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Abstract. Although deep reinforcement learning (DRL) methods have
been successfully applied in challenging tasks, their application in real-
world operational settings - where transparency and accountability play
important roles in automation - is challenged by methods’ limited abil-
ity to provide explanations. Among the paradigms for explainability in
DRL is the interpretable box design paradigm, where interpretable mod-
els substitute inner closed constituent models of the DRL method, thus
making the DRL method “inherently” interpretable. In this paper we
propose a generic paradigm where interpretable DRL models are trained
following an online mimicking paradigm. We exemplify this paradigm
through XDQN, an explainable variation of DQN that uses an inter-
pretable model trained online with the deep Q-values model. XDQN
is challenged in a complex, real-world operational multi-agent problem
pertaining to the demand-capacity balancing problem of air traffic man-
agement (ATM), where human operators need to master complexity
and understand the factors driving decision making. XDQN is shown to
achieve high performance, similar to that of its non-interpretable DQN
counterpart, while its abilities to provide global models’ interpretations
and interpretations of local decisions are demonstrated.

Keywords: Deep Reinforcement Learning · Mimic Learning ·
Explainability

1 Introduction

Deep Reinforcement Learning (DRL) has mastered decision making policies in
various difficult control tasks [11], games [19] and real-time applications [31].
Despite the remarkable performance of DRL models, the knowledge of mas-
tering these tasks remains implicit in deep neural networks (DNNs). Thus, its
application in real-world operational settings is challenged by methods’ limited
ability to provide explanations at global (policy) and local (individual decisions)
levels. This lack of interpretability makes it difficult for human operators to
understand DRL solutions, which can be important for solving safety-critical
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real-world tasks. Additionally, DRL models are unable to provide information
about the evolution of models during the training process, which is useful to
gain insights about the models’ accumulated knowledge through time.

To address the aforementioned challenges, one may follow different paradigms
for the provision of explanations: the interpretable box design paradigm is one
of them where interpretable models substitute or are integrated to inner closed-
box components of DRL [29]. Mimic learning has been proposed so as to infer
interpretable models that mimic the behavior of well-trained DNNs [1,4]. In the
DRL case, to improve interpretability, mimicking models can replace closed-box
DRL models [16,29]. To do so, mimicking models must achieve performance that
is comparable to closed-box models, also optimizing their fidelity [29], so that
interpretable and closed models take the same decisions for the same reasons, in
any specific circumstance. To extract knowledge from close-box models, recent
works (e.g. [2,16]) have applied mimic learning using decision trees: In this case,
criteria used for splitting tree nodes provide a tractable way to explain the
predictions made by the controller.

Typically, mimic learning approaches require well-trained networks (which
we refer to as mature networks), whose behaviour are mimicking towards inter-
pretability. In doing so, interpretability of the model during the training pro-
cess is totally ignored. In real-world settings this could be quite impractical,
since the training overhead required to train the mimic models can often be a
sample-inefficient and time-consuming process, especially for large state-action
spaces and multi-agent settings. More importantly, the training process can be
“unsafe”, given that mimicking models’ decisions may diverge from that of the
original policy models: though fidelity can be measured at the end of the training
process, we need to ensure high fidelity during training. In conclusion, while the
mimic learner can provide explanations about the decisions of an inferred DRL
model, it neither allows examining the knowledge accumulated throughout the
training process, nor ensures fidelity during the training process.

To deal with these challenges, in this paper we propose a generic interpretable
DRL paradigm, where interpretable models are trained in interplay with the
original DRL models without requiring these models to be mature: the original
model trains the mimicking model and the mimicking model drives the subse-
quent updates of the original model offering target value estimators during the
DRL training process. This is what we call the online (i.e. during training and in
interplay with other models) training approach. This approach assures fidelity of
decisions of the mimicking model, w.r.t. those of the original model. We conjec-
ture that such a paradigm is effective in many DRL methods and can be applied
to value based, policy based or actor-critic methods, depending on the model
that is mimicked, over discrete or continuous state-action spaces.

To exemplify the proposed paradigm and provide evidence for its applicabil-
ity, this paper proposes the eX plainable Deep Q-N etwork (XDQN ) method,
an explainable variation of the well-known DQN [19] method, with the goal to
provide inherent explainability of DQN via mimic learning in an online manner.
By following an online mode of training the mimicking model, XDQN does not
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require the existence of a well-trained model to train an interpretable one: The
mimic learner is trained and updated while the DQN Q-value model is trained
and updated, supporting the maintenance of multiple “snapshots” of the model
while it evolves through time, offering interpretability on intermediate models,
and insights about the patterns and behaviors that DQN learns during training.

To evaluate the effectiveness of XDQN, this is challenged in complex, real-
world multi-agent tasks, where thousands of agents aim to solve airspace conges-
tion problems. As it is shown in other works, the use of independent DQN agents
has reached unprecedented performance [13] and therefore such tasks provide a
suitable real-world testbed for the proposed method. Agents in this setting are
trained via parameter sharing following the centralized training decentralized
execution (CTDE) schema.

