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Abstract. Agent explanation generation is the task of justifying the
decisions of an agent after observing its behaviour. Much of the previous
explanation generation approaches can theoretically do so, but assuming
the availability of explanation generation modules, reliable observations,
and deterministic execution of plans. However, in real-life settings, expla-
nation generation modules are not readily available, unreliable observa-
tions are frequently encountered, and plans are non-deterministic. We
seek in this work to address these challenges. This work presents a data-
driven approach to mining and validating explanations (and specifically
belief-based explanations) of agent actions. Our approach leverages the
historical data associated with agent system execution, which describes
action execution events and external events (represented as beliefs). We
present an empirical evaluation, which suggests that our approach to
mining and validating belief-based explanations can be practical.
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1 Introduction

Explainable agents have been the subject of considerable attention in recent
literature. Much of this attention involves folk psychology [1], which seeks to
explain the actions of an agent by citing its mental state (e.g., the beliefs of
the agent, and its goals and intentions). Roughly speaking, when an explainee
requests explanations about a particular action, two common explanation styles
might be adopted: (1) a goal-based explanation and (2) a belief-based explana-
tion [2–4]. This paper focuses on the latter style1 in the context of the well-known
Belief-Desire-Intention (BDI) paradigm [5]. Fundamentally, belief-based expla-
nations help answer the following question: What must have been known for
the agent to perform a particular action over another? Arguably, a sufficiently
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detailed explanation (e.g., one that justifies an action with extensive information
about the agent reasoning) will require no additional information to answer this
question. Nevertheless, in certain settings (e.g., time-constrained environments),
explanations are more useful when they are relatively unfaithful [6,7]. Explaining
by beliefs can also help solve a range of problems, such as encouraging behaviour
change [4], enhancing human-agent teaming [8], and transparency [9].

Although there is a large and growing body of work on explanation gen-
eration in the field of autonomous agents [1], much of this work has tradi-
tionally assumed the availability of explanation generation modules, reliable
observations, and deterministic execution of plans. However, in real-life settings,
autonomous agents are not explainable by design, unreliable observations are
frequently encountered, and plans are non-deterministic. We seek in this work
to address these challenges by proposing techniques that mine the historical data
associated with agent system execution to generate belief-based explanations of
agents’ past actions. We shall refer to this problem as mining belief-based expla-
nations. Our proposal relies on the notion of audit logging. Many of the existing
MAS frameworks (e.g., JACK framework [10]) support logging different aspects
of agent behaviour. Of these, we are interested in two particular aspects: (1)
a behaviour log that records the creation and completion of the past executed
actions, and (2) a belief log that describes the belief set activity of the agent
during the recording of (1). One such implementation of audit logging is the
tracing and logging tools for JACK Intelligent Agents [10]. Our approach to
mining belief-based explanation involves two steps:

1. We leverage these two audit logs in chronological order to generate one
sequence database taken as input by a sequential pattern miner. The intuition
behind this is to identify commonly occurring patterns of action execution
events preceded by sequences of beliefs. Here, we intend to mine the enabling
beliefs of each action referred to in the behaviour log.

2. We define a validation technique that leverages a state update operator (i.e.,
an operator that defines how the specification of a belief state is updated
as a consequence of the agent’s perception of the environment), agent’s past
experiences provided by the above-cited sequence database to compute the
soundness and completeness of the mined belief-based explanations.

Mining and validating belief-based explanations can be outlined as follows:
Given as inputs (1) a behaviour log of past executed actions, (2) a belief log,
(3) a plan or plans that execution generated these logs, (4) a state update oper-
ator, compute: the belief-based explanations of every action referred to in the
behaviour log. While inputs (1) and (2) are used for mining belief-based expla-
nations, inputs (3) and (4) are used for validating the mined explanations. As we
show later in this work, inputs (3) and (4) can also be used to generate detailed
belief-based explanations.

