
Davide Calvaresi · Amro Najjar · 
Andrea Omicini · Reyhan Aydogan · 
Rachele Carli · Giovanni Ciatto · 
Yazan Mualla · Kary Främling (Eds.)

 123

LN
AI

 1
41

27

5th International Workshop, EXTRAAMAS 2023 
London, UK, May 29, 2023
Revised Selected Papers

Explainable and Transparent 
AI and Multi-Agent Systems



Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 14127
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China



The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level.Aswith theLNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.



Davide Calvaresi · Amro Najjar ·
Andrea Omicini · Reyhan Aydogan ·
Rachele Carli · Giovanni Ciatto · Yazan Mualla ·
Kary Främling
Editors

Explainable and Transparent
AI and Multi-Agent Systems
5th International Workshop, EXTRAAMAS 2023
London, UK, May 29, 2023
Revised Selected Papers



Editors
Davide Calvaresi
University of Applied Sciences and Arts
Western Switzerland
Sierre, Switzerland

Andrea Omicini
Alma Mater Studiorum, Università di
Bologna
Bologna, Italy

Rachele Carli
Alma Mater Studiorum, Università di
Bologna
Bologna, Italy

Yazan Mualla
Université de Technologie de
Belfort-Montbéliard
Belfort Cedex, France

Amro Najjar
Luxembourg Institute of Science
and Technology
Esch-sur-Alzette, Luxembourg

Reyhan Aydogan
Ozyegin University
Istanbul, Türkiye

Giovanni Ciatto
Alma Mater Studiorum, Università di
Bologna
Bologna, Italy

Kary Främling
Umeå University
Umeå, Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-40877-9 ISBN 978-3-031-40878-6 (eBook)
https://doi.org/10.1007/978-3-031-40878-6

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9816-7439
https://orcid.org/0000-0002-6655-3869
https://orcid.org/0000-0002-8689-285X
https://orcid.org/0000-0002-6772-6135
https://orcid.org/0000-0001-7784-6176
https://orcid.org/0000-0002-5260-9999
https://orcid.org/0000-0002-1841-8996
https://orcid.org/0000-0002-8078-5172
https://doi.org/10.1007/978-3-031-40878-6


Preface

AI research has made several significant breakthroughs that has boosted its adoption in
several domains, impacting our lives on a daily basis. Nevertheless, such widespread
adoption of AI-based systems has raised concerns about their foreseeability and con-
trollability and led to initiatives to “slow down” AI research. While such debates have
mainly taken place in the media, several other research works have emphasized that
achieving trustworthy and responsible AI would necessitate making AImore transparent
and explainable.

Not only would eXplainable AI (XAI) increase acceptability, avoid failures, and fos-
ter trust, but it would also comply with relevant (inter)national regulations and highlight
these new technologies’ limitations and potential.

In 2023, the fifth edition of the EXplainable and TRAnsparent AI and Multi-Agent
Systems (EXTRAAMAS) continued the successful track initiated in 2019 in Montreal
and followed by the 2020 to 2022 editions (virtual due to the COVID-19 pandemic
circumstances). Finally, EXTRAAMAS 2023 was held in person and proposed bright
presentations, a stimulating keynote (titled “Untrustworthy AI” given by Jeremy Pitt,
Imperial College London), and engaging discussions and Q&A sessions.

Overall, EXTRAAMAS 2023 welcomed contributions covering areas including (i)
XAI in symbolic and subsymbolic AI, (ii) XAI in negotiation and conflict resolution,
(iii) Explainable Robots and Practical Applications, and (iv) (X)AI in Law and Ethics.

EXTRAAMAS 2023 received 26 submissions. Each submission underwent a rig-
orous single-blind peer-review process (three to five reviews per paper). Eventually, 16
papers were accepted and collected in this volume.

Each paper was presented in person (with the authors’ consent, they are available on
the EXTRAAMAS website1). Finally, The Main Chairs would like to thank the special
track chairs, publicity chairs, and Program Committee for their valuable work, as well
as the authors, presenters, and participants for their engagement.

June 2023 Davide Calvaresi
Amro Najjar

Andrea Omicini
Kary Främling

1 https://extraamas.ehealth.hevs.ch/.

https://extraamas.ehealth.hevs.ch/
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Explainable Agents and Multi-Agent
Systems



Mining and Validating Belief-Based
Agent Explanations

Ahmad Alelaimat(B), Aditya Ghose, and Hoa Khanh Dam

Decision Systems Lab, School of Computing and Information
Technology University of Wollongong, Wollongong 2522, Australia

{aama963,aditya,hoa}@uow.edu.au

Abstract. Agent explanation generation is the task of justifying the
decisions of an agent after observing its behaviour. Much of the previous
explanation generation approaches can theoretically do so, but assuming
the availability of explanation generation modules, reliable observations,
and deterministic execution of plans. However, in real-life settings, expla-
nation generation modules are not readily available, unreliable observa-
tions are frequently encountered, and plans are non-deterministic. We
seek in this work to address these challenges. This work presents a data-
driven approach to mining and validating explanations (and specifically
belief-based explanations) of agent actions. Our approach leverages the
historical data associated with agent system execution, which describes
action execution events and external events (represented as beliefs). We
present an empirical evaluation, which suggests that our approach to
mining and validating belief-based explanations can be practical.

Keywords: Explainable agents · Mining explanations · BDI agents

1 Introduction

Explainable agents have been the subject of considerable attention in recent
literature. Much of this attention involves folk psychology [1], which seeks to
explain the actions of an agent by citing its mental state (e.g., the beliefs of
the agent, and its goals and intentions). Roughly speaking, when an explainee
requests explanations about a particular action, two common explanation styles
might be adopted: (1) a goal-based explanation and (2) a belief-based explana-
tion [2–4]. This paper focuses on the latter style1 in the context of the well-known
Belief-Desire-Intention (BDI) paradigm [5]. Fundamentally, belief-based expla-
nations help answer the following question: What must have been known for
the agent to perform a particular action over another? Arguably, a sufficiently

A. Ghose-Passed away prior to the submission of the manuscript. This is one of the
last contributions by Aditya Ghose.
1 We submit that goal-based explanations are also of great value to develop explainable

agents, and we believe that an extension of the techniques presented in this work
can address these but are outside the scope of the present work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Calvaresi et al. (Eds.): EXTRAAMAS 2023, LNAI 14127, pp. 3–17, 2023.
https://doi.org/10.1007/978-3-031-40878-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40878-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-40878-6_1


4 A. Alelaimat et al.

detailed explanation (e.g., one that justifies an action with extensive information
about the agent reasoning) will require no additional information to answer this
question. Nevertheless, in certain settings (e.g., time-constrained environments),
explanations are more useful when they are relatively unfaithful [6,7]. Explaining
by beliefs can also help solve a range of problems, such as encouraging behaviour
change [4], enhancing human-agent teaming [8], and transparency [9].

Although there is a large and growing body of work on explanation gen-
eration in the field of autonomous agents [1], much of this work has tradi-
tionally assumed the availability of explanation generation modules, reliable
observations, and deterministic execution of plans. However, in real-life settings,
autonomous agents are not explainable by design, unreliable observations are
frequently encountered, and plans are non-deterministic. We seek in this work
to address these challenges by proposing techniques that mine the historical data
associated with agent system execution to generate belief-based explanations of
agents’ past actions. We shall refer to this problem as mining belief-based expla-
nations. Our proposal relies on the notion of audit logging. Many of the existing
MAS frameworks (e.g., JACK framework [10]) support logging different aspects
of agent behaviour. Of these, we are interested in two particular aspects: (1)
a behaviour log that records the creation and completion of the past executed
actions, and (2) a belief log that describes the belief set activity of the agent
during the recording of (1). One such implementation of audit logging is the
tracing and logging tools for JACK Intelligent Agents [10]. Our approach to
mining belief-based explanation involves two steps:

1. We leverage these two audit logs in chronological order to generate one
sequence database taken as input by a sequential pattern miner. The intuition
behind this is to identify commonly occurring patterns of action execution
events preceded by sequences of beliefs. Here, we intend to mine the enabling
beliefs of each action referred to in the behaviour log.

2. We define a validation technique that leverages a state update operator (i.e.,
an operator that defines how the specification of a belief state is updated
as a consequence of the agent’s perception of the environment), agent’s past
experiences provided by the above-cited sequence database to compute the
soundness and completeness of the mined belief-based explanations.

Mining and validating belief-based explanations can be outlined as follows:
Given as inputs (1) a behaviour log of past executed actions, (2) a belief log,
(3) a plan or plans that execution generated these logs, (4) a state update oper-
ator, compute: the belief-based explanations of every action referred to in the
behaviour log. While inputs (1) and (2) are used for mining belief-based expla-
nations, inputs (3) and (4) are used for validating the mined explanations. As we
show later in this work, inputs (3) and (4) can also be used to generate detailed
belief-based explanations.

The remainder of this work is organized as follows. Section 2 introduces our
running example and some required preliminaries. Section 3 describes our app-
roach to updating belief-based explanations, which sits at the core of this work.
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Section 4 describes our approach to mining belief-based explanations. In Sect. 5,
we describe how the mined explanations can be validated. Section 6 reports an
empirical evaluation of this work. Related work is discussed in Sect. 7 before we
conclude and outline future work in Sect. 8.

2 Preliminaries and Running Example

Agents with BDI architecture are designed to imitate human practical reason-
ing using beliefs, desires and intentions. The beliefs represent what the agent
knows about the environment, the desires are goals (i.e., objectives) that the
agent would like to bring about, and the intentions are plans that the agent is
committed to executing. With these anthropomorphic handles, the BDI agent
derives its actions and, consequently, can explain them. As the literature (e.g.,
[11]) suggests, this is an elegant means to explain agent systems with consider-
able underlying complexity. Although an explainable BDI agent must faithfully
reflect its reasoning cycle (i.e., including its beliefs, goals, plans, and intentions),
explaining by beliefs can provide value in ways other handles cannot. To illus-
trate this, we study two scenarios for Engine failure on take-off (EFTO): (1)
accelerate-stop and (2) accelerate-go, as described in [12].

Example 1. As shown in Fig. 1, the pilot agent has two plans written on the
basis of Jason agent programming language [13] to handle EFTO in large twin-
engine jet aircraft: (p1) accelerate-stop and (p2) accelerate-go. p1 involves reduc-
ing thrust, applying speed breaks and notifying the tower of the emergency. p2
begins with ensuring full power is applied (including mixture, throttle, landing
gear and flaps), followed by liftoff, and then notifying the tower of the emergency
and the intended landing. To handle an EFTO successfully, two critical speeds
must be calculated before each take-off, namely V1 (the speed at which the pilot
can abort the take-off safely) and V2 (the speed at which the pilot can take-off
safely).

@p1 +efto(aircraft): V1 < Speed < V2

<- idle(throttle);

deploy(brakes);

.send(tower,tell,stop(accelerate)).

@p2 +efto(aircraft): V1 < Speed < V2

<- increase(mixture);

increase(throttle);

take_up(flap);

pull(yoke);

take_up(gear);

.send(tower,tell,go(accelerate));

.send(tower,tell,return(landing)). ’

Fig. 1. Jason plans for handling EFTO
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A particularly stressful situation for the pilot is when EFTO occurs between
V1 and V2 (i.e., the aircraft is going too fast to accelerate-stop but too low
to accelerate-go). For this particular situation, the two plans (p1 and p2) are
applicable (i.e., the plan selection is based on some conditions not represented
in the agent code).

Existing explanation generation techniques can be summarized as follows: A
BDI agent triggers an action with respect to its goals and beliefs, which can be
represented in terms of a Goal Hierarchy Tree (GHT) [2–4]. A GHT is a tree
structure representing a high-level abstraction of an agent’s reasoning. At the
root of the tree, the agent’s main goal is placed. A link from the top-level goal
to one or more sub-goals means that these sub-goals must be achieved as part of
the top-level goal. Tree leaves represent actions that the agent can execute. For
the agent to execute an action, certain beliefs placed directly above the action
must be true. What existing explanation algorithms do is select the beliefs and
goals that are directly above the selected action node in the GHT to design
explanation patterns. We argue that such explanation generation techniques can
provide irrational explanations in many settings. To illustrate this consider the
following scenarios.

Example 2. Assume that the pilot decided to accelerate-stop at one instance
and accelerate-go at another instance in the past. Now, consider the following
queries that may arise by an aviation candidate:

– Why did the pilot agent pull the throttle lever to idle immediately after the
EFTO?

– Why did the pilot agent move the mixture knob to rich after the EFTO?

Following the current norms of explanation generation, the two queries in
Example 2 can be readily answered using the goal efto(aircraft) and the belief
that V1 < Speed < V2. Another way to say that both queries are explained by
the same goal and same belief. It is clear that these explanations are inaccurate
- they do not accurately describe how the pilot agent came to its decision to
accelerate-stop at the first instance nor to accelerate-go at the later instance.

2.1 Audit Logs

During agent systems execution, a wide variety of data on changes in the agent’s
mental attitude and environment can be represented in the form of audit logs.
Collecting such data can be implemented using audit logging tools such as Mind
Inspector in Jason platform [13] and Design Tracing Tool (DTT) in JACK plat-
form [10]. We are interested in two modes of audit logging: (1) behaviour logs
and (2) belief logs. A behaviour log describes the historical execution of plans
as sequences of events where each event refers to some action. A behaviour log
can be represented as a set of triples 〈p label, ti, ai〉, where the value of ti refers
to the starting time of the action ai, which has been executed as part of a plan
labelled p label. An excerpt of the behaviour log associated with the plans in our
running example during two different flights is recorded in Table 1.
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Table 1. A behaviour log of the pilot agent.

Flight No. Plan Timestamp Action

2065 p1 t75 idle(throttle)

2065 p1 t77 deploy(brakes)

2065 p1 t80 send(tower, msg)

2072 p2 t1027 increase(mixture)

2072 p2 t1029 increase(throttle)

2072 p2 t1031 take up(flap)

2072 p2 t1033 pull(yoke)

2072 p2 t1035 take up(gear)

2072 p2 t1037 send(tower, msg)

2072 p2 t1038 send(tower, msg)

A belief log records the history of the external events perceived by the target
agent. It consists of a set of couples 〈ti, qi〉, where ti value indicates the time when
the agent added the belief qi to its belief base. Note that belief logs2 record
new beliefs as they are added to the belief base but do not record persistent
beliefs. Determining which beliefs hold at a certain point of system execution,
therefore, requires updating machinery (e.g., the state update operator described
in Subsect. 3). Table 2 illustrates an excerpt of a belief log describing external
events perceived by the pilot agent during two different flights.

Table 2. A belief log of the pilot agent

Flight No. Timestamp Beliefs Flight No. Timestamp Beliefs

2065 t70 runway(dry) 2072 t1024 efto

2065 t71 wind(cross) 2072 t1025 V1 = 156

2065 t72 efto 2072 t1025 V2 = 166

2065 t73 V1 = 129 2072 t1025 Flaps = 15

2065 t73 V2 = 145 2072 t1026 Speed = 161

2065 t73 Flaps = 15 2072 t1028 escalating(fuel flow)

2065 t74 Speed = 135 2072 t1030 accelerating(thrust)

2065 t76 decelerating(thrust) 2072 t1032 Flaps = 0

2065 t78 steady(aircraft) 2072 t1034 liftoff(aircraft)

2072 t1022 runway(wet) 2072 t1036 up(gear)

2072 t1023 wind(head) 2072 t1040 liftoff(aircraft)

2 One can leverage JACK capability methods to make belief set activities available at
agent level [14]. This manipulation allows, in turn, to store of enabling beliefs based
on the user-defined data structure.
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Normally, it is more convenient to represent beliefs in first-order sentences
to maintain consistency and constraints. To avoid handling different groundings
of the variables as distinct beliefs, we need to neglect the precise grounding of
valuables. Nevertheless, there are settings where we need precise instantiations
of the variables.

3 Updating Belief-Based Explanations

Updating belief-based explanations is useful for at least two reasons. First, it
could be used to contextualise explanations (i.e., providing users with detailed
explanations). Another way to say that updated belief-based explanations can
help answer the following question for any step of plan execution: What must
have been known in detail for the agent to perform a particular action over
another? As a second reason, it could also be used to validate the mined expla-
nations, which we describe in detail in later sections.

At each action step in a plan execution, we derive the updated belief-based
explanation of an action by combining the enabling beliefs of the preceding
actions with the enabling beliefs of the action we are at. For the purpose of
this work, we ignore other constructs appearing in a plan body (e.g., achieve-
ment and test goals). We assume that each action in a plan is associated with
enabling beliefs (i.e., no provisional execution of actions) written as conjunc-
tive normal-form sentences using a state description language that might involve
propositional variables (i.e., variables that can be true or false) and non-Boolean
variables (i.e., new value assignments). We allow the updated belief-based expla-
nations to be non-deterministic for two reasons (1) in any plan with OR branch-
ing, one might arrive at an action through multiple trajectories, and (2) much
of the existing state update operators resolve inconsistencies in multiple differ-
ent ways. Among the two well-known state update operators in the literature -
the Possible Worlds Approach (PWA) [15], and the Possible Models Approach
(PMA) [16] - our work relies on the PWA. More precisely, we use the state update
operator ⊕ as defined below, assuming the presence of a background knowledge
base KB.

Definition 1 (⊕ Operator). For the two belief states si, sj, and the knowledge
base KB, the state update operator ⊕ can be defined as follows:

si ⊕ sj = {sj ∪ s′i | (si ∧ s′i ∪ sj ∪ KB �|=⊥) ∧ (� s′′i such that
s′i ⊂ s′′i ⊆ si ∧ s′′i ∪ sj ∪ KB �|=⊥)},

in which if sj ∪ si is consistent, then the resulting updated explanation is sj ∪ si.
Otherwise, we need to define s′i ⊆ si such that sj ∪ s′i is consistent and there is no
exists s′′i such that s′i ⊂ s′′i ⊆ si and sj ∪ s′′i is consistent. Note that we might need
to refer to a general version of the state update operator, i.e., if S = {s1, . . . , sn} is
a finite set of belief states, then S ⊕ s = {si ⊕ s | si ∈ S}. Note also that the output
of the state update operator is not always unique state specifications. Actually,
the output might be a set of non-deterministic possible belief states. For the
purpose of illustrating why this might be the case, we consider the following
example.
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Example 3. Consider the following knowledge base

KB = r → ¬ (d ∧ q)

representing a rule for the pilot agent, where the propositional letter r can be
read as there is an EFTO, the letter d as the thrust is accelerating, and the
letter q as the aircraft is ascending. Now, let (d ∧ q) hold in some previous
belief state, and r came to be held in the belief state where we are at. Applying
⊕, the generated two alternative scenarios describing the updated belief states
are

1. {d ∧ r} and
2. {q ∧ r}
which is to say, the rule in KB expresses that whenever the pilot agent believes
that there is an EFTO, then it is believed that either the thrust is accelerating
or the aircraft is ascending (i.e., the thrust cannot accelerate unless descending
after engine failure).

With the intention of obtaining complete detailed belief-based explanations of
the agent behaviour, we need to apply the state update operator over each pair of
actions in the behaviour log repeatedly, with the previous updated belief-based
explanations associated with the former action as the first argument and the
current enabling beliefs associated with the later action as the second argument.

4 Mining Belief-Based Explanations

Mining belief-based explanations starts with transforming the observations in
the audit logs into observation sequences, each of which involves the execution
of an action and the manifestations of its enabling beliefs. Note that logging tools
are usually designed to record one mode of observation per log. That is to say,
action execution and external events manifestation are recorded in separate logs.
To that end, we also need to start a correlation between the two logs to obtain
an observation log that serves as a sequential database, which will be mined to
extract belief-based explanations using a sequential rule miner. We define this
correlation as follows.

Definition 2 (Observation sequence, and log). Let A be an actions space,
B be a belief states space, a0, . . . , an ∈ A, and b0, . . . , bn ∈ B. An observation
instance (t) is an alternating sequence of the form b0, a1, . . . , bn, an. DAll is
an observation log, such that DAll ∈ 2T, where T is the set of all observation
instances.

Mining belief-based explanations relies on the two following premises: (1) that
the beliefs observed in the belief log immediately before executing an action can
be the enabling beliefs of that action, and (2) that the persistent beliefs observed
a long time before the execution of an action are typically not the enabling beliefs
of that action, but may be of that action plus some others. Hence, we use the
basic relation “direct successor” [17] over the actions and beliefs in the DAll as
follows:
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Definition 3 (Direct successor). Let DAll be an observation sequence over T.
Let b, a, b′ ∈ T.

1. Direct predecessor state: b >D a iff 〈b, a〉 is a subsequence of T, and
2. Direct successor state: a >D b′ iff 〈a, b′〉 is a subsequence of T.

Relation >D describes which external events directly follow/precede a given
action. Direct predecessor relation over DAll would offer learning entries of the
form 〈b, a〉, where a is an action applicable at the belief state b. For our pur-
poses, we do not distinguish between 〈q, p, a〉 and 〈p, q, a〉, because we are only
interested in relating actions to their enabling beliefs but not in the relation
amongst enabling beliefs. Against this background, we create ODirect, which is a
sequence of the following form

〈〈〈b11, .., b1n〉, a1〉〉, .., 〈〈bi1, .., bim〉, ai〉〉, .., 〈〈bp1, .., bpk〉, ap〉〉〉
where each 〈ai−1, ai〉 represents an ordered pair of actions, and each 〈bi1, .., bim〉
represents the observed beliefs before the execution of action ai and after action
ai−1 execution. An exception is required for the first recorded action in DAll, as
there is no preceding action. In this case, we use the timestamp of the initial
high-level event as the start time of the system execution. Given DAll, we view
the problem of mining belief-based explanations as finding all the sequences
〈b, a〉 that satisfy some predefined measures of interestingness, assuming unique
activity execution (i.e., there is no concurrent execution of actions).

Again, we are interested in discovering all the beliefs that are observed always,
or most of the time, directly before the execution of each action referred to in the
behaviour log. Association rule learning can be an effective means for discovering
regularities between beliefs and actions. Fundamentally, given two itemsets X and
Y, the sequential rule X → Y, states that if the elements in X occur, then it will
be followed by the elements in Y. For a sequential rule to be an interesting one,
it must satisfy minimum support (how frequently the rule appears in DAll) and
minimum confidence (the accuracy of the rule). Such rules are considered in our
context as belief-based explanations. We use the well-known CMRules algorithm
[18] to discover this form of rules.

Example 4. Continuing with our running example, Table 3 shows the results
of applying the CMRules algorithm to DAll obtained from Table 1 and Table 2.

CMRules algorithm can discover all the interesting association rules from
DAll. Nevertheless, additional post-processing is required, where we rule out any
association rule that its consequent label is not a single action name or its
antecedent label is not beliefs.
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Table 3. Mined belief-based explanations

plan action belief-based explanations

p1 idle(throttle) runway(dry) ∧ wind(cross) ∧ efto ∧
Flaps = 15 ∧ V1 > Speed > V2

p1 deploy(brakes) decelerating(thrust)

p1 send(tower, msg) steady(aircraft)

p2 increase(mixture) runway(wet) ∧ wind(head) ∧ efto ∧
Flaps = 15 ∧ V1 > Speed > V2

p2 increase(throttle) escalating(fuel flow)

p2 take up(flap) accelerating(thrust)

p2 pull(yoke) liftoff(aircraft)

5 Validating the Explanation Process

Our guiding intuition here is that the state update operator and the available
data used to update belief-based explanations can also be leveraged to validate
the mined explanations. Our validation approach involves some mechanisms that
take as inputs (1) A DAll, (2) A state update operator, and compute the sound-
ness and completeness of the mind explanations. We keep assuming unique action
execution through this section.

First, we need inputs (1) and (2) to generate a sequence (denoted hereafter
as DUpdated) that associates each action in DAll to the set of updated beliefs of
all actions executed up to that point. Each object in DUpdated is a pair of the
form 〈βi, ai〉, where β the set of updated beliefs of all actions executed up to ai.
DUpdated can be simply obtained using ⊕ over DAll assuming the presence of a KB
defined in the same language as that in which the beliefs are described. Table 4
illustrates the results of applying the operator ⊕ to input DAll.

Table 4. Updated belief-based explanations of plan p1

plan action belief-based explanations

p1 idle(throttle) runway(dry) ∧ wind(cross) ∧ efto
∧ Flaps = 15 ∧ V1 > Speed > V2

p1 deploy(brakes) decelerating(thrust) ∧ runway(dry)
∧ wind(cross) ∧ efto ∧ Flaps = 15
∧ V1 > Speed > V2

p1 send(tower, msg) decelerating(thrust) ∧
steady(aircraft) ∧ runway(dry) ∧
wind(cross) ∧ efto Flaps = 15 ∧ V1
> Speed > V2
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It should be noted that a single action in DUpdated can be associated with a
set of sets of beliefs due to the non-determinism nature of the ⊕ operator. Now,
to validate the mined explanations, it is useful to establish the following:

– Soundness. A sound belief-based explanation is one that is mined correctly
(i.e., observed in DAll). Another way to say that a detailed belief-based expla-
nation to a given point in the plan execution should contain the mined belief-
based explanation updated using ⊕ at that point in the plan execution. For-
mally, for each plan execution sequence in DUpdated and each action ai the
following condition must hold: βi ∪KB |= b for some b ∈ ba1 , . . . , bai , where bai
is the mined belief-based explanation of action ai .

– Completeness. A complete belief-based explanation requires that all the
enabling beliefs of a given action are mined. Actually, this can be viewed as a
reversal of the above-cited entailment relation (i.e., b ∪ KB |=βi)

Where it is possible for the mined explanations to be unsound or incomplete,
further post-processing may be required for more reliable results. We overtake
this problem by seeking more observations and/or re-mining with lower support
and confidence thresholds.

6 Evaluation

Agent explanation generation can be evaluated on several grounds. Commonly,
the first is a human-rated evaluation of the explainability of the generated expla-
nations. However, we consider this more as a part of explainable agent develop-
ment, so our focus in this section is on evaluating our mining technique, which
includes the performance measures of the mined explanations (i.e., precision and
recall).

This section presents the evaluation of our approach to mining belief-based
explanations. First, we present the setup and implementation for our experi-
ments. Next, our evaluation is detailed.

6.1 Data and Implementation

We implemented our approach as a plugin for our Toolkit XPlaM3 [19] and eval-
uated it using a synthetic log of 1000 execution instances, representing firefighter
agent past behaviour as described in [3]. We also used a plan library consisting
of 15 plans4.

3 The source code for XPlaM Toolkit (including the code for the approach presented
here) has been published online at https://github.com/dsl-uow/xplam.

4 We published the datasets supporting the conclusions of this work online at https://
www.kaggle.com/datasets/alelaimat/explainable-bdi-agents.

https://github.com/dsl-uow/xplam
https://www.kaggle.com/datasets/alelaimat/explainable-bdi-agents
https://www.kaggle.com/datasets/alelaimat/explainable-bdi-agents
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6.2 Performance Results

Our goal of the evaluation is to establish that the proposed approach can gener-
ate generally reliable explanations. To that end, we recorded the precision (i.e.,
number of correctly mined explanations over the total number of mined expla-
nations) and recall (i.e., number of correctly mined explanations over the total
number of actual explanations) obtained from applying the CMRules algorithm
and the above-cited validation technique. We consider minimum confidence (min
conf ) and minimum support (min supp) of the mined rules as the most impor-
tant factors for mining belief-based explanations. The results are depicted in
Table 5 and are summarized below.

Table 5. Performance for different min conf and min supp

min conf 1.00 0.95 0.9 0.85 0.8

Precision 0.8948 0.8910 0.8731 0.8487 0.8235

Recall 0.5678 0.6387 0.7265 0.7854 0.8547

min supp 0.5 0.4 0.3 0.2 0.1

Precision 0.9216 0.8741 0.8254 0.7703 0.6987

Recall 0.2257 0.3458 0.5361 0.6966 0.8815

min conf :

1. Confidence threshold considerably impacts performance results, i.e., higher
min conf leads to higher precision but lower recall. For example, our approach
achieved the highest precision of 0.89 with the lower recall of 0.56 for min
conf of 1.00.

2. It is necessary, thus, to find a trade-off between precision and recall when
varying min conf threshold. Hence, we use min conf of 0.9 for testing the
impact of varying min supp threshold.

min supp

1. Similar to the min conf, varying min supp has a significant impact on the
performance results. For example, we achieved the highest precision of 0.92
with an insignificant recall of 0.22 for min supp of 0.5.

2. Note that extracting association rules related to infrequent events needs min
supp to be low. However, this, in turn, sacrifices the precision of the mined
explanations.

We noticed some insightful observations through our experiments. First, the
size of DAll does not impact the performance results of the mined explanations
iff DAll includes all possible behaviours of the observed agent. For example, we
achieved very close precision values for DAll of 200 and 800 execution instances,
which were 0.836 and 0.842, respectively. Second, varying min conf and min supp
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have a significant impact on the performance of the mined explanations and,
consequently, come with several limitations (e.g., time and effort). Finally, the
premise that the beliefs observed in the belief log immediately before executing
an action can be the enabling beliefs of that action can be deceptive sometimes
(i.e., the enabling beliefs of a late action can hold before plan execution). It is
necessary, therefore, for the user to determine precise min conf and min supp
thresholds.

7 Related Work

Although a large and growing body of work exists on developing explainable
agents and robots [1], few works focus on generating explanations for intelligent
agents.

Harbers et al. [3] described four algorithms to design explainable BDI agents:
one using parent goals, one using top-level goals, one using enabling beliefs,
and one using the next action or goal in the execution sequence. They found
that goal-based explanations were slightly preferable to belief-based expansions
to explain procedural actions (i.e., a sequence of actions and sub-goals) based
on users’ evaluation. Nevertheless, belief-based explanations were preferable in
explaining conditional and single actions. Similar explanation algorithms were
proposed by Kaptein et al. [2], but to investigate the difference in preference
of adults and children for goal-based and belief-based explanations. They found
that both adults and children preferred goal-based explanations. Related, but
in a different ontology, is the work presented in Kaptein et al. [20], in that the
agent explains its action in terms of its beliefs, goals and emotions.

Sindlar et al. [21] proposed an abductive approach to infer the mental states
of BDI agents in terms of beliefs and goals. To that end, they described three
explanatory strategies under three perceptory presumptions: complete, late, and
partial observations. Sindlar et al. extend their work to an explanation approach
that takes into account three organizational principles: roles, norms, and scenes
in [22]. The extended work proposes an approach to how the observed behaviour
of game players can be explained and predicted in terms of the mental state
of virtual characters. Related, but in a different domain, is the work presented
in [23]. Sequeira and Gervasio propose a framework for explainable reinforce-
ment learning that extracts relevant aspects of the RL agent interaction with its
environment (i.e., interestingness elements) in [23]. They suggested four dimen-
sions of analysis: frequency, execution certainty, transition-value, and sequence
analysis to extract the interestingness elements, which are used to highlight the
behaviour of the agent in terms of short video clips.

All the previous approaches presented in this paper can theoretically gener-
ate explanations of agents’ actions, but assuming reliable observations, availabil-
ity of an explanation generation module and deterministic execution of plans.
On the other hand, we leverage the past execution experiences of the target
agent, which allows performing various techniques to handle unreliable obser-
vations (e.g., measures of interestingness). Although historical data might be
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hard to be obtained, our approach still can be effective in settings where no
more than common patterns (i.e., plans), information that other players would
observe or expect the target agents to be aware of (i.e., external events) and the
external behaviour of the target agent are available. Much of the work done on
agent explanation generation shares the common judgment that relatively short
explanations are more useful to explainees. Nevertheless, as shown in our run-
ning example, detailed explanations are critical in some cases (e.g., explaining
BDI plan selection). Finally, and in contrast with the literature, our explanation
generation mechanism allows explanations to be non-deterministic through the
updating of belief-based explanations, as described in Sect. 3.

8 Conclusion

In this paper, we addressed the problem of agent explanation mining (and specif-
ically belief-based explanations) in the context of the well-known BDI paradigm.
This problem was formulated as follows: “Given the past execution experiences
of an agent and an update operator, generate the belief-based explanation of each
action referred to in the agent’s past execution experiences”. We presented an
update operator that is able to generate detailed explanations. Through exam-
ples, we also showed that detailed explanations could be useful in explaining
BDI plan selection. We have tackled the problem of explanation generation in
non-deterministic settings. At this point in time, we are trying to extend the
application of the proposed approach to other BDI handles.
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2021. LNCS (LNAI), vol. 12688, pp. 119–138. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-82017-6 8

9. Mualla, Y.: Explaining the behavior of remote robots to humans: an agent-based
approach. PhD thesis, Université Bourgogne Franche-Comté (2020)

10. Winikoff, M.: JackTM intelligent agents: an industrial strength platform. In: Bor-
dini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Pro-
gramming. MSASSO, vol. 15, pp. 175–193. Springer, Boston, MA (2005). https://
doi.org/10.1007/0-387-26350-0 7

11. Abdulrahman, A., Richards, D., Ranjbartabar, H., Mascarenhas, S.: Belief-based
agent explanations to encourage behaviour change. In: Proceedings of the 19th
ACM International Conference on Intelligent Virtual Agents, pp. 176–178 (2019)

12. Multi-engine aeroplane operations and training. Technical report, Civil Aviation
Safety Authority (July 2007)
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Abstract. Explainability of autonomous systems is important to supporting the
development of appropriate levels of trust in the system, as well as supporting
system predictability. Previous work has proposed an explanation mechanism
for Belief-Desire-Intention (BDI) agents that uses folk psychological concepts,
specifically beliefs, desires, and valuings. In this paper we evaluate this mecha-
nism by conducting a survey. We consider a number of explanations, and assess to
what extent they are considered believable, acceptable, and comprehensible, and
which explanations are preferred. We also consider the relationship between trust
in the specific autonomous system, and general trust in technology. We find that
explanations that include valuings are particularly likely to be preferred by the
study participants, whereas those explanations that include links are least likely
to be preferred. We also found evidence that single-factor explanations, as used
in some previous work, are too short.

Keywords: Explainable Agency · Belief-Desire-Intention (BDI) · Evaluation

1 Introduction

“Explainability is crucial for building and maintaining users’ trust in AI sys-
tems.” [16]
“Automated systems should provide explanations that are technically valid,
meaningful and useful to you and to any operators or others who need to under-
stand the system” https://www.whitehouse.gov/ostp/ai-bill-of-rights/, published
4 October 2022.

It is now widely accepted that explainability is crucial for supporting an appropri-
ate level of trust in autonomous and intelligent systems (e.g. [12,16,29]). However,
explainability is not just important to support (appropriate) trust. It also makes a system
understandable [34], which in turn allows systems to be challenged, to be predictable,
to be verified, and to be traceable [34].

In this paper we focus on autonomous agents: software systems that are able
to act autonomously. This includes a wide range of physically embodied systems
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(e.g. robots) and systems that do not have physical embodiment (e.g. smart personal
assistants) [25,26,28]. Although autonomous systems use AI techniques, not all AI
systems are autonomous, e.g. a system may be simply making recommendations to a
human, rather than taking action itself.

Explainability is particularly important for autonomous systems [20,36], since, by
definition, they take action, so, depending on the possible consequences of their actions,
there is a need to be able to trust these systems appropriately, and to understand how
they operate. One report proposes to include “. . . for users of care or domestic robots a
why-did-you-do-that button which, when pressed, causes the robot to explain the action
it just took” [32, Page 20]. It has also been argued that explainability plays an important
role in making autonomous agents accountable [8].

However, despite the importance of explainability of autonomous systems, most of
the work on explainable AI (XAI) has focused on explaining machine learning (termed
“data-driven XAI” by Anjomshoae et al. [4]), with only a much smaller body of work
focusing on explaining autonomous agents (termed “goal-driven XAI” by Anjomshoae
et al. [4], and “explainable agency” by Langley et al. [20]). Specifically, a 2019 sur-
vey [4] found only 62 distinct published papers on goal-driven XAI published in the
period 2008–2018.

In order to develop a mechanism for an autonomous agent to be able to answer in
a useful and comprehensible way questions such as “why did you do X?”, it is use-
ful to consider the social sciences [23]. In particular, we draw on the extensive (and
empirically-grounded) work of Malle [21]. Malle argues that humans use folk psy-
chological constructs in explaining their behaviour1. Specifically, in explaining their
behaviour, humans use the concepts of beliefs, desires2, and valuings3.

Prior work [38] has used these ideas to develop a mechanism that allows Belief-
Desire-Intention (BDI) agents [5,6,27] (augmented with a representation for valuings,
following [9]) to provide explanations of their actions in terms of these concepts.

In this paper we conduct an empirical human subject evaluation of this mechanism,
including an evaluation of the different component types of explanations (e.g. beliefs,
desires, valuings). Such evaluations are important in assessing the effectiveness of
explanatory mechanisms. For example, are explanations using beliefs seen as less or
more preferred than explanations that use desires, or that use valuings? Empirical eval-
uation can answer these questions, and by answering them, guide the development and
deployment of explanation mechanisms for autonomous agents. Specifically, the key
research question we address4 is: What forms of explanation of autonomous agents
are preferred?.

1 There is also empirical evidence that humans use these constructs to explain the behaviour of
robots [13,33].

2 Terminology: we use “goal” and “desire” interchangeably.
3 Defined by Malle as things that “directly indicate the positive or negative affect toward the

action or its outcome”. Whereas values are generic (e.g. benevolence, security [30]), valuings
are about a given action or outcome. Valuings can arise from values, but can also be directly
specified without needing to be linked to higher-level values. In our work we represent valuings
as preferences over options [38, Sect. 2].

4 We also consider (Sect. 4.4) the question: “to what extent is trust in a given system determined
by a person’s more general attitudes towards technology, and towards Artificial Intelligence?”.
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An earlier evaluation of this explanation mechanism has been conducted [37] (the
results of which are also briefly summarised in [38]). However, this paper differs from
the earlier evaluation in that: (i) we use a different scenario, (ii) we use different patterns
of explanations, including links (which were not included in the earlier evaluation),
(iii) we also include questions on trust in technology, and (iv) we conduct a deeper
and more sophisticated analysis, including an assessment of the effects of the different
explanatory component types, and of the correlation between trust in the autonomous
system and more general trust in technology.

We propose a number of hypotheses, motivated by existing literature (briefly indi-
cated below, and discussed in greater length in Sect. 5). Our hypotheses all relate to the
form of the explanation. Since the explanation we generate has four types of explanatory
factors, we consider for each of these types how they are viewed by the user (H1–H3).
Furthermore, since including more types of explanatory factors results in longer expla-
nations, we also consider the overall effect of explanation length (H4).

H1: Explanations that include valuings are more likely to be preferred by users over
other forms of explanations (that do not include valuings). This hypothesis is
based on the finding of [37].

H2: Explanations that include desires are more likely to be preferred by users over
explanations that include beliefs. This hypothesis is based on the findings of [7,
15,17] (discussed in detail in Sect. 5).

H3: Explanations that include links are less likely to be preferred by users over other
forms of explanations (that do not include links). This hypothesis is based on the
findings of [15].

H4: Shorter explanations are more likely to be preferred by users. This hypothesis is
based on the arguments of (e.g.) [17]. Note that they argued that explanations
ought to be short, and therefore only evaluated short explanations. In other words,
their evaluation did not provide empirical evidence for this claim.

The remainder of this paper is organised as follows. We begin by briefly review-
ing the explanation mechanism that we evaluate (Sect. 2). Next, Sect. 3 presents our
methodology, and then Sect. 4 presents our results. We finish with a review of related
work (Sect. 5), followed by a brief discussion (Sect. 6) summarising our findings, noting
some limitations, and indicating directions for future work.

2 Explanation Mechanism

We now briefly review the explanation mechanism. For full details, we refer the reader
to [38]. In particular, here we focus on the form of the explanations, omitting discussion
of how the explanations are generated.

We use the following scenario: Imagine that you have a smart phone with a new
smart software assistant, SAM. Unlike current generations of assistants, this one is
able to act proactively and autonomously to support you. SAM knows that usually you
use one of the following three options to get home: (i) Walking, (ii) Cycling, if a bicycle
is available, and (iii) Catching a bus, if money is available (i.e. there is enough credit
on your card). One particular afternoon, you are about to leave to go home, when the
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E1: A bicycle was not available, money was available, the made choice (catch bus) has the
shortest duration to get home (in comparison with walking) and I believe that is the
most important factor for you, I needed to buy a bus ticket in order to allow you to go
by bus, and I have the goal to allow you to catch the bus.

E2: A bicycle was not available, money was available, and the made choice (catch bus) has
the shortest duration to get home (in comparison with walking) and I believe that is the
most important factor for you.

E3: The made choice (catch bus) has the shortest duration to get home (in comparison with
walking) and I believe that is the most important factor for you.

E4: A bicycle was not available, and money was available.
E5: A bicycle was not available, money was available, and I have the goal to allow you to

catch the bus.

Fig. 1. Explanations E1–E5

phone alerts you that SAM has just bought you a ticket to catch the bus home. This
surprises you, since you typically walk or cycle home. You therefore push the “please
explain” button.

An explanation is built out of four types of building blocks: desires, beliefs, valu-
ings, and links.

– A desire (D) explanation states that the agent having a certain desire was part of the
reason for taking a certain action. For example, that the system chose to buy a bus
ticket because it desired to allow you to catch the bus.

– A belief (B) explanation states that the agent having a certain belief was part of the
reason for taking a certain action. For example, that the system chose to buy a ticket
because it believed that a bicycle was not available.

– A valuing (V) explanation states that the agent chose a certain option (over other
options) because it was valued. For example, that the system chose to select catching
a bus because it was the fastest of the available options, and that getting home more
quickly is valued.

– Finally, a link (L) explanation states that a particular action was performed in order
to allow a subsequent action to be done. For example, that the agent bought the ticket
in order to allow the user to then catch the bus (which requires having a ticket).

A full explanation may use a number of each of these elements, for example: A
bicycle was not available (B), money was available (B), the made choice (catch bus)
has the shortest duration to get home (in comparison with walking) and I believe that
is the most important factor for you (V), I needed to buy a bus ticket in order to allow
you to go by bus (L), and I have the goal to allow you to catch the bus (D).
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3 Methodology

We surveyed5 participants6, who were recruited using advertisements in a range of
undergraduate lectures within the Otago Business school, by email to students at institu-
tions of two colleagues, Frank and Virginia Dignum, with whom we were collaborating
on related work, and by posting on social media. New Zealand based participants were
given the incentive of being entered into a draw for a NZ$100 supermarket voucher.

The scenario used the software personal assistant (“SAM”) explained in Sect. 2.
Each participant is presented with five possible explanations (see Fig. 1) which are

given in a random order, i.e. each participant sees a different ordering. The explana-
tions combine different elements of the explanation mechanism described earlier in this
paper. Specifically, there are four types of elements that can be included in an expla-
nation: beliefs, valuings, desires, and links. Explanation E1 includes all four elements,
explanation E2 filters out the desires and links, E3 includes only valuings, E4 includes
only beliefs, and E5 includes only beliefs and desires.

For each of the five explanations E1–E5 participants were asked to indicate on a
Likert scale of 1–77 how much they agree or disagree with the following statements:
“This explanation is Believable (i.e. I can imagine a human giving this answer)”, “This
explanation is Acceptable (i.e. this is a valid explanation of the software’s behaviour)”,
and “This explanation is Comprehensible (i.e. I understand this explanation)”. Partic-
ipants were also asked to indicate whether they would like further clarification of the
explanation given, for instance, by entering into a dialog with the system, or providing
source code.

Once all five explanations were considered, participants were asked to rank the
explanations from 1 (most preferred) to 5 (least preferred). They were also asked to
indicate the extent to which they agreed with the statement “I trust SAM because it can
provide me a relevant explanation for its actions” (7 point Likert scale).

Next, the survey asked a number of questions to assess and obtain information about
general trust in technology, including attitude to Artificial Intelligence. The 11 questions
consisted of 7 questions that were adopted from McKnight et al. [22, Appendix B].
Specifically, we used the four questions that McKnight et al. used to assess faith in
general technology (item 6 in their appendix), and the three questions that they used
to assess trusting stance (general technology, item 7). We also had four questions that
assessed attitudes towards Artificial Intelligence. Finally, the respondents were asked to
provide demographic information.

4 Results

We received 74 completed responses to the online survey. The demographic features of
the respondents are shown in Table 1.

5 The survey can be found at: https://www.dropbox.com/s/ec6fg3u1rqhytcb/Trust-Autonomous-
Survey.pdf.

6 Ethics approval was given by University of Otago (Category B, D18/231).
7 Where 1 was labelled “Strongly Disagree”, 7 was labelled “Strongly Agree”, and 2–6 were not
labelled.

https://www.dropbox.com/s/ec6fg3u1rqhytcb/Trust-Autonomous-Survey.pdf
https://www.dropbox.com/s/ec6fg3u1rqhytcb/Trust-Autonomous-Survey.pdf
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Table 1. Selected demographic characteristics of respondents (percentage distributions; percent-
ages may not sum to 100% due to rounding)

Characteristic Percentage

Gender male 55.4

female 41.9

not answered 2.7

Age 18–24 39.2

25–34 27.0

35–44 14.9

45–54 14.9

55–64 4.0

Education High school graduate 17.6

Bachelor/undergraduate degree 44.6

PhD degree/Doctorate 36.5

not answered 1.4

Ethnicity New Zealander (non Māori) 31.1

Māori 2.7

European 46.0

Other 20.3

4.1 Analysis of Believability, Acceptability and Comprehensibility
of Explanations

We begin by analysing how participants assessed each of the explanations E1-E5 on
three characteristics: Believability, Acceptability and Comprehensibility. Each expla-
nation was assessed on its own (in random order), i.e. the participants in this part of the
survey were not asked to compare explanations, but to assess each explanation in turn.

The descriptive statistics regarding the Believability, Acceptability and Comprehen-
sibility of the five Explanations are shown below (recall that 1 is “strongly disagree” and
7 is “strongly agree”, so a higher score is better).

We used paired Wilcoxon-signed rank tests to estimate differences in means. The
results are given in Table 2. These results show that most of the differences between
pairs of explanations in terms of their Believability, Acceptability, and Comprehensi-
bility are statistically significant8 with p < 0.005.
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Characteristic Explanation Mean Std. Dev. Median

Believability E1 3.90 1.78 4

E2 4.80 1.50 5

E3 5.08 1.34 5

E4 3.73 1.87 4

E5 3.76 1.72 4

Acceptability E1 5.12 1.70 5

E2 5.14 1.52 5

E3 4.57 1.74 5

E4 3.76 1.95 4

E5 4.45 1.81 5

Comprehensibility E1 5.55 1.38 6

E2 5.77 1.03 6

E3 5.62 1.04 6

E4 4.99 1.63 5

E5 4.85 1.64 5

Figure 2 depicts the relationships in Table 2. For believability (top left of Fig. 2)
explanations E3 and E2 are statistically significantly different to explanations E1, E4
and E5 (in fact E3 and E2 are better than E1, E4 and E5 since they have a higher
median). However, E3 and E2 are not statistically significantly different to each other,
nor are there statistically significant differences amongst E1, E4 or E5. For acceptabil-
ity (bottom of Fig. 2) the situation is a little more complex: explanations E1 and E2
are statistically significantly different to the other three explanations9 (but not to each
other), and E3 and E5 are both statistically significantly better than E4 (but E3 and E5
are not statistically significantly different). Finally, for comprehensibility (top right of
Fig. 2), explanations E2, E3 and E1 are statistically significantly different to explana-
tions E4 and E5, but for each of the two groups of explanations there are not statistically
significant differences within the group.

Overall, considering the three criteria of believability, comprehensibility, and
acceptability, these results indicate that E2 is statistically significantly better than
E4 and E5 according to all criteria, and is statistically significantly better than E1
(Believability only), and E3 (Acceptability only). Explanation E3 was statistically sig-
nificantly better than E4 (all criteria), E5 (Believability and Comprehensibility), and

8 We use a significance level of 0.005 rather than 0.05 to avoid type II errors, given the number
of tests performed. The significance level is calculated as 10

√
0.95 = 0.9948838, giving a

threshold for significance of around 0.005.
9 Although for E1-E3 it is only at p = 0.0273.
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Table 2. Statistical Significance of Differences in means for Believability, Acceptability and
Comprehensibility. Bold text indicates statistical significance with p < 0.005 and “***” indicates
p < 0.0001.

Characteristic Explanation E1 E2 E3 E4 E5

Believability E1 – *** *** 0.6006 0.6833

E2 *** – 0.2015 *** ***

E3 *** 0.2015 – *** ***

E4 0.6006 *** *** – 0.9808

E5 0.6833 *** *** 0.9808 –

Acceptability E1 – 0.7357 0.0273 *** ***

E2 0.7357 – 0.0041 *** ***

E3 0.0273 0.0041 – 0.0003 0.6481

E4 *** *** 0.0003 – 0.0002

E5 *** *** 0.6481 0.0002 –

Comprehensibility E1 – 0.1275 0.7370 0.0040 0.0022

E2 0.1275 – 0.1510 *** ***

E3 0.7370 0.1510 – 0.0005 0.0005

E4 0.0040 *** 0.0005 – 0.6060

E5 0.0022 *** 0.0005 0.6060 –

Fig. 2. Visual representation of the significance results in Table 2 where an arrow indicates a
statistically significant difference (arrow is directional from better to worse)

E1 (Believability). Explanation E1 was statistically significantly better than E4 and E5
(Comprehensibility and Acceptability), and E3 (Acceptability). Finally, E5 is better
than E4 (Acceptability only).

So, overall E2 can be seen as the best explanation since it is ranked statistically
significantly differently to all other explanations (with a higher median) on at least one
of the three characteristics (Believability, Acceptability, and Comprehensibility), but no
other explanation is better than it on any characteristic. Next are E1 and E3 which are
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statistically different (specifically better) than E4 and E5 on some characteristics (for
E1 Comprehensibility and Acceptability but not Believability, and for E2 Believability
and Acceptability, but not Comprehensibility).

4.2 Analysis of Rankings of Explanations

The analysis below relates to the part of the survey where respondents were asked to
rank a set of five explanations from 1 (most preferred) to 5 (least preferred).

To analyse the ranked data we employed a general discrete choice model (linear
mixed model), using a ranked-ordered logit model which is also known as an exploded
logit [3].

A discrete choice model is a general and powerful technique for analysing which
factors contributed to the outcome of a made choice. It is required in this case because
each of the five explanations being ranked represented a combination of explanatory
factor types. The ranked-ordered logit is used to deal with the fact that the data rep-
resents a ranking: after selecting the most preferred explanation, the next selection is
made out of the remaining four explanations. This means that the selections are not
independent.

The ranked-ordered logit is based on a multistage approach where the standard
logit [3] is applied to the most preferred choice J1 in the set of all alternatives
(J1, . . . , JK), then to the second-ranked choice J2 in the set (J2, . . . , JK) after the
first-ranked item was removed from the initial choice set and so on.

The ranked-ordered logit model was estimated with the SAS procedure PHREG,
yielding results shown below. Each row (e.g. row E2) is in relation to the reference
explanation, E1. The column β gives the key parameter, showing the relative likeli-
hood. These estimates indicate that, on average, respondents are most likely to prefer
explanation E2 (βE2 = 0.475) and least likely to prefer E4 (βE4 = −1.077). The odds
of preferring E2 are exp0.475 = 1.608 times the odds of preferring E1. The right-most
column (“Pr > ChiSq”) shows that the β value for each explanation except for E3 is
statistically significantly different to that of E1.

Explanation β Standard Error Chi-Square Pr > ChiSq

E2 0.475 0.166 8.18 0.0042

E3 −0.154 0.165 0.878 0.3488

E4 −1.077 0.17 40.016 <.001

E5 −0.887 0.168 28.034 <.0001

We also calculated the Wald chi-square for all the possible pairs or coefficients (see
below). All but two of the tests were statistically significant10, with p-values less than
0.005 (actually less than 0.001). The two non-significant pairs were E1–E3 and E4–E5,
which were not significant at the 0.005 level.

10 As before, we use a significance level of 0.005 rather than 0.05 to avoid type II errors, given
the number of tests performed.
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Label Wald Chi-Square Pr > ChiSq

βE2 − βE3 14.1768 0.0002

βE2 − βE4 77.3522 <.0001

βE2 − βE5 61.7307 <.0001

βE3 − βE4 28.8808 <.0001

βE3 − βE5 18.9785 <.0001

βE4 − βE5 1.3091 0.2526

βE2 − βE1 8.1801 0.0042

βE3 − βE1 0.8780 0.3488

βE4 − βE1 40.0157 <.0001

βE5 − βE1 28.0341 <.0001

This analysis therefore allows us to conclude that, based on participants ranking
of the explanations, E2 is most preferred, followed by E1 and E3, which are not sig-
nificantly differently ranked, and then E4 and E5 (also not statistically significantly
different in ranking). In other words, we have three tiers: E2 (most preferred), E1 and
E3 (less preferred than E2), and E4 and E5 (least preferred). This is consistent with the
results of the previous section.

In order to provide additional confidence in the logit analysis, we also performed a
series of comparisons between pairs of items using a Wilcoxon signed rank test. This
also found that all differences were significant at the 0.005 level, except for the two pairs
that were not significantly different at this level according to the regression analysis.
Thus, the exploded logit model gives results that are qualitatively the same as those
obtained by a standard nonparametric method.

We also investigated whether there are differences between males and females in
their ranking of explanations. Using the same exploded logit model and new dummy
variable for gender, we computed the Wald chi-square statistic for the null hypothe-
sis that differences between gender-dependent coefficients are zero, which had p-value
0.95. Thus, there is no evidence for a difference between men and women in ranking
explanations. A similar analysis was made for age-dependent groups of respondents

Table 3. The construction of the explanations.

Component E1 E2 E3 E4 E5

B(eliefs) 1 1 0 1 1

V(aluings) 1 1 1 0 0

D(esires) 1 0 0 0 1

L(inks) 1 0 0 0 0

Length in words: 63 36 27 9 20

Length in characters: 318 206 152 54 101
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and found no significant difference in ranking of explanations in relation to age (p-value
0.158).

4.3 Effects of Explanation Components

Next, we investigated the effects of explanation components (e.g. beliefs, desires, valu-
ings) and how they affect ranking. There were four possible components: beliefs,
valuings, desires and links. The constructed explanations are shown in Table 3 where
ones indicate the presence of respective components and zeros indicate their absence.
For example, the first column indicates that explanation E1 has all four components,
whereas the second column shows that E2 has only the beliefs and valuings compo-
nents.

As shown in Table 4, all except one of the coefficients of the exploded logit model
are significantly different from zero at level p = 0.005 and the only exception βD, cor-
responding to desires, is significant at the 0.05 level. A positive coefficient indicates that
this component is more preferred, whereas a negative coefficient indicates that the com-
ponent is less preferred. Thus, respondents prefer explanations that have V, B, and D
components. They are reluctant to prefer explanations that have links. The magnitudes
of coefficients in Table 4 can be interpreted as follows. The presence of V components in
the explanation has produced 100× (expβ −1) = 100× (exp2.4 −1) = 1002.3 percent
increase in the odds of preferring this explanation to the one where V is absent, con-
trolling for other components. The presence of beliefs in the explanation has produced
100 × (exp0.82 −1) = 127 percent increase in the odds of preferring this explanation
to the one where B is absent, controlling for other components. The presence of desires
in the explanation has produced 100 × (exp0.54 −1) = 71.6 percent increase in the
odds of preferring this explanation to the one where D is absent, controlling for other
components. For links we have 100 × (exp−1.16 −1) = −68.65%, which implies that
the odds of preferring explanation with links over the one where L is absent goes down
by 68.65%.

Table 4. Respondents’ Preferences in Ranking Components V,B,D,L: Analysis of Maximum
Likelihood Estimates

Parameter Parameter Estimate (β) Standard Error Chi-Square Pr > ChiSq

V 2.402 0.224 115.28 <.0001

B 0.821 0.176 21.661 0.0001

D 0.543 0.224 5.88 0.0153

L −1.164 0.285 16.6224 0.0001

As before, we also calculated the Wald chi-square for all the possible pairs or coef-
ficients. We found that the difference between preferring B and D is not statistically
significant (p = 0.33), whereas the difference among all others components is signifi-
cant (see Table 5).
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Table 5. Statistically Significant Differences in regression coefficients

Label Wald Chi-Square Pr > ChiSq

βV − βB 52.2652 <.0001

βV − βD 90.3121 <.0001

βV − βL 56.0711 <.0001

βB − βD 0.9473 0.3304

βB − βL 27.2910 <.0001

βD − βL 12.5446 0.0004

This analysis shows that of the four factors that are included in the explanations,
the presence of V components most strongly (and significantly) correlates with higher
preference for the explanation. In other words, explanations including valuings are more
likely to be preferred.

4.4 Analysis of Overall Trust in SAM

Our final analysis considered the relationship between overall trust in a specific
autonomous system (SAM), and broader trust in technology in general, and AI specif-
ically. The question being addressed here is: to what extent is trust in a given system,
such as SAM, determined by a person’s more general attitudes towards technology, and
towards Artificial Intelligence?

As noted earlier, the survey included 11 questions that assessed three dimensions
of attitudes [22]: faith in technology (4 questions), general attitude to technology (3
questions), and attitude to Artificial Intelligence (4 questions).

We conducted a reliability analysis to assess the internal consistency of these blocks
of questions. The results (see Table 6) show that the Cronbach’s alpha coefficients
ranged from11 0.73 to 0.85. We also considered all of the questions taken together
(“Merged” in Table 6), which yielded a higher alpha. This meant that the questions
forming the components of the scale were sufficiently intercorrelated to allow the
dimensions to be merged. We therefore merged the three dimensions into a single item
that measured each participant’s attitude to technology in general (including AI).

In order to assess the extent to which broader background attitudes to technology
influenced trust in SAMwe compared the calculated background trust measure (average
of the ten questions) against each participant’s response to the question “I trust SAM
because it can provide me a relevant explanation for its actions” (Likert response on a
1–7 scale).

To estimate the correlation between background trust in technology and trust in
SAM, we calculated Spearman’s coefficient. The coefficient value of 0.46 confirms that

11 For the AI group of questions, the analysis indicated that dropping the third question would
improve the alpha from 0.69 to 0.79, which was done, meaning that we used a total of 10
questions. The dropped question was: “I think that current problems with use of AI (bias,
breach of privacy, etc.) will be solved in the short term”.
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Table 6. Analysis of dimensions of background trust to technology

Characteristic Cronbach’s alpha

Faith 0.73

General attitude to technology 0.85

Attitude to AI 0.79

Merged 0.91

there appears to be a positive correlation between the two variables (ρS = 0.46, n = 74,
p = 3.8 × 10−5). Thus, high values of background trust in technology are associated
with high “trust in SAM” scores.

Interestingly, although the correlation is clearly significant (p = 3.85 × 10−5), it
is not that strong (ρS = 0.46, which is considered a moderate strength correlation).
In other words, knowing that a person has, say, a high level of trust in technology in
general, does not allow one to confidently predict that they will therefore have a high
level of trust in an autonomous system (see Fig. 3). In other words, trust in autonomous
systems is not purely determined by background trust in technology more broadly.

We also assessed the effects of gender. A Wilcoxon test performed for two indepen-
dent groups (men and women) showed no evidence for a difference in means for SAM
score (W=551.5, p-value = 0.33). So, we can conclude that there is no evidence that
men and women give different scores to SAM.

5 Related Work

As noted in the introduction, there is comparatively little work on goal-driven XAI.
Focusing specifically on approaches that use beliefs and desires, and that conduct an
evaluation, there are a number of papers.

Harbers et al. [7,14,15] consider an explanation mechanism that is similar to the
one we evaluate in that it uses explanation templates that correspond to our explanatory
components of beliefs, desires, and links. However, they do not have a corresponding
template for valuings. Furthermore, their explanations do not take into account possible
alternatives, i.e. they explain why X was done solely in terms of what enabled X to be
done, rather than considering why X was selected from amongst the available options.
In general, X may be enabled, but whether it is selected can depend also on the avail-
ability of other options. For example, choosing to catch a bus because a bicycle is not
available, so cycling (which otherwise would be preferred) is not an option. An expla-
nation in terms of what enabled us to catch a bus (having money), is not useful. A useful
explanation in this scenario is that the preferred option (cycling) was not available due
to the lack of a bicycle being available.

Turning to the evaluations, Broekens et al. [7] report on an evaluation using a cook-
ing domain. They had 30 participants who were randomly allocated to one of the three
explanation types. Participants were asked to score an explanation for each action in
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Fig. 3. Correlation between “trust in SAM” score and background trust.

terms of naturalness12 and usefulness13. They found that, in general, goal-based expla-
nations were preferred. However, the specific preferred explanation depended on the
action and its context. For example, where an action is an “or” (i.e. its parent goal
requires a single child to be selected), then a belief-based explanation is more helpful.

Harbers et al. [15] report on an evalation using a fire-fighting domain, with 20 par-
ticipants who were not experts in the domain. For each action, they asked participants
which of four explanations was preferred: the parent goal (in the goal hierarchy tree14),
the parent’s parent goal, the beliefs, and a link explanation. Similarly to Broekens et al.
they found that the choice depended on the action and its context. However, in general,
links were barely selected as preferred, and while goals were well-received, for “or”
actions beliefs were preferred.

These results are consistent with ours in that we also found that links were not
preferred. One difference is that while their explanations consisted of a single type (e.g.
belief or goal or link), we considered more complex explanations that mixed elements.
And, of course, they did not consider valuings, so our key finding, that valuings are
more preferred than either belief-based or goal-based explanations, was not able to be
identified by their work.

Kaptein et al. [17,19] considered explanations in the context of an e-health applica-
tion. In earlier work [17] they evaluated user preferences for explanations in the context
of a personal assistant that worked with a fictitious child (“jimmy”) who has type 1
diabetes mellitus. Participants (19 adults and 19 children) were provided with a number
of scenarios, and asked to select their preferred explanation for each one. The expla-

12 Explained as: “With a natural explanation we mean an explanation that sounds normal and is
understandable, an explanation that you or other people could give.”.

13 Explained as: “Indicate how useful the explanations would be for you in learning how to make
pancakes.”.

14 The tree of goals, beliefs, and actions.
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nations given as options were either a single belief, or a single goal. In both cases the
explanation provided was the belief/goal immediately above the action in the goal hier-
archy tree. This ensured that the explanation was short (a single element). They found
that both children and adults preferred goal-based explanations, and that adults had a
stronger preference for these than children. However, they caution that the preference
between goals and beliefs can depend on context, and in particular, that in their work the
participants were already considered to be familiar with the domain, since the children
participating in the evaluation themselves had type 1 diabetes.

