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Preface

The finite volume method is a spatial discretization technique for partial differential
equations based on the physical principle of local conservation. It has been success-
fully used in many applications, including fluid dynamics, magnetohydrodynamics,
nuclear physics, or plasma physics. Motivated by their large applicability to real-
world problems, finite volumes have been the purpose of an intensive research effort
in the last decades, yielding significant progress in the design, the numerical analysis,
or the practical implementation of the methods.

Research on finite volumes remains very active, as problems are becoming more
andmore complex.Among the current challenges addressed by the scientific commu-
nity, let us mention, for instance, the design of robust (with respect to themesh and/or
physical parameters) numerical methods, high-order methods, methods preserving
structural properties (positivity or dissipation of a prescribed quantity), or methods
enhanced by machine learning approaches.

Previous conferences in this series have been held in Rouen (1996), Duisburg
(1999), Porquerolles (2002), Marrakech (2005), Aussois (2008), Prague (2011), and
Berlin (2014), Lille (2017) and Bergen (2020, online).

The present volumes contain the invited and contributed papers presented as
posters or talks at the 10th International Symposium on Finite Volumes for Complex
Applications held at the University of Strasbourg, from October 30 to November 3,
2023.

The first volume contains the invited contributions, as well as contributed papers
focusing on finite volume schemes for elliptic and parabolic problems. Topics of the
contributed papers include structure-preserving schemes, convergence proofs, and
error estimates.

The second volume is focused on finite volumemethods for hyperbolic and related
problems, such as methods compatible with the low Mach number limit or able
to exactly preserve steady solutions, the development and analysis of high order
methods, or the discretization of kinetic equations.

vii
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The volume editors thank the authors for their high-quality contributions, the
members of the scientific committee for supporting the organization of the review
process, and all reviewers for their thorough work on the evaluation of each of the
contributions.

Finally, we warmly thank the “Cellule Congrès” of the University of Strasbourg,
as well as the organizing committee for helpingmake this conference a great success.
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A Personal Discussion on Conservation,
and How to Formulate It

Rémi Abgrall

Abstract Since the celebrated theorem of Lax and Wendroff, we know a necessary
condition that any numerical scheme for hyperbolic problem should satisfy: it should
be written in flux form. A variant can also be formulated for the entropy. Even
though some schemes, as for example those using continuous finite element, do not
formally cast into this framework, it is a very convenient one. In this paper, we
revisit this, introduce a different notion of local conservation which contains the
previous one in one space dimension, and explore its consequences. This gives a
more flexible framework that allows to get, systematically, entropy stable schemes,
entropy dissipative ones, or accommodate more constraints. In particular, we can
show that continuous finite element method can be rewritten in the finite volume
framework, and all the quantities involved are explicitly computable. We end by
presenting the only counter example we are aware of, i.e a scheme that seems not to
be rewritten as a finite volume scheme.

Keywords Local conservation · Lax Wendroff theorem · Adding constraints ·
Flux · Entropy dissipation

In this paper, we will consider approximations of the hyperbolic problem

∂u
∂t

+ div f(u) = 0 (1a)

which, for simplicity, we will assume to be defined on R
d (d = 1, 2, 3), and u

is defined on R
d × [0, T [, T > 0, with values in Ω ⊂ R

p, Ω open. The flux
f = (f1, . . . , fd) is such that each f j are defined on Ω with values in R

p. The
flux f is assumed to be C1 on Ωd , and the hyperbolicity means that for any
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4 R. Abgrall

n = (n1, . . . , nd) ∈ R
d , the matrix ∇f · n := ∑d

j=1

∂f j

∂u
n j is diagonalisable in R.

The PDE (1a) is supplemented with initial condition

u(x, 0) = u0(x)

for some initial condition with values in Ω . We will no do any theoretical consider-
ation about this problem, and refer to [15] for more details.

In order to integrate (1), several choices need to be done: the type of mesh, the
type of functional approximation, how to discretise the divergence term, and finally
the time stepping strategy. Often, one considers a tessellation of the computational
domain by polygons. A common choice is to choose an approximation space Vh

which is a subset of L2(Rd), then a variational approximation allows to approximate
the divergence term, and finally the method of lines is used for time discretisation.
Often, the choice Vh ⊂ L2(Rd) hides a common belief that global continuity is not
a good idea for (1) which allows discontinuous solutions.

In addition, the system (1) is complemented by a differential inequality about a
state function, the entropy η, a convex function of u ∈ Ω (and hence Ω is assumed
to be convex from now on). There exists also g = (g1, . . . , gd), C1 such that for any
j = 1, . . . , d

∇uη
∂fi

∂u
= ∂gi

∂u
.

From this, we see that
∂η

∂t
+ div g = 0.

For non smooth solution, we impose

∂η

∂t
+ div g ≤ 0 (2)

which is true in the sense of distribution.
The existence of (2) is motivated by the canonical example: the Euler equations.

Here, the conserved variables are u = (ρ, ρv, E)T where ρ is the density, v is the fluid
velocity, and E = e + 1

2ρv2 is the total energywhich is the sum of the internal energy
e and the kinetic energy 1

2ρv2. In the simplest case, one can write the internal energy
as a function of the density and the pressure p, e = e(ρ, p), and the entropy is also a
function of these variables, η = η(ρ, p). We can navigate from one thermodynamic
set of two variables, for example {ρ, p} to {e, η} and vice versa. We do enter into
more thermodynamic consideration, see eg. [18]. The conserved variable satisfy (1)
with the flux defined by

f =
⎛

⎝
ρv

ρv ⊗ v + pIdd×d

(E + p)v

⎞

⎠ (3)
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The entropy flux is g = vη and in the simplest thermodynamics case, namely the case
of a calorically perfect gas, p = (γ − 1)e where γ is a constant and η = ρ

(
log p −

γ log ρ) − η0 where η0 is a reference. The system (1) with the flux (3) is hyperbolic
in the domain

Ω = {u such that ρ > 0 and e > 0},

and the entropy is a convex function of u if γ > 1.
The simplest example of non linear problem is the Burgers equation (which can

be obtained from the Euler equation in the case γ = 3). It is written (in the inviscid
case) as

∂u

∂t
+ u

∂u

∂x
= 0 or

∂u

∂t
+ 1

2

∂u2

∂x
= 0. (4)

Taking u(x, 0) = sin(πx), x ∈ [−1, 1], it is easy to see with the method of charac-
teristics that after t� = 1

π
the solution cannot be smooth, so that the relation (4) on

the left has no meaning. The same would held for the non conservative form of the
Euler equation, for example

∂

∂t

⎛

⎝
ρ
v
p

⎞

⎠ +
⎛

⎝
div

(
ρv

)

(
v · ∇)

v + ∇ p
ρ

v · ∇ p + ρc2div v

⎞

⎠ = 0 (5)

though these relations are more interesting for practitioners (since we have a direct
access to the pressure and the velocity).

Motivated by this, P. Lax has formalized what was already known in the engi-
neering community by taking volumes and looking at what is getting into and out of
them. It is well known that a smooth function is a solution of (1a) if and only if for
any smooth test function ϕ ∈ C1

0(R
d × R

+) with compact support, we have

∫

Rd×R+

(∂ϕ

∂t
u + ∇ϕ · f(u)

)
dx dt +

∫

Rd

ϕ(x, 0)u0(x) dx = 0 (6)

From this we can define the notion of weak solution. Similarly, we have the weak
form of the entropy inequality: taking any positive test function, we get

∫

Rd×R+

(∂ϕ

∂t
η(u) + ∇ϕ · g(u)

)
dx dt +

∫

Rd

ϕ(x, 0)η0(x) dx ≥ 0 (7)

This notion of weak solution is the guiding line of numerical discretisation. The
celebrated Lax-Wendroff theorem is “simply” a way to mimic this notion, and it
provides a generic from of numerical schemes that allows to guaranty, under nat-
ural conditions, the convergence to weak entropy solutions. For example, in one
dimension,
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– being given a regular mesh {x j } j∈Z, and defining control volumes C j = (x j−1/2,

x j+1/2) with x j+1/2 = x j +x j+1

2 ,
– given an initialization1

u0
j ≈ 1

|C j |
∫

C j

u0(x) dx

– A numerical scheme of the form

un+1
j = un

j − Δt

|C j |
(
f̂ j+1/2 − f̂ j−1/2

)

where f̂k+1/2 = f̂(uk−p, . . . , uk . . . , uk+p) is a Lipschitz continuous function
depending 2p + 1 arguments centered around uk .

Then we know that if the numerical flux is consistant : f̂(u, . . . , u) = f(u), if the
the sequence {un

j } is bounded under Δt/|C j | ≤ C and such that one subsequence
converges to some v in L2, then v is a weak solution. The same applies for entropy
solutions.

Since about 60 years, all the research has turn around this result and variants. Is
this the end of the story? Certainly not. Several natural questions arise:

– What happens when a scheme has no longer a flux form?Concerning this question,
a partial answer was given by Hou and Le Floch in [19] where they show that a
scheme written in incremental form

un+1
i = un

i − Cn
i−1/2(u

n
i − un

i−1) + Dn
i+1/2(u

n
i+1 − un

i ),

under suitable positivity constraints on the coefficients Cl+1/2 and Dl+1/2, a CFL
type condition, that a subsequence converges to a function that is a weak solution
of

∂u

∂t
+ ∂ f

∂x
= μ

whereμ is Borelmeasure. Themeasureμ is conjectured to sit on the discontinuities
of the solution. Not much more is said, in particular, μ could possibly vanish.

– It is know in any text book that a non linear change of variable is in general not
permitted. The canonical example is again the Burgers equation. When we set
v = u3, the irregular solutions will satisfy

∂v

∂t
+ 3

4

∂v3

∂x
= 0.

1 If the set S is discrete, |S| is its cardinal. If S is part of a domain, it is its measure with respect to
the lebesgue measure, i.e. its length/area/volume.
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but the discontinuities will not travel at the same speeds, so that the shocks are
different. However, it would be very interesting to have the possibility to change
variable, think, for example, of the Euler equations in conservative and primitive
variables.

The purpose of this paper is to explain someways to overcome these two obstacles.
The format of this paper is as follows. We first recall the classical setting of finite
volume schemes and the notion of numerical flux, as well as the classical Lax-
Wendroff theorem. Then we show a rewriting of the local conservation condition
for these schemes, and describe several classical numerical schemes that satisfy this
condition.We show that this condition is then equivalent to the existence of numerical
flux, the only difference is that in general these flux are not standard.

Then using this condition, we show several extensions using a non conservative
form of a conservative problem, how to modify a scheme to satisfy one or more
additional conservative constraints (such an entropy inequality), the use of stagerred
grids. We conclude by show an example of scheme that does not seem to be cast in
the same framework, though can be shown leading to proper weak solutions of the
problem.

1 Classical Conservation Versus RD

In this section, we rephrase in part the content of [6]. We first start from a stan-
dard finite volume scheme, and rewrite it in an equivalent form. In the one dimen-
sional case, we simply say that f̂ j+1/2 − f̂ j−1/2 = f̂ j+1/2 − f(u j ) + f(u j ) − f̂ j−1/2 =
Φ

[xi ,xi+1]
i + Φ

[xi−1,xi ]
i with

Φ
[xi ,xi+1]
i = f̂ j+1/2 − f(u j ), Φ

[xi−1,xi ]
i = f(u j ) − f̂ j−1/2

so that the standard finite volume can be equivalently rewritten as

un+1
i = un

i − Δt

|Ci |
(
Φ

[xi ,xi+1]
i + Φ

[xi−1,xi ]
i

)
. (8)

In addition, we note2

Φ
[xi ,xi+1]
i + Φ

[xi ,xi+1]
i+1 = f(ui+1) − f(ui ).

This can be extended to any kind of finite volume scheme. Instead of going into the
full generality, let us take an example to show the principle. For this Rd is covered

2 This is the essence of Roe’s 1981 paper: setting Φ
[xi ,xi+1]
i = a−

i+1/2(ui+1 − ui ) and Φ
[xi ,xi+1]
i+1 =

a+
j+1/2(ui+1 − ui ), we see that the method of characteristics (8) is conservative if and only if

f(ui+1) − f(ui ) = ai+1/2(ui+1 − ui ).
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n31
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σ ≡ 1
K
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3

(b)

Fig. 1 Notations for the finite volume schemes. On the left: definition of the control volume for the
degree of freedom σ. The vertex σ plays the role of the vertex 1 on the left picture for the triangle
K. The control volume Cσ associated to σ = 1 is green on the right and corresponds to 1PG R on
the left. The vectors ni j are normal to the internal edges scaled by the corresponding edge length

by non overlapping simplex denoted by K . The vertices of the mesh are denoted by
{σ j }. For any σ, we consider a control volume obtained by joining the centroids xK

of the simplex sharing σ and the mid points of the edges coming out of σ, see Fig. 1
for the notations.

Again, we specialize ourselves to the case of triangular elements, but exactly
the same arguments can be given for more general elements, provided a conformal
approximation space can be constructed. This is the case for triangle elements, and
we can take k = 1.

Since the boundary of Cσ is a closed polygon, the scaled outward normals nγ to
∂Cσ sum up to 0: ∑

γ⊂∂Cσ

nγ = 0

where γ is any of the segment included in ∂Cσ , such as PG on Fig. 1. The finite
volume scheme writes

|Cσ|un+1
σ = |Cσ|un

σ − Δt
∑

γ⊂∂Cσ

f̂nγ
(uσ, u−

γ ) (9)

where f̂ is a consistant numerical flux, and u−
γ is the argument on the other side of

γ. It can be evaluated via the MUSCL method, for example. Looking at the spatial
increment, we see that

∑

γ⊂∂Cσ

f̂nγ
(uσ, u−) =

∑

γ⊂∂Cσ

f̂nγ
(uσ, u−) −

( ∑

γ⊂∂Cσ

nγ

)

· f(uσ)

=
∑

K ,σ∈K

∑

γ⊂∂Cσ∩K

(
f̂nγ

(uσ, u−) − f(uσ) · nγ

)
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To make things explicit, in K , the internal boundaries are PG, QG and RG, and
those around σ ≡ 1 are PG and RG. We set

ΦK
σ (uh) =

∑

γ⊂∂Cσ∩K

(
f̂nγ

(uσ, u−) − f(uσ) · nγ

)

=
∑

γ⊂∂(Cσ∩K )

f̂nγ
(uσ, u−).

