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Abstract Coupled systems of porous media and free flow can be modelled by the
Stokes equations in the free-flow domain, Darcy’s law in the porous medium, and
an appropriate set of coupling conditions on the fluid–porous interface. Discretisa-
tion of the coupled Stokes–Darcy problem leads to a large, sparse, ill-conditioned,
and nonsymmetric linear system. We discretise the system using the MAC scheme,
i.e., the finite volume method on staggered grids. To accelerate convergence of the
GMRESmethod, efficient preconditioners are needed. We propose a block diagonal,
a block triangular and a constraint preconditioner for the Stokes–Darcy problemwith
the classical set of coupling conditions based on the Beavers–Joseph condition and
the generalised coupling conditions which were developed for arbitrary flow to the
interface. We show the robustness and efficiency of the proposed preconditioners in
numerical experiments.

Keywords Stokes equations · Darcy’s law · Fluid–porous interface · Finite
volume method · Preconditioner

P. Strohbeck (B) · C. Riethmüller · D. Göddeke · I. Rybak
Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring
57, 70569 Stuttgart, Germany
e-mail: paula.strohbeck@ians.uni-stuttgart.de

C. Riethmüller
e-mail: cedric.riethmueller@ians.uni-stuttgart.de

D. Göddeke
e-mail: dominik.goeddeke@ians.uni-stuttgart.de

I. Rybak
e-mail: iryna.rybak@ians.uni-stuttgart.de

C. Riethmüller · D. Göddeke
Stuttgart Centre for Simulation Science, University of Stuttgart, Allmandring 5b, 70569 Stuttgart,
Germany

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Franck et al. (eds.), Finite Volumes for Complex Applications X—Volume 1, Elliptic
and Parabolic Problems, Springer Proceedings in Mathematics & Statistics 432,
https://doi.org/10.1007/978-3-031-40864-9_32

375

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40864-9_32&domain=pdf
mailto:paula.strohbeck@ians.uni-stuttgart.de
mailto:cedric.riethmueller@ians.uni-stuttgart.de
mailto:dominik.goeddeke@ians.uni-stuttgart.de
mailto:iryna.rybak@ians.uni-stuttgart.de
https://doi.org/10.1007/978-3-031-40864-9_32


376 P. Strohbeck et al.

1 Introduction

Coupled free-flow and porous-medium flow problems appear routinely in science
and engineering, e.g., interaction between surface and groundwater, water-gas man-
agement in fuel cells, industrial filtration, etc. The most widely studied problem in
the literature is the Stokes–Darcy problem for coupled single-fluid-phase flows with
different sets of interface conditions on the fluid–porous interface, see e.g., [1, 10,
11, 13]. Solving such coupled flow problems in a monolithic way is challenging
because the system of linear equations arising from discretisation is ill-conditioned.
However, for validation purposes, the monolithic approach is the method of choice.
Thus, proper preconditioning techniques are needed.

The Stokes–Darcy problem with the classical set of interface conditions (conser-
vation of mass, balance of normal forces, the Beavers–Joseph–Saffman condition on
the tangential velocity) has been well-studied in the last two decades. Several pre-
conditioning strategies have been developed recently for this problem, e.g., [4, 6–8,
12, 15]. However, the Beavers–Joseph–Saffman condition [2] is only applicable for
flows parallel to the fluid–porous interface. That restricts the amount of applications
which can be accurately modelled. Recently, generalised coupling conditions suit-
able for arbitrary flow directions have been proposed in [11]. The purpose of this
work is to develop robust and efficient preconditioners for the Stokes–Darcy problem
with these generalised interface conditions and with the Beavers–Joseph condition
without Saffman simplification.

Discretisation of the Stokes–Darcy problem leads to a saddle-point type matrix.
Therefore, we adjust preconditioning techniques developed for saddle-point sys-
tems [3, 5].We extend the results available in literature [4, 7, 8, 12] and propose three
different preconditioners for the Stokes–Darcy problemwith the Beavers–Joseph and
the generalised interface conditions: block diagonal, block triangular and constraint
preconditioners. We study the effectiveness and robustness of these preconditioners
and provide numerical simulation results.

