 8 and 10). However, there are
situations where valid edited plans could possibly be merged with their imperfect
explanations, but they should not be merged. For example, avoiding negative
interactions between goals. For readers interested in how we can deal with the
feasibility of plans merging, we refer to [31].

7 Evaluation

In this section, we present the evaluation of our approach. First, we present the
setup for evaluation. Next, evaluation results are described.
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7.1 Evaluation Setup

We implemented our approach as a plugin for our Toolkit XPlaM1 [32] and
evaluated it using Monroe Plan Corpus [22]. For the purposes of this work, the
corpus has been rewritten using AgentSpeak(L) programming language and exe-
cuted using Jason interpreter [17]. Observation traces2 have been collected using
a debugging tool called Mind Inspector [17]. Unknown plans have been classified
using C4.5 decision tree algorithms [33]. Abductive plan editing is implemented
using the well-known Levenshtein distance. For deriving accumulative effects,
we implemented a state update operator similar to the one described in [29]
using the NanoByte SAT Solver package3. For testing, experiments have been
implemented on an Intel Core i5-6200 CPU (with 8 GB RAM).

7.2 Performance Results

We ran a number of experiments to test the scalability of our approach with
respect to the number of new classes of observations. The corpus used in these
experiments has been executed to consider all possible traces (the number of
executed actions is 80). New classes of observations were artificially added to
the observation traces. The number of capabilities in A is set to 20. Figure 3
compares the number of explanations generated by our approach for a different
number of new classes of observations.

Fig. 3. Performance results.

1 The source code for XPlaM Toolkit (including the code for the approach presented
here) has been published online at https://github.com/dsl-uow/xplam.

2 We published the datasets supporting the conclusions of this work online at https://
www.kaggle.com/datasets/alelaimat/xplam.

3 https://github.com/nano-byte/sat-solver.

https://github.com/dsl-uow/xplam
https://www.kaggle.com/datasets/alelaimat/xplam
https://www.kaggle.com/datasets/alelaimat/xplam
https://github.com/nano-byte/sat-solver
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Our first study shows that with a moderate number of new classes of obser-
vations and a reasonable number of capabilities in A , abductive plan editing
would possibly improve the explanatory power of plan libraries in open envi-
ronment settings. Note that the scalability of the abductive plan editing should
be tied to the performance of the classification task. Nevertheless, the results
depicted in Fig. 3 are partially independent of the used classifier (C4.5 decision
tree). Actually, we allowed for unknown plans that contain unreliable actions
to be considered as inputs. We argue that additional features are required for a
more accurate classification of unknown plans.

7.3 Speed

Aiming to find out how fast abductive plan editing would take to explain
unknown plans, we ran a number of experiments with Monroe Plan Corpus.
Recall that executing action models (i.e., planning) is another technique to
explain unknown plans. Hence, we use diverse planning [34] as a benchmark
to assess the complexity of our approach. Diverse planning aims at discovering
a set of plans that are within a certain distance from each other. The discov-
ered set is then used to compute the closest plan to the observation sequence.
Figure 4 shows the time required to discover a valid explanation for variate num-
bers of new classes of observations using diverse planning (as used by LPG-d
planner [34]) to the time required by our plan editing approach.

Fig. 4. Explaining time required for plan editing and diverse planning.

Figure 4 shows that, unlike diverse planning, for different number of new
classes of observations, plan editing is a relatively faster approach to explaining
unknown plans. However, the reader should keep two details in mind. First,
the performance of plan editing is tied to the performance of the used dynamic
programming algorithm (in our case, Levenshtein distance). A more fine-grained
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evaluation, therefore, should include different dynamic programming algorithms
(e.g., Hamming distance). Secondly, during our experiments, we noticed that the
size of A can highly affect the performance of diverse planning and plan editing.
We will investigate these two details as part of our future work.

8 Conclusion

Much of the work done on APR requires a plan library to infer the top-level
plans of the observed agent. Nevertheless, in open environment settings, target
plans are usually not from plan libraries due to reusing plans, replanning and
agent self-awareness, etc. This work builds on a more sophisticated notion of
APR, which seeks to improve the explanatory power of plan libraries by way of
leveraging imperfect explanations and exploiting new classes of observations. In
this work, we proposed a classification of unknown plans based on the character-
istics of the environment in which they have been carried out. As far as we know,
this has been absent in PR research. Furthermore, we presented a theory based
on capabilities and plans and introduced the notion of abductive plan editing.
Finally, we described how imperfect explanations could be updated with new
classes of observations in a rational fashion.

A number of extensions of this work are of interest, including applications
of plan library reconfigurability [4], plan editing in online settings, and dealing
with incomplete action models (i.e., learning unknown activities). Furthermore,
we plan to improve our approach in order to deal with logs obtained from noisy
and exploratory domains and compare its performance with state-of-the-art plan
recognition methods, where incompleteness of knowledge and non-determinism
might be present.
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