(10)

The last relation uses the consistency of the flux and the fact that Cσ ∩ K is a closed
polygon. The quantity ΦK

σ (uh) is the normal flux on Cσ ∩ K . If now we sum up
these three quantities, we get:

∑

σ∈K

ΦK
σ (uh) =

(

f̂n12(u1, u2) − f̂n13(u1, u3) − f(u1) · n12 + f(u1) · n31

)

+
(

f̂n23(u2, u3) − f̂n12(u2, u1) + f(u2) · n12 − f(u2) · n23

)

+
(

− f̂n23(u3, u2) + f̂n31(u3, u1) − f(u3) · n23 + f(u3) · n31

)

= f(u1) · (
n12 − n31

) + f(u2) · ( − n23 + n31
) + f(u3) · (

n31 − n23
)

= f(u1) · n1

2
+ f(u2) · n2

2
+ f(u3) · n3

2

where n j is the scaled inward normal of the edge opposite to vertex σ j , i.e. twice the
gradient of the P1 basis function ϕσ j associated to this degree of freedom. Thus, we
can reinterpret the sum as the boundary integral of the Lagrange interpolant of the
flux. The finite volume scheme is then a residual distribution scheme with residual
defined by (10) and a total residual defined by

ΦK :=
∫

∂K
fh · n, fh =

∑

σ∈K

f(uσ)ϕσ. (11)

Form now on, we will assume that the domain can be split into polygons K (above
it was simplex) which vertex will be the σs. From these polygons, we can construct of
control volumes notedCσ . The other situation is the converse: froma family of control
volumes, we can construct polygons K with vertices σ: the difference is between
vertex centered or volume centered schemes in the Finite volume vocabulary. We
will focus on schemes that can be written in the following form:

|Cσ|un+1
σ = |Cσ|un

σ − Δt
∑

K ,σ∈K

ΦK
σ (un) (12a)
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with
∑

σ∈K

ΦK
σ (un) =

∫

∂K
f̂n dγ. (12b)

In (12a), ΦK
σ (un) is a function that depends on a finite number values of the un

σ′ , it is
assumed to be Lipschitz continuous. In (12b) we assume that for any edge/face that
is the intersection of two polygons, γ = K ∩ K ′,

∫

γ⊂K
f̂n dγ +

∫

γ⊂K ′
f̂n dγ = 0.

In other words, the flux are the same, up to the sign.
This framework is not adapted uniquely to finite volume. We can consider, using

continuous finite elements, the SUPG scheme. Considering a mesh made of simplex,
we take

V h = {vh ∈ C0(Rd), for any K , vh
|K ∈ P

r
}

and look for uh ∈ (
V h

)p
such that for any vh ∈ V h we have

∑

K⊂Rd

(

−
∫

K
∇vh · f(uh) dx +

∫

∂K
vh f(uh) · n dγ + hK

∫

K

(∇uf · ∇vh)
τ
(∇uf · ∇uh)

dx
)

= 0

(13)
By continuity, of course the boundary term cancel, but we have written the scheme
in this way to exhibit the residuals: if {ϕσ} is the set of Lagrange basis functions,

ΦK
σ = −

∫

K
∇vh · f(uh) dx +

∫

∂K
vhf(uh) · n dγ + hK

∫

K

(∇uf · ∇vh)
τ
(∇uf · ∇uh)

dx,

(14)
and we get the conservation relation:

∑

σ∈K

ΦK
σ =

∫

∂K
f(uh) · n dγ (15)

because
∑

σ∈K

(
ϕσ

)
|K = 1.

All the schemes we know, except maybe one that we will sketch at the end of this
paper, can be rewritten in a distribution form: this is true from finite volume (or any
order), to dG, via continuous finite element with different stabilisation mechanisms.
Some details can be found in [6]. This can also apply to schemes adapted to the
Lagrangian formalism, see [22] for example.

Let us examine now the converse: assuming a scheme of the form (12a) with
(12b), can we identify “flux” so that the scheme (12a) can be rewritten equivalently
in the form (9). First, what is a flux?
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Definition 1 (consistent flux)Aflux function f̂ is a function that depends on a normal
n and a set of arguments {u1, . . . , uN } such that:

1. f̂ is continuous with respect to its arguments,
2. f̂(−n; u1, . . . , uN ) = −f̂(n; u1, . . . , uN )

3. It is consistent if for any u and n, f̂(−n; u, . . . , u) = f(u) · n

We will also use the notation f̂n(u1, . . . , uN ) or simply f̂n.

Any K appearing in the sum (12a), contains a set of degrees of freedom, say
S = {σ1, . . . ,σm} from which we can construct a graph, or a triangulation, which
vertex are the σi s. An important property of this graph is that it is simply connected.
Then the question is to find {f̂σσ′ }σ,σ′∈S such that

Φσ =
∑

edges [σ,σ′]
f̂σ,σ′ + f̂b

σ (16a)

with
f̂σ,σ′ = −f̂σ′,σ (16b)

and f̂b
σ is the ’part’ of

∫
∂K f̂n(uh, uh,−) dγ associated to σ. The control volumes will

be defined by their normals so that we get consistency. The normal will be defined
later, as well as the control volumes.

Note that (16b) implies the conservation relation

∑

σ∈K

Φσ =
∑

σ∈K

f̂b
σ . (16c)

In short, we will take

f̂b
σ =

∮

∂K
ϕσ f̂n(uh, uh,−) dγ, (16d)

but other examples can be considered provided the consistency (16c) relation holds
true, see [6]. Any edge [σ,σ′] is either direct or, if not, [σ′,σ] is direct. Because of
(16b), we only need to know f̂σ,σ′ for direct edges. Thus we introduce the notation
f̂{σ,σ′} for the flux assigned to the direct edge whose extremities are σ and σ′. We can
rewrite (16a) as, for any σ ∈ S,

∑

σ′∈S
εσ,σ′ f̂{σ,σ′} = Ψσ := Φσ − f̂b

σ , (17)

with

εσ,σ′ =
⎧
⎨

⎩

0 if σ and σ′ are not on the same edge of T ,

1 if [σ,σ′] is an edge and σ → σ′ is direct,
−1 if [σ,σ′] is an edge and σ′ → σ is direct.
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Hence the problem is to find a vector f̂ = (f̂{σ,σ′}){σ,σ′} direct edges such that

Af̂ = Ψ

where Ψ = (Ψσ)σ∈S and Aσσ′ = εσ,σ′ .
We have the following lemma [6]which shows the existence of a solution.

Lemma 1 For any couple {Φσ}σ∈S and {f̂b
σ}σ∈S satisfying the condition (16c), there

exists numerical flux functions f̂σ,σ′ that satisfy (16). Recalling that the matrix of the
Laplacian of the graph is L = AAT , we have

1. The rank of L is |S| − 1 and its image is
(
span{1})⊥. We still denote the inverse

of L on
(
span{1})⊥ by L−1,

2. With the previous notations, a solution is

(
f̂{σ,σ′}

)
{σ,σ′} direct edges = AT L−1

(
Ψσ

)
σ∈S . (18)

This result has been used to develop in [23] a numerical scheme of dG type, where,
when a criteria explaining that some problem occur (negative density, or pressure, or
creation of artificial oscillation), the elements are splitted into sub elements where a
low order finite volume scheme is applied. An example of sub-cells and application
if show in Fig. 2.

A convergence proof (in the statistical solution framework) of the schemes (12a)
with (12b) can be found in [10].

The reinterpretation of schemes in term or residuals has other applications. For
example in [3], we have considered a mixture of perfect gases. It is well known that
because of the possible incompatibility between the numerical dissipations attached
to each of the conserved variables, the pressure and the velocity may oscillate across
a contact line. There are several solutions to cure that. One is to start from the Euler
equation in primitive variables (as (5) but we need to consider two masses), but then

S1
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S7S10
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S8
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(b)

Fig. 2 a Example of a subdivision, b Solution obtained with the method of [23] for the KPP
problem. These figures have been generated by François Vilar, Université de Montpellier
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one has to do something very specific to take into account the shocks properly. For
example, in [21], a standard finite volume method is used anywhere, but around the
slip line which location is estimated by a level set. In [3], we start directly from the
non conservative formulation where the variables are ρ, v and e the internal energy.
If Δ represents the time increment, we notice that

ΔE = Δe + vn+1 + vn

2
Δ

(
ρv

) − vn+1vn

2
Δρ. (19)

Then, for a scheme of the form (12a), where u = (ρ, ρv, e), it is shown in [3] that if
the residual on the energy (and only this one) is modified such that

∫

∂K
f E · n dγ =

∑

σ∈K

Φe
σ +

∑

σ∈K

vn+1
σ + vn

σ

2
Φρv

σ +
∑

σ∈K

vn+1
σ vn

σ

2
Φρ

σ, (20)

then the scheme will be locally conservative. The modification is done by adding to
the initial energy residuals ΦE

σ the same quantify r K for all the degrees of freedom
in K such that (20) holds true. This formulation can be further refined so that one
keeps the good behavior of the contact lines, see [3] for details and applications with
very non linear equations of state.

2 Staggering

In another application, one considers an approximation of (5) where the velocity is
globally continuous and the thermodynamic parameters (the density, the pressure,
the internal energy) are only in L2. This is an Eulerian version of [9, 13] which are
inspired from [16] which is a finite element generalisation of the Wilkins scheme
[24]. TheWilkins scheme is very popular in theLagrange hydrodynamics community
because use the specific internal energy as a variable though producing the correct
weak solutions of the problem.

Here we summarise [7]. We start from a scheme having the from (12a). The
velocity is approximated by a piecewise polynomial function or degree r ≥ 1 that is
globally continuous. For technical reasons, we assume that we use a Bernstein basis
(each of the basis function is positive). The pressure, internal energy and the density
are approximated by polynomials of degree r − 1, and again we use Bernstein basis
functions. The thermodynamical degrees of freedoms are denoted by σT and the
velocity degrees of freedom are σV . The density is in L2, so we use a discontinuous
Galerkin approximation, with a Riemann solver (that is used only for the density).
Then, for each degree of freedom, we discretize the velocity equation in the form

vn+1
σ = vn

σ − Δt

|Cσ|
∑

K ,σ∈K

ΦK
σ .
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Here, |Cσ| is the mass of ϕσ which is positive. We take

Φv,K
σ =

∫

K
ϕσ

(
(
v · ∇)

v + ∇ p

ρ

)
dx

computed by numerical quadrature, and

Φe,K
σ =

∫

K
ϕσ

(

v · ∇e + (e + p) div u
)

dx,

again by numerical quadrature. As such, there is no hope to obtain a good scheme.
In order to modify it, we start from an inspection of what would be needed to get a

Lax-Wendroff like theorem. It turns out that for the update in time of the momentum,
we have the relation:

ρn+1vn+1 − ρnvn = (ρn+1 − ρn)vn + ρn+1(vn1 − vn),

fromwhichwe can infer, after some calculations, that if themass and velocity residual
satisfy, in each element,

∫

∂K
ρnvn · n =

∑

σV ∈K

θv
σV

Φv
σV

+
∑

σT ∈K

μv
σT

Φρ
σT

(21)

where the coefficients θv
σV

and μσT are explicitly computable, see [7]. In addition
θv

σV
> 0. Of course the initial scheme does not satisfy this constraint, but keeping

the density at tn and tn+1 unchanged, we can modify Φv
σV

by Φv
σV

+ r K , so that (21)
is true.

Similar algebraic manipulation can be done for the energy, and here we need to
mimick (19), and this is always possible. We illustrate by some example taken from
[7] in Fig. 3.
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Fig. 3 a Density for the Sod test case. We observed the solution without correction (red) ans the
numerical one with 1000 points, it superimpose the exact solution. b Exact and numerical solutions
of theCollela andWoodwards test case for (a) density at time T = 0.012withC F L = 0.1 computed
on a mesh with 1000 points. c Comparison of the solutions of the 2D shock test case for the pressure
obtained by a conservative scheme (red) and the staggered one (black) at time T = 0.16
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3 Additional Conservation Laws

It is also possible to use this framework in order to take into account additional
conservation laws, at least in the semi-discrete sense. This part is a short summary
of [1] and then [4, 5, 11, 12].

Let us consider the entropy, for example. Multiplying (1a) by v := ∇uη we obtain
(2). Hence, considering a scheme of the form

|Cσ|duσ

dt
+

∑

K ,σ∈K

ΦK
σ = 0,

we would have

|Cσ|dησ

dt
+

∑

K ,σ∈K

vσ · ΦK
σ = 0.

This gives the idea of introducing the entropy residuals,

Ψ K
σ = vσ · ΦK

σ .

However, there is no reason why if

∑

σ∈K

ΦK
σ =

∫

∂K
f̂n dγ

we would have
∑

σ∈K Ψ K
σ related to some boundary integral of the entropy flux.

The trick is similar as before, we introduce rK
σ and consider Φ̃K

σ = ΦK
σ + rK

σ such
that we sill have the conservation relation and have in addition

∑

σ∈K

Ψ K
σ ≥

∫

∂K
ĝn dγ

where ĝn is some consistant numerical approximation of the entropy flux. The
conservation requirement implies that

∑

σ∈K

rK
σ = 0.

This condition can be met if

rK
σ = αK

(
vσ − v), v = 1

#K

∑

σ∈K

vσ,
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and we get

αK

∑

σ∈K

(
vσ − v)2 ≥

∫

∂K
ĝn dγ −

∑

σ∈K

vσ · ΦK
σ .

In [1] there is a discussion on the choice of f̂ such that

∫

∂K
ĝn dγ −

∑

σ∈K

vσ · ΦK
σ = O

(
v − v)2

to guaranty that αK does not blow up. The discussion is certainly not finished.
In [12], it is shown how to extend this approach when we have several constraints:

in that paper, we had discussed the case of the entropy and the kinetic energy preser-
vation. Instead of a simple linear equation, one gets a system of size the number of
constraints, and it can be solved by least square. Interestingly, the more degrees of
freedom (i.e. the higher the formal order is), the more constraint one can a priori
satisfy. We are not able to prove that if one starts with a stable scheme, the modified
scheme will also be stable. In practice, we have never observed any instability.

In [4], using this technique, we have shown that a fully centered scheme can be
made stable! There is no contradiction with the classical analysis that uses period-
icity. Of course this cannot apply to periodic problems, but to problems with proper
boundaries. The idea is, for a transport problem, to write a scheme. In [4], the exam-
ples were considering triangular type meshes, the unknown was approximated with
P

k spatial approximation, and the scheme was a simple weak formulation with accu-
rate enough quadrature formula. In order to have an energy bound, we modify the
scheme, so that on each element, we have an exact energy production. This is done
following the above ideas. When summing all the contributions, the interior of the
domain does not produce energy, and all has to be controlled at the boundary. In
fact, up to this energy summation argument that can be made possible here at the full
discrete level, this very classical: it is well know that a dG method is L2 stable if one
has a dissipative boundary flux. Hence we are considering a dG method with one
element (the whole domain), nobody has ever said that the approximation must be
polynomial: it simply need to be accessible to some form of the divergence theorem.
All is made in purpose here for that. This also applies to non linear problems, see [5].