The paper is organised as follows. In Sect. 2, we describe the coupled Stokes–
Darcy problem. In Sect. 3, we briefly describe the discretisation scheme and propose
three different preconditioners for the discrete problem. The benchmark problem and
the numerical simulations results are presented in Sect. 4. Conclusions and future
work follow in Sect. 5.

2 Problem Formulation

The coupled domain Ω = Ωpm ∪ Ωff consists of the free-flow region Ωff and the
porous-medium domain Ωpm coupled at the sharp fluid–porous interface Γ (Fig. 1).
In this paper,we restrict ourselves to a two-dimensional setting.We consider a steady-
state, single-phase flow of an incompressible and isothermal fluid at low Reynolds
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Fig. 1 Flow system
description

numbers (Re � 1). The solid phase is supposed to be nondeformable and rigid
leading to a constant porosity.

The fluid flow in the free-flow domain Ωff is described by the Stokes equations

∇ · vff = 0, −∇ · T(vff , pff) = 0 in Ωff , (1)

where vff is the fluid velocity, pff is the fluid pressure, T (vff , pff) = μ∇vff − pffI
is the nonsymmetric stress tensor, μ is the dynamic viscosity, and I is the identity
tensor.

Fluid flow in the porous medium is described by Darcy’s law

∇ · vpm = 0, vpm = −K
μ

∇ ppm in Ωpm, (2)

where K is the intrinsic permeability tensor, which is symmetric, positive definite,
and bounded.

Equations (1) and (2) are of different types. To couple them on the interface Γ ,
various sets of interface conditions have been proposed in the literature. In this paper,
we consider the classical set of coupling conditions which are valid for parallel flows
to the interface as well as generalised conditions which have been recently developed
in [11] and are applicable to arbitrary flows.

The following coupling conditions—the conservation of mass across the inter-
face (3), the balance of normal forces (4) and the Beavers–Joseph condition (5) on
the tangential velocity [2]—are typically used in the literature

vff · n = vpm · n on Γ, (3)

−n · T (vff , pff)n = ppm on Γ, (4)

(
vff − vpm

) · τ −
√
K

αBJ
(∇vff n) · τ = 0 on Γ. (5)

Here, n = −nff = npm is the unit vector normal to the fluid–porous interface Γ

pointing outwards from the porous-medium domain Ωpm, τ is the unit vector tan-
gential to the interface (Fig. 1), αBJ > 0 is the Beavers–Joseph slip coefficient, and√
K = √

τ · Kτ .
The generalised coupling conditions consist of the conservation of mass (3), an

extension of the balance of normal forces (6) and a generalisation of the Beavers–
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Joseph condition (7):

−n · T (vff , pff) n − μN bl
s (∇vff n) · τ = ppm on Γ, (6)

(
vff − vintpm

)
· τ − ε

(
Nbl · τ

)
(∇vff n) · τ = 0 on Γ. (7)

Here, the interfacial velocity is defined as

vintpm = −ε2Mbl

μ
∇ ppm,

and the boundary layer coefficients N bl
s ∈ R, Nbl = (N bl

1 , N bl
2 )� ∈ R

2 and Mbl =
(M j,bl

i )i, j=1,2 ∈ R
2×2 are computed numerically based on the theory of homogeni-

sation and boundary layers [11].

3 Discretisation and Preconditioners

The coupled Stokes–Darcy problems (1)–(5) and (1)–(3), (6), (7) are discretised
using the finite volumemethod on staggered grids (MAC scheme) [16]. The resulting
systems of linear equations are of the form

Ax = b, A ∈ {ABJ, AER}, x = (vff , pff , ppm)�, (8)

where ABJ corresponds to the discretised Stokes–Darcy problem with the classical
coupling conditions (3)–(5) including the Beavers–Joseph condition and AER cor-
responds to the generalised coupling conditions (3), (6), (7) derived in [11]. Both
matrices are large, sparse and ill-conditioned.