We summarize the main contributions of this paper below:

– To our knowledge, this work is the first that provides inherent interpretability
through online mimicking of DRL models, without requiring the existence of
a well-trained DRL model: As far as we know, there is not any work that
supports this straightforward paradigm for interpretability.

– XDQN exemplifies this paradigm and is proposed as an explainable variation
of DQN, in which an interpretable mimic learner is trained online, in interplay
with the Q-network of DQN, playing the role of the target Q-network.

– Experimentally, it is shown that XDQN can perform similarly to DQN,
demonstrating good play performance and fidelity to DQN decisions in com-
plex real-world multi-agent problems.

– The ability of our method to provide global (policy) and local (in specific
circumstances) explanations regarding agents’ decisions, also while models
are being trained, is demonstrated in a real-world complex setting.

The structure of this article is as follows: Sect. 2 provides background def-
initions on DRL, deep Q-networks, mimicking approaches, and clarifies the
paradigm introduced. Section 3 presents related work. Section 4 exemplifies the
proposed paradigm with XDQN, and Sect. 5 provides details on the experimental
setting and results, as well as concrete examples of local and global explainability.
Section 6 concludes the article.

2 Background

We consider a sequential decision-making setup, in which an agent interacts
with an environment E over discrete time steps. At a given timestep, the agent
perceives features regarding a state st ∈ S, where S is the set of all states in
agent’s environment (state space). The agent then chooses an action at from its
repertoire of actions A (i.e., the actions that it can perform in any state), and
gets the reward rt generated by the environment.

The agent’s behavior is determined by a policy π, which maps states to
a probability distribution over the actions, that is π : S → P (A). Apart from
an agent’s policy, the environment E may also be stochastic. We model it as
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a Markov Decision Process (MDP) with a state space S, action space A, an
initial state distribution p(s1), transition dynamics p(st+1|st, at) and a reward
r(st, at, st+1), for brevity denoted as rt.

The agent aims to learn a stochastic policy π∗ which drives it to act so as to
maximize the expected discounted cumulative reward Gt =

∑∞
τ=t γτ−trτ , where

γ ∈ (0, 1) is a discount factor.

2.1 Deep Reinforcement Learning with Interpretable Models.

To deal with a high dimensional state space, a policy can be approximated by
exploiting a DNN with weight parameters θ. DRL methods learn and exploit dif-
ferent models (e.g. objectives model, value models, models of the environment),
which support updating the policy model to fit to the sampled experience gen-
erated while interacting with the environment.

In this work we introduce a paradigm for providing DRL methods with inher-
ent interpretability, by replacing closed-box models with interpretable ones. This
follows the interpretable box design paradigm specified in [29].

But, how to train interpretable models? Interpretable models can be trained
either during or after training the DRL models. Being trained during the training
of the DRL models, the interpretable model evolves as the DRL model evolves,
and can be used to explain how the training process affects agent’s responses.
However, this may result to instability and inefficiency of the training process
since, interpretable models may aim to reach a moving target and may suffer
from high variance. Such pitfalls can be mitigated by means of the “interplay” of
interpretable and original models: The interpretable model is trained by specific
instances of the DRL model, and its decisions affect subsequent updates of the
original model. As an important implication of the online training, the fidelity
of the mimicking models with respect to the original DRL models is empirically
assured.

Such an online training scheme is followed, for instance, by DRL architectures
exploiting a target network (succinctly presented below). A target network pro-
vides a stable objective in the learning procedure, and allows a greater coverage
of the training data. Target networks, in addition to the benefits they provide in
the learning procedure, they can support interpretability of the policy models,
given that these can be replaced by interpretable models that are trained with
the deep networks in an online manner.

The introduced paradigm for inherently interpretable DRL through online
mimicking can be applied to different closed-box DRL models. Here, we exem-
plify and test this idea to Deep Q-networks, training interpretable Q-value mod-
els online with closed-box Q-value models through mimicking. Q-value closed-
box and/or interpretable models can be used to extract a DRL policy.
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2.2 Deep Q-Networks

Considering that an agent acts under a stochastic policy π, the Q-function (state-
action value) of a pair (s, a) is defined as follows

Qπ(s, a) = E [Gt | st = s, at = a, π] (1)

which can also be computed recursively with bootstrapping:

Qπ(s, a) = E
[
rt + γEa∼π(st+1)[Q

π(st+1, a)] | st = s, at = a, π
]

(2)

The Q-function measures the value of choosing a particular action when the
agent is in this state. We define the optimal policy π∗ under which the agent
receives the optimal Q∗(s, a) = maxπQπ(s, a). For a given state s, under the
optimal policy π∗, the agent selects action a = argmaxa′∈AQ∗(s, a′). Therefore,
it follows that the optimal Q-function satisfies the Bellman equation:

Q∗(s, a) = E

[
rt + γ max

a
Q∗(st+1, a) | st = s, at = a, π

]
. (3)

In Deep Q-Networks (DQN), to estimate the parameters θ of the Q-values
model, at iteration i the expected mean squared loss between the estimated Q-
value of a state-action pair and its temporal difference target, produced by a
fixed and separate target Q-network Q(s, a; θ−) with weight parameters θ−, is
minimized. Formally:

Li(θi) = E

[
Y DQN

i − Q(s, a; θ)
]
, (4)

with
Y DQN

i = rt + γ max
a∈A

Q(st+1, a; θ−) (5)

In order to train DQN and estimate θ, we could use the standard Q-learning
update algorithm. Nevertheless, the Q-learning estimator performs very poorly in
practice. To stabilize the training procedure of DQN, Mnih et al. [19] freezed the
parameters, θ−, of the target Q-network for a fixed number of training iterations
while updating the closed Q-network with gradient descent steps with respect
to θ.