This technique can be further used. In [11], a similar approach is used so that a
local conservation equation for the kinetic momentum is also satisfied. In [8], it has
been used to obtain a thermodynamically compatible scheme for a system that can
simultaneously describe a fluid and a solid. There is no space here to describe the
method, we refer to the publication. Let us only mention that the variables contains
the entropy, not the total energy, and we nevertheless have a method that is locally
conservative.
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4 A Scheme that does not Fit in this Framework

In [2, 14], and following an idea ofRoe [17],we consider a gridwith points xi < xi+1.
The conserved variable u is approximated by its average in each volume [xi , xi+1],
andwe also consider the point values of some other set of variables denoted by vi (for
the point xi , v can be u, but also any transformation of u by some regular mapping
Ψ ) and it satisfies the evolution equation

∂v
∂t

+ (∇uψ)−1∇uf∇uψ︸ ︷︷ ︸
J

∂v
∂x

= 0.

For fluid mechanics, v can be the primitive variables, for example. In each cell
[xi , xi+1] one has ui+1/2 and the point values vi = Ψ (ui ), vi+1 = Ψ (ui+1). From
this one can construct a globally continuous reconstruction which is quadratic in
each cell. It amounts to Simpson’s formula:

ui+1/2 = 1

4

(
ψ−1(vi ) + ψ−1(vi+1/2) + ψ−1(vi+1)

)

so that one can obtain a third order approximation of vi+1/2 ≈ v(
xi +xi+1

2 ).

The averaged values and point value are evolved by

(xi+1 − xi )
dui+1/2

dt
+ f(ui+1) − f(ui ) = 0,

dvi

dt
+ Φ

[xi ,xi+1]
i + Φ

[xi−1,xi ]
i = 0

where Φ
[xi ,xi+1]
i (resp. Φ

[xi−1,xi ]
i ) is a consistant approximation of J−(ui )

∂v
∂x

(resp.

J+(ui )
∂v
∂x

). To define these approximations, we use the data vl and vl+1/2 and the

approximations contain in [20]. In [2] we show that under assumptions similar to
the standard Lax Wendroff theorem, that this scheme will provide a sequence that
will converge to a weak solution. It is unclear if this scheme can be written in flux
form, simply because the volumes associated to the average already cover the whole
computational domain.

One illustration, see Fig. 4 is given by the Shu Osher problem where the initial
condition are:

(ρ, u, p) =
{

(3.857143, 2.629369, 10.3333333) if x < −4
(1 + 0.2 sin(5x), 0, 1) else

on the domain [−5, 5] until T = 1.8.
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Fig. 4 a Solution of the Shu Osher problem, b zoom of the solution around the shock
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A High Order Semi-implicit Scheme
for Ideal Magnetohydrodynamics

Claudius Birke, Walter Boscheri, and Christian Klingenberg

Abstract In this work we design a novel semi-implicit finite volume solver for the
equations of ideal magnetohydrodynamics (MHD). The nonlinear convective terms
as well as the time evolution of the magnetic field are discretized explicitly, while
the terms related to the hydrodynamic pressure in the momentum and in the energy
equation are solved implicitly, hence making the scheme particularly well suited for
the simulation of low Mach number flows. An elliptic equation is then obtained for
the pressure, and the associated system is linearized in time relying on a semi-implicit
discretization of the kinetic energy and the enthalpy. High order of accuracy in time
is achieved using implicit-explicit Runge-Kutta (IMEX-RK) methods, whereas an
efficient CWENO reconstruction permits to gain high accuracy also in space. The
solenoidal property of the magnetic field is respected at the discrete level relying on
a high order constrained transport method, leading to a structure preserving scheme.
The new scheme is conservative for mass, momentum and total energy, and both
finite volume and central finite difference discretizations are adopted for the explicit
and the implicit terms, respectively, hence introducing no numerical dissipation in
the terms related to the pressure. We validate the new schemes against benchmarks
for ideal MHD, showing the accuracy and the robustness of the novel methods even
in the case of shock waves.
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1 Introduction

Magnetized plasma flows are governed by the equations of magnetohydrodynamics
(MHD), that describe the time evolution of electric conducting fluids embedded
in a magnetic field. The simplest model is given by ideal MHD, where the fluid
viscosity is neglected, which constitutes a system of nonlinear hyperbolic partial
differential equations (PDE) involving conservation of mass, momentum and total
energy coupled with Faraday law for the magnetic field.

The sonicMachnumber,which is the ratio between thefluid velocity and the sound
speed, describes the regime of the fluid under consideration. The low Mach regime
typically arises in astrophysical phenomena such as the generation of magnetic fields
in deep convective layers of stars. From the numerical viewpoint, compressible flows
are typically discretized using explicit Godunov-type finite volume schemes since
they are by construction conservative and thus allow the correct computation of shock
waves. However, in the low Mach limit, the effect of numerical viscosity which is
added to the numerical fluxes is proven to degrade the accuracy [2, 16]. Furthermore,
in the incompressible regime the elliptic behavior of the pressure introduces a very
severe restriction on the maximum admissible time step for lowMach number flows,
making explicit schemes very ineffective. A possible remedy would be the adoption
of fully implicit methods, which inevitably imply the solution of large nonlinear
systems that are computationally very expensive and in which the convergence is
numerically very difficult to control. Consequently, the MHD system in the low
Mach limit has been widely investigated [13, 15, 17, 19, 20, 22, 26]. A successful
idea consists in treating implicitly only one part of the system to be solved while
keeping the remaining explicit. In this way, the implicit part is relatively simple to
be inverted, whereas the nonlinear terms undergo an explicit discretization, making
the resulting method capable of dealing with all Mach regimes. This idea has been
originally conceived in the context of shallow water and incompressible flows [11,
12], where a semi-implicit time stepping technique has been used. Implicit-explicit
(IMEX) schemes have been designed [1, 4–6, 23, 24] in order to dealwithmulti-scale
phenomena, that are typically encountered in compressible fluids.

In this work we propose a novel pressure-based scheme for the solution of the
idealMHDequations. The time discretization is inspired by the class of semi-implicit
IMEX schemes [3, 9], and here we treat implicitly the terms related to the pressure,
hence not introducing any numerical dissipation and making the CFL stability con-
dition independent from the acoustic wave speed. Differently from [17, 18], no
nonlinear equations are used in our approach. Furthermore, the semi-implicit lin-
earization is also used for the kinetic energy, contrarily to what has been proposed
in [13].
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2 Governing Equations

Let us consider a one-dimensional computational domain � ∈ R defined by the
spatial coordinate x ∈ �, and let the time coordinate be denoted with t ∈ R+

0 . The
ideal equations ofmagnetohydrodynamics (MHD) in one space dimension constitute
a hyperbolic system of the form

∂q
∂t

+ ∂f
∂x

= 0, (1)

with the vector of state variables q and the fluxes f(q) that explicitly write

q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρu
ρv
ρw
ρE
Bx

By

Bz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f(q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu
ρu2 + p + 1

8π B
2 − 1

4π B2
x

ρuv − 1
4π Bx By

ρuw − 1
4π Bx Bz

u(ρE + p + 1
8π B

2) − 1
4π Bx (v · B)

0
u By − vBx

u Bz − wBx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

The fluid density and pressure are addressed with ρ and p, respectively, while v =
(u, v, w) is the velocity field and themagnetic field is denotedwithB = (Bx , By, Bz).
The total energy ρE is obtained as the sum of three contributions, namely

ρE = ρe + ρk + m, ρe = p

γ − 1
, ρk = 1

2
ρv2, m = 1

8π
B2, (3)

where ρk is the kinetic energy and m is the magnetic energy. The internal energy
ρe is computed relying on the ideal gas equation of state (EOS) with γ = cp/cv

denoting the ratio of specific heats at constant pressure and volume, respectively. By
introducing the specific enthalpy h = e + p/ρ, one can reformulate the first part of
the energy flux in (2) such that

u(ρE + p + m) = u(ρk + m) + h(ρu). (4)

The MHD system (2) is hyperbolic since the eigenvalues λM H D
i={1,...,8} of the associated

Jacobian matrix A = ∂f/∂q with Bx = const are

λM H D
1,8 = u ± c f , λM H D

2,7 = u ± ca, λM H D
3,6 = u ± cs , λM H D

4 = u, λM H D
5 = 0,

(5)
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with the wave speeds given by

ca = Bx√
4πρ

,

c2s = 1

2

(
b2 + c2 −

√
(b + c)2 − 4c2ac2

)
, (6)

c2f = 1

2

(
b2 + c2 +

√
(b + c)2 − 4c2ac2

)
.

The Alfvén wave speed is ca , the speeds of slow and fast magnetosonic waves
are cs and c f , respectively, while c2 = γ p/ρ is the adiabatic sound speed that is
computed from the ideal equation of state. Furthermore, we use the abbreviation
b2 = B2/(4πρ).

The hydrodynamic behavior of the fluid can be analyzed by considering theMach
number M = u/c. In the low Mach number limit, the sound speed becomes very
high compared to the fluid velocity, hence the terms related to the pressure are
dominant. Consequently, larger values of the fast and slowmagnetosonicwave speeds
are retrieved, and fully explicit numerical methods suffer from both an excessive
amount of numerical viscosity, which is proportional to the eigenvalues, and a drastic
reduction of the admissible time step �t to ensure stability under a classical CFL
condition of the type

�t ≤ CFLmin
�

max |λM H D|
�x

, (7)

with �x denoting the characteristic mesh spacing and the CFL ≤ 1 being the CFL
number. Therefore, we propose to discretize implicitly the pressure gradient in the
momentum equation and the enthalpy term in the energy equation, while keeping an
explicit discretization for the nonlinear convective fluxes and the terms related to the
magnetic field. To that aim, let the fluxes be split into a convective-type flux fc(q)

and a pressure-type flux f p(q), that is

fc(q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu
ρu2 + m − 1

4π B2
x

ρuv − 1
4π Bx By

ρuw − 1
4π Bx Bz

u(ρk + m) − 1
4π Bx (v · B)

0
u By − vBx

u Bz − wBx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f p(q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
p
0
0

hρu
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

We obtain two sub-systems with the following eigenvalues [17].
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• Convective sub-system:

∂q
∂t

+ ∂fc

∂x
= 0, (9a)

λc
1,8 = u ±

√
B2

4πρ
, λc

2,7 = u ± Bx√
4πρ

, λc
3,4,5,6 = 0. (9b)

• Pressure sub-system:

∂q
∂t

+ ∂f p

∂x
= 0, (10a)

λ
p
1 = 1

2

(
u −

√
u2 + 4c2

)
, λ

p
2,3,4,5,6,7 = 0, λ

p
8 = 1

2

(
u +

√
u2 + 4c2

)
.

(10b)

It is clear that, by taking the pressure sub-system implicitly, themaximum admissible
time step of the scheme becomes

�t ≤ CFLmin
�

max |λc|
�x

, (11)

hence making the scheme particularly well suited for lowMach number flows (M �
1) where the pressure terms are dominant. On the other hand, for strongly convected
flows with shocks, the convective eigenvalues lead the computation of the time step
granting stability.

3 Numerical Method

The computational domain � = [xL; xR] is discretized using a total number of Nx

equidistant cells of volume �x = (xR − xL)/Nx . The cell centers are indicated with
xi and the cell interfaces are referred to with xi+1/2. The time coordinate is bounded
in the interval t ∈ [0; t f ], and the final time t f is reached performing a sequence of
time steps�t = tn+1 − tn that are computed according to the CFL stability condition
(11).

3.1 First Order Semi-discrete Scheme in Time

Using the flux splitting (8), it is possible to design the following semi-discrete scheme
for the explicit sub-system:
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ρ∗ = ρn − �t
∂

∂x
(ρu)n , (12a)

(ρu)∗ = (ρu)n − �t
∂

∂x

(
ρu2 + m − 1

4π
B2

x

)n

, (12b)

(ρv)∗ = (ρv)n − �t
∂

∂x

(
ρuv − 1

4π
Bx By

)n

, (12c)

(ρw)∗ = (ρw)n − �t
∂

∂x

(
ρuw − 1

4π
Bx Bz

)n

, (12d)

(ρE)∗ = (ρE)n − �t
∂

∂x

(
u(ρk + m) − 1

4π
Bx (v · B)

)n

, (12e)

B∗
x = 0, (12f)

B∗
y = Bn

y − �t
∂

∂x

(
u By − vBx

)n
, (12g)

B∗
z = Bn

z − �t
∂

∂x
(u Bz − wBx )

n . (12h)

The above definitions are then employed to obtain a first order semi-implicit time
discretization [3, 9, 10] of the MHD equations (2), which writes

ρn+1 = ρ∗, (13a)

(ρu)n+1 = (ρu)∗ − �t
∂

∂x

(
pn+1

)
, (13b)

(ρv)n+1 = (ρv)∗, (13c)

(ρw)n+1 = (ρw)∗, (13d)

(ρe)n+1 + (ρu)n+1 (ρu)n

2ρn+1
+ mn+1 = (ρE)∗ − �t

∂

∂x

(
hn(ρu)n+1

)
, (13e)

Bn+1
x = B∗

x , (13f)

Bn+1
y = B∗

y , (13g)

Bn+1
z = B∗

z . (13h)

To avoid nonlinear implicit terms, let us notice that the implicit flux in the energy
equation has been discretized by taking the enthalpy explicitly, and the kinetic energy
in the total energy definition splits into an explicit and an implicit contribution:

(ρE)n+1 := (ρe)n+1 + (ρu)n+1 (ρu)n

2ρn+1
+ mn+1, (14)

following the approach presented in [9] for the hydrodynamics equations. Recall that
the internal energy can be expressed in terms of the pressure relying on the ideal gas
EOS (3), and that the new magnetic energy mn+1 = (Bn+1)2/(8π) can be explicitly
computed because the fluxes of the magnetic field belong to the explicit sub-system
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(9). Moreover, the time evolution of the density is also concerned with an explicit
update, hence making ρn+1 already known from (12a). Therefore, a preliminary
discretization of the total energy equation is chosen by inserting the momentum
equation (13b) into the energy equation (13e) leading to an elliptic equation for the
pressure:

pn+1

γ − 1
− �t

(ρu)n

2ρn+1

∂

∂x

(
pn+1) − �t2

∂

∂x

(
hn ∂

∂x

(
pn+1)

)
= bn, (15)

with the known right-hand-side given by

bn = (ρE)∗ − (ρu)n

2ρn+1
(ρu)∗ − mn+1 − �t

∂

∂x

(
hn(ρu)∗

)
. (16)

The pressure equation (15) constitutes a linear system for the scalar unknown pn+1

that is solved using the iterative GMRES solver [25] up to a prescribed tolerance (we
typically set tol = 10−12). Differently from [17, 18], this approach does not need
any fixed point method thanks to the semi-implicit splitting of the enthalpy flux and
the kinetic energy in the energy equation. Once the new pressure is known, the new
momentum (ρu)n+1 is updated with (13b), and then the new total energy is updated
using the conservative formulation

(ρE)n+1 = (ρE)∗ − �t
∂

∂x

(
hn(ρu)n+1

)
. (17)

3.2 First Order Discrete Spatial Operators

The spatial operators are given by both finite volume and finite difference approxi-
mations, and they are introduced hereafter referring to the state vector q(x, t).