In later work [19] Kaptein et al. evaluated whether the form of the explanation pro-
vided affected the behaviour of children with type 1 diabetes using an e-health support
system. A distinguishing feature of this evaluation is that it was conducted “in the wild”
over a longer time period (2.5–3 months), with 48 children15 aged 6–14. As in the pre-
vious evaluation, explanations were kept short, being either a single belief or single
goal (“cognitive” explanations), or an emotional explanation (“affective” explanations).
The emotional explanations were obtained by rephrasing from e.g. “I want to . . . ” to
“It would make me happy if you . . . ”. They found only a single statistically significant
result, which was counter-intuitive: providing explanations (either cognitive or affec-
tive) correlated with children following the tasks less often. The authors hypothesised
a number of possible explanations for this behaviour, for example, that children read
the explanation, and if the aim of the task is to teach them something that they already
believe they know, then they are therefore less likely to select that task.

Again, these results are consistent with ours, in that we found varying preference
between beliefs and desires. However, as noted for Harbers et al., their explanations did
not mix explanation types, and they did not consider valuings. On the other hand, they
included affective explanations, which were not part of our evaluation.

More recently, Abdulrahman et al. [1,2] conducted an empirical human subject
study to assess explanations provided by an intelligent virtual advisor. Their study was
limited to university students (mostly under 20 years old), with 91 participants. It con-
cerned a virtual assistant (“Sarah”) that was designed to give advice to help students
manage stress. Like us, they drew inspiration from Malle, but they did not include valu-
ings in their explanations. They considered explanations that contained beliefs only,
desires only, and both beliefs and desires16. The key question they consider is to what
extent “. . . do explanations that refer to the user’s beliefs or goals influence the user’s
intention to change the behaviours recommended by the agent?”. They did not find a dif-
ference between belief-only and goal-only explanations, but found that belief-and-goal
explanations did not lead to a significant change in intentions to join a study group (the
recommendation from the agent), which they ascribe to the explanation being longer.

Mualla et al. [24] propose an explanation mechanism focussed on parsimony, which
requires balancing brevity and adequacy of the explanation. They use contrastive expla-
nations and different forms of filtering to attempt to provide parsimonious explanations.
Their evaluation, which is done using a scenario involving understanding UAV opera-
tions, hypothesises that using contrastive rather than only normal explanations, and

15 One child was excluded from the data analysis due to a data glitch.
16 Since their virtual assistant was only providing advice, rather than performing a sequence of
actions, it did not make sense to have link explanations.
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adaptive rather than static filtering, both improve understandability of explanations.
They divided participants into three groups: normal explanations and static filtering
(SF), normal explanations and adaptive filtering (AF), and adaptive filtering with both
normal and contrastive explanations (AC). Comparing survey results for these groups
they found that while adaptive filtering on its own was not necessarily better (AF vs.
SF), the combination of adaptive filtering and contrastive explanation did make a signif-
icant difference (SF vs. AC). They also evaluated trust, but did not find any statistically
significant relationship regarding the effect of explanation type on trust. This last point
can perhaps be explained by our finding that trust is to some extent influenced by back-
ground trust in technology: if the effect of explanations on trust is only partial (since
trust is also influenced by other factors, such as trust in technology), then we might
expect to see that the effect on trust of changing the form of the explanation would not
be statistically significant. Our findings regarding the length of explanations support
their argument for parsimony: our most preferred explanation was neither the longest
nor the shortest. Finally, we note that their explanation mechanism does not include
valuings, and that our results suggest that it should.

6 Discussion

We have conducted a human participant empirical evaluation of explanations of BDI
agents, where the explanations consist of different types of explanatory components:
beliefs, desires, valuings, and links.

We found that participants assess the different explanations somewhat differ-
ently for Believability, Acceptability, and Comprehensibility, and that most of the
differences between the assessment of different explanations were statistically sig-
nificant (Sect. 4.1). Overall, considering both assessing each explanation on its
own (Sect. 4.1) and explicitly ranking the explanations (Sect. 4.2), we have a consistent
preference for E2 (which has belief and valuing explanatory components), followed by
E1 (all component types) and E3 (valuing only), which are not distinguishable from
each other. The least preferred explanations were E4 (belief only) and E5 (belief and
desire), which are also not distinguishable from each other in terms of preferences.

Analysing the data to assess preferences for the different types of explanatory com-
ponents (beliefs, desires, valuings, links; see Sect. 4.3), we found that the presence of
valuing components make an explanation significantly more likely to be preferred, and
that the presence of belief and/or desire components also makes an explanation more
likely to be preferred, but less so than valuings. On the other hand, the presence of a
link component makes an explanation less likely to be preferred.

Finally (Sect. 4.4), there is statistically significant correlation between trust in SAM
and trust in technology in general (p = 3.85× 10−5), but the correlation has moderate
strength (ρS = 0.46). Since our survey assessed trust in technology before participants
were introduced to SAM, we have that trust in technology cannot be influenced by
anything related to SAM. Therefore, the correlation can be interpreted as indicating
that while trust in technology in general (including AI) influences trust in SAM (as
might be expected), it does not determine it. This is an encouraging finding: if we had
found that preexisting trust in technology and AI in general strongly affected (or even
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determined) trust in a given autonomous system, then there would be a limited (or no)
role for explanations to affect the level of trust.

Returning to our hypotheses, we have that:

H1: Explanations that include valuings are more likely to be preferred by users over
other forms of explanations (that do not include valuings). This hypothesis is con-
firmed by our findings (Sect. 4.1, 4.2 & 4.3).

H2: Explanations that include desires are more likely to be preferred by users over
explanations that include beliefs. This hypothesis is not confirmed: we did not find
a statistically significant difference between preferences for beliefs and desires
(Sect. 4.3).

H3: Explanations that include links are less likely to be preferred by users over other
forms of explanations (that do not include links). This hypothesis is confirmed by
our findings (Sect. 4.3).

H4: Shorter explanations are more likely to be preferred by users. Interestingly, this
hypothesis is not confirmed: explanations E1 (the longest, with all four types of
explanatory factors) and E3 (with only a single factor) did not have a statisti-
cally significant difference in preference (Sect. 4.2). Indeed, E1 was considered
more acceptable than E3, whereas E3 was considered more believable than E1
(Sect. 4.1). Furthermore, there was not a significant difference in their comprehen-
sibility (Sect. 4.1). Indeed, the two least-preferred explanations (E4 and E5) were
the shortest!

Based on these findings, we provide the following advice to guide the development
of explanations.

Firstly, it is clear that valuings are valued. Explanations that included a valuing
component (E1, E2 and E3) were significantly more likely to be preferred. This is con-
sistent with the findings of the previous evaluation [37], which also found that valuings
were valued17. We therefore recommend that when developing explanation mechanisms
based on this framework, that valuing explanatory factors are included in explanations.

Secondly, we found that explanations including link components were less likely
to be preferred. The evaluation by Harbers et al. [15] also found that link explanations
were barely selected as preferred. However, we exercise a note of caution: we only had
one explanation that included links (E1), and it may also be that the lower preference
for this explanation reflects its length. We therefore do not recommend excluding link
explanatory components at this point, but rather suggest that further evaluation would
help to clarify whether they are indeed seen as less preferred.

Thirdly, we did not find that users prefer short explanations. The most preferred
explanation (Sect. 4.2) was E2, which is longer than E3 and E4. On the other hand, the
longest explanation (E1) was not the least preferred. Although the length of an expla-
nation clearly can play a role, with too-long explanations being less useful, our findings
do not support the approach taken by previous work to limit explanations to a single
belief or a single goal. We therefore recommend that when providing explanations, the
explanations are not limited to only single factors. Furthermore, when evaluating forms

17 Specifically, their explanations corresponding in structure with our E2 (valuing and belief) and
E3 (valuing) were most preferred.
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of explanation, longer explanations should also be considered and included in the eval-
uation.

There is scope for further evaluation, with different scenarios, and with different
forms of explanations. Two specific forms of explanation that would be good to consider
are emotions, and interactive explanations. Keptein et al. [18] argue that explanations
should include emotions. This is an interesting idea, and one that would be good to
investigate further. It would also be good to consider other evaluation metrics such as
relevance and the extent to which explanations relate to what the user already knows.
Finally, our evaluation only considered explanations that were presented to the user all
at once. It would also be good to consider explanations that are presented in the form
of a dialogue, with an initial reason being given, and then additional information being
provided as the user interacts with the system (See e.g. [10,11,31,35]).
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2021: 20th International Conference on Autonomous Agents and Multiagent Systems, Vir-
tual Event, United Kingdom, 3–7 May 2021, pp. 68–77. ACM (2021). https://www.ifaamas.
org/Proceedings/aamas2021/pdfs/p68.pdf

2. Abdulrahman, A., Richards, D., Bilgin, A.A.: Exploring the influence of a user-specific
explainable virtual advisor on health behaviour change intentions. Auton. Agents Multi
Agent Syst. 36(1), 25 (2022). https://doi.org/10.1007/s10458-022-09553-x

3. Allison, P.D., Christakis, N.A.: Logit models for sets of ranked items. Sociol. Methodol. 24,
199–228 (1994). https://www.jstor.org/stable/270983

4. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and robots:
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Abstract. Building on prior works on explanation negotiation proto-
cols, this paper proposes a general-purpose protocol for multi-agent sys-
tems where recommender agents may need to provide explanations for
their recommendations. The protocol specifies the roles and responsibili-
ties of the explainee and the explainer agent and the types of information
that should be exchanged between them to ensure a clear and effective
explanation. However, it does not prescribe any particular sort of recom-
mendation or explanation, hence remaining agnostic w.r.t. such notions.
Novelty lays in the extended support for both ordinary and contrastive
explanations, as well as for the situation where no explanation is needed
as none is requested by the explainee.

Accordingly, we formally present and analyse the protocol, motivating
its design and discussing its generality. We also discuss the reification of
the protocol into a re-usable software library, namely PyXMas, which is
meant to support developers willing to build explainable MAS leveraging
our protocol. Finally, we discuss how custom notions of recommendation
and explanation can be easily plugged into PyXMas.

Keywords: XAI · recommender systems · multi-agent systems ·
explanation protocols · Spade · PyXMas

1 Introduction

Explainable AI (XAI) is an area of research aimed at developing AI systems
that can provide understandable explanations of their decisions or behaviours
to humans [11]. The need for XAI arises from the fact that many modern AI
systems, particularly those based on deep learning and other forms of machine
learning, are often seen as “black boxes” that are difficult to interpret or explain
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[13]. This lack of transparency and interpretability can create significant chal-
lenges, particularly in applications such as healthcare, finance, and criminal jus-
tice, where decisions can have profound consequences for human lives [4].

The current focus of XAI research is on developing techniques for “opening
up” these black boxes and providing insights about how an intelligent system
reached a particular decision or prediction [10]. This involves developing methods
for visualising the internal workings of the system, such as feature importance
scores, attention maps, or decision trees. In all such cases, the goal is to support
the AI expert willing to figure out how the intelligent system works, rather than
the non-expert user who wants to understand why the system is behaving in a
particular way. Furthermore, and more importantly, all such methods are based
on the assumption that software tools should aid humans’ interpretation of the
system. However, the expectations of the XAI community go beyond merely
opening up black boxes. Ideally, XAI systems should be able to automatically
provide explanations that surpass mere descriptions of how a system works [7].
Instead, they should offer insights into why the system is – or is not – behaving
in a particular way, possibly, by autonomously interacting with the explainee.

To achieve this goal, XAI researchers are increasingly focusing on the automa-
tion and interactivity of the explanation process [8]. This involves developing AI
systems that can generate explanations on the fly and adapt their explanations
to the needs and knowledge level of the explainee [5]. Along this line, multi-agent
systems (MAS) are likely the most adequate metaphor for intelligent explainable
systems. There, interaction and autonomy are first-class citizens. Hence, explana-
tion can be smoothly modelled as a multi-agent interaction, where the explainee
and the explainer agent (either a human or a software agent [18]) interact to
achieve a common goal, namely, providing a clear and effective explanation.

Accordingly, in this paper we focus on the general problem enabling the inter-
action between explainee and explainer agents. To address this problem, this
paper proposes a general-purpose protocol for multi-agent based recommenda-
tion and explanations. The protocol specifies the roles and responsibilities of the
explainee and the explainer agent and the types of information that should be
exchanged between them to ensure a clear and effective explanation. Notably,
our protocol builds on top of prior attempts to model explanations as multi-
agent interactions, such as the work by [3]. The key features of our proposal
are the (i) the separation of recommendations from explanations, and (ii) the
support for contrastive explanations.

As a side contribution, the paper also describes the design of a Spade-based
Python library implementing the proposed protocol—namely, PyXMas. It sup-
ports the plugging of different sorts of explanation strategies, and representa-
tions. This library can be used as a starting point for building intelligent explain-
able systems where both recommendation and explanation behaviours are del-
egated to individual agents. Overall, this paper represents an important step
towards developing XAI systems that can provide automatic and interactive
explanations.
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2 Background and Related Works

This section briefly overviews the literature on recommender systems, with an
emphasis on food recommender system and interactive/explainable recommen-
dations.

2.1 Interactive Recommendation Systems

In the past, interactive recommender systems have received significant attention
from the recommender systems researchers due to their ability to provide per-
sonalised recommendations to users dynamically based on their feedback and
interactions [12]. The key point behind interactivity is getting feedback from
the user during the recommendation session for the next recommendation. The
authors of [6], for instance, follow a one-shot recommendation where a few ques-
tions learned offline from past observations (i.e., from previous sessions) are asked
prior to the recommendation. Answers to these questions let the recommender
system personalise and improve future recommendations.

Building interactivity, researchers has also started to incorporate explainabil-
ity into recommender systems [3,21] in order to increase the transparency of a
recommender system. They do so through a repeated recommendation session
where the system also provides explanations (other than recommendations), and
it gets feedback given the positive effect observed in more transparent recom-
mendations [17]. For instance, in [15], the authors implement visual explanations
to users for music recommendation using grouped bar charts in a live compari-
son of the user’s specified preferences for six categories and the song’s matching
percentage of that category. Similarly, the authors of [20] propose a recommen-
dation system mimicking a human salesman: the system applies conversational
explanations to convince users to buy more fitting alternatives.

2.2 Prior Work on Explanation Protocols

This paper proposes an extension of the protocol introduced by [3], which is
tailored on food recommendations and explanations. There, the user starts the
interaction by providing their constraints, which include ingredients that they
are allergic to (such as milk or peanuts), preferred or disliked ingredients (such
as certain meats or vegetables), and the desired cuisine type (like Middle East-
ern or Mexican). The agent responds by suggesting a recipe and providing an
explanation. The user then can accept the recommendation, decline it, or pro-
vide feedback on either the recipe, the explanation, or both at once. Accordingly,
the agent may generate a new recipe or provide further explanation, or both at
once. This interaction continues in a turn-taking fashion until the user accepts,
leaves the session early, or reaches a time limit. Figure 1 illustrates how agents
interact in line with this protocol.

Summarising, the key contribution of [3] is a framework for creating a
nutrition-related personalised recommender system that simultaneously pro-
duces recommendations and explanations. On the one hand, presenting recom-
mendations and explanations altogether establishes a transparent interaction
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Fig. 1. FIPA representation of the negotiation protocol presented in [3]

with the user and may lead the user to accept such recommendations. On the
other hand, unrequested explanations could be perceived as redundant and cre-
ate an additional cognitive load on the user. The latter point has been studied,
for instance, by Mualla et al. in [16]. There, parsimony has been outlined as one
of the key features allowing successful human-agent interaction. In particular,
parsimonious explanation are defined as the least complex that describes the
situation adequately.

Accordingly, this work aims to revise the design to generate explanations
based on users’ requests, letting the user decide when to receive an explanation
rather than providing a one-for-all solution. Furthermore, our revised protocol
supports “zooming” explanations, where further explanatory details are only pre-
sented if and when the explainee is asking for them. In this way, the protocol
lets users dynamically decide what degree of parsimony is fine for them

2.3 SPADE: Multi-agent Programming in Python

Spade1 is an open-source multi-agent system platform developed in Python. It
provides a programming library for developing and simulating intelligent agents
in various environments. The library is designed to be highly modular and exten-
sible, allowing developers to easily create agents that can interact with each other
and their environment.

1 https://spade-mas.readthedocs.io.

https://spade-mas.readthedocs.io
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At the modelling level, Spade design and architecture are very close to the
ones of Jade [2]. Accordingly, Spade systems are distributed systems composed
by agents which may or may not lay on the same network node. Agents’ activities
are governed by a set of behaviours, which are executed concurrently by the
agent. Both agents and behaviours are implemented as abstract Python classes,
which developers may extend to create their custom agents and behaviours.

Notable differences among Spade and Jade mostly lay at the technological
level. While Jade is a Java-based platform, Spade is implemented in Python.
This allows Spade to be easily integrated with other Python libraries, there
including the many ML and AI framework which are nowadays available for the
Python platform. Furthermore, Spade assumes agent interactions are mediated
by an XMPP service, which is a standard protocol for instant messaging. This
makes Spade’s agent communication facilities quite robust, interoperable, and
scalable—as opposed to other agent platforms relying on proprietary or ad-hoc
protocols. It also makes it easier to realise blended applications where agents
interact with humans, other than with software agents.

Along this line, the Spade framework comes with a range of features for
developing intelligent agents, including communication protocols, message pass-
ing, and event handling. Notably, it supports the implementation of interaction
protocols via finite-state machine behaviours—similarly to what Jade does.

Overall, the Spade library provides a powerful and flexible platform for devel-
oping intelligent agents, making it a popular choice for researchers and developers
working in the field of multi-agent systems.

3 Explanation-Based Recommendation Protocol

The word “explanation” derives from the Latin word “explicare”, which means
“to unfold”. There, the idea is that an explanation is a process of unfolding the
meaning of a concept. Such a process is typically interactive, as it involves the
interaction between some explainee and some explainer. In this sense, explana-
tions is an inherently social protocol.

As far as interactions among human beings are concerned, the protocol is typ-
ically informal and unstructured. However, it typically involves an explainee, ask-
ing for help in understanding a given matter to some – allegedly, more knowledge-
able – explainer. Explainers will then try their best to provide clear and effective
explanations, possibly by trial-and-error, exploiting different explanation strate-
gies or levels of detail. As interaction proceeds, explainers would also try to adapt
their explanations to the needs and knowledge level of the explainee. Further-
more, explanations are commonly provided upon request, possibly in response
to some prior information provided by either the explainee or the explainer, or
someone else.

Modern intelligent systems are supposed to support decision-making by pro-
viding recommendations—possibly relying on artificial intelligence. Hence, when
it comes to explainable intelligent systems, users commonly play the role of
explainee, whereas software systems play both the role of the recommender and
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the explainer. By adopting a multi-agent perspective, we can model both recom-
mendation and explanation as a single interaction protocol among two agents—
where one of the two (commonly, the explainee) is a human being [8]. Hence, we
may interchangeably use the terms “explainee” and “user” (resp. “explainer” and
“agent”). Accordingly, in this section, we propose a general-purpose interaction
protocol for multi-agent based recommendation and explanation.

Our protocol assumes that the user is in charge of initiating the interaction.
Hence, the agent waits for the user to trigger a query. When receiving a query,
the agent should respond by producing a recommendation.

While computing the recommendation, the agent may leverage on any infor-
mation available to it at that moment, including the user’s profile, the history of
previous interactions, and – possibly – aggregated information about other users.
Furthermore, it may take advantage of both symbolic AI reasoning facilities, and
machine learning predictors.

In response to a recommendation, the user may either simply accept/discard
the recommendation, or ask for explanations.

The explanation phase may involve several rounds of interaction, where the
user may either ask for further details or request comparisons; and the agent
attempts to provide all such kinds of information. Eventually, enlightened by
the explanation process, the user may either accept or reject the recommen-
dation. In both cases, the agent may consider the acceptance/rejection of its
recommendation – as well as the amount of explanatory information provided
required by the user to reach a decision – as feedback for future recommenda-
tions. In the particular case of a rejection, the agent may also be interested in the
reason for the rejection, so as to improve its recommendation and explanation
strategy.

Notably, explanations are always (i) provided upon request, (ii) related to the
recommendation, and (iii) directed towards the user. Furthermore, explanations
may be of two broad types, namely:

Ordinary explanations, which aim at answering the question “why did you rec-
ommend me this?”;

Contrastive explanations, which aim at answering the question “why did you
not recommend me that instead?”.

Accordingly, our protocol supports both types of explanations, and it lets the user
decide which type of explanation to request. Of course, the exchanged messages
may be different depending on the type of explanation requested.

3.1 Abstract Formulation of the Protocol

Here, we propose an abstract formulation of the protocol which is agnostic w.r.t.
the particular way in which the recommendation and explanation are represented
and computed. In other words, we only focus on the messages exchanges among
explainers and explanees, what information they should carry, and in which
order they should be exchanged. Accordingly, the protocols relies on 13 types
of messages, which may carry data fields of 5 different types, to be exchanged
among agents playing 2 possible roles.
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Fig. 2. Message communication diagram between an explainer agent (blue boxes) and
an explainee (green boxes). Each box represents a message. Each message is connected
to the ones it can receive as reply. (Color figure online)

Roles are of course explainee (a.k.a. user) and explainer (a.k.a. agent). The
explainee initiates the protocol, while the explainer waits for the protocol to be
started by the explainee.

We also identify 5 data types which represent the potential payload that
agents may exchange during the protocol. As far as the abstract formulation of
our protocol is concerned, we do not constrain the shape / structure of these
types, but we simply assume they exist. In this way, implementers of the protocol
will be free to define their own specification for these types, tailoring them on
their particular application domain. In particular, the data types are:

Queries (denoted by Q), i.e. recommendation requests concerning a given topic,
issued by the explainee when initiating the protocol;

Recommendations (denoted by R,R′), i.e. responses to queries, issued by the
explainer;

Explanations (denoted by E,E′), i.e. chunks of explanatory information issued
by the explainer to clarify their recommendation;

Features (denoted by F ), i.e. aspects of the user which are relevant which justify
some recommendation rejection, which the explainer should memorise and
take into account in future interactions;

Motivations (denoted by M), i.e. reasons for the rejection of a recommendation,
which may affect how the agent reacts to a rejection.

Finally, we identify 13 types of messages, which are exchanged among agents
playing the explainee and explainer roles. We denote messages as named records
of the form: Name(Payload), where Name represents the type of the message and
Payload represents the data carried by the message—which consists of instances
of the aforementioned data types. Payloads consist of ordered tuples of data
types, where items suffixed by a question mark are optional. A summary of
message types and their admissible payloads in Fig. 2. Accordingly, message types
are (description follows a breadth-first traversal the diagram in the figure):
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1. Query(Q) is the message issued by the explainee to initiate the protocol: it
carries a recommendation request Q;

2. Recommendation(Q ,R) is the message issued by the explainer in response
to a query: it carries the query Q and the corresponding recommendation
R computed by the explainer;

3. Why(Q ,R) is the message issued by the explainee to request an explanation
of a recommendation: it carries the original query Q and the recommenda-
tion R;

4. WhyNot(Q ,R,R′) is the message issued by the explainee to request a con-
trastive explanation of a recommendation: it carries the original query Q, the
recommendation R, and a second recommendation R′, which the explainee
wants the explainer to contrast with R;

5. Accept(Q ,R,E?) is the message issued by the explainee to accept a rec-
ommendation: it carries the original query Q, the recommendation R, and
optionally the explanation E provided by the explainer;

6. Collision(Q ,R,F ,E?) is the message issued by the explainee to notify the
explainer that the provided recommendation is colliding with some personal
feature/preference of theirs: it carries the original query Q, the recommen-
dation R, a description of the feature F , and optionally the explanation E
provided by the explainer;

7. Disapprove(Q ,R,M ,E?) is the message issued by the explainee to notify
the explainer that the provided recommendation is not acceptable for some
reason: it carries the original query Q, the recommendation R, a description
of the reason M , and optionally the explanation E provided by the explainer;

8. Details(Q ,R,E ) is the message issued by the explainer to provide more
details about a recommendation: it carries the original query Q, the recom-
mendation R, and the explanation E;

9. Comparison(Q ,R,R′,E ) is the message issued by the explainer to provide
a contrastive explanation of a recommendation, in the case the one recom-
mendation proposed by the explainee is admissible as well: it carries the
original query Q, the recommendation R computed by the explainer and
the one R′ proposed by the explainee, and an explanation E comparing the
two;

10. Invalid(Q ,R′,E ) is the message issued by the explainer to notify the
explainee that the proposed recommendation is invalid: it carries the original
query Q, the proposed (and invalid) recommendation R′, and an explanation
E motivating the invalidity;

11. Unclear(Q ,R,E ) is the message issued by the explainee to notify the
explainer that the provided explanation is unclear: it carries the original
query Q, the recommendation R, and the provided (and unclear) explana-
tion E;

12. Prefer(Q ,R,R′) is the message issued by the explainee to notify the explainer
that they prefer a different recommendation: it carries the original query
Q, the recommendation R proposed by the explainer, and the preferred
recommendation R′ proposed by the explainee;
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13. Override(Q ,R,R′) is the message issued by the explainee to notify the
explainer that want to force the decision to some recommendation which
is considered invalid by the explainer: it carries the original query Q, the
recommendation R proposed by the explainer, and the forced recommenda-
tion R′ proposed by the explainee.

Notably, messages are designed by keeping the representational sate transfer
(ReST, [9]) architectural style into account. Hence, each message type is designed
to carry all the information necessary for any involved party to decide which
action to take next. This is the reason why all/most messages carry the original
query Q and the recommendation R (or R′) which they are referring to.

The message communication diagram from Fig. 2 depicts not only the mes-
sages exchanged by the explainee and explainer, but also the admissbile request–
response patterns which the protocol allows. There, a more detailed view of the
message flow is provided, which we briefly summarise in the following. The
explanation-based recommendation protocol consists in the following phases
(depth-first traversal of Fig. 2):

1. the explainee initiates the protocol, by issuing a message Query(Q);
2. the explainer provides a message Recommendation(Q ,R) in return;
3. the explainee may now:

3.1 accept the recommendation, by answering Accept(Q ,R), hence terminat-
ing the protocol;

3.2 reject
the recommendation because of M , by answering Disapprove(Q ,R,M );
or signal it as colliding with F , by answering Collision(Q ,R,F ). In this
case, the explainer should propose another recommendation (go to 2.);

3.3 ask for ordinary explanations, by answering Why(Q ,R). In this case, the
explainer should propose an explanation, by answering Details(R,E ). The
explainee may now:

3.3.1. accept, reject, or signal R in light of E, by answering Accept(Q ,R,E ),
Disapprove(Q ,R,M ,E ), or Collision(Q ,R,F ,E ), respectively, with
outcomes similar to cases 3.1. and 3.2;

3.3.2. ask for a better explanation via Unclear(Q ,R,E ) (go to 3.3.).
3.4 ask for contrastive explanations motivating why not R′, by answering

WhyNot(Q ,R,R′). The explainer may now:
3.4.1. explain the difference E among R and R′, if R′ is admissible w.r.t. its

current knowledge base, by answering Comparison(Q ,R,R′,E ). Now,
the explainee may either (in both cases, the protocol terminates):

3.4.1.1. accept R, via Accept(Q ,R,E ), or
3.4.1.2. state that they prefer R′, via Prefer(Q ,R,R′).

3.4.2 explain that R′ is not an admissible recommendation because of E, by
answering Invalid(()Q,R′, E). At this point, the explainee may either
(in both cases, the protocol terminates):

3.4.2.1. accept R, via Accept(Q ,R,E ), or
3.4.2.2. override the explainer’s decision, by stating that they prefer R′,

via Override(Q ,R,R′)—hence forcing the explainer to update
their own knowledge base accordingly.
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3.2 Relevant Scenarios and Protocol Analysis

The protocol is general enough to cover multiple relevant situations, correspond-
ing to different needs/desires of the users. For instance, users may: (i) simply
want a recommendation; (ii) want the recommendation to be explained; (iii)
want more details for a given explanation; (iv) want to simulate other possible
recommendations; (v) provide positive or negative feedback about recommenda-
tions or explanations.

All such situations correspond to relevant usage scenarios of the protocol.
These are briefly summarised in Fig. 3, and discussed below.

Quick Accept. This is the scenario depicted in Fig. 3a. There is no need for
explanations, and the user simply accepts the recommendation provided by the
agent.

For instance, the user asks for a restaurant recommendation, and the agent
proposes a restaurant, and the user is fine with it.

Quick Retry. This is the scenario depicted in Fig. 3b. There is no need for expla-
nations, and the user simply rejects the recommendation provided by the agent,
by either disapproving it or stating that it is in conflict with their own prefer-
ences. In both cases, the agent shall produce a new recommendation.

For instance, the user asks for a restaurant recommendation, and the agent
proposes a steakhouse, but the user does not like it because: (i) they are vege-
tarian or they do not like steak, or (ii) they do not want to eat meat that day. In
the former case, the user shall signal a collision among the recommendation and
its preference—which the agent is expected to learn and to take into account for
future recommendations. In the latter case, the user shall simply disapprove the
recommendation—but the agent is not supposed to memorise such an event.

Ordinary Explanation Loop. This is the scenario depicted in Fig. 3c. The user
asks for a recommendation, and the agent provides one. The user is not satisfied
with the recommendation, and asks for an explanation. The agent provides an
explanation, and the user is not satisfied with it. The user asks for further
details, and the agent provides them. The loop may be repeated several times.
Eventually, the user accepts the recommendation, or asks for a new one, similarly
to the quick accept/retry scenarios.

The interesting part here is the explanation loop. It is a flexible mechanism,
supporting zooming in/out explanations: the agent change the granularity of
the explanations, by providing more or less details. For instance, the agent may
provide local explanations first – i.e., explanations describing how the recommen-
dation was produced – and then global explanations—i.e., explanations describ-
ing how recommendations are computed in general. The agent may also change
the representation means of the explanations, by providing textual explanations
first, and then visual explanations—or vice versa.

As an example, consider the situation where the user asks for a restaurant
recommendation. The agent recommends some Asian restaurant in the users’
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Fig. 3. Sequence diagrams describing most common scenarios of the protocol.
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surroundings, having 4.3 stars (out of 5) on ACME-Advisor.com. The user is
curious in understanding the reason why the agent proposed that restaurant,
and asks for an explanation. The agent provides an explanation, stating that
the restaurant is close to the user, and that it has a good rating. Furthermore,
the agent reminds to the user that – to the best of its knowledge – they like
Sushi. The user is still not satisfied, and asks for further details. The agent
provides a textual explanation, stating that it commonly recommends the highest
ranked restaurant matching the user’s tastes, and having a distance which is not
higher than 1 km. Eventually, the user may be satisfied with the explanation,
and accept the recommendation; or they may reject the recommendation and
possibly request a new one.

Contrastive Explanation Loop. This is the scenario depicted in Fig. 3d. The user
asks for a recommendation, and the agent provides one (R). The user was not
expecting that recommendation, but rather another one (R′), and they ask for a
contrastive explanation. If the users’ recommendation is acceptable as well, the
agent provides a comparison between the two recommendations, arguing one of
the two is better than the other. Otherwise, if the users’ recommendation is not
acceptable, the agent provides an explanation for why it is not acceptable. In
both cases, the user may either accept the original recommendation or prefer
their own—possibly overriding the agent’s recommendation. In the case of an
override, the agent should learn from the user’s preferences, and possibly update
its recommendation policy. In any case, the interaction ends.

The key points here are the possibility, for the user, to (i) simulate alternative
recommendations, and (ii) contradict the recommender agent in order to let it
learn.

Consider for instance the aforementioned restaurant recommendation case.
The user may not be satisfied with the agent’s recommendation concerning an
Asian restaurant, and propose the local steakhouse instead. The agent may
then either consider the proposal acceptable or not, depending on the dietary
goals and physiological condition of the user. If the agent considers the pro-
posal acceptable, it may provide a comparison between the two recommenda-
tions, stating that the Asian restaurant is closer. At this point, the user may
either accept the original recommendation (Asian restaurant) or prefer their
own (steakhouse). Otherwise, if the agent considers the proposal unacceptable,
it may provide an explanation for why it is not acceptable—e.g. steak is violat-
ing the user’s dietary goals. In this case, the user may either accept the original
recommendation (Asian restaurant) or override it (steakhouse).

3.3 Which Sorts of Explanations and Recommendation?

The explanation protocol is agnostic w.r.t. the particular way in which explana-
tions and recommendations are represented. Indeed, it is implementers’ responsi-
bility to define the representation means of explanations and recommendations—
other than deciding how they should be computed in practice. The protocol
simply dictates when explanations and recommendations should be computed.
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Accordingly, in this subsection we provide a few insights about the possible
design choices for explanations and recommendations.

Recommendations are commonly supported by means of one or more ML
predictors, trained on users’ data. Whether predictors’ training is a respon-
sibility of the recommender agent, or simply the agent is endowed with pre-
trained predictors at deployment time, is an implementation detail. In either
cases, the recommender agent is supposed to know (or be able to access or
acquire) profile-related information about the user. Such information may come,
for instance, from some initial configuration phase, as well as be inferred by the
agent itself, from the accepted/rejected recommendations. To support the latter
case, the agent should be endowed with some learning algorithm, making it able
to (re)train the predictors when new user data is avaliable. Under this perspec-
tive, as far as recommendations are concerned, the explainer agent is simply
proxying the ML predictor(s).

Explanations, on the other hand, are not necessarily supported by ML pre-
dictors. In this case, the XAI literature is full of possible approaches, including
both visual, textual, and numeric explanations. The interested reader may refer
to high impact surveys such as [1,10] for a comprehensive overview of the state of
the art. The key point here is that the explainer agent should not only wrap the
ML predictor(s), but also encapsulate the logic for representing and computing
explanations.

Along this line, one critical situation is the one where recommendations and
explanations come with different representation means—e.g. textual and visual.
In this case, the explainer agent should be able to bridge the gap between the two,
by providing a unified representation of the recommendation and its explanation.

To mitigate this issue, designers may consider adopting computational logic
as the reference framework for both recommendations and explanations. In com-
putational logic, both knowledge bases, and queries, are represented as logic
formulæ. Logic formulæ, in turn, can be exploited to represent both recom-
mendations and explanations. In fact, logic queries may be used to represent
recommendation requests, and logic solutions may be used to represent recom-
mendations, whereas proof trees may be exploited to compute explanations.

For instance, a recommendation query may consist of the logic goal
should_eat (Food , lunch), where Food is a logic variable, i.e., a placeholder for
unknown values. Recommendations R,R′, R′′, . . . may be logic solutions, i.e.,
assignments of logic variables (e.g., Food = paella). Explanations E,E′, E′′, . . .
may be of many sorts:

– local explanation, e.g. the path in the proof tree computed by the explainer
agent to provide the recommendation;

– global explanation, e.g. the logic program used by the explainer agent to
provide the recommendation;

– contrastive explanation, e.g. quality metrics comparing two or more recom-
mendations, or the violated constraints making some recommendation unac-
ceptable;

– any combination of the above.
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User features F, F ′, F ′′, . . . may be raw facts describing the user (e.g., age(31),
goal(lose_weight), category(vegetarian)). Disapprove motivations may be
predefined facts such as dislike – the user does not like a recommendation
and the agent should learn that – or not_now—the user simply does not want
that recommendation now, may they like it in general (so the agent should not
memorise that).

4 From Theory to Practice with PYXMAS

In this section, we describe how our protocol can be reified into actually usable
agent-oriented software. Accordingly, we discuss the design of PyXMas2, i.e.,
our Python library for explainable multi-agent systems.

PyXMas is an agent-oriented software library based on Spade. It comes
with predefined – yet parametric – implementation of the protocol described in
Sect. 3, in the form of reusable agent behaviours. In this way, researchers and
developers can easily take advantage of our protocol to build explainable MAS,
without wasting time in re-implementing the protocol. Rather, they can focus
on the design of the actual recommender and explainer agents, as well as on
the representation means of recommendations and explanations. In particular,
PyXMas requires designers to define which particular notion of recommenda-
tion and explanation they want their agents to support, and how should agents
compute or react to them.

4.1 PYXMAS Architecture

Fig. 4. Architecture of PyXMas. Behaviours are provided by the library, and they
are parametric w.r.t. components. PyXMas users are responsible for implementing
and plugging their own components, in order to tailor PyXMas to their specific needs.
Optionally, if the explainee agent is human, users may also need to implement a UX
component supporting interaction with the explainee—possibly via some device.

Figure 4 summarises the modular architecture of PyXMas. Leveraging on
Spade facilities, PyXMas is implemented two behaviours, which can be easily
2 https://github.com/pikalab-unibo/pyxmas.

https://github.com/pikalab-unibo/pyxmas
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plugged into any agent—namely, the protocol initiator and the responder. On
the one hand, the initiator behaviour is responsible for sending recommendation
queries to the explainer agent, and for receiving and processing the correspond-
ing recommendations and explanations. Consequently, the initiator behaviour is
meant to be plugged into the explainee agent. On the other hand, the respon-
der behaviour is responsible for receiving requests from the initiator, and for
computing and sending recommendations and explanations. Consequently, the
responder behaviour is meant to be plugged into the explainer agent.

Figure 4 also shows that PyXMas is designed to be highly parametric. In
particular, the initiator and responder behaviours are parametric with respect
to a number of components which dictate the actual behaviour of the agents. In
this way, users of PyXMas can easily tailor the library to their specific needs,
by implementing and plugging their own components.

Explainer Agent. As far as the explainer agent is concerned, the responder
behaviour requires the following components provided by developers:

Recommendation Strategy— the component in charge of computing recom-
mendations for any given query. In addition to users’ requests and feedback,
the recommendation strategy should consider profile information about users
(e.g., their goals/interests, such ‘losing weight’), as well as their preferences
and interests (e.g., vegetarian users do not eat meat). Agents may have limited
information about their users’ preferences but could learn more over-time—
also thanks to our protocol. The learned preferences and constraints could be
exploited to generate well-targeted recommendations.

Explanation Strategy—the component in charge of computing explanations
for any given recommendation. This is where designers can develop different
approaches for generating explanations supporting the given recommenda-
tions. While operating, the explanation strategy may exploit the estimated
user profiles (e.g., the user dislikes animal-derived food), as well as common-
sense or background information (e.g., food X only contains vegetable-derived
ingredients) which is made available to the agent.

User Profiler—the component in charge of learning user profiles from users’
feedback. This component may adopt any heuristic-based or machine learn-
ing approach to learn users’ preferences over time. As the explainer agent
interacts with the explainee, it gets (possibly implicit) feedback about the
recommendations it provides. It this way, it may infer valuable information
about their preferences and interests. In this way, the agent can update the
explainee’s profile information—in order to eventually provide better expla-
nations or recommendations.

Interaction Strategy—the component in charge of which recommendation and
explanation strategies to exploit, and how to present recommendations and
explanations to the explainee. This component is responsible for processing
the content of the exchanged messages and transferring them to the related
components. Note that not only the content of the messages but also how
these messages are expressed/represented plays a crucial role in interactive
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intelligent systems. Consider for instance the case where the explainer agent
is a humanoid robot. In the case, the interaction component is in charge of
selecting the best gestures or facial expressions supporting the action taken
(e.g., a surprising facial expression when it discovers unexpected knowledge
about the user). The interaction strategy component may also operate the
other way around. For instance, if the robot can sense people facial emotion,
tones, or gestures, it may adjust other components behaviour accordingly.

It is worth mentioning that, to operate correctly, the explainer agent is sup-
posed to collect and store two sorts of information, namely: (i) profile data about
the explainee, and (ii) common-sense/background knowledge about the domain
of interest. For an architectural perspective (cf. Fig. 4), information of these sorts
are store in to ad-hoc data stores. In particular, profile data is stored in the user
profile data store, while the common-sense/background knowledge is stored in
the knowledge base data store. These data stores are local w.r.t. the explainer
agent, and act as its memory/belief base. They are subject to reads/updates by
the different components of the explainer agent.

Explainee Agent. As far as the explainee agent is concerned, the initiator
behaviour requires the following components provided by developers:

Query Provider—the component in charge of generating queries for the
explainer agent, depending on the current goals of the explainee.

Recommendation Evaluator—the component in charge of evaluating the
recommendations provided by the explainer agent and deciding whether to
accept or reject them.

Explanation Evaluator—the component in charge of evaluating the expla-
nations provided by the explainer agent, and affecting the recommendation
evaluator accordingly.

In the particular case where the explainee agent is a human user, the explainer
agent should be implemented as a simple proxy agent, which acts on behalf of
the human and mediates their interaction with the recommender agent. In that
case, the proxy agent is responsible for human-computer interaction, possibly
via some user interface (UI) presented to the human on top of some device (e.g.,
a smartphone). This is the situation depicted in Fig. 4. When this is the case,
the proxy agent is supposed to include one further component, namely the User
Experience (UX) one.

When present, the UX component is in charge of governing the UI, hence
grasping humans’ inputs and presenting recommendations and explanations to
them. In this case, the other components are simply in charge of processing
the humans’ inputs and generating the appropriate messages to be sent to the
explainer agent.



54 G. Ciatto et al.

4.2 PYXMAS Design

PyXMas consists of a Python library providing:

– abstract classes defining the (de)serialisation message payloads exchanged
between the explainer and explainee agents (cf. Sect. 3.1),

– abstract classes defining the initiator and responder behaviours.

In both cases, we exploit abstract classes as we leave room for costumisation. In
fact, developers may want to extend the provided abstract classes and override
specific methods to plug their own components.

Accordingly, in this subsection, we describe the abstract classes available in
PyXMas and the way they are supposed to be extended to so ars to build some
actual explainable MAS.

data

Serializable

parse(input)
serialize(): str

QueryRecommendation

Explanation

Motivation Feature

Fig. 5. Abstract classes for message payloads in PyXMas.

Data Types for Message Payloads. As shown in Fig. 5, PyXMas provides 5
abstract classes for the as-many data types defined in Sect. 3.1. These classes sim-
ply force developers to make these data types serialisable—i.e., to support their
conversion into/from strings. This is necessary for the explainer and explainee
agents to exchange messages over the network.

How to actually represent queries, recommendations, explanations, and so
on, is left to developers. In fact, the only constraint is that the serialised version
of these data types should be both machine- and human-interpretable.

When it comes to design some actual explainable MAS, developers may
plug their custom notion of query, recommendation, explanation, and so
on, by extending the provided abstract classes, and by implementing their
(de)serialization-related methods.
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Fig. 6. State diagrams describing the initiator and responder behaviours as imple-
mented in PyXMas.
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Predefined Behaviours. PyXMas also provides two abstract classes for as
many protocol roles agents may play, namely: the initiator and the responder
behaviours. Building on Spade facilities, these classes are technically finite-state
machine (FSM) behaviours. In other words, they are implemented as a set of
states, each of which is associated with a set of actions to be performed when the
agent enters that state. Figure 6 shows the state diagrams describing the initiator
and responder behaviours as implemented in PyXMas. Broadly speaking, states
either represent situations where agents are waiting for messeges from the other
side, or situations where one of the agent is busy computing (resp. evalutation)
a message for (resp. from) the other side.

These classes come with template methods (a.k.a. callbacks) that develop-
ers may override to plug their own components. In particular, on the initia-
tor side, callbacks are supposed to be overridden to control how the explainee
agent: (i) generates queries, (ii) evaluates recommendations and decides whether
to accept or reject them, (iii) evaluates explanations, and decides whether to
accept or reject recommendations accordingly. On the responder side, callbacks
are supposed to be overridden to control how the explainer agent: (i) generates
recommendations, (ii) generates explanations, (iii) handles situations where rec-
ommendations are accepted/rejected.

5 Conclusion and Future Work

In this paper, we present a general-purpose protocol for explainable MAS. The
protocol is based on the idea that explanations should be provided upon request,
by letting the same intelligent agent that is responsible for the recommendation
process explain its own decisions. This subtends the existence of another entity
– namely, the explainee agent – which requests recommendations and, possibly,
explanations to the aforementioned intelligent agent. Under such hypotheses,
our protocol regulates the interaction among such agents.

Despite our formulation is abstract, we discuss how concrete sorts of rec-
ommendations and explanations could be modelled and exchanged via the
proposed protocol. Along this line, we also provide a Python implementation
of the protocol – namely, PyXMas –, which is available as an open-source
library on GitHub. PyXMas supports the pluggability of custom recommen-
dation/explanation definitions—hence making it possible to re-use the protocol
in different contexts.

Future works. Our protocol, as well as the PyXMas technology, plays a crucial
role in the context of the Expectation project [5]—which is funding this work.
There, the exploitation of multi-agent interaction as a means for explaining rec-
ommendations is at the core of the project.

Accordingly, further research is needed to investigate how the protocol
impacts human-user interaction as a means for XAI. Along this way, we are
planning both theoretical extensions of the protocol and technical improvements
of the PyXMas technology—possibly enabling empirical studies on the impact
on explainability.
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In particular, concerning the protocol, we are planning to extend the for-
mulation to support meta-data describing the emotional state of the explainee
agent—hence studying of such meta-information may affect the recommenda-
tion/explanation process.

Concerning the PyXMas technology, we are planning to support the
exploitation of symbolic knowledge extraction [19] and injection [14] as a means
for explaining recommendations. This would imply leveraging on symbolic AI
techniques to represent explanations and recommendations. Finally, we plan to
provide better support towards human-computer interaction based on PyXMas.
In this regard, our intention is to develop a Web- or Telegram-based graphical
user interface for letting humans interact with PyXMas agents.
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Abstract. The need for AI systems to explain themselves is increasingly
recognised as a priority, particularly in domains where incorrect decisions
can result in harm and, in the worst cases, death. Explainable Artificial
Intelligence (XAI) tries to produce human-understandable explanations
for AI decisions. However, most XAI systems prioritize factors such as
technical complexities and research-oriented goals over end-user needs,
risking information overload. This research attempts to bridge a gap in
current understanding and provide insights for assisting users in compre-
hending the rule-based system’s reasoning through dialogue. The hypoth-
esis is that employing dialogue as a mechanism can be effective in con-
structing explanations. A dialogue framework for rule-based AI systems
is presented, allowing the system to explain its decisions by engaging
in “Why?” and “Why not?” questions and answers. We establish formal
properties of this framework and present a small user study with encour-
aging results that compares dialogue-based explanations with proof trees
produced by the AI System.

1 Introduction

Reasoning, the process of synthesising facts and beliefs to make new decisions, is
a fundamental component of humans’ explanatory mechanisms [11]. Giving the
current generation of AI systems human-like capabilities for explaining them-
selves is challenging because their data-driven nature makes it hard to identify
reasoning-like processes. In contrast, in the early days of AI, explainability was
regarded as an easy task since most systems were logic-based [26]. Such Rule-
based systems (RBS) may be learned, and, in particular, there have been recent
results in the extraction of decision trees (and rules) from neural networks for
the purposes of improved explainability [21,31]. Even in this work, however, the
assumption is that once converted to the RBS, the resulting system is inherently
explainable. Because when the rule-chaining process of such a system becomes
very complex, their explanations are difficult to follow [14].

As a starting point, we focus on explaining hand-crafted RBS, with the aim
of extending our learned rules to RBS extracted from machine learning models in
the future. The utility of an explanation depends upon the user’s context – why
they are seeking an explanation. Are they surprised by a recommendation and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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want to know more? Do they want to challenge a recommendation? In particular,
we have focused on situations where the user’s information is different from
that possessed by the system and we’ve used the user’s ability to discover this
mismatch following the explanatory process as one of our metrics for assessing
the utility of the explanation.

We propose a formal framework for dialogues involving two participants (pre-
sumed to be a RBS and a user) that specifies allowable utterances (in the form of
questions or “one step” explanations) and how each participant’s mental model
of the other is updated given these utterances. We have implemented this frame-
work together with a simple RBS based on rules around Covid-19 restrictions.
To assess our explanation, consider Miller’s [16] findings that a good explanation
must be short, be selected, and be social, we compared the dialogue system with
providing the RBS’ deduction tree with encouraging results.

2 Related Work

Early rule-based expert system explanations [22] focused in particular on the
explanation framework [5,19,25,29], and the human-computer interface (HCI)
through which the explanation was supplied [13,24]. The most sophisticated
approaches involved an “intelligent” conversation with the system user that was
done in simple terms and using interactive methods [9]. Naturalness was recog-
nised as a condition for a good explanation [12,17] so the social aspect of expla-
nation was known. The user’s inquiry is restricted to asking why this information
is being requested by the system [5]. However, little progress was made in terms
of enabling users to really guide an explanation to a desired outcome, also it
becomes challenging to construct a coherent explanation when there are numer-
ous chained rules involved [14].

To solve the issue mentioned above, several dialogue models for explanation
have been proposed [23,27]. Walton’s shift model for dialogue proposes an expla-
nation and examination dialogue with three stages and two rules governed by
the explainee to determine the success of an explanation [3,28]. These models,
however, don’t appear to have iterative aspects like cyclic dialogues and lack a
data-based foundation or validation. Madumal introduced an interaction proto-
col for interactive explanations by analyzing transcripts from real explanation
dialogue datasets [15].

Argumentation, as an important reasoning strategy, has also been incorpo-
rated into dialogue models to enhance the explainability of AI systems [2,7,
18,20,26]. Walton and Bex [3] utilize argumentation models and dialogue and
enable the explainee to question and dispute the provided explanations which are
modeled as arguments. This enables the explainee to query and interrogate the
provided explanations in order to achieve better comprehension. Although the
proposed framework offers a high-level structure for explanation-based conver-
sations, it does not place a strong emphasis on explaining rule-based deductions
or using arguments to fully comprehend the beliefs of the other person. Fur-
thermore, there are very few actual human experiments that have been done to
evaluate the efficacy of such arguments.
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A dialogue framework has been developed to explain the behavior of a sys-
tem programmed using the BDI (Beliefs-Desires-Intentions) paradigm which has
many similarities to RBS [8]. It defines a turn-based system and allows users to
ask questions about the reasons behind selecting plans of action within the sys-
tem, but does not provide a way to explain deductive reasoning (which is our
focus). Building upon the foundational works of Dennis and Oren [8], we aim to
ensure that the user gains a genuine comprehension of the explanation without
overwhelming them with excessive information.

Miller highlights the importance of concise, carefully chosen, and socially
relevant explanations [16]. He emphasizes that explanations serve as answers to
“why” questions. Similarly, Winikoff also emphasizes the significance of address-
ing “why” questions when providing explanations [30]. Our dialogue explanations
also prioritize addressing both “why” and “why not” questions to generate col-
laborative explanations.

3 Framework

Our starting point is two “players” (assumed to be some RBS and a user). Each
possesses a set of facts (F ) and a set of rules (R) and uses these to deduce
whether some conclusion (C) is true or false. Deductions are represented as
trees. When the players disagree they engage in a dialogue. Each player can ask
why a particular node in a tree is believed in which case they are informed that
it was either an initial fact, or it was deduced from its parent nodes using a rule.
A player can also ask why not questions. In this case, the other player turns this
around and asks the other player why they believe that something does hold.
Note we assume that both players reason correctly.

3.1 Proof Trees

We assume:

– A language of terms, L, defined in the standard way (See [10], p. 99).
– A set of labels L which include two special labels: initial and unprovable.
– A set of initial facts, F (positive literals in L).
– A set of rules, R. A rule is a clause consisting of a non-empty set of literals

in L (the antecedants, A), a consequent, a positive literal C ∈ L, and a label
l ∈ L\{initial, unprovable}, written as l : A → C. We assume that labels in
R are unique and that rules that are identical up to the renaming of variables
have the same label1.

We use the notation pos(A) for the set of terms that appear positively in some
set of literals, A, and neg(A) for the set of terms that appear negatively in some
set of literals A (i.e. if t ∈ neg(A) then ¬t ∈ A)

1 We don’t need to label rules for our system to work, but labels are a useful conve-
nience when referring to rules.
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Definition 1. Proof Tree
A proof tree is a directed rooted tree written 〈N,E〉, where N is a set of nodes
of the form (t, l) where t ∈ L is a ground positive literal and l ∈ L is a label.
E ⊆ N × N is the set of edges. An edge between two nodes n1 and n2 is written
as n1 �→ n2.

We use standard terminology so the root of a proof tree is the single node,
n such that there is no edge n′ �→ n. The parent nodes of a node n are the set
of nodes n′ such that there exists an edge n �→ n′. The parent trees of a node
n are the set of sub-trees with a parent of n as their root.

If (t, l) is the root node of a tree, then we refer to t as the root term of the
tree.

Fig. 1. A Proof Tree showing why Jack can meet his friends using R1 :
{vax(X),¬symp(X)} → mf (X). R1: You can meet friends if you have been vacci-
nated and display no symptoms, and the initial fact set {vax(jack)} means Jack is
vaccinated.

Definition 2. Provable, Unprovable and Undecided in T

If 〈N,E〉 = T is a proof tree and t is a ground positive literal in L. We say: t is
provable in T iff there exists a node (t, l) ∈ N such that l �= unprovable; t is
unprovable in T iff (t, unprovable) ∈ N ; t is undecided in T iff there is no
node (t, l) ∈ N .

Therefore, in Fig. 1, if our proof tree is T , then vax(jack) and mf (jack) are
both provable in T , symp(jack) is unprovable in T and any other term (e.g.,
fever(jack)) is undecided in T .

Definition 3. Proof Tree for F and R

A Proof Tree, T, for a set of facts, F, and rules, R is defined recursively as
follows:

– 〈{(t, initial)}, ∅〉 is a proof tree for F and R iff t ∈ F
– 〈{(t, unprovable)}, ∅〉, is a proof tree for F and R iff no proof tree, T ′, for F

and R exists such that t is provable in T ′

– If E �= ∅ then a proof tree T = 〈N,E〉 with root node (t, l) is a proof tree for
F and R iff:

• The parent trees of (t, l) are all proof trees for F and R
• There exists a rule, l : A → C ∈ R and a substitution, θ for the free

variables in A and C such that Cθ = t and t �∈ F , and
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* if (t′, l′) is a parent of (t, l) in T then either
· ∃ti ∈ pos(A). tiθ = t′ and l′ �= unprovable or,
· ∃ti ∈ neg(A). tiθ = t′ and l′ = unprovable; and

* ∀t′ ∈ Aθ there exists a unique label, l′ such that (t′, l′) is a parent
node of (t, l) in T .

A proof tree with some statement t at its root (either as a provable or unprov-
able statement) can be constructed from F and R by standard backward rea-
soning with negation as a failure as used in logic programming languages such
as Prolog [6]. From this point, we will stop referring to substitutions, θ, etc.
for reasons of readability and present our theory only for the case where rules
contain no free variables. Our proofs can be adapted straightforwardly to the
more general case.

Note that our proof trees are essentially SLDNF-trees (Selective Linear Defi-
nite Clause with Negation as Failure) from logic programming [1] extended with
rule labels. We assume that our facts and rules are such that SLDNF-resolution
is complete – for instance that they represent an acyclic program [4].

4 Dialogues

We formalise the idea of a disagreement between two RBSs as a difference in
their initial facts or rules. The purpose of a dialogue will be to identify at least
one such difference from a starting point where one RBS has deduced some fact
to be the case and the other has deduced that it is not the case.

Definition 4. Deduction
We formalise a deduction as a tuple D(F,R, T ) where F is a set of initial facts,
R a set of rules and T is a set of proof trees for F and R. We will refer to T as
the deduction trees.

Our problem is: given two deductions D(F1, R1, T1) �= D(F2, R2, T2) which
disagree about some deduced fact can we identify the disagreement in terms of
their initial facts or rules? More formally if there exists a T1 ∈ T1 (resp. T2 ∈ T2)
which has some provable root term t that is unprovable in at least one T2 ∈ T2

(resp. T1 ∈ T1), can we identify at least one fact, t′ such that t′ ∈ F1 and t′ �∈ F2

(or vice versa) or at least one rule r such that r ∈ R1 and r �∈ R2 (or vice versa).
We can trivially identify the differences if we have full access to F1, F2, R1,

R2, etc., so we assume that this is not the case but take the viewpoint of one of
the parties making the deduction – so either we have access to F1 and R1 but
not F2 and R2 or vice versa. We do assume that rules with the same label in R1

and R2 are identical up to the renaming of variables – i.e., if l : A1 → C1 ∈ R1

and l : A2 → C2 ∈ R2 then A1 = A2 and C1 = C2. This means we can use rule
labels without loss of generality as proxies for the rules themselves rather than
having to match antecedents and consequents.
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Definition 5. Provable/Unprovable for Deductions
Given a deduction D = D(F,R, T ) we say a term t is provable in D if t is
provable in some T ∈ T and that t is unprovable in D if t is unprovable in some
T ∈ T .

To simplify our proofs we introduce a completeness property for deductions.
This specifies that if some term is unprovable in the deduction then the deduction
contains the evidence for why it is unprovable – in particular it contains proof
trees for all the antecedents of any rule with the term as its consequent. These
can then be inspected to understand why that rule did not apply.

Definition 6. Complete Deduction We say that a deduction D = D(F,R, T )
is complete if, for any t that is unprovable in D, if there is a rule l : A → t ∈ R
then all terms t′ ∈ pos(A) ∪ neg(A) are either provable or unprovable in D.

In practice, we can generate necessary additional proof trees on the fly during
a dialogue and add them to deductions in order to make them complete. But
this process complicates the presentation here so we assume our dialogue starts
out with all the proof information it needs to justify an agent’s conclusions.

A dialogue is a sequence of moves taken by two players. P1 knows all the
information in D1 = D(F1, R1, T1) while P2 knows all the information in D2 =
D(F2, R2, T2).

We will extend our simple example from Fig. 1 into a scenario involving two
players, P1 and P2, that will be used to illustrate our dialogue definition. There’s
already one rule (R1), and we introduce another rule:

R2 : {¬tns(X)} → symp(X)

(if X has lost their sense of taste and smell (tns) then they have symptoms).

Scenario:

– F1 = {vax(jack), tns(jack)} while F2 = {vax(jack)}. So the difference
between our two players is that one is aware that Jack retains his sense of
taste and smell while the other is not.

– Both players have rules R1 and R2 in their rule set.
• R1 : {vax(X),¬symp(X)} → mf (X)
• R2 : {¬tns(X)} → symp(X)

– P1 has deduced that Jack can meet his friends and P2 has deduced he can
not. We start the dialogue with complete deductions.

• D1 = D(F1, R1, T1) where T1 contains the proof tree shown in Fig. 1 and a
proof tree consisting of a single node (tns(jack), initial) (This is because,
for the deduction to be complete, we need the antecedents of R2 to be
either provable or unprovable in D1).

• D2 = D(F2, R2, T2) and T2 contains a proof tree consisting of the
single node (mf (jack), unprovable). For deduction to be complete the
antecedents for R1 must be provable or unprovable in D2. Therefore T2

also contains the proof tree shown in Fig. 2 and a proof tree consisting of
the single node (vax(jack), initial).



Dialogue Explanations for Rule-Based AI Systems 65

Fig. 2. P2’s proof tree for why Jack has symptoms.

Note that mf (jack) is provable in D1 and unprovable in D2; symp(jack) is
provable in D2 and unprovable in D1; tns(jack) is unprovable in D2 and provable
in D1; and vax(jack) is provable in both D1 and D2.

The two players gradually build up a mental model of how the other player
has reasoned. This model consists of four sets OBij , OFij , ODij and ORij :

– OBij consists of terms t that Pi has established that Pj believes. We refer to
OBij as the opponent belief set.

– OFij consists of terms t that Pi has established that Pj had as an initial fact.
Note that OFij ⊆ OBij . We refer to OFij as the opponent fact set.

– ODij consists of terms t that Pi has established that Pj does not believe. We
refer to ODij as the opponent disbelief set.

– ORij consists of labels l that Pi has established label one of Pj ’s rules. We
refer to ORij as the opponent rule set.

There are seven possible statements that can be made in the course of a
dialogue:

1. df (t , i , j ) (the two players have different initial facts) – t ∈ Fi and t �∈ Fj .
2. dr(l : A → C , i , j ) (the two players have different rules) – l : A → C ∈ Ri

and l : A → C �∈ Rj .
3. initial(t) – t is an initial fact for the player.
4. l : A → t – the player deduced t from the terms in A using the rule labelled l
5. why(t) - why do you believe t?
6. whynot(t) – why don’t you believe t?
7. pass – the dialogue participant has no question to ask and skips its turn.

The first two statements terminate the dialogue.

Definition 7. Player State The state of Pi at statement k in a dialogue
with Pj is Si

k = 〈Di, OBij , OFij , ODij , ORij〉 where Di is a deduction, and
OBij , OFij , ODij , ORij are Pi’s opponent belief set, fact, set, disbelief set and
rule set respectively.

The initial state of the two players is one where the only thing they know
is that they disagree on some term t. So their opponent’s belief sets etc., are
empty.

Definition 8. Initial Player State The initial state of Pi is either 〈D(Fi, Ri,)
Ti, {t}, ∅, ∅, ∅〉 where t is unprovable in Ti or 〈D(Fi, Ri, Ti), ∅, ∅, {t}, ∅〉 where t is
the root term of some Ti ∈ Ti.
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Definition 9. Dialogue State Sk is the state of the dialogue after the utter-
ance of the kth statement. It consists of the two-player states, the last dialogue
statement, stmt, and whose turn it is, Pi. Sk = 〈S1

k, S2
k, stmt, Pi〉

A dialogue is a sequence of dialogue states S0, . . . , Sn. The starting point for
the dialogue is the disagreement over the term t in Definition 8. Without loss
of generality, we assume this is provable in T1 and unprovable in T2. Therefore,
S0 = 〈S1

0 , S2
0 , stmt0, Pi〉 where S1

0 = 〈D1, ∅, ∅, {t}, ∅〉, S2
0 = 〈D2, {t}, ∅, ∅, ∅〉, and

either Pi = P1 and stmt0 = why(t) (P2 started the dialogue by asking P1 why
they believe t and it is now P1’s turn) or Pi = P2 and stmt0 = whynot(t) (P1

started the dialogue by asking P2 why they don’t believe t).
Suppose Sk = 〈S1

k, S2
k, stmtk, Pi〉 is the state of a dialogue at utterance k

and Sk+1 = 〈S1
k+1, S

2
k+1, stmtk+1, Pj〉 is the next state. We define what it means

for Sk+1 to be a legal next state. Si
k+1 defines how each player has updated

their mental model of the other in response to stmtk and stmtk+1 is the next
utterance.

First, we consider how the two players update their state. Pj (j �= i) does
not alter their state – they uttered the last statement and have not learned any
new information. So Sj

k+1 = Sj
k.

Pi, on the other hand has gained information from Pj ’s utterance
and so their state changes. Before the utterance their state was Si

k =
〈Di, OBij , OFij , ODij , ORij〉. We provide four rules below that govern the state
and can be updated.

Upd.1 If stmtk = initial(t) then Si
k+1 = 〈Di, OBij∪{t}, OFij∪{t}, ODij , ORij〉

(Pi adds t to the things Pj believes and Pj ’s initial facts).
Upd.2 If stmtk = l, l : A → C ∈ Ri then Si

k+1 = 〈D(Fi, Ri, T ), OBij ∪
pos(A), OFij , ODij ∪ neg(A), ORij ∪ {l}〉 (Pi adds all the positive literals
in A to OBij (these are things the other player believes) and all the nega-
tive literals in A to ODij (these are all the things the other player does not
believe), and adds l to ORij).

