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Abstract. Human papillomavirus (HPV) accounts for 60% of head and
neck (H&N) cancer cases. Assessing the tumor extension (tumor grad-
ing) and determining whether the tumor is caused by HPV infection
(HPV status) is essential to select the appropriate treatment. Therefore,
developing non-invasive, transparent (trustworthy), and reliable methods
is imperative to tailor the treatment to patients based on their status.
Some studies have tried to use radiomics features extracted from positron
emission tomography (PET) and computed tomography (CT) images to
predict HPV status. However, to the best of our knowledge, no research
has been conducted to explain (e.g., via rule sets) the internal decision
process executed on deep learning (DL) predictors applied to HPV status
prediction and tumor grading tasks. This study employs a decomposi-
tional rule extractor (namely DEXiRE) to extract explanations in the
form of rule sets from DL predictors applied to H&N cancer diagnosis.
The extracted rules can facilitate researchers’ and clinicians’ understand-
ing of the model’s decisions (making them more transparent) and can
serve as a base to produce semantic and more human-understandable
explanations.

Keywords: Local explainability · Global explainability · Feature
ranking · rule extraction · HPV status explanation · TNM explanation

1 Introduction

Despite recent advances in head-and-neck (H&N) cancer diagnosis and staging,
understanding the relationship between human papillomavirus (HPV) status and
such cancers is still challenging. An early diagnosis of HPV could dramatically
improve the patient’s prognosis and enable targeted therapies for this group,
enhancing their life quality and treatment effectiveness [15]. Moreover, consoli-
dating the diagnosis of cancer staging made by doctors for cancer growth and
spread could help better understand how to treat the specific patient, adapting
the therapy to the severity of the disease and HPV status.
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The term “head and neck cancer” describes a wide range of cancers that
develop from the anatomical areas of the upper aerodigestive tract [35]. Con-
sidering the totality of H&N malignancies, this type of cancer is the 7th leading
cancer by incidence [7]. The typical patients affected by H&N cancers are older
adults who have used tobacco and alcohol extensively. Recently, with the ongo-
ing progressive decrease in the use of these substances, the insurgences of such
cancers in older adults is slowly declining [13]. However, occurrences of HPV-
associated oropharyngeal cancer are increasing among younger individuals (e.g.,
in North America and Northern Europe) [17].

Diagnosis of HPV-positive oropharyngeal cancers in the United States grew
from 16.3% to more than 71.7% in less than 20 years [8]. Fortunately, patients
with HPV-positive oropharyngeal cancer have a more favorable prognosis than
HPV-negative ones since the former are generally healthier, with fewer coexisting
conditions, and typically have better responses to chemotherapy and radiother-
apy. Therefore, promptly detecting HPV-related tumors is crucial to improve
their prognosis and tailor the treatments [30]. The techniques used in clinical
practice to test the presence of HPV have obtained promising results. Still, they
are affected by drawbacks, including a high risk of contamination, time con-
sumption, high costs, invasiveness, and possibly inaccurate results [5].

The TNM staging technique is used to address the anatomic tumor extent
using the “tumor” (T), “lymph node” (N), and “metastasis” (M) attributes,
where “T” denotes the size of the original tumor, “N” the extent of the affected
regional lymph nodes, and “M” the absence or presence of distant metasta-
sis [42]. Accurate tumor staging is essential for treatment selection, outcome
prediction, research design, and cancer control activities [24]. TNM staging is
determined employing diagnostic imaging, laboratory tests, physical exams, and
biopsies [25]. Radiomics relies on extracting quantitative metrics (radiomic fea-
tures) within medical images that capture tissue and lesion characteristics such
as heterogeneity and shape [33].

In recent decades, the employment of radiomics has shown great benefits
in personalized medicine [16]. Radiomics is adopted as a substitute for invasive
and unreliable methods, and they are applied in many contexts, including H&N
cancer, with a particular interest in tumor diagnostic, prognostic, treatment
planning, and outcome prediction. While the application of radiomics to predict
TNM staging has never been addressed in the literature, the possibility of using
them to predict the presence or absence of HPV has been recently explored. For
example, recent research has shown that it is possible to predict HPV status by
using deep learning (DL) techniques that exploit radiomics features [6].

Nevertheless, to the best of our knowledge, no study has yet focused on
explaining internal DL predictors’ behavior through a rule extraction process,
investigating and assessing the roles of the features and how they compose the
rules leading the DL predictor decision. Therefore, there is a need for more
investigations to fully understand the main tumor characteristics leading DL
models to generate their prediction. To explain DL predictors’ behavior, this
study investigates the use of a tool for decompositional rules generation in deep
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neural networks (namely DEXiRE [9]) to generate rules from Positron Emission
Tomography (PET) and Computed Tomography (CT) images in the context of
H&N cancers.

In the context of ML models, transparency can be defined as the degree of
understanding of the models’ internal decision mechanisms, and overall behav-
iors can be simulated [18,45,52]. To increase transparency in ML models in
general and in DL models in particular, we have employed decompositional rule
extractors (a.k.a. DEXiRE) because this method can express neural activations
in terms of logical rules that both human and artificial agents can understand,
thus improving the understanding of the internal decision process executed by
the model. The main contribution of this work is to apply the DEXiRE, explain-
able artificial intelligence (XAI) technique to explain through rule sets the inter-
nal decision process executed by DL predictors. Thus, clinicians and researchers
can understand the predictors’ behavior to improve them in terms of perfor-
mance and transparency.

In particular, we extracted radiomics features from PET-CT scans and
trained several machine learning (ML) and deep learning (DL) predictors in
classification tasks. In turn, we leverage DEXiRE to extract rule sets from a
DL model trained on radiomics features extracted offline from PET-CT images.
DEXiRE determines the most informative neurons in each layer that lead to the
final classification (henceforth, which features and in which combination have
contributed to the final decision). Finally, we have assessed and discussed the
rule sets.

The rest of the paper is organized as follows: Sect. 2 presents the state of the
art of H&N cancer diagnosis using radiomics features and DL models. Section 3
describes the proposed methodology. Section 4 presents and analyses the results.
Section 5 discusses the overall study. Finally, Sect. 6 concludes the paper.

2 State of the Art

The metabolic response captured on PET images enables tumors’ localization
and tissues’ characterization. PET images are frequently employed as a first-line
imaging tool for studying H&N cancer [27]. Moreover, PET is widely used in
the early diagnosis of neck metastases. Indeed, PET highlights the metabolic
response of the tumors since their early stages — which cannot be seen with
other imaging techniques [1]. Thus, PET and CT scans are often used for several
applications in the context of H&N cancer.