The convective sub-system (9) is discretized with a conservative Godunov-type
finite volume method, that is

q∗
i = qn

i − �t

�x

(
fc
i+1/2 − fc

i−1/2

)
. (18)

We choose to use the simple Rusanov-type numerical flux fc
i+1/2 that is given by

fc
i+1/2 = 1

2

(
fc(qi+1) + fc(qi )

) − 1

2
smax (qi+1 − qi ) , (19)

where the numerical dissipation smax = max
(|λc

i+1|, |λc
i |
)
only accounts for the con-

vective eigenvalues, thus no acoustic speed is involved.
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The implicit terms appearing in the pressure sub-system (10) are approximated
by means of finite difference operators with no numerical dissipation, thus one has

∂q
∂x

∣∣∣∣
n+1

i

= qn+1
i+1 − qn+1

i−1

2�x
+ O(�x2), (20a)

∂

∂x

(
h

∂q
∂x

)∣∣∣∣
n,n+1

i

= 1

�x2

[
hn

i−1 hn
i hn

i+1

]
⎡
⎣
3/4 −1 1/4
0 0 0
1/4 −1 3/4

⎤
⎦

⎡
⎣
qn+1

i−1
qn+1

i

qn+1
i+1

⎤
⎦+O(�x2).

(20b)

3.3 Extension to High Order of Accuracy

The semi-discrete first order scheme (13) supplemented with the spatial operators
(18)–(20) is extended to high order of accuracy in space and time by means of
semi-implicit IMEX Runge-Kutta methods [3] and quadrature-free CWENO recon-
structions [9], respectively.

High order in time. The governing equations are written under the form of an
autonomous system with initial condition q(t0) = q0:

∂q
∂t

= H(qE (t),qI (t)), (21)

where the spatial fluxes are contained in the flux term H(qE (t),qI (t)) according
to (8), hence involving both explicit and implicit terms, namely qE (t) and qI (t),
respectively. Implicit-explicit (IMEX) Runge-Kutta schemes [24] are then used to
advance the solution in time of system (21), following a method of lines (MOL)
philosophy. After having set qE = qI = qn , the stage fluxes for r = 1, . . . , s are
computed in the following way:

qr
E = qn

E + �t
r−1∑
	=1

ãr	k	, 2 ≤ r ≤ s, (22a)

q̃r
I = qn

E + �t
r−1∑
	=1

ar	k	, 2 ≤ r ≤ s, (22b)

kr = H (
qr

E , q̃r
I + �t arr kr

)
. 1 ≤ r ≤ s. (22c)

The coefficients ãr	 and ar	 refer to the explicit and the implicit Runge-Kutta scheme,
respectively, and they are collected in a double Butcher tableau. We employ stiffly
accurate schemes [3], therefore the solution at the new time level is simply given by
the solution of the last stage of the RK time stepping, that is qs

E = qs
I = qn+1. The

interested reader is referred to [3].
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High order in space. To increase the spatial accuracy, the numerical fluxes in the
finite volume scheme (18) are fed with high order extrapolated data from the cells
sharing the interface. A CWENO reconstruction [21] is performed because it allows
for relatively compact stencils even for higher order reconstructions. Specifically,
we rely on the very efficient dimension-by-dimension technique forwarded in [9],
which ultimately yields a quadrature-free finite volume scheme. By denoting the
reconstruction operator withℝ(q), the high order numerical fluxes are simply given
by

fc
i+1/2 = 1

2

(
fc(ℝ(qi+1)) + fc(ℝ(qi ))

) − 1

2
smax (ℝ(qi+1) − ℝ(qi )) , (23)

where the reconstruction operator must be evaluated at the interface xi+1/2. High
order finite difference operators are adopted for the implicit terms (20). Further
details can be found in [9].

Remark on high Mach number flows. There is no advantage in our method for purely
high Mach number flows, where indeed it would be much better to use classical
explicit finite volume solvers. To track the shocks, the time step must be still deter-
mined taking into account the sound speed according to (7), at the computational
price of the solution of the linear system (15). Nevertheless, our numerical scheme
is stable even if the time step is chosen larger, namely according to (11), which is not
the case for explicit schemes. This might turn to be useful in the case of coexisting
different regimes, i.e. low and high Mach number flows, that may occur in the flow
at the same time. In this situation, our approach still allows for a rather large time
step, which will capture the stiff limit of the model while being stable across shocks.

3.4 Divergence-Free Involution in Multiple Space
Dimensions

The extension of the semi-implicit IMEX scheme (13) to multiple space dimensions
is carried out considering a Cartesian mesh in both y and z direction, therefore it is
straightforward. However, in multiple space dimensions, we must take care of the
solenoidal property of the magnetic field, that endows the MHD system with the
following involution:

∇ · B = 0. (24)

To respect this condition at the discrete level, we rely on the constrained transport
method presented in [14], which corrects the magnetic field by approximating the
curl of themagnetic vector potentialA such thatB = ∇ × Awith a fourth order finite
difference scheme. The resulting magnetic field is then proven to be divergence-free
by applying a discrete finite difference operator to the discrete curl operator. High
order div-curl operators have been recently considered in [7],while curl-free structure



30 C. Birke et al.

preserving schemes have been designed in [8]. All the details of the divergence-free
evolution of the magnetic field are reported in [14].

4 Numerical Results

In all the following numerical test problems, the time step is computed according to
(11)withCFL = 0.9 and the ratio of specific heats is set to γ = 5/3. Furthermore, the
magnetic field is verified to respect the divergence-free condition (24) up to machine
precision by measuring the maximum divergence error over the whole domain using
a finite difference approximation. Finally, the permeability of the magnetic field is
normalized to unity.

4.1 Numerical Convergence Studies

The numerical convergence study is carried out by considering a smooth MHD
vortex problem, according to the setup given in [17]. We run second and third order
space-time accurate semi-implicit schemes until the final time t f = 1. The results
are reported in Table1, demonstrating that the formal order of accuracy is achieved.

Furthermore, along the lines of [20], we run this problem for different values of the
Mach number, namely we consider a vortex with M = 1.55 · 10−5, M = 1.55 · 10−4

and M = 1.55 · 10−3. From the analysis shown in Table2, we can conclude that the

Table 1 Numerical convergence results for the ideal MHD equations equations using the semi-
implicit finite volume schemes (SIFV) for second and third order of accuracy in space and time.
The errors are measured in the L2 norm and refer to the variable u (velocity component in the
x−direction), p (pressure) and Bx (magnetic field component in the x−direction) at time t f = 0.1

SIFV O(2)

Nx = Ny L2(u) O(u) L2(p) O(p) L2(Bx ) O(Bx )

24 7.633E-03 – 6.351E-03 – 2.350E-03 –

32 3.801E-03 2.42 3.212E-03 2.37 1.107E-03 2.16

48 1.512E-03 2.27 1.271E-03 2.29 4.191E-04 2.40

64 8.309E-04 2.08 6.821E-04 2.16 2.223E-04 2.20

SIFV O(3)

Nx = Ny L2(u) O(u) L2(p) O(p) L2(Bx ) O(Bx )

24 5.485E-03 – 5.091E-03 – 1.879E-03 –

32 2.364E-03 2.93 2.397E-03 2.62 7.675E-04 3.11

48 7.228E-04 2.92 8.494E-04 2.56 2.213E-04 3.07

64 3.062E-04 2.99 4.188E-04 2.42 9.620E-05 2.90
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Table 2 Numerical convergence results for the ideal MHD equations using the semi-implicit finite
volume schemes (SIFV) for third order of accuracy in space and time running the smooth vortex test
cases at different Mach numbers. The errors are measured in the L2 norm and refer to the variable
Bx (magnetic field component in the x−direction) at time t f = 0.1

M = 1.55 · 10−5 M = 1.55 · 10−4 M = 1.55 · 10−3

Nx = Ny L2(Bx ) O(Bx ) L2(Bx ) O(Bx ) L2(Bx ) O(Bx )

24 3.831E-04 – 3.832E-03 – 3.835E-02 –

32 4.461E-05 3.10 4.461E-04 3.10 4.466E-03 3.10

48 5.257E-06 3.08 5.255E-05 3.09 5.259E-04 3.09

64 6.448E-07 3.03 6.438E-06 3.03 4.450E-05 3.03

novel schemes are asymptotic preserving and asymptotic accurate, meaning that no
loss of accuracy is observed for low Mach regimes. The distribution of magnetic
pressure and hydrodynamics pressure are shown in Fig. 1, where the structure of the
vortex is well preserved independently from the Mach number.

4.2 Riemann Problems

In this section, we apply the semi-implicit finite volume scheme to a set of four
different Riemann problems of the ideal MHD equations taken from the literature
[17, 18]. The aim of this set of test problems is to demonstrate the capability of the
semi-implicit scheme to deal with shocks, thus not in the low Mach regime of the
fluid. The initial left and right states, which are separated by a discontinuity located at
xd , are listed in Table3. The computational domain for all Riemann problems is set to
� = [0; 1] and the specific heat is defined by γ = 2.0 for RP1 and γ = 5

3 for the rest.
We use a discretization of 200 grid cells for the simulations with the semi-implicit
method and the results are compared with those derived by a fully explicit finite
volumemethod using the Rusanov flux on 1024 grid cells. Bothmethods have second
order accuracy in time and space. The comparison between the solution obtained
with the semi-implicit scheme and the reference solution is presented in Fig. 2. The
results show that the semi-implicit scheme is able to properly capture and resolve
the different waves. Only for By in RP2 and RP4 the resolution is not sufficient to
reproduce every discontinuity in a similar manner as the reference solution. Overall,
the results are consistent with those retrieved with other numerical methods in the
literature [17, 18].
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Fig. 1 Smooth MHD vortex. Numerical solution at t f = 1 of magnetic pressure (left column) and
hydrodynamics pressure (right column) for Mach number M = 1.55 · 10−3 (top), M = 1.55 · 10−4

(middle) and M = 1.55 · 10−5 (bottom)
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Fig. 2 Riemann problemRP1, RP2, RP3 and RP4 (from top to bottom row) at the final time t = t f .
Comparison of density (left column) and magnetic field component By (right column) against the
reference solution
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Fig. 3 Orszag-Tang vortex. Numerical solution of pressure at output time t = 1/12 (top left),
t = 1/3 (top right), t = 0.5 (bottom left) and t = 5/6 (bottom right)

4.3 Orszag-Tang Vortex

A widely used test for the two-dimensional MHD equations is the Orszag Tang
vortex [14, 17]. Starting with smooth initial data, over time shocks develop along
the diagonal direction in combination with a vortex located at the center of the
computational domain. On the spatial domain � = [0; 1]2 the initial condition for
the state variables q is given by

q(0, x, y)

=
(

25

36π
, − sin(2πy), sin(2πx), 0.0,

5

12π
, − 1√

4π
sin(2πy),

1√
4π

sin(4πx)

) (25)

and the magnetic vector potential A is initially defined by

A(0, x, y) = (
0.0, 0.0, cos(2πy)/(4π3/2) + cos(4πx)/(8π3/2)

)
. (26)
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Periodic boundary conditions are imposed on all sides. The computational domain
is discretized by a 128 × 128 control volumes. In Fig. 3 the results for the pressure
at different times computed by the third-order semi-implicit method are presented.
The numerical method manages to capture the shocks that occur as time evolves.
Overall, the results are qualitatively consistent with those in the literature [14, 17].

5 Conclusions

In thisworkwehave presented a pressure-based semi-implicit scheme for the solution
of the ideal MHD equations. An elliptic equation for the pressure is obtained to
solve low Mach regimes very efficiently without adding any numerical dissipation
in the implicit part. On the other hand, an explicit finite volume solver is adopted for
handling the nonlinear convective terms, endowing our schemewith shock-capturing
properties. The scheme is conservative for mass, momentum and total energy. High
order of accuracy is achieved by means of a CWENO reconstruction in space and
IMEX Runge-Kutta time stepping techniques. The accuracy and the robustness of
the scheme have been demonstrated by performing a numerical convergence study
for different Mach numbers and by solving a set of Riemann problems. Another
benchmark in numerical MHD has been shown, namely the Orszag-Tang vortex
test, proving the capability of the novel method to deal with complex magnetized
flows and to provide results which are qualitatively in agreement with other existing
numerical schemes in the literature.
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AeroSPEED: A High Order Acoustic
Solver for Aeroacoustic Applications

Alberto Artoni, Paola F. Antonietti, Roberto Corradi, Ilario Mazzieri,
Nicola Parolini, Daniele Rocchi, Paolo Schito, and Francesco F. Semeraro

Abstract We propose AeroSPEED, a solver based on the Spectral Element Method
(SEM) that solves the aeroacoustic Lighthill’s wave equation. First, the fluid solution
is computed employing a cell centered Finite Volume method. Then, AeroSPEED
maps the sound source coming from the flow solution onto the acoustic grid, where
finally the Lighthill’s wave equation is solved. An ad-hoc projection strategy is
adopted to apply the flow source term in the acoustic solver. A model problem with
a manufactured solution and the Noise Box test case are used as benchmark for the
acoustic problem. We studied the noise generated by the complex flow field around
tandem cylinders as a relevant aeroacoustic application. AeroSPEED is an effective
and accurate solver for both acoustics and aeroacoustic problems.

Keywords Acoustics · Aeroacoustics · Spectral element method · Finite volume ·
Lighthill’s equation

1 Introduction

Aeroacoustics is the field of acoustics that studies the noise induced by flows. Due to
the different scales involved in the flow and acoustics, usually aeroacoustic problems
are posed in a segregated manner [12]. First, a flow problem is solved. Since finite
volumes are largely employed in the industrial framework to solve CFD problems,
in this work, the open-source finite volume library OpenFOAM [14] is adopted.
Then, the flow solution is post-processed to generate the sound source term of the
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Lighthill’s wave equation. With this purpose, we have developed AeroSPEED [1, 9],
a spectral element based solver that maps the computed sound source term onto the
acoustic grid and solves the inhomogeneous Lighthill wave equation. The spectral
element method is well suited to solve wave propagation problems, since it provides
high accuracy and guarantees both low numerical dispersion and dissipation errors.
We validate the open-source acoustic solver AeroSPEED on a model problem based
on a manufactured solution, comparing it with COMSOL [2], a commercial software
based on Lagrangian Finite Element Method (FEM). As an additional acoustic test
case,we considered ageometry representing a simplified cockpit of a car (NoiseBox).
Next, we apply our aeroacoustic solver AeroSPEED to study the noise induced by
the turbulent flow around two tandem circular cylinders.

2 The Coupled Aeroacoustic Model Problem

Given two open, bounded domains ΩF ⊆ ΩA ⊆ R
d , having sufficiently regular

boundaries ∂ΩF and ∂ΩA respectively (see Fig. 1), we consider the flow on a rigid
body at high Reynolds and lowMach numbers. We are interested in the noise gener-
ated by an incompressible and acoustically compact flow, meaning that the feedback
between the acoustic pressure and the hydrodynamic pressure can be neglected.
Hence, the coupled aeroacoustic problem can be posed in a segregated manner. The
segregated approach considers the following sequence of problems.