Upd.3 If stmtk = why(t), Di = D(Fi, Ri, T ), and t is provable in T then
Si
k+1 = 〈D(Fi, Ri, T ), OBij , OFij , ODij ∪ {t}, ORij〉 (Pi adds t to ODij (the

other player doesn’t believe t)).
Upd.4 If stmtk = whynot(t), and t is unprovable in Di then Si

k+1 = 〈Di, OBij ∪
{t}, OFij , ODij , ORij〉 (Pi adds t to OBij (the other player believes t)).

Note: The states where Pi is asked either why it believes something it does not,
or why it does not believe something that it does should not occur in a legal
dialogue and so these have been omitted. For the purposes of our theoretical
results, we assume that if this does occur the dialogue terminates with an error
and no next state is generated. We will prove that error states can not arise as
corollaries to Lemmas 4 and 5.

We now consider the utterances Pi can make – possible values for stmtk+1.
In some dialogue states, there may be several possible utterances.
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Utt.1 stmtk+1 = initial(t) is legal iff stmtk = why(t) and t ∈ Fi

Utt.2 stmtk+1 = l is legal iff: l : A → C ∈ Ri; stmtk = why(t); t �∈ Fi; and
there exists a proof tree 〈N,E〉 ∈ Tik such that (t, l) ∈ N .

Utt.3 stmtk+1 = whynot(t) is legal iff: ∀t′.stmtk �= why(t′)∧stmtk �= whynot(t′)
(you can not answer a question by asking why not); ∀l.l ≤ k → stmtl �=
whynot(t) (this question has not been asked before); t is provable for Di; and
t ∈ ODij . Pi identifies a term t that it believes and it has established the
other doesn’t and asks why not.

Utt.4 stmtk+1 = why(t) is legal iff either stmtk = whynot(t); or ∀t′. stmtk �=
why(t′) ∧ stmtk �= whynot(t′) (you can not answer a question by asking
why(t) unless that question was whynot(t)); ∀l.l ≤ k → stmtl �= why(t) (this
question has not been asked before); t is unprovable for Di; and t ∈ OBij Pi

identifies a term t that it does not believe and it has established the other
does and asks why.

Utt.5 stmtk+1 = df (t, j, i) is legal iff t ∈ OFij and t �∈ Fi

Utt.6 stmtk+1 = df (t, i, j) is legal iff t ∈ ODij and t ∈ Fi

Utt.7 stmtk+1 = dr(l, j, i) is legal iff l ∈ ORij and there is no rule l : A → C ∈
Ri

Utt.8 stmtk+1 = pass is legal iff no other utterance is legal and stmtk �= pass.

Finally, the player whose turn it is switched.
Figure 3 shows an example dialogue for our scenario. We show the opponent’s

belief, fact, disbelief, and rule sets for each player as they are built up, as well
as the statement uttered and whose turn it is next. We also comment on the
changes with reference to the updates and utterances defined by the dialogue
framework.

5 Theoretical Results

We demonstrate that error states in dialogues cannot arise, that opposing belief
sets etc., are correct representations of the other player’s deductions, and that
the debate process ends when a discrepancy is discovered.

We establish via a set of lemmas that the assumptions made by the update
process are correct (for instance in Lemma 1 that if one player has uttered
initial(t) then t is indeed an initial fact for that player).

Lemma 1 (Statements about initial facts are truthful). If the current
dialogue state is 〈S1

k, S2
k, initial(t), Pi〉, i �= j and Dj = D(Fj , Rj , Tj) then t ∈ Fj

and is provable for Dj.

Lemma 2 (Statements about the use of rules are truthful). If the cur-
rent dialogue state is 〈S1

k, S2
k, l : A → t, Pi〉, i �= j and Dj = D(Fj , Rj , Tj) is Pj’s

deduction then there exists a proof tree, Tj ∈ Tj such that (t, l) is a node in Tj;
l : A → t ∈ Rj, for all t ∈ pos(A), t is provable in Dj; and for all t ∈ neg(A), t
is unprovable Dj.
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Fig. 3. Sample Dialogue for our scenario showing the current player’s opponent belief,
fact, disbelief and rule sets and the statement the player has uttered.

Lemma 3 (A player only asks the other “why not” about statements
it believes to be true). If the current dialogue state is 〈S1

stmt, S
2
stmt,

whynot(t), Pi〉, i �= j and Dj is Pj’s deduction then t is provable in Dj.



Dialogue Explanations for Rule-Based AI Systems 69

Lemmas 1, 2 and 3 follow trivially from the rules for legal utterances in
dialogue. The equivalent to Lemma 3 for why(t) is Lemma 6 but we need a few
other results before we can prove this, in particular, we need to know that the
dialogue participants’ mental models of each other are correct.

Dialogue Mental Models are Correct. We establish that t ∈ OFij iff t ∈ Fj (i.e.,
Pi only decides Pj has t as an initial fact if Pj does indeed have t as an initial
fact). The same for OBij , ODij etc. As a result, we can also show that the error
states (where a participant is asked why(t) for some term t they do not believe
or whynot(t) for some t they do believe) never occur.

Theorem 1 (The opponent fact set is correct). Given two players Pi

and Pj in a legal dialogue, if D(Fj , Rj , Tj) is Pj’s deduction and OFij is Pi’s
opponent fact set, OFij ⊆ Fj.

Proof Sketch. The proof follows by induction on the size of OFij using Lemma 1

Theorem 2 (The opponent belief set is correct). Given two players Pi

and Pj in a legal dialogue where Dj is Pj’s deduction and OBij is Pi’s opponent
belief set, then all terms t ∈ OBij are provable in Dj.

Proof Sketch. The proof follows by induction on the size of OBij using Lemmas 1,
2 and 3.

Lemma 4 (A player is only asked why about things it believes to be
true). If the dialogue state is 〈S1

k, S2
k, why(t), Pi〉 and Di is Pi’s deduction then

t is provable in Di.

Proof. This holds in the initial state. Otherwise, why(t) has been uttered because
t ∈ OBji (Utt.4) and this follows from Theorem 2 or why(t) has been uttered
in response to whynot(t) (Utt.5) and this follows from Lemma 3.

Corollary. If the dialogue state is 〈S1
k, S2

k, why(t), Pi〉 then the error state
does not arise.

Theorem 3 (The opponent disbelief set is correct). Given two players Pi

and Pj in a legal dialogue where Dj is Pj’s deduction and ODij is Pi’s opponent
disbelief set, then all terms t ∈ ODij are unprovable in Dj.

Proof Sketch The proof follows by induction on the size of ODij using Lemmas 2
and 4.

Lemma 5 (A player is only asked why not about things it does not
believe to be true). If the dialogue state is 〈S1

k, S2
k, whynot(t), Pi〉 and Di is

Pi’s deduction then t is unprovable for Pi.

Proof. Pj can only ask whynot(t) if t ∈ ODji (Utt.3) so t is unprovable in Di

by Theorem 3.
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Corollary. If the dialogue state is 〈S1
k, S2

k, whynot(t), Pi〉 then the error state
doesn’t arise.

Lemma 6 (A player only asks the other player why about things it
believes are not the case). If the dialogue state is 〈S1

k, S2
k, why(t), Pi〉 (i �= j)

then t is unprovable for Pj.

Proof. Pj can only ask why(t) if either a) Pi asked whynot(t) in which case t is
unprovable for Dj by Lemma 5; or b) t is unprovable for Dj (Utt.4).

Theorem 4 (The opponent rule set is correct). Given Pi and Pj in a legal
dialogue where D(Fj , Rj , Tj) is Pj’s deduction and ORij is Pi’s opponent rule
set, then ∀l.l ∈ ORij .∃A,C. l : A → C ∈ Rj

Proof Sketch The proof follows by induction on the size of ORij using Lemma 2
and the definition of proof trees.

5.1 Termination

Theorem 5. Let D1 = D(F1, R1, T1) and D2 = D(F2, R2, T2) be two complete
deductions. If T1 and T2 contain a finite number of finite proof trees then any
dialogue starting from D1 and D2 terminates.

Proof Sketch. By assumption, there are only a finite number of terms in T1 and
T2. Therefore why(t) can only be asked a finite number of times. The number of
times all other utterances can be made depends upon how many times why(t)
is asked. Therefore the dialogue terminates.

Note this means that dialogues only terminate if complete deductions can be
created from the attempt to prove or disprove some term t and this depends on
the facts, rules, and t. However many sets of facts and rules have this property
for given terms.

In order to show that when dialogues terminate a disagreement between the
facts or rules of the two players has been found, we need to show that it is always
possible for a player to ask questions about terms in OBij or ODij which requires
these terms to be provable or unprovable in that player’s deduction (because of
the conditions on Utt.3 and Utt.4). We establish this in two lemmas whose
proofs rely on our completeness property for deductions.

Lemma 7. Given two dialogue participants Pi and Pj where Di is Pi’s deduc-
tion and OBij is i’s opponent belief set, then all terms t ∈ OBij are either
provable or unprovable in Di.

Lemma 8. Given two dialogue participants Pi and Pj where Di is Pi’s deduc-
tion and ODij is i’s opponent disbelief set, then all terms t ∈ ODij are either
provable or unprovable in Di.
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Proof Sketch The proofs for both these lemmas proceed by induction on the size
of OBij (resp. ODij), noting that the property holds at the start of the dialogue
and exploiting Theorems 2 and 3 and the completeness of deductions together
with Lemma 6 in the step case.

Having established this we then introduce the concept of a disagreement tree
in order to prove that all dialogues terminate with a statement that either facts
or rules are different.

Definition 10. A disagreement tree is a tree that reveals the inference processes
behind the disagreements between two dialogue participants. Every node in the
tree is a tuple 〈t, i, lbl〉 where t is a term that is provable for one dialogue par-
ticipant and unprovable for the other; i is the participant for which the term is
provable, and lbl is either initial (meaning t ∈ Fi), l− (meaning t was deduced
by i using rule l and rule l is not in the rule set for the other participant) or
l+ (meaning t was deduced by i using rule l and rule l is in the rule set for the
other participant). Nodes labeled initial or l− are leaf nodes. Nodes labeled l+

have child nodes consisting of all terms in pos(a) which are provable for i and
not for j and all terms in neg(a) which are provable for j and not for i.

Note that all nodes l+ must have at least one child node. Figure 4 shows the
disagreement tree for our scenario. The two players disagree on the truth of
mf (jack) which P1 has deduced using R1 but which P2 could not deduce because
P1 and P2 disagree on the truth of symp(jack) and so on.

Fig. 4. The Disagreement Tree for Scenario 1.

Lemma 9. Consider two players in a legal dialogue and a disagreement tree,
DT , which has the initial disagreement term as its root. Let NT be the set of
node terms closest to the root of DT (there may be several such terms since this
is a tree) about which why(t) has not been asked. ∀t ∈ NT the dialogue will
continue deterministically until t is in the belief or disbelief set for at least one
player.

Proof Sketch. The proof observes that why(t) will have been asked for the parents
of each of these nodes and so a player either has or will, respond with Utt.1 or
Utt.2 which has or will trigger an appropriate update in a player’s state.
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Theorem 6. If the kth state in a legal sequence of dialogue states is
〈S1

k, S2
k, s, Pi〉 and s �= df (t, i, j), s �= df (t, j, i) and s �= dr(l, i, j) then there

is a legal next dialogue state.

Proof Sketch. We use Lemmas 7, 8 and 9 to show that one player exists who can
ask why(t) if it is their turn and they are not required by the framework to make
some other utterance. If the current player is not capable of asking why(t), then
they can utter pass, and the other player will be able to respond.
Corollary. If a dialogue terminates the last statement is: df (t, i, j), df (t, j, i),
dr(l , i , j ) or dr(l , j , i).

6 Implementation

We applied our framework to an RBS that functions as a Covid Advice System
(CAS) implemented in Prolog. This consists of a simple backward-chaining rule-
based system with sets of example rules and facts based on Covid-19 restrictions
paired with an implementation of the dialogue framework. The dialogue frame-
work implementation tracks both participants’ dialogue states and allows the
human user to choose between legal next utterances. As a result, a theoretically
legal dialogue can be generated, even where the human is not sure of the legal
moves, or may not be reasoning correctly with their facts and rules.

Our implementation differs slightly from the theory in that dialogues did not
start with complete deductions, instead, one participant starts with a deduc-
tion that contains a single proof tree consisting only of an unprovable node.
Additional proof trees were generated on-the-fly during the dialogue as needed.

We present an example of a dialogue in our system. In this example both
players have a rule that says two people can meet if a) they are both vaccinated,
b) neither of them has been “pinged” by a contact tracing app and c) neither
has symptoms. Harry and Sara wish to meet but the CAS is unaware that Harry
has been vaccinated and so states that they may not. The user thinks Harry and
Sara should be able to meet and so a dialogue starts with a why not question
from the user. The dialogue system responds on behalf of the CAS with a why
question using Utt.4 and displays the possible legal user responses (Fig. 5).

Fig. 5. The computer asks why

The user selects 2 because they’ve used a rule. The dialogue system has
stored the rules provided to the test participants so it offers a choice of these
rules (Fig. 6). The user selects rule 1. The dialogue system updates the CAS
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Fig. 6. The user is offered a choice of rules

Fig. 7. Why does the user believe Harry is vaccinated?

Table 1. Our results are broken up by scenario. Each participant marked their expla-
nation on a scale of 0–4 for how easy it was to understand and how helpful they found
it - we show the average mark for each explanation style. Additionally, we show what
percentage of users correctly identified the difference between their facts and rules and
that of the CAS.

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6
Type Tree Dlog Tree Dlog Tree Dlog Tree Dlog Tree Dlog Tree Dlog

Ease 0.5 2.5 2.25 2.5 1.5 3 0.25 2.75 2.5 2.75 3 3
Helpful 0.25 2.5 2 2 1.75 2.5 0.25 2.25 2.5 2 2.75 2.25
Correct 0 100% 100% 100% 75% 75% 0 75% 100% 75% 100% 100%

mental model of the user and consults the system’s proof trees for a mismatch.
In this case, it identifies that vaccinated(harry) is unprovable for the CAS. The
dialogue system asks why the user believes this (Fig. 7). The user selects 1. The
dialogue system then terminates announcing that a difference has been found.

7 User Evaluation

The purpose of our user evaluation was to test our hypothesis that dialogue
is a useful mechanism for building explanations. The proof trees generated by
the deductive process were used as an alternative explanation for comparison.
We created six scenarios in which the CAS and the User were given different
sets of facts and rules (differing either by one fact or by one rule) and the CAS
presented a conclusion which the user should not be able to derive (if the user
reasoned correctly). The user was then either shown the proof tree generated
by the CAS or allowed to participate in a dialogue. Our expectation was that
dialogue explanations would have an advantage firstly in situations where the
CAS deduced something was unprovable (and so produced a proof tree consisting
of a single unprovable node) and secondly, as proof trees grew beyond a certain
size.
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Our study comprised 24 volunteers from the Department of Computer Sci-
ence. Each participant was presented with two scenarios (one where they viewed
a proof tree and one where they could use the dialogue system). Each scenario
was completed by the same number of participants, and followed by a short
questionnaire. We summarise the features of the six scenarios in Table 2 – as can
be seen, two of the examples feature trees consisting of a single unprovable node,
while the others have trees of varying, though modest, sizes.

Table 2. Our examples, showing how many nodes the initial proof tree contains, how
many of those nodes are unprovable and the cause of the disagreement between user
and CAS

Ex. Nodes Unprovable Nodes Cause

1 1 1 CAS missing Fact
2 14 4 User missing Fact
3 18 4 User missing Rule
4 1 1 CAS missing Rule
5 7 1 CAS missing Fact
6 6 3 CAS and User have different Rules

Out of 24 responses, 20 preferred the dialogue explanation, and 18 found the
dialogue explanation easy. Table 1 shows a breakdown of our results by exam-
ple. As can be seen, the dialogue explanations have a clear advantage where no
meaningful tree was provided (Scenarios 1 and 4) while there is not much to
tell between the two explanation styles in most other cases. Scenario 3, with the
largest number of nodes, suggests that the dialogue explanation was beginning
to outperform the tree in terms of ease of use and perceived helpfulness, but
the sample size is too small (4 people) to draw strong conclusions. Classifying
whether a user had correctly identified the difference proved more challenging
than we expected. We allowed freeform answers to the question “What do you
think the difference was between your information and the computer informa-
tion?” and in some cases these answers were very minimal (e.g., “There was a
different rule”) and in some cases, it is difficult to decide whether or not they
should count as correct (e.g., in scenario 2 one respondent correctly identified
that they did not possess a rule, but stated the rule’s antecedents incorrectly).
We allowed minimal but correct answers to count as correct but did not allow
other mistakes to count as correct. For Scenario 6 we counted as correct both
answers which noted that they had slightly different rules for deducing whether
someone was required to get a Covid test and answers which noted that the user
did not have the rule the computer was using. Future study will define the rules
in a way that is easier for general users to understand because in this experiment
the rules provided to the user require a high cognitive load and consider the user
with different background.
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8 Discussion

We have proposed a dialogue approach to explain the reasoning in systems where
derivations are represented as trees, typical of rule-based AI systems. A dialogue
system assumes that an explanation is a collaborative process in which the sys-
tem determines what information it is that the user wants. We have established
some theoretical properties of the dialogue framework and performed a small
user study.

The study shows a clear advantage for the dialogue process where no mean-
ingful proof tree can be presented. There is some evidence that, as the amount of
information in the proof tree increases, the dialogue explanation becomes more
useful, and in further work, we intend to extend our study with larger scenarios.
We also intend to examine how our explanations could be adapted to explore
“what-if” scenarios which would allow a dialogue to progress beyond identifying
a source of disagreement to exploring whether eliminating that disagreement
would change the system’s conclusion, and to evaluate whether dialogue is a
useful explanatory process when applied to RBS extracted from statistical mod-
els as in [21]. In the future, we’ll take into account the agreed-upon situation in
which the user can request further information without causing a disagreement.
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Abstract. There has been growing interest in causal explanations of
stochastic, sequential decision-making systems. Structural causal mod-
els and causal reasoning offer several theoretical benefits when exact
inference can be applied. Furthermore, users overwhelmingly prefer the
resulting causal explanations over other state-of-the-art systems. In this
work, we focus on one such method, MeanRESP, and its approximate
versions that drastically reduce compute load and assign a responsibil-
ity score to each variable, which helps identify smaller sets of causes to
be used as explanations. However, this method, and its approximate ver-
sions in particular, lack deeper theoretical analysis and broader empirical
tests. To address these shortcomings, we provide three primary contribu-
tions. First, we offer several theoretical insights on the sample complexity
and error rate of approximate MeanRESP. Second, we discuss several
automated metrics for comparing explanations generated from approxi-
mate methods to those generated via exact methods. While we recognize
the significance of user studies as the gold standard for evaluating expla-
nations, our aim is to leverage the proposed metrics to systematically
compare explanation-generation methods along important quantitative
dimensions. Finally, we provide a more detailed discussion of Mean-
RESP and how its output under different definitions of responsibility
compares to existing widely adopted methods that use Shapley values.

Keywords: Causal Inference · Explainable AI · MDPs

1 Introduction

Researchers from many fields have shown that developing trust in AI systems is
required for their timely adoption and proficient use [18,35,39]. It is also widely
accepted that autonomous agents with the ability to explain their decisions
increase user trust [7,13,22]. However, there are many challenges in generating
explanations. Consider, for example, an agent managing load on a power grid by
setting electricity prices and engaging other physical resources within the grid.
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Generating suitable explanations of such a system is hard due to the complexity
of planning, which may involve large state spaces, stochastic actions, imperfect
observations, and complicated objectives. Furthermore, useful explanations must
somehow reduce the internal reasoning process to a form understandable by a
user who likely does not know all of the algorithmic details. One significant class
of autonomous decision-making models for which there is a desire to generate
explanations is the Markov decision process (MDP) and its derivatives.

In our previous work [27], we developed a framework, based on structural
causal models (SCMs) [11], for applying causal analysis to sequential decision-
making agents. This framework creates an SCM representing the computation
needed to derive a policy for an MDP and applies causal inference to identify vari-
ables that cause certain agent behavior. Explanations are then generated using
these variables, for example by completing natural language templates. This
framework is both theoretically sound, based on formalisms from the causality
literature, as well as flexible, allowing multiple semantically different types of
explanans.

This method, known as MeanRESP, has many different approximate ver-
sions and is compatible with several definitions of responsibility [8]. The theo-
retical characteristics of approximate MeanRESP, as well as its performance
compared to the exact version, are yet to be explored in detail. Since in practice,
the approximate versions are the most likely to be deployed, we see this as a
critical gap in our current understanding of how to explain MDP agent behav-
iors. Moreover, as MeanRESP may produce many causes related to a decision,
it is often necessary to reduce the size of this set to make the explanations more
concise and therefore easier to understand. MeanRESP supports this type of
‘top k’ analysis natively, but little work has been done on understanding how to
compare different outputs, either against each other or against the output from
the exact version of the algorithm. To this end, we also propose several met-
rics which may be used to compare MeanRESP outputs at different levels of
approximation. These metrics capture diverse types of differences and underscore
the difficulty of devising a single metric for evaluating objects as complicated,
nuanced, and context-dependent as explanations.

Our results include theoretical analyses regarding the correctness and sam-
pling error rates for causal and responsibility determination for approximate
MeanRESP, discuss several potential metrics for comparing explanations,
empirical analyses of sampling error convergence rates and explanation dis-
similarity between different versions of MeanRESP and Shapley-value based
methods. Overall, these results establish several key facts about approximate
MeanRESP as well as open the door for a variety of avenues of continued
research.

2 Related Work

While this paper focuses specifically on deepening analysis related to one partic-
ular algorithm for automatic explanation generation, MeanRESP, the body of
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work on explainable machine learning (XML)—a focus area that aims to explain
the decisions of black-box machine learning algorithms [15,19,26]—and explain-
able planning (XAIP)—a focus area that aims to explain the outputs of planning
algorithms or modify planning algorithms so that they produce plans that are
inherently more explainable—is large and growing rapidly. In this section, we aim
to provide some context to the existing literature to highlight the importance of
MeanRESP.

In XAIP literature, one common method for explaining complex planners is
via policy summarization, where either A) the original reasoning problem is made
simpler and then the solution is explained exactly, or B) the original problem is
not reduced, but the solution (e.g., policy) is simplified post-hoc and the simpli-
fied policy is explained. For example, Pouget et al. [30] identify key state-action
pairs via spectrum-based fault localization, and Russell et al. [31] use decision
trees to approximate a given policy and analyze the decision nodes to deter-
mine which state factors are most influential for immediate reward. Panigutti et
al. [29] used similar methods to explain classifiers. These methods are appealing
in that they parallel our intuitions about simplification in a number of other set-
tings, such as analogizing during an explanation [9], science communication [32],
and even other AI tools, like automated text simplification [28,34] or summa-
rization [1]. However, these methods are driven primarily by heuristics and may
be difficult to generalize to the many different forms of planners and models.

Research on explanations of stochastic planners specifically, such as MDPs,
is relatively sparse. However, there are several notable existing efforts. Most
present heuristics that are specifically designed for MDPs, such as generating
counterfactual states and then identifying important state factors by analyzing
how the value function changes given perturbations to different state factors [10].
Wang et al. [38] try to explain policies of partially observable MDPs by commu-
nicating the relative likelihoods of different events or levels of belief. However,
research clearly indicates that humans are not good at using this kind of numer-
ical information [23].

A more common heuristic approach is to analyze (and produce explanations
that reference) the reward function. Khan et al. [16] first presented a technique
to explain policies for factored MDPs by analyzing the expected occupancy fre-
quency of states with extreme reward values. Later, Sukkerd et al. [36] proposed
explaining factored MDPs by annotating them with “quality attributes” (QAs)
related to independent, measurable cost functions. Explanations describe the
QA objectives, expected consequences QA values given a policy, and how those
values contribute to the policy’s expected cost. The system also explains whether
the policy achieves the best possible QA values simultaneously, or if there are
competing objectives that required reconciliation and proposes counterfactual
alternatives. Thus, it explains entire policies, not individual actions, using cus-
tom graphics and natural language templates, the latter of which has become
the de facto standard for automatic explanations. Instead of looking at how the
policy is affected by the reward function overall, Juozapaitis et al. [14] analyze
how extreme reward values impact action selection in decomposed-reward RL
agents, and Bertram and Peng [4] look at reward sources in deterministic MDPs.
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While these approaches are computationally cheap and easy to implement,
they have limited scope in the explanations they provide, and do not have many
theoretical advantages, if any. Thus, recently, some research has investigated
the application of causal modeling and causal analysis to the automatic genera-
tion of explanations for planners, including MDPs. One particularly compelling
framework for doing so, which we study in this paper, is a method called Mean-
RESP [27]. MeanRESP is based on a responsibility attribution method called
RESP, introduced in [3] to explain classification outcomes, which has its roots
in prior work on formal definitions of causality and responsibility [8,11,12]. In
this paper, we examine several choices related to the definitions of responsibility
for use within MeanRESP.

The most similar work to this paper is other research that has proposed using
SCMs for explaining MDPs and their variants in both planning and learning sce-
narios. Madumal et al. [21] use SCMs to encode the influence of particular actions
available to the agent in a model-free, reinforcement learning, where it requires
several strong assumptions including the prior availability of a graph represent-
ing causal direction between variables, discrete actions, and the existence of sink
states.

Finally, our approach to estimating causal responsibility can be viewed as a
form of feature attribution, which is a common approach in explainable Machine
Learning (XML) for feature ranking [25], most often via Shapley values and
their approximations [20,33]. In this paper, we conduct a quantitative compari-
son between Shapley values and different versions of MeanRESP. Specifically,
we analyze the approximation error between a prominent Shapley value-based
feature attribution method [37] and various versions of approximate Mean-
RESP, considering the number of samples. Additionally, we assess the dissim-
ilarity between explanations generated by these two attribution methods. The
purpose of this comparison is to investigate whether there exists a significant dis-
parity in the content of the explanations produced by these methods, potentially
motivating future research on the relative advantages of each method.

3 Background

Here, we review some concepts and notations relevant to the three main ideas
this paper builds upon: structural causal models (SCMs), our working definition
of cause, and Markov decision processes (MDPs).

3.1 Structural Causal Models, Actual Causes, and Responsibility

SCMs model scenarios S = 〈U, V,M〉, which break causality or attribution prob-
lems down into three components:

1. A set of variables U , known as the context, which are required to define the
scenario, but which should not be identified as causal. These variables are
considered fixed for a given scenario. The choice of which variables belong
in the context is a design choice, and the main function of the context is to
bound the size of the total problem.
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2. A set of variables V , known as the endogenous variables, which we may want
to identify as causal or highlight in an explanation. All variables in a scenario
must be in U ∪ V .

3. A set of equations, M, which model how variables in V are calculated as
functions of variables in U or other variables in V .

Nashed et al. [27] define several SCM representations of an MDP with differ-
ent choices of the context U . For the purpose of analysis, throughout the rest of
this paper, we will consider one of the most natural of those choices and describe
its mathematical definition and interpretation in the following subsection. We
now review our working definition of cause from [12].

Definition 1. Let X ⊆ V be a subset of the endogenous variables, and let x be
a specific assignment of values for those variables. Given an event φ, defined as
a logical expression, for instance φ = (¬a ∧ b), a weak cause of φ satisfies the
following conditions:

1. Given the context U = u and X = x, φ holds.
2. Some W ⊆ (V \ X) and some x̄ and w exist such that:

A) using these values produces ¬φ.
B) for all W ′ ⊆ W , Z ⊆ V \ (X ∪ W ), where

w′ = w|W ′ and z = Z given U = u, φ holds when X = x.

Here, condition 2B) is saying that given context U = u, X = x alone is sufficient
to cause φ, independent of some other variables W . This and similar definitions
of cause are often called “but-for” definitions. There is a related, slightly older
definition due to [11] in which condition 2B) is replaced with the following,
simpler statement: for all Z ⊆ V \ (X ∪ W ), where w = W and z = Z given
U = u, φ holds when X = x.

Actual causes are defined as minimal weak causes. That is, an actual cause
is a weak cause CW for which no set C ′

W ⊂ CW is also a weak cause. Note that
in this paper, we only consider |CW | = 1, and therefore the above definition
also defines actual causes. Table 1 provides a reference for the common related
notation used throughout the paper.

3.2 Markov Decision Processes

A Markov decision process (MDP) is a model for reasoning in fully observable,
stochastic environments [2], defined as a tuple 〈S,A, T,R, d〉. S is a finite set
of states, where s ∈ S may be expressed in terms of a set of state factors,
〈f1, f2, . . . , fN 〉, such that s indexes a unique assignment of values to the factors
f ; A is a finite set of actions; T : S × A × S → [0, 1] represents the probability
of reaching a state s′ ∈ S after performing an action a ∈ A in a state s ∈ S;
R : S × A × S → R represents the expected immediate reward of reaching a
state s′ ∈ S after performing an action a ∈ A in a state s ∈ S; and d : S → [0, 1]
represents the probability of starting in a state s ∈ S. A solution to an MDP is
a policy π : S → A indicating that an action π(s) ∈ A should be performed in
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Table 1. Important notations, summarized from [11].

Notation Meaning

X A set of decision variables, X = {X1, X2, X3}
x An assignment of values to the set X, {X1 = x1, X2 = x2, X3 = x3}
P(X) Power set of X

D(X1) Domain of the joint assignments of all x ∈ X

x′ ← x|X ′ x′ is the restriction of x to X ′, e.g., if X ′ = {X1} and
x = {X1 = x1, X2 = x2, X3 = x3}, then x′ = {X1 = x1}

x ← [x〈x′] Replace values of x with values from x′, e.g., if x = {X1 = x1, X2 = x2}
and x′ = {X1 = b}, then x = {X1 = b, X2 = x2}

a state s ∈ S. A policy π induces a value function V π : S → R representing the
expected discounted cumulative reward V π(s) ∈ R for each state s ∈ S given
a discount factor 0 ≤ γ < 1. An optimal policy π∗ maximizes the expected
discounted cumulative reward for every state s ∈ S by satisfying the Bellman
optimality equation V ∗(s) = maxa∈A

∑
s′∈S T (s, a, s′)[R(s, a, s′) + γV ∗(s′)].

One of the most natural ways to represent an MDP as an SCM is to let U con-
sist of all variables related to the reward function R, transition function T , start
distribution d, and discount factor γ. Then, V can be defined as F ∪Π, where F is
the set of variables representing state factors, F = {f1, f2, . . . , fN}, and Π is the
set of variables representing the optimal policy, Π = {πs1a1 , πs1a2 , . . . , πs|S|a|A|}.
Here, πsa is a variable that is true when action a may be taken in state s. Thus,
an obvious choice for an event φ is a subset of Π and their assignment. For
example, if action a is taken in state s instead of a′, we have

φ = 〈[π(s) = a], [π(s) = a′]〉 = 〈True,False〉.
Under this modeling setup, counterfactual settings to F do not result in

new MDP policies as they would be variables from R or T to be used in V .
Instead, this setup represents a fixed world model and a fixed model of agent
capability, where counterfactual inputs represent different situations, or states,
that the agent may encounter. Although MeanRESP may be applied to other
components of the MDP using different definitions of U and V , we focus on this
particular setup as it is computationally less demanding for empirical analysis.
We should note that none of our theoretical analysis relies on this particular
definition of U and V , or even that MeanRESP is used to analyze an MDP
instead of a classifier.

4 MeanRESP

Chockler and Halpern [8] defined the responsibility (RESP), of an actual cause
X ′ with contingency set W as 1

1+|W | . Based on that, we define the MeanRESP

score, ρ, of an actual cause X ′, to be the expected number of different ways X ′
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satisfies the definition of actual cause weighted by a responsibility share. Hence,
the MeanRESP score equates the strength of the causal effect with the number
of different scenarios under which X ′ can be considered a cause for the event.

There are several plausible versions of MeanRESP, all of which detect sets
of variables that satisfy the definition of actual cause given above. To facilitate
understanding throughout the rest of the paper, we now provide a novel, high-
level description of a generalized version of MeanRESP and its relation to
different definitions of cause. Moreover, we would like the MeanRESP score to
behave in a manner summarized by the following properties:

1. Property 1: A set of variables X ′ ⊆ X that is not a cause of the event φ
should have ρ = 0. A set of variables X ′ ⊆ X that is a cause of the event φ
should have ρ > 0.

2. Property 2: As the cause allows a set of witness variables, ρ should divide
the causal responsibility among the cause and witness in a principled manner.

3. Property 3: A relatively higher value of ρ for a cause X ′ ⊆ X should indicate
the event φ is relatively more affected by the assignment x|X ′ of X ′.

Responsibility scores are important in practice since they allow both users
and developers to differentiate between causes that are highly relevant to the
given scenario and those which may have less explanatory value. Here, we present
a generalized version of MeanRESP (Algorithm 1) that has all three of these
properties. The algorithm considers witness sets of size up to |W |max = |X| − 1
(Line 4). After fixing a witness W = w (lines 6–7), it calculates the RESP score
(line 9) using either RESP-UC (Algorithm 2) if we use weak cause Definition
1 or RESP-OC (Algorithm 3) if we use the original weak cause definition. In
RESP-UC, if 2B holds from Definition 1 (lines 4–9), then we check for 2A (lines
10–12). Notice that RESP-UC will return a value greater than 0 whenever both
2A and 2B hold. This ensures property 1. Note that the condition in definition
1 always holds for a deterministic policy or classifier, and therefore is not explic-
itly checked. Additionally, in both RESP-UC and RESP-OC, accumulating the
RESP scores in lines 13 and 10, respectively, provides property 2. Intuitively, the
RESP score scales with the number of different ways X ′ satisfies the definition of
actual cause weighted by a responsibility share. Hence, the RESP score equates
the strength of the causal effect with the number of different scenarios under
which X ′ can be considered a cause for the event. This gives MeanRESP prop-
erty 3. We use the following notation to denote whether event φ occurred.

φ(xa) =

{
True if Π(x) = Π(xa)
False if Π(x) �= Π(xa)

(1)

Overall, there are several design choices one can make regarding how exactly
to compute the mean RESP scores, generating a family of closely related algo-
rithms. First, either RESP-UC or RESP-OC may be used, depending on the
desired definition of cause. Not only will this affect the resultant RESP scores,
but most importantly, it will change what is identified as a cause; some sets of
variables will have RESP scores of zero under one definition but not the other.
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Algorithm 1. MeanRESP

1: Input: All Causal Variables X, Variable of Interest X ′, Inference Model Π,
Variable assignment x, Responsibility function RESP

2: Output: Mean Responsibility Scores ρ.
3: MEANRESP ← 0
4: for all β = 0...|W |max do
5: σ, T ← 0
6: for all W ∈ P(X \ X ′) such that |W | = β do
7: for all w ∈ Dom(W ) do
8: T ← T + 1
9: σ ← σ + RESP (Π, X, X ′, x, d ∼ Dom(X ′), W, w)

10: MEANRESP ← MEANRESP + σ
T

11: return MEANRESP
|W |max+1

Algorithm 2. RESP-UC

1: Input: Π, X, x, d, W, w
2: Output: score, σ.
3: D1, D2 ← 1
4: for all W ′ ∈ P(W ) do
5: w′ ← w|W ′

6: xp ← [x〈w′]
7: if ¬φ(xp) then
8: D1 ← 0
9: break

10: xm ← [x〈(d ∪ w)]
11: if φ(xm) then
12: D2 ← 0
13: return D1

1+|W |D2

Second, the mean RESP score can be calculated in two ways. It may be tallied
over only the witness sets of size βmin, where βmin is the smallest β for which
there exists a satisfying witness set (as in [27]). Or, it may be tallied overall
witness sets, regardless of β, as in Algorithm 1. Actual causes with at least some
small witness sets will receive lower RESP scores under the latter design.

Third, as responsibility incrementally accrues with respect to an actual causal
set, these increments can either be counted equally or can be normalized by the
size of the domain of the actual cause. We refer to this as the option to perform
domain normalization, and the theory behind it is that with a larger domain
the chance that some assignment X = x̄ will meet the conditions of Definition
1 increases, and thus the responsibility should correspondingly decrease.

None of these choices interfere with properties 1–3, but they may subtly alter
relative responsibility assigned to different actual causes. As there is no clear
reason based on first principles as to the correct choice, these decisions involve
tradeoffs. For example, short-circuiting after finding a single witness set of size β
that satisfies Definition 1 will save compute time, but may give a slightly higher
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Algorithm 3. RESP-OC

1: Input: Π, X, x, d, W, w
2: Output: score, σ.
3: D1, D2 ← 1
4: xp ← [x〈w]
5: if ¬φ(xp) then
6: D1 ← 0
7: xm ← [x〈(d ∪ w)]
8: if φ(xm) then
9: D2 ← 0

10: return D1
1+|W |D2

Algorithm 4. Sampled MeanRESP

1: Input: All Causal Variable X, Variable of Interest X ′, Inference Model Π,
Variable assignment x, Responsibility function RESP , Sample Size, T

2: Output: Mean Responsibility Scores ρ.
3: σ ← 0
4: for all t = 0...T do
5: W ∼ P(X \ X ′)
6: w ∼ Dom(W )
7: σ ← σ + RESP (Π, X, X ′, x, d ∼ Dom(X ′), W, w)
8: return σ

T

or lower ρ score depending on whether the variables of interest are important
under many counterfactual scenarios or only a few.

4.1 Approximating MEANRESP

Algorithm 1 is an exact algorithm that iterates over all possible scenarios to
count where X ′ satisfies the definition of cause. When the state space is very
large, due to either continuous variables or large discrete domains, we can use
essentially the same algorithm adapted to sample witness set assignments using
Monte Carlo sampling. Algorithm 4 approximates exact MeanRESP, and repro-
duces the exact algorithm in the limit. Sampling may be constrained along sev-
eral dimensions independently, depending on the most expensive features of the
problem. Here, we present in detail a novel sample-based algorithm to calcu-
late responsibility scores. We then discuss its connection to the popular Shapley
value-based attribution score. In subsequent sections, we will theoretically and
empirically analyze this algorithm.

The main difference is that instead of going through all possible scenarios (i.e.
W ∈ P(X \X ′), w ∈ D(W ), d ∈ D(X ′)) we sample different scenarios uniformly.
The expression being estimated can be written as the following equation for
RESP-UC:

EW∼P(X\X′),w∼D(W ),d∼D(X′)[
D1

1 + |W | (φ(x) − φ(xm))] (2)
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For RESP-OC it can be written as:

EW∼P(X\X′),w∼D(W ),d∼D(X′)[
φ(xp)

1 + |W | (φ(x) − φ(xm))] (3)

It can be verified that this expression is the same as the following:

EW∼P(X\X′),w∼D(W ),d∼D(X′)[
φ(xp)

1 + |W | (φ(xp) − φ(xm))] (4)

This rewrite provides us with insight into the connection between Shapley
value and RESP. In particular, the Monte Carlo approximation of the expected
Shapely value can be written as:

EW∼P(X\X′),w∼D(W ),d∼D(X′)[(φ(xp) − φ(xm))] (5)

Intuitively, from Eqs. 4, and 5 MeanRESP can be thought of as distanced
weighted Shapely Value. Here, 1+|W | captures the difference in the original input
x and xm. φ(xp) captures the difference in original output Π(x) and Π(xp).

Finally, when the action space is continuous the definition of φ might not
work as well due to the floating point values. Therefore, we can consider a softer
version of φ as below:

φsoft(xa) = e−β(|Π(xa)−Π(x)|) (6)

Here, β → ∞ : φsoft(xa) → φ(xa). However, note that for φsoft Eqs. 2 and 3
are no longer equivalent.

5 Theoretical Analysis

Proposition 1. MeanRESP Score ρ > 0 using the RESP-UC function
implies actual cause according to Definition 1.

Proof Sketch: MeanRESP Score ρ > 0 iff there exists at least one contingency
(W,w) for which all the in Definition 1 is satisfied.

Proposition 2. The false positive rate of sampled MeanResp is 0.

Proof Sketch: ρ > 0 iff all the constraint of the Definition 1 is satisfied at least
once.

Proposition 3. The false negative rate of sampled Mean Resp with n sample is
at most (1 − (ρ∗(|W |max + 1)))n.

Proof Sketch The probability of not classifying X ′ as a weak cause i.e. false
negative rate using 1 sample will be at most 1 − (ρ∗(|W |max + 1)). If samples
are drawn independently then the false negative rate using n samples is at most
(1 − (ρ∗(|W |max + 1)))n.

Proposition 4. P (|ρ − ρ∗| ≥ √
ερ∗) ≤ 2e−εn/3k; k = Wmax + 1, n = number

of samples. In words, probability that the estimated ρ deviate by
√

ε
ρ∗ is at most

2e−εn/3k.
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Proof Sketch According to Chernoff Bound:

P (|ρn

k
− ρ∗n

k
| ≥ δ

ρ∗n
k

) ≤ 2e−δ2ρ∗n/3k (7)

Setting δ =
√

ε
ρ∗ :

P (|ρn

k
− ρ∗n

k
| ≥

√
ερ∗n

k
) ≤ 2e−εn/3k (8)

This is same as:
P (|ρ − ρ∗| ≥ √

ερ∗) ≤ 2e−εn/3k (9)

Proposition 5. MeanRESP score is upper-bounded by Shapley Value.

Proof Sketch Since in Eq. 3, 0 ≤ φ(xp)
1+|W | ≤ 1, MeanRESP score will always be

upper-bounded by shapely value when we consider Eq. 4.

6 Empirical Analysis

In this section, we will first discuss several metrics for comparing feature rank-
ings generated using exact methods to those generated using different forms of
approximation. Then, we will use some of these metrics to empirically evaluate
the sampling error of the two proposed approximate MeanRESP methods (UC
and OC) in conjunction with the Shapley value [37]. Finally, we will examine the
disagreement in feature rankings among these three methods. This disagreement
will help us evaluate whether MeanRESP differs significantly from the widely
adopted Shapley value, potentially warranting a human-subject study.

6.1 Environment Details

To conduct experiments in this section, we used three open-source environ-
ments designed for sequential decision-making. The initial two environments
were obtained from the OpenAI Gym library [6]: Blackjack and Taxi. The Black-
jack environment consists of 704 states and 2 actions, with each state being
represented by 3 features. As for the Taxi environment, it comprises 500 states
and 6 actions, with each state being represented by 4 features. Additionally, we
employed the highway-fast-v0 environment from the Highway-env library [17]
(referred to as “Highway” hereafter). This environment encompasses 20 features
(we exclude the features indicating presence from our experiment) within its fea-
ture space, each with continuous values. To facilitate our analysis, we discretized
the feature domain into 20 equidistant points. Consequently, the total number of
states in this environment amounted to 2020. In this environment, the agent can
select from 5 different discrete actions. Note that due to such a large state space,
it is computationally infeasible to estimate exact MeanRESP. For the empirical
analysis, we used a very large sample size of 105 to emulate exact MeanRESP
For the Blackjack and Taxi environments, we employed value iteration [5] to
compute the optimal policy, while for Highway, we utilized Deep Q-learning [24]
to approximate an optimal policy.
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Table 2. Example of the top k = 5 features identified as causes by the exact (ground
truth) MeanRESP and approximate MeanRESP-OC methods after different numbers
of samples (N = 2000, 1000, 500, 50). We observe that: a) After 50 samples, Mean-
RESP identifies most of the causal variables (4 out of 5). b) By 500 samples, the first 3
rankings match exactly with the exact method. c) After 2000 samples, the ranking com-
pletely matches the exact method. While the score estimates fluctuate with additional
samples, highly influential variables (ranks 1, 2, and 3) are relatively easy to identify.
Other weakly influential variables appear frequently but may not always be ranked
correctly. We observe this trend of influential variables stabilizing early throughout
our experiment.

Ground Truth N = 2000 N = 1000 N = 500 N = 50

1. Vehicle-2 X 1. Vehicle-2 X 1. Vehicle-1 Y 1. Vehicle-1 Y 1. Vehicle-1 Y

2. Vehicle-1 Y 2. Vehicle-1 Y 2. Vehicle-2 X 2. Vehicle-2 X 2. Vehicle-3 X

3. Vehicle-3 Y 3. Vehicle-3 Y 3. Vehicle-3 Y 3. Vehicle-3 Y 3. Vehicle-Ego Y

4. Vehicle-Ego Y 4. Vehicle-Ego Y 4. Vehicle-3 X 4. Vehicle-3 X 4. Vehicle-2 Y

5. Vehicle-3 X 5. Vehicle-3 X 5. Vehicle-2 Y 5. Vehicle-2 Y 5. Vehicle-2 X

6.2 Metrics

In this subsection, we will discuss several existing metrics used to compare fea-
ture rankings generated by exact methods with those generated using various
forms of approximation. Some of these metrics rely solely on the contents of the
explanations, others rely only on the relative rankings of feature sets, and some
require ranking scores.

To evaluate the effectiveness of these metrics, we employed the Highway envi-
ronment. In Table 2, we present snapshots of the top k most responsible variables
for a given action outcome, illustrating examples of both the exact MeanRESP-
OC method and various stages during the sampling process within the approxi-
mate MeanRESP-OC approach. The behavior of these metrics throughout the
sampling process is summarized in Figs. 1.

Ranking Only. We can calculate the ranking of the features by sorting the ρ-
values in descending order. Using Kendall’s τ and Spearman’s ρ, we can calculate
a rank correlation coefficient to compare the ranks of features. This coefficient
should increase towards 1 as we increase the number of samples used to estimate.
Finally, one simple approach is to check if the two rankings are identical.

Responsibility. Having access to the raw responsibility scores provides an
opportunity for additional nuance in our metrics. Here, we present several
options.

First, let us treat each feature in X as a 2D point. The x-value will be the
true ρ-value, as given by the exact method, ρ∗ for that set. The y-value will be
the estimated ρ-value. As the number of samples increases, the slope of the least
squares fit line on these 2D points should approach 1.
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Second, we can use Pearson’s r correlation factor to calculate the correlation
between ρ∗ and ρ. As the number of samples increases the correlation factor
should reach 1.

Third, we take the top k features from both exact and approximate methods,
sum the ρ∗ values associated with the exact results, and call this ρ∗

k. Then, sum
the ρ∗-values for approximate results and call this ρapprox

k . The fraction ρapprox
k

ρ∗
k

should approach 1 as number of samples increases.
Finally, we can calculate the Euclidean distance between the vectors repre-

senting ρ∗- and ρ-values for every potential feature set. As the number of samples
increases the distance should reach 0.

Feature Set Contents. The previous metrics concern the relative importance
assigned to different causes identified by MeanRESP or a similar algorithm.
Here, we consider the presence or absence of information represented within the
causal sets, since in many cases, the user will ultimately see only the causes and
not their relative importance. If we create a set C∗

k that is the union of the top
k features from the exact algorithm, and similarly define a set Ck that is the
union of the top k features from the approximate algorithm, we then have a basis
to understand what has been erroneously included or omitted. In this case, we
propose simply finding the number of insertions and deletions required to make
the sets identical or the edit distance. This number should approach 0 as the
number of samples increases.

Discussion. In the context of explanation generation, we argue that feature-set
content is a more interpretable metric as it tells us exactly how many different
factors will be communicated to the user. For sample error estimation, while all
the metrics under responsibility are good candidates, we found no clear winner.
We opted for using Euclidean distance for our experiments.

6.3 Sampling Error

In Fig. 2 we show estimation error versus the number of samples used to estimate
the score. We use the following estimation error:

1
|S|

∑

s∈S

√ ∑

i∈[1,|s|]
(ρ∗

i (s) − ρi(s))2 (10)

Here, ρ∗
i (s) and ρi(s) are the ground truth value and approximated value

respectively for the i−th feature of state s. Note that this is equivalent to
the average Euclidean distance. We use the average of 30 different evaluations
of Eq. 10 to create Fig. 2. In both environments, we see MeanRESP-UC and
MeanRESP-OC perform similarly. However, for the same amount of samples,
we see 10%-70% more error in the estimation for the Shapley Value compared
to both MeanRESP.
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(a) Set Difference (b) Spearman ρ (c) Kendall τ (d) Identical Match

(e) Euclidean (f) Pearson r (g) Least Squares (h) Top K ratio

Fig. 1. Traces of all 8 metrics over time as they compare exact and approximate
responsibility estimates. The solid blue line represents the mean (50 runs using 50
different states total), and the blue-shaded regions represent one standard deviation.
Clearly, some metrics are more sensitive than others. Moreover, some shifts appear
to be detected universally, for example, near 200 samples, while at other points some
metrics respond to updated estimates while others do not. Notably, different is the
boolean metric in (d) that checks whether the top k = 5 items in the set are identically
ranked. The trace also shows us when the first time results become identical to the
exact methods. Due to the Monte Carlo sampling, we see some oscillation. In addition,
(a) is a version of edit distance, measuring how many insertions or deletions need to
be made before the sets are identical. Here, both absolute and relative responsibility
scores are irrelevant; only inclusion somewhere in the top k is captured. (Color figure
online)

Fig. 2. Convergence rates for different attribution methods. Horizontal axes represent
the number of samples taken, and vertical axes represent the absolute error in attribu-
tion value with respect to the exact solution. Color gradients represent one standard
deviation.
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6.4 Explanation Dissimilarity

Table 3. The average Feature-set Difference among attribution methods. The numbers
appear surprisingly high, considering the relatively small number of features in the
problems and the relative similarity of the methods.

Environment OC vs. UC OC vs. Shapley UC vs. Shapley

BlackJack 0.05 0.15 0.13

Taxi 0.05 0.11 0.14

Highway 1.8 2.5 2.4

In this subsection, we show the ranking disagreement among MeanRESP-OC,
MeanRESP-UC, and Shapley in Table 3. The ranking is created by sorting the
features based on their attribution score in descending order and then selecting
the top 33% of the features (for Taxi, the top feature, for Blackjack, the top
2 features, and for Highway, the top 7 features). We then calculated pairwise
explanation dissimilarity using the Feature-set Difference metric discussed pre-
viously. We generated explanations for 100 sampled states in each environment
and reported the average Feature-set Difference. In all cases, we see that the
disagreement between MeanRESP-OC and MeanRESP-UC is smaller than
Shapley. Also, MeanRESP-OC is more similar to Shapley than MeanRESP-
UC, in two out of three environments. These results suggest that there is a
significant amount of difference in the explanations created by these methods,
especially in larger environments. This motivates a potential future human sub-
ject study of explanation preference.

7 Conclusion

In summary, this study provides a comprehensive examination of MeanRESP,
a framework for causal analysis of MDPs using structural causal models. The
theoretical and empirical analyses shed light on crucial properties of approximate
MeanRESP, including the convergence of error rates. Additionally, we intro-
duce various metrics that contribute to a deeper understanding of the ranking
generated by approximate MeanRESP. Moving forward, future research will
involve conducting user preference studies to empirically evaluate the effective-
ness of these methods.
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Abstract. Although popular and effective, large language models
(LLM) are characterised by a performance vs. transparency trade-off
that hinders their applicability to sensitive scenarios. This is the main
reason behind many approaches focusing on local post-hoc explanations
recently proposed by the XAI community. However, to the best of our
knowledge, a thorough comparison among available explainability tech-
niques is currently missing, mainly for the lack of a general metric to mea-
sure their benefits. We compare state-of-the-art local post-hoc explana-
tion mechanisms for models trained over moral value classification tasks
based on a measure of correlation. By relying on a novel framework for
comparing global impact scores, our experiments show how most local
post-hoc explainers are loosely correlated, and highlight huge discrep-
ancies in their results—their “quarrel” about explanations. Finally, we
compare the impact scores distribution obtained from each local post-
hoc explainer with human-made dictionaries, and point out that there
is no correlation between explanation outputs and the concepts humans
consider as salient.

Keywords: Natural Language Processing · Moral Values
Classification · eXplainable Artificial Intelligence · Local Post-hoc
Explanations

1 Introduction

Large Language Models (LLMs) represent the de-facto solution for dealing with
complex Natural Language Processing (NLP) tasks such as sentiment analy-
sis [45], question [19], and many others [34]. The ever-increasing popularity of
such data-driven approaches is widely caused by their performance improvements
against their counterparts. Indeed, Neural Network (NN) based approaches have
shown uncanny performance over different NLP tasks such as grammar accept-
ability of a sentence [43] and text translation [40]. However, following the quest
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for higher performance, research efforts gave birth to ever more complex NN
architectures such as BERT [15], GPT [12], and T5 [35].

Although being powerful and, empirically, reliable, LLM suffer from a per-
formance vs. transparency trade-off [11,47]. Indeed, LLM are black-box models,
as they rely on the optimisation of their numerical sub-symbolical components,
which are mostly unreadable by humans. The black-box nature of LLMs hin-
der their applicability to some scenarios where transparency represents a fun-
damental requirement, e.g., NLP for medical analysis [29,39], etc. Therefore,
there exists the need to identify relevant mechanisms capable of opening such
LLM black-boxes and diagnose their reasoning process, and presenting it in a
human-understandable fashion. Towards this aim, a few different explainabil-
ity approaches, focusing mostly on Local Post-hoc explainer (LPE) mechanisms,
have been recently proposed. An LPE represents a popular solution to explain
the reasoning process by highlighting how different portions of the input sample
impact differently the produced output, by assigning a relevance score to each
input component. These approaches apply to single instances of input sample,
thus being local, and to optimised LLM—thus being post-hoc.

Despite a broad variety of LPE approaches, the state of the art lacks a fair
comparison among them. A common trend for proposals of novel explanation
mechanisms is to highlight its advantages through a set of tailored experiments.
This hinders comparison fairness, making it very difficult to identify the best
approach for obtaining explanations of NLP models or even to know if such a
best approach exists. This is why we present a framework for comparing several
well-known LPE mechanisms for text classification in NLP. Aiming at obtaining
comparison fairness, we rely on aggregating the local explanations obtained by
each local post-hoc explainer into a set of global impact scores. Such scores iden-
tify the set of concepts that best describe the underlying NLP model from the
perspective of each LPE. These concepts, along with their aggregated impact
scores, are then compared for each LPE against other LPE counterparts. The
comparison between the aggregated global impact scores rather than the single
explanations is justified by the locality of LPE approaches. Indeed, it is rea-
sonable for local explanations of different LPEs to differ somehow, depending
on the approach design, therefore making it complex to compare the quality of
two LPEs over the same sample. However, it is also expected for the aggregated
global impacts to be aligned between different LPE as they are applied to the
same NN, which leverages the same set of relevant concepts for its inference.
Therefore, when comparing the aggregated impact scores of different LPE, we
expect them to be correlated—at least up to a certain extent.

We perform our comparison between LPE explanations across the social
domains available in the Moral Foundation Twitter Corpus (MFTC) [20]. MFTC
represents an example of a challenging task, as it is proposed to tackle moral val-
ues classification. Moral values are inherently subjective to human readers, there-
fore introducing possible disagreement inside annotations and making the overall
optimisation pipeline sensitive to small changes. Moreover, identifying moral val-
ues represents a sensitive task, as it requires a deep and safe understanding of
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complex concepts such as harm and fairness. Consequently, we believe MFTC
to represent a suitable option for analysing the behaviour of LPEs over different
scenarios. Moreover, relying on MFTC enables a comparison between extracted
relevant concepts and a set of humanly tailored impact scores, namely Moral
Foundations Dictionary (MFD) [21]. Therefore, allowing us to study the extent of
correlation between LPE-extracted concepts and humanly salient concepts. Sur-
prisingly, our experiments show how there are setups where the explanations of
different LPEs are far from being correlated, highlighting how explanation qual-
ity is highly dependent on the chosen eXplainable Artificial Intelligence (xAI)
approach and the respective scenario at hand. There are huge discrepancies in
the results of different state-of-the-art local explainers, each of which identifies
a set of relevant concepts that largely differs from the others—at least in terms
of relative impact scores. Therefore, we stress the need for identifying a robust
approach to compare the quality of explanations and the approaches for their
extraction. Moreover, the comparison between the distribution of LPEs’ impact
scores and the set of human-tailored impact scores shows how there exists almost
always no correlation between salient concepts extracted from the NN model and
concepts relevant for humans. The obtained results highlight the fragility of xAI
approaches for NLP, caused mainly by the complexity of large NN models, their
inclination to the extreme fitting of data—with no regard for concept meaning—
and the lack of sound techniques for comparing xAI mechanisms.

2 Background

2.1 Explanation Mechanisms in NLP

The set of explanations extraction mechanisms available in the xAI commu-
nity are often categorized along two main aspects [2,17]: (i) local against global
explanations, and (ii) self-explaining against post-hoc approaches. In the former
context, local identifies the set of explainability approaches that given a single
input, i.e., sample or sentence, produce an explanation of the reasoning process
followed by the NN model to output its prediction for the given input [32]. In
contrast, global explanations aim at expressing the reasoning process of the NN
model as a whole [18,22]. Given the complexity of the NN models leveraged
for tackling most NLP tasks, it is worth noticing how there is a significant lack
of global explainability systems, whereas a variety of local xAI approaches are
available [31,37].

About the latter aspect, we define post-hoc as those set of explainability
approaches which apply to an already optimized black-box model for which it
is required to obtain some sort of insight [33]. Therefore, a post-hoc approach
requires additional operations to be performed after that the model outputs its
predictions [14]. Conversely, inherently explainable, i.e., self-explaining, mech-
anisms aim at building a predictor having a transparent reasoning process by
design, e.g., CART [30]. Therefore, a self-explaining approach can be seen as gen-
erating the explanation along with its prediction, using the information emitted
by the model as a result of the process of making that prediction [14].
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In this paper, we focus on local post-hoc explanation approaches applied to
NLP. Here, it represents a popular solution to explain the reasoning process
by highlighting how different portions, i.e., words, of the input sample impact
differently the produced output, by assigning a relevance score to each input
component. The relevance score is then highlighted using some saliency map to
ease the visualisation of the obtained explanation. Therefore, it is also common
for local post-hoc explanations to be referred to as saliency approaches, as they
aim at highlighting salient components.

2.2 Moral Foundation Twitter Corpus Dataset

In our experiments, we select the MFTC dataset as the target classification task.
The MFTC dataset is composed of 35,108 tweets – sentences –, which can be con-
sidered as a collection of seven different datasets. Each split of MFTC corresponds
to a different context. Here, tweets corresponding to the dataset samples are col-
lected following a certain event or target. As an example, tweets belonging to the
Black Lives Matter (BLM) split were collected during the period of Black Lives
Matter protests in the US. The list of all MFTC subjects is the following: (i) All
Lives Matter (ALM), (ii) BLM, (iii) Baltimore protests (BLT), (iv) hate speech
and offensive language (DAV), (v) presidential election (ELE), (vi) MeToo move-
ment (MT), (vii) hurricane Sandy (SND). In our experiments we also considered
training and testing the NN model over the totality of MFTC tweets. This was done
to analyse the LPEs behaviour over an unbiased task, as the average morality of
each MFTC split is influenced by the corresponding collection event.

Each tweet in MFTC is labelled, following the same moral theory, with one or
more of the following 11 moral values: (i) care/harm, (ii) fairness/cheating, (iii)
loyalty/betrayal, (iv) authority/subversion, (v) purity/degradation, (vi) non-
moral. Ten of the 11 available moral values are obtained as a moral concept and
its opposite expression—e.g., fairness refers to the act of supporting fairness and
equality, while cheating refers to the act of refraining from cheating or exploiting
others. Given morality subjectivity, each tweet is labelled by multiple annotators,
and the final moral labels are obtained via majority voting.

Finally, similar to previous works [28,36], we preprocess the tweets before
using them as input samples for our LLM training. We preprocess the tweets by
removing URLs, emails, usernames and mentions, as well as correcting common
spelling mistakes and converting emojis to their respective lemmas using the
Ekphrasis package1 and the Python Emoji package2, respectively.

3 Methodology

In this section, we present our methodology for comparing LPE mechanisms. We
first propose an overview of the proposed approach in Sect. 3.1. Subsequently, the
set of LPE mechanisms adopted in our experiments are presented in Sect. 3.2,

1 https://github.com/cbaziotis/ekphrasis.
2 https://pypi.org/project/emoji/.

https://github.com/cbaziotis/ekphrasis
https://pypi.org/project/emoji/
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and the aggregation approaches leveraged to obtain global impact scores from
LPE outputs are described in Sect. 3.3. Finally, in Sect. 3.4 we present the metrics
used to identify the correlation between LPEs.

3.1 Overview

Given the complexity of measuring different LPE approaches over single local
explanations, we here consider measuring how much LPEs correlate with each
other over a set of fixed samples. The underlying assumption of our framework
is that various LPE techniques aim at explaining the same NN model used for
prediction. Therefore, while explanations may differ over local samples, it is rea-
sonable to assume that reliable LPEs when applied over a vast set of samples—
sentences or set of sentences—should converge to similar (correlated) results.
Indeed, the underlying LLM considers being relevant for its inference always
the same set of concepts—lemmas. A lack of correlation between different LPE
mechanisms would hint that there exists a conflict between the set of concepts
that each explanation mechanisms consider as relevant for the LLM, thus making
at least one, if not all, of the explanations unreliable.

Being interested in analysing the correlation between a set of LPEs over the
same pool of samples, we first define εNN as a LPE technique applied to a NN
model at hand. Being local, εNN is applied to the single input sample xi, produc-
ing as output one impact score for each component (token) of the input sample
lk. Throughout the remainder of the paper, we consider lk to be the lemmas
corresponding to the input components. Mathematically, we define the output
impact score for a single token or its corresponding lemma as j (lk, εNN (xi)).
Depending on the given εNN , the corresponding impact score j may be associ-
ated with a single label – i.e., moral value –, making j a scalar value, or with a set
of labels, making j a vector—one scalar value for each label. To enable compar-
ing different LPE, we define the aggregated impact scores of a LPE mechanism
over a NN model and a set of samples S as εNN (S). In our framework we obtain
εNN (S) aggregating εNN (xi) for each xi ∈ S using an aggregation operation A,
mathematically:

εNN (S) = A ({εNN (xi) for each xi ∈ S}) . (1)

Defining a correlation metric C, we obtain from Eq. (1) the following for describ-
ing the correlation between two LPE techniques:

C (εNN (S) , ε′
NN (S)) = C

(
A ({εNN (xi) for each xi ∈ S}) ,

A ({ε′
NN (xi) for each xi ∈ S})

) (2)

where εNN and ε′
NN are two LPE techniques applied to the same NN model.

3.2 Local Post-hoc Explanations

In our framework, we consider seven different LPE approaches for extracting
local explanations j (lk, εNN (xi)) from an input sentence xi and the trained
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LLM—identified as NN . The seven LPEs are selected in order to represent
as faithfully as possible the state-of-the-art of xAI approaches in NLP. Subse-
quently, we briefly describe each of the seven selected LPE. However, a detailed
analysis of these LPEs is out of the scope of this paper and we refer interested
readers to [14,32,38].