The direct application of the online mimicking approach in DQN uses an
interpretable target DQN model to mimic the online Q-network, and thus, the
decisions of the original policy model.

In addition to the target network, during the learning process, DQN uses
an experience replay buffer [19], which is an accumulative dataset, Dt, of state
transition samples - in the form of (s, a, r, s′) - from past episodes. In a train-
ing step, instead of only using the current state transition, the Q-Network is
trained by sampling mini-batches of past transitions from D uniformly, at ran-
dom. Therefore, the loss can be written as follows:

Li(θi) = E(s,a,r,s′)∼U(D)

[
(Y DQN

i − Q(s, a; θ))2
]
. (6)
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As it is well known, the main advantage of using an experience replay buffer is
that uniform sampling reduces the correlation among the samples used for train-
ing the Q-network. The replay buffer improves data efficiency through reusing
the experience samples in multiple training steps. Instead of sampling mini-
batches of past transitions uniformly from the experience replay buffer, a fur-
ther improvement over DQN results from using a prioritized experience replay
buffer [24]. This aims at increasing the probability of sampling those past tran-
sitions from the experience replay that are expected to be more useful in terms
of absolute temporal difference error.

3 Related Work

Explainability in Deep Reinforcement Learning (DRL) is an emergent area whose
necessity is related to the fact that DRL agents solve sequential tasks, acting
in the real-world, in operational settings where safety, criticality of decisions
and the necessity for transparency (i.e. explainability with respect to real-world
pragmatic constraints [29]) is the norm. However, DRL methods use closed-boxes
whose functionality is intertwined and are not interpretable. This may hinder
DRL methods explainability. In this paper we address this problem by proposing
an interpretable DRL method comprising two models which are trained jointly
in an online manner: An interpretable mimicking model and a deep model. The
later offers training samples to the mimicking one and the former interpretable
model offers target action values for the other to improve its predictions. At the
end of the training process, the mimicking model has the capacity to provide
high-fidelity interpretations to the decisions of the deep model and thus, it can
replace the deep model. This proposal is according to the interpretable box
design paradigm, which follows the conjecture (stated for instance in [22]) that
there is high probability that decisions of closed-boxes can be approximated by
well designed interpretable models.

There are many proposals for interpreting Deep Neural Networks (DNNs)
through mimicking approaches. These approaches differ in several dimensions:
(a) the targeted representation (e.g., decision trees in DecText [5], logistic model
trees (LMTs) in reference [8], or Gradient Boosting Trees in reference [6]), (b) to
the different splitting rules used towards learning a comprehensive representa-
tion, (c) to the actual method used for building the interpretable model (e.g., [8]
uses the LogiBoost method, reference [5] proposes the DecText method, while
the approach proposed in reference [6] proposes a pipeline with an external classi-
fier, (d) on the way of generating samples to expand the training dataset. These
methods can be used towards interpreting constituent individual DRL mod-
els employing DNNs. Distillation could be another option [23], but it typically
requires mature DRL models: Online distillation of models, as far as we know,
has not been explored. The interested reader is encouraged to read a thorough
review on these methods provided in [3,12,20,22].

Recent work on mimic learning [6,16] has shown that rule-based models, like
decision trees, or shallow feed-forward neural networks can mimic a not linear
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function inferred by a DNN with millions of parameters. The goals here is to
train a mimic model with efficiency, resulting into a high performance model,
which takes decisions in high-fidelity with respect to the decisions of the original
model.

For DRL, authors in [16] introduce Linear Model U-trees (LMUTs) to approx-
imate predictions for DRL agents. An LMUT is learned by an algorithm that
is well-suited for an active play setting. The use of LMUTs is compared against
using CART, M5 with regression tree, Fast Incremental Model Tree (FIMT)
and with Adaptive Filters (FIMT-AF). The use of decision trees as interpretable
policy models trained through mimicking has been also investigated in [18], in
conjunction to using a causal model representing agent’s objectives and opportu-
nity chains. However, the decision tree in this work is used to infer the effects of
actions approximating the causal model of the environment. Similarly to what we
do here, the decision tree policy model is trained concurrently with the RL policy
model, assuming a model-free RL algorithm and exploiting state-action samples
using an experience replay buffer. In [7] authors illustrate how Soft Decision
Trees (SDT) [10] can be used in spatial settings as interpretable policy models.
SDT are hybrid classification models of binary trees of predetermined depth, and
neural networks. However their inherent interpretability is questioned given their
structure. Other approaches train interpretable models other than trees, such as
the Abstracted Policy Graphs (APGs) proposed in [28], assuming a well-trained
policy model. APGs concisely summarize policies, so that individual decisions
can be explained in the context of expected future transitions.