The remainder of this work is organized as follows. Section 2 introduces our
running example and some required preliminaries. Section 3 describes our app-
roach to updating belief-based explanations, which sits at the core of this work.
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Section 4 describes our approach to mining belief-based explanations. In Sect. 5,
we describe how the mined explanations can be validated. Section 6 reports an
empirical evaluation of this work. Related work is discussed in Sect. 7 before we
conclude and outline future work in Sect. 8.

2 Preliminaries and Running Example

Agents with BDI architecture are designed to imitate human practical reason-
ing using beliefs, desires and intentions. The beliefs represent what the agent
knows about the environment, the desires are goals (i.e., objectives) that the
agent would like to bring about, and the intentions are plans that the agent is
committed to executing. With these anthropomorphic handles, the BDI agent
derives its actions and, consequently, can explain them. As the literature (e.g.,
[11]) suggests, this is an elegant means to explain agent systems with consider-
able underlying complexity. Although an explainable BDI agent must faithfully
reflect its reasoning cycle (i.e., including its beliefs, goals, plans, and intentions),
explaining by beliefs can provide value in ways other handles cannot. To illus-
trate this, we study two scenarios for Engine failure on take-off (EFTO): (1)
accelerate-stop and (2) accelerate-go, as described in [12].

Example 1. As shown in Fig. 1, the pilot agent has two plans written on the
basis of Jason agent programming language [13] to handle EFTO in large twin-
engine jet aircraft: (p1) accelerate-stop and (p2) accelerate-go. p1 involves reduc-
ing thrust, applying speed breaks and notifying the tower of the emergency. p2
begins with ensuring full power is applied (including mixture, throttle, landing
gear and flaps), followed by liftoff, and then notifying the tower of the emergency
and the intended landing. To handle an EFTO successfully, two critical speeds
must be calculated before each take-off, namely V1 (the speed at which the pilot
can abort the take-off safely) and V2 (the speed at which the pilot can take-off
safely).

@p1 +efto(aircraft): V1 < Speed < V2

<- idle(throttle);

deploy(brakes);

.send(tower,tell,stop(accelerate)).

@p2 +efto(aircraft): V1 < Speed < V2

<- increase(mixture);

increase(throttle);

take_up(flap);

pull(yoke);

take_up(gear);

.send(tower,tell,go(accelerate));

.send(tower,tell,return(landing)). ’

Fig. 1. Jason plans for handling EFTO
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A particularly stressful situation for the pilot is when EFTO occurs between
V1 and V2 (i.e., the aircraft is going too fast to accelerate-stop but too low
to accelerate-go). For this particular situation, the two plans (p1 and p2) are
applicable (i.e., the plan selection is based on some conditions not represented
in the agent code).

Existing explanation generation techniques can be summarized as follows: A
BDI agent triggers an action with respect to its goals and beliefs, which can be
represented in terms of a Goal Hierarchy Tree (GHT) [2–4]. A GHT is a tree
structure representing a high-level abstraction of an agent’s reasoning. At the
root of the tree, the agent’s main goal is placed. A link from the top-level goal
to one or more sub-goals means that these sub-goals must be achieved as part of
the top-level goal. Tree leaves represent actions that the agent can execute. For
the agent to execute an action, certain beliefs placed directly above the action
must be true. What existing explanation algorithms do is select the beliefs and
goals that are directly above the selected action node in the GHT to design
explanation patterns. We argue that such explanation generation techniques can
provide irrational explanations in many settings. To illustrate this consider the
following scenarios.

Example 2. Assume that the pilot decided to accelerate-stop at one instance
and accelerate-go at another instance in the past. Now, consider the following
queries that may arise by an aviation candidate:

– Why did the pilot agent pull the throttle lever to idle immediately after the
EFTO?

– Why did the pilot agent move the mixture knob to rich after the EFTO?

Following the current norms of explanation generation, the two queries in
Example 2 can be readily answered using the goal efto(aircraft) and the belief
that V1 < Speed < V2. Another way to say that both queries are explained by
the same goal and same belief. It is clear that these explanations are inaccurate
- they do not accurately describe how the pilot agent came to its decision to
accelerate-stop at the first instance nor to accelerate-go at the later instance.