Gradient Sensitivity Analysis. The Gradient Sensitivity analysis (GS) prob-
ably represents the simplest approach for assigning relevance scores to input com-

ponents. GS relies on computing gradients over inputs components as
δfc(xi)
δxi,k

,

which represents the derivative of the output with respect to the the kth compo-
nent of xi. Following this approach local impact scores of an input component
can be thus defined as:

j (lk, εNN (xi)) =
δfτm(xi)

δxi,k
, (3)

where fτm(xi) represents the predicted probability distribution of an input
sequence xi over a target class τm. While simple, GS has been shown to be an
effective approach for understanding approximate input components relevance.
However, this approach suffers from a variety of drawbacks, mainly linked with
its inability to define negative contributions of input components for a specific
prediction—i.e., negative impact scores.
Gradient × Input Aiming at addressing few of the limitations affecting GS, the
Gradient × Input (GI) approach defines the relevance scores assignment as GS
multiplied – element-wise – with xi,k [25]. Therefore, mathematically speaking,
GI impact scores are defined as:

j (lk, εNN (xi)) = xi,k · δfτm(xi)
δxi,k

, (4)

where notation follows the one of Eq. (3). Being very similar to GS, GI inherits
most of its limitations.

Layer-Wise Relevance Propagation. Building on top of gradient-based rel-
evance scores mechanisms – such as GS and GI –, Layer-wise Relevance Propa-
gation (LRP) proposes a novel mechanism relying on conservation of relevance
scores across the layers of the NN at hand. Indeed, LRP relies on the follow-
ing assumptions: (i) NN can be decomposed into several layers of computation;
(ii) there exists a relevance score R

(l)
d for each dimension z(l)d of the vector z(l)

obtained as the output of the lth layer of the NN; and (iii) the total relevance
scores across dimensions should propagate through all layers of the NN model,
mathematically:

f(x) =
∑

d∈L

R
(L)
d =

∑

d∈L−1

R
(L−1)
d = · · · =

∑

d∈1

R
(1)
d , (5)
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where, f(x) represents the predicted probability distribution of an input
sequence x, and L the number of layers of the NN at hand. Moreover, LRP
defines a propagation rule for obtaining R

(l)
d from R(l+1). However, the deriva-

tion of such propagation rule is out of the scope of this paper and thus we refer
interested readers to [8,10]. In our experiments, we consider as impact scores the
relevance scores of the input layer, namely j (lk, εNN (xi)) = R

(1)
d .

Layer-Wise Attention Tracing. Since LLMs rely heavily on self-attention
mechanisms [42], recent efforts propose to identify input components relevance
scores analysing solely the relevance scores of attentions heads of LLM models,
introducing Layer-wise Attention Tracing (LAT) [1,44]. Building on top of LRP,
LAT propose to redistribute the inner relevance scores R(l) across dimensions
using solely self-attention weights. Therefore, LAT defines a custom redistribu-
tion rule as:

R
(l)
i =

∑

k s.t. i is input for neuron k

∑

h

a(h)R
(l+1)
k,h , (6)

where, h corresponds to the attention head index, while a(h) are the correspond-
ing learnt weights of the attention head. Similarly to LRP, we here consider as
impact scores the relevance scores of the input layer, namely j (lk, εNN (xi)) =
R(1).

Integrated Gradient. Motivated by the shortcomings of previously proposed
gradient-based relevance score attribution mechanisms – such as GS and GI –
, Sundararajan et al. [41] propose a novel Integrated Gradient approach. The
proposed approach aims at explaining the input sample components relevance
by integrating the gradient along some trajectory of the input space, which
links some baseline value x′

i to the sample under examination xi. Therefore, the
relevance score of the input kth component of the input sample xi is obtained
following

j (lk, εNN (xi)) =
(
xi,k − x′

i,k

)
·
∫ 1

a=0

δf(x′
i + t · (xi − x′

i))
δxi,k

dt, (7)

where xi,k represents the kth component of the input sample xi. By integrating
the gradient along an input space trajectory, the authors aim at addressing
the locality issue of gradient information. In our experiments we refer to the
Integrated Gradient approach as HESS, as for its implementation we rely on the
integrated hessian library available for hugging face models3.

SHAP. SHapley Additive exPlanations (SHAP) relies on Shapley values to
identify the contribution of each component of the input sample toward the final
prediction distribution. The Shapley value concept derives from game theory,

3 https://github.com/suinleelab/path explain.

https://github.com/suinleelab/path_explain
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where it represents a solution for a cooperative game, found assigning a distri-
bution of a total surplus generated by the players coalition. SHAP computes
the impact of an input component as its marginal contribution toward a label
τm, computed deleting the component from the input and evaluating the output
discrepancy. Firstly defined for explaining simple NN models [31], in our exper-
iments we leverage the extension of SHAP supporting transformer models such
as BERT [26], available in the SHAP python library4.

LIME. Similarly to SHAP, Local Interpretable Model-agnostic Explanations
(LIME) relies on input sample perturbation to identify its relevant components.
Here, the predictions of the NN at hand are explained via learning an explainable
surrogate model [37]. More in detail, to obtain its explanations LIME constructs
a set of samples from the perturbation of the input observation under examina-
tion. The constructed samples are considered to be close to the observation to be
explained from a geometric perspective, thus considering small perturbation of
the input. The explainable surrogate model is then trained over the constructed
set of samples, obtaining the corresponding local explanation. Given an input
sentence, we here consider obtaining its perturbed version via words – or tokens
– removal and words substitution. In our experiments, we rely on the already
available LIME python library5.

3.3 Aggregating Local Explanations

Once local explanations of the NN model are obtained for each input sentence –
i.e., tweet –, we aggregate them to obtain a global list of concept impact scores.
Before aggregating the local impact scores, we convert the words composing local
explanations into their corresponding lemmas – i.e., concepts – to avoid issues
when aggregating different words expressing the same concept—e.g., hate and
hateful. As there exists no bullet-proof solution for aggregating different impact
scores, we adopt four different approaches in our experiments, namely:

– Sum. A simple summation operation is leveraged to obtain the aggregated
score for each lemma. While simple this aggregation approach is effective when
dealing with additive impact scores such as SHAP values. However, it suffers
from lemma frequency issues, as it tends to overestimate frequent lemmas
having average low impact scores. Global impact scores are here defined as
J(lk, εNN ) =

∑N
i=1 j (lk, εNN (xi)). Therefore, we here define A as

A ({εNN (xi) for each xi ∈ S}) =

{
N∑

i=1

j (lk, εNN (xi)) for each lk ∈ S
}

.

(8)

4 https://github.com/slundberg/shap.
5 https://github.com/marcotcr/lime.

https://github.com/slundberg/shap
https://github.com/marcotcr/lime
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– Absolute sum. We here consider summing the absolute values of the local
impact scores – rather than their true values – to increase the awareness
of global impact scores towards lemmas having both high positive and high
negative impact over some sentences. Mathematically, we obtain aggregated
scores as J(lk, εNN ) =

∑N
i=1 |j (lk, εNN (xi)) |.

A ({εNN (xi) for each xi ∈ S}) =

{
N∑

i=1

|j (lk, εNN (xi)) | for each lk ∈ S
}

.

(9)
– Average. Similar to the sum operation, we here consider obtaining aggre-

gated scores averaging local impact scores, thus avoiding possible overshoot-
ing issues arising when dealing with very frequent lemmas. Mathematically,
we define J(lk, εNN ) = 1

N ·
∑N

i=1 j (lk, εNN (xi)).

A ({εNN (xi) for each xi ∈ S}) =
{

1

N
·

N∑
i=1

j (lk, εNN (xi)) for each lk ∈ S
}

. (10)

– Absolute average. Similarly to absolute sum, we here consider to average abso-
lute values of local impact scores for better-managing lemmas having a skewed
impact as well as tackling frequency issues. Global impact scores are here
defined as J(lk, εNN ) = 1

N ·
∑N

i=1 |j (lk, εNN (xi)) |.

A ({εNN (xi) for each xi ∈ S}) =
{

1

N
·

N∑
i=1

|j (lk, εNN (xi)) | for each lk ∈ S
}

. (11)

Being aware that the selection of the aggregation mechanism may influence the
correlation between different LPEs, in our experiments we analyse LPEs corre-
lation over the same aggregation scheme. Moreover, we also consider analysing
how aggregation impacts the impact scores correlation over the same LPE, high-
lighting how leveraging the absolute value of impact score is highly similar to
adopting its true value—see Sect. 4.3.

3.4 Comparing Explanations

Each aggregated global explanation J depends on a corresponding label τm –
i.e., moral value – since LPEs produce either a scalar impact value for a single
τm or a vector of impact scores for each τm. Therefore, recalling Sect. 4.3, we
can define the set of aggregated global scores depending on the label they refer
to as following:

Jτm (εNN ,S) = {J (lk, εNN ) |τm for each lk ∈ S} . (12)

Jτm (εNN ,S) represents a distribution of impact scores over the set of lemmas
– i.e., concepts – available in the samples set for a specific label. To compare the
distributions of impact scores extracted using two LPEs – i.e., Jτm (εNN ,S) and
Jτm (ε′

NN ,S) – we use Pearson correlation, which is defined as the ratio between
the covariance of two variables and the product of their standard deviations, and
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it measures their level of linear correlation. The selected correlation metric is
applied to the normalised impact scores. Indeed, different LPEs produce impact
scores which may differ relevantly in terms of their magnitude. Normalising the
impact scores, we map impact scores to a fixed interval, allowing for a direct
comparison of Jτm over different εNN . Mathematically, we refer to the normalised
global impact scores as ‖Jτm‖. Therefore, we define the correlation score between
two sets of global impact scores for a single label as:

ρ (‖Jτm (εNN ,S)‖, ‖Jτm (ε′
NN ,S)‖) = ρ

(
‖{J (lk, εNN ) |τm for each lk ∈ S}‖,
‖{J (lk, εNN ) |τm for each lk ∈ S}‖

)

(13)
where ρ refers to the Pearson correlation used to compare couples of
Jτm (εNN ,S). Throughout our analysis we experimented with similar correla-
tion metrics, such as Spearman correlation and simple vector distance – similarly
to [27] –, obtaining similar results. Therefore, to avoid redundancy we here show
only the Pearson correlation results. Throughout our experiments, we consider
a simple min-max normalisation process, scaling the scores to the range [0, 1].

As our aim is to obtain a measure of similarity between LPEs applied over
the same set of samples, we can average the correlation scores ρ obtained for
each label τm over the set of labels T . Therefore, we mathematically define the
correlation score of two LPEs, putting together Eqs. (2), (12) and (13) as:

C (εNN (S) , ε′
NN (S)) =

1
M

·
M∑

m=1

ρ (‖Jτm (εNN ,S)‖, ‖Jτm (ε′
NN ,S)‖) (14)

where M is the total number of labels, i.e., moral principles, belonging to T .

4 Experiments

In this section, we present the setup and results of our experiments. We present
the model training details and its obtained performance in Sect. 4.1. We then
focus on the comparison between the available LPEs, showing the correlation
between their explanations in Sect. 4.2. Section 4.3 analyses how correlation
scores are affected by the selected aggregation mechanism A. Finally, in Sect. 4.4
we analyse the extent to which LPEs explanations are aligned with human
notions of moral values.

4.1 Model Training

We follow state-of-the-art approaches for dealing with morality classification
task [9,24]. Thus, we treat the morality classification problem as a multi-class
multi-label classification task, leveraging BERT as the LLM to be optimised [15].
We define one NN model for each MFTC split and optimise its parameters over
the 70% of tweets, leaving the remaining 30% for testing purposes. However,
conversely from recent approaches, we here do not rely on the sequential training
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paradigm, but rather train each model solely on the MFTC split at hand. Indeed,
in our experiments, we do not aim at obtaining strong transferability between
domains, but rather we focus on analysing LPEs behaviour.

We leverage the pre-trained bert-base-uncased model – available in the Hug-
ging Face python library6 – as the starting point of our training process. Each
model is trained for 3 epochs using a standard binary cross entropy loss [46], a
learning rate of 5 × 10−5, a batch size of 16 and a maximum sequence length
of 64. We keep track of the macro F1-score for each model to identify its per-
formance over the test samples. Table 1 shows the performance of the trained
BERT model.

Table 1. BERT performance over MFTC datasets.

ALM BLM BLT DAV ELE MT SND TOT

F1 score 63.04% 82.59% 64.51% 88.12% 63.14% 52.16% 56.85% 69.10%

4.2 Are Local Post-hoc Explainers Aligned?

We analyse the extent to which different LPEs are aligned in their process of
identifying impactful concepts for the underlying NN model. With this aim, we
train a BERT model over a specific dataset (following the approach described
in Sect. 4.1) and compute the pairwise correlation C (εNN (S) , ε′

NN (S)) (as
described in Sect. 3) for each pair of LPE in the selected set. To avoid issues
caused by model overfitting over the training set, which would render explana-
tions unreliable, we apply each εNN over the test set of the selected dataset.

Using the pairwise correlation values we construct the correlation matrices
shown in Figs. 1 and 2, which highlight how there exist a very weak correlation
score between most LPEs over different datasets. Here, it is interesting to notice
how, there exists few specific couples or clusters of LPE which highly correlate
with each other. For example, GS, GI and LRP show moderate to high cor-
relation score, mainly due to their reliance on computing the gradient of the
prediction to identify impactful concepts. However, this is not the case for all
LPE couples relying on similar approaches. For example, GI and gradient inte-
gration – HESS in the matrices – show little to no correlation, although they both
are gradient-based approach for producing local explanations. Similarly, SHAP
and LIME show no correlation even if they both rely on input perturbation and
are considered the state-of-the-art.

Figures 1 and 2 highlight how the vast majority of LPE pairs show very small
to no correlation at all, exposing how there exists a disagreement between the
selected approaches. This finding represents a fundamental result of our study, as
it highlights how there is no accordance between LPE even when they are applied

6 https://github.com/huggingface.

https://github.com/huggingface
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Fig. 1. C (εNN (S) , ε′
NN (S)) using average aggregation (left) and absolute average

aggregation (right) as A over the BLM dataset.

Fig. 2. C (εNN (S) , ε′
NN (S)) using average aggregation (left) and absolute average

aggregation (right) as A over the ELE dataset.

to the same model and dataset. The reason behind such large discrepancies
among LPE might be various, but mostly bear down to the following:

– Few of the LPE considered in the literature do not represent reliable solutions
for identifying the reasoning principles of LLMs.

– Each of the uncorrelated LPEs highlight a different set or subset of reasoning
principles of the underlying model.

Therefore, our results show how it is also complex to identify a set of fair and
reliable metrics to spot the best LPE or even reliable LPEs, as they seem to
gather uncorrelated explanations. Similar results to the ones shown in Figs. 1
and 2 are obtained for all dataset splits and are made available at https://
tinyurl.com/QU4RR3L.

4.3 How Does Impact Scores Aggregation Affect Correlation?

Since our LPE correlation metric is dependent on A, we here analyse how
the selection of different aggregation strategies impacts the correlation between

https://tinyurl.com/QU4RR3L
https://tinyurl.com/QU4RR3L
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LPEs. To understand the impact of A on C, we plot the correlation matrices
for a single dataset, varying the aggregation approach, thus obtaining the four
correlation matrices shown in Fig. 3.

Fig. 3. C (εNN (S) , ε′
NN (S)) using different aggregations over the ALM dataset.

From Figs. 3c and 3d it is possible to notice how there exists a strong correla-
tion between different LPEs. This results seems to be in contrast with the results
found in Sect. 4.2. However, the reason behind the strong correlation achieved
when relying on summation aggregation is not caused by the actual correlation
between explanations, but rather on the susceptibility of summation to tokens
frequency. Indeed, since the summation aggregation approaches do not take into
account the occurrence frequency of lemmas in S, they tend to overestimate
the relevance of popular concepts. Intuitively, using this aggregations, a rather
impactless lemma appearing 5000 times would obtain a global impact higher
than a very impactful lemma appearing only 10 times. These results highlight
the importance of relying on average based aggregation approaches when con-
sidering to construct global explanations from the LPE outputs.
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Figure 3 also highlights how leveraging the absolute value of LPEs incurs
in higher correlation scores. The reason behind such a phenomenon is to be
found in the impact scores distributions. Indeed, while true local impact scores
are distributed over the set of real numbers R, computing the absolute value
of local impacts j shifts their distribution to R

+, shrinking possible differences
between positive and negative scores. Moreover, it is also true that LPE outputs
rely much more heavily on scoring positive contributions using positive impact
scores, and tends to give less focus to negative impact scores. Therefore, it is
generally true that the output of LPEs is unbalanced towards positive impact
scores, making negative impact scores mostly negligible.

4.4 Are Local Post-hoc Explainers Aligned with Human Values?

As our experiments show the huge variability in the response by available state-
of-the-art LPE approaches, we check whether there exists at least one LPE that
is aligned with human interpretation of values. To do so, we compare the set of
global impact scores J extracted by each LPE against two sets of lemmas which
are considered to be relevant for humans. The set of humanly-relevant lemmas,
along with their impact scores are obtained from the MFD and the extended
Moral Foundations Dictionary (eMFD). The MFD is a dictionary of relevant
lemmas for the set of moral values belonging to MFTC. Such a dictionary is
generated manually by picking relevant words from a large list of words for
each foundation value [21]. Meanwhile, eMFD represents an extension of MFD
constructed from text annotations generated by a large sample of human coders.

Similar to the comparison of Sect. 4.2, we rely on Pearson correlation, measur-
ing the correlation coefficient C between each LPE and MFD or eMFD, treating
MFD as if it was a distribution of relevant concepts. Figure 4 shows the results
for our study over the BLT dataset for different aggregation mechanisms.

Alarmingly, the results show how there exists no positive correlation between
any of the LPE approaches and both MFD and eMFD. Although it is possible
that the trained model learns relevant concepts that are specific to the target
domain – i.e., BLT in Fig. 4 – it is concerning how strongly uncorrelated LPE
and human interpretation of values are. Indeed, while BERT may focus on a few
specific concepts which are not human-like, it is assumed and proven to be effec-
tive in learning human-like concepts over the majority of NLP tasks. Especially
if we consider our BERT model to be only fine-tuned on the target domain, it
is very unreasonable to assume these results to be caused by BERT learning
concepts that are not aligned with human values. Rather, it is fairly reasonable
to deduce that the considered LPEs are far from being completely aligned to
the real reasoning process of the underlying BERT model, thus incurring in such
high discrepancy with human-labeled moral values.
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Fig. 4. C (εNN (S) ,MFD) using different aggregations over the BLT dataset.

5 Conclusion and Future Work

We propose a new approach for the comparison among state-of-the-art local
post-hoc explanation mechanisms, aiming at identifying the extent to which their
extracted explanations correlate. We rely on a novel framework for extracting
and comparing global impact scores from local explanations obtained from LPEs,
and apply such a framework over the MFTC dataset. Our experiments show how
most LPEs explanations are far from being mutually correlated when LPEs are
applied over a large set of input samples. These results highlight what we called
the “quarrel” among state-of-the-art local explainers, apparently caused by each
of them focusing on a different set or subset of relevant concepts, or imposing
a different distribution on top of them. Further, we compare the impact scores
distribution obtained from each LPEs with a set of human-made dictionaries.
Our experiments alarmingly show how there exists no correlation between LPE
outputs and the concepts considered to be salient by humans. Therefore, our
experiments highlight the current fragility of xAI approaches for NLP.

Our proposal is a solid starting point for the exploration of the reliability and
soundness of xAI approaches in NLP. In our future work, we aim at investigating
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more in-depth the issue of robustness of LPE approaches, adding novel LPEs to
our comparison such as [16], and aiming at identifying if it is possible to rely on
them to build a surrogate of the model from a global perspective. Moreover, we
also consider as a promising research line the possibility of building on top of
LPE approaches so as to obtain reliable global explanations of the underlying
NN model. Finally, in the future we aim at extending the in-depth analysis of
LPEs to domains different from NLP, such as computer vision [4,5,13], graph
processing [6,23], and neuro-symbolic approaches [3,7].
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Abstract. Machine learning opaque models, currently exploited to
carry out a wide variety of supervised and unsupervised learning tasks,
are able to achieve impressive predictive performances. However, they
act as black boxes (BBs) from the human standpoint, so they cannot be
entirely trusted in critical applications unless there exists a method to
extract symbolic and human-readable knowledge out of them.

In this paper we analyse a recurrent design adopted by symbolic
knowledge extractors for BB predictors—that is, the creation of rules
associated with hypercubic input space regions. We argue that this kind
of partitioning may lead to suboptimum solutions when the data set
at hand is sparse, high-dimensional, or does not satisfy symmetric con-
straints. We then propose two different knowledge-extraction workflows
involving clustering approaches, highlighting the possibility to outper-
form existing knowledge-extraction techniques in terms of predictive per-
formance on data sets of any kind.

Keywords: explainable AI · symbolic knowledge extraction ·
clustering

1 Introduction

Machine learning (ML) models in general – and (deep) artificial neural networks
in particular – are nowadays exploited to draw predictions in almost every appli-
cation area [26]. However, when facing critical domains – e.g., involving human
health, wealth, or freedom – ML models behaving as opaque predictors are not
an acceptable choice. The opaque nature of these models makes them unintelli-
gible for humans and this is the reason why they are called black boxes (BBs).
Nonetheless, explainability can be obtained from BBs via several strategies [17].
For instance, one can rely uniquely on interpretable models [27], or build expla-
nations by applying reverse engineering to the BB behaviour [21]. The former
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option is not always practicable, since interpretable models as linear regressors
and shallow decision trees are not always prediction-effective as more complex
models—for instance, random forests or deep artificial neural networks. On the
other hand, the latter approach allows users to combine the impressive predictive
capabilities of opaque predictors with the human readability proper of symbolic
models.

The majority of present literature offers a wide variety of procedures
explicitly designed to extract symbolic knowledge from opaque ML classi-
fiers [2,13,14,23,24,40,43, for instance]. A smaller set of procedures is dedicated
to BB regressors [20,28,32,35,38,39,41, to cite some], whereas few exceptions
are able to consider both categories [6,7,9,11,22,36]. A large amount of avail-
able techniques depend on the existence of software libraries supporting ML in
general (e.g., Python’s Scikit-Learn1 [25]) and symbolic knowledge extraction in
particular (for instance, PSyKE2 [10,29,31,33]).

Unfortunately, any method offers peculiar advantages, but at the same time,
it is subject to drawbacks and limitations. In the following we focus on the issues
deriving from the extraction of a particular kind of rules from BB classifiers and
regressors. More in detail, we observe that opaque predictors in general – and
regressors in particular – are often explained via a human-interpretable par-
titioning of the input space. A typical design choice is to identify hypercubic
regions of the input feature space enclosing similar instances and then to asso-
ciate symbolic knowledge to each region, for instance in the form of first-order
logic rules [20,28,32]. We agree that rules associated with hypercubic regions
are the best choice from the human-readability perspective since they enable
the description of an input space region in terms of constraints on single dimen-
sions (e.g., 0.3 < X < 0.6, 0.5 < Y < 0.75 for a hypercube in a 2-dimensional
space having features X and Y ). However, this solution may lead to the creation
of suboptimum clusters in several scenarios, for instance, if the partitioning into
hypercubes is performed following some sort of top-down symmetric procedure
on asymmetric data sets, or if the partitioning is bottom-up and performed on
sparse data sets. In this paper we suggest exploiting clustering techniques on the
data set used to train the BB before extracting knowledge from it, in order to
preemptively find and distinguish relevant input regions with the corresponding
boundaries. This theoretically allows extractors to: (i) automatically tune the
number of output rules w.r.t. the number of relevant regions found; (ii) give pri-
ority to more relevant regions, for instance those containing more input instances
or having the largest volume; (iii) avoid unsupervised partitioning of the input
feature space, otherwise leading to suboptimum solutions in terms of readability
and/or fidelity. Given that our proposed workflows are based on the training
data sample distribution and require no knowledge of the adopted opaque pre-
dictor, it may be possible to build pedagogical knowledge-extraction algorithms
adhering to them.

1 https://scikit-learn.org/stable/index.html.
2 https://github.com/psykei/psyke-python.

https://scikit-learn.org/stable/index.html
https://github.com/psykei/psyke-python
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Accordingly, in Sect. 2 an overview of symbolic knowledge extraction in gen-
eral and some techniques in particular is provided. In Sect. 3 the main drawbacks
of existing knowledge-extraction algorithms based on hypercubes are highlighted
and discussed. We then propose novel clustering-based workflows for knowledge
extraction in Sect. 4 and our work is finally summarised in Sect. 5.

2 Related Works

A predictive model can be defined as interpretable if human users are able to
easily understand its behaviour and outputs [12]. Since the majority of modern
ML predictors store the knowledge acquired during their training phase in a sub-
symbolic way, they behave and appear to the human perspective as unintelligi-
ble black boxes. The explainable artificial intelligence community has proposed
a variety of methods to enrich BB predictions with corresponding interpreta-
tions/explanations without renouncing their superior predictive performance.
Usually, the proposed methods consist of creating an interpretable, mimicking
model by inspecting the underlying BB in terms of internal behaviour and/or
input/output relationships. For instance, RefAnn analyses the architecture of
neural network regressors with one hidden layer to obtain information about
the internal parameters and thus build human-readable if-then rules having a
linear combination of the input features as postconditions [39]. This kind of tech-
nique is called decompositional. On the other hand, when the internal structure
of the BB is not considered to build explanations, algorithms are classified as
pedagogical.

Symbolic knowledge-extraction techniques are currently applied in several
critical areas, such as healthcare, credit-risk evaluation, intrusion detection sys-
tems, and many others [3–5,8,16,18,19,34,37,42].

2.1 ITER

The Iter algorithm [20] is a pedagogical technique to extract symbolic knowl-
edge from BB regressors. Iter induces a hypercubic partitioning of the input
feature space following a bottom-up strategy, starting with points in the multidi-
mensional space and expanding them until the final hypercubic output regions.
According to the Iter design, all the produced hypercubes are non-overlapping
and they do not exceed the input feature space.

After the hypercube expansion Iter associates an if-then rule to each cube,
selecting as a postcondition the mean output value of all the instances contained
in the cube. This behaviour may be relaxed to support classification tasks or
regression tasks having outputs described through linear laws by adopting the
generalisation proposed in [30].

The algorithm’s main advantage is to be capable of constructing hyper-
cubes having different sides’ lengths. However, especially when dealing with
high-dimensional data sets, it may present several criticalities related to the
hypercubes’ expansion.
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2.2 GridEx and GridREx

The GridEx algorithm [32] is a different pedagogical technique to extract sym-
bolic knowledge from BB regressors. It is applicable under the same conditions
of Iter and outputs the same kind of knowledge, but they differ in the strategy
adopted during the input space partitioning. GridEx is not a bottom-up algo-
rithm; conversely, it follows a top-down strategy, starting from the whole input
space and recursively partitioning it into smaller hypercubic regions, according
to a user-defined threshold acting as a trade-off criterion between readability
(in terms of the number of extracted rules) and fidelity of the output model
(intended as its ability to mimic the underlying BB).

Also for GridEx it is possible to adopt a generalisation enabling its applica-
tion for classification tasks [30]. On the other hand, the GridREx algorithm [28]
is the extension of GridEx providing linear combinations of the input features
as outputs associated with the identified hypercubic relevant regions.

Amongst the common advantages of GridEx and GridREx there is the ability
to automatically refine the output regions according to the provided threshold,
as well as to perform a merging step after each split, when possible. In particular,
the merging step consists of the pairwise unification of adjacent hypercubes to
reduce the number of output rules (to enhance human readability) and it is
based on the similarity between the samples included in each cube (to avoid
a predictive performance worsening). It is useful since the splitting phase may
create excessive amounts of disjoint but adjacent, similar regions.

3 Limitations of Existing Knowledge-Extraction Methods

In order to point out the main limitations affecting existing symbolic knowledge-
extraction techniques based on hypercubic partitioning a clear insight into how
the partitioning is performed has fundamental importance. For this reason the
behaviour of Iter, GridEx and GridREx is further detailed in the following
with the aim of spotting their major drawbacks and providing possible solutions.
Examples of these knowledge-extraction algorithms applied to real-world data
sets are also reported to strengthen our argumentation. Iter’s examples are
considered on the Istanbul Stock Exchange data set3 [1], describing a regression
task with 7 continuous input features plus another input feature representing a
timestamp. Examples for GridEx are based on the Wine Quality data set4 [15],
composed of 13 continuous input features.

3.1 ITER

The Iter procedure is exemplified for the Istanbul Stock Exchange data set in
Fig. 1, where only the 2 most relevant input features are reported, i.e., the stock
market return index of UK (FTSE) and the MSCI European index (EU). The

3 https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE.
4 https://archive.ics.uci.edu/ml/datasets/wine.

https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE
https://archive.ics.uci.edu/ml/datasets/wine
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(a) Starting cubes. (b) Cubes at iteration i. (c) Temporary cubes.

(d) Best temporary cube. (e) Merge (iteration i). (f) Merge (iteration i+ 1).

Fig. 1. Example of Iter hypercube expansion.

figure is a mere sketch depicting a possible undesired execution scenario of the
algorithm, starting from random points belonging to negligible input regions.

During the execution of Iter a certain number of infinitesimally small hyper-
cubes (i.e., multidimensional points) are created within the input feature space
(cf. Fig. 1a) and they are iteratively expanded until some stopping criteria are
met – i.e., the whole space is covered or it is not possible to expand the existing
cubes nor to create new ones –, or after a specified amount of iterations.

The expansion follows this strategy, for a generic iteration i (cf. Fig. 1b):

1. build adjacent temporary cubes around the existing ones (2 temporary cubes
per input dimension per existing cube; cf. Fig. 1c, temporary cubes are rep-
resented with dashed perimeter);

2. select the best temporary cube—i.e., the most similar to the corresponding
adjacent existing cube (cf. Fig. 1d, the best temporary cube is highlighted
with red perimeter);

3. merge the best temporary cube with the existing one (cf. Fig. 1e, the merged
region is highlighted with red hatches);

4. repeat from step 1 for every successive iteration (cf. Fig. 1f).

The temporary cube selected to be merged may become instead a new inde-
pendent cube if the similarity w.r.t. its adjacent cube is below a user-defined
threshold. The number of starting cubes as well as the size of the temporary
cubes and the maximum number of allowed iterations are other hyper-parameters
to be provided by users. Conversely, the position of the initial cubes is randomly
chosen, so it represents a source of non-determinism.
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It is important to notice that at each algorithm iteration, only one hypercube
amongst all the available temporary cubes is merged. The others are discarded
and the majority of them are created again without modifications during the
successive iteration. This may lead to an enormous waste of computational time
and resources due to the repetition of (the same) useless calculations, other than
the possibility to exceed the maximum allowed iterations without having con-
vergence. The absence of convergence results in a non-exhaustive partitioning
of the input feature space, which in turn implies the inability to predict output
values of data samples belonging to regions that are not covered by a hypercube
(i.e., there are no human-interpretable predictive rules associated with uncov-
ered regions). Conversely, the coverage of the whole input feature space enables
drawing predictions for any input instance.

Given the existence of the non-exhaustivity issue, it is of paramount impor-
tance the ability to focus on relevant input space subregions first, actually miss-
ing in the Iter design, since cubes are initialised randomly and expanded regard-
less of the subregion relevance. A naive notion of relevance for an input space
subregion may be the amount of contained data set samples. If a training data
set is representative of a certain task, it is admissible to envisage that if an
input space subregion has no training instances, then probably there will not
be data samples belonging to that same region to be predicted in the future, so
the region is negligible, or at least not compelling. We highlight that it is not
sufficient to build the starting cubes around existing training samples randomly
chosen, since these may still be outliers. Conversely, the notion of region rele-
vance should be intertwined with that of instance density and therefore the most
relevant regions should be those containing more training instances. Since Iter
is actually unaware of the sample density, we believe that this procedure could be
improved by making the hypercube initialisation and expansion density-driven,
or at least density-aware, without neglecting the pivotal similarity criterion of
the original design.

3.2 GridEx and GridREx

The GridEx algorithm applied to the Wine Quality data set is visually shown in
Fig. 2 to highlight its weaknesses. Only 2 out of 13 input features are reported
in the figure to avoid a chaotic representation, i.e., the most relevant for the
classification task.

GridEx considers the data point distribution during its execution, intended
as the location of the data points inside the input feature space, but it neglects
the output value of the training instances during the assignment of a priority to
input feature space subregions. Indeed, it identifies 3 kinds of subregions:

negligible regions i.e., those without training instances belonging to them.
These regions may be neglected without a noticeable impact on the overall
extractor performance since the probability of existing instances enclosed by
them is very low;
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(a) Data set. (b) 1 cut per axis. (c) 2 cuts per axis.

(d) 3 cuts per axis. (e) 2 cuts (x) + 3 cuts (y). (f) 3 cuts (x) + 2 cuts (y).

Fig. 2. Example of GridEx hypercubic partitioning.

permament regions i.e., those containing training samples and for which the
estimated predictive error is below the user-defined threshold. These regions
have a satisfying predictive performance from the user standpoint and require
no further partitioning;

eligible regions i.e., those containing training data but having an associated
predictive error beyond the user-defined threshold. These regions require to
be refined with further splitting since they hinder the overall predictive per-
formance of the model.

By following this strategy the complete coverage of the input feature space is
not granted. Nonetheless, very high coverage rates are achieved when predicting
new unknown instances.

For the examples reported in Fig. 2 only actual GridEx instances performing
a single iteration are considered. This means that the eligible regions do have
not the possibility to be further refined. By observing Figs. 2b to 2f it is possible
to notice that the cuts performed by GridEx are perpendicular to the axes and
create for each dimension a set of partitions having the same size, even if the
number of cuts may differ for each dimension (cf. Figs. 2e and 2f). To apply a
different amount of cuts for each input dimension it is necessary to adopt the
adaptive version of GridEx, selecting a number of slices that are proportional to
the dimensions’ relevance.

The symmetric strategy is the main disadvantage of GridEx, in its base and
adaptive versions, and the same occurs with GridREx, since it follows the same
hypercubic partitioning strategy of GridEx. This design choice may lead to a
drop in the predictive performance if the identified hypercubes include portions
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of separated input regions. Given the symmetric nature of the algorithm, there
is no certainty that the predictive error measured for the hypercubic regions can
be reduced by augmenting the number of partitions, since a more fine-grained
partitioning may lead in any case to a poor approximation on asymmetric data
sets. We believe that GridEx and GridREx may be improved by performing slices
that are not blindly symmetric, but somehow aware of the training data points’
outputs. More in detail, cuts should avoid splitting into different regions training
samples that are similar, as well as avoid creating regions containing too different
training instances. To achieve this goal clustering may be performed before the
cuts in order to identify different clusters of data and therefore avoid cuts in the
proximity of the clusters’ centroids. Conversely, cuts in correspondence of the
intersection of two clusters should be encouraged.

4 Clustering-Based Approaches

Density and similarity estimates inside the training set input space may be
obtained, for instance, via the application of clustering techniques to the avail-
able data. With reference to Fig. 1, three clusters may be identified: one enclosing
the data points in the bottom-left part of the plot, one for the middle samples
and the other for the top-right instances. On the other hand, for Fig. 2 the clus-
ters may be defined according to the output expected classes and therefore also
in this case three distinct clusters are identified.

An ideal extraction technique should be able to identify relevant clusters of
data in a fast and flawless way, especially if clusters are linearly separable. An
ideal procedure should also be able to approximate these clusters according to a
human-interpretable format, for instance with hypercubic regions, enclosing the
training data points without overlaps between approximated regions. We stress
that this is only a desideratum, since real-world data sets seldom contain linearly
separable classes of instances, but the design of a clustering-based knowledge
extractor should take this ideal goal into account.

Bottom-up strategies like the one adopted by Iter generally result in time-
consuming executions in the n-dimensional domain, with large n. This may result
in a very slow convergence or even incomplete input space coverage. It is possible
to fasten the Iter convergence by acting on the algorithm parameters, but
at the expense of a coarser partitioning. This latter inconvenience is the same
encountered by using GridEx, since it induces an equally spaced grid not always
able to capture the properties of the data distribution inside the input feature
space. If a grid cell only contains instances belonging to a single cluster, the
predictive error will be small. Otherwise, it will be less or more large depending
on the amount of contamination of each grid cell.

An optimum, fast bottom-up hypercubic-based extraction technique can be
obtained by performing the following steps:

1. apply a clustering technique to the data set and therefore identify the different
relevant regions;
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(a) Initial clustering. (b) Starting cubes. (c) Final partitioning.

Fig. 3. Example of an ideal bottom-up clustering- and hypercube-based symbolic
knowledge extraction.

2. construct hypercubes to include the whole found regions, or a part of them,
since this shape can be straightforwardly represented in a symbolic and
human-readable format;

3. refine the hypercubes to enhance coverage and predictive performance of the
explainable model, for instance by expanding the approximated regions;

4. remove the overlaps amongst the hypercubic regions, or impose an order to
avoid ambiguity in evaluating the membership of instances to regions;

5. describe each hypercube in terms of the input features and then associate a
corresponding human-interpretable output value to obtain the final explain-
able model.

The described workflow for an ideal bottom-up clustering-based extractor per-
forming hypercubic partitioning of the input feature space is depicted in Fig. 3.

Conversely, an effective and fast top-down extraction technique based on
hypercubic partitioning can be performed by substituting the middle steps of
the workflow described above:

2. cut the input feature space in order to separate different clusters while avoid-
ing spreading instances of a single cluster over multiple regions;

3. create hypercubic regions approximating the identified optimum cuts, avoid-
ing overlapping cubes;

4. refine the hypercubes by recursively repeating the previous steps for each
cube, to enhance the predictive performance of the explainable model.

The corresponding workflow for an ideal top-down knowledge-extraction proce-
dure based on clustering is depicted in Fig. 4. Both Fig. 3 and Fig. 4 are concep-
tual sketches highlighting the fundamental steps of the aforementioned work-
flows, with the goal of guiding the future development of procedures adhering
to the presented concepts.

4.1 Open Issues

Extraction techniques may surely benefit from cluster-aware partitioning meth-
ods. Accuracy in the selection of different clusters and in the construction
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(a) Initial clustering. (b) Optimum cuts. (c) Final partitioning.

Fig. 4. Example of an ideal top-down clustering- and hypercube-based symbolic knowl-
edge extraction.

of clustering-based hypercubes may enable the achievement of the following
desiderata: extracting the minimum number of different predictive rules (one
per cluster) having the lowest possible predictive error. However, a number of
challenges arise from the aforementioned workflows. For instance:

i. How to select the correct number of clusters to identify, if unknown?
ii. How to handle outliers in the construction of hypercubes for the found

regions and in deciding where to cut the input space?
iii. How to build hypercubes around clusters associated with overlapping hyper-

cubic regions?
iv. How to discern amongst different clusters approximated by the same hyper-

cubic region?

We believe that powerful strategies to describe non-trivial clusters may
exploit difference cubes – e.g., regions of the input feature space having a non-
cubic shape and described by the subtraction of cubic areas – and hierarchical
clusters. We stress that the importance of adopting hypercubes to describe input
regions depends on the possibility to define a hypercube in terms of single vari-
ables belonging to specific intervals, in a highly human-comprehensible form.
This is not true when dealing with other representations—e.g., oblique rules,
M-of-N rules.

5 Conclusions

In this paper we propose two clustering-based workflows to enhance the symbolic
knowledge extraction from BB predictors in terms of computational complexity,
fidelity, and predictive performance. The former is based on a bottom-up hyper-
cubic approximation of the input feature space, resulting in a density-driven fast
partitioning. Conversely, the latter is a top-down cutting of the input feature
space providing hypercubic partitioning as well. Our methods can be exploited
to build interpretable regions associated with human-readable logic rules based
on an upstream clustering technique. In our future works we plan to implement
and include in the PSyKE framework different knowledge extractors adhering to
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the presented concepts and capable of handling complex situations—e.g., out-
liers, clusters with challenging shapes, non-linearly separable clusters.
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Abstract. Reinforcement Learning (RL) needs sufficient exploration to
learn an optimal policy. However, exploratory actions could lead the
learning agent to safety hazards, not necessarily in the next state but in
the future. Therefore, it is essential to evaluate each action beforehand to
ensure safety. The exploratory actions and the actions proposed by the
RL agent could also be unsafe during training and in the deployment
phase. In this work, we have proposed the Imperative Action Mask-
ing Framework, a Graph-Plan-based method considering a finite and
small look ahead to assess the safety of actions from the current state.
This information is used to construct action masks on the run, filter-
ing out the unsafe actions proposed by the RL agent (including the
exploitative ones). The Graph-Plan-based method makes our framework
interpretable, while the finite and small look ahead makes the proposed
method scalable for larger environments. However, considering the finite
and small look ahead comes with a cost of overlooking safety beyond
the look ahead. We have done a comparative study against the proba-
bilistic safety shield in Pacman and Warehouse environments approach.
Our framework has produced better results in terms of both safety and
reward.

Keywords: Graph-Plan Algorithm · Explainable/Interpretable
Machine Learning · Reinforcement Learning · Exploration considering
Safety

1 Introduction

Reinforcement Learning (RL) is a reward-based learning approach where the
learning agent learns a state-to-action mapping policy based on the reward [19]
accumulated during exploration in the underlying environment. RL, therefore, is
suitable for many real-world scenarios where the underlying environment is not
known a priori. On that account, the exploration is also necessary to capture
the state-to-action-to-reward mapping to learn the highest rewarding policy or
optimal policy. Therefore, while training, the RL agent takes a few actions that
are not optimal according to the current policy, which is called exploratory
actions. However, when RL applies in safety-critical environments, where some
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states are unsafe or hazardous, the goal is to learn an optimal policy while
avoiding those unsafe states. Therefore actions that potentially could lead to an
unsafe state, not necessarily in the very next state could be in the near future,
should be avoided. Also, not only the exploratory actions but the action proposed
by the RL agent could be unsafe. Therefore, all actions, whether exploratory or
optimal, should be checked before taking for safety-critical environments.

For example, consider the Pacman Game layout as shown in Fig. 1. Based on
the current position of the Pacman (yellow colored) and the ghost (blue colored),
if the Pacman takes the right action from there, then in the next state, it will
be in the green block, which might be safe for now as the ghost still not able
to catch the Pacman. However, the Pacman will be trapped within the green-
to-red block region, and eventually, the ghost will catch the Pacman. Therefore
the right action from the current position is not safe.

Fig. 1. Pacman Game Layout.

In general, several approaches to reinforcement learning through safe explo-
ration can be broadly classified into Reward Shaping and Action Shaping.
Reward Shaping techniques can be found in [2,6,10,18], where safety constraints
are included in the reward function as a regularization term. On the other hand,
works like [3,7,11,12,14,17] use action-shaping techniques to restrict the RL
agent from taking unsafe actions. Apart from these methods, the possibilities
of safe exploration using safe baselines/backup policies whenever a safety vio-
lation is detected have been demonstrated in [4,13]. On the other hand, in [1],
the author proposes a teacher advice-based technique where the RL agent seeks
expert or teacher advice whenever it detects any unknown/unsafe situation.

Among the action shaping techniques, [14] and [3] are better choices when
safety is the major concern, as these provide a formal safety guarantee even
though they suffer from scalability issues. A scalable implementation of [3] can
be found in [16]. In [16], the authors use a probabilistic model checker to deter-
mine the safety probabilities of the actions, which are later used to filter out
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the actions having unsafe probabilities beyond a threshold. Using a probabilis-
tic model checker helps to improve scalability but with the cost of safety and
interpretability.

In this context, we propose the Imperative Action Masking framework, a scal-
able and interpretable action-shaping technique. Action Mask filters out unsafe
actions from the current state. Our framework uses the classic Graph Plan algo-
rithm [9] to determine the action mask considering the state space up to a small
finite look ahead. The Graph Plan algorithm is used to improve interpretability,
as the outcomes of this algorithm are easy to interpret by a human. In contrast,
the small finite look ahead helps to increase the scalability, but with the cost of
omitting safety hazards that could occur beyond the look ahead. Therefore, our
framework is suitable for ensuring safety for environments with safety violations
in the near future; however, it can also be used to reduce the chances of safety
violations for environments with very far safety consequences.

In summary, our contributions are as follows:

– We develop a classic Graph Plan-based method to determine the membership
probabilities of a state in each Action Specific Robust Set.

– These probabilities are later used to compute the Action-Masks. The Action
Masks are applied on top of the RL Agent’s decision to ensure safety by
filtering out potential unsafe actions. Thus our method can be applied for safe
exploration in Reinforcement Learning in various discrete state and action
environments.

– The use of the Graph Plan-based method makes the Imperative Action Mask-
ing framework interpretable.

– We demonstrate the effectiveness of our method in Pacman and Warehouse
Environments. We also compare the results of our method over the Proba-
bilistic Shield presented in [16].

The paper is organized as follows. Section 2 outlines the overall problem state-
ment. Section 3 presents the proposed Imperative Action Masking framework.
Experimental environment configuration and results are presented in Sect. 4 and
Sect. 5, respectively. Concluding remarks are given in Sect. 6.

2 Problem Formalization

Given a Constrained MDP (CMDP) as defined in [15], < S,A,P, γ,R, μ, C >,
where S and A represent the set of states and the set of actions, respectively. P is
the transition probability function, γ is the discount factor, and R is the reward
function. μ is the start state distribution, and C = {(ci : S → {0, 1})|i ∈ Z}
is the set of given binary safety constraints; ci : s can take either 0 (safe) or 1
(unsafe). C : s is considered unsafe if any of the ci : s is 1.

We use X to denote the set of safe states where, {∀i, ci : X → 0} and Xu to
denote the set of unsafe states where, {∃i, ci : X → 1}. There can be states (sk

in Fig. 2) in the MDP which does not violate the safety constraints; however,
all the possible combinations of legitimate actions will eventually lead to unsafe
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states. We consider this set of states as pseudo-unsafe states Xp and should be
avoided just like the unsafe states. We have defined another two sets of safe
states, namely Action Specific Robust Safe Sets (Xai

I ) and Robust Safe Set (XI)
that is a subset of {X \ Xp}. Figure 2 depicts a schematic relation among these
sets.

Definition 1 (Robust Safe Set). Given an MDP having a set of safe states
X and action set A, the Robust Safe Set is defined as:

XI = {s | ∀s ∈ XI ,∃a ∈ A, ∀s′ ∈ P(s, a), s′ ∈ XI}
Definition 2 (Action Specific Robust Safe Set). Given an MDP having a
set of safe states X and action set A, the Action Specific Robust Safe Set is
defined as:

Xai

I = {s | ∀s ∈ Xai

I , s′ ∈ P(s, ai), s′ ∈ XI}
Hence, the Robust Safe Set (XI) is

⋃

∀a∈A
Xa

I .

Fig. 2. The yellow bordered region represents the set of safe states(X). The blue and
green encircled regions represent the Action Specific Robust Safe Sets for action a1

and a2, respectively. The white, yellow, and gray colored regions represent the Robust
Safe Set (XI), Pseudo Unsafe Set Xp, and set of unsafe states Xu, respectively. (Color
figure online)

We consider using the action masking method to keep the RL agent within
X. The mask value for unsafe actions’ will be zero and omitted from the masked
action list. Hence, the action is chosen from the masked distribution M : π will
always be safe, where M denotes the masking function. Our Imperative Action
Masking problem can be formulated as follows:

Problem 1 (Imperative Action Masking Problem)
Given a CMDP, a state st ∈ X and, current policy π, the Online Imperative
Action Masking Problem is to find an action mask Mst

for the state st such
that the next state st+1 for any action at sampled from the masked distribution
Mst

: π(st) belongs to X, i.e., P(st, at) → st+1 ∈ X.
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3 Imperative Action Masking Framework

To construct Action Mask (Mst
) for a state (st) requires information about the

state’s membership in different Action Specific Robust Safe Sets. The masking
value for an action is decided as follows.

Mst
[at] =

{
1, if st ∈ Xat

I ;
0, Otherwise.

However, it is not computationally feasible for MDPs with huge state space to
calculate the Robust Safe Set for the entire state space, covering all future time
steps. It is also hard to accurately determine future states beyond a particular
horizon if the MDP is not fully known. Therefore, we approximate the member-
ship values of a state st in an Action Specific Robust Safe Set Xat

I by checking
all the possible states up to a small look ahead l. If the next state st+1 for the
action at belongs to X and there exist a trace τ = st+2, ..., st+l from st+1, such
that i = 2..l sti ∈ X then we consider that the state st ∈ Xat

I .

Fig. 3. Membership Check using Graph Plan Algorithm. Each rectangle denotes the
state space of Graph-Plan for a time instance. Whereas Circles denote the states and
Diamonds represent the action. Red circles denote that the state is unsafe or �∈ X and
Green circles denote that the state is safe. As shown in the figure, only the safe states
are expanded for the next time instances of the Graph-Plan Algorithm. (Color figure
online)

We consider the well-established Graph Plan algorithm [9] to efficiently check
for such traces τ . The actions of the MDP are considered the actions for the
Graph Plan algorithm, and the effect of the actions are the next states as shown
in Fig. 3. Two preconditions (¬explored, s ∈ X) for all the actions are also
considered to improve efficiency. To determine the membership of a state st

in the Action Specific Robust Safe Set of action at in the first stage of the
Graph Plan Algorithm, we apply action at only. All the actions that satisfy the
preconditions are applied in the later stages. For non-deterministic MDP, the
membership function F also becomes probabilistic F(Xa

I , s) → [0, 1]. In this
case, the membership probability of only the maximum reachability probability
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Algorithm 1: Determining Membership using GraphPlan
Input: Action List A, Safe States X, Current State st, Given Action at, Look

Ahead l
1 Function Membership(A, X, st, at, l):
2 if st �∈ X then
3 return 0
4 F0(st) = 1
5 GPS = {st}
6 GPA = {at}
7 for i = 1 to l do
8 if ∀s ∈ GPS : s �∈ X then
9 return 0

10 GPS ← ExpandGraph(GPS, GPA)
11 for s′ ∈ GPS do
12 if s′ �∈ X then
13 Fi(s

′) = 0
14 else

15 Fi(s
′) = max

[
∀s, a ∈ Parent(s′), Fi(s) × P(s, a, s′)

]

16 end
17 GPA ← A
18 end
19 return max[Fl]

20 Comments:
21 GPS: Current State Set of the Graph-Plan Algorithms
22 GPA: Current Action set for the Graph-Plan Algorithm
23 ExpandGraph: Returns the set of next states from the states in GPS by taking

actions in GAP while satisfying the preconditions
24 Parent(s′): Return all the state, action combination used in GPSt−1 to reach s′

in GPSt.

to all safe states presented in the (t+ l) time step of the Graph Plan algorithm is
considered the membership probability. The membership probability F(Xat

I , st)
is determined as follows:

F(Xat

I , st) = max

[

∀st+l ∈ X,max
[
∀τ, τ [−1] = st+l,

∏

(s,a,s′)∈τ

P(s, a, s′)
]]

Here, τ [−1] returns the last state of the trajectory τ . In the end, it returns maxi-
mum F values among the states of Graph-Plan l-th time step. This membership
value is used to decide the action mask for the state st.

Mst
[at] =

{
1, if F(Xat

I , st) ≥ H;
0, Otherwise.

Here, H is the safety threshold range between [0,1]. The H value is a design
choice. However, with the higher value of H exploration process becomes more
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conservative. Algorithm 1 outlines the overall process flow to find the member-
ship values. Line 2 of the algorithm checks if the state st is in X or else it returns
the membership value as zero (Line 3). If the state st is in X, the membership
value is initialized with one (Line 4). The Graph Plan State list (GPS) and
Graph Plan Action list (GPA) are also initialized with the current state and
action. Then the graph is expanded (Line 10) up to depth l (look ahead value)
(Line 7–18). However, after each level expansion, the new states of that level
are checked if those states are in X, or else the membership for those states is
assigned to zero (Line 13). If the states are in X, then their temporary member-
ship values up to layer i are updated with the maximum value of their parent
states (i − 1 layer) value times corresponding transition probability, as shown in
Line 15. Finally, in Line 19, the maximum temporary membership value among
the last graph plan layer or l − th layer states are returned as the membership
value of state st in the corresponding Robust Set of Action at.

Graph Plan [9] is a simple and intuitive graph-based planning algorithm. The
use of the Graph Plan-based algorithm for determining whether the action is safe
or unsafe in our framework also makes the process intuitive and interpretable.
For example, consider the Pacman example shown in Fig. 1. Here based on the
current situation, our Imperative Action Masking Framework is able to identify
the Left action as Safe even though the Left action may lead the agent to a trap
or dead-end (colored in red) from which it cannot run away from an optimal
ghost, but it also has a safe state (colored in green) from which it can run away
from the ghost. Determining all these action labels (safe/unsafe) is quite intuitive
and interpretable.

4 Environment Setup

In order to demonstrate the working of our method, we have used two different
environments: (1) Pacman and (2) Warehouse. We have also presented a perfor-
mance comparison analysis of our method with the Probabilistic Safety Shield
for both environments. Table 1 describes the values of the hyperparameters used
in the experiments, and we consider the default reward settings for all the envi-
ronments. All the hyperparameter values used here are chosen empirically while
keeping the environment settings or parameters like reward settings as default.
Our implementation is uploaded as a public GitHub repository1.

4.1 Pacman

In this environment, [5], the Pacman (Learning Agent) navigates through the
grid as shown in Fig. 4 aims to collect all the pellets/food in the maze in the
least possible steps without getting caught by the chasing ghosts (Adversarial
Agents). The Pacman receives a positive reward of +10 for collecting a pellet
and a negative reward of -1 at each time step. A large positive reward of +500

1 https://github.com/sumantasunny/ImperativeActionMasking.git.

https://github.com/sumantasunny/ImperativeActionMasking.git.
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Table 1. Hyper-parameter values used in the experiments.

Hyper-Parameters Values

Discount Factor γ 0.8

Learning Rate α 0.2

Initial/Min ε 0.90/0.05

ε-Decay 0.90

Max Steps/Episode 10000

Safety Threshold H 1

is received on collecting all the dots, and on getting caught by the ghosts, a
large negative reward of -500 is received. Then the game restarts. We have used
directional ghosts (Probability of following the Pacman = 0.9), thus enabling a
more severe safety-critical environment. We have chosen two types of layouts -
Grid Trap (Fig. 4b) is a layout with dead-ends (traps), while Original Classic
(Fig. 4a) and Medium Classic (Fig. 5a) layouts are without dead-end (no traps)
for better comparison.

Fig. 4. (a) Original Classic Pacman Layout. (b) Grid Trap Pacman Layout. The yellow
bot is the Pacman, controlled by the RL Agent. (Color figure online)

4.2 Warehouse

This environment, as shown in Fig. 5b, consists of a warehouse floor plan con-
taining packages on the shelves and an exit. The yellow fork-lifter (Learning
Agent) has to collect all the packages from the respective shelves and deliver
them at the exit by navigating through the narrow corridors. It has to make
sure that it does not collide with other fork-lifters, similar to the setup in [8].
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Fig. 5. (a)Medium Classic Pacman Layout. (b) Warehouse Grid Layout. The RL Agent
controls the yellow robot. (Color figure online)

The yellow fork-lifter receives a positive reward of +20 on respectively loading
and delivering each package and a negative reward of -1 at each time step. On
delivering all the packages, a large positive reward of +500 is received, and on
collision with other fork lifters, it gets a large negative reward of -500. All the
fork lifters have only one exit in the entire floor plan, creating a safety-critical
condition at the exit.

5 Results

The experimental results were produced in a Ubuntu 20.04 OS with 16 GB
physical memory and Intel Core-i7 8th Gen processor. As a programming lan-
guage, we use Python 3.7. As both environments are discrete, we use Tabular
Q-Learning-based RL Agents. The used hyper-parameters are given in Table 1.

The RL algorithm has been trained for 300 episodes in each environmental
setup, and each episode runs till termination. The discount factor γ = 0.8, learn-
ing rate α = 0.2, and ε = 0.05 in the ε-greedy exploration policy are used as
hyper-parameters. The safety threshold H = 1 is used throughout the experi-
ment, i.e., if the action is not completely safe, it is masked. We have taken the
plots of the respective agents’ average scores and winning rates in their respective
environmental setups during training over different look ahead values, which can
be seen in Fig. 6, 8. The comparison of the training scores over several episodes
in each environmental setup using various action-masking methods can be seen
in Fig. 7, 9.

5.1 Pacman

We can observe from Fig. 6a and Fig. 6b that for all grids, the training scores and
winning rates are very low when the look ahead is either very small or very large.
This is because, for a smaller look ahead, the action masker fails to mask those
actions that could be potentially hazardous in the future, if not immediately.
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Fig. 6. Training Results on different look ahead for different Pacman grids. (a) Pac-
man’s average training score over different look ahead. (b) Pacman’s average winning
rate over different look ahead.

Fig. 7. Training Results on different Pacman grids. (a) Training Scores on original
classic Pacman. (b) Training Scores on medium classic Pacman. (c) Training Scores on
Pacman grid containing traps.

On the other hand, for a larger look ahead, the action masker becomes over-
conservative and thus may end up masking even those actions which practically
may not be unsafe. As a result, we see an optimal look ahead, leading to the
optimal performance of the Pacman in each of the grids.

Figure 7 compares the scores of RL approaches using our method of
GraphPlan-based look ahead shield to the unshielded RL approaches and RL
approaches using probabilistic shield constructed via model checker as in [16].
Figure 7a and Fig. 7b correspond to the grid without traps (dead ends), while
Fig. 7c corresponds to the grid with traps (dead ends). While outperforming the
unshielded RL method in the first two scenarios, our method performed better in
the third scenario, whereas the model checker-based probabilistic shield method
could not. Where our method is able to accumulate an average of +200 reward,
the model checker-based probabilistic shield performs similarly to the unshielded
RL method with an average of -400 reward.
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Fig. 8. Training Results on different look ahead for the warehouse floor plan (a) Fork-
lifter’s average training score over different look ahead. (b) Fork-lifter’s average winning
rate over different look aheads.

Fig. 9. Training Scores on warehouse environment.

5.2 Warehouse

Just like in the Pacman environment, as we can see from the overall trend of
the graphs in Figures Fig. 8a and Fig. 8b, the reward and winning rate increases
with the look ahead. However, after reaching a peak, the reward and winning
rate start decreasing with the further increase of look ahead length. A large look
ahead leads to overprotective scenarios and may end up masking not-so-unsafe
action, as shown in Fig. 8a and Fig. 8b.

The comparison of the scores of the RL approach using Graph Plan-based
look ahead shield of look ahead (l) 4 to the unshielded RL approach and RL
approach using probabilistic shield constructed via model checker as in [16] has
been shown in Fig. 9 where it is clearly visible that both the shield approach
performs much better than the unshielded RL method. Also, our RL with the
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look ahead-based shielding approach performs slightly better in terms of rewards
than the RL with the probabilistic shield.

6 Conclusion

We have presented an interpretable safe exploration method in safety-critical
environments with discrete state action in RL. We use the classic Graph Plan
algorithm to calculate the membership probabilities in each Action Specific
Robust Safe Set for all states up to a small finite look ahead. The Graph Plan
algorithm helps to improve the interpretability where the small finite look ahead
helps to increase the scalability. Using membership probabilities to construct
Action Masks in our proposed framework helps ensure safety with a certain
probability. We have also presented various experiments that empirically vali-
date that our method incurs fewer safety incidents while achieving higher rewards
than the Probabilistic Safety Shield technique.
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Abstract. Multi-agent Reinforcement Learning is required to adapt to
the dynamic of the environment by transferring the learning outcomes
in the case of the non-communicative and dynamic environment. Profit
minimizing reinforcement learning with the oblivion of memory (PMRL-
OM) enables agents to learn a co-operative policy using learning dynam-
ics instead of communication information. It enables the agents to adapt
to the dynamics of the other agents’ behaviors without any design of the
relationship or communication rules between agents. It helps easily to
add robots to the system with keeping co-operation in a multi-robot sys-
tem. However, it is available for long-term dynamic changes, but not for
the short-them changes because it used the outcome with enough trials.
This paper picked up cyclic environmental changes as short-term changes
and aimed to improve the performance in cyclic environmental changes
and analyze theoretically the rationality of this approach. Specifically,
we extend PMRL-OM based on an analysis of the PMRL-OM approach.
Our experiments evaluated the performance of the proposed method for
a navigation task in a maze-type environment undergoing cyclic environ-
mental change, with the results showing that the proposed method gave
an enhanced performance. Our method also enabled the adaptation to
cyclic change to occur sooner than for the existing PMRL-OM method.
In addition, the theoretical analysis not only investigates the PMRL-OM
rationality but also suggests optimal parameter values for the proposed
method. The proposed method contributed to XAI by showing the pre-
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1 Introduction

Multi-agent reinforcement learning (MARL) is an important technique for con-
trolling agents when learning optimal policies for gaming AI, path planning,
robot control, and data mining [1,8]. MARL simulates the above problems with
agents, environments, and rewards, and enable the agents to communicate with
each other, thereby achieving co-operative control [4]. There are two directions of
research, focusing on the scale of the environment called “small world” and “large
world”. This paper focuses on co-operative learning in a “small world” with its
scarce information being used as effectively as possible. In a small world, the
agents have to learn an appropriate policy for decision-making both optimally
and strategically to achieve co-operation, considering action selection at each
step [7,9]. On the other hand, in a “large world”, the agents are also required
to search the whole space and assign an acquired profit for the action in each
episode because the large world has its own problems, including sparse rewards
and the curse of dimensionality [6,14]. For example, transportation has two types
of domain: area-to-area in the large world and base-to-clientele in the small
world [3]. A large-scale MARL uses scarce information to make agents’ learning
affordable, while a small-scale MARL requires sufficient information to learn a
strategic policy. A small-scale MARL generally allows the agent-communication,
which might decrease the flexibility in the case of the multi-robot system where
the number of robots is. For example, any number of robots can use ad-hoc com-
munication for avoiding collision [2], but it is difficult for many agents to learn
strategic policy. Therefore, developing learning techniques with no information
in a small world is a great challenge.

Uwano et al. proposed a new MARL method for two agents in a maze-type
environment with non-communication and evaluated its rationality via theoreti-
cal analysis [12,13]. It is considered valuable for that two agents learn an optimal
policy using only learning dynamics in the absence of contextual information,
even for simple target problems. It enables the agents to adapt to the dynamics
of the other agents’ behaviors without any design of the relationship or commu-
nication rules between agents. It helps easily to add robots to the system with
keeping co-operation in a multi-robot system. Furthermore, considering insta-
bility in the real world, they proposed profit-minimizing reinforcement learning
with oblivion of memory (PMRL-OM) as a new MARL method for adapting the
dynamics in response to environmental change in a non-communicative environ-
ment [11]. This approach should enable agents to learn a co-operative policy that
can adapt its dynamics autonomously, after having learned for sufficient episodes.
However, PMRL-OM has the prerequisite that the agent adaptively relearns suf-
ficiently often after experiencing environmental changes. PMRL-OM has yet to
be analysed theoretically. Therefore, this paper analyses theoretically the ratio-
nality of the mechanisms in PMRL-OM used for co-operation when adapting to
environmental change. Moreover, the analysis suggests a way of removing the
PMRL-OM prerequisite. In our experiments, we compare our extended PMRL-
OM method with an existing method for navigation tasks in a maze-type envi-
ronments with cyclic environmental change, where the features of the environ-
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ment are changed randomly after a certain period. The main contribution of this
paper is a proposed MARL method that can adapt to dynamic changes in the
non-communicative environment with insufficient learning episodes.