In contrast to the above mentioned approaches, the proposed paradigm,
exemplified by means of the proposed XDQN algorithm, can be applied to any
setting with arbitrary state features, where the interpretable model is trained
jointly to the deep model through online mimicking.

It is worth noting that, instead of the Gradient Boosting Regressors mimic
learner for XDQN, we also tested naturally interpretable Linear Trees (such as
LMUTs [16]); i.e. decision trees with linear models in their leaves). However,
such approaches demonstrated quite low play performance with very low fidelity
in the real-world complex experimental setting considered.

Regarding mimicking the Q-function of a DRL model, two known settings
are the experience training and the active play settings.

In the experience training setting [6,16], all the state-action pairs 〈s, a〉 of
a DRL training process are collected in a time horizon T . Then, to obtain the
corresponding Q-values, these pairs are provided as input into a DRL model.
The final set of samples {(〈s1, a1〉, Q1), ...(〈sT , aT 〉, QT )} is used as the experi-
ence training dataset. The main problem with the experience training is that
suboptimal samples are collected through training, making it more difficult for
a learner to mimic the behavior of the DRL model.

Active play [16] uses a mature DRL model to generate samples to construct
the training dataset of an active mimic learner. The training data is collected
in an online manner through queries, in which the active learner selects the
actions, given the states, and the mature DRL model provides the estimated Q-
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values. These Q-values are then used to update the active learner’s parameters
on minibatches of the collected dataset. While the pitfall of suboptimal samples
is addressed here, active play cannot eliminate the need for generating new
trajectories to train the mimic models, which can be computationally prohibitive
for real-world controllers.

Rather than following an experience or an active play training scheme, in
this paper we use online training, that collects samples generated from a DRL
model in a horizon of training timesteps, without requiring these samples to be
generated from a mature DRL model. Samples are gathered from intermediate
DRL models, during the DRL training process.

As for the provision of explanations, we opted for features’ contributions
to the Q-values, in a rather aggregated way, using the residue of each Gradi-
ent Boosting Regressor node, as done in [9]. This approach, as shown in [9],
reports advantages over using well known feature importance calculation meth-
ods, avoiding linearity assumptions made by LIME [21] and bias in areas where
features have high variance. It also avoids taking all tree paths into account in
case of outliers, as done, for instance, by SHAP [17].

4 Explainable DRL Through Online Mimicking: The
Deep Q-Network (XDQN) Example

To demonstrate the inherent interpretability of deep Q-learning through
online mimicking of the Q-network, we propose eXplainable Deep Q-Network
(XDQN )1, which is an explainable variation of DQN [19]. XDQN aims at infer-
ring a mimic learner, trained in an online manner, substituting the target Q-
network of DQN.

Formally, let θ be the parameters of the Q-network and θ̃ be the parameters
of the mimic learner. In XDQN, the mimic learner estimates the state-action
value function and selects the best action for the next state playing the role of
the XDQN target:

Y XDQN
i = rt + γ max

a∈A
Q

(
st+1, a; θ̃

)
(7)

Similar to DQN, θ̃ are updated every Tu number of timesteps. The full training
procedure of XDQN is presented in Algorithm 1.

In contrast to DQN in which the parameters θ of the Q-network are simply
copied to the target Q-network, here we perform mimic learning on Q(s, a, θ)
(steps 17–20). To update θ̃ we train the mimic learner on minibatches of the
experience replay buffer B by minimizing the Mean Squared Error (MSE) loss
function using Q(s, a, θ) to estimate the soft labels (Q-values) of the state-action
pairs in the minibatches. The problem for optimizing θ̃ at each update can be
written as:

min
θ̃

E(s,a)∼B

[(
Q(s, a; θ̃) − Q(s, a; θ)

)2
]

(8)

1 The implementation code will be made available in the final version of the
manuscript.
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Algorithm 1 eXplainable Deep Q-Network (XDQN)
1: Initialize replay buffer B with capacity N
2: Initialize θ and θ̃
3: Initialize timestep count c = 0
4: for episode 1, M do
5: Augment c = c + 1
6: Initialize state s1
7: With probability ε select a random action at, otherwise at = argmaxaQ(st, a; θ)
8: Execute action at and observe next state st+1 and reward rt
9: Store transition (st, at, st+1, rt) in B

10: Sample a minibatch of transitions (si, ai, si+1, ri) from B
11: if si+1 not terminal then

12: Set Y XDQN
i = ri + γ maxa∈A Q

(
si+1, a; θ̃

)

13: else
14: Set Y XDQN

i = ri
15: end if

16: Perform a gradient descent step on
(
Y XDQN
i − Q(si, ai; θ)

)2

w.r.t. θ

17: if c mod Tu = 0 then
18: Initialize θ̃
19: Sample a minibatch of transitions (si, ai, si+1, ri) from B that were stored

at most c − K timesteps before

20: Perform mimic learning update on
(
Q(s, a; θ̃) − Q(s, a; θ)

)2

w.r.t θ̃

21: end if
22: end for

where, B is the prioritized experience replay buffer [24], as described in Sect. 2.
Similarly to active play, when updating θ̃, to ensure that the samples in mini-
batches provide up-to-date target values with respect to θ, we use records from
the replay buffer that were stored during the K latest training steps.