While the discrete coupled Stokes–Darcy equations are of the more favourable
double saddle point form for the Beavers–Joseph–Saffman interface condition [4, 7,
8], the matrices ABJ and AER are nonsymmetric:

ABJ =
⎛

⎝
ABJ B�

BJ,2 C�
BJ,2

BBJ,1 0 0
CBJ,1 0 −DBJ

⎞

⎠ , AER =
⎛

⎝
AER B�

ER,2 C�
ER,2

BER,1 0 0
CER,1 0 −DER

⎞

⎠ . (9)

To solve system (8) efficiently, we use flexible GMRES [14, Chap. 9.4.1]. For
this algorithm, we have to use the right preconditioning

AP−1x = b, x = Px. (10)

We consider the block diagonal preconditioner
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Pdiag =
⎛

⎝
A 0 0
0 SB 0
0 0 − (

D + σC1A−1C�
2

)

⎞

⎠ (11)

based on the preconditioner developed in [7], the block triangular preconditioner

Ptriang =
⎛

⎝
A B�

2 0
0 −SB 0
0 0 − (

D + σC1A−1C�
2

)

⎞

⎠ (12)

based on [3] and the constraint preconditioner

Pcon =
⎛

⎝
A B�

2 0
B1 0 0
0 0 − (

D + σC1A−1C�
2

)

⎞

⎠ (13)

based on [4, 8]. Here, SB := B1A−1B�
2 is the Schur complement, A ∈ {ABJ, AER},

Bi ∈ {BBJ,i , BER,i }, Ci ∈ {CBJ,i ,CER,i }, for i = 1, 2, and D ∈ {DBJ, DER}. The con-
stant σ ≥ 0 is fitted for each problem formulation.

4 Numerical Results

4.1 Benchmark Model

We study a flow scenario where the flow is arbitrary to the fluid–porous interface
Γ . The coupled domain is divided into the free-flow region Ωff = (0, 1) × (0, 0.5)
and the porous-medium domain Ωpm = (0, 1) × (0,−0.5) that are separated by the
interfaceΓ = (0, 1) × {0}. To get a closedmodel, the following boundary conditions
are implemented on the external boundary,

μ(∇v − pI)n = 0 on Γout,

μ(∇v − pI)n = −pbn on {y = −0.5},
v = 0 on Γwall,

v = (0,−0.2sin(πx)) on Γin,

(14)

for Γout = {x = 0} × (0, 0.1) ∪ {x = 1} × (0, 0.5), Γin = {y = 0.5}, Γwall = ({x =
0} ∪ {x = 1})\Γout and pb = 10−6 − x (Fig. 2). Due to the flow being arbitrary to
the fluid–porous interface Γ , the Beavers–Joseph coupling conditions (3)–(5) are
not suitable and the generalised coupling conditions (3), (6), (7) are recommended.

We consider an isotropic porous medium constructed by periodically distributed
circular solid inclusions of radius r = 0.25ε, where ε is the scale separation param-
eter. The permeability k11 and the boundary layer constants M1,bl

1 and N bl
1 from the
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Fig. 2 Flow problem for the numerical results

Fig. 3 Permeability k11 and
boundary layer constants
M1,bl

1 and N bl
1 of the

geometry

generalised coupling conditions (3), (6), (7) corresponding to the considered geom-
etry are given in Fig. 3. The permeability k11 and the boundary layer constant M1,bl

1
have to be scaled by ε2.

4.2 Robustness and Efficiency Analysis

To show the robustness and efficiency of the exact versions of the precondition-
ers Pdiag given in (11), Ptriang given in (12), and Pcon given in (13) we consider
three different values for the viscosity μ ∈ {10−5, 10−3, 1} and two different scale
separation parameters ε ∈ {1/20, 1/200} which yields different permeability ten-
sors K = k11I and different boundary layer constants M1,bl