The most relevant study concerning tumor segmentation includes Myronenko
et al. [39], which in the HECKTOR challenge (3rd edition), created an automatic
pipeline for the segmentation of primary tumors and metastatic lymph nodes,
obtaining the best result on the challenge with an average aggregate Dice Simi-
larity Coefficient (DSCagg) of 0.79. [2].

Rebaud et al. [46] predicted the risk of cancer recurrence’s degree using
radiomics features and clinical information, obtaining an encouraging concor-
dance index score of 0.68. Among the classification contributions, it is worth
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mentioning Pooja Gupta et al. [21], who developed a DL model to classify CT
scans as tumoral (or not), reaching 98.8% accuracy. Martin Halicek et al. [22]
developed a convolutional neural network classifier to classify excised, squamous-
cell carcinoma, thyroid cancer, and standard H&N tissue samples using Hyper-
spectral imaging (with an 80% accuracy). Konstantinos P. Exarchos et al. [12]
used features extracted from CT and MRI scans in a classification scheme to
predict potential diseases’ reoccurrence, reaching 75.9% accuracy. Only recently,
researchers have also focused on HPV status prediction. Ralph TH Leijenaar
et al. [31] predict HPV status in oropharyngeal squamous cell carcinoma using
radiomics extracted from computed tomography images (with an Area Under
the Curve value of 0.78). Bagher-Ebadian et al. [6] construct a classifier for
the prediction of HPV status using radiomics features extracted from contrast-
enhanced CT images for patients with oropharyngeal cancers (The Generalized
Linear Model shows an AUC of 0.878). Bolin Song et al. [51] develop and evaluate
radiomics features within (intratumoral) and around the tumor (peritumoral) on
CT scans to predict HPV status (obtaining an AUC of 0.70). Chong Hyun Suh et
al. [53] investigated the ability of machine-learning classifiers on radiomics from
pre-treatment multiparametric magnetic resonance imaging (MRI) to predict
HPV status in patients with oropharyngeal squamous cell carcinoma (logistic
regression, the random forest, XG boost classifier, mean AUC values of 0.77,
0.76, and 0.71, respectively). However, to the best of our knowledge, no studies
have yet involved XAI techniques to unveil the underlying rules, mechanisms,
and features leading the ML/DL predictors to their outcomes in such a context.
Explaining why/how the models have been obtained is imperative, especially in
the medical (diagnosis and decision support systems) domains. Having transpar-
ent (i.e., explainable models) models foster understandability, transparency, and
trust.

Henceforth, contributions to the XAI field aim to explain the decision-making
process carried out by AI algorithms to increase their transparency and trustwor-
thiness [3,11]. XAI is fundamental in safe-critical domains like medicine, where
clinicians and patients require a thorough understanding of decision processes
carried out by automatic systems to trust them [38].

AI algorithms, including decision trees, linear models, and rule-based sys-
tems, are explainable-by-design, meaning that predictions can be expressed as
rules, thresholds, or linear combinations of the input features making the deci-
sion process transparent and interpretable [36]. However, algorithms like DL
models and support vector machines with non-linear kernels are characterized
by non-linear relationships between the input and the output, which improves
performance and generalization — making the explanation process more chal-
lenging [19]. Therefore, a post-hoc approach is necessary to explain the decision-
making process in complex and non-linear algorithms non-explainable-by-design
(a.k.a. black-boxes). The post-hoc explanation approach is a third-party method
that uses the model structure and input-output relationship to explain AI mod-
els [37,50]. Post-hoc explanations can be classified into local and global. The
former interprets one sample at a time — see methods based on sensibility
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analysis like Local Interpretable Model-agnostic Explanation (LIME) [34], local
feature importance and utility CIU [14,28], and methods based on local surro-
gate models [40]. While local explanations have the drawback of being valid only
for one example or a small set of examples in the input space, global explana-
tion methods aim to explain the overall predictor’s behavior covering as many
samples as possible. Global explanations methods include global surrogate mod-
els [47,57], global feature importance and attribution [20,43], and rule extraction
methods [4].

Rule extraction methods can follow three main approaches. First, decomposi-
tional methods look inside the predictors’ structure to induce rules; algorithms
like FERNN [49], ECLAIRE [56], and DEXiRE [9] are examples of this app-
roach. Second, pedagogical approaches extract rules based on the relationship
between input features and predictions (e.g., TREPAN [10]). Finally, eclectic
methods combine decompositional and pedagogical methods to produce expla-
nations (e.g., Recursive Rule-extraction (RX) [23]).

The following section describes the methodology used to produce post-hoc
explanations of DL models through binarizing neurons and rule induction meth-
ods in the medical domain.

3 Methodology

This section presents the approach undertaken to explain the decision-making
process carried out by a DL predictor trained on radiomics features to predict
the HPV status and the TNM staging through rules. In particular, we executed
experiments in two classification tasks:

T1: HPV diagnosis targets the binary variable HPV status, which describes if
a given patient has an HPV tumor or not (HPV status = 1/0).

T2: Cancer staging consists of assigning to a tumor a grade value (an integer
number between 1 and 4) based on the TNM tumor grading system, which
is composed of three measures: Tumor primary size and extent, Nearby
lymph nodes infiltrated, and Metastasis [26,48,54]. Tumor grading can be
modeled as a multiclass classification task for machine learning.

Figure 1 schematizes the experimental pipeline employed to extract the
underlying rules leading the predictors trained in T1 and T2 to their outcomes.
The experimental pipeline starts with the feature extraction process from PET-
CT images. Then, these features have been preprocessed, and exploratory data
analysis (EDA) is required to understand the data and the task and choose the
appropriate predictors. In turn, predictors are trained and fined tuned using 5-
fold cross-validation. Next, the rule set extraction takes place using the training
set and pre-trained DL predictor. Finally, the rule set is evaluated using the test
set and compared with the baseline predictors’ performance.

3.1 Experimental Pipeline

Below, a brief description of the data set used in this study.
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Fig. 1. Overall experimental pipeline.

Dataset Description. The dataset used in this study is the HEad and
neCK TumOR (HECKTOR 2022) dataset. The dataset was introduced to
compare and rank the top segmentation and outcome prediction algorithms
using the same guidelines and a comparable, sufficiently large, high-quality set
of medical data [2,41]. The patients populating the data set have histologi-
cally proven oropharyngeal H&N cancer and have undergone/planned radio-
therapy and/or chemotherapy and surgery treatments. The data originates from
FluoroDeoxyGlucose (FDG) and low-dose non-contrast-enhanced CT images
(acquired with combined PET-CT scanners) of the H&N region. The primary
tumor (GTVp) and lymph nodes (GTVn) segmentations were also provided with
the images. The records from this dataset have been collected in eight different
centers and contain 524 training examples and 359 for testing. For this study,
for task T1 (HPV status prediction), we have removed all those samples with
unknown values or without HPV status values (target variable), obtaining a
value of 527 patients in total (train + test sets). For Task T2, TNM staging, we
have chosen only patients from the TNM 7th edition, obtaining a value of 640
patients in total (train + test sets).