This paper is organized as follows. Section 2 describes the problem addressed
in this work. The PMRL-OM method is introduced in Sect. 3, and its analysis
and extension are described in Sect. 4. Section 5 then describes the details of our
experiments and discusses the results. We conclude this work in Sect. 6.

2 Preliminaries

2.1 Problem Domain

We characterize the problem domain as a decentralized, partially observable,
Markov decision process (Dec-POMDP) [10], where agents cannot access fully
observed data, including other agents’ locations and goal locations. Note that
we designed a new Dec-POMDP along with the setting in [11]. Equations (1)
to (5) are symbolic expressions of the problem, defined in terms of the tuple
〈S,A, τ,O,Ω,R〉. Let S, A, Ω, and R be a set of states, an action, an observed
state, and a reward function, respectively. The agent observes Ωi decided by
the observation function Oi, where i is an identification index for an agent,
and selects the action ai. The agent transitions to its next state via Eq. (3),
which is based on A, the Cartesian product of the actions of all agents. During
the learning process, if it has reached the goal, the agent acquires the reward
expressed by Eq. (5), where −i indicates an agent other than any agent i. The
training has two termination conditions. The first is when all agents have reached
their goals and the second is when a given number of steps have been executed.
This paper refers to this number of training steps as “one episode”.

S = {s1, s2, ..., sN} (1)
A = a1 × a2 × ... × aI (2)
τ : S × A × S → 1 (3)
Oi : S × A × S × Ωi → 1 (4)
Ri = {r|si ∈ Sgoal ∧ si �= s−i} (5)

Fig. 1. Example of a maze-type environment for two agents.
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2.2 Navigation Task in Dynamic Grid World Maze

This paper considers the navigation task in a grid-world maze-type environment,
as exemplified in Fig. 1, where two agents “A” and “B” depart from the states
labelled “Agent A” and “Agent B”, respectively, and aim to reach the goals
“Goal X” and “Goal Y”, respectively. Each agent can observe only its own
location, and can move up, down, left, or right. An agent acquires the reward
after reaching the goal faster than the other agent.

The environment, which is defined in terms of the start and goal locations, can
change. An environmental change is assumed to be executed regularly, after a cer-
tain number of episodes, because this paper focuses on such cyclic changes. Note
that the locations are changed randomly. Let Sstart and Sgoal be the sets having
the states indicating the starts and goals for all agents, the system replaces the
states in Sstart or Sgoal randomly and exclusively after a certain-length term
and then repeats it.

3 Profit Minimizing Reinforcement Learning
with Oblivion of Memory

A PMRL-OM enables agents to learn a co-operative policy using learning dynam-
ics instead of communication information. In particular, PMRL-OM updates its
learning parameters in response to environmental changes and learns its co-
operative policy without inter-agent communications [11].

3.1 Objective Priority

A PMRL-OM updates its objective priority when deciding its optimal objective,
such as the appropriate goal in a maze-type environment. Equation (6) expresses
the calculation of the objective priority, where bidi

g indicates the objective prior-
ity for agent i and goal g, with tig indicating the minimum number of steps until
agent i reaches goal g. The parameter ξ indicates the rate of change in previ-
ous updates of the objective priority. PMRL-OM updates the objective priority,
which converges to the minimum number of steps tig required to acquire the
reward. Otherwise, the updates converge to zero. Using these priorities, PMRL-
OM leads the agent toward the most distant of its first-to-reach goals:

bidi
g ←

{
ξ−1

ξ bidi
g + tig

ξ if Ri = r
ξ−1

ξ bidi
g otherwise

. (6)

Algorithm 1 describes the actual updating process for a PMRL-OM’s objec-
tive priority. After an initial learning process (the first line of the algorithm),
PMRL-OM updates the objective priority using this result. Specifically, PMRL-
OM decides the predicted appropriate goal sel and updates the objective priority
by following the upper line of Eq. (6) if the average reward value is above the
threshold THR and the reached goal go matches the selected goal sel. Next,
the selection sel is changed by following the objective priority bid, while sel is
changed randomly with an arbitrary probability.
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Algorithm 1. Objective Priority Estimation in PMRL-OM
1. Learning for one episode.
2. if AveRgo > THR and go is sel then
3. bid[sel] = ξ−1

ξ
bid[sel] + t [sel]

ξ

4. else
5. bid[sel] = ξ−1

ξ
bid[sel]

6. end if
7. sel = arg max bid
8. Setting random value to sel with arbitrary probability

3.2 Internal Reward and Learning

PMRL-OM estimates its Q-table based on an internal reward instead of an
external reward. The internal reward is calculated for the agent reaching the goal
selected by the objective priority. Figure 2 shows the internal reward setting for
PMRL-OM, where agent B calculates that internal reward irBY is larger than
the other irBX that yields the goal X for agent A. Because the agent learns its
policy according to the goal associated with the largest expected reward per step,
the internal reward can control learning together with the objective priority.

Fig. 2. Internal reward.

Equation (7) expresses the calculation of the internal reward and Eq. (8)
expresses the update calculation for the Q-value using the internal reward as
follows:

ir(g) =

⎧⎪⎨
⎪⎩

max
go∈G,go �=g

rgo
γtgo−tg + δ if g = sel ∧ Ri = rg

rg if g �= sel ∧ Ri = rg

0 otherwise

, (7)

Q(s, a) ← (1 − α)Q(s, a) + α

[
ir(g) + γ max

a′∈A
Q(s′, a′)

]
, (8)

where ir(g) indicates the internal reward for the goal g, rgo
indicates the external

reward for the arbitrary goal go, γ indicates the discount rate, and tg indicates
the minimum number of steps to reach the goal g. In Eq. (7), the agent does
not acquire the reward before having reached the goal and acquires the internal
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reward if the reached goal is selected via the objective priority and if the agent
acquires the external reward. The agent acquires the external reward if it acquires
the reward by having reached the unselected goal.

Fig. 3. Saving the minimum number of steps in PMRL-OM.

3.3 Updating of Minimum Number of Steps

A PMRL-OM can update its learning parameters. In particular, it can update
the minimum number of steps. Figure 3 illustrates such an update. The agent
has a memory that stores the number of steps until it reaches its goal as an entry
consisting of the number of episodes, the label of the goal, and the number of
steps, for each episode. PMRL-OM inserts such an entry into the memory at
the end of each episode and replaces the oldest entry by the new entry if the
number of existing stored entries exceeds the storage capacity e. In this figure,
PMRL-OM inserts the entry (51,X, 7) into the memory for the episode e + 1,
and removes the oldest entry. PMRL-OM then creates a table for the minimum
number of steps, as shown at the top right in the figure. Using the latest entries,
PMRL-OM updates the minimum number of steps for each goal.

4 Improvement of Objective Value Update
and Theoretical Analysis

4.1 Analysis of the Existing Objective Value Update

Here, we analyse the objective priority update. The update function is expanded
as follows:

bidi
g =

ng∑
m=1

(
ξ − 1

ξ

)ng−m tig
ξ

(9)

=
tg
ξ

·
1 − ( ξ−1

ξ )ng

1 − ξ−1
ξ

= tg

{
1 −

(
ξ − 1

ξ

)ng
}

, (10)
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where m is an arbitrary variable, ng is the estimated number of steps for the
agent to reach the goal g, and ξ is a positive constant value. Because 0 < ξ−1

ξ < 1
holds, if ng is sufficiently large, the objective priority bidi

g in Eq. (9) converges
to the constant value tg, following Eq. (10). The quantitative relationship of the
objective priority values do not change. Therefore, it is revealed that PMRL-
OM keeps the rationality of the objective priority. However, it is the case that
PMRL-OM cannot update the objective priority close to the minimum number of
steps for the early learning episodes after changing the environment. Naturally,
changing the variable ξ to a smaller value would make the convergence faster,
but it would be more sensitive to the environmental changes.

4.2 Improvement of Objective Value Updating

After sufficient learnings, the agent will have an optimal policy for reaching the
goal in a minimum number of steps. Therefore, if the minimum number of steps
tig is in error, PMRL-OM should use the average number of steps instead of the
minimum number of steps because it cannot calculate a true minimum number
of steps. Furthermore, PMRL-OM may require more than e entries to update
the minimum number of steps to true values, even though it retains only the
number of steps for the previous e episodes. However, omitting the calculation
of the minimum number of steps makes PMRL-OM adapt to the environmental
changes both smoothly and rapidly. Given that Eq. (9) approximates the average
value of the minimum number of steps for traversing episodes, PMRL-OM can
use this average instead of the minimum number of steps. The learning makes
the shortest estimate of the number of steps and the equation resists any errors
in the estimate by averaging the number of steps. We can therefore improve the
objective priority update equation as follows:

mbidi
g ←

⎧⎪⎪⎨
⎪⎪⎩

ξ−1
ξ mbidi

g + lig
ξ if AveRi > THR

ξ−1
ξ mbidi

g +
maxgo mbidi

go

ξ else if nothing is lig
ξ−1

ξ mbidi
g otherwise

, (11)

where mbid is the variable indicating the improved objective priority, and lig is
the number of steps for the agent i to reach the goal g in the latest episode.
Equation (11) is derived from Eq. (6) by replacing the minimum number of
steps tig by lig. At the beginning of the training, lig might not exist, i.e., the agent
may have reached an unselected goal in the first episode. In this situation, the
proposed method proceeds via a different approach.

Algorithm 2 shows the objective-priority estimation algorithm for the pro-
posed method. The coloured text indicates an alternative non-PMRL-OM pro-
cess. Specifically, the proposed method stores the goal label and the number of
steps for one tuple into the array l (Line 2), and removes the oldest entry after
the length of the array exceeds the threshold THL (Lines 3–5). The proposed
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Algorithm 2. Objective priority estimation in the proposed method.
1. Learning for one episode.
2. l.add (goal, t)
3. if l.length > THL then
4. Removing l[0]
5. end if
6. if lsel is empty then
7. bid[sel] = ξ−1

ξ
bid[sel] + max bid

ξ

8. else if AveRgo > THR and go is sel then
9. bid[sel] = ξ−1

ξ
bid[sel] + ls e l [lsel.length−1]

ξ

10. else
11. bid[sel] = ξ−1

ξ
bid[sel]

12. end if
13. sel = arg max bid
14. Setting random value to sel by arbitrary probability

method then updates the objective priority if l has no entry for the selected goal
sel (Lines 6 and 7). The proposed method updates via the maximum number of
objective priorities used to promote the agent toward the goal because no entry
means the agent has not reached the goal recently. In addition, the proposed
method updates the objective priority using the latest entry of l for the selected
goal sel (Line 9).

4.3 Theoretical Analsis of the Proposed Method

Here, we discuss the effectiveness of lig via theoretical analysis. Let di
g(n) be the

function calculating the difference between the number of steps and the minimum
for the number n when reaching the goal. We can transform Eq. (9) to Eq. (12)
for the modified objective priority mbidi

g as follows. Because lig = tig + di
g(m)

holds, the latest number of steps uses both the minimum number of steps and
the error.

mbidi
g =

ng∑
m=1

(
ξ − 1

ξ

)ng−m tig + di
g(m)

ξ
(12)

Expanding Eq.(12), we obtain the following Eq. (15).

mbidi
g = bidi

g +
ng∑

m=1

(
ξ − 1

ξ

)ng−m di
g(m)
ξ

(13)

≈ tig +
(ξ − 1)ng−1 · di

g(1)
ξng

+ ... +
ξng−1 · di

g(ng)
ξng

(14)

≈ tig +
∑ng

m=1 di
g(m)

ξ
(15)
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Before arriving at Eq. (15), we first transform to Eq. (13), adding the accumu-
lated error to the objective priority of PMRL-OM. Because bidi

g ≈ tig holds (see
Sect. 4.1), we can expand Eq. (13) to Eq. (14). If ng is not sufficiently large (i.e.,
at the beginning of the training) and if ξ is sufficiently large, because ξ ≈ ξ − 1
holds, the objective priority can be calculated by Eq. (15), which calculates the
average value of all errors in the number of steps for the previous episodes. On
the other hand, if ng remains large after several episodes, ξ ≈ ξ−1 will no longer
hold, and Eq. (15) then calculates via the weighted averaged value. Setting an
upper limit to the weight as weight, we can calculate values for the parameters
ξ and ng as follows:

(
ξ − 1

ξ

)ng−1

≤ weight, (16)

ng ≤ ln weight

ln(ξ − 1) − ln ξ
+ 1. (17)

If we set ξ = 500 for weight = 0.001, the weight is non-zero and ng ≤
3451 holds. The accumulated error then approximates to zero at episode 3451.
After that episode, the weight decreases and the objective priority of ξ = 500 is
then the minimum number of steps plus the average error over the latest 3500
episodes. Continuing the training, the objective priority is approximated by the
minimum number of steps because the error becomes smaller. Therefore, the
proposed method has robustness toward instability in the number of steps.

4.4 Algorithm

Algorithm 3 shows the algorithm for the proposed method. The variables l and
bid are the arrays storing the number of steps and the objective priority, respec-
tively. The start state is s0, and the goal states are contained in the array send .
First, the agent observes the start state s0 and selects its appropriate action
via the Q-values. After executing the action a, the agent receives the reward
and transits to the next state s′. The agent learns its policy using the inter-
nal reward ir. If the next state is the goal state or if the number of steps is
equivalent to MaxStep, the training is terminated. After the termination, the
proposed method updates l and bid and then selects the appropriate goal sel
via the objective priority bid. With a certain probability (this paper used the
value 0.15, following [12]), the selected goal sel is changed randomly.
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Algorithm 3. The proposed method.
1. Q(s, a) is initialized ∀s ∈ S, ∀a ∈ A
2. The sets of steps l, goal values bid, and goals send are initialized.
3. Setting the initial state s0.
4. for iteration = 1 to MaxIteration do
5. s = s0
6. for step = 1 to MaxStep do
7. a = ActionSelect(Q, s)
8. Executing the action a, acquiring the reward r, and transiting to the next

state s′.
9. Calculating the internal reward ir to reach the goal sel

10. Q(s, a) = (1 − α)Q(s, a) + α [ir + γ maxa′∈A Q(s′, a′)]
11. step = step + 1
12. if s′ ∈ send then
13. break
14. end if
15. end for
16. if Having reached the goal g then
17. l.add(g, step)
18. if l.length > THL then
19. Removing l[0]
20. end if
21. end if
22. if lsel is empty then
23. bid[sel] = ξ−1

ξ
bid[sel] + max bid

ξ

24. else if AveRgo > THR and go is sel then
25. bid[sel] = ξ−1

ξ
bid[sel] + ls e l [lsel.length−1]

ξ

26. else
27. bid[sel] = ξ−1

ξ
bid[sel]

28. end if
29. sel = arg max bid
30. Assign random value to sel with arbitrary probability
31. end for

5 Experiment: Learning in Cyclic Change

5.1 Experimental Setup

To investigate its adaptability, we compared the proposed method with PMRL-
OM and profit sharing (PS) [5] in navigation tasks in 8 × 3 mazes where the
cyclic changes of environment involved random changes to start locations and
goal locations. We investigated the performance for cyclic lengths of 1000, 1500,
2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, and 7500. For
a fair comparison, we modify the reward function for PS by replacing r by r

N
where N is the number of steps for the current episode.



RL in Cyclic Environemntal Change 153

5.2 Evaluation Criteria

We evaluated the number of steps for all agents until goals were reached and
rewards acquired for 30 trials with the various seeds. The methods ran training
modes and evaluation modes one by one, where the agents operated using their
policy without learning in the evaluation mode. If an agent could not reach the
goal, the number of steps was recorded as the maximum number. We used the
configuration setting in [11]. The methods ran 50000 episodes for training, where
the agent can operate for a maximum of 100 steps in each episode. The initialized
Q-value was zero, the external reward value was 10, and the learning rate and
discount rate were 0.1 and 0.9, respectively. The constant value δ was 10, the
parameter ξ was 300, and the memory length e was 300. The threshold THL was
300, and THR was 3. The last four parameters, ξ, e, THL, and THR, are set for
the excellent performance in this experiment that we checked beforehand.

5.3 Results

Figure 4 shows the results for the number of steps required for all agents to
reach their goals and Fig. 5 shows the results for rewards acquired. The vertical
axis indicates the quantity evaluated, and the horizontal axis indicates the cycle
length. The results for the number of steps and acquired rewards were averaged
across all episodes for all 30 trials, indicating that the results are better if the
method learns its appropriate policy efficiently, i.e., the agents are able to acquire
their reward rapidly. These results demonstrate that the proposed method gave
the best performance in all cases. The difference in the results between the pro-
posed method and PMRL-OM (for cycle lengths of 1000 and 7500) was smaller

Fig. 4. Results for steps spent to reach the goal. The lower bar is better.
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Fig. 5. Results for acquired rewards. The higher bar is better.

than for other cycle lengths. This is because the proposed method finds it hard
to adapt to the environmental change at a cycle length of 1000 and PMRL-OM
works well with a cycle length of 7500.

5.4 Discussion

These results demonstrate that the proposed method adapts to environmental
change more smoothly and rapidly than PMRL-OM. We now discuss our theo-
retical analysis and the differences between methods.

Comparison with PMRL-OM. The results showed us that the proposed
method outperformed PMRL-OM and those results have the same property.
That is because the proposed method enhanced PMRL-OM and does not change
the basic mechanisms. In particular, the proposed method improves the adapt-
ability. Here, we pick up one case to illustrate the adaptability of the proposed
method. Figure 6 visualizes the learned Q-values for PMRL-OM and the pro-
posed method for the cycle length of 4500. The Q-values are summarized in
Table 1. In this situation, the last change occurred in episode 49500, as shown
in Fig. 7. Here, the Q-values represent the learning results for the most recent
500 episodes. Although the Q-values show that both the proposed method and
PMRL-OM led the agents to their appropriate goals, the proposed method esti-
mated appropriate Q-values for all agent B states in reaching the appropriate
goal (the top-left goal), whereas PMRL-OM did not estimate appropriate Q-
values in several states. This observation demonstrates that the proposed method
tends to enable the agents to learn more efficiently than can PMRL-OM. In par-
ticular, PMRL-OM estimated a Q-value of around 3.5 for each state in the right
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(a) Agent A in PMRL-OM.

(b) Agent B in PMRL-OM.

(c) Agent A in the proposed method.

(d) Agent B in the proposed method.

Fig. 6. Final Q-values visualization for environmental changes every 4500 episodes. The
green, orange, and blue squares represent a normal state, goal state, and start state,
respectively. The arrow indicates the action, and its thickness indicates the Q-value
(the Q-values are shown in Table 1 (Color figure online)).
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Fig. 7. The final environmental change. The locations of the agents and the goals are
changed from the top to the bottom at episode 49500.

Table 1. Q-values in Fig. 6. The first column shows the state as a pair with the row
number and column number. The symbol “–” indicates non-value because no action
exists.

States (coordinates) PMRL-OM Proposed method

Agent A Agent B Agent A Agent B

Actions Actions Actions Actions

up down left right up down left right up down left right up down Left right

(1, 1) – 2.810 – 2.834 – 7.690 – 9.000 – 3.380 – 3.392 – 8.151 – 8.479

(2, 1) – 2.803 2.857 3.304 – 8.872 6.749 10.000 – 3.443 3.442 4.026 – 8.717 8.315 9.722

(3, 1) – 9.904 11.659 8.814 – 10.640 10.779 10.842 – 7.347 3.485 7.894 – 7.226 6.867 5.164

(4, 1) – 6.425 10.189 8.119 – 3.935 10.040 3.862 – 4.300 6.348 13.098 – 9.211 8.811 9.158

(5, 1) – 7.009 6.147 14.803 – 3.492 5.993 3.472 – 8.021 7.538 15.672 – 7.828 9.161 7.752

(6, 1) – 11.864 7.744 16.961 – 3.552 3.805 3.562 – 12.393 9.274 17.609 – 7.693 10.462 5.695

(7, 1) – 15.278 15.155 18.745 – 3.598 3.579 3.289 – 14.874 14.677 19.825 – 3.555 7.946 3.557

(8, 1) – 6.976 8.717 – – 7.694 3.651 – – 7.445 8.989 – – 3.533 3.974 –

(1, 2) 2.793 2.789 – 2.808 5.572 2.877 – 8.711 3.349 3.348 – 3.414 8.315 8.625 – 8.634

(2, 2) 2.822 2.812 2.806 3.351 6.546 3.291 6.206 9.396 3.393 3.310 3.325 5.430 8.703 8.974 8.942 9.094

(3, 2) 4.107 2.841 2.781 9.961 10.093 5.894 5.489 4.595 5.420 3.484 3.537 10.256 10.543 9.439 9.373 9.193

(4, 2) 8.031 8.227 6.985 12.690 6.987 3.133 5.782 3.310 9.817 7.862 7.260 12.731 9.168 9.231 9.277 9.269

(5, 2) 11.643 9.517 10.874 13.915 3.486 3.374 3.422 3.416 12.103 9.761 10.768 14.213 9.026 9.032 8.985 8.843

(6, 2) 14.916 10.452 12.057 15.240 3.525 3.538 3.481 3.511 14.633 10.276 11.516 15.835 6.335 4.149 10.216 4.799

(7, 2) 16.768 11.660 13.516 13.719 3.610 3.571 3.619 3.581 17.667 10.103 12.630 14.115 4.327 3.498 6.333 3.471

(8, 2) 18.072 4.002 8.421 – 5.887 3.645 3.654 – 18.746 4.194 8.717 – 5.164 3.489 3.478 –

(1, 3) 2.775 – – 2.820 4.840 – – 2.964 3.347 – – 3.328 8.812 – – 8.785

(2, 3) 2.812 – 2.807 2.825 3.819 – 2.835 6.070 3.500 – 3.326 3.375 8.947 – 8.937 9.065

(3, 3) 2.855 – 2.804 5.368 8.924 – 3.501 3.011 5.761 – 3.343 3.663 9.310 – 9.268 9.214

(4, 3) 10.277 – 3.207 8.071 3.862 – 3.046 3.177 5.776 – 3.689 10.100 9.402 – 9.313 9.273

(5, 3) 12.426 – 3.087 6.072 3.327 – 3.303 3.340 12.831 – 4.666 8.255 9.309 – 9.390 5.007

(6, 3) 13.607 – 4.725 6.327 3.457 – 3.457 3.512 13.754 – 4.565 4.772 7.389 – 6.144 3.350

(7, 3) 14.827 – 6.556 4.098 3.558 – 3.580 3.578 13.719 – 6.458 4.59 4.321 – 3.712 3.414

(8, 3) 6.443 – 7.884 – 3.609 – 3.605 – 8.112 – 4.161 – 3.451 – 3.459 –

half of the maze for agent B, with the difference between the Q-values being less
than 0.1. On the other hand, the proposed method estimated a Q-value for the
state that was double that estimated by PMRL-OM, even when it was located
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five states away from the goal state. It is clear that the proposed method can
promote learning both efficiently and rapidly.

Validation of the Theoretical Analysis. From the theoretical analysis
described in Sect. 4.3, setting the upper limit of the weight as weight = 0.001
gives ng ≤ 2070 using Eq. (17). This implies that the objective priority should
be influenced by the number of steps for the most recent 2070 episodes, but
should probably not be influenced by the number of steps before episode 2070.
Furthermore, Figs. 4 and 5 show that the reward results increase and the step
results decrease, eventually converging. The difference, together with the cycle
length, decreases at episode 2500. That is because the current setting causes
the proposed method to approximate the minimum number of steps from the
actual number of steps in the most recent 2070 episodes. This confirms that the
theoretical analysis can be validated from an empirical viewpoint.

6 Conclusion

PMRL-OM enables agents to learn a co-operative policy using learning dynam-
ics instead of communication information. It enables the agents to adapt to the
dynamics of the other agents’ behaviors without any design of the relationship
or communication rules between agents. It helps easily to add robots to the sys-
tem with keeping co-operation in a multi-robot system. However, it is available
for long-term dynamic changes, but not for the short-them changes because it
used the outcome with enough trials. This paper picked up cyclic environmental
changes as short-term changes and proposes a new MARL method for adapt-
ing to cyclic changes in the environment without communication for real-world
problems. Specifically, we analysed the objective priority update mechanism in
PMRL-OM and proposed an improved PMRL-OM method based on this anal-
ysis. The experiment compared the new method with PMRL-OM and PS in
navigation tasks in the dynamic environment with cyclic environmental changes.
The term-length was set from 1000 to 7500 by 500. Our experimental results val-
idated empirically the theoretical analysis and showed that the proposed method
worked well for navigation tasks in maze-type environments with varying cycle
intervals.

From our results, neither the proposed method nor PMRL-OM operated
optimally because the step results did not reflect the minimum number of steps
and the reward result was not 20. However, they can learn their policies while
avoiding instability. In future work, we should seek improved performance by
investigating their optimality. Furthermore, we would propose a new MARL
method and show that rationality in the dynamic environment where the number
of agents changes for future robotics research.
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Abstract. Although deep reinforcement learning (DRL) methods have
been successfully applied in challenging tasks, their application in real-
world operational settings - where transparency and accountability play
important roles in automation - is challenged by methods’ limited abil-
ity to provide explanations. Among the paradigms for explainability in
DRL is the interpretable box design paradigm, where interpretable mod-
els substitute inner closed constituent models of the DRL method, thus
making the DRL method “inherently” interpretable. In this paper we
propose a generic paradigm where interpretable DRL models are trained
following an online mimicking paradigm. We exemplify this paradigm
through XDQN, an explainable variation of DQN that uses an inter-
pretable model trained online with the deep Q-values model. XDQN
is challenged in a complex, real-world operational multi-agent problem
pertaining to the demand-capacity balancing problem of air traffic man-
agement (ATM), where human operators need to master complexity
and understand the factors driving decision making. XDQN is shown to
achieve high performance, similar to that of its non-interpretable DQN
counterpart, while its abilities to provide global models’ interpretations
and interpretations of local decisions are demonstrated.

Keywords: Deep Reinforcement Learning · Mimic Learning ·
Explainability

1 Introduction

Deep Reinforcement Learning (DRL) has mastered decision making policies in
various difficult control tasks [11], games [19] and real-time applications [31].
Despite the remarkable performance of DRL models, the knowledge of mas-
tering these tasks remains implicit in deep neural networks (DNNs). Thus, its
application in real-world operational settings is challenged by methods’ limited
ability to provide explanations at global (policy) and local (individual decisions)
levels. This lack of interpretability makes it difficult for human operators to
understand DRL solutions, which can be important for solving safety-critical
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real-world tasks. Additionally, DRL models are unable to provide information
about the evolution of models during the training process, which is useful to
gain insights about the models’ accumulated knowledge through time.

To address the aforementioned challenges, one may follow different paradigms
for the provision of explanations: the interpretable box design paradigm is one
of them where interpretable models substitute or are integrated to inner closed-
box components of DRL [29]. Mimic learning has been proposed so as to infer
interpretable models that mimic the behavior of well-trained DNNs [1,4]. In the
DRL case, to improve interpretability, mimicking models can replace closed-box
DRL models [16,29]. To do so, mimicking models must achieve performance that
is comparable to closed-box models, also optimizing their fidelity [29], so that
interpretable and closed models take the same decisions for the same reasons, in
any specific circumstance. To extract knowledge from close-box models, recent
works (e.g. [2,16]) have applied mimic learning using decision trees: In this case,
criteria used for splitting tree nodes provide a tractable way to explain the
predictions made by the controller.

Typically, mimic learning approaches require well-trained networks (which
we refer to as mature networks), whose behaviour are mimicking towards inter-
pretability. In doing so, interpretability of the model during the training pro-
cess is totally ignored. In real-world settings this could be quite impractical,
since the training overhead required to train the mimic models can often be a
sample-inefficient and time-consuming process, especially for large state-action
spaces and multi-agent settings. More importantly, the training process can be
“unsafe”, given that mimicking models’ decisions may diverge from that of the
original policy models: though fidelity can be measured at the end of the training
process, we need to ensure high fidelity during training. In conclusion, while the
mimic learner can provide explanations about the decisions of an inferred DRL
model, it neither allows examining the knowledge accumulated throughout the
training process, nor ensures fidelity during the training process.

To deal with these challenges, in this paper we propose a generic interpretable
DRL paradigm, where interpretable models are trained in interplay with the
original DRL models without requiring these models to be mature: the original
model trains the mimicking model and the mimicking model drives the subse-
quent updates of the original model offering target value estimators during the
DRL training process. This is what we call the online (i.e. during training and in
interplay with other models) training approach. This approach assures fidelity of
decisions of the mimicking model, w.r.t. those of the original model. We conjec-
ture that such a paradigm is effective in many DRL methods and can be applied
to value based, policy based or actor-critic methods, depending on the model
that is mimicked, over discrete or continuous state-action spaces.

To exemplify the proposed paradigm and provide evidence for its applicabil-
ity, this paper proposes the eX plainable Deep Q-N etwork (XDQN ) method,
an explainable variation of the well-known DQN [19] method, with the goal to
provide inherent explainability of DQN via mimic learning in an online manner.
By following an online mode of training the mimicking model, XDQN does not
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require the existence of a well-trained model to train an interpretable one: The
mimic learner is trained and updated while the DQN Q-value model is trained
and updated, supporting the maintenance of multiple “snapshots” of the model
while it evolves through time, offering interpretability on intermediate models,
and insights about the patterns and behaviors that DQN learns during training.

To evaluate the effectiveness of XDQN, this is challenged in complex, real-
world multi-agent tasks, where thousands of agents aim to solve airspace conges-
tion problems. As it is shown in other works, the use of independent DQN agents
has reached unprecedented performance [13] and therefore such tasks provide a
suitable real-world testbed for the proposed method. Agents in this setting are
trained via parameter sharing following the centralized training decentralized
execution (CTDE) schema.

We summarize the main contributions of this paper below:

– To our knowledge, this work is the first that provides inherent interpretability
through online mimicking of DRL models, without requiring the existence of
a well-trained DRL model: As far as we know, there is not any work that
supports this straightforward paradigm for interpretability.

– XDQN exemplifies this paradigm and is proposed as an explainable variation
of DQN, in which an interpretable mimic learner is trained online, in interplay
with the Q-network of DQN, playing the role of the target Q-network.

– Experimentally, it is shown that XDQN can perform similarly to DQN,
demonstrating good play performance and fidelity to DQN decisions in com-
plex real-world multi-agent problems.

– The ability of our method to provide global (policy) and local (in specific
circumstances) explanations regarding agents’ decisions, also while models
are being trained, is demonstrated in a real-world complex setting.

The structure of this article is as follows: Sect. 2 provides background def-
initions on DRL, deep Q-networks, mimicking approaches, and clarifies the
paradigm introduced. Section 3 presents related work. Section 4 exemplifies the
proposed paradigm with XDQN, and Sect. 5 provides details on the experimental
setting and results, as well as concrete examples of local and global explainability.
Section 6 concludes the article.

2 Background

We consider a sequential decision-making setup, in which an agent interacts
with an environment E over discrete time steps. At a given timestep, the agent
perceives features regarding a state st ∈ S, where S is the set of all states in
agent’s environment (state space). The agent then chooses an action at from its
repertoire of actions A (i.e., the actions that it can perform in any state), and
gets the reward rt generated by the environment.

The agent’s behavior is determined by a policy π, which maps states to
a probability distribution over the actions, that is π : S → P (A). Apart from
an agent’s policy, the environment E may also be stochastic. We model it as
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a Markov Decision Process (MDP) with a state space S, action space A, an
initial state distribution p(s1), transition dynamics p(st+1|st, at) and a reward
r(st, at, st+1), for brevity denoted as rt.

The agent aims to learn a stochastic policy π∗ which drives it to act so as to
maximize the expected discounted cumulative reward Gt =

∑∞
τ=t γτ−trτ , where

γ ∈ (0, 1) is a discount factor.

2.1 Deep Reinforcement Learning with Interpretable Models.

To deal with a high dimensional state space, a policy can be approximated by
exploiting a DNN with weight parameters θ. DRL methods learn and exploit dif-
ferent models (e.g. objectives model, value models, models of the environment),
which support updating the policy model to fit to the sampled experience gen-
erated while interacting with the environment.

In this work we introduce a paradigm for providing DRL methods with inher-
ent interpretability, by replacing closed-box models with interpretable ones. This
follows the interpretable box design paradigm specified in [29].

But, how to train interpretable models? Interpretable models can be trained
either during or after training the DRL models. Being trained during the training
of the DRL models, the interpretable model evolves as the DRL model evolves,
and can be used to explain how the training process affects agent’s responses.
However, this may result to instability and inefficiency of the training process
since, interpretable models may aim to reach a moving target and may suffer
from high variance. Such pitfalls can be mitigated by means of the “interplay” of
interpretable and original models: The interpretable model is trained by specific
instances of the DRL model, and its decisions affect subsequent updates of the
original model. As an important implication of the online training, the fidelity
of the mimicking models with respect to the original DRL models is empirically
assured.

Such an online training scheme is followed, for instance, by DRL architectures
exploiting a target network (succinctly presented below). A target network pro-
vides a stable objective in the learning procedure, and allows a greater coverage
of the training data. Target networks, in addition to the benefits they provide in
the learning procedure, they can support interpretability of the policy models,
given that these can be replaced by interpretable models that are trained with
the deep networks in an online manner.

The introduced paradigm for inherently interpretable DRL through online
mimicking can be applied to different closed-box DRL models. Here, we exem-
plify and test this idea to Deep Q-networks, training interpretable Q-value mod-
els online with closed-box Q-value models through mimicking. Q-value closed-
box and/or interpretable models can be used to extract a DRL policy.
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2.2 Deep Q-Networks

Considering that an agent acts under a stochastic policy π, the Q-function (state-
action value) of a pair (s, a) is defined as follows

Qπ(s, a) = E [Gt | st = s, at = a, π] (1)

which can also be computed recursively with bootstrapping:

Qπ(s, a) = E
[
rt + γEa∼π(st+1)[Q

π(st+1, a)] | st = s, at = a, π
]

(2)

The Q-function measures the value of choosing a particular action when the
agent is in this state. We define the optimal policy π∗ under which the agent
receives the optimal Q∗(s, a) = maxπQπ(s, a). For a given state s, under the
optimal policy π∗, the agent selects action a = argmaxa′∈AQ∗(s, a′). Therefore,
it follows that the optimal Q-function satisfies the Bellman equation:

Q∗(s, a) = E

[
rt + γ max

a
Q∗(st+1, a) | st = s, at = a, π

]
. (3)

In Deep Q-Networks (DQN), to estimate the parameters θ of the Q-values
model, at iteration i the expected mean squared loss between the estimated Q-
value of a state-action pair and its temporal difference target, produced by a
fixed and separate target Q-network Q(s, a; θ−) with weight parameters θ−, is
minimized. Formally:

Li(θi) = E

[
Y DQN

i − Q(s, a; θ)
]
, (4)

with
Y DQN

i = rt + γ max
a∈A

Q(st+1, a; θ−) (5)

In order to train DQN and estimate θ, we could use the standard Q-learning
update algorithm. Nevertheless, the Q-learning estimator performs very poorly in
practice. To stabilize the training procedure of DQN, Mnih et al. [19] freezed the
parameters, θ−, of the target Q-network for a fixed number of training iterations
while updating the closed Q-network with gradient descent steps with respect
to θ.

The direct application of the online mimicking approach in DQN uses an
interpretable target DQN model to mimic the online Q-network, and thus, the
decisions of the original policy model.

In addition to the target network, during the learning process, DQN uses
an experience replay buffer [19], which is an accumulative dataset, Dt, of state
transition samples - in the form of (s, a, r, s′) - from past episodes. In a train-
ing step, instead of only using the current state transition, the Q-Network is
trained by sampling mini-batches of past transitions from D uniformly, at ran-
dom. Therefore, the loss can be written as follows:

Li(θi) = E(s,a,r,s′)∼U(D)

[
(Y DQN

i − Q(s, a; θ))2
]
. (6)
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As it is well known, the main advantage of using an experience replay buffer is
that uniform sampling reduces the correlation among the samples used for train-
ing the Q-network. The replay buffer improves data efficiency through reusing
the experience samples in multiple training steps. Instead of sampling mini-
batches of past transitions uniformly from the experience replay buffer, a fur-
ther improvement over DQN results from using a prioritized experience replay
buffer [24]. This aims at increasing the probability of sampling those past tran-
sitions from the experience replay that are expected to be more useful in terms
of absolute temporal difference error.

3 Related Work

Explainability in Deep Reinforcement Learning (DRL) is an emergent area whose
necessity is related to the fact that DRL agents solve sequential tasks, acting
in the real-world, in operational settings where safety, criticality of decisions
and the necessity for transparency (i.e. explainability with respect to real-world
pragmatic constraints [29]) is the norm. However, DRL methods use closed-boxes
whose functionality is intertwined and are not interpretable. This may hinder
DRL methods explainability. In this paper we address this problem by proposing
an interpretable DRL method comprising two models which are trained jointly
in an online manner: An interpretable mimicking model and a deep model. The
later offers training samples to the mimicking one and the former interpretable
model offers target action values for the other to improve its predictions. At the
end of the training process, the mimicking model has the capacity to provide
high-fidelity interpretations to the decisions of the deep model and thus, it can
replace the deep model. This proposal is according to the interpretable box
design paradigm, which follows the conjecture (stated for instance in [22]) that
there is high probability that decisions of closed-boxes can be approximated by
well designed interpretable models.

There are many proposals for interpreting Deep Neural Networks (DNNs)
through mimicking approaches. These approaches differ in several dimensions:
(a) the targeted representation (e.g., decision trees in DecText [5], logistic model
trees (LMTs) in reference [8], or Gradient Boosting Trees in reference [6]), (b) to
the different splitting rules used towards learning a comprehensive representa-
tion, (c) to the actual method used for building the interpretable model (e.g., [8]
uses the LogiBoost method, reference [5] proposes the DecText method, while
the approach proposed in reference [6] proposes a pipeline with an external classi-
fier, (d) on the way of generating samples to expand the training dataset. These
methods can be used towards interpreting constituent individual DRL mod-
els employing DNNs. Distillation could be another option [23], but it typically
requires mature DRL models: Online distillation of models, as far as we know,
has not been explored. The interested reader is encouraged to read a thorough
review on these methods provided in [3,12,20,22].

Recent work on mimic learning [6,16] has shown that rule-based models, like
decision trees, or shallow feed-forward neural networks can mimic a not linear
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function inferred by a DNN with millions of parameters. The goals here is to
train a mimic model with efficiency, resulting into a high performance model,
which takes decisions in high-fidelity with respect to the decisions of the original
model.

For DRL, authors in [16] introduce Linear Model U-trees (LMUTs) to approx-
imate predictions for DRL agents. An LMUT is learned by an algorithm that
is well-suited for an active play setting. The use of LMUTs is compared against
using CART, M5 with regression tree, Fast Incremental Model Tree (FIMT)
and with Adaptive Filters (FIMT-AF). The use of decision trees as interpretable
policy models trained through mimicking has been also investigated in [18], in
conjunction to using a causal model representing agent’s objectives and opportu-
nity chains. However, the decision tree in this work is used to infer the effects of
actions approximating the causal model of the environment. Similarly to what we
do here, the decision tree policy model is trained concurrently with the RL policy
model, assuming a model-free RL algorithm and exploiting state-action samples
using an experience replay buffer. In [7] authors illustrate how Soft Decision
Trees (SDT) [10] can be used in spatial settings as interpretable policy models.
SDT are hybrid classification models of binary trees of predetermined depth, and
neural networks. However their inherent interpretability is questioned given their
structure. Other approaches train interpretable models other than trees, such as
the Abstracted Policy Graphs (APGs) proposed in [28], assuming a well-trained
policy model. APGs concisely summarize policies, so that individual decisions
can be explained in the context of expected future transitions.

In contrast to the above mentioned approaches, the proposed paradigm,
exemplified by means of the proposed XDQN algorithm, can be applied to any
setting with arbitrary state features, where the interpretable model is trained
jointly to the deep model through online mimicking.

It is worth noting that, instead of the Gradient Boosting Regressors mimic
learner for XDQN, we also tested naturally interpretable Linear Trees (such as
LMUTs [16]); i.e. decision trees with linear models in their leaves). However,
such approaches demonstrated quite low play performance with very low fidelity
in the real-world complex experimental setting considered.

Regarding mimicking the Q-function of a DRL model, two known settings
are the experience training and the active play settings.

In the experience training setting [6,16], all the state-action pairs 〈s, a〉 of
a DRL training process are collected in a time horizon T . Then, to obtain the
corresponding Q-values, these pairs are provided as input into a DRL model.
The final set of samples {(〈s1, a1〉, Q1), ...(〈sT , aT 〉, QT )} is used as the experi-
ence training dataset. The main problem with the experience training is that
suboptimal samples are collected through training, making it more difficult for
a learner to mimic the behavior of the DRL model.

Active play [16] uses a mature DRL model to generate samples to construct
the training dataset of an active mimic learner. The training data is collected
in an online manner through queries, in which the active learner selects the
actions, given the states, and the mature DRL model provides the estimated Q-
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values. These Q-values are then used to update the active learner’s parameters
on minibatches of the collected dataset. While the pitfall of suboptimal samples
is addressed here, active play cannot eliminate the need for generating new
trajectories to train the mimic models, which can be computationally prohibitive
for real-world controllers.

Rather than following an experience or an active play training scheme, in
this paper we use online training, that collects samples generated from a DRL
model in a horizon of training timesteps, without requiring these samples to be
generated from a mature DRL model. Samples are gathered from intermediate
DRL models, during the DRL training process.

As for the provision of explanations, we opted for features’ contributions
to the Q-values, in a rather aggregated way, using the residue of each Gradi-
ent Boosting Regressor node, as done in [9]. This approach, as shown in [9],
reports advantages over using well known feature importance calculation meth-
ods, avoiding linearity assumptions made by LIME [21] and bias in areas where
features have high variance. It also avoids taking all tree paths into account in
case of outliers, as done, for instance, by SHAP [17].

4 Explainable DRL Through Online Mimicking: The
Deep Q-Network (XDQN) Example

To demonstrate the inherent interpretability of deep Q-learning through
online mimicking of the Q-network, we propose eXplainable Deep Q-Network
(XDQN )1, which is an explainable variation of DQN [19]. XDQN aims at infer-
ring a mimic learner, trained in an online manner, substituting the target Q-
network of DQN.

Formally, let θ be the parameters of the Q-network and θ̃ be the parameters
of the mimic learner. In XDQN, the mimic learner estimates the state-action
value function and selects the best action for the next state playing the role of
the XDQN target:

Y XDQN
i = rt + γ max

a∈A
Q

(
st+1, a; θ̃

)
(7)

Similar to DQN, θ̃ are updated every Tu number of timesteps. The full training
procedure of XDQN is presented in Algorithm 1.

In contrast to DQN in which the parameters θ of the Q-network are simply
copied to the target Q-network, here we perform mimic learning on Q(s, a, θ)
(steps 17–20). To update θ̃ we train the mimic learner on minibatches of the
experience replay buffer B by minimizing the Mean Squared Error (MSE) loss
function using Q(s, a, θ) to estimate the soft labels (Q-values) of the state-action
pairs in the minibatches. The problem for optimizing θ̃ at each update can be
written as:

min
θ̃

E(s,a)∼B

[(
Q(s, a; θ̃) − Q(s, a; θ)

)2
]

(8)

1 The implementation code will be made available in the final version of the
manuscript.
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Algorithm 1 eXplainable Deep Q-Network (XDQN)
1: Initialize replay buffer B with capacity N
2: Initialize θ and θ̃
3: Initialize timestep count c = 0
4: for episode 1, M do
5: Augment c = c + 1
6: Initialize state s1
7: With probability ε select a random action at, otherwise at = argmaxaQ(st, a; θ)
8: Execute action at and observe next state st+1 and reward rt
9: Store transition (st, at, st+1, rt) in B

10: Sample a minibatch of transitions (si, ai, si+1, ri) from B
11: if si+1 not terminal then

12: Set Y XDQN
i = ri + γ maxa∈A Q

(
si+1, a; θ̃

)

13: else
14: Set Y XDQN

i = ri
15: end if

16: Perform a gradient descent step on
(
Y XDQN
i − Q(si, ai; θ)

)2

w.r.t. θ

17: if c mod Tu = 0 then
18: Initialize θ̃
19: Sample a minibatch of transitions (si, ai, si+1, ri) from B that were stored

at most c − K timesteps before

20: Perform mimic learning update on
(
Q(s, a; θ̃) − Q(s, a; θ)

)2

w.r.t θ̃

21: end if
22: end for

where, B is the prioritized experience replay buffer [24], as described in Sect. 2.
Similarly to active play, when updating θ̃, to ensure that the samples in mini-
batches provide up-to-date target values with respect to θ, we use records from
the replay buffer that were stored during the K latest training steps.

It is worth noting that the hyperparameter K plays a similar role as the
discounted factor γ plays for future rewards, but from the mimic learner’s per-
spective. Building upon the experience training and active play schemes, the
online training scheme leverages the benefits of both of them, aiming to minimize
the required sample complexity for training the mimic model without simulat-
ing new trajectories of a mature DRL model. In particular, hyperparameter K
manages the trade-off between experience training and active play in XDQN. If
K is large, the mimic model learns from samples that may have been collected
through more suboptimal instances of θ; deploying however data-augmented ver-
sions of Q-value. On the other hand, if K is small, it learns from the most recent
instances of θ; making use of up-to-date Q-values. Nevertheless, opting for very
small values of K could lead to less stable mimic training, due to the smaller
number of minibatches that can be produced for updating θ̃, while using large
K can result in a very slow training process.

From all the above, we note that θ (Q-network) and θ̃ (mimic learner) are
highly dependent. To update θ, Q-network uses the mimic learner model with θ̃
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to compute the target soft labels (target Q-values), while to update θ̃ the mimic
learner uses the original Q-network with parameters θ to compute the respective
target soft labels (Q-values). It is conjectured that through this dependency the
interpretable target model converges to Q-values that are close to the values of
the Q-network, and thus to nearly the same policy, which is an inherent feature
of the DQN algorithm.

Since XDQN produces different instances of θ̃ throughout training, it can
eventually output multiple interpretable mimic learner models (up to the num-
ber of θ̃ updates), with each one of them corresponding to a different training
timestep. Since all these mimic learner instances are interpretable models, XDQN
can also provide information on how the Q-network evolves towards solving the
target task.

Finally, after Q-network (θ) and mimic learner (θ̃) have been trained, we can
discard the closed-box Q-network and use the mimic learner model as the con-
troller. Therefore, in testing, given a state, the interpretable mimic learner selects
the action with the highest Q-value, being able to also provide explainability.

5 Experimental Setup

This section demonstrates the effectiveness of XDQN through experiments in
real-world settings pertaining to the demand-capacity balancing (DCB) prob-
lem of air traffic management (ATM) domain. XDQN uses a Gradient Boosting
Regressor (GBR) [30] mimic learner, whose boosting ability supports effective
learning by exploiting instances generated by the deep Q-network. We opted for
GBR, as it usually results into robust and accurate models compared to other
decision tree - based models.

Although the boosting structure of GBR makes it very difficult to provide
explainability, following the work in [9] we are able to measure the contribution
of state features to the predicted Q-values. In so doing, the mimic learner is
expected to give local and global explanations on its decisions.

Overall, we are interested in demonstrating the proposed paradigm and show
the importance of online training of mimic interpretable models. In so doing, the
performance of XDQN is compared to that of DQN in complex real-world DCB
problems.

5.1 Real-World Demand-Capacity Problem Setting

The current ATM system is based on time-based operations resulting in DCB [15]
problems. To solve the DCB issues at the pre-tactical stage of operations, the
ATM system opts for methods that generate delays and costs for the entire
system. In ATM, the airspace consists of a set of 3D sectors where each one has
a specific capacity. This is the number of flights that cross the sector during a
specific period (e.g. of 20 min). The challenge of dealing with the DCB problem
is to reduce the number of congestion cases (DCB issues, or hotspots), where the
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demand of airspace use exceeds its capacity, with small delays to an - as much
as possible - low number of flights.

Recent work has transformed the DCB challenge to a multi-agent RL problem
by formulating the setting as a multi-agent MDP [15]. We follow the work and the
experimental setup of [13–15,25,26] and encourage the reader to see the problem
formulation [15] in details. In this setting, we consider a society of agents, where
each agent is a flight (related to a specific aircraft) that needs to coordinate its
decisions regarding minutes of delay to be added in its existing delay, so as to
resolve hotspots that occur, together with the other society agents. Agents’ local
states comprise 81 state variables related to: (a) the existing minutes delay, (b)
the number of hotspots in which the agent is involved in, (c) the sectors that it
crosses, (d) the minutes that the agent is within each sector it crosses, (e) the
periods in which the agent joins in hotspots in sectors, and (f) the minute of the
day that the agent takes off. The tuple containing all agents’ local states is the
joint global state. Q-learning [27] agents have been shown to achieve remarkable
performance on this task [13]. In our experiments, all agents share parameters
and replay buffer, but act independently.

A DCB scenario comprises multiple flights crossing various airspace sectors in
a time horizon of 24 h. This time horizon is segregated into simulation time steps.
At each simulation time step (equal to 10 min of real time), given only the local
state, each agent selects an action which is related to its preference to add ground
delay regulating its flight, in order to resolve hotspots in which it participates.
The set of local actions for each agent contains |maxDelay + 1| actions, at each
simulation time step. We use maxDelay = 10. The joint (global) action is a tuple
of local actions selected by the agents. Similarly, we consider local rewards and
joint (global) rewards. The local reward is related to the cost per minute within
a hotspot, the total duration of the flight (agent) in hotspots, as well as to the
delay that a flight has accumulated up to the simulation timestep [13].

5.2 Evaluation Metrics and Methods

For the evaluation of the proposed method, first, we make use of two known
evaluation metrics: (a) play performance [16] of the deep Q-network, and (b)
fidelity [29] of the mimic learner. Play performance measures how well the deep
Q-network performs with the mimic learner estimating its temporal difference
targets, while fidelity measures how well the mimic learner matches the predic-
tions of the deep Q-network.

As far as play performance is concerned, in comparison with results reported
in [13], we aim at minimizing the number of hotspots, the average delay per flight
and the number of delayed flights. As for fidelity, we use two metric scores: (a) the
mean absolute error (MAE) of predicted Q-values and (b) the mimicking accu-
racy score. Given a minibatch of states, we calculate the MAE of this minibatch
for any action as the mean absolute difference between the Q-values estimated
by the mimic learner and the Q-values estimated by the deep Q-network for that
action. More formally, for a minibatch of states Ds, the MAEi of action ai is
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denoted as:
MAEi =

1
|Ds|

∑

s∈Ds

|Q(s, ai; θ̃) − Q(s, ai; θ)| (9)

It is worth noting that minimizing the MAE of the mimic learner is very
important for training XDQN. Indeed, training a mimic model to provide the
target Q-values, large MAEs can lead the deep Q-network to overestimate bad
states and understimate the good ones, and thus, find very diverging policies
that completely fail to solve the task.

Given a minibatch of samples, mimicking accuracy measures the percentage
of the predictions of the two models that agree with each other, considering that
models select the action with the highest estimated Q-value.

Second, we illustrate XDQN’s local and global interpretability. We focus on
providing aggregated interpretations, focusing on the contribution of state fea-
tures to local decisions and to the overall policy: This, as suggested by ATM
operators, is beneficial towards understanding decisions, helping them to increase
their confidence to the solutions proposed, and mastering the inherent complex-
ity in such a multi-agent setting, as solutions may be due to complex phenomena
that are hard to be traced [13]. Specifically, in this work, local explainability mea-
sures state features’ importance on a specific instance (i.e. a single state-action
pair), demonstrating which features contribute to the selection of a particu-
lar action over the other available ones. Global explainability aggregates fea-
tures’ importance on particular action selections over many different instances,
to explain the overall policy of the mimic learner.

Finally, the evolution of the DRL model throughout the training process is
demonstrated through GBR interpretability.

5.3 Experimental Scenarios and Settings

Experiments were conducted on three in total scenarios. Each of these scenarios
corresponds to a date in 2019 with heavy traffic in the Spanish airspace. In
particular, the date scenarios, on which we assess our models, are 20190705,
20190708 and 20190714. However, to bootstrap the training process we utilize
a deep Q-network pre-trained in various scenarios, also including 20190705 and
20190708, as it is done in [15]. In the training process, the deep Q-network is
further trained according to the method we propose. The experimental scenarios
were selected based on the number of hotspots and the average delay per flight
generated in the ATM system within the duration of the day, which shows the
difficulty of the scenario. Table 1 presents information on the three experimental
scenarios. In particular, the flights column indicates the total number of flights
(represented by agents) during the specific day. The initial hotspots column
indicates the number of hotspots appearing in the initial state of the scenario.
The flights in hotspots column indicates the number of flights in at least one of
the initial hotspots. Note that all three scenarios display populations of agents
(flights) of similar size, within busy summer days. For each scenario we ran five
separate experiments and average results.
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Table 1. The three experimental scenarios.

Scenario Flights Initial Hotspots Flights in Hotspots

20190705 6676 100 2074

20190708 6581 79 1567

20190714 6773 92 2004

The implementation of XDQN utilizes a deep multilayer perceptron as the
deep Q-network. The maximum depth of the Gradient Boosting Regressor is set
equal to 45 and the number of minimum samples for a split equal to 20. We use
the mean squared error as the splitting criterion. To train a single decision tree
for all different actions, a non binary splitting rule of the root is used, based
on the action size of the task, so that the state-action pairs sharing the same
action match the same subtree of the splitting root. XDQN uses an ε-greedy
policy, which at the start of exploration has ε equal to 0.9 decaying by 0.01
every 15 episodes until reaching the minimum of 0.04 during exploitation. The
total number of episodes are set to 1600 and the update target frequency is set to
9 episodes. The memory capacity of the experience replay for the online training
of the mimic learner, i.e. the hyperparameter K, is set equal to the 1/20 of the
product of three other hyperparameters, namely the total number of timesteps
per episode (set to 1440), the update target frequency (set to 9) and the number
of agents (set to 7000). Thus, K is set to 4536000 steps.

5.4 Evaluation of Play Performance

Table 2. Comparison of performance of XDQN and DQN on the three experimental
ATM scenarios (FH : Final Hotspots, AD : Average Delay, DF : Delayed Flights).

Scenario DQN XDQN

FH AD DF FH AD DF

20190705 38.4 13.04 1556.5 39.0 13.19 1618.54

20190708 4.6 11.4 1387.2 6.0 11.73 1331.58

20190714 4.8 10.72 1645.2 7.0 13.46 1849.49

Table 2 demonstrates the play performance of DQN and XDQN on the three
experimental scenarios. The final hotspots column indicates the number of unre-
solved hotspots in the final state: It must be noted that these hotspots may have
emerged due to delays assigned to flights and may be different than the hotspots
at the beginning of each scenario. The average delay per flight column shows
the total minutes of delay imposed to all flights (when the delay is more that
4 min, according to operational practice), divided by the number of flights in
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the specific scenario. The delayed flights column indicates the number of flights
affected by more than 4 min of delay.

We observe that XDQN performs similarly to DQN in all three evaluated
metric scores, reducing considerably the number of hotspots in the scenarios,
and assigning delays to the same proportion of flights. In particular, while DQN
slightly outperforms XDQN in terms of the final hotspots and average delay in
all three scenarios, XDQN decreases the number of the delayed flights in one
scenario, while it demonstrates competitive performance on the others. This
demonstrates the ability of XDQN to provide qualitative solutions while offer-
ing transparency in decision making, in contrast to DQN, which offers slightly
better solutions that, however, are difficult (or even - due to their complexity -
impossible) to be understood by humans [13].

5.5 Evaluation of Fidelity

As discussed in Subsect. 4.2, for the fidelity evaluation we measure the mean
absolute error (MAE) between models’ predicted Q-values and the mimicking
accuracy score of the interpretable model. Given the DCB experimental scenar-
ios, we train three different mimic models; namely X0705, X0708 and X0714.
Table 3 reports the average MAE for each decided action over all mimic learn-
ing updates. We observe that all errors are very small, given that in testing,
the absolute Q-values hovered around 200. This is very important for stabilizing
the training process of XDQN, since mimic-model Q-value predictions should be
ideally equal to the ones generated by the deep Q-network.

Table 3. Average Mean Absolute Errors (MAE) of the mimic model over three updates.

Action (Delay Option) XDQN mimic model update

X0705 X0708 X0714

0 0.279 0.237 0.291

1 1.766 1.971 1.942

2 0.910 0.928 1.002

3 0.575 0.661 0.640

4 0.639 0.748 0.725

5 1.893 2.096 2.121

6 1.590 1.766 1.715

7 1.610 1.816 1.733

8 0.449 0.514 0.497

9 0.740 0.849 0.823

10 1.292 1.525 1.461

To further assess the fidelity of XDQN mimic learner, Table 4 illustrates the
average mimicking accuracy scores over all mimic learning updates and the cor-
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responding accuracy scores of the final mimic model. Since a Gradient Boosting
Regressor mimic learner is a boosting algorithm, it produces sequential decision
trees that can successfully separate the state space and approximate well the
predictions of the deep Q-network function. We observe that the mimic learner
and the deep Q-network agree with each other to a very good extent; namely
from approximately 81% to 92%, including the final mimic model. Therefore, we
expect the mimic learner to be able to accumulate the knowledge from the deep
Q-network with high fidelity.

Table 4. The accuracy scores of the mimic models.

Scenario mimicking accuracy (%) mimicking accuracy (%)

(average over training steps) (final model)

20190705 88.45 87.53

20190708 81.89 82.39

20190714 90.88 92.63

5.6 Local and Global Explainability

In the DCB setting, it is important for the human operator to understand how
the system reaches decisions on regulations (i.e. assignment of delays to flights):
as already pointed out, this should be done at a level of abstraction that would
allow operators to understand the rationale behind decisions towards increasing
their confidence to the solutions proposed, mastering the inherent complexity
of the setting, and further tune solutions when necessary, without producing
side-effects that will increase congestion and traffic. Therefore, operators are
mainly interested in receiving succinct explanations about which state features
contribute to the selection of delay actions (i.e. actions larger than 1 min) over
the no-delay action (i.e. action equal to 0 min).

First, we demonstrate the ability of the mimic learner to provide local
explainability. As already said, local explainability involves showing which state
features contribute to the selection of a particular action over the other available
ones in a specific state. To this aim, for any pair of actions - a1 and a2 - we cal-
culate the differences of feature contributions in selecting a1 and a2 in a single
state. To highlight the most significant differences, we focus only on those fea-
tures whose absolute differences are above a threshold. Empirically, we set this
threshold equal to 0.5. Figure 1 illustrates local explainability on a given state in
which action “2” was selected: It provides the differences of feature contributions
to the estimation of Q-values when selecting action “0” against selecting action
“2” (denoted by “0–2”). We observe that the features that contributed more to
the selection of the delay action “2” were those with index 32 (i.e. The sector in
which the last hotspot occurs), 2 (i.e. the sector in which the first hotpot occurs)
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Fig. 1. Illustration of significant differences of feature contributions in selecting action
“0” and action “2” in a single state, in which action “2” was selected. Positive differ-
ences mean that the respective state features have a greater contribution to Q-value
when action “0” is selected, rather than when action “2” is selected. Negative differ-
ences have the opposite meaning.

Table 5. The most significant state features in terms of average contribution difference
(ACD) in selecting the no-delay action versus a delay action. A positive ACD means
that the corresponding state feature on average contributes more to the selection of the
no-delay action “0”. On the contrary, a negative ACD means that the corresponding
state feature on average contributes to the selection of a delay action “1–10”.

Feature Index Feature Meaning ACD

0 Delay the flight has accumulated up to this point Positive

1 Total number of hotspots the flight participates in Positive

2 The sector in which the first hotspot the flight participates occurs Negative

3 The sector in which the second hotspot the flight participates occurs Positive

32 The sector in which the last hotspot the flight participates occurs Negative

62 The minutes the flight remains in the last sector it crosses Negative

63 The minute of day the flight takes off given the delay (CTOT) Negative

64 The minutes the flight remains in the first sector it crosses Negative

68 The minutes the flight remains in the fifth sector it crosses Negative

and 62 (i.e. the minutes that the flight spends crossing the last sector). Similarly
to the explanations provided in [29], the arguments in favor of receiving addi-
tional minutes of delay concern the hotspots in which the flight participates, as
well as the duration of the time span in which the flight crosses congested sectors
(and mainly the first sector), as well as the delay that the flight has accumulated
up to this point (if this is low). On the contrary, the arguments against receiving
delay concern the delay that the flight has accumulated up to this point (if this
is somehow high), and the small duration of the time span the flight spends in
congested sectors.

Finally, we demonstrate XDQN’s global explainability by aggregating the
importance of features on particular action selections over many different state-
action instances. In particular, we are interested in measuring the state feature
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contributions to the selection of delay actions (i.e. actions in the range [1, 10])
over the no-delay action (i.e. action “0”) in the overall policy. To this aim, all
pairs of actions, with one action always being the no-delay action and the other
one being a delay action, are considered. For each such pair, the differences of
feature contributions to estimating the actions’ Q-values over many different
state-action instances are averaged: This results into features’ Average Contri-
bution Difference (ACD). Table 5 shows the most significant state features in
terms of ACD in selecting the no-delay action versus a delay action. The most
significant features, are (currently set to eight) features with the highest absolute
ACD, for each action in the range [1, 10]) over the no-delay action. We observe
that features with index 0, 3 contribute more to the selection of the no-delay
action. On the contrary, features with indexes 32, 2, 62 contribute more to the
selection of a delay action.

Last but not least, we demonstrate how global explainability evolves through
the training process, addressing the question of how a DRL model learns to solve
the target task. To this aim, features’ contribution to selecting an action are aver-
aged. This results into Average Features’ Contribution (AFC). The (currently
set to eight) most significant features, i.e. those with the highest absolute AFC,
are those considered in explanations. Then the AFC to predicting the Q-value of
a selected action at different training episodes is provided for the most significant
features: Fig. 2 illustrates the evolution of global explainability for selecting the
no-delay action (left) and a delay action (right) through 5 representative training
episodes (360th, 720th, 1100th, 1400th and 1600th), in terms of eight features
with the highest AFC values in the final model (episode 1600). We observe that
for both evaluated actions most of the features show an increasing/decreasing
trend in their average contribution to Q-value over time, such as those with
indices 0, 1 and 63. It is worth noting that although the features 0 and 1 have

Fig. 2. Illustration of the evolution of features’ contributions for selecting the no-delay
action (“0”) and a delay one (“2”) through 5 representative training episodes (360th,
720th, 1100th, 1400th and 1600th) in terms of average feature contribution (AFC) to
Q-value for the eight features with highest absolute AFC values in the final model
(episode 1600) in the selection of the aforementioned actions.
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been highlighted as the most significant for the selection of the no-delay action,
they have also significant but less contribution to selecting a delay action, as
well.