Flow Problem. The fluid flow is governed by the incompressible Navier Stokes
equations: for t ∈ (0, T ], find the velocity field u(x, t) : ΩF × (0, T ] → R

3 and the
pressure field p(x, t) : ΩF × (0, T ] → R such that

Fig. 1 Domain of the
aeroacoustic problem. ΩF is
the fluid domain, while ΩA
is the acoustic domain
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∂u
∂t

+ ∇ · (u ⊗ u) − ∇ · (ν∇u) + ∇
(

p

ρ0

)
= 0, in ΩF × (0, T ],

∇ · u = 0, in ΩF × (0, T ],
u = 0, on ΓB,

u = g, on ΓI N ,

ν∇u · n − pn = 0, on ΓOU T ,

u · n = 0, on ΓSY M ,

∇(u − (u · n)n) · n = 0, on ΓSY M ,

(1)

with initial condition u(x, 0) = 0, and where n is the outward unit normal vector to
∂ΩF , ν is the kinematic viscosity, ρ0 is the fluid density and g is the inlet Dirichlet
datum. Moreover, we suppose the boundary of the fluid domain to be decomposed
in the inlet boundary ΓI N , the outlet boundary ΓOU T , the body boundary ΓB and the
boundary ΓSY M , such that ∂ΩF = ΓI N ∪ ΓOU T ∪ ΓB ∪ ΓSY M .

Aeroacoustic Source. Based on the Lighthill analogy [12], from the fluid velocity u
we compute the Lighthill’s tensor asT = ρ0u ⊗ u. The Lighthill’s tensor has support
only on the fluid domainΩF ⊆ ΩA, and it depends only on the solution u of problem
(1). The Lighthill’s tensor represents the sound source term and the coupling term
between the flow problem (1) and the acoustic problem (2).

Acoustic Problem. We consider in ΩA the following non-homogeneous acoustic
wave equation: for t ∈ (0, T ], find the density field ρ(x, t) : ΩA × (0, T ] → R such
that

∂2ρ

∂t2
− c20Δρ = f, in ΩA × (0, T ],

c20
∂ρ

∂n
= 0, on ΓB × (0, T ],

1

ρ0

∂ρ

∂n
= − 1

Z

∂ρ

∂t
, on ΓZ × (0, T ],

(2)

with initial conditions ρ(x, 0) = 0,
∂ρ

∂t
(x, 0) = 0, where c0 is the sound speed and

Z is the impedance of an external wall. The boundary ∂ΩA has been split as
∂ΩA = ΓZ ∪ ΓB whereΓB is the body boundarywherewe set a sound hard boundary
condition, while ΓZ is the external boundary where we apply an impedance bound-
ary condition. We recall that if Z is the characteristic impedance, i.e. Z = ρ0c0,
we have a non-reflective boundary condition, which is necessary for free-field wave
propagation problems. When dealing with aeroacoustic problems the sound source
is f = ∇ · ∇ · T, obtaining the so called Lighthill’s wave equation.
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3 Numerical Scheme

We introduce the spectral element method for the spatial discretization of (2) with
a generic source term f , highlighting the aeroacoustic case where f = ∇ · ∇ · T
inside ΩF , while f = 0 in ΩA \ ΩF .

3.1 Spectral Element Dicretization

Given the acoustic domain ΩA, we introduce a conforming decomposition TA

made by hexaedral elements κA and we denote the characteristic mesh size as
h A = max

κA∈TA

hκA , being hκA the diameter of the element κA. Let κ̂ be the reference

element κ̂ = [−1, 1]3, and assume that for any hexaedral element κA ∈ TA there
exists a suitable trilinear invertible map θκA : κ̂ → κA, such that its Jacobian JκA is
positive. We now introduce the following finite-dimensional space:

VA = {
v ∈ C0(Ω A) ∩ H 1(ΩA) : v|κA ◦ θ−1

κA
∈ Qr (̂κ),∀κA ∈ TA

}
, (3)

where Qr (̂κ) is the space of polynomials of degree less than or equal to r ≥ 1 in
each coordinate direction. Next, for any u, w ∈ VA, we define the following bilinear
form by means of the Gauss-Legendre-Lobatto (GLL) quadrature rule:

(u, w)N I
κA

=
r∑

i, j,k=0

u(θκA(ξ
GL L
i, j,k ))w(θκA(ξ

GL L
i, j,k ))ωGL L

i, j,k | det(JκA)| ≈ (u, w)κA , (4)

and we denote with

(u, w)N I
TA

=
∑

κA∈TA

(u, w)N I
κA

∀ u, w ∈ VA,

where ξGL L are the GLL quadrature nodes, ωGL L the corresponding weights defined
on κ̂ and N I stands for numerical integration.

3.2 Discretization of the Acoustic Problem

Weak Formulation. We derive the weak formulation of the inhomogeneous wave
equation in (2): for t ∈ (0; T ], find ρ(x, t) ∈ H 1(ΩA) such that ∀w ∈ H 1(ΩA):

(
∂2ρ

∂t2
, w

)
ΩA

+ c20(∇ρ,∇w)ΩA + ρ0c20
Z

∫
ΓZ

∂ρ

∂t
w ds = L(w), (5)
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with initial conditions ρ = ∂ρ

∂t
= 0 in ΩA × {0}, and L(w) is a suitable linear oper-

ator. When dealing with general inhomogeneous acoustic problems, the operator
is

L(w) = ( f, w)ΩA , (6)

while when dealing with Lighthill’s wave equation the term (∇ · ∇ · T, w)ΩA is
usually integrated by parts, and we have that

L(w) = −(∇ · T,∇w)ΩA + ((∇ · T) · n, w)ΓB + ((∇ · T) · n, w)∂ΩF \ΓB . (7)

We assume that in the far field ((∇ · T) · n, w)∂ΩF \ΓB
is negligible, since the velocity

u can be considered uniform and constant. If we consider the local momentum
equation on the boundary ΓB multiplied by the normal direction n we have:

ρ0
∂u
∂t

· n + ∇ · (ρ0u ⊗ u) · n + ∇ p · n = 0. (8)

Assuming a solid body, meaning u · n = 0, we have ((∇ · T) · n, w)ΓB = (−∇ p ·
n, w)ΓB . For acoustically rigid bodieswe impose (∇ p · n, w)ΓB = 0. Hencewe have:

L(w) = −(∇ · T,∇w)ΩA , (9)

see for instance [1, 15].

Semi-Discrete Spectral Element Formulation. For the sake of simplicity, we
assume that ∂ΩA = ΓN , and hence ΓZ = ∅. The semi-discrete spectral element for-
mulation of problem (5) with numerical integration (SEM-NI) reads: for any time
t ∈ (0; T ] find ρh ∈ VA such that:

(
∂2ρh

∂t2
, wh

)N I

TA

+ c20(∇ρh,∇wh)
N I
TA

= Lh(wh) ∀wh ∈ VA, (10)

with ρh = ∂ρh

∂t
= 0 in ΩA × {0}, where Lh(w) = ( f, w)N I

TA
for the purely acoustic

case, while Lh(w) = −(∇ · T,∇w)N I
TA

for the aeroacoustic case.

Computation of the Aeroacoustic Source Term. Let TF be a polyhedral decom-
position of the fluid domain ΩF and let

VF = {
vF ∈ L2(ΩF ) : vF |κF ∈ P

0(κF ),∀κF ∈ TF
}

(11)

be the space of piecewise discontinuous functions. The sound source term∇ · (ρ0u ⊗
u) is computed as a post-process of the numerical solution of problem (1) on the
fluid grid TF via a Gauss discretization with a linear reconstruction. Namely, given
the velocity uk

h ∈ VF at time t k , we compute the cell value of the sound source term
on the cell κF ∈ TF as:
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1

|κF |
∫

κF

ρ0∇ · (uk
h ⊗ uk

h)dx = 1

|κF |
∫

∂κF

ρ0uk
h(u

k
h · nF )ds

≈ 1

|κF |
∑

F∈∂κF

ρ0uF (uF · nF )|F |, (12)

whereuF = u(xF ),nF is the unit normal to the faceF ∈ ∂κF andwhereweapplied a
mid-point quadrature rule using themid-point xF of faceF . The value of the velocity
at the face centre xF is computed with a linear interpolation.

Projection of the Aeroacoustic Source Term. Let qF ∈ VF be a function defined on
the fluid grid TF such that qF = ∑NF

i=1 q̂F,iφF,i , where
{
φF,i

}NF

i is the set of NF basis
functions associated to VF , and q̂F,i are the corresponding expansion coefficients.
We define the L2-projection of the field qF ∈ VF into VA as: find qA ∈ VA s.t.

(qA,φA,i )TA = (qF ,φA,i )TA ∀φA,i ∈ VA, (13)

where qA ∈ VA is a function defined on the discrete acoustic space such that qA =∑NA
i=1 q̂A,iφA,i , where

{
φA,i

}NA

i is the set of NA basis functions, and q̂A,i are the
corresponding expansion coefficients. Since qF is a piecewise constant over TF ,
namely qF ∈ VF , we recast problem (13) as follows:

∑
κA∈TA

(qA,φA,i )κA =
∑

κA∈TA

(
NF∑
�=1

q̂F,�φF,�,φA,i

)

κA

=
∑

κA∈TA

NF∑
�=1

q̂F,�(1,φA,i )κA∩κF,�
, (14)

where we have used that κF,� = supp(φF,�). The discrete algebraic counterpart of
(14) becomes

MAAq̂A = MAF q̂F , (15)

where MAA ∈ R
NA×NA with

MAA
i, j =

∑
κA∈TA

(φA, j ,φA,i )κA , i, j = 1, . . . , NA, (16)

is the full mass matrix and MAF ∈ R
NA×NF is defined as

MAF
i,� =

∑
κA∈TA

∫
κA∩κF,�

φA,i dx, i = 1, . . . , NA, � = 1, . . . , NF . (17)
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The vector q̂A in (15) collects the expansion coefficients of the projected acoustic
field qA, while q̂F collects the expansion coefficients of the donor fluid field qF .
Further details on the implementation of the projection method are given in [1].

Algebraic Formulation of the Semi-discrete Problem.We introduce the mass and
stiffness matrixM,K ∈ R

NA×NA :

Mi, j =
∑

κA∈TA

(φA, j ,φA,i )
N I
κA

, Ki, j =
∑

κA∈TA

(∇φA, j ,∇φA,i )
N I
κA

, (18)

for i, j = 1, . . . , NA. We remark that the mass matrixM computed with the quadra-
ture formula in Eq. (4) becomes diagonal and hence M �= MAA. Since ρh ∈ VA, we

write ρh =
NA∑
i=1

ρ̂A,iφA,i , where
{
φA,i

}NA

i is the set of NA basis functions associated

to VA. Collecting the expansion coefficients ρ̂A,i into the vector ρh , we obtain the
following algebraic semi-discrete formulation:

Mρ̈h + c20Kρh = f, (19)

supplemented with the initial conditions ρh = 0 and ρ̇h = 0.
For an inhomogeneous acoustic problem we define

fi = Lh(φA,i ) =
∑

κA∈TA

( f,φA,i )
N I
κA

, i = 1, . . . , NA, (20)

while for the aeroacoustic problem we have that:

fi =
[ ∑

�=x,y,z

C�q̂A,�

]
i
, i = 1, . . . , NA. (21)

For the aeroacoustic case in fact, given q̂A,� solution of the projection problem (14)
with q̂F,� = [∇ · T]�, computed as described inEq. (12),with l = x, y, z representing
each component, we have that:

Lh(φA,i ) =
∑

�=x,y,z

⎛
⎝ ∑

κA∈TA

−(qA,�, [∇φA,i ]�)N I
κA

⎞
⎠

=
∑

�=x,y,z

⎛
⎝ ∑

κA∈TA

−
( NA∑

j=1

q̂A,�φA, j , [∇φA,i ]�
)N I

κA

⎞
⎠ =

[ ∑
�=x,y,z

C�q̂A,�

]
i
,

(22)

with i = 1, . . . , NA, and where C� is defined as

C�
i, j =

∑
κA∈TA

(φA, j , [∇φA,i ]�)N I
κA

, for i, j = 1, . . . , NA. (23)
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Time Discretization. For the time discretization of problem (19) we divide the
temporal interval (0, T ] into N subintervals, such that T = NΔt , and we set t k =
kΔt , with k = 0, . . . , N − 1 and introduce the auxiliary variables vk

h = ρ̇h(t
k), ak

h =
ρ̈h(t

k). Furthermore, since the mass matrix M is not singular, we can represent
Eq. (19) as:

ρ̈h = A(ρh, t), (24)

where A(ρh, t) = M−1(f − c20Kρh). We now employ the Newmark method to dis-
cretize Eq. (24):

ρk+1
h = ρk

h + Δtvk
h + Δt2

(
βNAk+1 +

(
1

2
− βN

)
Ak

)
,

vk+1
h = vk

h + Δt
(
γNAk+1 + (1 − γN )Ak

)
,

(25)

where 0 ≤ βN ≤ 1

2
and 0 ≤ γN ≤ 1 are parameters of the Newmark scheme, and

where Ak = A(ρk
h, t k).

4 Curle Analogy

By following the derivation in [3], we recall the Curle aeroacoustic solution for
problem (2), thatwill be considered for comparison in the numerical results presented
in Sect. 6. Given an observer located at x at the time t , a volume V and a body B ⊂ V ,
we have that:

p(x, t) =
∫ +∞

−∞

∫
V

∂2Ti j (y, τ )

∂xi∂x j
G(x, t |y, τ )dydτ

+
∫ +∞

−∞

∫
∂B

(
p(y, τ )

∂G(x, t |y, τ )

∂n
− G(x, t |y, τ )

∂ p(y, τ )

∂n

)
d∂Bdτ ,

(26)

where G is a suitable Green function, V is the control volume, n is the outward unit
normal to the boundary ∂B. We denote with r = x − y, being r its modulus. We

choose as Green function G(x, t |y, τ ) = 1

4πr
δ(τ − t + r

c0
) in Eq. (26) to obtain:

p(x, t) = 1

4π

∫
V

1

r

[ ∂2Ti j

∂xi∂x j

]
dy

+
∫

∂B

1

4πr

[(
1

c0

∂ p

∂t
+ p

r

)
r
r

· n − ∂ p

∂n

]
d∂B,

(27)
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where [·] means that the function has to be evaluated at the retarded time t − r

c0
.