It is worth noting that the hyperparameter K plays a similar role as the
discounted factor γ plays for future rewards, but from the mimic learner’s per-
spective. Building upon the experience training and active play schemes, the
online training scheme leverages the benefits of both of them, aiming to minimize
the required sample complexity for training the mimic model without simulat-
ing new trajectories of a mature DRL model. In particular, hyperparameter K
manages the trade-off between experience training and active play in XDQN. If
K is large, the mimic model learns from samples that may have been collected
through more suboptimal instances of θ; deploying however data-augmented ver-
sions of Q-value. On the other hand, if K is small, it learns from the most recent
instances of θ; making use of up-to-date Q-values. Nevertheless, opting for very
small values of K could lead to less stable mimic training, due to the smaller
number of minibatches that can be produced for updating θ̃, while using large
K can result in a very slow training process.

From all the above, we note that θ (Q-network) and θ̃ (mimic learner) are
highly dependent. To update θ, Q-network uses the mimic learner model with θ̃
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to compute the target soft labels (target Q-values), while to update θ̃ the mimic
learner uses the original Q-network with parameters θ to compute the respective
target soft labels (Q-values). It is conjectured that through this dependency the
interpretable target model converges to Q-values that are close to the values of
the Q-network, and thus to nearly the same policy, which is an inherent feature
of the DQN algorithm.

Since XDQN produces different instances of θ̃ throughout training, it can
eventually output multiple interpretable mimic learner models (up to the num-
ber of θ̃ updates), with each one of them corresponding to a different training
timestep. Since all these mimic learner instances are interpretable models, XDQN
can also provide information on how the Q-network evolves towards solving the
target task.

Finally, after Q-network (θ) and mimic learner (θ̃) have been trained, we can
discard the closed-box Q-network and use the mimic learner model as the con-
troller. Therefore, in testing, given a state, the interpretable mimic learner selects
the action with the highest Q-value, being able to also provide explainability.

5 Experimental Setup

This section demonstrates the effectiveness of XDQN through experiments in
real-world settings pertaining to the demand-capacity balancing (DCB) prob-
lem of air traffic management (ATM) domain. XDQN uses a Gradient Boosting
Regressor (GBR) [30] mimic learner, whose boosting ability supports effective
learning by exploiting instances generated by the deep Q-network. We opted for
GBR, as it usually results into robust and accurate models compared to other
decision tree - based models.

Although the boosting structure of GBR makes it very difficult to provide
explainability, following the work in [9] we are able to measure the contribution
of state features to the predicted Q-values. In so doing, the mimic learner is
expected to give local and global explanations on its decisions.

Overall, we are interested in demonstrating the proposed paradigm and show
the importance of online training of mimic interpretable models. In so doing, the
performance of XDQN is compared to that of DQN in complex real-world DCB
problems.

5.1 Real-World Demand-Capacity Problem Setting

The current ATM system is based on time-based operations resulting in DCB [15]
problems. To solve the DCB issues at the pre-tactical stage of operations, the
ATM system opts for methods that generate delays and costs for the entire
system. In ATM, the airspace consists of a set of 3D sectors where each one has
a specific capacity. This is the number of flights that cross the sector during a
specific period (e.g. of 20 min). The challenge of dealing with the DCB problem
is to reduce the number of congestion cases (DCB issues, or hotspots), where the
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demand of airspace use exceeds its capacity, with small delays to an - as much
as possible - low number of flights.

Recent work has transformed the DCB challenge to a multi-agent RL problem
by formulating the setting as a multi-agent MDP [15]. We follow the work and the
experimental setup of [13–15,25,26] and encourage the reader to see the problem
formulation [15] in details. In this setting, we consider a society of agents, where
each agent is a flight (related to a specific aircraft) that needs to coordinate its
decisions regarding minutes of delay to be added in its existing delay, so as to
resolve hotspots that occur, together with the other society agents. Agents’ local
states comprise 81 state variables related to: (a) the existing minutes delay, (b)
the number of hotspots in which the agent is involved in, (c) the sectors that it
crosses, (d) the minutes that the agent is within each sector it crosses, (e) the
periods in which the agent joins in hotspots in sectors, and (f) the minute of the
day that the agent takes off. The tuple containing all agents’ local states is the
joint global state. Q-learning [27] agents have been shown to achieve remarkable
performance on this task [13]. In our experiments, all agents share parameters
and replay buffer, but act independently.

A DCB scenario comprises multiple flights crossing various airspace sectors in
a time horizon of 24 h. This time horizon is segregated into simulation time steps.
At each simulation time step (equal to 10 min of real time), given only the local
state, each agent selects an action which is related to its preference to add ground
delay regulating its flight, in order to resolve hotspots in which it participates.
The set of local actions for each agent contains |maxDelay + 1| actions, at each
simulation time step. We use maxDelay = 10. The joint (global) action is a tuple
of local actions selected by the agents. Similarly, we consider local rewards and
joint (global) rewards. The local reward is related to the cost per minute within
a hotspot, the total duration of the flight (agent) in hotspots, as well as to the
delay that a flight has accumulated up to the simulation timestep [13].