6 Conclusion and Future Work

This work shows how interpretable models can be trained through online mim-
icking and substitute closed-box DRL models, providing inherent DRL inter-
pretability, or be used for the provision of DRL methods interpretability. This
generic paradigm follows the interpretable box design paradigm for explainable
DRL and is exemplified by means of an explainable DQN (XDQN) method,
where the target model has been substituted by an interpretable model that
provides interpretations regarding the importance of state features in decisions.
XDQN, utilizing a Gradient Boosting Regressor as the mimic learner, has been
evaluated in challenging multi-agent demand-capacity balancing problems per-
taining to air traffic management. Experimentally, we have shown that the
XDQN method performs on a par with DQN in terms of play performance,
whereas demonstrating high fidelity and global/local interpretability.

Overall, this work provides evidence for the capacity of the proposed
paradigm to provide DRL methods with inherent interpretability, with high play
performance and high-fidelity to the decisions of original DRL models, through
online training of interpretable mimicking models.

Further work is necessary to explore how this paradigm fits into different
types of DRL architectures, utilizing interpretable models that are trained to
mimic different DRL closed-box models. In this line of research, we need to
benchmark our methodology, utilizing state-of-the-art DRL in various experi-
mental settings.

Regarding XDQN, further work is to design, evaluate and compare various
explainable mimic models that can effectively substitute the target Q-Network.
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Abstract. Contextual Importance and Utility (CIU) is a model-
agnostic method for post-hoc explanation of prediction outcomes. In this
paper we describe and show new functionality in the R implementation
of CIU for tabular data. Much of that functionality is specific to CIU
and goes beyond the current state of the art.
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Open source · Counterfactual · Contrastive

1 Introduction

Contextual Importance and Utility (CIU) was presented by Kary Främling in
1992 [1] for explaining recommendations or outcomes of decision support systems
(DSS) in a model-agnostic way. CIU was presented formally in [2,3] and more
recent developments have been presented e.g. in [5]. This paper presents new
functionality of CIU that is implemented in the R package for tabular data, avail-
able at https://github.com/KaryFramling/ciu. An earlier version of the package
was presented at the Explainable Agency in Artificial Intelligence Workshop of
the AAAI conference in 2021 [4].

CIU has a different mathematical foundation than the state-of-the-art XAI
methods SHAP and LIME. CIU is not limited to “feature influence” and therefore
offers richer explanation possibilities than the state-of-the-art methods.

After this Introduction, Sect. 2 resumes the core theory of CIU. Section 3
shows the new functionality, followed by Conclusions that include a brief discus-
sion about CIU versus comparable state-of-the-art XAI methods.

2 Contextual Importance and Utility

Contextual Importance (CI) expresses to what extent modifying the value of
one or more feature(s) x{i} can affect the output value yj (or rather the output
utility uj(yj)). CI is expressed formally as:
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CIj(c, {i}, {I}) = umaxj(c, {i}) − uminj(c, {i})
umaxj(c, {I}) − uminj(c, {I}) , (1)

where c is the studied context/instance, {i} ⊆ {I} and {I} ⊆ {1, . . . , n} and
n is the number of features. uminj and umaxj are the minimal and maximal
output utility values that can be achieved by varying the value(s) of feature(s)
x{i} while keeping all other feature values at those of c.

In classification tasks we have uj(yj) = yj ∈ [0, 1] and for regression tasks
where uj(yj) = Ayj + b (which applies to most regression tasks) we can write:

CIj(c, {i}, {I}) = ymaxj(c, {i}) − yminj(c, {i})
ymaxj(c, {I}) − yminj(c, {I}) , (2)

Contextual Utility (CU) expresses to what extent the current value(s) of given
feature(s) contribute to obtaining a high output utility uj . CU is expressed
formally as:

CUj(c, {i}) = uj(c) − uminj(c, {i})
umaxj(c, {i}) − uminj(c, {i}) (3)

When uj(yj) = Ayj + b, this can again be written as:

CUj(c, {i}) =
∣
∣
∣
∣

yj(c) − yuminj(c, {i})
ymaxj(c, {i}) − yminj(c, {i})

∣
∣
∣
∣
, (4)

where yumin = ymin if A is positive and yumin = ymax if A is negative.

Contextual influence expresses how much feature(s) influence the output value
(utility) relative to a reference value or baseline, here denoted neutral.CU ∈
[0, 1]. Contextual influence is conceptually similar to Shapley value and other
additive feature attribution methods. Formally, Contextual influence is:

φ = CI × (CU − neutral.CU) (5)

where “j(c, {i}, {I})” has been omitted for easier readability.
It is worth noting that CI and CU are values in the range [0, 1] by defini-

tion, which makes it possible to assess whether a value is high or low. Con-
textual influence also has a maximal amplitude of one, where the range is
[−neutral.CU, 1−neutral.CU ]. CIU calculations require identifying yminj and
ymaxj values, which can be done in many ways. The approach used for the
moment is described in [4] and is omitted here due to space constraints.

All CIU equations apply to each feature separately as well as to coalitions
of features {i} versus other coalitions of features {I}, where {i} ⊆ {I} and
{I} ⊆ {1, . . . , n}. Such coalitions can be used to form Intermediate Concepts,
which name a given set of inputs {i} or {I}. Such Intermediate Concepts make
it possible to define arbitrary explanation vocabularies with abstraction levels
that can be adapted to the target user.
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3 New Explanation Functionality with CIU

The source code for producing the results shown here is published at https://
github.com/KaryFramling/EXTRAAMAS2023. The R package source code is
available at https://github.com/KaryFramling/ciu and on CRAN.
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Fig. 1. Left: Generated illustration of CIU calculations. Right: Contextual influence
barplot explanation for “Johnny D”.

To begin, we use the Titanic data set, a Random Forest model and an instance
“Johnny D”, as in https://ema.drwhy.ai. “Johnny D” is an 8-year old boy that
travels alone. The model predicts a survival probability of 63.6%. 63.6% is good
compared to the average 32.5%, which is what we want to explain. Figure 1
illustrates how CI, CU and Contextual influence is calculated for the feature
“age” and a Contextual influence plot for “Johnny D” with neutral.CU = 0.325.
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Fig. 2. Left: “Old” visualisation of CI and CU, with CU illustrated using colors. Right:
New visualisation that answers more exactly the counterfactual “what-if” question.

Counterfactual Explanations answer the question “What if?”. Figure 2 shows an
older visualisation with CI as the bar length and CU illustrated with a color.
The new visualisation illustrates CI as a transparent bar and CU as a solid
bar. When CU = 0 (worst possible value), the solid bar has length zero. When
CU = 1 (best possible value), the solid bar covers the transparent bar. This
is called “counterfactual” because it indicates what feature(s) have the greatest
potential to improve the result. In Fig. 2 we can see that being accompanied by
at least one parent (feature “parch”) could increase the probability of survival.

https://github.com/KaryFramling/EXTRAAMAS2023
https://github.com/KaryFramling/EXTRAAMAS2023
https://github.com/KaryFramling/ciu
https://ema.drwhy.ai
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Fig. 3. Beeswarm visualisation of CI and Contextual influence for Boston data set.

Beeswarm Visualisation. Beeswarms give an overview of an entire data set
by showing CI/CU/influence values of every feature and every instance. As in
https://github.com/slundberg/shap, we use the Boston data set and a Gradient
Boosting model. The dot color in Fig. 3 represents the feature value. The CI
beeswarm in Fig. 3 reveals for example that the higher the value of “lstat” (%
lower status of the population), the higher is the CI (contextual/instance-specific
importance) of “lstat”. The influence plot reveals that a high “lstat” value lowers
the predicted home price and is nearly identical to the one produced for Shapley
values. We use neutral.CU = 0.390, which corresponds to the average price so
the reference value is the same as for the Shapley value.
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Fig. 4. Left: Top-level explanation for why Ames instance 433 is expensive. Right:
Detailed explanation for Intermediate Concept “House condition”.

Intermediate Concepts. Ames housing is a data set with 2930 houses described
by 81 features. A gradient boosting model was trained to predict the sale price
based on the 80 other features. With 80 features a “classical” bar plot explanation
becomes unreadable. Furthermore, many features are strongly correlated, which
causes misleading explanations because individual features have a small impor-
tance, whereas the joint importance can be significant. Intermediate Concepts
solve these challenges, as illustrated in Fig. 4 that shows the top-level explanation
and an explanation for one of the Intermediate Concepts for an expensive house.
Here, the vocabulary has been constructed based on common-sense knowledge
about houses but it could even be provided by the explainee.

https://github.com/slundberg/shap
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Fig. 5. Left: Contrastive “Why?” explanation for two expensive Ames houses. Right:
Top-level counterfactual explanation for Ames instance 1638.

Contrastive Explanations. Contrastive explanations answer questions such as
“Why alternative A rather than B” or “Why not alternative B rather than A”. Any
value in the range [0, 1] can be used for neutral.CU in Eq. 5, including CU values
of an instance to compare with. Figure 5 shows a contrastive explanation for
why Ames instance #433 ($477919, see Fig. 4) is predicted to be more expensive
than instance #1638 ($439581). Contrastive values are in the range [−1, 1] by
definition, so the differences between the compared instances in Fig. 5 are small.

4 Conclusion

CIU enables explanations that are not possible or available with current state-
of-the-art methods. Notably, Shapley value and LIME are limited to “influence”
values only. Even for influence values, Contextual influence offers multiple advan-
tages such as a known maximal range and adjustable reference value. However,
the emphasis of the paper is to show how CI together with CU can provide coun-
terfactual explanations and give a deeper understanding of the model behaviour
in general, including the possibility to produce contrastive explanations.
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Abstract. Human papillomavirus (HPV) accounts for 60% of head and
neck (H&N) cancer cases. Assessing the tumor extension (tumor grad-
ing) and determining whether the tumor is caused by HPV infection
(HPV status) is essential to select the appropriate treatment. Therefore,
developing non-invasive, transparent (trustworthy), and reliable methods
is imperative to tailor the treatment to patients based on their status.
Some studies have tried to use radiomics features extracted from positron
emission tomography (PET) and computed tomography (CT) images to
predict HPV status. However, to the best of our knowledge, no research
has been conducted to explain (e.g., via rule sets) the internal decision
process executed on deep learning (DL) predictors applied to HPV status
prediction and tumor grading tasks. This study employs a decomposi-
tional rule extractor (namely DEXiRE) to extract explanations in the
form of rule sets from DL predictors applied to H&N cancer diagnosis.
The extracted rules can facilitate researchers’ and clinicians’ understand-
ing of the model’s decisions (making them more transparent) and can
serve as a base to produce semantic and more human-understandable
explanations.

Keywords: Local explainability · Global explainability · Feature
ranking · rule extraction · HPV status explanation · TNM explanation

1 Introduction

Despite recent advances in head-and-neck (H&N) cancer diagnosis and staging,
understanding the relationship between human papillomavirus (HPV) status and
such cancers is still challenging. An early diagnosis of HPV could dramatically
improve the patient’s prognosis and enable targeted therapies for this group,
enhancing their life quality and treatment effectiveness [15]. Moreover, consoli-
dating the diagnosis of cancer staging made by doctors for cancer growth and
spread could help better understand how to treat the specific patient, adapting
the therapy to the severity of the disease and HPV status.
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The term “head and neck cancer” describes a wide range of cancers that
develop from the anatomical areas of the upper aerodigestive tract [35]. Con-
sidering the totality of H&N malignancies, this type of cancer is the 7th leading
cancer by incidence [7]. The typical patients affected by H&N cancers are older
adults who have used tobacco and alcohol extensively. Recently, with the ongo-
ing progressive decrease in the use of these substances, the insurgences of such
cancers in older adults is slowly declining [13]. However, occurrences of HPV-
associated oropharyngeal cancer are increasing among younger individuals (e.g.,
in North America and Northern Europe) [17].

Diagnosis of HPV-positive oropharyngeal cancers in the United States grew
from 16.3% to more than 71.7% in less than 20 years [8]. Fortunately, patients
with HPV-positive oropharyngeal cancer have a more favorable prognosis than
HPV-negative ones since the former are generally healthier, with fewer coexisting
conditions, and typically have better responses to chemotherapy and radiother-
apy. Therefore, promptly detecting HPV-related tumors is crucial to improve
their prognosis and tailor the treatments [30]. The techniques used in clinical
practice to test the presence of HPV have obtained promising results. Still, they
are affected by drawbacks, including a high risk of contamination, time con-
sumption, high costs, invasiveness, and possibly inaccurate results [5].

The TNM staging technique is used to address the anatomic tumor extent
using the “tumor” (T), “lymph node” (N), and “metastasis” (M) attributes,
where “T” denotes the size of the original tumor, “N” the extent of the affected
regional lymph nodes, and “M” the absence or presence of distant metasta-
sis [42]. Accurate tumor staging is essential for treatment selection, outcome
prediction, research design, and cancer control activities [24]. TNM staging is
determined employing diagnostic imaging, laboratory tests, physical exams, and
biopsies [25]. Radiomics relies on extracting quantitative metrics (radiomic fea-
tures) within medical images that capture tissue and lesion characteristics such
as heterogeneity and shape [33].

In recent decades, the employment of radiomics has shown great benefits
in personalized medicine [16]. Radiomics is adopted as a substitute for invasive
and unreliable methods, and they are applied in many contexts, including H&N
cancer, with a particular interest in tumor diagnostic, prognostic, treatment
planning, and outcome prediction. While the application of radiomics to predict
TNM staging has never been addressed in the literature, the possibility of using
them to predict the presence or absence of HPV has been recently explored. For
example, recent research has shown that it is possible to predict HPV status by
using deep learning (DL) techniques that exploit radiomics features [6].

Nevertheless, to the best of our knowledge, no study has yet focused on
explaining internal DL predictors’ behavior through a rule extraction process,
investigating and assessing the roles of the features and how they compose the
rules leading the DL predictor decision. Therefore, there is a need for more
investigations to fully understand the main tumor characteristics leading DL
models to generate their prediction. To explain DL predictors’ behavior, this
study investigates the use of a tool for decompositional rules generation in deep
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neural networks (namely DEXiRE [9]) to generate rules from Positron Emission
Tomography (PET) and Computed Tomography (CT) images in the context of
H&N cancers.

In the context of ML models, transparency can be defined as the degree of
understanding of the models’ internal decision mechanisms, and overall behav-
iors can be simulated [18,45,52]. To increase transparency in ML models in
general and in DL models in particular, we have employed decompositional rule
extractors (a.k.a. DEXiRE) because this method can express neural activations
in terms of logical rules that both human and artificial agents can understand,
thus improving the understanding of the internal decision process executed by
the model. The main contribution of this work is to apply the DEXiRE, explain-
able artificial intelligence (XAI) technique to explain through rule sets the inter-
nal decision process executed by DL predictors. Thus, clinicians and researchers
can understand the predictors’ behavior to improve them in terms of perfor-
mance and transparency.

In particular, we extracted radiomics features from PET-CT scans and
trained several machine learning (ML) and deep learning (DL) predictors in
classification tasks. In turn, we leverage DEXiRE to extract rule sets from a
DL model trained on radiomics features extracted offline from PET-CT images.
DEXiRE determines the most informative neurons in each layer that lead to the
final classification (henceforth, which features and in which combination have
contributed to the final decision). Finally, we have assessed and discussed the
rule sets.

The rest of the paper is organized as follows: Sect. 2 presents the state of the
art of H&N cancer diagnosis using radiomics features and DL models. Section 3
describes the proposed methodology. Section 4 presents and analyses the results.
Section 5 discusses the overall study. Finally, Sect. 6 concludes the paper.

2 State of the Art

The metabolic response captured on PET images enables tumors’ localization
and tissues’ characterization. PET images are frequently employed as a first-line
imaging tool for studying H&N cancer [27]. Moreover, PET is widely used in
the early diagnosis of neck metastases. Indeed, PET highlights the metabolic
response of the tumors since their early stages — which cannot be seen with
other imaging techniques [1]. Thus, PET and CT scans are often used for several
applications in the context of H&N cancer.

The most relevant study concerning tumor segmentation includes Myronenko
et al. [39], which in the HECKTOR challenge (3rd edition), created an automatic
pipeline for the segmentation of primary tumors and metastatic lymph nodes,
obtaining the best result on the challenge with an average aggregate Dice Simi-
larity Coefficient (DSCagg) of 0.79. [2].

Rebaud et al. [46] predicted the risk of cancer recurrence’s degree using
radiomics features and clinical information, obtaining an encouraging concor-
dance index score of 0.68. Among the classification contributions, it is worth
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mentioning Pooja Gupta et al. [21], who developed a DL model to classify CT
scans as tumoral (or not), reaching 98.8% accuracy. Martin Halicek et al. [22]
developed a convolutional neural network classifier to classify excised, squamous-
cell carcinoma, thyroid cancer, and standard H&N tissue samples using Hyper-
spectral imaging (with an 80% accuracy). Konstantinos P. Exarchos et al. [12]
used features extracted from CT and MRI scans in a classification scheme to
predict potential diseases’ reoccurrence, reaching 75.9% accuracy. Only recently,
researchers have also focused on HPV status prediction. Ralph TH Leijenaar
et al. [31] predict HPV status in oropharyngeal squamous cell carcinoma using
radiomics extracted from computed tomography images (with an Area Under
the Curve value of 0.78). Bagher-Ebadian et al. [6] construct a classifier for
the prediction of HPV status using radiomics features extracted from contrast-
enhanced CT images for patients with oropharyngeal cancers (The Generalized
Linear Model shows an AUC of 0.878). Bolin Song et al. [51] develop and evaluate
radiomics features within (intratumoral) and around the tumor (peritumoral) on
CT scans to predict HPV status (obtaining an AUC of 0.70). Chong Hyun Suh et
al. [53] investigated the ability of machine-learning classifiers on radiomics from
pre-treatment multiparametric magnetic resonance imaging (MRI) to predict
HPV status in patients with oropharyngeal squamous cell carcinoma (logistic
regression, the random forest, XG boost classifier, mean AUC values of 0.77,
0.76, and 0.71, respectively). However, to the best of our knowledge, no studies
have yet involved XAI techniques to unveil the underlying rules, mechanisms,
and features leading the ML/DL predictors to their outcomes in such a context.
Explaining why/how the models have been obtained is imperative, especially in
the medical (diagnosis and decision support systems) domains. Having transpar-
ent (i.e., explainable models) models foster understandability, transparency, and
trust.

Henceforth, contributions to the XAI field aim to explain the decision-making
process carried out by AI algorithms to increase their transparency and trustwor-
thiness [3,11]. XAI is fundamental in safe-critical domains like medicine, where
clinicians and patients require a thorough understanding of decision processes
carried out by automatic systems to trust them [38].

AI algorithms, including decision trees, linear models, and rule-based sys-
tems, are explainable-by-design, meaning that predictions can be expressed as
rules, thresholds, or linear combinations of the input features making the deci-
sion process transparent and interpretable [36]. However, algorithms like DL
models and support vector machines with non-linear kernels are characterized
by non-linear relationships between the input and the output, which improves
performance and generalization — making the explanation process more chal-
lenging [19]. Therefore, a post-hoc approach is necessary to explain the decision-
making process in complex and non-linear algorithms non-explainable-by-design
(a.k.a. black-boxes). The post-hoc explanation approach is a third-party method
that uses the model structure and input-output relationship to explain AI mod-
els [37,50]. Post-hoc explanations can be classified into local and global. The
former interprets one sample at a time — see methods based on sensibility
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analysis like Local Interpretable Model-agnostic Explanation (LIME) [34], local
feature importance and utility CIU [14,28], and methods based on local surro-
gate models [40]. While local explanations have the drawback of being valid only
for one example or a small set of examples in the input space, global explana-
tion methods aim to explain the overall predictor’s behavior covering as many
samples as possible. Global explanations methods include global surrogate mod-
els [47,57], global feature importance and attribution [20,43], and rule extraction
methods [4].

Rule extraction methods can follow three main approaches. First, decomposi-
tional methods look inside the predictors’ structure to induce rules; algorithms
like FERNN [49], ECLAIRE [56], and DEXiRE [9] are examples of this app-
roach. Second, pedagogical approaches extract rules based on the relationship
between input features and predictions (e.g., TREPAN [10]). Finally, eclectic
methods combine decompositional and pedagogical methods to produce expla-
nations (e.g., Recursive Rule-extraction (RX) [23]).

The following section describes the methodology used to produce post-hoc
explanations of DL models through binarizing neurons and rule induction meth-
ods in the medical domain.

3 Methodology

This section presents the approach undertaken to explain the decision-making
process carried out by a DL predictor trained on radiomics features to predict
the HPV status and the TNM staging through rules. In particular, we executed
experiments in two classification tasks:

T1: HPV diagnosis targets the binary variable HPV status, which describes if
a given patient has an HPV tumor or not (HPV status = 1/0).

T2: Cancer staging consists of assigning to a tumor a grade value (an integer
number between 1 and 4) based on the TNM tumor grading system, which
is composed of three measures: Tumor primary size and extent, Nearby
lymph nodes infiltrated, and Metastasis [26,48,54]. Tumor grading can be
modeled as a multiclass classification task for machine learning.

Figure 1 schematizes the experimental pipeline employed to extract the
underlying rules leading the predictors trained in T1 and T2 to their outcomes.
The experimental pipeline starts with the feature extraction process from PET-
CT images. Then, these features have been preprocessed, and exploratory data
analysis (EDA) is required to understand the data and the task and choose the
appropriate predictors. In turn, predictors are trained and fined tuned using 5-
fold cross-validation. Next, the rule set extraction takes place using the training
set and pre-trained DL predictor. Finally, the rule set is evaluated using the test
set and compared with the baseline predictors’ performance.

3.1 Experimental Pipeline

Below, a brief description of the data set used in this study.
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Fig. 1. Overall experimental pipeline.

Dataset Description. The dataset used in this study is the HEad and
neCK TumOR (HECKTOR 2022) dataset. The dataset was introduced to
compare and rank the top segmentation and outcome prediction algorithms
using the same guidelines and a comparable, sufficiently large, high-quality set
of medical data [2,41]. The patients populating the data set have histologi-
cally proven oropharyngeal H&N cancer and have undergone/planned radio-
therapy and/or chemotherapy and surgery treatments. The data originates from
FluoroDeoxyGlucose (FDG) and low-dose non-contrast-enhanced CT images
(acquired with combined PET-CT scanners) of the H&N region. The primary
tumor (GTVp) and lymph nodes (GTVn) segmentations were also provided with
the images. The records from this dataset have been collected in eight different
centers and contain 524 training examples and 359 for testing. For this study,
for task T1 (HPV status prediction), we have removed all those samples with
unknown values or without HPV status values (target variable), obtaining a
value of 527 patients in total (train + test sets). For Task T2, TNM staging, we
have chosen only patients from the TNM 7th edition, obtaining a value of 640
patients in total (train + test sets).

Experimental Pipeline Description. The steps composing the experimental
pipeline shown in Fig. 1 are characterized as follows:

S1 Feature extraction: The features have been extracted from 3D PET-CT
volumes using the Python library Pyradiomics, a tool to calculate radiomics
features from 2D and 3D medical images [55]. In this study, the features for
T1 and T2 have been extracted from a bounded box surrounding the interest
area in the image and not from the whole image, reducing the computational
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cost of the feature extraction process and producing meaningful features that
allow to classify and grade the tumors.
S2: Preprocessing: The extracted features have been preprocessed to make
them suitable for training ML/DL predictors.
The feature preprocessing is structured as follows:

S2.1 Remove non-informative features: Non-informative features like
duplicated, empty and constant ones have been removed. Additionally,
features like the position of the bonding box have been removed because
they are not informative for tasks T1 and T2. Features nb lymphonodes
and nb lessions have also been removed, given that such features are
directly related to the target tumor grade. Inferring the target variable
from them is trivial, and it yields to ignore other radiomics features.
S2.2 Encode categorical features: Categorical features like gender have
been encoded into numerical values using one hot encoding procedure.
S2.3 Transform complex numbers to real: Some features calculated with
Pyradiomics include complex numbers in which the imaginary part is
always zero. To provide a uniform and suitable number format for ML
predictors, features with complex numbers have been transformed to float
point data types by taking only their real parts.
S2.4 Removing NaN columns: Not-a-Number (NaN) columns are numeric
columns with missing values and cannot be employed in an ML predic-
tor. Although some missing values can be imputed, in this case, we have
decided not to do so to avoid introducing bias and additional uncertainty
in the predictors.
S2.5 Feature Normalization: Once NaN columns have been removed, the
features have been normalized using the standard scale method, which
scales all the features to the same range and thus avoids biases from scale
differences between features.

S3: Exploratory Data Analysis (EDA):
The objective of the exploratory data analysis is to identify the most relevant
characteristics and the structure of the data set to select the most appropriate
predictors for each task. In EDA, a correlation between the features and the
target variable has been calculated to identify possible linear relationships
between the input features and the target variable. Additionally, correlation
analysis has been performed between the features to identify correlation and
collinearity. Finally, a distribution analysis has been applied to the target
variables, showing a considerable imbalance between the classes.
S4: Data split: To maintain reproducible experimentation and fair com-
parison between the different predictors, the data set was split into 80% for
training and 20% for testing using the same random seed and stratified sam-
pling. Additionally, to this data partition, we also employ the HECKTOR
challenge partition, where the test set is composed of centers MDA, USZ,
and CHB.
S5: Feature selection and model tuning:
Due to the high number of features after the preprocessing step, ∼ 2427 for
task T1 and ∼ 2035 for task T2, a feature selection process has been applied
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to reduce the complexity, avoid the curse of dimensionality [29] and focus on
those features strongly related to the target variable. The feature selection
process has been executed over the train set.
The feature selection (FS) process encompasses the following steps:

FS1 For each input feature, calculate the univariate correlation coefficient
with the target variable.
FS2 Rank features based on the absolute value of the correlation coeffi-
cients calculated in step FS1.
FS3 Choose the highest top 20 features based on the rank.
FS4 Filter the train and test parts with selected features.

Once the features were selected, we trained four models (M1-M4) in the same
setup, as described below.

M1 Support Vector Machine (SVM) with a linear kernel and a C param-
eter of C=10, and a class weight parameter set in weighted.
M2 Decision Tree (DT) with a maximum depth of 50 levels and with
impurity Ginny metric as bifurcation measure.
M3 Random forest (RF) model with 100 estimators.
M4 DL predictor is a Feed-forward neural network in which hyperpa-
rameters have been selected employing 5-fold cross-validation and three
candidate architectures, with hidden layers ranging from 2 to 6. The num-
ber of neurons in each hidden layer varies from 22 to 28 on a logarithmic
scale.

These models have been chosen due to their similar performance and inter-
pretability.
S6: Rule extraction process: To extract logic rules from a pre-trained DL
predictor, we have employed the algorithm DEXiRE [9]. Such an algorithm
extracts boolean rules from a DL predictor by binarizing network activations
and then inducing logical rules using the binary activations and the rule
inductor algorithms. Finally, the inducted rules are recombined (from local
to global) and expressed in terms of input features (see Fig. 2 – DEXiRE
pipeline).
S7: Metrics evaluation:
To measure the predictors’ performance, we have employed the following per-
formance metrics (PM):

PM1 Cohen-Kappa (CK-score): Cohen-kappa score measures the
agreement level between the conclusions of two experts. Its value oscil-
lates between -0,20 to 1.0. Negative or low CK-score values indicate not
or slight agreement, whereas high values indicate total or strong agree-
ment [32].
PM2 F1-score: F1-score belongs to a family of metrics (F-measure) or
(F-score). Its value oscillates between 0.0 to 1.0. Higher F1-score values
indicate high performance. The F1-score calculates the harmonic mean
between the precision and recall measures, combining specificity and sen-
sibility measures. For the case of the multiclass F1-score reported, we
employed the weighted mean to consider the imbalance of the dataset.
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Fig. 2. DEXiRE pipeline to extract rules from DL predictor [9].

Additionally, to measure the ability of the rule set to explain the original
model, we have used the following measures:

PM3 Fidelity: Fidelity measures how similar are the predictions from
the rule set to the prediction of the original DL predictor.
PM4 Rule length: Rule length measures the number of atomic unique
Boolean terms in the rule set.

All the models have been trained and evaluated on the same train and test
partitions to make analysis and comparison of results possible. In addition,
DNNs have been tested and compared against a set of baseline models with
similar capabilities, i.e., Support Vector Machine (SVM), Decision Tree, and
Random Forest.

4 Results and Analysis

It is worth recalling that the overall objective of this study is to explain a DL
predictor’s behavior (HPV status prediction or tumor staging in H&N cancer)
through rule sets extracted employing the decompositional rule extraction algo-
rithm DEXiRE. Table 1 presents the rule sets’ average performance for task T1
(HPV diagnosis) and T2 (Cancer staging), employing the metrics described in
step S7 (see Sect. 3).

Datasets for tasks T1 and T2 are highly unbalanced, which can affect the
predictors’ and rule sets’ performance. We have executed three experiments with
different balancing and partitions for each task to test the possible effect of high
dataset imbalance on the rule generation process and the rule set’s performance.

Table 1 summarizes DEXiRE’s rule sets for task T1 (HPV diagnosis) and
T2 (Tumor staging) in three different dataset balance configurations. First, the
imbalance dataset, in which partitions have been randomly selected while main-
taining the proportions of the target variables. The dataset has been balanced
with an oversampling technique (SMOTE) in the second configuration. In the
third configuration, the dataset follows HECKTOR’s challenge partitions, which
are focused on medical centers’ generalization. The rest of the Table 1 is orga-
nized as follows, the third column summarizes the average and standard devi-
ation of the rule length (number of features involved in the rule), with values
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ranging from 7.6 to 14.8 terms for task T1 and 11.2 to 13.6 terms for task T2.
The fourth column presents the fidelity measure, which describes the similarity
degree between the rule sets’ predictions and those from the original model. The
highest fidelity value for T1 is ≈ 80%, while for task T2 is ≈ 73%. The fifth
column shows the obtained F1-score, with values above ≈ 80% for task T1 and
around ≈ 70% for task T2. Finally, the last column apprises the Cohen-kappa
score ≈ 12% for T1 and above 20% for T2.

Table 1. DEXiRE’s rule set performance on Task T1 (HPV diagnosis) and task T2
(cancer staging) for different dataset partition and balancing conditions. Numerical
results are reported with average value ± standard deviation. The best results in
each task are highlighted in bold.

Task Data set balancing Rule length Fidelity F1-score CK-score

T1 Imbalanced 8.8 ± 0.9797 0.7622 ± 0.2490 0.8507 ± 0.0097 0.1207 ± 0.0315

Balanced 14.8 ± 0.9797 0.8075 ± 0.0237 0.8833 ± 0.0162 0.1366 ± 0.0682

Hecktor partitioning 7.6 ± 0.7999 0.7304 ± 0.0836 0.8230 ± 0.0724 0.0827 ± 0.0702

T2 Imbalanced 11.2 ± 0.9797 0.7343 ± 0.0450 0.7226 ± 0.0330 0.2740 ± 0.0811

Balanced 13.6 ± 0.7999 0.7312 ± 0.0429 0.7354 ± 0.0203 0.2620 ± 0.0455

Hecktor partitioning 11.2 ± 0.9797 0.6459 ± 0.0261 0.7168 ± 0.0294 0.2085 ± 0.0412

Appendix A shows the rule set recording the highest performance for each
experiment for both T1 and T2.

4.1 Task T1 HPV Diagnosis

Task T1 performs a binary classification employing the radiomics features to
predict whether a given patient is HPV positive or not. Results obtained for
different datasets’ configuration are described in the following subsections.

Experiment with Imbalanced Dataset. The dataset has not been modified
in this setting, retaining its natural imbalance of 90% positive and 10% negative
samples. Table 2 shows the results obtained by the baseline models, the DL pre-
dictor, and the DEXiRE’s rule set concerning performance metrics PM1 to PM4
(Sect. 3 – step S7). The first column shows the F1-score is reported with all the
values over approximately 80%, and the DL predictor obtained the best score
(91%). The second column shows the Cohen-Kappa score (CK-score), whose val-
ues range from 12% to 28%. Once again, the DL predictor obtains the maximum
score. The rule length and fidelity metrics concern only the rule set. The average
rule length for this experiment is 8.8 boolean terms, and the fidelity is 76%.
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Table 2. Results for baseline models, DL predictor and extracted rule set in task T1
with the imbalanced dataset. Numerical results are reported with average value ±
standard deviation. The highest results in each column are highlighted in bold.

Model F1-score CK-score Rule length Fidelity

SVM 0.8743 ± 0.0104 0.2157 ± 0.1434 NA NA

Decision tree 0.8647 ± 0.0224 0.2699 ± 0.1164 NA NA

Random forest 0.8689 ± 0.0146 0.1933 ± 0.0957 NA NA

Neural Network 0.9153 ± 0.0123 0.2872 ± 0.0557 NA NA

DEXiRE’s rule set 0.8507 ± 0.0097 0.1207 ± 0.0315 8.8 ± 0.9797 0.7622 ± 0.2490

Experiment with Balance Dataset. To test the effect of an artificial balanc-
ing dataset technique, we have executed an experiment with a balanced training
set employing the oversampling method SMOTE, which allows the drawing of
new samples from the minority class based on the neighbors. Table 3 shows the
obtained results. In particular, the first column shows the F1-score (all the values
are over approximately 80%, and the DL predictor got the best score of 91%).
The second column shows the CK-scores, ranging from 13% to 63%. Again, the
SVM has obtained the maximum score with ≈ 63%. The average rule length for
this experiment is 14.8 boolean terms, and the fidelity is ≈ 80%.

Table 3. Results for baseline models, DL predictor and extracted rule set in task
T1 with the balanced dataset using SMOTE. Numerical results are reported with
average value±standard deviation. The highest results in each column are highlighted
in bold.

Model F1-score CK-score Rule length Fidelity

SVM 0.8170 ± 0.0082 0.6358 ± 0.0162 NA NA

Decision tree 0.8368 ± 0.0219 0.1996 ± 0.0888 NA NA

Random forest 0.8824 ± 0.0142 0.2781 ± 0.0883 NA NA

Neural Network 0.9161 ± 0.0092 0.2425 ± 0.0409 NA NA

DEXiRE’s rule set 0.8833 ± 0.0162 0.1366 ± 0.0682 14.8 ± 0.9797 0.8075 ± 0.0237

Experiment with the HECKTOR Partition. An essential task within
PET-CT medical image analysis is the ability to generalize the results of the
prediction models to different medical centers with equipment from different
manufacturers and slightly different protocols. This challenge still demands fur-
ther research and more flexible and robust techniques. To test the rule sets’
generalization ability to various centers, we have used the partitions employed
in the HECKTOR 2022 challenge, which provides a reproducible inter-center
generalization scenario. Table 4 summarizes the results, recording the highest
F1-score of 0,9724, obtained by the random forest predictor, followed by the
SVM with an F1-score of 0,9432, the decision tree with a value of 0,9329, the
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DL predictor with a value of 0,9025, and the rule set with a value of 0,8840.
Concerning the CK-score, the highest result is obtained by the SVM predictor
with a value of 0.2732, followed by the decision tree with a value of 0.2004, the
random forest with a value of 0.1447, the neural network with a value of 0.1259,
and the rule set with a value of 0.0241. The F1-score has shown variations of up
to 11%. Similarly, the CK-score shows variations of up to 11%.

Table 4. Results for baseline models, DL predictor and extracted rule set in task
T1 with HECKTOR partition. Numerical results are reported with average value ±
standard deviation. The highest results in each column are highlighted in bold.

Model F1-score CK-score Rule length Fidelity

SVM 0.9432 ± 0.0094 0.2732 ± 0.1135 NA NA

Decision tree 0.9329 ± 0.0087 0.2004 ± 0.0535 NA NA

Random forest 0.9724 ± 0.0029 0.1447 ± 0.0893 NA NA

Neural Network 0.9399 ± 0.0169 0.1376 ± 0.0826 NA NA

DEXiRE’s rule set 0.8230 ± 0.0724 0.0827 ± 0.0702 7.6 ± 0.7999 0.7304 ± 0.0836

4.2 Task T2 Cancer Staging

Task T2 performs a multiclass classification to stage and grade tumor. The can-
cer stage scale is progressive, ranging from a minimum value of 1 to a maximum
of 4. In this dataset, the imbalance between the target classes is enormous, but
the case of class 1, which has a total of 4 samples over 640, is particularly note-
worthy. With such a few samples, applying any effective technique to balance
the dataset without introducing bias and errors is very difficult. For this reason,
we have decided to remove class 1 from the dataset and perform the subse-
quent experiments with three categories that, although still imbalanced, provide
enough information to apply balance techniques and train the predictors effec-
tively.

Experiments with Imbalanced Dataset. Table 5 presents the results
obtained by the baseline models, the DL predictor, and the rule set concern-
ing performance metrics PM1 to PM4 (Sect. 3 step S7) with the imbalanced
dataset. The first column shows the F1-score with all the values over approxi-
mately 70%, and the DL predictor obtained the best score (76%). The second
column reports the CK-score, whose values range from 8% to 27%. Here again,
the DL predictor obtains the maximum score. The average rule length for this
experiment is 11.2 boolean terms, and the fidelity is 73%.
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Table 5. Results for baseline models, DL predictor and extracted rule set in task T2
with imbalanced dataset 3 classes. Numerical results are reported with average value±
standard deviation. The highest results in each column are highlighted in bold.

Model F1-score CK-score Rule length Fidelity

SVM 0.7212 ± 0.0208 0.1374 ± 0.0641 NA NA

Decision tree 0.7169 ± 0.0161 0.0892 ± 0.0699 NA NA

Random forest 0.7380 ± 0.0147 0.1016 ± 0.0640 NA NA

Neural Network 0.7654 ± 0.0262 0.2776 ± 0.0661 NA NA

DEXiRE’s rule set 0.7226 ± 0.0330 0.2740 ± 0.0811 11.2 ± 0.9797 0.7345 ± 0.0450

Experiments with Balanced Dataset. Table 6 presents the results obtained
by the baseline models, the DL predictor, and the rule set. The first column
shows the F1-score with all the values over ≈ 70%, and the random forest pre-
dictor obtained 84% as the best score. The second column reports the CK-score,
whose values range from 12% to 35%. Again, the random forest has obtained
the maximum score with ≈ 34%. The average rule length for this experiment is
13.6 boolean terms, and the fidelity is ≈ 72%.

Table 6. Results for baseline models, DL predictor, and extracted rule set in task T2
with the balanced 3 classes dataset using SMOTE. Numerical results are reported with
average value±standard deviation. The highest results in each column are highlighted
in bold.

Model F1-score CK-score Rule length Fidelity

SVM 0.7810 ± 0.1012 0.1274 ± 0.0340 NA NA

Decision tree 0.7413 ± 0.0135 0.2186 ± 0.0368 NA NA

Random forest 0.8480 ± 0.0050 0.3469 ± 0.0307 NA NA

Neural Network 0.8058 ± 0.0140 0.2085 ± 0.5079 NA NA

DEXiRE’s rule set 0.7760 ± 0.0291 0.2359 ± 0.0423 13.6 ± 0.9797 0.7189 ± 0.0353

Experiments with HECKTOR Partition. Table 7 summarizes the results
obtained using the imbalanced dataset with the HECKTOR partition. The high-
est reported F1-score is 84%, obtained by the random forest predictor, followed
by the DL predictor with an F1-score of 80%, the SVM with 78%, the rule set
with 77%, and the decision tree with 74%. The random forest predictor obtained
the highest CK-score with a value of 0.3469, followed by the rule set with 0.2359,
the decision tree with 0.2186, the neural network with a value of 0.2085, and the
SVM with 0.1274. The F1-score shows variations up to 10%. Similarly, the CK-
score shows variations up to 50%.
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Table 7. Results for baseline models, DL predictor and extracted rule set in task
T2 with the imbalanced (3 classes dataset) using HECKTOR partitions. Numerical
results are reported with average value ± standard deviation. The highest results in
each column are highlighted in bold.

Model F1-score CK-score Rule length Fidelity

SVM 0.7763 ± 0.0197 0.0851 ± 0.0763 NA NA

Decision tree 0.7887 ± 0.0170 0.1548 ± 0.0370 NA NA

Random forest 0.8374 ± 0.0168 0.1282 ± 0.0860 NA NA

Neural Network 0.8021 ± 0.0761 0.1773 ± 0.2856 NA NA

DEXiRE’s rule set 0.7168 ± 0.0142 0.2085 ± 0.0412 11.2 ± 0.9797 0.6459 ± 0.0261

5 Discussion

This section elaborates on the results and performance obtained during the
explanation of DL predictors (i.e., HPV diagnosis and tumor staging).

5.1 On Rules and Metrics for Task T1

Looking at the results obtained in the three experimental setups for task T1,
the balanced dataset generated the rule set with the overall best performance,
yet having the highest number of terms. Thus, the obtained results suggest a
correlation between rule sets’ length and performance. However, more extended
rule sets are challenging to be understood, reducing their quality as explainers.
Balancing the rule set’s predictive ability and complexity (number of terms) is
necessary yet not immediate.

5.2 On Rules and Metrics for Task T2

Looking at the results obtained in the three experimental setups, the average
rule set length in this task is higher w.r.t. T1, reflecting the increased complexity
of this task. Moreover, the overall average rule sets’ performance of fidelity and
F1-score are sensibly below T1’s results. However, T2’s CK-score is higher than
T1’s. This difference can be attributed to the different rule induction methods
employed by DEXiRE for the binary and multiclass cases. While the former uses
one-rule learning, the latter uses decision trees, which produce more robust and
flexible rules.

5.3 Good Explanations, but What About the Predictors?

The results allow inferring that rule sets are good explainers, since they mimic
the behavior of the original DL predictor on the training set with high qual-
ity. However, the results obtained in the test set and the CK-score for most
experiments show results below other predictors. Indicating a limit to the gen-
eralization ability of the rule sets concerning more robust structures such as DL
models and kernel methods.
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5.4 Beyond Metrics

Using more than one metric to evaluate the rule sets generation is a good prac-
tice. However, it is possible to observe discrepancies between the consistently
high F1-score and the consistently low CK-score. Such discrepancy is due to the
data set imbalance that affects only the F1-score.

Indeed, Table 2 (imbalanced dataset) shows the rule set might not be the
best, but from the F1-score perspective, it competes with the other predictors
— although the CK-score is relatively poor. The performance differences between
the rule set’s efficacy measured with the F1-score and the one measured with
the CK-score can be explained because the F1-score is the harmonic average
of precision and recall. Therefore, in an imbalanced dataset, high precision and
recall values on the majority class could produce a high F1-score, even if the
class imbalance biases the metric. However, this is not the case for the CK-
score. Indeed, it is based on the agreement between two experts, discounting
the random influence. Proof of this explanation can be found in Table 3, where
the results reported are obtained after balancing the dataset. In this table, the
rule set’s F1-score performance and CK-score are similar to the ones obtained
by other models, including decision trees, SVM, and random forest.

5.5 The Influence of Data Partition on Rule Sets

In task T1, the rule set performance metrics are similar to those obtained by
decision trees, SVM, and random forest — except for the HECKTOR partition.
Thus, we can infer that the partitions’ selection affects the models’ performance
and the rule extraction process. Moreover, the generalization ability of rule sets
is limited to the samples in the training set.

The selection of data splits in tasks T1 and T2 can influence the performance
evaluation because of the disparity between sample distribution in different cen-
ters. Despite the generalization ability of ML models and the regularization
terms, overfitting for a particular center is an issue to be considered. In par-
ticular, the rule sets are less flexible, and they tend to overfit the training set
to approximate the behavior of the original model on the train set as much as
possible.

5.6 Imbalanced Datasets in Medical Domain and Bias Predictors

Imbalanced datasets are common in the medical domain. Such a condition is
exacerbated in clinical studies, mainly because of the study of rare diseases or
because screening trials focus on ill individuals. Indeed, this is the case for the
datasets employed in task T1 HPV diagnosis and T2 cancer staging. Figures 3
and 4 show the sample counting for each target class.

A significant imbalance in the dataset can cause poor performance on the pre-
dictors, overfitting, and biases. This is because many optimization algorithms in
ML/DL predictors privilege majority class and global accuracy over minority
classes. As mentioned above, even the rule sets are affected by this phenomenon.
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During rule extraction (step S6), some rule sets have been generated biased to
predict only the majority class. Over the years, different solutions have been
proposed to solve the imbalance in medical datasets. Rahman and Davis [44]
proposed to balance medical datasets employing SMOTE. Although this app-
roach works well, it can only be applied in some cases. For example, in task T2,
this approach could not be employed in class 1 because there are not enough
samples (4) to perform the interpolation.

Fig. 3. Class distribution histogran for
target variable HPV status dataset
employed for task T1.

Fig. 4. Class distribution histogran for
target variable TNM staging from dataset
employed for task T2.

Rule sets provide domain-contextualized explanations, a logical language that
human and artificial agents can understand. Logical language constitutes an
advantage in safe-critical domains like medical diagnoses and prognoses because
clinicians can validate this knowledge based on their expertise and through a
rigorous reasoning process and extract conclusions that can be employed to sup-
port their daily work. DL predictors are not extensively used in clinical diagno-
sis due to the need for more transparency and domain-contextualized explana-
tion of their internal behaviors that enable clinicians to trust their predictions.
However, with the introduction of logic and semantic explanations, trust in DL
predictors is expected to increase, and they could become part of daily clini-
cal workflows, improving efficiency and effectiveness and helping clinicians and
patients to understand their diagnoses.

5.7 Decompositional Rule Extraction Advantages

Decompositional rule extraction methods have several advantages over other
post-hoc XAI methods. In particular, the DEXiRE rule extraction algorithm
has the following advantages.
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– Logical rule sets can be understood by human and artificial agents. More-
over, they simplify the knowledge exchange between agents in heterogeneous
environments.

– Rule sets, as symbolic objects, can be easily shaped into other symbolic
objects like arguments or natural language explanations.

– Decompositional rule extraction algorithms generate rules by inspecting every
neuron activation and better reflecting the internal behavior of the DL pre-
dictor.

– Rule sets can be formally verified to assess their correctness.
– Besides extracted rule sets, DEXiRE can provide intermediate rule sets that

describe the logical behavior in hidden layers, enabling model refinement and
better understanding.

– Alongside the rule sets, DEXiRE can provide activation paths that describe
the most frequent neural activation patterns to a given input, identifying the
neurons that contribute more to the predictors’ final decision.

– Rule sets can also be employed to perform inference and reasoning.

5.8 Limitations and Shortcomings

Despite the significant advancement in XAI in recent years, several challenges
still need to be solved to apply XAI methods in safe-critical domains like medical
diagnosis. The following briefly describes some limitations and shortcomings
when using the DEXiRE algorithm in the medical domain.

– It is not possible to extract rule sets from every DL predictor. This is due
to the non-linearity and complexity of the DL predictors’ decision functions,
which boolean rules cannot accurately approximate in all cases.

– DEXiRE algorithm is a very flexible algorithm able to extract rule sets from
a wide range of DL architectures. However, currently, DEXiRE can only be
applied to classification tasks. More research is required to extend DEXiRE
to other machine learning tasks like regression or reinforcement learning.

– Rule sets depend on the models’ architecture and data set partitions, making
them less flexible in responding to never-before-seen cases or outliers. For this
reason, we propose to use rule sets to understand and validate DL models
rather than to perform large-scale inference processes.

To overcome these limitations, we have proposed several research paths,
described at the end of the Conclusions and Future Work section.

6 Conclusions and Future Work

This study can conclude that the DEXiRE method enables the extraction of rule
sets from DL predictors, aiming to make data-driven classifiers more transparent
and facilitating the understanding of the motivations behind models’ predictions
to researchers and clinicians. In particular, it extracted rules from DL predic-
tors trained on HPV diagnosis (T1) and TNM staging (T2) for H&N cancer,
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employing the decompositional rule extraction tool, namely DEXiRE. For both
analyzed tasks T1 and T2 (HPV status and TNM staging), we conducted three
experiments with imbalanced (original), balanced (SMOTE), and HECKTOR
(inter-center) data partitioning. Finally, the rule sets and their performance
metrics have been compared with baseline predictors to test their generaliza-
tion, prediction, and explaining abilities. Elaborating on the obtained results
and analysis, we can summarize the following:

– Concerning the F1-score metric, the extracted rule sets have shown similar
performance among the predictors (i.e., SVM, decision tree, and random for-
est) and slightly lower performance of those obtained from the DL predictors.

– Concerning the CK-score, the extracted rule sets performance has shown
better results in the multiclass task (T2) than in the binary classification
(T1). This is because DEXiRE uses explainable layers (ExpL) and one-rule
learning as rule induction methods for binary classification and decision trees
for the multiclass case, inducing more robust rule sets.

– The rule sets are less flexible than ML/DL predictors. Therefore, they have a
limited generalization capability and are more useful for providing post-hoc
explanations than for making large-scale inferences.

– The decompositional rule extraction algorithm DEXiRE is affected by data
partitions and dataset imbalance — since they impact the entropy, frequency
of neuron activation, and terms’ thresholds.

– Longer rule sets have shown better predictive performance and fidelity. How-
ever, it is harder to comprehend longer rule sets. A balance between perfor-
mance and explainability is necessary for an optimal rule set.

Finally, we envision the following future works:
(i) To conduct further experiments focused on the inter-center rule set gener-

alization, extracting rule sets based on the data from certain medical centers and
applying them to other medical centers, (ii) Tumor staging task can also be ana-
lyzed using regression models. Thus we intend to extend DEXiRE enabling the
explanation of regression DL predictors, (iii) To reduce the effect of unbalanced
datasets in DEXiRE, we have proposed to extend DEXiRE to include sample
and class weight to deal with imbalanced datasets, and (iv) To make DEXiRE
more flexible and robust, we intend to extend it using fuzzy logic, which would
allow a better approximation of the DL predictors’ decision function.

Acknowledgments. This work is supported by the Chist-Era grant CHIST-ERA19-
XAI-005, and by (i) the Swiss National Science Foundation (G.A. 20CH21 195530),
(ii) the Italian Ministry for Universities and Research, (iii) the Luxembourg National
Research Fund (G.A. INTER/CHIST/19/14589586), (iv) the Scientific, and Research
Council of Turkey (TÜBİTAK, G.A. 120N680).

A Appendix Rule Sets

In this appendix, examples of the rule sets extracted from DL predictors, in each
experiment are presented.
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A.1 Rule Sets for Task T1

Table 8 presents the best rule set extracted from DL predictor trained with
imbalanced (original) dataset.

Table 8. Rule set extracted from DL predictor using DEXiRE and the imbalanced
dataset.

Rule

IF [(everything mergeddilat2mm PT gldm DependenceV ariance ≤
−0.6998) ∧ (everything mergedshell2mm CT firstorder Skewness >

−0.6944)] ∨ [(everything mergedBBox PT firstorder Minimum ≤
−0.802) ∧ (everything mergedBBox PT glszm SmallAreaLowGrayLevelEmphasis ≤
−0.2344) ∧ (everything mergeddilat2mm PT gldm DependenceV ariance > −0.6998)] THEN 0

IF [(everything mergedBBox PT firstorder Minimum ≤
−0.802) ∧ (everything mergedBBox PT glszm SmallAreaLowGrayLevelEmphasis >

−0.2344) ∧ (everything mergeddilat2mm PT gldm DependenceV ariance >

−0.6998)] ∨ [(everything mergedBBox PT firstorder Minimum >

−0.802) ∧ (everything mergeddilat2mm PT gldm DependenceV ariance >

−0.6998)] ∨ [(everything mergeddilat2mm PT gldm DependenceV ariance ≤
−0.6998) ∧ (everything mergedshell2mm CT firstorder Skewness ≤ −0.6944)] THEN 1

Table 9 presents the best rule set extracted from DL predictor trained with
SMOTE balanced dataset using.

Table 9. Rule set extracted from DL predictor using DEXiRE and the balanced
dataset.

Rule

IF [(everything mergedBBox CT glcm MaximumProbability ≤
0.21) ∧ (everything merged PT glcm Imc1 >

0.5062) ∧ (everything mergeddilat8mm CT firstorder Maximum ≤
−1.0149) ∧ (everything mergedshell2mm CT gldm LowGrayLevelEmphasis >

−0.2934)] ∨ [(everything mergedBBox CT glcm MaximumProbability >

0.21) ∧ (everything merged PT glcm Imc1 >

0.5062)] ∨ [(everything mergedBBox CT glcm MaximumProbability ≤
0.21) ∧ (everything merged PT glcm Imc1 >

0.5062) ∧ (everything mergedshell2mm CT gldm LowGrayLevelEmphasis ≤
−0.2934)] ∨ [(everything mergedBBox PT firstorder 10Percentile >

−1.4104) ∧ (everything merged PT glcm Imc1 ≤
0.5062) ∧ (everything mergeddilat4mm CT glcm DifferenceEntropy ≤
1.4793) ∧ (everything mergedshell4mm PT glrlm GrayLevelNonUniformity ≤ 1.5895)] THEN 1

IF [(everything mergedBBox PT firstorder 10Percentile >

−1.4104) ∧ (everything merged PT glcm Imc1 ≤
0.5062) ∧ (everything mergeddilat4mm CT glcm DifferenceEntropy ≤
1.4793) ∧ (everything mergedshell4mm PT glrlm GrayLevelNonUniformity >

1.5895)] ∨ [(everything mergedBBox PT firstorder 10Percentile >

−1.4104) ∧ (everything merged PT glcm Imc1 ≤
0.5062) ∧ (everything mergeddilat4mm CT glcm DifferenceEntropy >

1.4793)] ∨ [(everything mergedBBox PT firstorder 10Percentile ≤
−1.4104) ∧ (everything merged PT glcm Imc1 ≤
0.5062)] ∨ [(everything mergedBBox CT glcm MaximumProbability ≤
0.21) ∧ (everything merged PT glcm Imc1 >

0.5062) ∧ (everything mergeddilat8mm CT firstorder Maximum >

−1.0149)∧(everything mergedshell2mm CT gldm LowGrayLevelEmphasis > −0.2934)] THEN 0
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Table 10 presents the best rule set extracted from DL predictor trained with
the HECKTOR partition.

Table 10. Rule set extracted from DL predictor using DEXiRE and the HECKTOR
partition.

Rule

IF [(everything merged40% CT firstorder Median >

0.0167) ∧ (everything mergeddilat8mm PT glcm Idn ≤
0.526) ∧ (everything mergedshell2mm shape F latness ≤ −0.4546) ∧
(everything mergedshell4mm CT gldm SmallDependenceHighGrayLevelEmphasis ≤
0.6285)] ∨ [(everything mergedshell2mm shape F latness > −0.4546) ∧
(everything mergedshell4mm CT gldm SmallDependenceHighGrayLevelEmphasis ≤
0.6285)] ∨ [(everything mergeddilat8mm PT glcm Idn >

0.526) ∧ (everything mergedshell2mm shape F latness ≤ −0.4546) ∧
(everything mergedshell4mm CT gldm SmallDependenceHighGrayLevelEmphasis ≤
0.6285)] THEN 1

IF [(everything merged40% CT firstorder Median ≤ 0.0167)

∧(everything mergeddilat8mm PT glcm Idn ≤
0.526) ∧ (everything mergedshell2mm shape F latness ≤ −0.4546)∧
(everything mergedshell4mm CT gldm SmallDependenceHighGrayLevelEmphasis ≤
0.6285)]∨
(everything mergedshell4mm CT gldm SmallDependencHighGrayLevelEmphasis >

0.6285)] THEN 0

A.2 Rule Sets for Task T2

Table 11 presents the best rule set extracted from DL predictor trained with the
imbalanced dataset.

Table 11. Rule set extracted from DL predictor using DEXiRE and the imbalanced
dataset.

Rule

IF [(everything mergeddilat16mm PT firstorder Minimum ≤
1.1895) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity >

−0.5826) ∧ (everything mergedshell8mm PT glszm SmallAreaEmphasis >

1.3477)] ∨ [(everything mergeddilat16mm PT firstorder Minimum >
1.1895) ∧ (everything mergeddilat1mm shape F latness ≤ 0.2752)] ∨
[(everything mergeddilat16mm CT glszm SizeZoneNonUniformityNormalized >

−0.5867) ∧ (everything mergeddilat16mm PT firstorder Minimum ≤ 1.1895) ∧
(everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤ −0.5826)] THEN 1

IF [(everything mergeddilat16mm PT firstorder Minimum >

1.1895) ∧ (everything mergeddilat1mm shape F latness > 0.2752)] THEN 0

IF [(everything mergeddilat16mm PT firstorder Minimum ≤ 1.1895)∧
(everything mergeddilat8mm PT glrlm GrayLevelNonUniformity >

−0.5826) ∧ (everything mergedshell8mm PT glszm SmallAreaEmphasis ≤ 1.3477)]∨
[(everything mergeddilat16mm CT glszm SizeZoneNonUniformityNormalized ≤
−0.5867) ∧ (everything mergeddilat16mm PT firstorder Minimum ≤ 1.1895) ∧
(everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤ −0.5826)] THEN 2
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Table 12 presents the best rule set extracted from DL predictor trained with
the balanced dataset.

Table 12. Rule set extracted from DL predictor using DEXiRE and the imbalanced
dataset.

Rule

IF [(Chemotherapy > 0.3396)∧
(everything mergedBBox CT gldm GrayLevelNonUniformity >
−1.0517) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity >
−0.3239) ∧ (everything mergedshell2mm CT gldm DependenceNonUniformity ≤
−0.5275)] ∨ [(everything merged40% shape Maximum2DDiameterSlice ≤
0.123) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity > −1.0517)∧
(everything mergeddilat16mm CT glszm SizeZoneNonUniformityNormalized >
−0.7827) ∧ (everything mergeddilat16mm PT firstorder Minimum ≤
−0.7768) ∧ (everything mergeddilat2mm CT glcm JointAverage ≤
0.6604) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤
−0.3239)] ∨ [(everything merged40% shape Maximum2DDiameterSlice ≤
0.123) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity > −1.0517)∧
(everything mergeddilat16mm CT glszm SizeZoneNonUniformityNormalized ≤
−0.7827) ∧ (everything mergeddilat2mm CT glcm JointAverage ≤
0.6604) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤
−0.3239)] ∨ [(everything merged40% shape Maximum2DDiameterSlice >
0.123) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity > −1.0517)∧
(everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤
−0.3239)] ∨ [(everything merged40% shape Maximum2DDiameterSlice ≤
0.123) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity > −1.0517)∧
(everything mergeddilat2mm CT glcm JointAverage >
0.6604) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤
−0.3239)] ∨ [(Chemotherapy > 0.3396)∧
(everything mergedBBox CT gldm GrayLevelNonUniformity >
−1.0517) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity > −0.3239) ∧
(everything mergedshell2mm CT gldm DependenceNonUniformity > −0.5275)] THEN 2

IF [(Chemotherapy ≤ 0.3396)∧
(everything mergedBBox CT gldm GrayLevelNonUniformity > −1.0517)∧
(everything mergeddilat8mm PT glrlm GrayLevelNonUniformity > −0.3239)] ∨ [(Age >
−0.9538) ∧ (Chemotherapy ≤
0.3285) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity ≤
−1.0517) ∧ (everything mergedshell8mm CT glcm Contrast ≤ 2.4235)] THEN 0

IF [(Chemotherapy > 0.3285)∧
(everything mergedBBox CT gldm GrayLevelNonUniformity ≤
−1.0517)] ∨ [(everything merged40% shape Maximum2DDiameterSlice ≤
0.123) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity >
−1.0517) ∧ (everything mergeddilat16mm CT glszm SizeZoneNonUniformityNormalized >
−0.7827) ∧ (everything mergeddilat16mm PT firstorder Minimum >
−0.7768) ∧ (everything mergeddilat2mm CT glcm JointAverage ≤
0.6604) ∧ (everything mergeddilat8mm PT glrlm GrayLevelNonUniformity ≤
−0.3239)] ∨ [(Age > −0.9538) ∧ (Chemotherapy ≤
0.3285) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity ≤
−1.0517) ∧ (everything mergedshell8mm CT glcm Contrast > 2.4235)] ∨ [(Age ≤
−0.9538) ∧ (Chemotherapy ≤
0.3285) ∧ (everything mergedBBox CT gldm GrayLevelNonUniformity ≤ −1.0517)] THEN 1
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Table 13 presents the best rule set extracted from DL predictor trained with
the balanced dataset.

Table 13. Rule set extracted from DL predictor using DEXiRE and the imbalanced
dataset.

Rule

IF [(Chemotherapy ≤ −1.0322)∧
(everything mergedshell2mm CT gldm SmallDependenceEmphasis ≤
0.1661)] ∨ [(Chemotherapy > −1.0322)∧
(everything merged40% CT glcm JointEnergy ≤
0.3687) ∧ (everything mergeddilat16mm shape Maximum2DDiameterSlice ≤
−0.2465) ∧ (everything mergeddilat4mm CT glszm SmallAreaEmphasis >
−0.6568)] THEN 1

IF [(Chemotherapy > −1.0322)∧
(everything merged40% CT glcm JointEnergy >
0.3687) ∧ (everything mergeddilat16mm shape Maximum2DDiameterSlice ≤
−0.2465) ∧ (everything mergeddilat4mm CT glszm SmallAreaEmphasis >
−0.6568)] ∨ [(Chemotherapy >
−1.0322)∧(everything mergeddilat16mm shape Maximum2DDiameterSlice >
−0.2465)] ∨ [(Chemotherapy >
−1.0322)∧(everything mergeddilat16mm shape Maximum2DDiameterSlice ≤
−0.2465) ∧ (everything mergeddilat4mm CT glszm SmallAreaEmphasis ≤
−0.6568)] THEN 2

IF [(Chemotherapy ≤ −1.0322)∧
(everything mergedshell2mm CT gldm SmallDependenceEmphasis >
0.1661)] THEN 0
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28. Knapič, S., Malhi, A., Saluja, R., Främling, K.: Explainable artificial intelligence
for human decision support system in the medical domain. Mach. Learn. Knowl.
Extract. 3(3), 740–770 (2021)
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3 Computer Science, Özyeğin University, Istanbul, Turkey

4 Interactive Intelligence, Delft University of Technology, Delft, Netherlands

Abstract. Recommender systems aim to support their users by reducing infor-
mation overload so that they can make better decisions. Recommender systems
must be transparent, so users can form mental models about the system’s goals,
internal state, and capabilities, that are in line with their actual design. Expla-
nations and transparent behaviour of the system should inspire trust and, ulti-
mately, lead to more persuasive recommendations. Here, explanations convey
reasons why a recommendation is given or how the system forms its recommen-
dations. This paper focuses on the question how such claims about effectiveness
of explanations can be evaluated. Accordingly, we investigate various models that
are used to assess the effects of explanations and recommendations. We discuss
objective and subjective measurement and argue that both are needed. We define
a set of metrics for measuring the effectiveness of explanations and recommen-
dations. The feasibility of using these metrics is discussed in the context of a
specific explainable recommender system in the food and health domain.