Experimental Pipeline Description. The steps composing the experimental
pipeline shown in Fig. 1 are characterized as follows:

S1 Feature extraction: The features have been extracted from 3D PET-CT
volumes using the Python library Pyradiomics, a tool to calculate radiomics
features from 2D and 3D medical images [55]. In this study, the features for
T1 and T2 have been extracted from a bounded box surrounding the interest
area in the image and not from the whole image, reducing the computational
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cost of the feature extraction process and producing meaningful features that
allow to classify and grade the tumors.
S2: Preprocessing: The extracted features have been preprocessed to make
them suitable for training ML/DL predictors.
The feature preprocessing is structured as follows:

S2.1 Remove non-informative features: Non-informative features like
duplicated, empty and constant ones have been removed. Additionally,
features like the position of the bonding box have been removed because
they are not informative for tasks T1 and T2. Features nb lymphonodes
and nb lessions have also been removed, given that such features are
directly related to the target tumor grade. Inferring the target variable
from them is trivial, and it yields to ignore other radiomics features.
S2.2 Encode categorical features: Categorical features like gender have
been encoded into numerical values using one hot encoding procedure.
S2.3 Transform complex numbers to real: Some features calculated with
Pyradiomics include complex numbers in which the imaginary part is
always zero. To provide a uniform and suitable number format for ML
predictors, features with complex numbers have been transformed to float
point data types by taking only their real parts.
S2.4 Removing NaN columns: Not-a-Number (NaN) columns are numeric
columns with missing values and cannot be employed in an ML predic-
tor. Although some missing values can be imputed, in this case, we have
decided not to do so to avoid introducing bias and additional uncertainty
in the predictors.
S2.5 Feature Normalization: Once NaN columns have been removed, the
features have been normalized using the standard scale method, which
scales all the features to the same range and thus avoids biases from scale
differences between features.

S3: Exploratory Data Analysis (EDA):
The objective of the exploratory data analysis is to identify the most relevant
characteristics and the structure of the data set to select the most appropriate
predictors for each task. In EDA, a correlation between the features and the
target variable has been calculated to identify possible linear relationships
between the input features and the target variable. Additionally, correlation
analysis has been performed between the features to identify correlation and
collinearity. Finally, a distribution analysis has been applied to the target
variables, showing a considerable imbalance between the classes.
S4: Data split: To maintain reproducible experimentation and fair com-
parison between the different predictors, the data set was split into 80% for
training and 20% for testing using the same random seed and stratified sam-
pling. Additionally, to this data partition, we also employ the HECKTOR
challenge partition, where the test set is composed of centers MDA, USZ,
and CHB.
S5: Feature selection and model tuning:
Due to the high number of features after the preprocessing step, ∼ 2427 for
task T1 and ∼ 2035 for task T2, a feature selection process has been applied
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to reduce the complexity, avoid the curse of dimensionality [29] and focus on
those features strongly related to the target variable. The feature selection
process has been executed over the train set.
The feature selection (FS) process encompasses the following steps:

FS1 For each input feature, calculate the univariate correlation coefficient
with the target variable.
FS2 Rank features based on the absolute value of the correlation coeffi-
cients calculated in step FS1.
FS3 Choose the highest top 20 features based on the rank.
FS4 Filter the train and test parts with selected features.

Once the features were selected, we trained four models (M1-M4) in the same
setup, as described below.

M1 Support Vector Machine (SVM) with a linear kernel and a C param-
eter of C=10, and a class weight parameter set in weighted.
M2 Decision Tree (DT) with a maximum depth of 50 levels and with
impurity Ginny metric as bifurcation measure.
M3 Random forest (RF) model with 100 estimators.
M4 DL predictor is a Feed-forward neural network in which hyperpa-
rameters have been selected employing 5-fold cross-validation and three
candidate architectures, with hidden layers ranging from 2 to 6. The num-
ber of neurons in each hidden layer varies from 22 to 28 on a logarithmic
scale.

These models have been chosen due to their similar performance and inter-
pretability.
S6: Rule extraction process: To extract logic rules from a pre-trained DL
predictor, we have employed the algorithm DEXiRE [9]. Such an algorithm
extracts boolean rules from a DL predictor by binarizing network activations
and then inducing logical rules using the binary activations and the rule
inductor algorithms. Finally, the inducted rules are recombined (from local
to global) and expressed in terms of input features (see Fig. 2 – DEXiRE
pipeline).
S7: Metrics evaluation:
To measure the predictors’ performance, we have employed the following per-
formance metrics (PM):

PM1 Cohen-Kappa (CK-score): Cohen-kappa score measures the
agreement level between the conclusions of two experts. Its value oscil-
lates between -0,20 to 1.0. Negative or low CK-score values indicate not
or slight agreement, whereas high values indicate total or strong agree-
ment [32].
PM2 F1-score: F1-score belongs to a family of metrics (F-measure) or
(F-score). Its value oscillates between 0.0 to 1.0. Higher F1-score values
indicate high performance. The F1-score calculates the harmonic mean
between the precision and recall measures, combining specificity and sen-
sibility measures. For the case of the multiclass F1-score reported, we
employed the weighted mean to consider the imbalance of the dataset.
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Fig. 2. DEXiRE pipeline to extract rules from DL predictor [9].

Additionally, to measure the ability of the rule set to explain the original
model, we have used the following measures:

PM3 Fidelity: Fidelity measures how similar are the predictions from
the rule set to the prediction of the original DL predictor.
PM4 Rule length: Rule length measures the number of atomic unique
Boolean terms in the rule set.

All the models have been trained and evaluated on the same train and test
partitions to make analysis and comparison of results possible. In addition,
DNNs have been tested and compared against a set of baseline models with
similar capabilities, i.e., Support Vector Machine (SVM), Decision Tree, and
Random Forest.

4 Results and Analysis

It is worth recalling that the overall objective of this study is to explain a DL
predictor’s behavior (HPV status prediction or tumor staging in H&N cancer)
through rule sets extracted employing the decompositional rule extraction algo-
rithm DEXiRE. Table 1 presents the rule sets’ average performance for task T1
(HPV diagnosis) and T2 (Cancer staging), employing the metrics described in
step S7 (see Sect. 3).

Datasets for tasks T1 and T2 are highly unbalanced, which can affect the
predictors’ and rule sets’ performance. We have executed three experiments with
different balancing and partitions for each task to test the possible effect of high
dataset imbalance on the rule generation process and the rule set’s performance.