2.1 Audit Logs

During agent systems execution, a wide variety of data on changes in the agent’s
mental attitude and environment can be represented in the form of audit logs.
Collecting such data can be implemented using audit logging tools such as Mind
Inspector in Jason platform [13] and Design Tracing Tool (DTT) in JACK plat-
form [10]. We are interested in two modes of audit logging: (1) behaviour logs
and (2) belief logs. A behaviour log describes the historical execution of plans
as sequences of events where each event refers to some action. A behaviour log
can be represented as a set of triples 〈p label, ti, ai〉, where the value of ti refers
to the starting time of the action ai, which has been executed as part of a plan
labelled p label. An excerpt of the behaviour log associated with the plans in our
running example during two different flights is recorded in Table 1.
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Table 1. A behaviour log of the pilot agent.

Flight No. Plan Timestamp Action

2065 p1 t75 idle(throttle)

2065 p1 t77 deploy(brakes)

2065 p1 t80 send(tower, msg)

2072 p2 t1027 increase(mixture)

2072 p2 t1029 increase(throttle)

2072 p2 t1031 take up(flap)

2072 p2 t1033 pull(yoke)

2072 p2 t1035 take up(gear)

2072 p2 t1037 send(tower, msg)

2072 p2 t1038 send(tower, msg)

A belief log records the history of the external events perceived by the target
agent. It consists of a set of couples 〈ti, qi〉, where ti value indicates the time when
the agent added the belief qi to its belief base. Note that belief logs2 record
new beliefs as they are added to the belief base but do not record persistent
beliefs. Determining which beliefs hold at a certain point of system execution,
therefore, requires updating machinery (e.g., the state update operator described
in Subsect. 3). Table 2 illustrates an excerpt of a belief log describing external
events perceived by the pilot agent during two different flights.

Table 2. A belief log of the pilot agent

Flight No. Timestamp Beliefs Flight No. Timestamp Beliefs

2065 t70 runway(dry) 2072 t1024 efto

2065 t71 wind(cross) 2072 t1025 V1 = 156

2065 t72 efto 2072 t1025 V2 = 166

2065 t73 V1 = 129 2072 t1025 Flaps = 15

2065 t73 V2 = 145 2072 t1026 Speed = 161

2065 t73 Flaps = 15 2072 t1028 escalating(fuel flow)

2065 t74 Speed = 135 2072 t1030 accelerating(thrust)

2065 t76 decelerating(thrust) 2072 t1032 Flaps = 0

2065 t78 steady(aircraft) 2072 t1034 liftoff(aircraft)

2072 t1022 runway(wet) 2072 t1036 up(gear)

2072 t1023 wind(head) 2072 t1040 liftoff(aircraft)

2 One can leverage JACK capability methods to make belief set activities available at
agent level [14]. This manipulation allows, in turn, to store of enabling beliefs based
on the user-defined data structure.
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Normally, it is more convenient to represent beliefs in first-order sentences
to maintain consistency and constraints. To avoid handling different groundings
of the variables as distinct beliefs, we need to neglect the precise grounding of
valuables. Nevertheless, there are settings where we need precise instantiations
of the variables.

3 Updating Belief-Based Explanations

Updating belief-based explanations is useful for at least two reasons. First, it
could be used to contextualise explanations (i.e., providing users with detailed
explanations). Another way to say that updated belief-based explanations can
help answer the following question for any step of plan execution: What must
have been known in detail for the agent to perform a particular action over
another? As a second reason, it could also be used to validate the mined expla-
nations, which we describe in detail in later sections.

At each action step in a plan execution, we derive the updated belief-based
explanation of an action by combining the enabling beliefs of the preceding
actions with the enabling beliefs of the action we are at. For the purpose of
this work, we ignore other constructs appearing in a plan body (e.g., achieve-
ment and test goals). We assume that each action in a plan is associated with
enabling beliefs (i.e., no provisional execution of actions) written as conjunc-
tive normal-form sentences using a state description language that might involve
propositional variables (i.e., variables that can be true or false) and non-Boolean
variables (i.e., new value assignments). We allow the updated belief-based expla-
nations to be non-deterministic for two reasons (1) in any plan with OR branch-
ing, one might arrive at an action through multiple trajectories, and (2) much
of the existing state update operators resolve inconsistencies in multiple differ-
ent ways. Among the two well-known state update operators in the literature -
the Possible Worlds Approach (PWA) [15], and the Possible Models Approach
(PMA) [16] - our work relies on the PWA. More precisely, we use the state update
operator ⊕ as defined below, assuming the presence of a background knowledge
base KB.