5.2 Evaluation Metrics and Methods

For the evaluation of the proposed method, first, we make use of two known
evaluation metrics: (a) play performance [16] of the deep Q-network, and (b)
fidelity [29] of the mimic learner. Play performance measures how well the deep
Q-network performs with the mimic learner estimating its temporal difference
targets, while fidelity measures how well the mimic learner matches the predic-
tions of the deep Q-network.

As far as play performance is concerned, in comparison with results reported
in [13], we aim at minimizing the number of hotspots, the average delay per flight
and the number of delayed flights. As for fidelity, we use two metric scores: (a) the
mean absolute error (MAE) of predicted Q-values and (b) the mimicking accu-
racy score. Given a minibatch of states, we calculate the MAE of this minibatch
for any action as the mean absolute difference between the Q-values estimated
by the mimic learner and the Q-values estimated by the deep Q-network for that
action. More formally, for a minibatch of states Ds, the MAEi of action ai is
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denoted as:
MAEi =

1
|Ds|

∑

s∈Ds

|Q(s, ai; θ̃) − Q(s, ai; θ)| (9)

It is worth noting that minimizing the MAE of the mimic learner is very
important for training XDQN. Indeed, training a mimic model to provide the
target Q-values, large MAEs can lead the deep Q-network to overestimate bad
states and understimate the good ones, and thus, find very diverging policies
that completely fail to solve the task.

Given a minibatch of samples, mimicking accuracy measures the percentage
of the predictions of the two models that agree with each other, considering that
models select the action with the highest estimated Q-value.

Second, we illustrate XDQN’s local and global interpretability. We focus on
providing aggregated interpretations, focusing on the contribution of state fea-
tures to local decisions and to the overall policy: This, as suggested by ATM
operators, is beneficial towards understanding decisions, helping them to increase
their confidence to the solutions proposed, and mastering the inherent complex-
ity in such a multi-agent setting, as solutions may be due to complex phenomena
that are hard to be traced [13]. Specifically, in this work, local explainability mea-
sures state features’ importance on a specific instance (i.e. a single state-action
pair), demonstrating which features contribute to the selection of a particu-
lar action over the other available ones. Global explainability aggregates fea-
tures’ importance on particular action selections over many different instances,
to explain the overall policy of the mimic learner.

Finally, the evolution of the DRL model throughout the training process is
demonstrated through GBR interpretability.

5.3 Experimental Scenarios and Settings

Experiments were conducted on three in total scenarios. Each of these scenarios
corresponds to a date in 2019 with heavy traffic in the Spanish airspace. In
particular, the date scenarios, on which we assess our models, are 20190705,
20190708 and 20190714. However, to bootstrap the training process we utilize
a deep Q-network pre-trained in various scenarios, also including 20190705 and
20190708, as it is done in [15]. In the training process, the deep Q-network is
further trained according to the method we propose. The experimental scenarios
were selected based on the number of hotspots and the average delay per flight
generated in the ATM system within the duration of the day, which shows the
difficulty of the scenario. Table 1 presents information on the three experimental
scenarios. In particular, the flights column indicates the total number of flights
(represented by agents) during the specific day. The initial hotspots column
indicates the number of hotspots appearing in the initial state of the scenario.
The flights in hotspots column indicates the number of flights in at least one of
the initial hotspots. Note that all three scenarios display populations of agents
(flights) of similar size, within busy summer days. For each scenario we ran five
separate experiments and average results.
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Table 1. The three experimental scenarios.

Scenario Flights Initial Hotspots Flights in Hotspots

20190705 6676 100 2074

20190708 6581 79 1567

20190714 6773 92 2004

The implementation of XDQN utilizes a deep multilayer perceptron as the
deep Q-network. The maximum depth of the Gradient Boosting Regressor is set
equal to 45 and the number of minimum samples for a split equal to 20. We use
the mean squared error as the splitting criterion. To train a single decision tree
for all different actions, a non binary splitting rule of the root is used, based
on the action size of the task, so that the state-action pairs sharing the same
action match the same subtree of the splitting root. XDQN uses an ε-greedy
policy, which at the start of exploration has ε equal to 0.9 decaying by 0.01
every 15 episodes until reaching the minimum of 0.04 during exploitation. The
total number of episodes are set to 1600 and the update target frequency is set to
9 episodes. The memory capacity of the experience replay for the online training
of the mimic learner, i.e. the hyperparameter K, is set equal to the 1/20 of the
product of three other hyperparameters, namely the total number of timesteps
per episode (set to 1440), the update target frequency (set to 9) and the number
of agents (set to 7000). Thus, K is set to 4536000 steps.

5.4 Evaluation of Play Performance

Table 2. Comparison of performance of XDQN and DQN on the three experimental
ATM scenarios (FH : Final Hotspots, AD : Average Delay, DF : Delayed Flights).