Next, we perform the following simplifications (see [4] for details). First, the vol-
ume term containing the Lighthill tensor T is neglected. Then the retarded times
are neglected. This assumption is reasonable if the considered sound sources are
compact, that means if the characteristic length of the emitting object D is smaller
then the characteristic length λ of the acoustic wave, namely if D � λ. Furthermore,

since the object is considered acoustically rigid, i.e. ∂ p
∂n

∣∣∣
∂B

= 0, we have that:

p(x, t) =
∫

∂B

1

4πr

((
1

c0

∂ p

∂t
+ p

r

)
r
r

· n
)

d∂B. (28)

By neglecting the viscous forces and considering F =
∫

∂B
pn, we have that:

p(x, t) = 1

4π

r
r2

·
(
F
r

+ 1

c0

∂F
∂t

)
. (29)

5 Numerical Results for Acoustic Problems

We consider the inhomogeneous wave equation described in (2) and we compare
our software AeroSPEED based on the spectral element approximation introduced
in Sect. 3.1 with the commercial software COMSOL [2] based on the Lagrangian
FEM.

5.1 Verification Test Case

As a first test case, we consider a simple model problem where we verify the perfor-
mance of both AeroSPEED and COMSOL, in terms of accuracy and computational
efficiency.

Acoustic Setup. Given the manufactured solution

uex = sin(πt) sin(4π(x − 1)(y − 1)(z − 1)) sin(4πxyz), (30)

we solve an inhomogeneouswave equation on the cubeΩA = (0, 1)3, withNeumann
boundary conditions on ΓB = ∂ΩA, with c0 = 1m s−1. We employ a very fine time
step Δt = 1 × 10−6s and we use a second order Newmark scheme with parameters
γN = 0.5 and βN = 0.25. We solve the test case both in AeroSPEED and in COM-
SOL, changing the refinement of the acoustic grid and the polynomial degree of the
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Fig. 2 Comparison between the SEM solver AeroSPEED and the Lagrangian FEM solver COM-
SOL. a Computed errors vs number of degrees of freedom (ndof). b Computed error versus CPU
time. The computational tests were performed on 4 cores Intel(R) Xeon(R) Gold 6226 CPU at
2.70GHz

underlying polynomial approximation and we compute the error E2 = ||uex − uh ||2
at the final time T = 0.5 s.

Acoustic Results. We report in Fig. 2 the computed errors versus the number of
degrees of freedom (left) and the CPU time (right) obtained with the AeroSPEED
and COMSOL solvers varying the polynomial approximation degree r = 1, 2, 3, 4
of a sequence of meshes with comparable granularity. The expected convergence
rates are obtained for both the underlying SEM and FEM approximations, respec-
tively. For a comparable number of degrees of freedom, the SEM approximation is
more accurate and less expensive. The results reported in Fig. 2 (right) clearly indi-
cate that AeroSPEED is able to achieve the same error in a much shorter computa-
tional time.Moreover, as the underlying polynomial approximation degree increases,
AeroSPEED becomes more and more efficient compared to COMSOL.

5.2 Noise Box Test Case

We consider a second test case to asses the capabilities of AeroSPEED in solving
acoustic problems in a confined geometry and we compare the obtained numerical
solution with the one provided by COMSOL.

Acoustic Setup. We consider a geometry that represents a simplified car cockpit,
the so called Noise Box, see Fig. 3, introduced in [7]. Each wall is modeled as a real
wall (with both partially reflective and partially absorbing behaviour), by setting a
wall impedance of Z = 32206 pa sm−1. As forcing term we consider a monopole
sound source f (x, t) = δ(x − xS) sin(2π f0t), where δ(x − xS) is the Dirac delta
centered in xS = (1.15, 0.595, 0.065)m and f0 = 162Hz. We set the density of air
to be ρ0 = 1.204 kg m−3 and the speed of sound c0 = 343ms−1. For the space
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Fig. 3 a Three-dimensional view of the domain of the Noise Box. A and B are the positions of the
selected microphones, where A = (0.424, 0.595, 0.151)m and B = (0.9, 0.224, 0.528)m. bQuoted
computational domain of the Noise Box. The spanwise length is 0.825m. In the figure, units are
expressed in millimeters
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Fig. 4 Computed acoustic pressure measured by microphone A and B with both AeroSPEED and
COMSOL

discretization we set the polynomial degree r = 2 and we fix Δx = 0.04m. For
the time discretization we set γN = 0.5 and βN = 0.25, with Δt = 5 × 10−6 s, with
a final time of T = 0.5 s. We solve for the same setup both with COMSOL and
AeroSPEED and we compare the two results.

Acoustic Results. From the results reported in Fig. 4a we note the initial transient
state, up to around t ≈ 0.05 s. The acoustic monopole is injecting energy in the
system, that is not fully dissipated, up until t ≈ 0.1 s. At that time, the system has
reached a stationary regime, where the amount of energy dissipated by the system
is balanced by the amount of energy injected. The numerical solution obtained with
AeroSPEED perfectly matches the numerical solution obtained with COMSOL. In
Fig. 5 we see the stationary pressure waves inside the Noise Box from different
snapshots of the solution.
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(a) t = 0.495 s (b) t = 0.496 s (c) t = 0.497 s

Fig. 5 Snapshots of the computed pressure fluctuations p′ = p − p, where p is the average pres-
sure, inside the Noise Box, for t = 0.495, 0.496, 0.497 s. The selected contour levels are from−7.5
to 7.5 Pa with a step of 1.5 Pa

6 Numerical Results for an Aeroacoustic Application

We consider an aeroacoustic application, namely the noise generated by two tan-
dem cylinders, a test case that have been subject of a dedicated workshop [8]. The
flow simulation has been performed with OpenFOAM [14], while the aeroacoustic
coupling has been implemented in AeroSPEED [1].

6.1 Turbulent Flow Around a Tandem Cylinder

Simulating the turbulent flow around two tandem cylinders at high Reynolds number
is a challenging problem due to the unsteadiness and complex flow structures to be
captured. The separation point on the front cylinder moves on the surface, generating
a shear layer that rolls up forming a periodic vortex shedding that impinges on the
rear cylinder. As result, a tonal and broadband noise are generated. Proper turbulence
models are crucial to simulate at a reasonable computational cost such a complex
physics.

Fluid Setup.The two tandemcylinders problemconfiguration involves two cylinders
of equal diameter D = 0.057m aligned along the streamwise direction at a distance
of 3.7D. A sketch of the computational domain is reported in Fig. 6a. At the inlet a
fixed velocity of U∞ = 44ms−1 is set, corresponding to a Reynolds number Re =
1.66 × 105. On ΓC1 and ΓC2, no slip conditions are imposed. At the outlet, a zero
gradient condition is set. On the remaining boundaries, a symmetry condition is
imposed. We choose a fixed time step ofΔt = 1.25 × 10−5 s, we set the final time to
T = 0.35 s, and we employ a second order backward difference formula. The height
of the first cell near the wall corresponds to y+ ≈ 30, and proper wall functions are
prescribed, see [11]. Following [5], we employ a DDES k − ωSSTmodel to simulate
the turbulent flow, see for instance [6] for more details.
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Fig. 6 Tandem cylinders computational domain. a Fluid computational domain. b Aeroacoustics
computational domain. The center of the computational domain is set at the center of the front
cylinder. The points A, B are microphone probes located at A = (–8.33D, 27.82D), and B =
(9.11D, 32.49D), with D = 0.057m. The front cylinder is denoted by ΓC1 and the rear cylinder
with ΓC2

Acoustic Setup. Since the acoustic problem can be considered bi-dimensional, we
take as sound source only the average along the spanwise direction. A sketch of
the computational domain for the aeroacoustic case is depicted in Fig. 6b. On the
cylinders ΓC1 ∪ ΓC2 = ΓN rigid wall boundary conditions are imposed, while at the
far field ΓO absorbing boundary conditions are considered. The fluid sound source is
mapped each four time steps, namely the computational time step for the Lighthill’s
wave equation is Δt = 5 × 10−5 s. The chosen polynomial degree is r = 2 and the
spacing at the far field is Δx ≈ 0.04m.

Flow Validation. The average flow field is characterized by a mostly symmetric
recirculation regions after the cylinders, see Fig. 7 (left). The first recirculation length
is about 2D, aligned with the results of [5]. A visualization of the vortex structures
in the flow field, see Fig. 7 (right), is made by employing the Q criterion, where

Q = 1
2

(
tr (∇u)2 + tr (∇u∇u)

)
. In Fig. 8, we compare the prediction on the force

coefficients with the results collected in [8]. The results are quite heterogeneous due
to the complexity of the problem and the numerous different strategies among the
research groups. We denote with CD and CL the mean drag and lift coefficients,
and their root mean squared rms values as C̃L , C̃D , respectively. All the computed
integral results are within the standard deviation from the literature data. For further
comparison, we consider Fig. 9, where we plot the values of the pressure coefficient
C p along the cylinders and we compared it with the experiments [8, 10] and with the
computations performed in [5]. The main differences are located in the aft of both
cylinders, and are due to the prediction of a different pressure recovery, resulting
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(a) (b)

Fig. 7 a Average velocity magnitude |u| on the symmetry plane with streamlines. b Isosurfaces of
Q = 1000 at t = 0.35 s colored with velocity magnitude
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in small shifts in the separation point locations. Overall, our flow predictions are
aligned with the references.

Aeroacoustic Validation. In Fig. 10, a snapshot of the pressure fluctuations induced
by the tandem cylinder is shown. The acoustic pressure fluctuations are dominated by
a dipole pattern induced by the lift force acting on the rear cylinder. As suggested by
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Fig. 10 Snapshot of the fluctuating pressure (from the acoustic computations), and Q criterion
colored with the velocity magnitude (from the flow computations)
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Fig. 11 Comparison of the sound spectra at microphone A = (–8.33D, 27.82D) and B = (9.11D,
32.49D)

Fig. 8, the main contribution to the sound generation is from the rear cylinder, being
its C̃L much larger than the front cylinder one. Also, we can compare the different
structures coming from the flowwith the bigger structures solved by the acoustics. In
Fig. 11 we compare the sound spectra obtained with different methodologies, such
as the Curle method described in Sect. 4, another Curle analogy with a spanwise
corrections proposed in [13], experimental data from QFF [8] and the results com-
puted with AeroSPEED. We observe that, although all the aeroacoustic solutions
predict the peak coming from the lift frequency of the rear cylinder, AeroSPEED
better matches the P SD values of the experimental data.

7 Conclusion

We introduce AeroSPEED, a solver for aeroacoustic problems that couples a finite
volume solution onto a spectral element space and solves the Lighthill’s wave equa-
tion. The high-order spectral acoustic solver was compared with the commercial
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software COMSOL on a model problem with a manufactured solution. The accu-
racy of the numerical results agree with theoretical estimates and the performance
of the two solvers is compared in terms of accuracy versus computational time.
The spectral element solution obtained with AeroSPEED is able to guarantee higher
accuracy with lower computational time. We then applied our solver to simulate the
acoustic propagation inside a simplified car cockpit (the Noise Box). The solution
obtained with the two different solvers for the pressure signals in two different loca-
tions inside the domain perfectlymatch.Next, we studied amore complex application
where the noise is generated by the highly unsteady flow around tandem cylinders.
We compared the results obtained with AeroSPEED with experimental and numer-
ical tests performed by many research groups on the tandem cylinder benchmark
case, proving the prediction capabilities of the proposed approach also for relevant
and more challenging aeroacoustic problems.
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1 The Continuous Generalized Poisson-Nernst-Planck
Model

Motivated by the transfer of ions in confined geometries, Burger et al. introduced in
[3] amodel accounting for cross-diffusion and size-exclusion effects. In thismodel, I
species, the volume fractions of which being denoted by U = (ui )1≤i≤I , are subject
to diffusion as well as to electric forces induced by a self-consistent electrostatic
potential. Denote by Ω ⊂ R

d a bounded connected polyhedral domain, then the
conservation of the volume occupied by the species i writes

∂t ui + ∇ · Fi = 0, i = 1, . . . , I, (1)

with the flux of the species i being (formally) given by

Fi = −Di (u0∇ui − ui∇u0 + u0ui zi∇φ) = −Di ui u0∇
(
log

(
ui

u0

)
+ ziφ

)
. (2)

In the above expression, Di > 0 denotes the diffusion coefficient of the species i .
The quantity

u0 = 1 −
I∑

i=1

ui (3)

shall be thought as the volume fraction of available space for the ions, possibly
occupied by a mobile and electro-neutral solvent. Denoting by zi the charge of
species i and by λ > 0 the (scaled) Debye length, then the electrostatic potential
solves the Poisson equation

− λ2Δφ =
I∑

i=1

zi ui + f (4)

for some prescribed background charge density f . We consider boundary conditions
of mixed type for the electric potential. More precisely, we assume that the boundary
∂Ω of the domain can be split into a insulator part Γ N and its complement Γ D on
which Dirichlet boundary condition is imposed:

∇φ · n = 0 on Γ N and φ = φD on Γ D. (5)

Throughout this paper, we will assume that f ∈ L∞(Ω) and that φD is the trace of
an L∞ ∩ H 1(Ω) function (which we also denote by φD). Neither f nor φD depend
on time. Boundary conditions of various types can be considered for the conservation
laws (1)–(2), like for instance Robin type boundary conditionmodeling electrochem-
ical reaction thanks to Butler-Volmer type formula, see for instance [5], or boundary
conditions of mixed Dirichlet-Neumann type as in [11]. In the presentation of the
scheme, we assume for simplicity that the system is isolated, in the sense that
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Fi · n = 0 on ∂Ω, i = 1, . . . , I. (6)

The system is finally complemented with initial conditions ui (t = 0) = u0
i with

u0
i ≥ 0 and

∫
Ω

u0
i > 0 for i = 0, . . . , I and

I∑
i=0

u0
i = 1. (7)

Let us now describe the entropy (or formal gradient flow) structure of the model.
Introduce the Slotboom variables wi = ui

u0
ezi φ, then the fluxes (2) rewrite as

Fi = −Di u
2
0e−zi φ∇wi , i = 1, . . . , I. (8)

Multiplying (1) by logwi = log ui
u0

+ ziφ, integrating over Ω and summing over
i = 1, . . . , I yields

d

d t
H + 4

∫
Ω

I∑
i=1

Di u
2
0e−zi φ|∇√

wi |2 = 0, (9)

where, denoting the mixing (neg)entropy density function H : RI+1
+ → R

I+1
+ by

H(U ) = u0 log(u0) +
I∑

i=1

ui log(ui ) + log(I + 1) ≥ 0,

the free energy H is given by

H =
∫

Ω

H(U ) + λ2

2

∫
Ω

|∇φ|2 − λ2
∫

Γ D

φD∇φ · n.

Assume that u0 is nonnegative (as established in [11] and proved in the discrete case
later on), then the second term in (9) is non-negative. As a consequence, the free
energy decays along time, as a manifestation of the second principle of thermody-
namics. Observe that H need not be non-negative but may be bounded uniformly
from below by a constant depending only on λ, f and φD .