Table 1 summarizes DEXiRE’s rule sets for task T1 (HPV diagnosis) and
T2 (Tumor staging) in three different dataset balance configurations. First, the
imbalance dataset, in which partitions have been randomly selected while main-
taining the proportions of the target variables. The dataset has been balanced
with an oversampling technique (SMOTE) in the second configuration. In the
third configuration, the dataset follows HECKTOR’s challenge partitions, which
are focused on medical centers’ generalization. The rest of the Table 1 is orga-
nized as follows, the third column summarizes the average and standard devi-
ation of the rule length (number of features involved in the rule), with values
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ranging from 7.6 to 14.8 terms for task T1 and 11.2 to 13.6 terms for task T2.
The fourth column presents the fidelity measure, which describes the similarity
degree between the rule sets’ predictions and those from the original model. The
highest fidelity value for T1 is ≈ 80%, while for task T2 is ≈ 73%. The fifth
column shows the obtained F1-score, with values above ≈ 80% for task T1 and
around ≈ 70% for task T2. Finally, the last column apprises the Cohen-kappa
score ≈ 12% for T1 and above 20% for T2.

Table 1. DEXiRE’s rule set performance on Task T1 (HPV diagnosis) and task T2
(cancer staging) for different dataset partition and balancing conditions. Numerical
results are reported with average value ± standard deviation. The best results in
each task are highlighted in bold.

Task Data set balancing Rule length Fidelity F1-score CK-score

T1 Imbalanced 8.8 ± 0.9797 0.7622 ± 0.2490 0.8507 ± 0.0097 0.1207 ± 0.0315

Balanced 14.8 ± 0.9797 0.8075 ± 0.0237 0.8833 ± 0.0162 0.1366 ± 0.0682

Hecktor partitioning 7.6 ± 0.7999 0.7304 ± 0.0836 0.8230 ± 0.0724 0.0827 ± 0.0702

T2 Imbalanced 11.2 ± 0.9797 0.7343 ± 0.0450 0.7226 ± 0.0330 0.2740 ± 0.0811

Balanced 13.6 ± 0.7999 0.7312 ± 0.0429 0.7354 ± 0.0203 0.2620 ± 0.0455

Hecktor partitioning 11.2 ± 0.9797 0.6459 ± 0.0261 0.7168 ± 0.0294 0.2085 ± 0.0412

Appendix A shows the rule set recording the highest performance for each
experiment for both T1 and T2.

4.1 Task T1 HPV Diagnosis

Task T1 performs a binary classification employing the radiomics features to
predict whether a given patient is HPV positive or not. Results obtained for
different datasets’ configuration are described in the following subsections.

Experiment with Imbalanced Dataset. The dataset has not been modified
in this setting, retaining its natural imbalance of 90% positive and 10% negative
samples. Table 2 shows the results obtained by the baseline models, the DL pre-
dictor, and the DEXiRE’s rule set concerning performance metrics PM1 to PM4
(Sect. 3 – step S7). The first column shows the F1-score is reported with all the
values over approximately 80%, and the DL predictor obtained the best score
(91%). The second column shows the Cohen-Kappa score (CK-score), whose val-
ues range from 12% to 28%. Once again, the DL predictor obtains the maximum
score. The rule length and fidelity metrics concern only the rule set. The average
rule length for this experiment is 8.8 boolean terms, and the fidelity is 76%.
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Table 2. Results for baseline models, DL predictor and extracted rule set in task T1
with the imbalanced dataset. Numerical results are reported with average value ±
standard deviation. The highest results in each column are highlighted in bold.

Model F1-score CK-score Rule length Fidelity

SVM 0.8743 ± 0.0104 0.2157 ± 0.1434 NA NA

Decision tree 0.8647 ± 0.0224 0.2699 ± 0.1164 NA NA

Random forest 0.8689 ± 0.0146 0.1933 ± 0.0957 NA NA

Neural Network 0.9153 ± 0.0123 0.2872 ± 0.0557 NA NA

DEXiRE’s rule set 0.8507 ± 0.0097 0.1207 ± 0.0315 8.8 ± 0.9797 0.7622 ± 0.2490

Experiment with Balance Dataset. To test the effect of an artificial balanc-
ing dataset technique, we have executed an experiment with a balanced training
set employing the oversampling method SMOTE, which allows the drawing of
new samples from the minority class based on the neighbors. Table 3 shows the
obtained results. In particular, the first column shows the F1-score (all the values
are over approximately 80%, and the DL predictor got the best score of 91%).
The second column shows the CK-scores, ranging from 13% to 63%. Again, the
SVM has obtained the maximum score with ≈ 63%. The average rule length for
this experiment is 14.8 boolean terms, and the fidelity is ≈ 80%.

Table 3. Results for baseline models, DL predictor and extracted rule set in task
T1 with the balanced dataset using SMOTE. Numerical results are reported with
average value±standard deviation. The highest results in each column are highlighted
in bold.

Model F1-score CK-score Rule length Fidelity

SVM 0.8170 ± 0.0082 0.6358 ± 0.0162 NA NA

Decision tree 0.8368 ± 0.0219 0.1996 ± 0.0888 NA NA

Random forest 0.8824 ± 0.0142 0.2781 ± 0.0883 NA NA

Neural Network 0.9161 ± 0.0092 0.2425 ± 0.0409 NA NA

DEXiRE’s rule set 0.8833 ± 0.0162 0.1366 ± 0.0682 14.8 ± 0.9797 0.8075 ± 0.0237

Experiment with the HECKTOR Partition. An essential task within
PET-CT medical image analysis is the ability to generalize the results of the
prediction models to different medical centers with equipment from different
manufacturers and slightly different protocols. This challenge still demands fur-
ther research and more flexible and robust techniques. To test the rule sets’
generalization ability to various centers, we have used the partitions employed
in the HECKTOR 2022 challenge, which provides a reproducible inter-center
generalization scenario. Table 4 summarizes the results, recording the highest
F1-score of 0,9724, obtained by the random forest predictor, followed by the
SVM with an F1-score of 0,9432, the decision tree with a value of 0,9329, the
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DL predictor with a value of 0,9025, and the rule set with a value of 0,8840.
Concerning the CK-score, the highest result is obtained by the SVM predictor
with a value of 0.2732, followed by the decision tree with a value of 0.2004, the
random forest with a value of 0.1447, the neural network with a value of 0.1259,
and the rule set with a value of 0.0241. The F1-score has shown variations of up
to 11%. Similarly, the CK-score shows variations of up to 11%.

Table 4. Results for baseline models, DL predictor and extracted rule set in task
T1 with HECKTOR partition. Numerical results are reported with average value ±
standard deviation. The highest results in each column are highlighted in bold.