Scenario DQN XDQN

FH AD DF FH AD DF

20190705 38.4 13.04 1556.5 39.0 13.19 1618.54

20190708 4.6 11.4 1387.2 6.0 11.73 1331.58

20190714 4.8 10.72 1645.2 7.0 13.46 1849.49

Table 2 demonstrates the play performance of DQN and XDQN on the three
experimental scenarios. The final hotspots column indicates the number of unre-
solved hotspots in the final state: It must be noted that these hotspots may have
emerged due to delays assigned to flights and may be different than the hotspots
at the beginning of each scenario. The average delay per flight column shows
the total minutes of delay imposed to all flights (when the delay is more that
4 min, according to operational practice), divided by the number of flights in
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the specific scenario. The delayed flights column indicates the number of flights
affected by more than 4 min of delay.

We observe that XDQN performs similarly to DQN in all three evaluated
metric scores, reducing considerably the number of hotspots in the scenarios,
and assigning delays to the same proportion of flights. In particular, while DQN
slightly outperforms XDQN in terms of the final hotspots and average delay in
all three scenarios, XDQN decreases the number of the delayed flights in one
scenario, while it demonstrates competitive performance on the others. This
demonstrates the ability of XDQN to provide qualitative solutions while offer-
ing transparency in decision making, in contrast to DQN, which offers slightly
better solutions that, however, are difficult (or even - due to their complexity -
impossible) to be understood by humans [13].

5.5 Evaluation of Fidelity

As discussed in Subsect. 4.2, for the fidelity evaluation we measure the mean
absolute error (MAE) between models’ predicted Q-values and the mimicking
accuracy score of the interpretable model. Given the DCB experimental scenar-
ios, we train three different mimic models; namely X0705, X0708 and X0714.
Table 3 reports the average MAE for each decided action over all mimic learn-
ing updates. We observe that all errors are very small, given that in testing,
the absolute Q-values hovered around 200. This is very important for stabilizing
the training process of XDQN, since mimic-model Q-value predictions should be
ideally equal to the ones generated by the deep Q-network.

Table 3. Average Mean Absolute Errors (MAE) of the mimic model over three updates.

Action (Delay Option) XDQN mimic model update

X0705 X0708 X0714

0 0.279 0.237 0.291

1 1.766 1.971 1.942

2 0.910 0.928 1.002

3 0.575 0.661 0.640

4 0.639 0.748 0.725

5 1.893 2.096 2.121

6 1.590 1.766 1.715

7 1.610 1.816 1.733

8 0.449 0.514 0.497

9 0.740 0.849 0.823

10 1.292 1.525 1.461

To further assess the fidelity of XDQN mimic learner, Table 4 illustrates the
average mimicking accuracy scores over all mimic learning updates and the cor-
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responding accuracy scores of the final mimic model. Since a Gradient Boosting
Regressor mimic learner is a boosting algorithm, it produces sequential decision
trees that can successfully separate the state space and approximate well the
predictions of the deep Q-network function. We observe that the mimic learner
and the deep Q-network agree with each other to a very good extent; namely
from approximately 81% to 92%, including the final mimic model. Therefore, we
expect the mimic learner to be able to accumulate the knowledge from the deep
Q-network with high fidelity.

Table 4. The accuracy scores of the mimic models.

Scenario mimicking accuracy (%) mimicking accuracy (%)

(average over training steps) (final model)

20190705 88.45 87.53

20190708 81.89 82.39

20190714 90.88 92.63

5.6 Local and Global Explainability

In the DCB setting, it is important for the human operator to understand how
the system reaches decisions on regulations (i.e. assignment of delays to flights):
as already pointed out, this should be done at a level of abstraction that would
allow operators to understand the rationale behind decisions towards increasing
their confidence to the solutions proposed, mastering the inherent complexity
of the setting, and further tune solutions when necessary, without producing
side-effects that will increase congestion and traffic. Therefore, operators are
mainly interested in receiving succinct explanations about which state features
contribute to the selection of delay actions (i.e. actions larger than 1 min) over
the no-delay action (i.e. action equal to 0 min).

First, we demonstrate the ability of the mimic learner to provide local
explainability. As already said, local explainability involves showing which state
features contribute to the selection of a particular action over the other available
ones in a specific state. To this aim, for any pair of actions - a1 and a2 - we cal-
culate the differences of feature contributions in selecting a1 and a2 in a single
state. To highlight the most significant differences, we focus only on those fea-
tures whose absolute differences are above a threshold. Empirically, we set this
threshold equal to 0.5. Figure 1 illustrates local explainability on a given state in
which action “2” was selected: It provides the differences of feature contributions
to the estimation of Q-values when selecting action “0” against selecting action
“2” (denoted by “0–2”). We observe that the features that contributed more to
the selection of the delay action “2” were those with index 32 (i.e. The sector in
which the last hotspot occurs), 2 (i.e. the sector in which the first hotpot occurs)
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Fig. 1. Illustration of significant differences of feature contributions in selecting action
“0” and action “2” in a single state, in which action “2” was selected. Positive differ-
ences mean that the respective state features have a greater contribution to Q-value
when action “0” is selected, rather than when action “2” is selected. Negative differ-
ences have the opposite meaning.