Keywords: Evaluation ·Metrics · Explainable AI · Recommender systems

1 Introduction

Artificial intelligence is becoming more and more pervasive. However, there are also
concerns about bias in the algorithm, bias in the data set, or stereotyping users, to name
a few examples [9]. In particular, if autonomous systems take decisions, how can they
justify and explain these decisions, to those who are affected? These concerns have
led to an increasing interest in responsible AI [9] and specifically in explainable AI
(XAI) [2], witness the special issue [27].

An important application of explainable AI is found in recommender systems [1,35].
A recommender system is “any system that guides a user in a personalized way to inter-
esting or useful objects in a large space of possible options or that produces such objects
as output” [5, p. 2]. Increasingly, recommender systems also provide explanations [35].
There are two types: explanations that motivate the system’s choice of recommenda-
tions, and explanations that clarify how the system works, to derive the recommenda-
tions. In this paper, we focus on the former type of explanations.
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If the purpose is to persuade users to change their behaviour, only predicting which
recommendation best fits a user profile, is not enough. Users expect reasons that moti-
vate why this recommendation was given, and not another. That is why researchers now
aim to build systems that provide an explanation, personalized to the user’s preferences
and to the context. In addition, recommender systems are becoming more interactive.
A recommendation must be followed by an opportunity for feedback [16]. This allows
users to correct misunderstandings and ask follow-up questions.

Designing interactive systems is a complex task. Unlike graphical user interfaces,
dialogue systems have no visible menu-structure to display next possible moves [32].
The expectations that users do have about artificial intelligence are often wrong [17].
So the design should guide the user on how to control the interaction. The aim is to
make the system transparent to the user. A system is called transparent when the user’s
mental model of the system’s intent (purpose), beliefs (current internal state) and capa-
bilities (way of working), corresponds to its actual purpose, state and capabilities [22].
A transparent system should inspire trust [39]. Note that transparency is part of many
frameworks for ethical AI e.g. [14] and of the AI legislation proposed by the EU [10].

Consider for example an interactive recommender system in the food and health
domain: it selects a recipe on the basis of user preferences and general knowledge
about food and health. After that, the system allows feedback and provides explana-
tions in an interactive manner [6]. Explainable recommender systems such as these,
need to be evaluated. Claims about the usefulness of the recommendations and about
the relevance and comprehension of explanations, and the overall effect on the trans-
parency of the system and ultimately on the trust that users have in the system and its
recommendations, must be measured. That suggests the following research question:

Can we define a system of metrics to evaluate explainable recommender systems,
in the food and health domain?

The research method for this paper is conceptual and is mostly based on a literature
study. Currently, there is no consensus in the literature on how to evaluate effectiveness
of explainable AI [15,36]. For instance, there is a debate whether one should use subjec-
tive measures [8,37], or objective measures. There is not even consensus on the main
concepts, such as explainability, transparency, or trust [43]. So before we can define
metrics for evaluation, we must first analyze these concepts and how they relate. So we
will discuss several conceptual models and define metrics for the main concepts.

The intended research contribution of this paper, is twofold: (i) to provide clarity
on the main concepts used in explainable recommender systems, in particular explain-
ability, transparency, and trust, and (ii) to define metrics, that can precisely and reliable
measure these concepts, so explainable recommender systems can be evaluated.

We realize that the context in which a system is used, determines the way a system
must be evaluated. In order to illustrate and guide our definitions for a specific context,
we will use an example of a specific explainable food recommender system [6].

The remainder of the paper is structured as follows. Section 2 starts with a review
of evaluation methods of interactive systems in general, and about explainable recom-
mender systems in particular. After that, we will briefly detail the case in Sect. 3. In
Sect. 4, we specify a series of conceptual models, and define the required set of metrics.
The paper ends with a list of challenges and a number of recommendations.
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Table 1. Comparing objective and subjective system evaluation

Objective measurement Subjective measurement

Purpose measure task success of interaction with
the system on the basis of observation
and log-files

measure perceived success of interaction
with the system, on the basis of user studies
and questionnaires

Way of working Annotators assess interaction behaviour
according to definitions.

Users fill in questionnaires with Likert
scales, open or closed questions or card
sorting tasks

Metrics task completion rate, comprehension,
duration, misunderstandings

perceived usefulness, perceived ease of use,
user satisfaction, trust, transparency

2 Overview

In the following sections, we review some of the literature on evaluating interactive
systems in general, and explainable recommender systems in particular. We discuss a
number of issues and dilemmas. The argument is largely based on Hoffman et al. [15],
and Vorm and Combs [39]. The Q-methodology [29] is also discussed.

2.1 Subjective or Objective Evaluation

Suppose we want to evaluate the effectiveness of a system design in context. To evaluate
effectiveness, we first need to define the objectives of the system. Given the objectives,
there are two ways in which we can collect evidence of the effectiveness of a sys-
tem: subjective, by asking end-users about their experiences in interviews or question-
naires [8,37], or objective, by having developers observing functionalities and system
behaviour directly, or from log-files [12,42]. Table 1 lists examples of both. Observe
that objective measures test specific features in development, whereas subjective mea-
sures look at the total impression of the system on the user.

In general, we believe that we need both perspectives: they have separate purposes
and strengthen each other. For example, suppose subjective evaluation reveals that most
users like the system (high user satisfaction), but some group of users do not. Analysis
of the log-files may show, that the dialogue duration for the users who did not like the
system, is longer than for those who liked it. In that case we found that satisfaction (sub-
jective) depends on duration (objective). We can even go further and analyze the longer
dialogues in detail. Perhaps, a specific type of misunderstanding causes delays. In that
case, the system can be re-designed to avoid such misunderstandings. It is also possible
that the objective and subjective measures diverge. In that case, it depends on the pur-
pose of the evaluation, which type of measure takes precedence. For testing individual
system features, objective measures remain useful, even if end-users do not perceive the
differences. But for over-all system success, it is user satisfaction that counts. For more
on this discussion in the context of evaluating explainable AI, see [15] and [36, p3].

2.2 Technology Acceptance

One of the most influential models for evaluating information systems is the Tech-
nology Acceptance Model (TAM) [8], and later adjustments [37]. Note that often, the
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terms ‘adoption’, ‘acceptance’ and ‘use’, are used interchangeably, although they are
not completely equivalent. We start from a simple model of psychology: when people
make a decision to perform some action, they first form an attitude towards that action.
If that attitude is positive, or more positive than for alternative actions, they will form
the intention to pursue the action. That intention will then produce that action.

Which attitudes affect the intention to use a system? The original idea is very simple,
which also explains its attractiveness (Fig. 1(a)). In deciding to use or adopt a system,
people make a trade-off between expected benefits and expected costs or efforts in using
it. If the system is helpful in performing the task (useful), the user is more likely to con-
sider using it. However, using the system will also take some effort. One has to learn to
use the system and there may be misunderstandings and delays (ease of use). However,
when considering to use a system, the user does not yet know the system. That means,
that the intention to adopt a system is usually based on a system description. Therefore,
the model uses ‘perceived ease of use’ and ‘perceived usefulness’ as the main vari-
ables, and not the actual usefulness, or actual ease of use. Subjective judgements like
‘perceived usefulness’ can be measured using Likert-scales. Well-tested and practical
questionnaires exist, and results can be statistically analyzed, for example using regres-
sion models. There are no time-series, for example, or feedback loops. This simplicity
partly explains the popularity of TAM models.

Fig. 1. (a) Technology Acceptance Model [8] and (b) ISTAM Model [39]

The Technology Acceptance Model also has clear disadvantages. The model only
looks at the individual user, not at the corporate or social environment in which the
system will be used. The model is about the decision to use a system, beforehand. It
does not evaluate actual usage, afterwards. Moreover, the model suggests that inten-
tions always lead to successful action; it doesn’t look at feasibility. In the TAM model,
technology is seen as a black-box. There is no evaluation of the effect of design choices
and specific functionalities. Furthermore, the model is psychologically too simple. For
example, it does not cover learning effects, habits, or previous experience.

Some of these disadvantages have been addressed in later adjustments and improve-
ments to the model. In particular, the unified model of Venkatesh et al. [37] adds vari-
ables for social influence, and facilitating conditions. In addition, control variables for
gender, age, experience and voluntariness of use, are taken into account.

It is relatively easy to add additional variables to TAM models. For example, trust
has been added in the context of e-commerce systems [30]. System Usability Scale
(SUS) [20] is a well-known alternative for TAM-models. It measures usability, which
combines both ease of use, and usefulness in a single scale of 10 questions.
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Fig. 2. Trust and Feedback [25]

In the same research tradition, Vorm and Combs [39] extend the TAM model, but
now for evaluating intelligent systems (Fig. 1b). The notion of transparency is added
as the key intermediate variable, that influences the behavioural intention. Vorm and
Combs discuss various conceptions of transparency. Based on earlier work [4], they
make a distinction between transparency for monitoring (i.e., what is happening?),
transparency for process visibility (i.e., how does it work?), transparency for surveil-
lance (i.e., interactivity and user control) and transparency for disclosure (i.e., opening
up secrets regarding purpose). The relation to trust is also discussed. Vorm and Combs
[39] state that the role of trust in the model more or less overlaps with transparency:
“Transparency factors play moderating and supporting roles that combine to influence
trust, and ultimately acceptance” (page 14). The resulting model is what they call the
Intelligent Systems Technology Model (ISTAM), see Fig. 1(b).

What we gather from these discussions [22,23], is that transparency involves at least
three aspects: (i) the purpose or goal of the system and the specific interaction, (ii) the
current internal state of the system, and state of the interaction, and (iii) how the system
works, and ways for the user to control the interaction.

2.3 Trust

Trust has been discussed in many disciplines and fields. Here, we will follow the tradi-
tion in economics, that relates trust to the willingness to take risk in collaborating with
another person, but without additional guarantees or controls over that other person’s
behaviour. The propensity to take risks, is part of the character of the trustor. We can
also look at trustworthiness, the properties that are needed for the trustee to be trusted.
Mayer et al. [25] define three properties of trustworthiness: (i) ability (or competence):
can the trustee perform the task, (ii) benevolence: does the trustee want to do good to
the trustor, and (iii) integrity: does the trustee follows a set of personal principles?

Trust is a relationship, so it depends both on aspects of the trustor and the trustee. In
general, the likelihood that a trustor will trust a trustee will depend on (i) the trustor’s
propensity to trust, and (ii) the trustee’s perceived trustworthiness (ability, benevolence
and integrity). This is a nice definition, but it doesn’t tell us how trust is won or lost.
Which signals inspire trust in a person? What is the effect of repeated interactions?
Mayer et al. [25] show an interactive model, that allows feedback (Fig. 2). The outcome
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of a (repeated) event, will influence the future trustor’s assessment of the trustee’ trust-
worthiness. In general, when the outcome is positive, this will increase trust; when the
outcome is negative, this will reduce trust, for the next time around.

Lewicki and Bunker [18] study trust in work relationships. Based on older mod-
els of trust in personal relationships, they conclude that trust develops in three stages:
calculus-based trust, knowledge-based trust, and identification-based trust (Table 2).

Now we need to map these models of inter-personal trust, to trust in machines.
The regularity that underlies calculus-based trust is also the main source for trust in a
machine [38]. For example, I trust a coffee machine to give me coffee, based on previous
experiences, or on testimonies from other people. Such trust based on testimonies of a
group of people is often called reputation [11]. It is also possible to use knowledge in
trusting a machine. For example, I have a naive mental model: the weight of the coin
will tip a leaver, that triggers release of a paper cup, coffee powder and hot water. True or
not, that mental model allows me to operate the machine. I also have knowledge about
the purpose. I trust the machine will give me coffee, because I know that is the vendor’s
business model. Moreover, I trust that some regulator has put safety regulations into
place. We do not believe it is possible to use identification-based trust in the case of
machines, at least not with current state of the art in artificial intelligence.

This example shows that theories about trust, especially calculus-based trust (regu-
larities) and knowledge-based trust (mental model), are similar to theories about trans-
parency [22]. Previous experience, as well as knowledge about the design, about the
internal state, and about the purpose of the machine will induce trust in the machine.

That ends our discussion of trust. We may conclude that trust is an important factor
that influences the intention to use a system or continue to use a system. We distinguish
trust in the machine, mediated by knowledge of the design, the internal state, and the
purpose of the machine, and institutional trust in the organizations that developed the
machine, and that now operate the machine. We can also conclude that there are many
parallels between trust and transparency, and that trust in a machine, depends on trans-
parency of the system design. However, unlike Vorm and Combs [39], we do not believe
we can reduce trust to transparency. Transparency is a system property, a requirement,
that can be designed and tested for, whereas trust is a user attitude, but also an objec-
tive to achieve by designing the system in a certain way. That means, that to evaluate
effectiveness of the design, these variables should be measured independently.

Table 2. Trust develops in stages [18]

Calculus-based trust Knowledge-based trust Identification-based trust

based on consistency of behaviour;
repeated observations

knowledge of beliefs and
goals that underlie
behaviour

identification with values
and background

example coffee-machine chess opponent former classmate

usage allow users to inspect what
happened (trace)

help users build a mental
model; explain

build a relationship
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2.4 On Evaluation

We discussed models of trust and transparency, and ideas about evaluation. How can all
of this be put together? In this section we discuss the model of Hoffman et al. [15], that
was influential in the discussion on evaluation of explainable AI systems (Fig. 3).

In yellow, the model shows a flow. The user receives an initial instruction. This
affects the user’s initial mental model. The instruction is followed by an explanation,
which revises the user’s mental model, and subsequently enables better performance.
Can we adjust the model Hoffman et al. [15] for recommendation? Yes. As we have
seen, explainable recommendation dialogues proceed in three stages: (i) collection of
user preferences, (ii) recommendation, and (iii) feedback and explanation. Therefore
we have added a step, shown in dark yellow, for recommendation. That means that
implicitly, the evaluation of the first step, elicitation of user preferences, is part of the
evaluation of the second step, recommendation.

In green, the model shows how to measure these variables. In particular, effective-
ness of the explanation is tested by goodness criteria, which can be assessed by devel-
opers, on the basis of log-files, and a test of satisfaction, a subjective measure, asking
end-users whether they are satisfied with the explanation. The effect of an explanation
on a user’s mental model is tested by a test of comprehension, similar to an exam ques-
tion: is the user’s mental model in line with reality? Finally, the effect on performance
can be a tested by a test of performance, related to the task. A recommendation is also
evaluated by a goodness criteria, and by user satisfaction, shown here in dark green.

In grey, the model shows the expected effect of explanations on trust. Initially, the
user may have inappropriate trust or mistrust, based on previous conceptions. After
recommendation and explanation, the user’s mental model changes, and leads to more
appropriate trust, which enables more appropriate use of the system.

Goodness criteria measure the success conditions, in this case of an explanation.
For example: the given explanation must match the type of explanation that was asked
for. If the user wants to know how the system works, it should not the purpose. These
criteria can be assessed relatively objectively by comparing specified functionality with
the behaviour shown on the log-files. At least two coders should verify inter-coder

Fig. 3. Evaluating explainable AI in various stages, adjusted from [15]. Components in dark yel-
low and dark green are added here for explainable recommendation (Color figure online)
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Table 3. Goodness criteria for evaluating an explanation [15]

The explanation helps me understand how the [software, algorithm, tool] works Y/N

The explanation of how the [software, algorithm, tool] works is satisfying Y/N

The explanation of the [software, algorithm, tool] sufficiently detailed Y/N

The explanation of how the [software, algorithm, tool] works is sufficiently complete Y/N

The explanation is actionable, that is, it helps me know how to use the [software, algorithm, tool] Y/N

The explanation lets me know how accurate or reliable the [software, algorithm] is Y/N

The explanation lets me know how trustworthy the [software, algorithm, tool] is Y/N

agreement on the scores [42]. Hoffman et al. provide a list of goodness criteria for
explanations (Table 3). This is meant as an objective measure. However, we can see the
list is written from the perspective of an end-user, so it looks like a subjective measure.
What to do? First, these criteria can be re-used in user satisfaction test. Second, we can
in fact define objective criteria. We will show that in Sect. 4.

A test of satisfaction for an explanation aims to test “the degree to which users
feel that they understand the AI system or process being explained to them.” Accord-
ing to Hoffman et al., user satisfaction is measured by a series of Likert scales for key
attributes of explanations: understandability, feeling of satisfaction, sufficiency of detail,
completeness, usefulness, accuracy, and trustworthiness. As discussed above, satisfac-
tion seems to overlap with the goodness criteria. Hoffman et al. explain the difference
as follows. Relative to goodness, satisfaction is contextualized. It is measured after the
interaction, all factors included. The measurements are meant for a different audience.
The goodness test is meant for developers and the satisfaction test is for end-users.

A test of comprehension aims to test the effectiveness of the explanation on the
mental model. Similar to an exam question: is the user able to remember and reproduce
elements of the explanation? For example, users can be asked to reproduce how a par-
ticular part of the system works, reflect on the task, or be asked to make predictions,
for which knowledge of the system is needed. There are many ways in which mental
models can be elicited [15, Table 4]. Consider methods like think aloud protocols, task
reflection (how did it go, what went wrong?), card sorting tasks (which questions are
most relevant at this stage?), selection tasks (identifying the best representation of the
mental model), glitch detector tasks (identifying what is wrong with an explanation),
prediction tasks, diagramming tasks (drawing a diagram of processes, events and con-
cepts), and a shadow box task (users compare their understanding to that of a domain
expert). Various methods have to be combined, to make tests more reliable.

Finally, a test of performance aims to objectively test over-all effectiveness of a
system. One could take the success rate: count the number of successfully completed
dialogues, relative to the total number of dialogues. For goal-directed dialogue, progress
towards the goal can be measured objectively. Consider for example a system applied
in retail [33]. Here, the conversion rate is a measure of success: how many potential
customers end up buying a product. We can also try to evaluate communicative success.
The effectiveness of an explanation is inversely proportional to the number of misun-
derstandings. Thus, one could identify indicators of misunderstanding (e.g. overly long
duration, signs of frustration, aborted dialogues), and count the relative number of such
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Table 4. Trigger questions [15]

Triggers User/Learner’s Goal

1. How do I use it? Achieve the primary ask goals

2. How does it work? Feeling of satisfaction at having achieved an understanding of the system,
in general (global understanding)

3. What did it just do? Feeling of satisfaction at having achieved an understanding of the system,
in general (local understanding)

4. What does it achieve? Understanding of the system’s functions and uses

5. What will it do next? Feeling of trust based on the observability and predictability of the system

6. How much effort will this take? Feeling of effectiveness and achievement of primary task

7. What do I do if it gets it wrong? Desire to avoid mistakes

8. How do I avoid the failure modes? Desire to mitigate errors

9. What would it have done if x were different? Resolution of curiosity at having achieved an understanding of the system

10. Why didn’t it do z? Resolution of curiosity at having achieved an understanding of the local
decision

misunderstandings. The over-all purpose of a recommendation system is to convince
the user, and perhaps even to induce them to change behaviour. Objectively establishing
such a change of behaviour is the ultimate test of success. That concludes our discussion
of Hoffman et al. [15]. It serves as a good basis for designing evaluation experiments.

In a more recent paper, Van der Waa et al [36] discuss how to evaluate explainable
AI. They conduct experiments, comparing two types of explanations: rule-based and
example-based. These explanations are compared on user satisfaction and general sys-
tem performance. They also discuss the advantages of combining subjective measures
with more detailed behavioural analysis, on the basis of observable behaviour.

Another technique for subjective measurement is the Q-methodology, from
HCI [29]. Using the trigger-questions in Table 4 from [15], Vorm and Miller [40] sug-
gest to evaluate explainable systems by having the user select the question, which they
would like to ask at that point in the interaction. Users are asked to sort 36 cards with
questions. Vorm and Miller carefully developed the question bank. For example: “How
current is the data used in making this recommendation?” or “Precisely what informa-
tion about me does the system know?”. Factor analysis determines specific groups of
users with similar preferences. In this way, four groups of users are found [40]: 1: Inter-
ested and Independent, 2: Cautious and Reluctant, 3: Socially Influenced, and 4: Ego-
centric. This shows that different types of users have various needs for explanations. A
system should be flexible enough to handle these needs.

3 Application

In this section, we discuss a specific system, that is currently being developed [6]. The
system is an explainable recommendation system, for the food and health domain [35].
The system is interactive and provides personalized recommendations and explanations.
The system is developed in two versions: a web-based platform allowing the users to
experience both the explanation-based interactive recommender and its replica without
the explanations and critiques component (i.e., a regular recommender). This allows us
to assess the effectiveness of explanation and of interaction.
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A user interaction involves three stages, with the following success conditions.

– Stage 1. User preference elicitation. Ask user about preferences. Afterwards, the
system must know enough user preferences to select a recipe; preferences are con-
sistent and are correctly understood.

– stage 2. Recommendation of a recipe. The recipe must fit the user preferences, and
follow from knowledge about food, recipes, and healthy lifestyles.

– Stage 3. Explanation and interaction. The explanation must fit the user’s request.
The explanation must be personalized to the user’s preferences and be relevant in
context, and the subsequent interaction must be coherent.

If we classify the system, we can say that the application domain is food and health.
The task is recommendation, but it also involves elements of persuasion, as we intend
users to follow a healthy lifestyle. In some cases, that means convincing the user and
making them change behaviour. In other words, the system is intended as a nutrition
virtual coach (NVC) [35]. In order to persuade the user, trust and transparency are
crucial.

Persuasion is often about breaking a habit. What seems to work, based on conver-
sations with nutritionists, is to set personal goals, and help users attain those goals, by
measuring the current state, the distance to the goal, and suggesting ways of getting
closer. Measuring weight can be used to quantify progress towards the goal, and calo-
ries are used to quantify the required energy intake of a meal. Long-term relationship
building, as required for a nutrition virtual coach, is out of scope for this research proto-
type, but it does play a role in the over-all design of the system, and in future research.

In this domain, generally we find that explanations are of two types: preference
related explanations, which are based on the user preferences which were inferred or
stated just before, or health related explanations, which are based on general knowledge
about food an health [6]. Here we show an example of each.

– Health-related: Protein amount covers user needs for a meal.
“This recipe containsX grams of protein, which is about Y % of your daily require-
ment. Your body needs proteins. Consuming the necessary amount is important!”

– Preference-related: User’s chosen cuisine matches the recipe.
”This recipe is a typical part of the cuisine you like: Z.”

4 Towards Metrics

In this section, we specify the metrics to evaluate claims about effectiveness of an
explainable recommender system, in the context of the food and health domain, as
detailed in Sect. 3. Consider the research model in Fig. 4.

On the right, interpret effectiveness as the direct effect of an interaction on the user,
in terms of user satisfaction (performance), transparency and trust. That aspect refers
to the recommendation part of the task, and also the explanation. In addition, repeated
interactions should have an indirect effect on the user, in terms of a change of behaviour,
for instance a healthier choice of food. That aspect refers to the persuasion task.

On the left, the system design is detailed. We see a system as a white-box, with
separate functionalities. Each of the modules may have an effect on the user interaction.
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These modules are: the algorithm for generating a recommendation, the knowledge base
about health and food, the goals and plans of the system during interaction, the user
interface, the user model that represents user preferences, and the data set with all the
recipes that can be recommended. Each of these modules must be evaluated separately
and as part of the system (unit test; integration test).

In the middle, we discuss two moderator variables, that may strengthen or weaken
the effect of the system design on the success variables. First, explanation, whether
the system is able to provide explanations about its recommendations. Second, interac-
tion, whether the systems allows feedback and interaction about recommendations and
explanations that fit the context. These are the interventions that we want to study.

This model can test the over-all effect of recommendations, and the specific effect of
explanations and interactive dialogues on user satisfaction, transparency and trust, and
ultimately, on behavioural change. However, the model also has some disadvantages.
The model disregards several variables that are familiar from TAM, in particular per-
ceived usefulness and perceived ease of use and the intention to use a system. Model (1)
focuses not so much on the decision to start using a system (as in TAM), but rather on
evaluating actual use of a system. In addition, the ‘effectiveness’ variables (user satis-
faction, transparency, trust) need to be worked out in more detail.

Therefore, we developed the model in Fig. 5. On the left, we see the various mod-
ules that make up the recommender system design. If these modules function effec-
tively, they have a positive influence on transparency. In addition, the system design has
a direct effect on the use of the system (long red arrow). Transparency in turn has an
effect on the perceived usefulness and perceived ease of use, which in turn affect the
intention to use, and usage itself, as in the ISTAM model [39]. It is also possible that
the system design has a direct effect on perceived usefulness and perceived ease of use.
Transparency is expected to have an effect on trust. After all, the perceived competence,
benevolence and integrity of the system and organization that deploys the system, are
mediated by the interface. Trust, in turn, has an effect on the intention to use, and ulti-
mately, on the suggested behaviour change. Finally, we also consider a feedback loop,
back from usage to trust. However, such feedback loops are difficult to test for.

Like in Model (1) we test for two moderator variables: explanation and interaction.
These features are expected to affect transparency, and indirectly affect perceived ease
of use and perceived usefulness, as well as trust. Moreover, they are expected to have a
direct effect on use (success rate and failure rate).

Fig. 4. Towards a Model for Evaluation (1)
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Fig. 5. Towards a Model for Evaluation (2)

Accordingly, we propose a table of metrics for each these variables (Table 5). Sym-
bol ‘–’ means that the variable is inversely related to success. ‘Goodness criteria’ refers
to the tables with specific goodness criteria per functionality, as discussed in Sect. 4.1.
TAM instruments refers to established questionnaires.

Table 5.Metrics to measure variables in Model for Evaluation (2)

Variable Measures

system design goodness criteria, comprehension

ease of use: – duration, – number of misunderstandings, – time to learn

usefulness: success rate, – failure rate

transparency Q-methodology

comprehension

goodness criteria: shows purpose, internal state, and how it works

trust self-report, willingness to recommend

perceived ease of use TAM instruments

perceived usefulness TAM instruments

intention to use TAM instruments

use counting, TAM instruments

behavioural change self-report

4.1 Goodness Criteria for Recommendation and Explanation

An important part of the evaluation methods depend on requirements or goodness cri-
teria for the various components and functionalities. The most important functionalities
are the ability to provide a recommendation, and the ability to provide an explanation, in
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an interactive manner. Under what conditions can we say that a system has successfully
achieved these objectives?

Table 6. Gricean maxims for cooperative communication [13, p 46]

Quantity 1. Make your contribution as informative as is required (for current purposes)

2. Do not make your contribution more informative than is required

Quality Try to make your contribution one that is true

1. Do not say what you believe to be false

2. Do not say that for which you lack adequate evidence

Relation Be relevant

Manner Be perspicuous

1. Avoid obscurity of expression

2. Avoid ambiguity

3. Be brief (avoid unnecessary prolixity)

4. Be orderly

The following example shows the type of functionality that we develop. How suit-
able is the explanation in this dialogue?

U. I’d like some toasted white bread for breakfast.
S. You should eat whole meal bread.
U. Why?
S. Because you said you wanted to lose weight, and eating whole meal

bread instead of white bread is a good way to reduce the number of
quick calories per meal, and it is well known that reducing the number
of quick calories per meal will help you lose weight.

We start by clarifying the relation between explanations and transparency. Trans-
parency is a property of a system. The system must reveal its purpose, inner state, and
how it works [22]. Transparency is not a property of an explanation, except in the sense
of ‘clarity’ or ‘being based on evidence’. Instead, part of the purpose of having expla-
nations, is for the system to be more transparent. There are other methods to make a
system more transparent too, such as a user manual, a suitable persona, etc.

4.2 Good Explanation

What makes a good explanation? An explanation is a form of assertion. That means,
that we can follow Grice’s maxims for cooperative communication [13, p. 46]: quantity,
quality, relation and manner (see Table 6). The point about manner, specifically to be
brief, is also made by Mualla et al [28], who advocate parsimonious explanations.

There is a lot of research on what makes a good explanation, in various fields.
Properties of everyday explanations are summarized in a survey paper by Miller [26]:
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1. Explanations are contrastive: distinguish an outcome from counterfactual outcomes.
2. Explanations are selected from a range of possible reasons.
3. Explanations are not necessarily based on probabilities, but rather on narratives.
4. Explanations are social, and are usually part of interactions.

These four characteristics can be summarized by stating that explanations are inher-
ently contextual. We will discuss them one by one. Ad 1. An explanation must not only
be generic (e.g. based on laws of nature), but also involve specific facts of the case of the
user, that show why other alternative advice is not given [41]. Ad 2. What are reasons?
For natural events, they are causal histories built from facts and natural laws [19]. For
human behaviour, they are goals which can be inferred by abduction, because they most
likely motivate those actions in that context [24]. In our case, the reasons are ingredients
which match user preferences. Other reasons are natural laws of nutrition (vegetables
have low calories; pasta has high calories), and motivational goals of the user, to main-
tain a certain weight, for example. Ad 3. Miller [26] criticizes some technical research
on intelligible algorithms, which focuses scientific explanations. A doctor would justify
a treatment to a colleague using probabilities, but for lay people, stories often work bet-
ter. Ad 4. Interactive dialogues with explanations are preferred, because they give the
user more control. In case of a problem, the user can just ask.

Generally, there are several levels or successive rounds of explanation.

– Level 1. Why this recommendation? Because of facts (user preferences, ingredients,
recipes) and a rule (knowledge about food and health)

– Level 2. Why that rule? Because the rule is true and relevant relative to a goal. Why
those facts? Because the procedure for selecting these facts is valid.

– Level 3. Why that goal? Because the goal (promote healthy choices) helps to pro-
mote social values (health), which represent who we are (virtual nutritionist).

This example of explanation levels is based on value-based argumentation [3], which
also has three levels: (1) actions, facts and rules, (2) goals, and (3) social values.

The properties of explanations discussed so far, are relatively abstract. How can they
be built into algorithms? Rosenfeld [31] presents four metrics for evaluating explain-
able artificial intelligent systems: D, R, F , and S. Here D stands for the performance
difference between the black-box model and a transparent model, R considers the size
of the explanation (i.e., number of rules involved in given explanations), F takes the
relative complexity into consideration, by counting the number of features to construct
an explanation, and D measures the stability of the explanations (i.e., ability to han-
dle noise perturbations) [31]. In the context of explaining recommendations, we can
measure the following aspects:

– Improvement Effect: Test the system with and without explanations and observe the
effect of explanations on system performance. We can list a number of performance
metrics such as acceptance rate, average acceptance duration, and average number
of interactions spent for acceptance of the recommendation.

– Simplicity of Explanations: This can be measured with the length of the explanations
and to what extent that can be grasped by the user (comprehension).
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– Cognitive Effort Required: An explanation may focus on a single decision crite-
rion (e.g., only nutrition levels) to reduce the user’s cognitive effort. Some explana-
tions may point out several criteria (e.g., nutrition levels, user’s goals such as losing
weights, and their preferences on ingredients) at one time, which may increase the
cognitive load. We can count the number of criteria captured in a given explanation.

– Accuracy of Explanations: The system generates recommendations based on its
objectives and its beliefs about the user’s goal and preferences. What if it is wrong?
Then, the system may generate explanations which conflict with actual preferences.
In such case, users give feedback on the explanations by pointing out their mistakes.
We can analyze the given feedback to determine the accuracy of the explanations.

Table 7. Goodness criteria for recommendation, adjusted from criteria in Table 3 [15].

The recommendation helps me to decide [what action to do/which recipe to cook] Y/N

The recommendation [what action to do/which recipe to cook] is satisfying Y/N

The recommendation [what action to do/which recipe to cook] is sufficiently detailed Y/N

The recommendation [what action to do/which recipe to cook] is sufficiently complete Y/N

The recommendation is actionable, that is, it helps me to carry out my decision Y/N

The recommendation lets me know how accurate or reliable the [action/recipe] is Y/N

The recommendation lets me know how trustworthy the [action/recipe] is Y/N

4.3 Good Recommendation

In recommendation systems, performance metrics are often borrowed from information
retrieval: precision (fraction of given recommendations that are relevant) and recall
(fraction of potentially relevant recommendations that are given). One can balance pre-
cision and recall, by means of the F-measure. Alternatively, people use the area under
the Receiver Operator Characteristic (ROC) curve, to measure how well the algorithm
scores on this trade-off between precsion and recall, see [34].

What makes a good recommendation? We can see a recommendation as a response
to a request for advice. The same Gricean maxims apply (Table 6). In the context of our
application that suggest the following requirements.

– Quality: the recipe must be an existing recipe, and fit the agreed dietary goals.
– Quantity: the recipe must be detailed enough to be able to make it. All ingredients
and quantities must be listed and clear.

– Relation: the recipe must respond to the request of the user and fit the context.
Specifically, the recipe must match the user preferences, if such recipes exist. If
no such recipes exist, a clear no-message must be given.

– Manner: the recipe is presented clearly and with diagrams or photographs to illus-
trate. The recipe must not be too long or detailed [28].

The goodness criteria for recommendations are similar to those for explanations in
Table 3. For comparison, we have adjusted them to fit recommendations ( Table 7).
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5 Discussion

Building explainable recommender systems in the food and health domain, has ethical
consequences. This is why we care about explainability, transparency and trust. In a
previous paper, we have given a survey of ethical considerations for nutritional virtual
coaches [7]. Here, we will discuss a few examples.

First, the factual information about food and ingredients must be true, informative,
and relevant (Gricean Maxims). The data set and knowledge bases used must be fair
and present a representative coverage of foods and tastes. This is not trivial, as food
is related to culture and identity. The system will collect personal data from the user,
namely food preferences and health related data. These data are sensitive, and must be
adequately protected. We observe a trade-off between privacy and relevance. If more
detailed personal data is collected, a better recommendation can be made. A metric to
test this balance, is to check how many requested data items, are actually used.

Second, the system makes recommendations and provides explanations. A related
ethical issue is control: in case of a conflict between user preferences and healthy
choices, who determines the final recommendation? Suppose the user asks for a ham-
burger? Suggesting a more healthy alternative may be seen as patronizing. Here, we
believe the solution is to be transparent: whenever a requested unhealthy choice is not
recommended, this must always be explained. The explanation is contrastive. More-
over, the recommendation must be in line with the stated purpose and ‘persona’ of the
system: chef (good food) or nutritionist (advice).

Another ethical issue is sincerity. A recommendation or explanation must be trusted
not to have a hidden purpose, like commercial gain [21]. If a system provides a
clear explanation, a user can verify that reason. Moreover, if the explanation is con-
trastive [26], indicating why some recipes are not shown, and interactive, allowing users
to vary the request to see how that affects the recommendation, this will make the rea-
soning mechanism transparent, and make it easier to detect a hidden purpose [41].

Third, the systems aims to persuade the user, for instance to make healthier choices
for food. To do so, the system makes use of argumentation techniques. An ethical issue
is how much persuasion we accept from a machine. Again, this depends on the stated
purpose and persona of the system (e.g. chef or nutritionist). Who is ultimately respon-
sible? Here, the answer is to develop the system as a tool to support a nutritionist
in coaching a large group of clients. After deployment a qualified nutritionist should
remain as human-in-the-loop, with meaningful control over the persuasion process.

To summarize, an explainable recommender system offers many opportunities for
manipulation [21]. Manipulation is harder to achieve, if the system is transparent: the
user can verify and compare the stated purpose with actual behavior.

6 Conclusions

In this paper, we have discussed models and metrics for evaluation interactive explain-
able recommender systems. We pointed out the debate between subjective measure-
ment (perceived ease of use, perceived usefulness, user satisfaction) and objective mea-
sures (goodness criteria, task success, misunderstandings). We argue that subjective and
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objective evaluation strengthen each other. For example, consider the following design
principle: users who experience a misunderstanding are less likely to be satisfied. Mis-
understandings might be clear from the log-files. Satisfaction depends on users. So, in
order to test this design principle, one needs to compare both objective and subjective
evaluation metrics.

The model of [15] forms a good basis to develop evaluation metrics for explainable
recommender systems, except that the notion of ‘goodness criteria’ needs to be worked
out, and must be more clearly separated from user satisfaction. For acceptance testing
and user evaluations, the famous TAM model is relevant [8,37]. Trust can be added.
Following Vorm and Combs [39] we believe that transparency is crucial, and that trust
is largely influenced by transparency. However, unlike [39] we believe trust is a separate
notion, that can be measured, by subjective measures.

So, our evaluation model is based on three components: (i) the ISTAM model [39],
which combines TAM and Transparency, (ii) trust [25] and specifically trust in
machines [38], and (iii) various objective measures, such as goodness criteria and fit to
the context, success rate, number of misunderstandings, and over-all performance [15].

Especially for applications in the food and health domain, building an explainable
recommender system has important ethical considerations [7]. An important part of the
solution is to provide explanations and be transparent about the system’s purpose and
way of working. This should allow the user to verify the behaviour of the system and
decide if this forms a basis to trust the system and the recommendations it makes.
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Explanation-based negotiation protocol for nutrition virtual coaching. In: PRIMA 2022.
LNCS, vol. 13753, pp. 20–36. Springer (2022). https://doi.org/10.1007/978-3-031-21203-
1 2

https://doi.org/10.1007/978-3-031-21203-1_2
https://doi.org/10.1007/978-3-031-21203-1_2


Metrics for Evaluating Explainable Recommender Systems 229

7. Calvaresi, D.: Ethical and legal considerations for nutrition virtual coaches. In: AI and Ethics,
pp. 1–28 (2022)

8. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Q. 13(3), 319–340 (1989)

9. V. Dignum. Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible
Way. Springer (2019). https://doi.org/10.1007/978-3-030-30371-6

10. European Commission. Proposal for a Regulation of the European Parliament and of the
Council laying down harmonised rules on Artificial Intelligence (Artificial Intelligence Act)
and amending certain union legislative acts (2021)

11. Falcone, R., Castelfranchi, C.: Trust and relational capital. Comput. Math. Organ. Theory
17(2), 179–195 (2011)

12. Goodhue, D.L.: Understanding user evaluations of information systems. Manage. Sci.
41(12), 1827–1844 (1995)

13. Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and Semantics,
vol. 3, pp. 41–58. Academic Press, New York (1975)

14. HLEG. Ethics guidelines for trustworthy AI (2019)
15. Hoffman, R.R., Mueller, S.T., Klein, G., Litman, O.: Metrics for explainable ai: challenges

and prospects. arXiv:1812.04608 [cs.AI] (2018)
16. Jannach, D., Pearl, P., Ricci, F., Zanker, M.: Recommender systems: past, present, future. AI

Mag. 42, 3–6 (2021)
17. Kriz, S., Ferro, T.D., Damera, P., Porter, J.R.: Fictional Robots as a Data Source in HRI

Research, pp. 458–463. IEEE (2010)
18. Lewicki, R.J., Bunker, B.B.: Developing and maintaining trust in work relationships. In:

Trust in Organizations, pp. 114–139. Sage Publications (1996)
19. Lewis, D.: Causal explanation, pp. 214–240. Oxford University Press, Oxford (1986)
20. Lewis, J.R., Sauro, J.: Item benchmarks for the system usability scale. J. Usability Stud.

13(3), 158–167 (2018)
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Abstract. Open environments require dynamic execution of plans
where agents must engage in settings that include, for example, re-
planning, plan reusing, plan repair, etc. Hence, real-life Plan Recog-
nition (PR) approaches are required to deal with different classes of
observations (e.g., exogenous actions, switching between activities, and
missing observations). Many approaches to PR consider these classes
of observations, but none have dealt with them as deliberated events.
Actually, using existing PR methods to explain such classes of obser-
vations may generate only so-called imperfect explanations (plans that
partially explain a sequence of observations). Our overall approach is to
leverage (in the sense of plan editing) imperfect explanations by exploit-
ing new classes of observations. We use the notation of capabilities in
the well-known Belief-Desire-Intention (BDI) agents programming as an
ideal platform to discuss our work. To validate our approach, we show
the implementation of our approach using practical examples from the
Monroe Plan Corpus.

Keywords: Plan recognition · Plan updating · BDI agents

1 Introduction

It is generally accepted that an agent system with practical extensions can carry
out tasks that would not otherwise be achievable by its basic reactive system.
Often when the environment is highly dynamic and/or the task is complicated for
the basic reactive behaviour of the agent system, developers resort to extending
or adding new modules to the agent system. A typical example of extending agent
models can be found far and wide in the state-of-the-art Belief-Desire-Intention
(BDI) paradigm [1], including, but not limited to, extending the architecture
with self-awareness [2], automated planning [3], and reconfigurability [4].

Much of the work done on PR involves abductive reasoning (e.g., [5,6], and [7]),
which seeks to abductively infer plans by mapping the observed actions to plan
libraries. A major drawback to Abductive Plan Recognition (APR) is that target
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plans are usually not from the plan library. This can be due to several reasons,
some of which are related to extending the observed agent system with differ-
ent modules, such as the works presented in [2–4]. Actually, appealing to APR
approaches to explain such observed actions would only generate imperfect expla-
nations. An imperfect explanation is one that partially explains a sequence of
actions. Another notion of PR is discovering plans by executing action models (in
the sense of classical automated planning) to best explain the observed actions.
Nevertheless, this can take a great deal of time in complex problems. Our app-
roach is a third way which does not align itself with either notion. Still, it can
potentially improve the explanatory power of plan libraries without the need for
action model execution.

In this paper, we address the problem of leveraging imperfect explanations,
the process of modifying existing hypotheses to explain an observed sequence of
actions. We expect leveraging imperfect explanations to help answer the following
questions:

– What was the agent’s original plan based on its new (or unusual) observed
actions?

– Were the observed changes in a plan execution intentional?

Answering these questions can be useful in understanding the capabilities of
the observed agent. Consider, for example, a system composed of heterogeneous
autonomous agents, some of which are equipped with a form of societal control
(e.g., such as the one described in [8]). In such systems, leveraging imperfect
explanations could be used to gain insight into the actual norm-modification
operators of the observed agents compared to non-normative agents.

We show that when the observed agent operates in a domain model known to
the observer, imperfect explanations can be a valuable guide to explain unknown
plans that involve new classes of observations. Hence, our approach can be seen as
a post-processing stage for various single-agent plan library-based PR techniques.
To avoid arbitrary modification of hypotheses, we also introduce a classification
model that can determine the settings (e.g., noisy or explanatory) in which
an unknown plan has been observed. We demonstrate the performance of the
proposed approach using the Monroe Plan Corpus.

The remainder of this work is organized as follows. Related work is discussed
in Sect. 2. In Sect. 3, we introduce some preliminaries on the notion of capabilities
and BDI agents programming, which are the two main ingredients of our work.
Section 4 presents our running example with pointers to different scenarios. We
formalize the problem of this work in Sect. 5. Section 6 describes our approach
to leveraging imperfect explanations for PR problems. Empirical evaluation is
described in Sect. 7 before we conclude and outline future work in Sect. 8.

2 Related Work

Real-life PR systems are required to deal with domains in which new classes
of observations are frequently observed. Roughly speaking, there are three
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noticeable domains regarding new classes of observations in PR problems: (1)
Exploratory domains - the observed behaviour is a subject of exploratory and
discovery learning (e.g., mistakes, exogenous and repeating activities), (2) Noisy
domains - the observed behaviour is characterized by imperfect observability
(e.g., extraneous, mislabeled and missing activities), and (3) Open domains -
the observed behaviour is characterized by new, deliberated classes of obser-
vations (e.g., reconfigured plans). We concentrate our review on how existing
PR approaches viewed/handled new classes of observations. We then use these
classes in later sections where we describe our approach to leveraging imperfect
explanations.

We first describe works that assume exploratory domains. With the intention
of inferring students’ plans, Mirsky et al. [7] proposed a heuristic plan recognition
algorithm (called CRADLE) that incrementally prunes the set of possible expla-
nations by reasoning about new observations and by updating plan arguments, in
which explanations stay consistent with new observations. Uzan et al. [9] intro-
duced an off-line PR algorithm (called PRISM) to recognize students’ plans by
traversing the plan tree in a way that is consistent with the temporal order of
students’ activities. Amir et al. [10] proposed an algorithm (called BUILDPLAN)
based on recursive grammar to heuristically generate students’ problem-solving
strategies.

Many prior approaches to PR focused on dealing with noisy domains. Mas-
sardi et al. [11] classified noise in PR problems into three types: missing obser-
vations, mislabeled observations and extraneous actions and proposed a particle
filter algorithm to provide robust-to-noise solutions to PR problems. Sohrabi et
al. [12] transformed the PR problem into an AI planning problem that allows
noisy and missing observations. Ramı́rez and Geffner [13] used classical planners
to produce plans for a given goal G and compare these plans to the observed
behaviour O. The probability distribution P(G|O) can be computed by how the
produced plans are close to the observed behaviour. Sukthankar and Sycara [14]
proposed an approach for pruning and ranking hypotheses using temporal order-
ing constraints and agent resource dependencies.

PR systems are also required to deal with open domains, where the observed
plans are usually not from the used plan library. Avrahami-Zilberbrand and
Kaminka [15] describe two processes for anomalous and suspicious activity recog-
nition: one using symbolic behaviour recognizer (SBR) and one using utility-
based plan recognizer (UPR), respectively. Mainly, SBR filters inconsistent and
ranking hypotheses, while UPR allows the observer to incorporate his preferences
as a utility function. Zhuo et al. [16] also address the problem of PR in open
domains using two approaches: one using an expectation-maximization algorithm
and one using deep neural networks. A notable difference from other approaches
is that the work of Zhuo et al. [16] is able to discover unobserved actions by
constantly sampling actions and optimizing the probability of hypotheses.

Our work is not competing to, but complementing most of the previous works
on PR, where it can be seen as a post-processing task for various single-agent plan
library-based PR techniques. More precisely, leveraging imperfect explanations
for PR problems can be viewed as an activity that occurs just before ruling out
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imperfect explanations or considering an observation as exploratory or noisy. In
contrast with the literature, we focus on improving the explanatory power of plan
libraries by leveraging imperfect explanations and exploiting new classes of obser-
vations.

3 Preliminaries

This section reviews the prior research used in the remainder of this work. First,
we clarify the link between the notion of capability and BDI programming, and
then we describe the representation we use for capabilities and plans.

3.1 BDI Programming and Capabilities

An agent system with BDI architecture [1] commonly consists of a belief base
(what the agent knows about the environment), a set of events (desires that the
agent would like to bring about), a plan library (a set of predefined operational
procedures), and a base of intentions (plans that the agent is committed to
executing).

Fundamentally, the reactive behaviour of BDI agent systems includes the
agent system handling events by selecting an event to address from the set of
pending events, selecting a suitable plan from the plan library, and stacking its
program into the intention base. A plan in the plan library is a rule of the form
ε : ν ← �, where the program � is a predefined strategy to handle the event ε
whenever the context condition ν is believed to be true by the agent. A plan can
be selected for handling an event ε if it is relevant and applicable, i.e., designed
with respect to the event ε, and the agent believes that the context of the plan
ν is a logical consequence of its belief base, respectively. A program � often can
be presented as a set of actions that result in changes in the environment state.
For the purpose of this work, we ignore other elements (e.g., trigger events or
guards) in the plan body. Note that using BDI programming languages such as
Jason [17] and 2APL [18], information on action pre- and post-conditions can
only be defined in a separate file (called simulated environment), making this
information invisible to the agent.

To reason about actions and their specifications, we need to access infor-
mation about the preconditions and postconditions of all available actions. We
shall refer to capability as an explicit specification of action preconditions and
postconditions. A capability has been understood in intelligent agent studies as
having at least one way to achieve some state of affairs, where it can be used
only if its preconditions are believed to be true [2,19]. For the purposes of this
work, we shall concentrate mostly on the plan library. We do not, therefore,
discuss other issues related to integrating the notion of capabilities into the BDI
paradigm. For a detailed introduction to integrating the notion of capabilities
into the BDI system, the reader is referred to [2,19].
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3.2 Capability and Plan Representation

Our representation of agent capabilities is closely related to [2,19], but signif-
icantly influenced by the action theory found in classical automated planning,
such as what has been presented in situation calculus [20] and STRIPS reason-
ing [21]. Following this representation, we use a language of propositional logic
L over a finite set of literals L = {l1, . . . , ln} to represent the set of states of the
environment S in which the agent is situated, such that each state of the envi-
ronment s ∈ S is a subset of L, i.e., li ∈ s defines that the propositional literal li
holds at the state s. As mentioned before, a capability specification describes an
action that a BDI agent can carry out along with its pre- and post-conditions.
Notationally, capability specification is triple subsets of L, which can be written
as a rule of the form {pre(c)}c{post(c)}, where

– {pre(c)} is a set of predicates whose satisfiability determines the applicability
of the capability,

– c is the capability, and
– {post(c)} is a set of predicates that materialize with respect to the execution

of the capability.

It is not hard to see that, by sequentially grouping capabilities that are
dedicated to bringing about some state of affairs, the sequence C = 〈c1, . . . , cn〉
can be seen as an operational procedure to resolve that state. Consider the plan
p, we use

– {pre(p)} as the conditions under which the plan is applicable,
– C = 〈c1, . . . , cn〉 as the plan body, and
– {post(p)} as the conditions associated with the end event of the plan,

As such, we use the notation p = {pre(p)}C{post(p)} to represent plan p speci-
fications.

For the purpose of reasoning about the execution of agent capabilities, we
work with a simple representation of the possible ways the plan can be executed,
which we term normative plan traces. A normative plan trace is one such that (1)
the specification of capabilities completely determines the transition on states
in S, i.e., if s ∈ S and c is applicable to s, then it produces another state s′ ∈ S,
(2) the capabilities are guaranteed to execute sequentially, e.g., knowing that
capability c2 immediately follows capability c1, then c2 cannot be executed until
post(c1) holds, and (3) a plan execution can not be interleaved with other plans.

4 Running Example

As a running example, we consider variants of Monroe County Corpus for emer-
gency response domain [22].

Example 1. As shown in Fig. 1, the agent aims to provide medical attention to
patients. It just receives requests from medical personnel, drives to the patient’s
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location (loc), loads the patient (pt) into the ambulance (amb), drives back to the
hospital (h), and takes the patient out of the ambulance. Moreover, the agent
is also equipped with capabilities related to the emergency response domain
problem.

Fig. 1. Providing medical attention plan and capabilities.

We argue that existing APR applications are inadequate in settings where the
observed agent is characterized by extensibility and deliberation. To illustrate
this, let us consider the following example.

Example 2. Consider the following scenarios that may arise in this emergency
response domain:

i After arriving at the scene, the agent performed CardioPulmonary Resusci-
tation (CPR) on the patient and loaded the patient into the ambulance.

ii The agent called an air ambulance and drove back to the hospital without
loading the patient into the ambulance due to rough terrain, poor weather,
etc.

iii The agent drove back to the hospital without loading the patient into the
ambulance as the patient went missing.

Although simple, Example 2 is far from trivial. First of all, it is not diffi-
cult to recognize that the basic reactive behaviour of the BDI agent system
(described in the previous section) cannot produce the behaviours depicted in
these scenarios on its own, since it does not have those plans in its plan library.
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Arguably, there is at least an extension to the system that enabled such edits in
the agent behaviour. Indeed, the state-of-the-art BDI agent framework exhibits
a large number of extensions to the reactive behaviour of the BDI agent sys-
tem. For example, the behaviour illustrated in scenario (i) involves an insertion
edit (where the agent added CPR execution into the plan). It is possible for the
agent to add an action(s) to a plan by incorporating automated planning into its
system, such as in [3]. Scenario (ii) involves a substitution edit (where the agent
replaced loading the patient into the ambulance with calling an air ambulance).
It is possible for the agent to replace a capability with another one by leverag-
ing an extension such as reconfigurability [4]. Finally, scenario (iii) represents a
deletion edit (where the agent dropped loading and taking the patient into and
out of the ambulance from the plan), which is doable if the agent is equipped
with a task aborting mechanism, such as the one presented in [23].

5 Problem Formulation

A plan library H is a set of BDI plans, each of which contains a sequence of
capabilities 〈c1, . . . , cn〉 as its body, where each ci, 1 ≤ i ≤ n, is the capability
name and a list of typed parameters. We assume the presence of a capability
library, denoted by A , comprises the set of all available capabilities specifications
related to the domain problem. An observation of an unknown plan p is denoted
by O = 〈o1, . . . , on〉, where oi ∈ A ∪ {∅}, i.e., the observation oi is either a capa-
bility in A or an empty capability ∅ that has not been observed. Note that the
plan p is not necessarily in H, and thus mapping O to the H may generate only
imperfect explanations.

When reasoning about new classes of observation, one can classify an
observed capability by four types: (1) match, when the capability is correctly
observed, (2) insertion edit, when the observed capability is added to a norma-
tive plan trace, (3) deletion edit, when the observed capability is dropped from a
normative plan trace, (4) substitution edit, when a capability that is to be exe-
cuted as part of a normative plan trace is replaced with another one. We propose
to describe these three edits in plan execution using operations as follows.

Definition 1 (Abductive edit operation, sequence). Let p with
C = 〈c1, . . . , cn〉 as its body be an imperfect explanation for the observation
O = 〈o1, . . . , on〉. An abductive edit operation is the insertion, deletion, or sub-
stitution of capabilities in C according to the observations in O. An abductive
insertion of an observed capability oi is denoted by (∅ → oi), deletion of ci is
denoted by (ci → ∅) and substitution of ci with oi is denoted by (ci → oi). An
abductive edit sequence AES = 〈ae1, . . . , aen〉 is a sequence of abductive edit
operations. An AES derivation from C to O is a sequence of sequences C0, . . . ,Cn,
such that C0 = C and Cn = O and for all 1 � i � n, Ci−1 → Ci via aei.

Definition 2 (Extended plan library). An Extended plan library is a couple
EPL = (H,AES), where

1. H is a plan library, and
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2. AES is a sequence of abductive edit operations.

Definition 3 (APR problem). Considering our settings, the APR problem
can be defined by a 4-tuple APR = (EPL,O, explain, A ), where:

1. EPL is an extended plan library,
2. O is an observed trace of capabilities,
3. explain is a map from plans and sub-plans of H to subset of O, and
4. A is a library of capability specifications.

As such, the solution to APR is to discover an unknown plan p, which is a
plan with an edited sequence of capabilities as its body that best explains O given
EPL and A . Again, this can be challenging since the plan p is not necessarily in
H, and thus mapping O to the H may generate only imperfect explanations.

6 Approach

Our approach to leveraging imperfect explanations consists of four phases, as
shown in Fig. 2. These phases are (1) Classification of unknown plans, (2) Abduc-
tive editing of imperfect explanations, (3) Reasoning about the validity of the
edited plan, and (4) Abductive updating of imperfect explanations. We describe
each of these steps in greater detail in the following sub-sections. Note that solid
arrows refer to leveraging imperfect explanations phases and dotted arrows refer
to required inputs.

Fig. 2. Overview of the approach.

As illustrated in Fig. 2, leveraging imperfect explanations takes as inputs

1. An unknown plan,
2. An approximation of the plan(s) that have been used to generate input (1),

and
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3. A set of all available capabilities specifications related to the domain problem.

While inputs (1) and (2) are used in the classification and updating phases,
inputs (2) and (3) are used in the editing and validation phases. Note also that
our approach still requires an external plan recognition mechanism to provide
imperfect explanations (hence the dotted arrow from agent plans to the classifi-
cation phase).

6.1 Classification

Given an unknown plan, before any decision can be made concerning leveraging
imperfect explanations, it is first necessary to determine the characteristic of the
environment in which the unknown plan has been carried out (i.e., we do not
want to build on noisy or exploratory observations). To that end, we use decision
tree learning to classify unknown plans. Although decision trees are not the only
means of classification, they are highly interpretable models [24]. Following the
classification described in Sect. 2, the following taxonomy for classification is
proposed:

EE Exploratory environment - observed behaviour is a subject of exploratory or
discovery learning. Much of the work done on PR for exploratory domains
considers trial-and-error, activity repeating and interleaving as features of
exploratory behaviours [7,9,10].

NE Noisy environment - observed behaviour is characterized by imperfect
observability. Previous studies (e.g., [12] and [11]) reported noisy obser-
vations as those that cannot be explained by the actions of any plan for any
given goal (computing all possible plans for a given goal is fully described
in [6]).

OE Open environment - observed behaviour is characterized by extensibility.
Many studies on intelligent agents (e.g., [4,25,26]) consider rational changes
in plan execution (see Sect. 6.3 for how rational changes are validated) as a
feature of engaging the agent with open environments.

A given unknown plan is classified into one of the classes {EE, NE, OE},
each representing the settings in which the unknown plan has been executed.
An unknown plan is assigned to a class membership based on its characteristic
features by comparing it to its imperfect explanation (i.e., approximation of the
unknown plan). For example, unknown plans that contain actions that any plan
for any given goal cannot explain are labelled as NE, whilst unknown plans that
contain rational edits compared to their imperfect explanations are labelled as
OE. Historical instances are labelled manually while the test data is not labelled,
so the decision tree can classify whether the unknown plan is a result of EE,
NE, or OE.

According to state-of-the-art PR and intelligent agents [4,6,7,9–12,25,26],
we initially extracted a number of features related to EE, NE, and OE.

1. Unreliable action: This binary feature represents whether an unknown plan
contains action(s) that any plan for any given goal cannot explain.
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2. Trial-and-error: This binary feature represents whether an unknown plan
contains multiple attempts to achieve a desirable effect using different activ-
ities.

3. Action repeating: This binary feature represents whether an unknown plan
contains multiple attempts to achieve a desirable outcome using the same
activity with different parameters.

4. Activity interleaving: This binary feature represents whether an unknown
plan contains the execution of an activity while waiting for the results of the
current activity.

5. Rational editing: This binary feature represents whether an unknown plan
contains rational edit(s) compared to its normative plan traces.

Classification takes place as a supervised multi-class classification making
use of the features described above. Classification of unknown plans is applied
before the actual process of leveraging imperfect explanations due to avoid use-
less wait (i.e., we do not want to build on noisy or exploratory observations). If
an unknown plan is classified as OE, the plan will be taken as input. Continuing
with our running example, both scenarios (i) and (ii) were classified as OE. This
is due to containing the feature of rational changes, which strongly correlates to
OE. Whiles scenario (iii) was classified as a NE because any plan of the given
goal could not explain it.

In this section, we have seen one possible way of classifying changes in plan
execution by attending to the settings in which it has been carried out (i.e.,
noisy, explanatory and open). However, in fact, many other features can be
adopted to classify these changes hence a better understanding of what the target
agent is actually doing and why. For example, these changes can be divided into
mistakes and exploratory activities in exploratory domains. Another example,
noisy observations can be classified as sensor failure or programming errors (e.g.,
inappropriate belief revision). However, such classifications are outside the scope
of the present work, since this is, in general, an intractable problem.

6.2 Abductive Editing

Our guiding intuition here is that a plan that serves as an imperfect explanation
for an observed behaviour could possibly be edited (modified) according to that
observation, thus improving the explanatory power of the plan library. We real-
ize a computational solution to leveraging imperfect explanations by appealing
to the optimal edit distance [27] between an unknown plan and its imperfect
explanation and using its corresponding edit sequence.

Let plan p with body C = 〈c1, . . . , cn〉 be an imperfect explanation of the
observations O = 〈o1, . . . , om〉, with the former having length n and the latter
length m. Recall that turning the plan body C into O requires a sequence of
edit operations. Each of these operations can be weighted by a cost function,
denoted by w(ae). For example, one can set the cost function to return 0 when
the capability is correctly observed and to return 1 otherwise.

With a cost function in hand, the abductive plan edit distance between C
and O is given by a matrix d of size n × m, defined by the recurrence.
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d[i, 0] = i
d[0, j] = j

d[i, j] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d[i − 1, j − 1] (correctly observed)

min

⎧
⎪⎨

⎪⎩

d[i − 1, j] + w(∅, oi) (insertion edit)
d[i, j − 1] + w(ci, ∅) (deletion edit)
d[i − 1, j − 1] + w(ci, oi) (substitution edit)

After filling the matrix, the value in the bottom-right cell of the d, or d[m, n],
will represent the minimum cost to turn the plan body C into the observation
sequence O, and this cost is the abductive plan edit distance. For the correspond-
ingAES to be computed, we need to traceback the choices that led to the minimum
edit cost in the above recurrence. Hence, turning the imperfect explanation p into
an unknown plan p that best explains the observations in O can be seen as apply-
ing an AES that corresponds to the abductive plan edit distance of p.

Example 3. Continuing with our running example, assume the imperfect expla-
nations h1 with a body as shown below:

drive_to(loc),get_in(pt,amb),drive_to(loc),get_out(pt,amb).

An observation sequence O from scenario (ii) as shown below:

drive_to(pt),call(air_amb),drive_to(h)

And let w(ae) = 0 when the capability is correctly observed and w(ae) = 1
otherwise. Based on the above inputs, the abductive edit operations needed to
turn the body part of plan h1 into O are:

1. get in(pt, amb) → call(air amb), and
2. get out(pt, amb) → ∅.

Example 3 illustrates how imperfect explanations can be leveraged merely by
editing. Although edits in Example 3 sound rational, they may be invalid in other
scenarios. Hence, there are two important questions yet to be discussed: how to
ensure (1) that the edited plan is consistent and (2) at the end of its execution,
the goal is achieved. We will address these two questions in the following sub-
section.

6.3 Validity Checking

We build on the approach of monitoring plan validity proposed by [28]. Our
theory of edited plan validity uses the accumulative effects (denoted as accum)
of [29] and ensures consistency during the process of plan editing, given the
capability library A . To monitor an edited plan validity, two plans are generated
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for every PR problem - one with the minimum edit cost, i.e., the imperfect
explanation, and one that explains O completely, i.e., explain(p) = O. Assuming
an idealised execution environment, plan validity can be defined as follows.

Definition 4 (Valid Plan). Consider the capability library A and a plan spec-
ification p = {pre(p)}C{post(p)} for plan p with body C = 〈c1, . . . , cn〉, we say
that the plan p is valid in the state s if

1. A |= (〈pre(c1), . . . , pre(cn)〉, s), and
2. accum(p) |= post(p).

As such, with respect to A and the current state of the world s, the precondi-
tions of each capability in the plan body of p will be satisfied, and the final effect
scenario accum(p) associated with the end state event of the plan p execution
entails its post-condition specifications. An important detail of this definition is
that a single edit can impact the consistency of the plan. Also, it can change the
final effect scenario associated with the end state of the plan. We now identify
a valid edited plan.

Definition 5 (Valid edited plan). Consider the plan p = {pre(p)}C{post(p)}
as an imperfect explanation of O. Let p be an edited plan that has identical pre-
and post-conditions to p except that p has an edited sequence of capabilities C.
We say that the edited plan p preserves the validity of p if p = {pre(p)}C{post(p)}
is valid.

Where it is possible for the plan recognition model to find two or more
different imperfect explanations that have the same edit cost and are valid,
further post-processing may be required for more reliable results. We overtake
this problem by seeking stronger goal entailment and consistency conditions,
such as the plan internal analysis described in [30].