Model F1-score CK-score Rule length Fidelity

SVM 0.9432 ± 0.0094 0.2732 ± 0.1135 NA NA

Decision tree 0.9329 ± 0.0087 0.2004 ± 0.0535 NA NA

Random forest 0.9724 ± 0.0029 0.1447 ± 0.0893 NA NA

Neural Network 0.9399 ± 0.0169 0.1376 ± 0.0826 NA NA

DEXiRE’s rule set 0.8230 ± 0.0724 0.0827 ± 0.0702 7.6 ± 0.7999 0.7304 ± 0.0836

4.2 Task T2 Cancer Staging

Task T2 performs a multiclass classification to stage and grade tumor. The can-
cer stage scale is progressive, ranging from a minimum value of 1 to a maximum
of 4. In this dataset, the imbalance between the target classes is enormous, but
the case of class 1, which has a total of 4 samples over 640, is particularly note-
worthy. With such a few samples, applying any effective technique to balance
the dataset without introducing bias and errors is very difficult. For this reason,
we have decided to remove class 1 from the dataset and perform the subse-
quent experiments with three categories that, although still imbalanced, provide
enough information to apply balance techniques and train the predictors effec-
tively.

Experiments with Imbalanced Dataset. Table 5 presents the results
obtained by the baseline models, the DL predictor, and the rule set concern-
ing performance metrics PM1 to PM4 (Sect. 3 step S7) with the imbalanced
dataset. The first column shows the F1-score with all the values over approxi-
mately 70%, and the DL predictor obtained the best score (76%). The second
column reports the CK-score, whose values range from 8% to 27%. Here again,
the DL predictor obtains the maximum score. The average rule length for this
experiment is 11.2 boolean terms, and the fidelity is 73%.
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Table 5. Results for baseline models, DL predictor and extracted rule set in task T2
with imbalanced dataset 3 classes. Numerical results are reported with average value±
standard deviation. The highest results in each column are highlighted in bold.

Model F1-score CK-score Rule length Fidelity

SVM 0.7212 ± 0.0208 0.1374 ± 0.0641 NA NA

Decision tree 0.7169 ± 0.0161 0.0892 ± 0.0699 NA NA

Random forest 0.7380 ± 0.0147 0.1016 ± 0.0640 NA NA

Neural Network 0.7654 ± 0.0262 0.2776 ± 0.0661 NA NA

DEXiRE’s rule set 0.7226 ± 0.0330 0.2740 ± 0.0811 11.2 ± 0.9797 0.7345 ± 0.0450

Experiments with Balanced Dataset. Table 6 presents the results obtained
by the baseline models, the DL predictor, and the rule set. The first column
shows the F1-score with all the values over ≈ 70%, and the random forest pre-
dictor obtained 84% as the best score. The second column reports the CK-score,
whose values range from 12% to 35%. Again, the random forest has obtained
the maximum score with ≈ 34%. The average rule length for this experiment is
13.6 boolean terms, and the fidelity is ≈ 72%.

Table 6. Results for baseline models, DL predictor, and extracted rule set in task T2
with the balanced 3 classes dataset using SMOTE. Numerical results are reported with
average value±standard deviation. The highest results in each column are highlighted
in bold.

Model F1-score CK-score Rule length Fidelity

SVM 0.7810 ± 0.1012 0.1274 ± 0.0340 NA NA

Decision tree 0.7413 ± 0.0135 0.2186 ± 0.0368 NA NA

Random forest 0.8480 ± 0.0050 0.3469 ± 0.0307 NA NA

Neural Network 0.8058 ± 0.0140 0.2085 ± 0.5079 NA NA

DEXiRE’s rule set 0.7760 ± 0.0291 0.2359 ± 0.0423 13.6 ± 0.9797 0.7189 ± 0.0353

Experiments with HECKTOR Partition. Table 7 summarizes the results
obtained using the imbalanced dataset with the HECKTOR partition. The high-
est reported F1-score is 84%, obtained by the random forest predictor, followed
by the DL predictor with an F1-score of 80%, the SVM with 78%, the rule set
with 77%, and the decision tree with 74%. The random forest predictor obtained
the highest CK-score with a value of 0.3469, followed by the rule set with 0.2359,
the decision tree with 0.2186, the neural network with a value of 0.2085, and the
SVM with 0.1274. The F1-score shows variations up to 10%. Similarly, the CK-
score shows variations up to 50%.
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Table 7. Results for baseline models, DL predictor and extracted rule set in task
T2 with the imbalanced (3 classes dataset) using HECKTOR partitions. Numerical
results are reported with average value ± standard deviation. The highest results in
each column are highlighted in bold.

Model F1-score CK-score Rule length Fidelity

SVM 0.7763 ± 0.0197 0.0851 ± 0.0763 NA NA

Decision tree 0.7887 ± 0.0170 0.1548 ± 0.0370 NA NA

Random forest 0.8374 ± 0.0168 0.1282 ± 0.0860 NA NA

Neural Network 0.8021 ± 0.0761 0.1773 ± 0.2856 NA NA

DEXiRE’s rule set 0.7168 ± 0.0142 0.2085 ± 0.0412 11.2 ± 0.9797 0.6459 ± 0.0261

5 Discussion

This section elaborates on the results and performance obtained during the
explanation of DL predictors (i.e., HPV diagnosis and tumor staging).

5.1 On Rules and Metrics for Task T1

Looking at the results obtained in the three experimental setups for task T1,
the balanced dataset generated the rule set with the overall best performance,
yet having the highest number of terms. Thus, the obtained results suggest a
correlation between rule sets’ length and performance. However, more extended
rule sets are challenging to be understood, reducing their quality as explainers.
Balancing the rule set’s predictive ability and complexity (number of terms) is
necessary yet not immediate.

5.2 On Rules and Metrics for Task T2

Looking at the results obtained in the three experimental setups, the average
rule set length in this task is higher w.r.t. T1, reflecting the increased complexity
of this task. Moreover, the overall average rule sets’ performance of fidelity and
F1-score are sensibly below T1’s results. However, T2’s CK-score is higher than
T1’s. This difference can be attributed to the different rule induction methods
employed by DEXiRE for the binary and multiclass cases. While the former uses
one-rule learning, the latter uses decision trees, which produce more robust and
flexible rules.

5.3 Good Explanations, but What About the Predictors?

The results allow inferring that rule sets are good explainers, since they mimic
the behavior of the original DL predictor on the training set with high qual-
ity. However, the results obtained in the test set and the CK-score for most
experiments show results below other predictors. Indicating a limit to the gen-
eralization ability of the rule sets concerning more robust structures such as DL
models and kernel methods.
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5.4 Beyond Metrics

Using more than one metric to evaluate the rule sets generation is a good prac-
tice. However, it is possible to observe discrepancies between the consistently
high F1-score and the consistently low CK-score. Such discrepancy is due to the
data set imbalance that affects only the F1-score.