A finite volume scheme has been studied in [4]. Even though the scheme mainly
behaves well in practice, its mathematical study is very partial since requiring strong
assumptions such as constant diffusion coefficients Di = D for all i , or no charge
zi = 0.Moreover, since the schemeproposed in [4] uses upwinding for themobilities,
numerical experiments exhibit a mere first order convergence in space. An alternative
finite element method using the so-called electrochemical potentials μi = log(wi )

rather than the ui as primary variables has been analyzed in [12]. This latter scheme
is by construction free energy diminishing without further restriction on the physical
parameters, and is shown to converge towards a weak solution as the mesh size and
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the time step tend to 0 (up to quadrature error terms). Second order convergence w.r.t.
the mesh size is observed, but the nonlinear system to be solved at each time step is
stiffer than for the finite volume scheme because of the use of the electrochemical
potentials as variables, so that no clear gain was observed in comparison with the
upstreammobility finite volumes. The finite volume scheme proposed in [1], inwhich
the fluxes Fi are approximated thanks to the second expression of (2) also leads to
singular numerical fluxes expressions. Our goal here is to propose and to analyze
a scheme which shares the best with the aforementioned approaches: decay of the
free energy and unconditional convergence are established, second order accuracy
in space and well-behaved nonlinear system for moderately small Debye length.

2 Two TPFA Finite Volume Schemes

First, we introduce the time discretization and the spatial mesh of the domain Ω .
The mesh will be assumed to be admissible in the sense of [9], in the sense that it
fulfills the so-called orthogonality condition.

Let T denote a family of non-empty, disjointed, convex, open and polygonal
control volumes K ∈ T , whose Lebesguemeasure is denoted bymK .We also assume
that control volumes partition the domain in the sense that Ω = ⋃

K∈T K . Further,
we call E a family of edges/faces, where σ ∈ E is a closed subset of Ω contained
in a hyperplane of Rd . Each σ has a strictly positive (d − 1)-dimensional Hausdorff
(or Lebesgue) measure, denoted by mσ. We use the abbreviation K |L = ∂K ∩ ∂L
for the intersection between two distinct control volumes which is either empty or
reduces to a face contained in E . The subset of all interior faces is denoted by

Eint = {σ ∈ E s. t. σ = K |L for some K , L ∈ T }.

For any K ∈ T , we assume that there exists a subset EK of distinct elements of E
such that the boundary of a control volume can be described by ∂K = ⋃

σ∈EK
σ and,

consequently, it follows that E = ⋃
K∈T EK . Additionally, we assume that boundary

edges Eext = E \ Eint are either subsets of Γ D or Γ N . To each control volume K ∈ T
we assign a cell center xK ∈ K which satisfies the orthogonality condition: If K , L
share a face σ = K |L , then the vector xL − xK is orthogonal to σ = K |L . The triplet
(T , E, {xK }K∈T ) is called an admissible mesh.

We introduce the notation dσ for the Euclidean distance between xK and xL

if σ = K |L or between xK and the affine hyperplane spanned by σ if σ ⊂ ∂Ω .
We also denote by dKσ = dist(xK ,σ), so that dσ = dKσ + dLσ if σ = K |L ∈ Eint
and dσ = dKσ if σ ∈ EK ∩ Eext. The transmittivity of the edge σ ∈ E is defined by
aσ = mσ

dσ
. The size of the mesh is h = maxK∈T diam(K )where diam(K ) denotes the

diameter of the cell K . The regularity of the mesh is defined by

ζ = max
K∈T

(
card EK ; max

σ∈EK

diam(K )

dKσ

)
.
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For the time discretization we decompose the time interval R+ := [0,+∞) into
a sequence of increasing number of time steps 0 = t0 < t1 < · · · with a stepsize

τ n = tn − tn−1

at time step n ∈ N \ {0}. We finally introduce Δt = supn∈N\{0} τ n , which we assume
to be finite.

We are now in position to define the finite volume scheme. Let us start with
the discretization of the Poisson equation (4) and (5), which relies on a classical
two-point flux approximation

λ2
∑
σ∈EK

aσ(φn
K − φn

Kσ) = mK

(
fK +

I∑
i=1

zi u
n
i,K

)
, K ∈ T , (10)

where fK is (possibly an approximation of) the mean value of f on the cell K , and
where

φn
Kσ =

⎧⎪⎨
⎪⎩

φn
L if σ = K |L ∈ Eint,

φn
K if σ ⊂ Γ N ,

φD
σ = 1

mσ

∫
σ φD if σ ⊂ Γ D.

The Eq. (1) is discretized using a backward Euler method in time and finite volumes
in space, leading to

un
i,K − un−1

i,K

τ n
mK +

∑
σ∈EK

Fn
i,Kσ = 0, i = 1, . . . , m, K ∈ T . (11)

In accordance with (6), we set Fn
Kσ = 0 if σ ⊂ ∂Ω . For σ = K |L an internal edge,

then we define

Fn
i,Kσ = aσ Di

(
un

i,K un
0,LB

(
zi (φ

n
L − φn

K )
) − un

i,Lun
0,KB

(
zi (φ

n
K − φn

L)
))

, (12)

with

un
0,K = 1 −

I∑
i=1

un
i,K , K ∈ T . (13)

Formula (12) involves a function B ∈ C1(R;R) which is (strictly) positive and
satisfies B(0) = 1 and B′(0) = −1/2.

The continuous system (1) and (2)was originally derived in [3] thanks to a hopping
process, suggesting the choice

B(y) = e−y/2, (SQRA)
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leading to a scheme referred to as the square-root approximation (SQRA) scheme in
what follows, in reference to [6, 13, 15]. Another natural choice for the function B
is the Bernoulli function

B(y) = y

ey − 1
, (SG)

the corresponding scheme being referred to as the Scharfetter-Gummel (SG) scheme
although its construction is not based on the original idea of [16]. We rather take
advantage of the free-energy diminishing character of the SG scheme highlighted
in [8].

In order to close the system, it remains to define the discrete counterpart to u0 as
follows:

u0
i,K = 1

mK

∫
K

u0
i , K ∈ T , i = 0, . . . , I. (14)

Then we infer from (7) that

I∑
i=0

u0
i,K = 1 for all K ∈ T , and

∑
K∈T

u0
i,K mK =

∫
Ω

u0
i > 0 for i = 0, . . . , I.

(15)
In what follows, we denote by U n

K = (
un

i,K

)
i=0,...,I

for K ∈ T and n ≥ 0.

3 Stability and Convergence Properties of the Schemes

The goal of this section is to show that the nonlinear system corresponding to the
scheme (10)–(13) admits at least one solution, and that beyond local conservativity,
this solution preserves at the discrete level some key features of the model, namely
the positivity of the volume fractions and the decay of the free energy. The grid T
and the time steps (τ n)n≥1 remain fixed.

Since our scheme is locally conservative, i.e., Fn
Kσ + Fn

Lσ = 0 for all σ = K |L ∈
Eint, then summing (11) over K shows by induction and thanks to (14) that

∑
K∈T

un
i,K mK =

∑
K∈T

un−1
i,K mK =

∑
K∈T

u0
i,K mK =

∫
Ω

u0
i > 0. (16)

Since we are interested in discrete solutions with positive volume fractions un
i,K , we

perform an eventually harmless modification of the flux formula (12) into

Fn
i,Kσ = aσ Di

( (
un

i,K

)+(
un
0,L

)+
B

(
zi (φ

n
L − φn

K )
)

− (
un

i,L

)+(
un
0,K

)+
B

(
zi (φ

n
K − φn

L)
) )

. (17)
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Proposition 31 Let n ≥ 1, and let
(
U n−1

K

)
K∈T be such that

un−1
i,K ≥ 0,

I∑
i=0

un−1
i,K = 1 ∀ K ∈ T , and

∑
K∈T

un−1
i,K mK > 0. (18)

Then any solution
(
U n

K ,φn
K

)
K∈T ,n≥1 to the modified scheme with (17) instead of (12)

satisfies un
i,K > 0 for all i = 0, . . . , I and all K ∈ T .

Proof Let us start by establishing the positivity of un
0,K . Assume for contradiction

that there exists a cell K ∈ T such that un
0,K ≤ 0. Then we deduce from formula (17)

that Fn
i,Kσ ≥ 0 for all σ ∈ EK and all i = 1, . . . , I . Because of (13) and (18), this

implies that

0 ≥ un
0,K = un−1

0,K + τ n

mK

I∑
i=1

∑
σ∈EK

Fn
i,Kσ ≥ 0.

In particular, all the fluxes Fn
i,Kσ , i = 1, . . . , I and σ ∈ EK are equal to 0. In view of

formula (17) and of the strict positivity ofB, this implies either that un
i,K ≤ 0 for all

i , which yields a contradiction with (13), or that un
0,L ≤ 0 for all the cells L sharing

an edge σ = K |L with K . Since Ω is connected, one would obtain that un
0,K = 0

for all K ∈ T and thus that
∑

K∈T un
0,K mK = 0. This contradicts (16), and thus we

necessarily have that un
0,K > 0 for all K ∈ T .

With the positivity of un
0,K , K ∈ T , at hand, let us focus on the un

i,K for an arbitrary
i = 1, . . . , I . Similarly, we assume that there exists some K ∈ T such that un

i,K ≤ 0.
Then owing to (17), we infer that Fn

i,Kσ ≤ 0 for all σ ∈ EK , and then that

0 ≥ un
i,K = un−1

i,K − τ n

mK

∑
σ∈EK

Fn
i,Kσ ≥ 0.

This leads to un
i,K = 0 and to Fn

i,Kσ = 0 for all σ ∈ EK . Since we already know that
un
0,K > 0, we deduce from (17) that un

i,L ≤ 0 for all cell L sharing a cell σ = K |L
with K . As above, this implies that un

i,K = 0 for all K ∈ T , which contradicts (16).
Then un

i,K > 0 for all K ∈ T , concluding the proof of Proposition 31.

A consequence of previous proposition is that a solution to the modified scheme
with (17) instead of (12) is also a solution to the original scheme (10)–(13). We
did assume that the background charge density f and thus its discrete counterpart
( fK )K∈T are uniformly bounded, and that φD belongs to L∞ ∩ H 1/2(Γ D). There-
from, we deduce some uniform discrete L∞(H 1(Ω)) estimate on (φK )K∈T from [9,
Lemma 13.4], while [7, Proposition A.1] gives a uniform bound

|φn
K | ≤ C, K ∈ T , n ≥ 0, (19)
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since the right-hand side of the discrete Poisson equation (10) is uniformly bounded.
These a priori estimates are sufficient to prove the existence of a solution to the
scheme thanks to a topological degree argument we do not detail here. We end up
with the following proposition.

Proposition 32 There exists at least one solution to the numerical scheme (10)–(13)
such that un

i,K > 0 for all i = 0, . . . , I , for all K ∈ T and all n ≥ 1.

Next proposition is about the thermodynamical consistency of our scheme and
the decay of a discrete counterpart of the free energy.

Proposition 33 Let
(
U n

K ,φn
K

)
K∈T ,n≥1 be a solution to the scheme (10)–(13) as in

Proposition 32, then define for n ≥ 0 the discrete free energy at the nth time step

Hn
T =

∑
K∈T

mK H(U n
K ) + λ2

2

∑
σ∈E

aσ(φn
K − φn

Kσ)2 + λ2
∑
σ∈ED

aσφD
σ (φn

K − φD
σ ),

(20)

the discrete electrochemical potentials μn
i,K = log

(
un

i,K

un
0,K

)
+ ziφ

n
K of species i , and

Dn
T =

I∑
i=1

∑
σ∈Eint

Fn
i,Kσ(μn

i,K − μn
i,L)

the discrete dissipation, which is nonnegative for both choices (SQRA) and (SG) of
function B. Then there holds

Hn
T + τ nDn

T ≤ Hn−1
T , n ≥ 1. (21)

Proof With both choices (SQRA) and (SG) for the functionB, the fluxes (12) enter
the framework of the exponentially fitted schemes. Indeed, denoting by

wn
i,K = un

i,K

un
0,K

ezi φ
n
K = exp(μn

i,K ) for K ∈ T and i = 1, . . . , I

(which is well defined since un
0,K > 0), then the fluxes (12) can be reformulated as

Fn
i,Kσ = aσ Di un

0,K un
0,LM(e−zi φ

n
K , e−zi φ

n
L )

(
wn

i,K − wn
i,L

)
(22)

for some mean functionM depending on the choice ofB (see [14]). More precisely,

M(a, b) = √
ab for (SQRA), and M(a, b) = log(1/a) − log(1/b)

1/a − 1/b
for (SG),

for a, b > 0 with a = b, and M(a, a) = a. As a consequence of the positivity of
un
0,K and of the monotonicity of the exponential function, one easily infers that
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Dn
i,σ := Fn

i,Kσ(μ
n
i,K − μn

i,L) ≥ 0, ∀i = 1, . . . , I, σ = K |L ∈ Eint, (23)

whence the nonnegativity of Dn .

Define by μn
i,K = log

(
un

i,K

un
0,K

)
+ ziφ

n
K = log(wn

i,K ) the electrochemical potential

of species i , then multiplying the discrete conservation law (11) by τ nμn
i,K , and

summing over i = 1, . . . , I and K ∈ T provides thanks to discrete integration by
parts

An
T + Bn

T + τ nDn
T = 0, (24)

where we have set

An
T =

I∑
i=1

∑
K∈T

(
un

i,K − un−1
i,K

)
log

(
un

i,K

un
0,K

)
mK

(13)=
I∑

i=0

∑
K∈T

(
un

i,K − un−1
i,K

)
log

(
un

i,K

)
mK ,

and

Bn
T =

I∑
i=1

∑
K∈T

(
un

i,K − un−1
i,K

)
ziφ

n
K mK

(10)= λ2
∑
K∈T

φn
K

∑
σ∈EK

aσ

(
φn

K − φn−1
K − (φn

Kσ − φn−1
Kσ )

)
.

Then we deduce from the convexity of H that

An
T ≥

∑
K∈T

(
H(U n

K ) − H(U n−1
K )

)
mK , (25)

while reorganizing the term Bn gives

Bn
T = λ2

∑
σ∈E

aσ

(
φn

K − φn−1
K − (φn

Kσ − φn−1
Kσ )

)
(φn

K − φn
Kσ)

+ λ2
∑
σ∈ED

aσφD
σ (φn

K − φn−1
K ).

Then using the elementary convexity inequality a(a − b) ≥ (a2 − b2)/2 in the above
term and combining the result with (25) in (24) provides the desired result (21).

Proposition 33 is interesting in itself, but it also contains important information
for proving the convergence of the scheme, as in particular the discrete L2

loc(H 1)

estimates on the discrete counterparts of u0 and
√

ui u0. We prove these estimates in
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Lemma 35. As an intermediate result we need a uniform bound on the discrete free
energy.

Lemma 34 There exists C > 0 depending only on Ω , φD, λ, f , (zi )i , and ζ such
that, for all N ≥ 1, there holds |HN

T | ≤ C.