Definition 1 (⊕ Operator). For the two belief states si, sj, and the knowledge
base KB, the state update operator ⊕ can be defined as follows:

si ⊕ sj = {sj ∪ s′i | (si ∧ s′i ∪ sj ∪ KB �|=⊥) ∧ (� s′′i such that
s′i ⊂ s′′i ⊆ si ∧ s′′i ∪ sj ∪ KB �|=⊥)},

in which if sj ∪ si is consistent, then the resulting updated explanation is sj ∪ si.
Otherwise, we need to define s′i ⊆ si such that sj ∪ s′i is consistent and there is no
exists s′′i such that s′i ⊂ s′′i ⊆ si and sj ∪ s′′i is consistent. Note that we might need
to refer to a general version of the state update operator, i.e., if S = {s1, . . . , sn} is
a finite set of belief states, then S ⊕ s = {si ⊕ s | si ∈ S}. Note also that the output
of the state update operator is not always unique state specifications. Actually,
the output might be a set of non-deterministic possible belief states. For the
purpose of illustrating why this might be the case, we consider the following
example.
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Example 3. Consider the following knowledge base

KB = r → ¬ (d ∧ q)

representing a rule for the pilot agent, where the propositional letter r can be
read as there is an EFTO, the letter d as the thrust is accelerating, and the
letter q as the aircraft is ascending. Now, let (d ∧ q) hold in some previous
belief state, and r came to be held in the belief state where we are at. Applying
⊕, the generated two alternative scenarios describing the updated belief states
are

1. {d ∧ r} and
2. {q ∧ r}
which is to say, the rule in KB expresses that whenever the pilot agent believes
that there is an EFTO, then it is believed that either the thrust is accelerating
or the aircraft is ascending (i.e., the thrust cannot accelerate unless descending
after engine failure).

With the intention of obtaining complete detailed belief-based explanations of
the agent behaviour, we need to apply the state update operator over each pair of
actions in the behaviour log repeatedly, with the previous updated belief-based
explanations associated with the former action as the first argument and the
current enabling beliefs associated with the later action as the second argument.

4 Mining Belief-Based Explanations

Mining belief-based explanations starts with transforming the observations in
the audit logs into observation sequences, each of which involves the execution
of an action and the manifestations of its enabling beliefs. Note that logging tools
are usually designed to record one mode of observation per log. That is to say,
action execution and external events manifestation are recorded in separate logs.
To that end, we also need to start a correlation between the two logs to obtain
an observation log that serves as a sequential database, which will be mined to
extract belief-based explanations using a sequential rule miner. We define this
correlation as follows.

Definition 2 (Observation sequence, and log). Let A be an actions space,
B be a belief states space, a0, . . . , an ∈ A, and b0, . . . , bn ∈ B. An observation
instance (t) is an alternating sequence of the form b0, a1, . . . , bn, an. DAll is
an observation log, such that DAll ∈ 2T, where T is the set of all observation
instances.

Mining belief-based explanations relies on the two following premises: (1) that
the beliefs observed in the belief log immediately before executing an action can
be the enabling beliefs of that action, and (2) that the persistent beliefs observed
a long time before the execution of an action are typically not the enabling beliefs
of that action, but may be of that action plus some others. Hence, we use the
basic relation “direct successor” [17] over the actions and beliefs in the DAll as
follows:
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Definition 3 (Direct successor). Let DAll be an observation sequence over T.
Let b, a, b′ ∈ T.

1. Direct predecessor state: b >D a iff 〈b, a〉 is a subsequence of T, and
2. Direct successor state: a >D b′ iff 〈a, b′〉 is a subsequence of T.