Indeed, Table 2 (imbalanced dataset) shows the rule set might not be the
best, but from the F1-score perspective, it competes with the other predictors
— although the CK-score is relatively poor. The performance differences between
the rule set’s efficacy measured with the F1-score and the one measured with
the CK-score can be explained because the F1-score is the harmonic average
of precision and recall. Therefore, in an imbalanced dataset, high precision and
recall values on the majority class could produce a high F1-score, even if the
class imbalance biases the metric. However, this is not the case for the CK-
score. Indeed, it is based on the agreement between two experts, discounting
the random influence. Proof of this explanation can be found in Table 3, where
the results reported are obtained after balancing the dataset. In this table, the
rule set’s F1-score performance and CK-score are similar to the ones obtained
by other models, including decision trees, SVM, and random forest.

5.5 The Influence of Data Partition on Rule Sets

In task T1, the rule set performance metrics are similar to those obtained by
decision trees, SVM, and random forest — except for the HECKTOR partition.
Thus, we can infer that the partitions’ selection affects the models’ performance
and the rule extraction process. Moreover, the generalization ability of rule sets
is limited to the samples in the training set.

The selection of data splits in tasks T1 and T2 can influence the performance
evaluation because of the disparity between sample distribution in different cen-
ters. Despite the generalization ability of ML models and the regularization
terms, overfitting for a particular center is an issue to be considered. In par-
ticular, the rule sets are less flexible, and they tend to overfit the training set
to approximate the behavior of the original model on the train set as much as
possible.

5.6 Imbalanced Datasets in Medical Domain and Bias Predictors

Imbalanced datasets are common in the medical domain. Such a condition is
exacerbated in clinical studies, mainly because of the study of rare diseases or
because screening trials focus on ill individuals. Indeed, this is the case for the
datasets employed in task T1 HPV diagnosis and T2 cancer staging. Figures 3
and 4 show the sample counting for each target class.

A significant imbalance in the dataset can cause poor performance on the pre-
dictors, overfitting, and biases. This is because many optimization algorithms in
ML/DL predictors privilege majority class and global accuracy over minority
classes. As mentioned above, even the rule sets are affected by this phenomenon.
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During rule extraction (step S6), some rule sets have been generated biased to
predict only the majority class. Over the years, different solutions have been
proposed to solve the imbalance in medical datasets. Rahman and Davis [44]
proposed to balance medical datasets employing SMOTE. Although this app-
roach works well, it can only be applied in some cases. For example, in task T2,
this approach could not be employed in class 1 because there are not enough
samples (4) to perform the interpolation.

Fig. 3. Class distribution histogran for
target variable HPV status dataset
employed for task T1.

Fig. 4. Class distribution histogran for
target variable TNM staging from dataset
employed for task T2.

Rule sets provide domain-contextualized explanations, a logical language that
human and artificial agents can understand. Logical language constitutes an
advantage in safe-critical domains like medical diagnoses and prognoses because
clinicians can validate this knowledge based on their expertise and through a
rigorous reasoning process and extract conclusions that can be employed to sup-
port their daily work. DL predictors are not extensively used in clinical diagno-
sis due to the need for more transparency and domain-contextualized explana-
tion of their internal behaviors that enable clinicians to trust their predictions.
However, with the introduction of logic and semantic explanations, trust in DL
predictors is expected to increase, and they could become part of daily clini-
cal workflows, improving efficiency and effectiveness and helping clinicians and
patients to understand their diagnoses.

5.7 Decompositional Rule Extraction Advantages

Decompositional rule extraction methods have several advantages over other
post-hoc XAI methods. In particular, the DEXiRE rule extraction algorithm
has the following advantages.
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– Logical rule sets can be understood by human and artificial agents. More-
over, they simplify the knowledge exchange between agents in heterogeneous
environments.

– Rule sets, as symbolic objects, can be easily shaped into other symbolic
objects like arguments or natural language explanations.

– Decompositional rule extraction algorithms generate rules by inspecting every
neuron activation and better reflecting the internal behavior of the DL pre-
dictor.

– Rule sets can be formally verified to assess their correctness.
– Besides extracted rule sets, DEXiRE can provide intermediate rule sets that

describe the logical behavior in hidden layers, enabling model refinement and
better understanding.

– Alongside the rule sets, DEXiRE can provide activation paths that describe
the most frequent neural activation patterns to a given input, identifying the
neurons that contribute more to the predictors’ final decision.

– Rule sets can also be employed to perform inference and reasoning.

5.8 Limitations and Shortcomings

Despite the significant advancement in XAI in recent years, several challenges
still need to be solved to apply XAI methods in safe-critical domains like medical
diagnosis. The following briefly describes some limitations and shortcomings
when using the DEXiRE algorithm in the medical domain.

– It is not possible to extract rule sets from every DL predictor. This is due
to the non-linearity and complexity of the DL predictors’ decision functions,
which boolean rules cannot accurately approximate in all cases.

– DEXiRE algorithm is a very flexible algorithm able to extract rule sets from
a wide range of DL architectures. However, currently, DEXiRE can only be
applied to classification tasks. More research is required to extend DEXiRE
to other machine learning tasks like regression or reinforcement learning.

– Rule sets depend on the models’ architecture and data set partitions, making
them less flexible in responding to never-before-seen cases or outliers. For this
reason, we propose to use rule sets to understand and validate DL models
rather than to perform large-scale inference processes.

To overcome these limitations, we have proposed several research paths,
described at the end of the Conclusions and Future Work section.

6 Conclusions and Future Work

This study can conclude that the DEXiRE method enables the extraction of rule
sets from DL predictors, aiming to make data-driven classifiers more transparent
and facilitating the understanding of the motivations behind models’ predictions
to researchers and clinicians. In particular, it extracted rules from DL predic-
tors trained on HPV diagnosis (T1) and TNM staging (T2) for H&N cancer,
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employing the decompositional rule extraction tool, namely DEXiRE. For both
analyzed tasks T1 and T2 (HPV status and TNM staging), we conducted three
experiments with imbalanced (original), balanced (SMOTE), and HECKTOR
(inter-center) data partitioning. Finally, the rule sets and their performance
metrics have been compared with baseline predictors to test their generaliza-
tion, prediction, and explaining abilities. Elaborating on the obtained results
and analysis, we can summarize the following:

– Concerning the F1-score metric, the extracted rule sets have shown similar
performance among the predictors (i.e., SVM, decision tree, and random for-
est) and slightly lower performance of those obtained from the DL predictors.

– Concerning the CK-score, the extracted rule sets performance has shown
better results in the multiclass task (T2) than in the binary classification
(T1). This is because DEXiRE uses explainable layers (ExpL) and one-rule
learning as rule induction methods for binary classification and decision trees
for the multiclass case, inducing more robust rule sets.