1 . We consider the grid
width h = 1/80 and set αBJ = 1 for the Beaver–Joseph coupling condition (5) as
routinely used in the literature. We fit the parameter σ by determining the optimal
σ ∈ {0, 1, . . . , 10} using a brute-force search. The Stokes–Darcy problem is discre-
tised using our in-house C++ software. We solve the preconditioned system (8) with
the restarted flexible GMRES method using 20 restarts in Matlab. The initial solu-
tion x0 is the zero vector. The iterations are stopped once ‖Axn − b‖2 ≤ 10−8‖b‖2
is reached or after nmax = 2000 iteration steps. All computations were carried out
on a laptop with an AMD Ryzen™ 5 2500U processor and 12.0GB RAM using
MATLAB.R2019b. The number of iterations until the flexible GMRES algorithm
reaches the given tolerance are displayed in Table1. In Fig. 4 we plot the relative
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Fig. 4 Relative residuals for the classical conditions (3)–(5) (left) and the generalised coupling
conditions (3), (6), (7) (right)

Table 1 Iterations for different values of μ and ε appearing in k11 and M1,bl
1 in the coupled Stokes–

Darcy system with h = 1/80
Preconditioners for ABJ Preconditioners for AER

ε μ σ Pdiag σ Ptriang σ Pcon σ Pdiag σ Ptriang σ Pcon

1/20 10−5 2 49 1 33 2 27 0 139 0 91 0 60

1/20 10−3 2 38 1 28 2 22 0 129 0 82 0 53

1/20 1 1 41 1 27 2 23 0 124 0 75 0 61

1/200 10−5 1 31 1 24 2 20 1 135 10 107 3 69

1/200 10−3 1 31 1 23 2 19 3 135 3 100 0 65

1/200 1 2 35 1 25 2 22 6 135 3 100 2 74

residuals ‖Axn − b‖2/‖Ax0 − b‖2 against the number of iterations n for ε = 1/20
and μ = 10−3.

It can be seen in Fig. 4 that all three preconditioners significantly reduce the
number of iteration steps. The needed CPU time to solve problem (8) is decreased
using the developed preconditioners. Here, we choose the parameters ε = 1/20 and
μ = 10−3. To solve the nonpreconditioned system in the case of the Beavers–Joseph
coupling condition 1207 seconds are needed. The diagonal preconditioner Pdiag

reduces the CPU time to 54.01 s, the triangular preconditioner Ptriang needs 52.53s,
and the constraint preconditioner Pcon requires 42.64s. For the generalised cou-
pling conditions 1413s are necessary to solve the system without preconditioning.
It takes 97.22 s to solve the system with the diagonal, 78.70 s with the triangular and
72.22 s with the constraint preconditioner. Furthermore, all preconditioners show a
high robustness with respect to changes in the viscosity μ, the permeability k11 and
the boundary layer constant M1,bl

1 as shown in Table1. While all preconditioners
provide an improvement of the convergence, the constraint-preconditioned system
AP−1

con needs the fewest number of iteration steps and the smallest CPU time until
convergence for every considered case. Therefore, in practical applications the use
of Pcon is recommended.
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5 Conclusions and Future Work

In this paper, we have considered the coupled Stokes–Darcy systemwith the classical
set of interface conditions comprising the Beavers–Joseph coupling condition and
with generalised interface conditions that were recently developed for arbitrary flows
to the interface. To discretise the coupled problem the MAC scheme was used. We
have suggested and evaluated three preconditioners: a block diagonal Pdiag, a block
triangularPtriang, and a constraint preconditionerPcon. The robustness and efficiency
of these preconditioners were shown in numerical experiments for a benchmark
model with arbitrary flow to the interface. This work was especially focused on the
monolithic solution of the governing coupled system and the development of suit-
able preconditioners to the latter. In a further step we will compare the efficiency
of the monolithic approach to a partitioned coupling one. For the system resulting
from the classical conditions this has already been done in a comparative study in
[15] where the coupling library preCICE [9] was used for the partitioned case. The
incorporation of the generalised coupling conditions into preCICE and a comparison
of the solution approaches are part of future work. Furthermore, we strive for apply-
ing the preconditioners to systems resulting from real-world scenarios. Therefore,
we want to investigate their scalability with respect to both, runtime and memory
consumption.
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