Table 5. The most significant state features in terms of average contribution difference
(ACD) in selecting the no-delay action versus a delay action. A positive ACD means
that the corresponding state feature on average contributes more to the selection of the
no-delay action “0”. On the contrary, a negative ACD means that the corresponding
state feature on average contributes to the selection of a delay action “1–10”.

Feature Index Feature Meaning ACD

0 Delay the flight has accumulated up to this point Positive

1 Total number of hotspots the flight participates in Positive

2 The sector in which the first hotspot the flight participates occurs Negative

3 The sector in which the second hotspot the flight participates occurs Positive

32 The sector in which the last hotspot the flight participates occurs Negative

62 The minutes the flight remains in the last sector it crosses Negative

63 The minute of day the flight takes off given the delay (CTOT) Negative

64 The minutes the flight remains in the first sector it crosses Negative

68 The minutes the flight remains in the fifth sector it crosses Negative

and 62 (i.e. the minutes that the flight spends crossing the last sector). Similarly
to the explanations provided in [29], the arguments in favor of receiving addi-
tional minutes of delay concern the hotspots in which the flight participates, as
well as the duration of the time span in which the flight crosses congested sectors
(and mainly the first sector), as well as the delay that the flight has accumulated
up to this point (if this is low). On the contrary, the arguments against receiving
delay concern the delay that the flight has accumulated up to this point (if this
is somehow high), and the small duration of the time span the flight spends in
congested sectors.

Finally, we demonstrate XDQN’s global explainability by aggregating the
importance of features on particular action selections over many different state-
action instances. In particular, we are interested in measuring the state feature
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contributions to the selection of delay actions (i.e. actions in the range [1, 10])
over the no-delay action (i.e. action “0”) in the overall policy. To this aim, all
pairs of actions, with one action always being the no-delay action and the other
one being a delay action, are considered. For each such pair, the differences of
feature contributions to estimating the actions’ Q-values over many different
state-action instances are averaged: This results into features’ Average Contri-
bution Difference (ACD). Table 5 shows the most significant state features in
terms of ACD in selecting the no-delay action versus a delay action. The most
significant features, are (currently set to eight) features with the highest absolute
ACD, for each action in the range [1, 10]) over the no-delay action. We observe
that features with index 0, 3 contribute more to the selection of the no-delay
action. On the contrary, features with indexes 32, 2, 62 contribute more to the
selection of a delay action.

Last but not least, we demonstrate how global explainability evolves through
the training process, addressing the question of how a DRL model learns to solve
the target task. To this aim, features’ contribution to selecting an action are aver-
aged. This results into Average Features’ Contribution (AFC). The (currently
set to eight) most significant features, i.e. those with the highest absolute AFC,
are those considered in explanations. Then the AFC to predicting the Q-value of
a selected action at different training episodes is provided for the most significant
features: Fig. 2 illustrates the evolution of global explainability for selecting the
no-delay action (left) and a delay action (right) through 5 representative training
episodes (360th, 720th, 1100th, 1400th and 1600th), in terms of eight features
with the highest AFC values in the final model (episode 1600). We observe that
for both evaluated actions most of the features show an increasing/decreasing
trend in their average contribution to Q-value over time, such as those with
indices 0, 1 and 63. It is worth noting that although the features 0 and 1 have

Fig. 2. Illustration of the evolution of features’ contributions for selecting the no-delay
action (“0”) and a delay one (“2”) through 5 representative training episodes (360th,
720th, 1100th, 1400th and 1600th) in terms of average feature contribution (AFC) to
Q-value for the eight features with highest absolute AFC values in the final model
(episode 1600) in the selection of the aforementioned actions.
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been highlighted as the most significant for the selection of the no-delay action,
they have also significant but less contribution to selecting a delay action, as
well.

6 Conclusion and Future Work

This work shows how interpretable models can be trained through online mim-
icking and substitute closed-box DRL models, providing inherent DRL inter-
pretability, or be used for the provision of DRL methods interpretability. This
generic paradigm follows the interpretable box design paradigm for explainable
DRL and is exemplified by means of an explainable DQN (XDQN) method,
where the target model has been substituted by an interpretable model that
provides interpretations regarding the importance of state features in decisions.
XDQN, utilizing a Gradient Boosting Regressor as the mimic learner, has been
evaluated in challenging multi-agent demand-capacity balancing problems per-
taining to air traffic management. Experimentally, we have shown that the
XDQN method performs on a par with DQN in terms of play performance,
whereas demonstrating high fidelity and global/local interpretability.

Overall, this work provides evidence for the capacity of the proposed
paradigm to provide DRL methods with inherent interpretability, with high play
performance and high-fidelity to the decisions of original DRL models, through
online training of interpretable mimicking models.

Further work is necessary to explore how this paradigm fits into different
types of DRL architectures, utilizing interpretable models that are trained to
mimic different DRL closed-box models. In this line of research, we need to
benchmark our methodology, utilizing state-of-the-art DRL in various experi-
mental settings.

Regarding XDQN, further work is to design, evaluate and compare various
explainable mimic models that can effectively substitute the target Q-Network.
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