Relation >D describes which external events directly follow/precede a given
action. Direct predecessor relation over DAll would offer learning entries of the
form 〈b, a〉, where a is an action applicable at the belief state b. For our pur-
poses, we do not distinguish between 〈q, p, a〉 and 〈p, q, a〉, because we are only
interested in relating actions to their enabling beliefs but not in the relation
amongst enabling beliefs. Against this background, we create ODirect, which is a
sequence of the following form

〈〈〈b11, .., b1n〉, a1〉〉, .., 〈〈bi1, .., bim〉, ai〉〉, .., 〈〈bp1, .., bpk〉, ap〉〉〉
where each 〈ai−1, ai〉 represents an ordered pair of actions, and each 〈bi1, .., bim〉
represents the observed beliefs before the execution of action ai and after action
ai−1 execution. An exception is required for the first recorded action in DAll, as
there is no preceding action. In this case, we use the timestamp of the initial
high-level event as the start time of the system execution. Given DAll, we view
the problem of mining belief-based explanations as finding all the sequences
〈b, a〉 that satisfy some predefined measures of interestingness, assuming unique
activity execution (i.e., there is no concurrent execution of actions).

Again, we are interested in discovering all the beliefs that are observed always,
or most of the time, directly before the execution of each action referred to in the
behaviour log. Association rule learning can be an effective means for discovering
regularities between beliefs and actions. Fundamentally, given two itemsets X and
Y, the sequential rule X → Y, states that if the elements in X occur, then it will
be followed by the elements in Y. For a sequential rule to be an interesting one,
it must satisfy minimum support (how frequently the rule appears in DAll) and
minimum confidence (the accuracy of the rule). Such rules are considered in our
context as belief-based explanations. We use the well-known CMRules algorithm
[18] to discover this form of rules.

Example 4. Continuing with our running example, Table 3 shows the results
of applying the CMRules algorithm to DAll obtained from Table 1 and Table 2.

CMRules algorithm can discover all the interesting association rules from
DAll. Nevertheless, additional post-processing is required, where we rule out any
association rule that its consequent label is not a single action name or its
antecedent label is not beliefs.
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Table 3. Mined belief-based explanations

plan action belief-based explanations

p1 idle(throttle) runway(dry) ∧ wind(cross) ∧ efto ∧
Flaps = 15 ∧ V1 > Speed > V2

p1 deploy(brakes) decelerating(thrust)

p1 send(tower, msg) steady(aircraft)

p2 increase(mixture) runway(wet) ∧ wind(head) ∧ efto ∧
Flaps = 15 ∧ V1 > Speed > V2

p2 increase(throttle) escalating(fuel flow)

p2 take up(flap) accelerating(thrust)

p2 pull(yoke) liftoff(aircraft)

5 Validating the Explanation Process

Our guiding intuition here is that the state update operator and the available
data used to update belief-based explanations can also be leveraged to validate
the mined explanations. Our validation approach involves some mechanisms that
take as inputs (1) A DAll, (2) A state update operator, and compute the sound-
ness and completeness of the mind explanations. We keep assuming unique action
execution through this section.

First, we need inputs (1) and (2) to generate a sequence (denoted hereafter
as DUpdated) that associates each action in DAll to the set of updated beliefs of
all actions executed up to that point. Each object in DUpdated is a pair of the
form 〈βi, ai〉, where β the set of updated beliefs of all actions executed up to ai.
DUpdated can be simply obtained using ⊕ over DAll assuming the presence of a KB
defined in the same language as that in which the beliefs are described. Table 4
illustrates the results of applying the operator ⊕ to input DAll.