– The rule sets are less flexible than ML/DL predictors. Therefore, they have a
limited generalization capability and are more useful for providing post-hoc
explanations than for making large-scale inferences.

– The decompositional rule extraction algorithm DEXiRE is affected by data
partitions and dataset imbalance — since they impact the entropy, frequency
of neuron activation, and terms’ thresholds.

– Longer rule sets have shown better predictive performance and fidelity. How-
ever, it is harder to comprehend longer rule sets. A balance between perfor-
mance and explainability is necessary for an optimal rule set.

Finally, we envision the following future works:
(i) To conduct further experiments focused on the inter-center rule set gener-

alization, extracting rule sets based on the data from certain medical centers and
applying them to other medical centers, (ii) Tumor staging task can also be ana-
lyzed using regression models. Thus we intend to extend DEXiRE enabling the
explanation of regression DL predictors, (iii) To reduce the effect of unbalanced
datasets in DEXiRE, we have proposed to extend DEXiRE to include sample
and class weight to deal with imbalanced datasets, and (iv) To make DEXiRE
more flexible and robust, we intend to extend it using fuzzy logic, which would
allow a better approximation of the DL predictors’ decision function.

Acknowledgments. This work is supported by the Chist-Era grant CHIST-ERA19-
XAI-005, and by (i) the Swiss National Science Foundation (G.A. 20CH21 195530),
(ii) the Italian Ministry for Universities and Research, (iii) the Luxembourg National
Research Fund (G.A. INTER/CHIST/19/14589586), (iv) the Scientific, and Research
Council of Turkey (TÜBİTAK, G.A. 120N680).

A Appendix Rule Sets

In this appendix, examples of the rule sets extracted from DL predictors, in each
experiment are presented.
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A.1 Rule Sets for Task T1

Table 8 presents the best rule set extracted from DL predictor trained with
imbalanced (original) dataset.

Table 8. Rule set extracted from DL predictor using DEXiRE and the imbalanced
dataset.

Rule

IF [(everything mergeddilat2mm PT gldm DependenceV ariance ≤
−0.6998) ∧ (everything mergedshell2mm CT firstorder Skewness >

−0.6944)] ∨ [(everything mergedBBox PT firstorder Minimum ≤
−0.802) ∧ (everything mergedBBox PT glszm SmallAreaLowGrayLevelEmphasis ≤
−0.2344) ∧ (everything mergeddilat2mm PT gldm DependenceV ariance > −0.6998)] THEN 0

IF [(everything mergedBBox PT firstorder Minimum ≤
−0.802) ∧ (everything mergedBBox PT glszm SmallAreaLowGrayLevelEmphasis >

−0.2344) ∧ (everything mergeddilat2mm PT gldm DependenceV ariance >

−0.6998)] ∨ [(everything mergedBBox PT firstorder Minimum >

−0.802) ∧ (everything mergeddilat2mm PT gldm DependenceV ariance >

−0.6998)] ∨ [(everything mergeddilat2mm PT gldm DependenceV ariance ≤
−0.6998) ∧ (everything mergedshell2mm CT firstorder Skewness ≤ −0.6944)] THEN 1

Table 9 presents the best rule set extracted from DL predictor trained with
SMOTE balanced dataset using.

Table 9. Rule set extracted from DL predictor using DEXiRE and the balanced
dataset.

Rule

IF [(everything mergedBBox CT glcm MaximumProbability ≤
0.21) ∧ (everything merged PT glcm Imc1 >

0.5062) ∧ (everything mergeddilat8mm CT firstorder Maximum ≤
−1.0149) ∧ (everything mergedshell2mm CT gldm LowGrayLevelEmphasis >

−0.2934)] ∨ [(everything mergedBBox CT glcm MaximumProbability >

0.21) ∧ (everything merged PT glcm Imc1 >

0.5062)] ∨ [(everything mergedBBox CT glcm MaximumProbability ≤
0.21) ∧ (everything merged PT glcm Imc1 >

0.5062) ∧ (everything mergedshell2mm CT gldm LowGrayLevelEmphasis ≤
−0.2934)] ∨ [(everything mergedBBox PT firstorder 10Percentile >

−1.4104) ∧ (everything merged PT glcm Imc1 ≤
0.5062) ∧ (everything mergeddilat4mm CT glcm DifferenceEntropy ≤
1.4793) ∧ (everything mergedshell4mm PT glrlm GrayLevelNonUniformity ≤ 1.5895)] THEN 1

IF [(everything mergedBBox PT firstorder 10Percentile >

−1.4104) ∧ (everything merged PT glcm Imc1 ≤
0.5062) ∧ (everything mergeddilat4mm CT glcm DifferenceEntropy ≤
1.4793) ∧ (everything mergedshell4mm PT glrlm GrayLevelNonUniformity >

1.5895)] ∨ [(everything mergedBBox PT firstorder 10Percentile >

−1.4104) ∧ (everything merged PT glcm Imc1 ≤
0.5062) ∧ (everything mergeddilat4mm CT glcm DifferenceEntropy >

1.4793)] ∨ [(everything mergedBBox PT firstorder 10Percentile ≤
−1.4104) ∧ (everything merged PT glcm Imc1 ≤
0.5062)] ∨ [(everything mergedBBox CT glcm MaximumProbability ≤
0.21) ∧ (everything merged PT glcm Imc1 >

0.5062) ∧ (everything mergeddilat8mm CT firstorder Maximum >

−1.0149)∧(everything mergedshell2mm CT gldm LowGrayLevelEmphasis > −0.2934)] THEN 0
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Table 10 presents the best rule set extracted from DL predictor trained with
the HECKTOR partition.

Table 10. Rule set extracted from DL predictor using DEXiRE and the HECKTOR
partition.

Rule

IF [(everything merged40% CT firstorder Median >

0.0167) ∧ (everything mergeddilat8mm PT glcm Idn ≤
0.526) ∧ (everything mergedshell2mm shape F latness ≤ −0.4546) ∧
(everything mergedshell4mm CT gldm SmallDependenceHighGrayLevelEmphasis ≤
0.6285)] ∨ [(everything mergedshell2mm shape F latness > −0.4546) ∧
(everything mergedshell4mm CT gldm SmallDependenceHighGrayLevelEmphasis ≤
0.6285)] ∨ [(everything mergeddilat8mm PT glcm Idn >

0.526) ∧ (everything mergedshell2mm shape F latness ≤ −0.4546) ∧
(everything mergedshell4mm CT gldm SmallDependenceHighGrayLevelEmphasis ≤
0.6285)] THEN 1

IF [(everything merged40% CT firstorder Median ≤ 0.0167)

∧(everything mergeddilat8mm PT glcm Idn ≤
0.526) ∧ (everything mergedshell2mm shape F latness ≤ −0.4546)∧
(everything mergedshell4mm CT gldm SmallDependenceHighGrayLevelEmphasis ≤
0.6285)]∨
(everything mergedshell4mm CT gldm SmallDependencHighGrayLevelEmphasis >

0.6285)] THEN 0

A.2 Rule Sets for Task T2

Table 11 presents the best rule set extracted from DL predictor trained with the
imbalanced dataset.