6.4 Abductive Updating

Now, we consider the problem of what needs to be done to improve the explana-
tory power of the plan library when an edited plan is found valid according to
the checks described above. An easy solution is to create a new plan that has
identical triggering and context parts to the imperfect explanation, except that
p has an edited body C that explains O, i.e., explain(p) = O. However, this may
increase the complexity of determining applicable plans at run-time. More inter-
estingly, we offer a semi-automated solution for merging an edited plan with its
imperfect explanation.
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Procedure 1 (Abductive Updating). Consider the imperfect explanation p
and its edited plan p and let AES = 〈ae1, . . . , aen〉 be a derivation from p to p.

1: For each aei in AES:
2: Replace ci with subgoal sgi
3: Create two subplans p1 and p2, and let
4: triggering(p1) = triggering(p2) = sgi
5: switch(aei):
6: case(ci → oi)
7: context(p1) = pre(ci)
8: context(p2) = pre(oi)
9: body(p1) = ci
10: body(p2) = oi
11: case(ci → ∅)
12: context(p1) = pre(ci)
13: context(p2) = not pre(ci)
14: body(p1) = ci
15: body(p2) = true
16: case(∅ → oi)
17: context(p1) = not pre(oi)
18: context(p2) = pre(oi)
19: body(p1) = true
20: body(p1) = oi

Procedure 1 facilitates the merging between an imperfect explanation, i.e.,
one with the minimum edit cost, and its edited plan, i.e., one that explains
O completely. Fundamentally, for each aei in AES, the procedure replaces the
corresponding capability with a sub-goal sgi (line 2), for which two sub-plans p1
and p2 are created (line 3–4). Our guiding intuition behind creating two sub-
plans is to improve the explanatory power of the plan library while maintaining
its construction.

Recall that there are three ways in which a plan can be edited: deletion,
insertion, and substitution. Hence, there are three ways in which sub-plans can
be created (line 5). For example, let us consider the substitution edit (line 6): In
this case, plan p1 takes the corresponding capability ci as its body and pre(ci) as
its context part (lines 7 and 9). While p1 takes the corresponding observation oi
as its body and pre(oi) as its context part (lines 8 and 10). However, there are
situations where valid edited plans could possibly be merged with their imperfect
explanations, but they should not be merged. For example, avoiding negative
interactions between goals. For readers interested in how we can deal with the
feasibility of plans merging, we refer to [31].

7 Evaluation

In this section, we present the evaluation of our approach. First, we present the
setup for evaluation. Next, evaluation results are described.
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7.1 Evaluation Setup

We implemented our approach as a plugin for our Toolkit XPlaM1 [32] and
evaluated it using Monroe Plan Corpus [22]. For the purposes of this work, the
corpus has been rewritten using AgentSpeak(L) programming language and exe-
cuted using Jason interpreter [17]. Observation traces2 have been collected using
a debugging tool called Mind Inspector [17]. Unknown plans have been classified
using C4.5 decision tree algorithms [33]. Abductive plan editing is implemented
using the well-known Levenshtein distance. For deriving accumulative effects,
we implemented a state update operator similar to the one described in [29]
using the NanoByte SAT Solver package3. For testing, experiments have been
implemented on an Intel Core i5-6200 CPU (with 8 GB RAM).

7.2 Performance Results

We ran a number of experiments to test the scalability of our approach with
respect to the number of new classes of observations. The corpus used in these
experiments has been executed to consider all possible traces (the number of
executed actions is 80). New classes of observations were artificially added to
the observation traces. The number of capabilities in A is set to 20. Figure 3
compares the number of explanations generated by our approach for a different
number of new classes of observations.

Fig. 3. Performance results.

1 The source code for XPlaM Toolkit (including the code for the approach presented
here) has been published online at https://github.com/dsl-uow/xplam.

2 We published the datasets supporting the conclusions of this work online at https://
www.kaggle.com/datasets/alelaimat/xplam.

3 https://github.com/nano-byte/sat-solver.

https://github.com/dsl-uow/xplam
https://www.kaggle.com/datasets/alelaimat/xplam
https://www.kaggle.com/datasets/alelaimat/xplam
https://github.com/nano-byte/sat-solver
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Our first study shows that with a moderate number of new classes of obser-
vations and a reasonable number of capabilities in A , abductive plan editing
would possibly improve the explanatory power of plan libraries in open envi-
ronment settings. Note that the scalability of the abductive plan editing should
be tied to the performance of the classification task. Nevertheless, the results
depicted in Fig. 3 are partially independent of the used classifier (C4.5 decision
tree). Actually, we allowed for unknown plans that contain unreliable actions
to be considered as inputs. We argue that additional features are required for a
more accurate classification of unknown plans.

7.3 Speed

Aiming to find out how fast abductive plan editing would take to explain
unknown plans, we ran a number of experiments with Monroe Plan Corpus.
Recall that executing action models (i.e., planning) is another technique to
explain unknown plans. Hence, we use diverse planning [34] as a benchmark
to assess the complexity of our approach. Diverse planning aims at discovering
a set of plans that are within a certain distance from each other. The discov-
ered set is then used to compute the closest plan to the observation sequence.
Figure 4 shows the time required to discover a valid explanation for variate num-
bers of new classes of observations using diverse planning (as used by LPG-d
planner [34]) to the time required by our plan editing approach.

Fig. 4. Explaining time required for plan editing and diverse planning.

Figure 4 shows that, unlike diverse planning, for different number of new
classes of observations, plan editing is a relatively faster approach to explaining
unknown plans. However, the reader should keep two details in mind. First,
the performance of plan editing is tied to the performance of the used dynamic
programming algorithm (in our case, Levenshtein distance). A more fine-grained
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evaluation, therefore, should include different dynamic programming algorithms
(e.g., Hamming distance). Secondly, during our experiments, we noticed that the
size of A can highly affect the performance of diverse planning and plan editing.
We will investigate these two details as part of our future work.

8 Conclusion

Much of the work done on APR requires a plan library to infer the top-level
plans of the observed agent. Nevertheless, in open environment settings, target
plans are usually not from plan libraries due to reusing plans, replanning and
agent self-awareness, etc. This work builds on a more sophisticated notion of
APR, which seeks to improve the explanatory power of plan libraries by way of
leveraging imperfect explanations and exploiting new classes of observations. In
this work, we proposed a classification of unknown plans based on the character-
istics of the environment in which they have been carried out. As far as we know,
this has been absent in PR research. Furthermore, we presented a theory based
on capabilities and plans and introduced the notion of abductive plan editing.
Finally, we described how imperfect explanations could be updated with new
classes of observations in a rational fashion.

A number of extensions of this work are of interest, including applications
of plan library reconfigurability [4], plan editing in online settings, and dealing
with incomplete action models (i.e., learning unknown activities). Furthermore,
we plan to improve our approach in order to deal with logs obtained from noisy
and exploratory domains and compare its performance with state-of-the-art plan
recognition methods, where incompleteness of knowledge and non-determinism
might be present.
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Abstract. Artificial intelligence (AI) systems have been increasingly
adopted for decision support, behavioral change purposes, assistance,
and aid in daily activities and decisions. Thus, focusing on design and
interaction that, in addition to being functional, foster users’ acceptance
and trust is increasingly necessary. Human-computer interaction (HCI)
and human-robot interaction (HRI) studies focused more and more on
the exploitation of communication means and interfaces to possibly enact
deception. Despite the literal meaning often attributed to the term,
deception does not always denote a merely manipulative intent. The
expression “banal deception” has been theorized to specifically refer
to design strategies that aim to facilitate the interaction. Advances in
explainable AI (XAI) could serve as technical means to minimize the risk
of distortive effects on people’s perceptions and will. However, this paper
argues that how the provided explanations and their content can exacer-
bate the deceptive dynamics or even manipulate the end user. Therefore,
in order to avoid similar consequences, this analysis suggests legal prin-
ciples to which the explanation must conform to mitigate the side effects
of deception in HCI/HRI. Such principles will be made enforceable by
assessing the impact of deception on the end users based on the concept
of vulnerability – understood here as the rationalization of the inviolable
right of human dignity – and control measures implemented in the given
systems.

Keywords: XAI · Deception · Vulnerability

1 Introduction

Interactive AI systems are now used for many purposes that require a constant
exchange of information with the end user. Some of the main tasks performed
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by such applications include: e-health goals [16], decision-making activities, sup-
port and guide in behavioral changes [11], e-administration proceedings [31],
assistance for e-services [19].

The quality and frequency of interaction in many of these cases are crucial
for two fundamental reasons. First, this allows the application to refine its out-
comes and, consequently, to pursue the purpose for which it was developed more
effectively and efficiently. Second, an interaction that is not only technically sat-
isfying but also pleasant, at times “familiar”, enables users to be more consistent
in their engagement, to adhere better to the recommendations provided, and to
rely on them to develop trust [68].

In light of the above, there has been a growing interest of researchers in the
fields of HCI, HRI, and XAI in those dynamics and elements that, if correctly
implemented and elicited, could foster interaction by acting on the psychological,
cognitive, and emotional mechanisms of the human interlocutors. This relied on
research in neuroscience, behavioral psychology, cognitive science, communica-
tion science, and interdisciplinary working groups [33]. One of the main results
achieved by scholars led back to an aspect already dear to computer science: the
theme of deception. It has entered the context of human-AI interaction since the
Turing Test, demonstrating how the very concept of AI is based on the ability
a system has to emulate the capabilities of human beings, regardless of whether
they are objectively present or not [66]. The credibility of this appearance has
a far more impactful influence on the perceived quality of the interaction than
pure technical efficiency. For this reason, efforts have been made to implement
AI systems more and more with design characteristics and communication fea-
tures capable of targeting the brain areas that are involved in the perception of
positive emotions such as cuteness, trustworthiness, sympathy, tenderness, and
empathy. It is worth emphasizing that the primary purpose of such implemen-
tations is to ensure the good functionality of the application and, as a direct
consequence, the possibility for the user to benefit from the resulting beneficial
and supportive effects.

Thus, the concept of “banal deception” has recently been theorized [53]. In
particular, it aims to delimit the difference between deception, understood as a
mechanism of mendacity, manipulation, and the phenomenon described above,
which identifies an expedient that may contribute to the user’s best interest.

According to such premises, the crucial role of explanation clearly emerges
in this context. It may have the capacity to make many processes performed by
the AI system clearer to the non-specialist interlocutor, redefining the bound-
aries between appearance and reality, technology and humanity, functionality
and emotionality [27]. In all those cases in which – or within the limits in which
– banal deception is essential for the success of the interaction, XAI can coun-
terbalance the emotional and unconscious scope of the user’s reactions with
accurate, punctual explanations, which leverage the more logical-rational part
of the brain in return.

This paper argues that the explanation risks becoming an element of decep-
tion due to how it is produced, communicated (e.g., styles and tones), and its
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content. In this sense, it could elicit deceptive effects, leading to real manipula-
tive consequences.

Therefore, this paper suggests a framework – based on enforceable legal prin-
ciples – paving the way for structuring two possible tools to mitigate potential
adverse effects. The first proposal concerns structuring a Vulnerability Impact
Assessment, aiming at establishing the different degrees of banal deception that
can be considered admissible, depending on the level with which they impact,
exasperate, or assist the unavoidable human vulnerability. The second proposal
concerns the formalization of a knowledge graph that identifies features and rela-
tionships between elements that make up vulnerability and implement them in
the XAI system.

The rest of this paper is organized as follows.
Section 2 presents the state of the art, focusing on the original concept of

deception, presenting the new theorization of’banal deception’ and emphasizing
the role the XAI could play in either facilitating manipulative drifts or – con-
versely – protecting the user from them. To pursue the second objective, Sect. 3
elaborates on the basic legal principles that should be the framework to which
the design of explanations should adhere. Section 4.1 and Sect. 4.2 present the
dual approach through which this framework should be concerted, namely a new
Impact Assessment vulnerability-based and a knowledge graph implemented in
the system itself.

2 Background and State of the Art

This section presents the background and state of the art of disciplines inter-
secting explainability in HCI, such as deception and XAI.

2.1 Deception in HCI

The subject of deception has a long history in computer science and, more specif-
ically, HCI and – more recently – HRI. However, researchers in these disciplines
are often skeptical about describing the outcome of their work or their approach
in terms of deception due to the predominantly negative connotation that this
concept has inherited from the humanities, especially the legal sciences. However,
while the legal semantics is often connected to an act aimed at circumventing,
misleading, and inducing disbelief for the benefit of the deceiver and necessarily
to the detriment of the deceived, the same is not always true from a more strictly
technological point of view.

Deception has become part of AI since the Touring Test. In what was essen-
tially considered an HCI experiment, the computer program will only be able to
win the game if it can “fool” the human interlocutor [41]. This means to assume
a very human-centric perspective, where it is assessed whether the illusion – of
intelligence in this case – has been programmed accurately and allegedly enough
to not only be plausible but to convince the individual [60]. In other words, we
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start by analyzing human beings, their communicative strategies, and connota-
tive semantics to understand how to program a successful interaction [6].

Considering only this angle, it is still possible to interpret the deceptive
dynamic as aimed at misleading the other party. Nevertheless, it should be noted
that the Turing test was structured as a game in which individuals participated
willingly, following the game’s rules. The playful background conveys the decep-
tive interaction with an innocuous and ethically acceptable connotation [35].
This is precisely what modern voice assistants and much interaction software
claim to have inherited from the test. However, even in that context, giving
the application the ability to respond with jokes is a way of playfully engag-
ing the interlocutors, pushing them to challenge the limits of the imitation of
humanity [50].

In these contexts, deception is domesticated and does not carry the nega-
tive connotation that manipulative ends have in common with other misleading
expedients. Therefore, the envisioned outcome, subsequent research, and exper-
imentation were set to imagine a future in which deception, conceived in its
functional and non-harmful form, would become a useful tool for developing
successful interactions with new technologies used on a daily basis.

2.2 From Deception to the ELIZA Effect

To make it possible efficient and effective interactions for the benefit of the users,
HCI developed as a field of research aimed at adapting system interfaces, design
features, and functionality to the perceptual and cognitive abilities of human
beings. Thus, deception became a proper method to deflect any element that
could uncover the artificial and aseptic nature of the AI system. Said otherwise,
the standard approach in the design of applications deputed to interact contin-
uously and closely with users became to exploit the fallibility, the unconscious
psychological and cognitive mechanisms inherent in human nature [12].

An example of this evolution is represented by ELIZA, the software that
pioneered new perspectives on chatbots [43]. It shows that the correctness and
appropriateness of the outputs, given a certain input, are not the only crucial
factors for a successful HCI. The so-called “social value” is also important [38].
That is to say that the fact that the application can play a certain role in the
interaction, which remains consistent in itself throughout the whole exchange,
has to be considered central [28]. This stems from the fact that individuals by
nature attribute to their interlocutors – even humans – a specific role, which
could be defined as a “social role” [61]. This has little to do with the actual
identity of the other (e.g., if they are the professional to whom we turn for a
consultation, a family member, or a stranger). What plays an essential role is the
– social and not – value that people attribute to those with whom they interact.
It consists of projections, past experiences, and emotional resistance. Referring
more specifically to the HCI domain, the subconscious tendency of humans to
believe that AI systems and software have their own behavior and that this is
similar to that of peers has been termed the “ELIZA effect” [63].
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Upon closer analysis, it demonstrated how even relatively unsophisticated
programs can deceive the user through AI, creating an appearance of intelligence
and agency [23].

This was instrumental in suggesting that humans are naturally inclined to
attribute human appearance, faculties, and destinies to inanimate objects [29],
and that this inescapable characteristic can be exploited to create efficient inter-
actions.

Hence, the theorization of the ELIZA effect was conducive to bringing to light
something already clear since the Imitation Game: AI is the result of projection
mechanisms which ineradicably characterize individuals – despite their level of
practical knowledge [59]. For “projection mechanisms” is meant that universal
psychic modality by which people transfer subjective ideational content outwards
– into other people, animals, even objects [45].

This led to an in-depth exploration of the unconscious mechanisms that lead
human beings to prefigure a kind of “computer metaphor”, according to which
machines and software could be comparable to human beings. Such an exam-
ination was conducted mainly through disciplines like neuroscience, behavioral
psychology, cognitive science, and communication science [20,24,48].

What mentioned so far has led to the creation of the CASA model: Com-
puters Are Social Actors too [51]. According to such a paradigm, people applied
to computers social rules and expectations similar to those they have towards
humans. This is possible because each component in interface design conveys
social meaning, even if this end is not pre-determined by programmers or design-
ers. Concurrently, if it is somehow possible to anticipate this meaning, it is also
possible to direct it with the result of programming for more efficient HCIs [65].

2.3 Banal Deception

The investigation conducted so far supports the idea, now widespread in the
literature, that deception in HCI and HRI is often implemented and addressed
as an essential element for the best functionality of AI systems and the increase
of the user’s comfort. Ultimately, it could even be described as a constitutive
element of AI, without which it would not be possible to define artificial intelli-
gence itself [53]. However, this is not to disregard its possible manipulative drifts.
Especially from a legal standing point, the concrete outcome of a harmful event
must often be considered more relevant, rather than the benevolent but unreal-
ized intent with which the event was preordained. For this reason, research in the
field of human-AI interaction has recently proposed a new terminology, namely
Banal Deception [53]. It is adopted to frame that type of deception that does
not arise with the direct intent to mislead but rather to facilitate the use of the
application and the efficiency of achieving the intended purpose. Doing so would
contribute to integrating AI technologies into everyday life for decision support,
entertainment, and guidance in behavioral changes. Simone Natale [53] identifies
five elements that can guide in profiling the phenomenon of banal deception:
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Ordinary Character: ELIZA may be a good example. It did not present any-
thing particularly extraordinary, and the same can be said of Siri, Alexa, or
many other modern chatbots. Non-specialized users seem to focus on commu-
nicative and interactive aspects that make them often curious about other media.
However, the AI technologies mentioned above induce them to believe that the
appearance of personality and agency is actually real. This denotes the inherent
vulnerability to deception, on the one hand. On the other hand, it also underlines
that banal deception is probably imperceptible, but not without consequences.
It may not be intent on manipulating, but it has the predetermined purpose of
making AI systems enter the core of individuals’ mental structure, and – to some
extent – identity [54]. In fact, thanks to the mechanisms of trivial deception, in
fact, such technologies can target specific areas of the human mind, elicit trust
and emotional attachment, influence habits and tastes, shape the perception of
reality.

Functionality: an application capable of eliciting positive emotions, trust, and
reliability in the user will be used more often and with less skepticism. This allows
a more intense flow of data, which is indispensable for improving performance.

Obliviousness: being extremely subtle, as well as being a decisive part of the
design, this deceptive phenomenon is not perceived by the user and is often
lowered to the rank of mere technical expedient without further investigation.
Nonetheless, overcoming the barriers of consciousness and awareness is also effec-
tive in physiologically balanced, well-informed subjects [5]. They can recognize
the artificial nature of the application rationally, without being able to “resist”
the mechanisms of anthropomorphism and personification proper of their pri-
mordial cognitive structure.

Low Definition: chatbots and other AI systems programmed according to the
logic of the banal deception are neither necessarily very sophisticated from an
aesthetic point of view nor particularly characterized in impersonating a single,
fixed, communicative/social role. This is because human beings tend to attribute
meaning to what they interact with in an intimate and/or continuous way [67].
Leaving (intentionally) the possibility to the user to exploit their imagination to
fill the gaps left by programmers or designers allows customization that trans-
lates to an emotional level of familiarity, empathy, and attachment.

To Be Programmed: although banal deception relies on mechanisms inher-
ent in human cognitive structures, it is voluntarily programmed by technical
experts on the basis of studies aimed at investigating human perceptual mech-
anisms, with the precise purpose of targeting similar structures to pursue the
“functionality” described above. In other words, banal deception needs the –
unconscious – cooperation of the user to work, but it is ex-ante – consciously –
pre-ordered by AI systems’ developers.
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2.4 Explainable AI

Interpretable and Explainable AI is a discipline that has not yet found a unani-
mous definition, as it lends itself to work among different disciplines [34]. Nev-
ertheless, it can be detailed through its primary objective: to make data-driven
recommendations, predictions/results, and data processing comprehensible to
the final user [3,10].

This is necessary since human beings have a tendency to attribute mental
states to artificial entities (a.k.a., agents) leveraging the evaluation of their objec-
tive behavior/outputs [7,42]. This in itself can lead to two possible inauspicious
effects: (i) creating a false representation of the AI system and its capabilities
and (ii) attributing an emotional-intentional valence to its answers/actions.

Starting from such assumptions, the explanation generated has been con-
ceived by the scientific community as a valid aid so that the intentional
stance [25] that the user will inevitably project onto the technology is as objec-
tive and realistic as possible. This should happen despite the prior knowledge
possessed by the subject in question. Thus, according to XAI theorists, it would
be possible to pursue a twofold result: to limit the negative effects of anthropo-
morphism and foster interaction.

Yet, this interpretation cannot in itself exhaust the complete analysis of a
dynamic - that of HCI - which is multi-factorial.

This becomes clear considering the phenomenon called “Mindless behavior”.
Such an expression is commonly used to delineate the subconscious mechanism
through which people apply social conventions to artificial agents. The reason
why this evaluation seems to take place “mindlessly”. Indeed, it stems from the
fact that individuals reveal such a way of interpreting the interaction regardless
of the level of awareness they have of the actual nature of the AI system [62].

This brings us back to the above discussion of the mechanisms of banal
deception. In this context, making evident the mechanical and inanimate nature
of the application, its lack of consciousness and intentionality, opening the black
box by revealing the hidden mechanisms and rationals behind the processing of
data would seem to have no bearing on the subconscious empathic dynamics
that users are in any case naturally induced to enact.

2.5 XAI in the Realm of Banal Deception

Explaining is considered critical in making the operation of the system/robot and
the nature of the output as transparent as possible. This facilitates its use and
(most importantly) its trustworthiness, desirability, and pleasant interaction.
Ultimately, it is conceived as an essential tool to shorten the distance often
perceived between the technicality of AI and the unskilled user.

Nevertheless, depending on the characteristics of the explanation and the
manner in which it is given, it may itself represent an element of banal decep-
tion – as described above. Furthermore, in some circumstances, it may reinforce
the deceptive mechanisms already inherent in the application, crossing the line
between deception and manipulation.
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This discussion will not delve into the conceptual and semantic analysis of
these two themes, for which we refer to, among others [18,46]. For the purposes of
the analysis conducted here, we point out that the circumscription of the manipu-
lation concept is still much debated in the scientific community. This also applies
to the legal sphere, where it is relevant to determine cases and means by which
to intervene to protect people’s will and psychological integrity. Hence, report-
ing at least an overall conceptualization of manipulation is deemed appropriate.
It is conceived as a dynamic that can circumvent individuals’ critical thinking
and logic [44], making them do something different from what they would have
done or justified if they had not been subjected to the same manipulative tech-
niques for the benefit of the manipulator. Thus, targeting self-awareness more
and before even affecting rationality, manipulation can have deception as one of
the means through which the purpose is pursued [22].

Acknowledging this brief examination, the explanation might be structured
according to the logic of the banal deception, going to strengthen confidence
and trust in the outcome of the application, to the detriment of the real interest
and goal set by the user. For instance, some explanations, or the methodol-
ogy/expedient by which it is provided, could be aimed at (i) making the inter-
locutors dependent on the use or feedback of the AI system, (ii) inducing them to
pursue ends that merely benefit the producer, (iii) generating behavioral change
that is harmful to the user, but still useful for general profiling purposes, (iv)
eliciting the loss of significant social contacts (including the’second expert opin-
ion’ performed by a human specialist in the case of applications with potential
impact on health).

To preserve the protective and positive purposes of XAI, to prevent it from
becoming a tool of manipulation, and to make it a valuable aid in limiting
the side effects of banal deception, it might be helpful to draw up a list of
principles to which the explanation must conform. With this aim in mind, the
principles suggested here are of a legal, rather than ethical, nature. This offers
the benefit of making the framework below potentially enforceable with both
ex-ante and ex-post logic. Ex-ante, ideally, it will have to be taken into account
when programming and designing the AI system and its explainability. Ex-post,
as it can be invoked in the event of a violation to require a forced adjustment
or to correct any divergences that, through the interaction itself, the application
will have developed.

3 Principles-Based Framework for Explanations

The European approach to AI seems to be delineated around the recurring con-
cept of human-centered AI (HCAI) [2]. This entails aiming to create AI systems
that support human capabilities rather than replacing or impoverishing them.
Therefore, technological development should be oriented toward the benefit of
human beings. From a European perspective, it is possible through the protec-
tion and enhancement of fundamental rights referred to in the European Charter
of Human Rights. They reflect the constitutive values of European policies, are
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legally binding, and constitute the reference framework for the legal systems of
the Member States - as well as often being used as a prototype for the legislation
of other states at an international level.

Consequently, fundamental principles that must be considered essential for
the design of human-centered explanations will be listed below. They have been
identified starting with those most commonly referred to in the main regulations
and guidelines issued by European Parliament and European Commission. A
further skimming was carried out trying to identify those principles that were to
be considered more directly involved in the dynamics analysed here – namely the
possible manipulation of users’ will, the potential distortion in the perception
of reality, and the assessment of the risks attached to the interaction with AI
systems. They could constitute the reference framework to make XAI a useful
tool for mitigating the effects of banal deception on the end user, rather than
exacerbating possible manipulative drifts.

3.1 Right to the Integrity of the Person

Article 3 of the European Chart of Human Rights protects individual physical
and also psychological integrity [21]. In addition, the article refers to the value
of free and informed consent in healthcare treatment. However, it is a commonly
accepted interpretation that consent is conceived as the pivotal instrument of
any act affecting a person or one of their available rights – as also demonstrated
in the GDPR.

The reference to informed consent is certainly fundamental at a conceptual
level. Indeed, it may be considered one of the reasons why a branch of legal
experts sees the explanation as a valid tool for shortening – even removing – the
information gap that recognizes the non-specialized user of AI as disadvantaged
by default. In the scope of this study, on the contrary, this issue does not seem to
be decisively relevant. Informing an individual of what is happening, why a given
recommendation is being made, or how their data will be processed and stored
is certainly essential. At the same time, if the primary purpose of the framework
in question is to prevent explanation from becoming an instrument of manipu-
lation, informing is a practice that is neither sufficient nor goal-oriented. This
is mainly due to the phenomenon of mindless behavior described above and to
the subliminal nature of banal deception. Furthermore, even if the user accepted
the dynamic of banal deception, if the result implies the possible infringement of
fundamental rights, this presumed acceptance would be considered null and void.
This is because fundamental human rights are considered by law to be “unavail-
able”, namely, not subjected to renunciation or negotiation by the holder.

It follows that, in pursuing the scope of the principle of individual integrity,
an explanation should also guarantee the respect of the subsequent principles:

Physical Health: This is mainly affected by those AI systems that involve
medical aspects or habits that impact health (e.g., quitting smoking or adopting
a different diet). Here it is important to ensure that the interaction and the
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justifications provided for the recommendations offered follow the standards of
care, medical guidelines, and principles of good medical practice that are also
followed by human specialists [40,49]. More specifically, it will be important to
give the user the most truthful and up-to-date view of their progress and of the
appropriateness of their goal. In no way, for the pure purpose of incentivizing
and increasing interaction, should the individual be induced to persist in use
once the limits set by health standards have been reached (e.g., to continue to
lose weight or to increase muscle mass once beyond good medical practice). The
system must also be able to interrupt the flow of recommendations/explanations
if the user gives signals that they want to use the service outside of safe standards
(e.g., setting weight loss standards too low, unbalancing nutrient intake in an
unhealthy way, persisting in refusing explanations to bring their goals closer
to those set by medical standards). Moreover, according to ex Article 3, it is
impossible to impose any treatment that the patient does not understand and
accept. Likewise, the system cannot use an explanation that exploits means of
subliminal and subtle persuasion such as those of banal deception, push to accept
recommendations or outcomes that induce potentially health-impacting actions.

Physiological Health: Although the subject of mental and psychological
health is becoming increasingly pervasive in the law, there is still no objective
and uniquely accepted definition of it in doctrine. Among the first steps taken by
jurisprudence was to decouple this concept from the occurrence of mental disor-
ders in the clinical-pathological sense [57]. By interpretation, it could be useful
to start from the very concept of integrity, which is brought back – by analogy
with other areas – to the preservation of unity, of the compactness of the subject
of analysis. Anything that interferes with this idea of integrity, causing a split in
an individual’s coherence with themselves, their beliefs, and their feelings, alters
the integrity thus understood [13]. Therefore, the explanation must aim at mit-
igating those aspects of banal deception that may manipulate users’ perception
and will, thus leading them to prefigure a conception of reality, of themselves,
and of their own needs. If, as briefly investigated above, manipulation is that
phenomenon that goes beyond reasoning, the explanation must be structured
in such a way as to counterbalance the functional effects of deception without
leading to the distortion of individuals’ self-awareness.

3.2 Respect for Private and Family Life

Article 7 of the European Chart of Human Rights protects the respect for private
and family life. In this concept, the security and confidentiality of the home
environment and correspondence are explicitly mentioned [21].

This article is often considered to have a rather broad semantic and applica-
tive scope that is not easy to substantiate. Indeed, the concept of private life
includes instances belonging to the aforementioned Article 3, encompassing
aspects of physical and psychological integrity. However, its primary focus should
be on aspects of identity and autonomy [1].
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Identity: Personal identity from the perspective of pure private law is under-
stood as the unique, personal recognition of an individual. However, nowadays,
the law has also opened up in interpreting identity as the set not only of objective
and verifiable data attributable to an individual. It also included the specialty
of people’s cognitive-psychological dimension, the way they perceive themselves,
their beliefs, and their will. Thus, personal identity can be harmed by expedi-
ents aimed at inducing changes, habits, and desires that are not consistent with
the idea that an individual has of themself and with the lifestyle and beliefs
they have chosen for themselves. Manipulation is precisely able to target self-
awareness and induce attitudes that are lucidly not justifiable or recognizable as
proper by those who perform them. Therefore, in this context, the explanation
must have the primary role of allowing the users at each stage of the interaction
to realign with themselves, accepting only the recommendations they consider
in line with their own convictions and goals. It must also always put the user in
the position to question and challenge a recommendation/ motivation received
with an exchange that includes acceptance and/ or rejection and a more active
and argumentative understanding.

Inviolability of Private Space: Following the examination of the concept
of identity above, arguing that the domestic environment – or more generally
private – should be protected from external inferences means also to include
elements that go beyond the mere concept of home or private property. In this
space, it is also necessary to bring back habits and the deeper aspects of daily
life [53]. For this reason, while banal deception has the primary purpose of facili-
tating the inclusion of AI systems in the most intimate contexts – both physically
and cognitively – through the explanation, we should aim to ensure that this
happens only to the extent that it is essential for more effective interaction.

Autonomy of Private Choice: The two satellite principles analyzed so far
lead us to an incontrovertible conclusion: the protecting the individual autonomy,
here to be understood as “freedom to choose for oneself” [47]. This implies the
negative freedom to reject what one does not want or is not willing to accept. The
explanation, this view, must be designed in such a way as to always ensure the
possibility of rejecting both a given justification and a recommendation, as well
as to go back on decisions previously taken in order to modify them potentially.
XAI must become the main tool for the user to always keep in mind their ability
to release themselves from the application and perceive that they can always
choose for themselves in each phase of the interaction.

3.3 Human Dignity

The right to human dignity is presented last, but certainly not in importance. In
fact, it is expressed in Article 1 of the European Charter of Human Rights [21],
just as it is often the first right to be enunciated and guaranteed in most Con-
stitutional Charters and international treaties [8]. The reason why it is the last
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to be analyzed here is due to the twofold approach with which it is addressed
by the doctrine.

Human dignity is considered a “constellation principle”, around which all
others orbit and by reason of which all others find their justification and their
– possible – balance [69]. This is why it is considered the founding element of
freedom, justice, and peace [4], enforced as such by the United Nations General
Assembly. Nonetheless, the difficulty in providing an objective and universally
accepted empirical demonstration, its imperative character, and the lack of def-
inition [30] have meant that – without discussing its legal value – its direct
concrete application has been questioned.

Consequently, it might be useful to identify a still legally relevant concept
that serves as an element of operability in the practice of the higher principle of
human dignity – at least with regard to the human-AI interaction context.

Vulnerability: The principle of human dignity protects the intrinsic value that
each individual possesses only as a human being [26] and, consequently, protects
the individual’s autonomy against forms of constraint. Both such aspects are the
foundation of any comprehensive discussion of vulnerability [32]. The main dif-
ference is that any reference to human dignity often lends a universalist approach
that has not always been easy to apply to concrete cases and disciplines. In other
words, the reference to human dignity denotes a reference to a pivotal founda-
tion of modern Constitutions, to a fundamental and inalienable human right
that, as such, are easier to include in a principle-oriented argumentation that
enshrines the theoretical frame of reference rather than an instrument directly
applicable, without being translated into concepts of more immediate practical
implementation [9]. On the contrary, vulnerability has already been used by the
European Court of Human Rights as an indirect tool to evaluate the impact that
some phenomena have on human dignity [64].

It follows that the concept of vulnerability can be used to substantiate the
influence of banal deception at many levels. Depending on the result of such an
investigation, it could become possible to draw up a range of possible repercus-
sions. Depending on the range taken as a reference, it may be determined how
to react – whether to correct, reevaluate, or stop the practice.

In particular, the objective and factual analysis using vulnerability as the
materializing principle of the universal right of human dignity will allow the
following satellite principles to be monitored and ensured:

Inclusion: An AI system capable of engaging the users at a psychological level,
often going beyond their cognitive structures, is also able to reduce the level
of socially relevant interactions, including those with healthcare specialists or
psychotherapists (e.g., in the case of virtual nutritional coaches or behavioral
changes applications [14,15]). The explanation can act as a pivotal element so
that the phenomenon of banal deception does not result in induced or encouraged
addiction and that the user always has the opportunity to interface with domain
experts when the system recognizes the establishment of dynamics of dependence
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on interaction and loss of connection with reality (including the reality of one’s
physical or mental condition)

Humanisation of the Interaction: The above-mentioned dynamics could
also lead to a phenomenon of dehumanization of individuals [56], conceived by
the system as an aggregate of data and inputs, more than as human beings with
their own weaknesses, their doubts, their inherent biases. The privileged, con-
tinuous, and often unique interaction with a responsive AI system that appears
reliable and friendly can lead to conceiving that mode of interaction as the bench-
mark for evaluating all the others. This means creating – and consolidating –
expectations of readiness in output, systematic argumentation, and acclimatiza-
tion to errors that can generate two possible situations. On the one hand, the
phenomenon of mechanomorphism [17], according to which the user becomes
accustomed to the methods of communication, the timing, and the content pro-
vided by a given application, reshaping on it the expectations that are created
on interactions with other human beings. In other words, technology becomes
the model through which to navigate and act in the real world rather than the
opposite. On the other hand, people can lower their expectations, their com-
municative level, and their complexity of thoughts to facilitate understanding
of the system and its work. In this case, humans put themselves at the service
of technology, anthropomorphizing its technical shortcomings instead of being
its owners and users. In such a context, explanations can modulate interactive
dynamics, ensure individuals always maintain control, specify technical dysfunc-
tions, and modulate interaction times and pause from usage.

4 Principles in Action

The principles listed above represent the starting framework into which the con-
crete approach to deception in human-AI interaction can be inserted. We have
realized that it is impossible to completely remove how banal deception impacts
human experience with new technologies, both technically and functionally (i.e.,
from programming and psychological-perceptual reasons). Therefore, an app-
roach that aims at realizing a true human-centered AI will have to address the
issue, trying to modulate its impact, maximizing the benefits, and reducing the
potential harmful effects.

This may be made possible through a two-phase approach: (i) a new method
of assessing the impact of new technologies and their design and (ii) a control
system to be implemented in the explanation and communications stages them-
selves.

For the sake of completeness, both levels will be presented. However, for the
more specific purpose of this discussion, only the latter will be explored in depth,
leaving a more detailed analysis of the former for future work.
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4.1 Vulnerability Impact Assessment

The Vulnerability Impact Assessment (VuAI) aims to systematically identify,
predict, and respond to the potential impacts of the technology used on human
vulnerability. Moreover, in a broader sense, it could become crucial in assessing
government policies at both European and Member States levels. It would be
framed by international legal and ethical principles and fundamental human
rights.

This could be an important instrument for mitigating possible harms
occurred in, or because of, the interaction with AI systems designed in accor-
dance with banal deception dynamics, while ensuring accountability. To this end,
it could be relevant to make VuAI mandatory human rights due diligence for
providers. Such an essential step can foster the achievement of the EU goals for
the development and deployment of human-centered AI. It is also central for
understanding and determining the levels of risk of AI systems, even when it is
not immediate or objectively identifiable ex-ante the impact of the AI system on
human rights, and even when there is little evidence and knowledge for detecting
the risk level.

Once the reference structure is concretely developed, it will make it possible
to divide the interaction models into classes, which consider (i) the interactive
mode, (ii) the nature of the expected average user, and (iii) the ultimate goal of
the interaction itself. Each of them will be linked to a range of impacts estimated
on the profiles of human vulnerability, investigating whether it is respected and
supported, exalted, or exploited for purposes not aligned with the right of human
dignity (which we said underlies vulnerability and legitimizes enforceability).
Each estimate of the impact on human vulnerability must correspond to a range
of deception to be considered, not further reducible for reasons related to the
functionality and acceptability of the AI system.

To this end, the Impact Assessment may consist of two elements: an assess-
ment tool (e.g., a questionnaire or a semi-automatized feedback analysis tool)
and an expert committee. The first is useful to define the features which may
elicit or directly exploit vulnerability, thus inducing over-dependency and manip-
ulating people’s will. What would make hypothetical harms to vulnerability
legally enforceable is the connection it has with human dignity. More precisely,
the relation of direct derivation vulnerability has with this foundational right,
as previously addressed.

The Expert Committee would analyze these aspects in the specific context
of usage or with regard to the given technology under evaluation.

A more detailed and systematic definition of this new impact assessment and
its scope will be further discussed in future works.

4.2 Principles-Based XAI

The framework described above represents the theoretical basis and justification
element in a legal perspective of the modulation of deception in HCI.
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To give substance to this new perspective, centered on a reassessment
of the concept of vulnerability, it would be useful to formalize a knowledge
graph. It would consist of a way to represent and structure the contextual (i.e.
domain/application-related) concepts and information.

Its purpose would be to identify the characteristics of vulnerability, the nature
of the relationships existing between its elements, and the influence of the context
of use. In this way, systems leveraging XAI techniques would be able to identify
and parse, with a good degree of approximation, any risk elements that might
arise, even at run time, due to extensive interaction with the user. Once these
“warnings” have been identified, the system will have to determine, select, and
execute the ideal countermeasures.

The first approach would be to analyze/revise the explanations themselves,
to counterbalance the otherwise exaggerated effects of banal deception. The main
rebalancing effects of the interaction would consist in trying to engage the user
as much as possible on a logical-rational level – both in the way the explanation
is given and in its content. One way is to exploit design features that target
areas of the brain antagonistic to those affected by the phenomenon of banal
deception. Those same studies that have guided researchers in structuring the
interaction “for deception” may provide insights into how to structure it to mit-
igate the same phenomenon (e.g., imposing semantic and thematic boundaries
structured as logic rule sets). Moreover, contact with a second human opinion
should be reiterated and encouraged, especially in the case of e-health appli-
cations or decision-making procedures. In doing so, it is important to reaffirm
the individual’s right to make autonomous choices and to ask for all necessary
confirmation or information to form as critical and autonomous a thought as
possible. In cases of intense risk to psychological integrity, mainly concerning
aspects of presumed addiction, excessive dependence, isolation, and distortion
of one’s own initial will/goal, XAI-powered systems must suggest, even enforc-
ing, a suspension of use and/or regular interaction (even periodically), until a
decrease in the risk factors is registered, based on specific requests addressed
to the user by the system itself. A possible strategy to enact such an intuition
can be to periodically question the user’s understanding and alignment with the
necessary knowledge to safely use a given system and the “integrity” of their
judgment/standing point.

If such an intervention might not be sufficient – or if the risk is high or
difficult to assess by the application alone – the case should be handed over to a
human domain expert that, for health/safety-critical applications, must always
have the means to assess and intervene if necessary (e.g., a psychologist in stress-
relieve personal assistants or a nutritionist/medical doctor in nutrition assistant
scenarios).



264 R. Carli and D. Calvaresi

5 Vulnerability as a Guiding Tool: Scepticism
and Potentials

The application of the framework here proposed and the future theoretical inves-
tigations to be developed in this regard imply that vulnerability assumes a cen-
tral role.

Especially in the European tradition, it might be natural to ask whether it is
necessary to refer to a concept that is not purely legal in the strict sense. Indeed,
it could be objected that a multiplication of legal principles does not benefit a
clear, coherent, and streamlined application of the law, with the additional risk
to become a mere exercise in style. This concern is certainly to be welcomed.
However, the choice made here is intended to respond to an issue – that of the
protection of the user and their psychological and physical integrity – which is
particularly challenged by AI technologies and XAI systems designed according
to the logic of banal deception. From this point of view, ignoring the central
concept of human vulnerability, or relegating it to a particular condition, which
does not change the application or formulation of the law in general, appears
short-sighted and not resolving.

Moreover, embracing a universalistic conception of vulnerability means align-
ing with the framework outlined by Martha Fineman in her Vulnerability The-
ory (herenforth VT) [32]. It suggests a theoretical framework of redistribution of
responsibility, burdens, support tools, and resilience, starting from the assump-
tion that these measures are functional to the well-being of society, overcoming
individual particularisms. This approach seems well suited to the analysis of the
interaction between non-specialized users and AI, even when mediated by XAI.
In fact, as demonstrated above, the dynamics of banal deception target cognitive
and emotional constructs common to humans, not specific categories.

Despite what is sometimes disputed, VT is not a mere argumentative exercise,
devoid of practical evidence. It is true that it has never been used holistically as
a means of reforming, drafting, or adapting legislation yet. Nevertheless, some
of its instances – universalistic interpretation of vulnerability, dependence as
transposition of its concept, resilience as its opposite – have been cited or applied
without explicit reference in the rulings of the European Court of Justice [39] and
the European Court of Human Rights [36], and to address international human
rights issues [37]. Moreover, it should not be considered that if vulnerability is
no longer diversified in degrees, this implies not having regard to situations of
particular fragility. It only means changing the perspective of the investigation
– excluding that there may be users completely immune to the possible negative
effects of deceptive mechanisms – and to encourage the research and formula-
tion of legal and technological interventions. The latter should aim at creating
resources and resilience tools for all, without excluding the possibility that they
may be more decisive in some circumstances than in others.
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6 Conclusions and Future Works

This study has focused on deception in human-AI interaction, arguing that
banal deception plays a central role in enhancing the effectiveness of the sys-
tem’s functionalities, raising confidence and appreciation from the users in the
given technology. However, the very concept of deception often has a negative
connotation, being conceived as a tool of manipulation. Thus, we have pointed
out that banal deception is intrinsic in human-AI interaction (HCI, HRI), and
it consists of five fundamental elements: ordinary character, functional means,
people’s obliviousness-centered, low definition, and pre-definition.

Nevertheless, the fact that the banal deception has arisen with the precise
intention of encouraging the most efficient interaction possible does not exclude
the possibility of harmful side effects—above all, manipulative drifts.

In such a scenario, although XAI can be relevant to counteract such neg-
ative effects, the design and content of explanations can also exacerbate the
phenomenon described above. This is because individuals are naturally led to
attribute human qualities to inanimate objects, even more in the case of AI
systems. Such a statement has already been proved by the Media Equation The-
ory [55], the CASA model [52], and the mechanism of Mindless Behaviour [58].

It has been emphasized here that this tendency is an integral part of an
irreducible profile of vulnerability that characterizes human beings as such.

For this reason, this study claims the need to identify a framework to which
XAI must refer (or embed) in the design of explanations—to counterbalance
the possible harmful effects of banal deception and enhance its benefits. The
principles here identified are: (i) the right to the integrity of a person—which
consists of the right to both physical and psychological health; (ii) the respect for
private and family life—which also includes the protection of personal identity,
the inviolability of private space, and the autonomy of one’s own choices –;
(iii) right of human dignity – from which the right to inclusion, and the need
to enforce a humanisation of the interaction derive. From this perspective, we
suggested a new interpretation of the concept of vulnerability as an indirect
instrument to evaluate the impact of the phenomenon of banal deception on
human dignity.

Such a theoretical framework could represent the essential mean towards a:
Vulnerability Impact Assessment and the implementation of related knowledge
graphs enabling a semi-automated pre-check and possible handover to humans
domain expert if necessary. The first measure could serve as a tool to assess
how/how much banal deception impact humans’ inherent vulnerability, taking
into account the application under analysis and the nature of both the users
and the interaction. Thus, it could be possible to address and legally enforce the
level of deception to be considered admissible case by case. The second measure
would act at a system level, placing a continuous run-time assessment of possible
manipulative drift “warnings”. Hence, these dynamics could be mitigated and/or
limited promptly through the timely intervention of the systems themselves and
the human specialist (triggered) intervention if necessary.
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Future works will focus on in-depth analysis of the vulnerability concepts and
their formalization (from a schematic/systemic perspective) to then enable the
design and implementation of semi-automated reasoners bridging data-driven
(run-time) generated explanations, legally relevant vulnerability concepts, and
the underneath rule-based system vehiculating the overall system dynamics.
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References

1. Adrienne, K.: Effective enforcement of human rights: the Tysiac v. Poland case.
Studia Iuridica Auctoritate Universitatis Pecs Publicata 143, 186 (2009)

2. AI HLEG: High-level expert group on artificial intelligence (2019)
3. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and
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Abstract. Activities of Daily Living (ADLs) are often disrupted in
patients suffering from dementia due to a well-known taxonomy of errors.
Wearable technologies have increasingly been used to monitor, diagnose,
and assist these patients. The present paper argues that the benefits
current and future wearable devices provide to dementia patients could
be enhanced with cognitive architectures. It proposes such an architec-
ture, establishing connections between modalities within the architec-
ture and common errors made by dementia patients while engaging in
ADLs. The paper contends that such a model could offer continuous
diagnostic monitoring for both patients and caregivers, while also facil-
itating a more transparent patient experience regarding their condition,
potentially influencing their activities. Concurrently, such a system could
predict patient errors, thus offering corrective guidance before an error
occurs. This system could significantly improve the well-being of demen-
tia patients.

Keywords: Cognitive Architecture · Wearable · Dementia

1 Introduction

Activities of Daily Living (ADL), everyday tasks such as making a cup of coffee
or calling someone on the phone, are disrupted in patients suffering from demen-
tia. Dementia, a condition affecting over 55 million people worldwide, produces
an intention-action gap1. The intention-action gap occurs when someone is not
able to successfully execute their intentions, often due to a decline in cognitive
function. ADLs are good indicators of the level of dementia a person is expe-
riencing. As dementia progresses, patients have increasing difficulty performing
ADLs. This decline in function can be gradual or sudden, and its onset can be
unpredictable.
1 Intention is the cognitive process by which people decide on and commit to an action.

Action is the physical process of executing an intention.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Calvaresi et al. (Eds.): EXTRAAMAS 2023, LNAI 14127, pp. 270–280, 2023.
https://doi.org/10.1007/978-3-031-40878-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40878-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-40878-6_15


Enhancing Wearable Technologies for Dementia Care 271

Numerous assistive devices and technologies are available to aid people with
dementia in performing their activities of daily living. These range from simple
tools like pillboxes (small containers that remind people to take their medica-
tion), to more complex devices such as automated medication dispensers (devices
that dispense medication at preset times). The development and utilization of
such assistive devices and technologies have gained traction in part because
dementia patients report that disruptions to ADLs cause the greatest loss of
independence and wellbeing.

Multiple proposals have been put forward for the use of wearable technolo-
gies to aid dementia patients [8,36]. In relation to ADLs, wearables equipped
with adequate behavioural monitoring would be able to detect patient errors
during these activities and provide them with corrective guidance - guidance
that responds to the error. The present paper proposes an approach that uti-
lizes wearables and cognitive models to create systems that provide patients with
directive guidance - guidance that predicts errors and aims to prevent them from
happening.

2 Dementia Is Diverse and Dynamic

The reason why a one-size-fits-all corrective guidance is not viable for dementia
patients lies in the diversity and dynamic nature of dementia. In other words,
there are different types of dementia, and each patient’s condition changes over
time. Furthermore, even among patients with the same type of dementia, there
are individual differences in the types of errors they exhibit.

Not all cognitive decline is the result of dementia. From early adulthood
onwards, throughout a person’s life, thinking speed, reasoning, working memory,
and executive function all progressively decline [7]. This age-associated cognitive
decline is non-pathological [16] and is an inevitable process of neurological aging.
Dementia and mild cognitive impairment (MCI) are relatively rare conditions.
Current estimates suggest that less than 20% of adults over the age of 80 have
dementia [27].

Dementia is a syndrome characterized by a decline in memory and thinking
abilities, as well as deterioration of cognitive abilities [20]. Symptoms of dementia
include problems with planning and carrying out tasks, memory loss, mood and
personality changes, and confusion. When these symptoms impair ADLs to a
point where a person cannot live independently, they are said to have dementia.

Dementia is not a single disease, but an umbrella term for conditions that
result in symptoms associated with memory loss, thinking, and communication
problems. There are different types of dementia. First, dementia is not synony-
mous with MCI, although the two display similar symptoms and are thus often
confused. MCI is a cognitive impairment that affects 5–20% of seniors [27]. Its
symptoms are similar to those of regular brain aging - including decreased pro-
cessing speed, working memory issues, and difficulties with reasoning and exec-
utive function - but more severe. People with MCI often forget names, numbers,
and passwords, misplace items, struggle to remember conversations or decisions,
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and have trouble keeping track of their commitments and plans. As a result, MCI
does not always prevent people from living independently, and some cases are
even treatable. Approximately one in six people with MCI will develop dementia
within a year.

There are many types of dementia, but Alzheimer’s disease is the most
common, accounting for 60–75% of all cases [27]. Other forms include vascular
dementia, frontotemporal dementia, dementia with Lewy bodies, alcohol-related
‘dementia’, young-onset dementia, and Creutzfeldt-Jakob disease. A comprehen-
sive review of all these conditions is outside the scope of this article. However, it
is important to note that each type of dementia has its unique cognitive disrup-
tions, patient errors, and treatment challenges. Additionally, mixed dementia is
a condition in which more than one type of dementia occurs simultaneously [5],
further complicating the establishment of a homogeneous approach to corrective
guidance.

A patient’s dementia symptoms also change over time. Dementia is dynamic
in that a patient’s symptoms worsen over time [24]. The rate at which it pro-
gresses and the cognitive functions it impairs will differ even among patients
with the same type of dementia [34]. As a result, there are individual differences
in the types of errors they display, even within the same type of dementia.

In conclusion, dementia takes different forms, with cases existing where a
single patient manifests more than one form. It changes over time, typically
worsening by affecting a cognitive modality with greater intensity. However, its
progression differs among patients, and different patients exhibit different errors
even if they have the same type of dementia. A technology capable of detecting
these errors and tracking their changes over time would indeed be beneficial.

3 Wearables: Monitoring, Augmentation, and Guidance

Wearable technology provides a unique advantage for helping dementia patients
by monitoring their behavior, identifying errors as they occur, and aiding
patients in correcting these errors after they occur - corrective guidance - or
even before they occur - directive guidance. Through the use of various sensors
and the capacity to communicate with other smart devices, wearable technolo-
gies can be context-aware. Multiple examples exist of wearable systems being
used for augmented memory, including the wearable remembrance agent [28],
which monitors information retrieved from computers; SenseCam [13], a camera
that serves as a memory aid; and DejaView [6], a healthcare system comprised of
multiple sensors that assist patients in recalling daily activities. Despite poten-
tial perceptions of these technologies as intrusive, research suggests that patients
support their development [12,31].

There have been proposals for utilizing more minimal setups, using just
one wearable device, to monitor user behavior and augment a patient’s mem-
ory [8,22,36]. Such wearables are made feasible with the aid of tailored machine
learning algorithms that can identify dementia type and patient error based on
data gathered from wearable technology [17,19]. A systematic implementation
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incorporating the seven most popular wearables at the time examined whether
these devices could serve as suitable dementia patient monitoring devices [26].
The study found that the devices enabled real-time monitoring of dementia
patients, but also identified major technological gaps, such as the need for devices
with lower power consumption.

Wearables can also serve as diagnostic tools for dementia patients. A recent
systematic review assessing wearable technology in dementia found that these
devices could effectively monitor patient behavior, highlighting that adults with
dementia were less active, had a more fragmented sleep-wake cycle, and exhib-
ited a less varied circadian rhythm [4]. Inertial wearables have been proposed as
pragmatic tools for monitoring control and gait, which serve as useful biomarkers
in dementia [11]. A more recent paper determined that gait impairment monitor-
ing by wearable technologies combined with machine learning algorithms could
differentiate between different types of dementia [21].

Furthermore, wearable technology can provide patients with guidance for
ADLs by assisting them through activities, thereby reducing or correcting
errors [8,30]. For example, CueMinder reminds patients to perform ADLs using
image and vocal cues, aiming to promote patient independence [14]. Other sys-
tems are more single-task oriented, such as AWash, which uses a smartwatch to
monitor and segment hand-washing actions and prompts users to remind them
to wash their hands [2].

We posit that the benefits wearable devices provide to dementia patients
could be further enhanced with the use of cognitive architectures in two key
ways. First, such models could provide an explanatory layer by identifying the
cognitive modality that has been disrupted given the error patterns displayed by
a patient. This has implications for the early detection of disruption to cognitive
modalities. Apart from the diagnostic benefit, this would also increase trans-
parency with patients. Second, by understanding what cognitive modalities are
getting disrupted, wearables could predict the likelihood of future errors, thereby
serving as a tool for tailored directive assistance that can enhance a patient’s
independence and well-being.

4 Cognitive Architectures

A cognitive model is a representation of the mental processes in the mind [1]. It
offers an understanding of how the mind takes in, processes, and stores informa-
tion. Some cognitive models provide a comprehensive description of the mind’s
operations, while others focus on specific elements such as memory, attention,
or decision-making. The goal of cognitive modeling is to emulate human cogni-
tion in a way that aligns with observable data, like reaction times or functional
magnetic resonance imaging results.

When a cognitive model is constructed to serve as the basis for artificial
intelligence, it is referred to as a cognitive architecture [18]. Typically, cognitive
architectures consist of various modules, each dedicated to a specific task or set
of tasks. For example, one module may be responsible for attention, another for
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working memory, and another for long-term memory. Each module has its own
set of processes and data structures that it uses to fulfill its function. These mod-
ules are interconnected, allowing information to flow between them so that the
outputs of one module can become the inputs of another. The specific array of
modules and their interconnections may vary between different cognitive archi-
tectures. Some architectures aim to emulate the operation of the human mind
as closely as possible, while others may be more simplified or abstract.

Various approaches have been taken to construct cognitive architectures.
However, as John Laird [18] argues, many cognitive architectures share simi-
larities. He proposes a prototypical cognitive architecture consisting of memo-
ries and processing units common to other renowned cognitive architectures like
SOAR, ACT-R [29], Icarus [3], LIDA [9], Clarion [32], and EPIC [15]. The block
diagram of this prototypical cognitive architecture is shown in Fig. 1. This pro-
totypical cognitive architecture will be used in this paper, as it consists of most
elements present in other widely-used cognitive architectures.

Fig. 1. A Prototypical Cognitive Architecture.

In this architecture, sensory information is initially processed by perception
and then transferred to short-term memory. From here, cues from long-term
declarative memory can be retrieved to access facts relevant to the current situ-
ation. Declarative memory has an associated learning module that uses activity
from short-term memory to add new facts to this memory type. Similarly, pro-
cedural memory stores knowledge about what actions should be executed and
when. Like declarative memory, procedural memory can be cued by activity in
short-term memory, and it also includes a learning component. Data from both
procedural memory and working memory are used by the action-selection com-
ponent to determine the most suitable next action. This could involve physical
actions in the external environment or deliberate changes in short-term mem-
ory. Thus, behavior is generated through a sequence of decisions over potential
internal and/or external actions. Complex behavior, including internal planning,
arises from actions that create and interpret internally generated structures and
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respond to the dynamics of the external environment. The architecture of this
model supports both reactive behavior in dynamic environments and more delib-
erate, knowledge-mediated behavior. Lastly, learning mechanisms can be incre-
mental - adding small units of knowledge one at a time - and/or online - learning
occurring during performance. As new knowledge is experienced and acquired,
it is immediately available. Learning does not require extensive analysis of past
behavior or previously acquired knowledge.

5 Implementing a Cognitive Architecture for Dementia

A successful cognitive architecture provides a fixed infrastructure for understand-
ing and developing agents that require only task-specific knowledge to be added,
in addition to general knowledge [18]. This allows cognitive modeling to build
upon pre-existing theories by using an existing architecture, thereby saving the
time and effort spent starting from scratch. For modeling human behavioral data
of dementia patients performing ADLs, the proposed cognitive architecture in
Fig. 1 can be used to understand how patients observe changes in the environ-
ment, interpret them, retrieve other precepts from memory, convert them into
actions, and so forth.

[35] have researched and categorized the four most common errors that
dementia patients exhibit while performing ADLs. First, Sequencing errors,
which can be further categorized into: Intrusion - the performance of an inap-
propriate action from a different activity that prevents the completion of the
intended activity; Omission - the omission of an action required for complet-
ing the intended activity; Repetition - the repetition of an action that prevents
the completion of the intended activity. Second, errors related to finding things;
further divided into errors in finding items that are out of view and identify-
ing items that are in view. Third, errors related to the operation of household
appliances. Finally, Incoherence errors, which can be further divided into toy-
ing - performing random gestures with no apparent goal - and inactivity - not
performing any action at all.

With this required task-specific knowledge, the prototypical cognitive archi-
tecture can be used to model dementia patients performing ADLs. Sequencing
errors thus emerge from disruptions to the action selection or action performance
modalities. More specifically, intrusion and repetition are action selection errors
while omission could be due to either action selection or action performance.
Errors in finding things that are out of view, as well as identifying things that
are in view, can result from errors in short-term memory, declarative long-term
memory, or declarative learning. Errors in the operation of appliances can emerge
from errors in procedural long-term memory and procedural learning. Finally,
incoherence errors may be due to disruptions to short-term memory, specifically
the ability to hold a goal in mind, or due to errors in action selection and action
execution. The block diagram of how patients’ errors relate to the cognitive
modalities is available in Fig. 2.
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6 Evaluating the Cognitive Architecture

Validating a cognitive architecture of patient error would be feasible to conduct
at scale with wearables and cognitive assessment batteries. As previously dis-
cussed, wearables can be used to detect different types of dementia [21], as well
as varying patient behaviors [22], and thus, will be able to discern individual
differences in the frequency of patient errors. To identify whether the observed
patient errors stem from disruptions to the modalities proposed in Fig. 2, they
can be tested against results from cognitive assessments. A cognitive assessment
is a set of tests that are administered to evaluate an individual’s cognitive abil-
ities. These tests are often used to diagnose cognitive impairments.

Fig. 2. Cognitive architecture of patient errors.

The Cognitive Assessment Battery (CAB) is one such test [23]. CAB is capa-
ble of clearly distinguishing between normal cognitive aging, Mild Cognitive
Impairment (MCI), and dementia. It consists of six assessments covering dif-
ferent cognitive domains, namely, language, executive functions, speed, atten-
tion, episodic memory, and visuospatial functions. The Mini-Mental State Exam
(MMSE), also used to screen for dementia, assesses attention, language, recall,
and orientation [10]. These two tests are complimentary and have both been
modified and validated using different methodologies. For example, the MMSE
has been updated in the Modified MMSE, which includes verbal fluency [33].
Furthermore, there is evidence that such tests can be reliably administered over
the phone [25], boding well for the possibility of these tests being administered
through wearable technologies. Additionally, when a new type of error appears,
patients could be administered new cognitive assessments.

The result of validating the model would be a cognitive architecture that
provides an explanatory, causal layer behind patient error; specifically, how dif-
ferent disruptions produce varying distributions of patient error. Aside from
being explanatory, such a model would also be predictive of the likelihood of
future distributions of error for a patient, as different frequencies of error would
result from distinct disruptions to cognition. The functionality of such a model
will now be discussed.
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7 Functionality

The functionality of a cognitive architecture for wearables assisting dementia
patients with ADLs is twofold. First, the architecture would enable such tech-
nologies to be diagnostic and transparent with patients. The wearables could
continuously track the frequency of patient error, understanding how alterations
to these patterns might relate to changes in cognitive modalities. The system
would provide a real-time assessment of an individual’s performance over time.
This information could be used to evaluate an individual’s performance, which
would be essential for understanding the efficacy of rehabilitation programs.

Provided consent is given, the wearable could also directly send updates to
the patient’s caregivers or close friends and relatives. This would inform the
treatment and care the patient needs to receive. For instance, if a person is
going about their daily activities and is not making some of the errors that
are typically made, but is making new kinds of errors, this would indicate a
deterioration in function. By supplying this information to the caregiver, the
caregiver could provide guidance to help prevent further deterioration.

The cognitive architecture would offer a number of advantages for patients
with dementia. First, it would provide them with greater transparency over
their condition. Second, it would offer a level of support that could assist them
in making decisions about their care. Third, it would be highly customized,
allowing patients to receive the specific level of support they need. Lastly, it
would be non-intrusive, meaning patients could wear the device without feeling
as though they are being monitored.

Secondly, the architecture could be used to predict future errors in dementia
patients. As the distribution of error will cluster around disruptions to certain
cognitive modalities, a wearable with such a cognitive architecture could antic-
ipate patient behavior. This predictive capability could, in turn, be used to
provide patients with directive guidance, offering advice on performing ADLs
before the predicted error occurs. Arguably, this would be more beneficial than
corrective guidance that responds to patient error after it happens.

There are many potential applications for a cognitive architecture, and the
specific applications will depend on the unique needs of the dementia patient
population. However, the potential benefits of such an architecture are clear. By
predicting when errors are likely to occur, a cognitive architecture could provide
patients with guidance to help them avoid making errors. In turn, this could
help patients stay safe and enhance their quality of life. Future research could
explore the communication methods used for talking to patients about changes
to their condition, as well as ways of gaining their attention and giving them
precise directive guidance.

8 Conclusion

This paper contends that the benefits wearable devices currently offer to demen-
tia patients, and those they could provide in the future, can be amplified by
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integrating cognitive architectures. It puts forth such an architecture, delineat-
ing the connections between modalities within the architecture and patient errors
commonly manifested by dementia patients during ADLs. The paper asserts that
this model could enable continuous diagnostic monitoring for both patients and
caregivers, while also affording patients a more transparent understanding of
their condition, which may inform their actions. Furthermore, such a system
would have the capacity to predict patient errors, thus offering them correc-
tive guidance before an error occurs. Such a system could greatly enhance the
well-being of dementia patients.
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