Table 4. Updated belief-based explanations of plan p1

plan action belief-based explanations

p1 idle(throttle) runway(dry) ∧ wind(cross) ∧ efto
∧ Flaps = 15 ∧ V1 > Speed > V2

p1 deploy(brakes) decelerating(thrust) ∧ runway(dry)
∧ wind(cross) ∧ efto ∧ Flaps = 15
∧ V1 > Speed > V2

p1 send(tower, msg) decelerating(thrust) ∧
steady(aircraft) ∧ runway(dry) ∧
wind(cross) ∧ efto Flaps = 15 ∧ V1
> Speed > V2
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It should be noted that a single action in DUpdated can be associated with a
set of sets of beliefs due to the non-determinism nature of the ⊕ operator. Now,
to validate the mined explanations, it is useful to establish the following:

– Soundness. A sound belief-based explanation is one that is mined correctly
(i.e., observed in DAll). Another way to say that a detailed belief-based expla-
nation to a given point in the plan execution should contain the mined belief-
based explanation updated using ⊕ at that point in the plan execution. For-
mally, for each plan execution sequence in DUpdated and each action ai the
following condition must hold: βi ∪KB |= b for some b ∈ ba1 , . . . , bai , where bai
is the mined belief-based explanation of action ai .

– Completeness. A complete belief-based explanation requires that all the
enabling beliefs of a given action are mined. Actually, this can be viewed as a
reversal of the above-cited entailment relation (i.e., b ∪ KB |=βi)

Where it is possible for the mined explanations to be unsound or incomplete,
further post-processing may be required for more reliable results. We overtake
this problem by seeking more observations and/or re-mining with lower support
and confidence thresholds.

6 Evaluation

Agent explanation generation can be evaluated on several grounds. Commonly,
the first is a human-rated evaluation of the explainability of the generated expla-
nations. However, we consider this more as a part of explainable agent develop-
ment, so our focus in this section is on evaluating our mining technique, which
includes the performance measures of the mined explanations (i.e., precision and
recall).

This section presents the evaluation of our approach to mining belief-based
explanations. First, we present the setup and implementation for our experi-
ments. Next, our evaluation is detailed.

6.1 Data and Implementation

We implemented our approach as a plugin for our Toolkit XPlaM3 [19] and eval-
uated it using a synthetic log of 1000 execution instances, representing firefighter
agent past behaviour as described in [3]. We also used a plan library consisting
of 15 plans4.

3 The source code for XPlaM Toolkit (including the code for the approach presented
here) has been published online at https://github.com/dsl-uow/xplam.

4 We published the datasets supporting the conclusions of this work online at https://
www.kaggle.com/datasets/alelaimat/explainable-bdi-agents.

https://github.com/dsl-uow/xplam
https://www.kaggle.com/datasets/alelaimat/explainable-bdi-agents
https://www.kaggle.com/datasets/alelaimat/explainable-bdi-agents
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6.2 Performance Results

Our goal of the evaluation is to establish that the proposed approach can gener-
ate generally reliable explanations. To that end, we recorded the precision (i.e.,
number of correctly mined explanations over the total number of mined expla-
nations) and recall (i.e., number of correctly mined explanations over the total
number of actual explanations) obtained from applying the CMRules algorithm
and the above-cited validation technique. We consider minimum confidence (min
conf ) and minimum support (min supp) of the mined rules as the most impor-
tant factors for mining belief-based explanations. The results are depicted in
Table 5 and are summarized below.

Table 5. Performance for different min conf and min supp

min conf 1.00 0.95 0.9 0.85 0.8

Precision 0.8948 0.8910 0.8731 0.8487 0.8235

Recall 0.5678 0.6387 0.7265 0.7854 0.8547

min supp 0.5 0.4 0.3 0.2 0.1

Precision 0.9216 0.8741 0.8254 0.7703 0.6987

Recall 0.2257 0.3458 0.5361 0.6966 0.8815

min conf :

1. Confidence threshold considerably impacts performance results, i.e., higher
min conf leads to higher precision but lower recall. For example, our approach
achieved the highest precision of 0.89 with the lower recall of 0.56 for min
conf of 1.00.

2. It is necessary, thus, to find a trade-off between precision and recall when
varying min conf threshold. Hence, we use min conf of 0.9 for testing the
impact of varying min supp threshold.

min supp

1. Similar to the min conf, varying min supp has a significant impact on the
performance results. For example, we achieved the highest precision of 0.92
with an insignificant recall of 0.22 for min supp of 0.5.

2. Note that extracting association rules related to infrequent events needs min
supp to be low. However, this, in turn, sacrifices the precision of the mined
explanations.