Table 11. Rule set extracted from DL predictor using DEXiRE and the imbalanced
dataset.

Rule

IF [(everything mergeddilat16mm PT firstorder Minimum ≤
1.1895) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity >

−0.5826) ∧ (everything mergedshell8mm PT glszm SmallAreaEmphasis >

1.3477)] ∨ [(everything mergeddilat16mm PT firstorder Minimum >
1.1895) ∧ (everything mergeddilat1mm shape F latness ≤ 0.2752)] ∨
[(everything mergeddilat16mm CT glszm SizeZoneNonUniformityNormalized >

−0.5867) ∧ (everything mergeddilat16mm PT firstorder Minimum ≤ 1.1895) ∧
(everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤ −0.5826)] THEN 1

IF [(everything mergeddilat16mm PT firstorder Minimum >

1.1895) ∧ (everything mergeddilat1mm shape F latness > 0.2752)] THEN 0

IF [(everything mergeddilat16mm PT firstorder Minimum ≤ 1.1895)∧
(everything mergeddilat8mm PT glrlm GrayLevelNonUniformity >

−0.5826) ∧ (everything mergedshell8mm PT glszm SmallAreaEmphasis ≤ 1.3477)]∨
[(everything mergeddilat16mm CT glszm SizeZoneNonUniformityNormalized ≤
−0.5867) ∧ (everything mergeddilat16mm PT firstorder Minimum ≤ 1.1895) ∧
(everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤ −0.5826)] THEN 2
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Table 12 presents the best rule set extracted from DL predictor trained with
the balanced dataset.

Table 12. Rule set extracted from DL predictor using DEXiRE and the imbalanced
dataset.

Rule

IF [(Chemotherapy > 0.3396)∧
(everything mergedBBox CT gldm GrayLevelNonUniformity >
−1.0517) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity >
−0.3239) ∧ (everything mergedshell2mm CT gldm DependenceNonUniformity ≤
−0.5275)] ∨ [(everything merged40% shape Maximum2DDiameterSlice ≤
0.123) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity > −1.0517)∧
(everything mergeddilat16mm CT glszm SizeZoneNonUniformityNormalized >
−0.7827) ∧ (everything mergeddilat16mm PT firstorder Minimum ≤
−0.7768) ∧ (everything mergeddilat2mm CT glcm JointAverage ≤
0.6604) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤
−0.3239)] ∨ [(everything merged40% shape Maximum2DDiameterSlice ≤
0.123) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity > −1.0517)∧
(everything mergeddilat16mm CT glszm SizeZoneNonUniformityNormalized ≤
−0.7827) ∧ (everything mergeddilat2mm CT glcm JointAverage ≤
0.6604) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤
−0.3239)] ∨ [(everything merged40% shape Maximum2DDiameterSlice >
0.123) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity > −1.0517)∧
(everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤
−0.3239)] ∨ [(everything merged40% shape Maximum2DDiameterSlice ≤
0.123) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity > −1.0517)∧
(everything mergeddilat2mm CT glcm JointAverage >
0.6604) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤
−0.3239)] ∨ [(Chemotherapy > 0.3396)∧
(everything mergedBBox CT gldm GrayLevelNonUniformity >
−1.0517) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity > −0.3239) ∧
(everything mergedshell2mm CT gldm DependenceNonUniformity > −0.5275)] THEN 2

IF [(Chemotherapy ≤ 0.3396)∧
(everything mergedBBox CT gldm GrayLevelNonUniformity > −1.0517)∧
(everything mergeddilat8mm PT glrlm GrayLevelNonUniformity > −0.3239)] ∨ [(Age >
−0.9538) ∧ (Chemotherapy ≤
0.3285) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity ≤
−1.0517) ∧ (everything mergedshell8mm CT glcm Contrast ≤ 2.4235)] THEN 0

IF [(Chemotherapy > 0.3285)∧
(everything mergedBBox CT gldm GrayLevelNonUniformity ≤
−1.0517)] ∨ [(everything merged40% shape Maximum2DDiameterSlice ≤
0.123) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity >
−1.0517) ∧ (everything mergeddilat16mm CT glszm SizeZoneNonUniformityNormalized >
−0.7827) ∧ (everything mergeddilat16mm PT firstorder Minimum >
−0.7768) ∧ (everything mergeddilat2mm CT glcm JointAverage ≤
0.6604) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤
−0.3239)] ∨ [(Age > −0.9538) ∧ (Chemotherapy ≤
0.3285) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity ≤
−1.0517) ∧ (everything mergedshell8mm CT glcm Contrast > 2.4235)] ∨ [(Age ≤
−0.9538) ∧ (Chemotherapy ≤
0.3285) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity ≤ −1.0517)] THEN 1
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Table 13 presents the best rule set extracted from DL predictor trained with
the balanced dataset.

Table 13. Rule set extracted from DL predictor using DEXiRE and the imbalanced
dataset.

Rule

IF [(Chemotherapy ≤ −1.0322)∧
(everything mergedshell2mm CT gldm SmallDependenceEmphasis ≤
0.1661)] ∨ [(Chemotherapy > −1.0322)∧
(everything merged40% CT glcm JointEnergy ≤
0.3687) ∧ (everything mergeddilat16mm shape Maximum2DDiameterSlice ≤
−0.2465) ∧ (everything mergeddilat4mm CT glszm SmallAreaEmphasis >
−0.6568)] THEN 1

IF [(Chemotherapy > −1.0322)∧
(everything merged40% CT glcm JointEnergy >
0.3687) ∧ (everything mergeddilat16mm shape Maximum2DDiameterSlice ≤
−0.2465) ∧ (everything mergeddilat4mm CT glszm SmallAreaEmphasis >
−0.6568)] ∨ [(Chemotherapy >
−1.0322)∧(everything mergeddilat16mm shape Maximum2DDiameterSlice >
−0.2465)] ∨ [(Chemotherapy >
−1.0322)∧(everything mergeddilat16mm shape Maximum2DDiameterSlice ≤
−0.2465) ∧ (everything mergeddilat4mm CT glszm SmallAreaEmphasis ≤
−0.6568)] THEN 2

IF [(Chemotherapy ≤ −1.0322)∧
(everything mergedshell2mm CT gldm SmallDependenceEmphasis >
0.1661)] THEN 0
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