We noticed some insightful observations through our experiments. First, the
size of DAll does not impact the performance results of the mined explanations
iff DAll includes all possible behaviours of the observed agent. For example, we
achieved very close precision values for DAll of 200 and 800 execution instances,
which were 0.836 and 0.842, respectively. Second, varying min conf and min supp
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have a significant impact on the performance of the mined explanations and,
consequently, come with several limitations (e.g., time and effort). Finally, the
premise that the beliefs observed in the belief log immediately before executing
an action can be the enabling beliefs of that action can be deceptive sometimes
(i.e., the enabling beliefs of a late action can hold before plan execution). It is
necessary, therefore, for the user to determine precise min conf and min supp
thresholds.

7 Related Work

Although a large and growing body of work exists on developing explainable
agents and robots [1], few works focus on generating explanations for intelligent
agents.

Harbers et al. [3] described four algorithms to design explainable BDI agents:
one using parent goals, one using top-level goals, one using enabling beliefs,
and one using the next action or goal in the execution sequence. They found
that goal-based explanations were slightly preferable to belief-based expansions
to explain procedural actions (i.e., a sequence of actions and sub-goals) based
on users’ evaluation. Nevertheless, belief-based explanations were preferable in
explaining conditional and single actions. Similar explanation algorithms were
proposed by Kaptein et al. [2], but to investigate the difference in preference
of adults and children for goal-based and belief-based explanations. They found
that both adults and children preferred goal-based explanations. Related, but
in a different ontology, is the work presented in Kaptein et al. [20], in that the
agent explains its action in terms of its beliefs, goals and emotions.

Sindlar et al. [21] proposed an abductive approach to infer the mental states
of BDI agents in terms of beliefs and goals. To that end, they described three
explanatory strategies under three perceptory presumptions: complete, late, and
partial observations. Sindlar et al. extend their work to an explanation approach
that takes into account three organizational principles: roles, norms, and scenes
in [22]. The extended work proposes an approach to how the observed behaviour
of game players can be explained and predicted in terms of the mental state
of virtual characters. Related, but in a different domain, is the work presented
in [23]. Sequeira and Gervasio propose a framework for explainable reinforce-
ment learning that extracts relevant aspects of the RL agent interaction with its
environment (i.e., interestingness elements) in [23]. They suggested four dimen-
sions of analysis: frequency, execution certainty, transition-value, and sequence
analysis to extract the interestingness elements, which are used to highlight the
behaviour of the agent in terms of short video clips.

All the previous approaches presented in this paper can theoretically gener-
ate explanations of agents’ actions, but assuming reliable observations, availabil-
ity of an explanation generation module and deterministic execution of plans.
On the other hand, we leverage the past execution experiences of the target
agent, which allows performing various techniques to handle unreliable obser-
vations (e.g., measures of interestingness). Although historical data might be
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hard to be obtained, our approach still can be effective in settings where no
more than common patterns (i.e., plans), information that other players would
observe or expect the target agents to be aware of (i.e., external events) and the
external behaviour of the target agent are available. Much of the work done on
agent explanation generation shares the common judgment that relatively short
explanations are more useful to explainees. Nevertheless, as shown in our run-
ning example, detailed explanations are critical in some cases (e.g., explaining
BDI plan selection). Finally, and in contrast with the literature, our explanation
generation mechanism allows explanations to be non-deterministic through the
updating of belief-based explanations, as described in Sect. 3.

8 Conclusion

In this paper, we addressed the problem of agent explanation mining (and specif-
ically belief-based explanations) in the context of the well-known BDI paradigm.
This problem was formulated as follows: “Given the past execution experiences
of an agent and an update operator, generate the belief-based explanation of each
action referred to in the agent’s past execution experiences”. We presented an
update operator that is able to generate detailed explanations. Through exam-
ples, we also showed that detailed explanations could be useful in explaining
BDI plan selection. We have tackled the problem of explanation generation in
non-deterministic settings. At this point in time, we are trying to extend the
application of the proposed approach to other BDI handles.
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