Proof Because of the bound 0 ≤ un
i,K ≤ 1 for all i and K , it is clear that the first two

contributions of (20) remain uniformly bounded. Concerning the last contribution
observe that if one defines φD

K and φD
σ as the averages of φD on K ∈ T and σ ∈ E

respectively, then

∑
σ∈ED

aσφD
σ (φn

K − φD
σ )

=
∑
K∈T

∑
σ∈ED

aσ(φD
σ − φD

K )(φn
K − φn

Kσ) +
∑
K∈T

φD
K

∑
σ∈ED

aσ(φn
K − φn

Kσ)

which yields using Young’s inequality for the first term and the Poisson equation for
the second one that

|λ2
∑
σ∈ED

aσφD
σ (φn

K − φD
σ )|

≤ C(‖∇φD‖2L2 + ‖φD‖L1(1 + ‖ f ‖L∞)) + λ2

4

∑
σ∈E

aσ(φn
K − φn

Kσ)2

for some C depending only on the domain, λ, ζ and (zi )i .

Lemma 35 There exists C > 0 depending only on Ω , φD, λ, f , (zi )i , (Di )i and ζ
such that, for all N ≥ 1, there holds

N∑
n=1

τ n
I∑

i=1

∑
σ∈Eint

aσ

(√
un

i,K un
0,K −

√
un

i,Lun
0,L

)2

+
N∑

n=1

τ n
∑
σ∈Eint

aσ

(√
un
0,K −

√
un
0,L

)2

+
N∑

n=1

τ n
∑
σ∈Eint

aσ

(
un
0,K − un

0,L

)2 ≤ C(1 +
N∑

n=1

τ n).

Proof Onegets from the elementary inequality (a − b)(log(a) − log(b)) ≥ 4(
√

a −√
b)2 applied to (23) that

Dn
i,σ ≥ 4aσ DiR(e−zi φ

n
K , e−zi φ

n
L )

×
(√

un
i,K un

0,Le
zi
4 (φn

K −φn
L ) −

√
un

i,Lun
0,K e

zi
4 (φn

L−φn
K )

)2
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withR(e−zi φ
n
K , e−zi φ

n
L ) = M(e−zi φ

n
K , e−zi φ

n
L )e

zi
2 (φn

K +φn
L ) being equal to 1 for the choice

(SQRA) of B but not for (SG). However, thanks to (19) and since Di > 0 for all i ,
there holds

2DiR(e−zi φ
n
K , e−zi φ

n
L ) ≥ κ

for some κ > 0 uniform w.r.t. K , i and n. As a consequence, using furthermore that
(a + b)2 ≥ 1

2a2 − b2,

Dn
i,σ ≥κaσ cosh

2
( zi

4
(φn

K − φn
L)

) (√
un

i,K un
0,L −

√
un

i,Lun
0,K

)2

− κaσ

(√
un

i,K un
0,L +

√
un

i,Lun
0,K

)2
sinh2

( zi

4
(φn

K − φn
L)

)
.

Since |φn
K | ≤ C owing to (19), one has sinh2

( zi
4 (φn

K − φn
L)

) ≤ C(φn
K − φn

L)2.
Using moreover that 0 < un

i,K , un
0,K < 1 and that cosh(a) ≥ 1, one gets that

Dn
i,σ ≥ aσκ

(√
un

i,K un
0,L −

√
un

i,Lun
0,K

)2 − Caσ(φn
K − φn

L)2.

Since

(√
un

i,K un
0,L −

√
un

i,Lun
0,K

)2 =
(√

un
i,K un

0,K −
√

un
i,Lun

0,L

)2

− (un
i,K − un

i,L)(un
0,K − un

0,L),

then summing over i = 1, . . . , I and σ ∈ Eint and using (13) leads to

Dn
T ≥κ

I∑
i=1

∑
σ∈Eint

aσ

(√
un

i,K un
0,K −

√
un

i,Lun
0,L

)2

+ κ
∑
σ∈Eint

aσ

(
un
0,K − un

0,L

)2 − C
∑
σ∈Eint

aσ(φn
K − φn

Kσ)2.

Invoking again the arguments developed in the discussion preceding Proposition 32
to get a uniform discrete L∞(H 1) estimate on

(
φn

K

)
K ,n , we obtain that

Dn
T ≥κ

I∑
i=1

∑
σ∈Eint

aσ

(√
un

i,K un
0,K −

√
un

i,Lun
0,L

)2

+ κ
∑
σ∈Eint

aσ

(
un
0,K − un

0,L

)2 − C. (26)

Moreover, the inequality
∑I

i=0

√
un

i,K un
i,L ≤ 1 gives that



68 C. Cancès et al.

I∑
i=1

∑
σ∈Eint

aσ

(√
un

i,K un
0,K −

√
un

i,L un
0,L

)2

≥
∑

σ∈Eint
aσ

(
(1 − un

0,K )un
0,K + (1 − un

0,L )un
0,L − 2(1 −

√
un
0,K un

0,L )
√

un
0,K un

0,L

)

=
∑

σ∈Eint
aσ

(√
un
0,K −

√
un
0,L

)2 −
∑

σ∈Eint
aσ

(
un
0,K − un

0,L

)2
,

whence we also deduce that

Dn
T ≥ κ

∑
σ∈Eint

aσ

(√
un
0,K −

√
un
0,L

)2 − C.

To conclude the proof, it eventually remains to remark from (21) and Lemma 34 that
there exists C depending neither on h, Δt , N nor on the initial data U 0 = (

u0
i

)
0≤i≤I

(provided it fulfills (7)) such that
∑N

n=1 τ nDn
T ≤ C. Combining this with (26) yields

the desired result.

One also deduces the following discrete L2
loc(L2)d estimates on the fluxes, which

amount to some discrete L2
loc(H 1)′ estimate on time increments of the discrete coun-

terpart to ∂t ui .

Lemma 36 There exists C depending only on Ω , φD, λ, f , (zi )i , (Di )i and ζ such
that

I∑
i=1

N∑
n=1

∑
σ∈Eint

dσ

mσ

∣∣Fn
i,Kσ

∣∣2 ≤ C(1 +
N∑

n=1

τ n). (27)

Proof One splits the flux (2) into two parts corresponding to convection and diffusion
respectively:

Fn
i,Kσ = Fconv,n

i,Kσ + Fdiff,n
i,Kσ ,

with

Fconv,n
i,Kσ = aσ Di

un
i,K un

0,L + un
i,Lun

0,K

2
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(
zi (φ

n
L − φn

K )
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,

Fdiff,n
i,Kσ = aσ Di
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i,K un

0,L − un
i,Lun

0,K

2

[
B

(
zi (φ

n
L − φn

K )
) + B

(
zi (φ

n
K − φn

L)
)]

.

The flux (Fn
i,Kσ)σ,n is bounded in L2

loc(L2)d in the sense of (27) if both (Fconv,n
i,Kσ )σ,n

and (Fdiff,n
i,Kσ )σ,n are. For the choice (SG) of the functionB, thenB(−y) − B(y) = y,

whileB(−y) − B(y) = y + O(y2) for (SQRA), so that

Fconv,n
i,Kσ = aσ Di

un
i,K un

0,L + un
i,Lun

0,K

2
zi (φ

n
K − φn

L) + O (
aσ(φn

K − φn
L)2

)
, (28)
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the remainder term being null for (SG). The L2
loc(L2)d character of the above expres-

sion directly follows from the uniformbound on un
i,K , 0 ≤ i ≤ I and from the discrete

L∞(H 1) bound on (φn
K )K ,n inherited from the control of the energyHn

T , to be com-
bined with (19) to control the remainder term.

Concerning the diffusive term, one has for both choices (SQRA) and (SG) of the
function B that

1 ≤ 1

2

[
B

(
zi (φ

n
L − φn

K )
) + B

(
zi (φ

n
K − φn

L)
)] ≤ 1 + O

((
φn

K − φn
L

)2)
.

Therefore, one gets that

Fdiff,n
i,Kσ = aσ Di

(
un

i,K un
0,L − un

i,Lun
0,K

) (
1 + O

((
φn

K − φn
L

)2))
. (29)

Since un
i,K un

0,L − un
i,Lun

0,K = un
i,K un

0,K − un
i,Lun

0,L + (un
i,K + un

i,L)(un
0,L − un

0,K ),

Lemma 35 provides the desired L2
loc(L2) bound on Fdiff,n

i,Kσ , hence Lemma 36.

The above estimates are sufficient to establish the convergence of the numerical
scheme. For a given mesh T and a given time discretization τ = (τ n)n≥1, we denote
by ui,T ,τ and φT ,τ the piecewise constant reconstructions defined by

ui,T ,τ (t, x) = un
i,K and φT ,τ (t, x) = φn

K if (t, x) ∈ K × (tn−1, tn].

Theorem 37 Let (T�)�≥1 be a sequence of admissible discretizations of Ω (satis-
fying the orthogonality condition), such that h� goes to 0 as � tends to +∞ while
the mesh regularity factor ζ� remains bounded uniformly w.r.t. �, and let (τ�)�≥1 =( (

τ n
�

)
n≥1

)
�≥1 be a sequence of sequences of time steps such that Δt� = maxn τ n

�

goes to 0 as � tends to +∞. Then there exists a weak solution (U,φ) such that, up to
a subsequence,

φT ,τ −→
h,Δt→0

φ in the L∞(R+ × Ω)-weak- � sense and a.e. in R+ × Ω, (30)

ui,T ,τ −→
h,Δt→0

ui in the L∞(R+ × Ω)-weak- � sense, i = 0, . . . , M, (31)

with furthermore u0,T ,τ and ui,T ,τ (u0,T ,τ )
1/2 converging a.e. in R+ × Ω towards

their respective limits u0 and ui (u0)
1/2 which belong to L2

loc(H 1).

Theproof is technical andwill be detailed in a forthcoming contribution. It borrows
ideas to the proof proposed in [4] and relies on compactness arguments (in particular
on the degenerate Aubin-Lions lemma [4, Lemma 10]) as well as on a suitable notion
of weak solution. Indeed, yet another reformulation of the fluxes is needed, like for
instance

Fi = −Di
(∇(u0ui ) − 4ui

√
u0 ∇√

u0 + ui u0zi∇φ
)
.
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This last formulation is suitable to establish the convergence since it clearly belongs
to L2

loc(L2)d as the product of gradient terms the approximation of which being
weakly convergent in L2

loc(L2)d with bounded zeroth order term the approximation
of which being strongly convergent.

4 Numerical Results

The nonlinear system corresponding to the scheme is solved thanks to a Newton-
Raphson method with stopping criterion ‖Fn

T ((U n
K )K∈T , (φn

K )K∈T )‖∞ ≤ 10−8, the
components of Fn

T being given by the left-hand side of (11).
The goal of our first numerical test is to show that both schemes corresponding

to (SQRA) and (SG) are second order accurate w.r.t. the mesh size. To this end,
we consider the one-dimensional domain Ω = (0, 1), in which I = 2 different ions
evolve, both with the same diffusion coefficient D1 = D2 = 1. Their (normalized)
charge is set to z1 = 2 and z2 = 1, yielding repulsive interaction. No background
charge is considered, i.e. f = 0, whereas Dirichlet boundary conditions are imposed
for the electric potential on both sides of the interval, that are φD(t, 0) = 10 and
φD(t, 1) = 0. We consider a moderately small Debye length λ2 = 10−2. We start at
initial time t = 0 with the following configurations: u0

1(x) = 0.2 + 0.1(x − 1) and
u0
2 ≡ 0.4.
A reference solution is computed on a grid made of 1638400 cells and with a

constant time step τ = 10−3, to which are compared solutions computed on succes-
sively refined grids but with the same constant time step. The profile of the solution
at the final time T = 1 is depicted on Figs. 1 and 2. The relative space-time L1 error
is plotted as a function of the number of cells on Fig. 3, showing some second order
accuracy in space, as specified in the introductory discussion. For such a moderately
small value of λ2 = 10−2, both schemes exhibit a very similar behavior in terms of
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Fig. 1 Concentration profiles u1(T, x), u2(T, x) and u0(T, x) at times T = 1 (left) and T = 5000
(right)
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Fig. 2 Electric potential profile φ(T, x) at times T = 1 (solid) and T = 5000 (dashed)

Fig. 3 Convergence of the
schemes under space grid
refinement
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accuracy, but also in terms of nonlinear resolution. More precisely, the number of
Newton iterations required to solve a time step remains between 6 for the very first
iterations and 2 for larger times is mainly insensitive to the mesh size.

Nevertheless, there is an important difference in the numerical behavior of the
two schemes in the small Debye length regime. Indeed, when λ2 become small,
then excepted for very particular values of the data, the variations of φT ,τ across the
interfaces E become very large because of (10). Therefore, the drift becomes too
large to evaluate its exponential, making the computation with the (SQRA) scheme
fail. Since B(y) ∼ −y as y tends to−∞, the situation is much less problematic with
the (SG) scheme, for which computation of the solution corresponding to λ = 10−6

is feasible without any specific treatment. However, since the drift becomes large, the
use of a reduce time step is required to ensure the convergence of Newton’s methods.

The long-time limit of the continuous model has been exhibited in [3]. The model
reduces to a nonlinear elliptic equation on the electric potential φ, from which one
deduces the concentration profiles. However, no quantitative estimate concerning the
convergence towards equilibrium. We then perform a numerical study still with the
same parameters as previously (in particular with λ2 = 10−2). The steady solution
is computed by choosing a very large final time T∞ = 5.105 in the simulation. We
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Fig. 4 Convergence towards
the steady long-time
behavior in terms of relative
energy Hrel,n
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denote by H∞
T the corresponding discrete free energy. The relative energy at time

tn is then defined asHrel,n
T = Hn

T − H∞
T . The energy decay stated in Proposition 33

ensures that Hrel,n
T ≥ 0 up to numerical errors related to the resolution of the non-

linear systems. One observes on Fig. 4 that the (SQRA) scheme dissipates faster
energy than the (SG) scheme, the latter exhibiting an almost perfect but rather slow
exponential convergence towards the steady state as long as the numerical precision
has not been reached. Note that in opposition to the classical Poisson-Nernst-Planck
problems arising in semi-conductor physics [2, 10], there is no theoretical foundation
to the exponential decay we observe here. The rigorous proof of such an exponential
convergence for the continuous and discretized degenerate Poisson-Nernst-Planck
problem should be investigated in future works.
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Magic SIAC Toolbox: A Codebase
of Effective, Efficient, and Flexible Filters

Xulia Docampo-Sánchez and Jennifer K. Ryan

Abstract Filtering is a powerful tool inCFD that can aid in accurately and efficiently
predicting the governing physics in simulations, leading to improved designs. Filters
can remove subgrid scale high-frequency physics so that only large scale struc-
tures remain in the filtered solution, alleviate aliasing error, and mitigate Gibbs phe-
nomenon. They can even extract hidden accuracy. The same ideas are useful in data
compression, post-processing, and machine learning. Well-designed filters, such as
the one that gives rise to the Smoothness-Increasing Accuracy-Conserving (SIAC)
post-processing filters, can be used to extract hidden information in certain numerical
simulations, creating even more accurate representations of the data. They can be
adapted for boundaries, unstructured grids, and non-smooth solutions. Furthermore,
well-designed filters have the potential to accurately capture multi-scale physics, and
are flexible enough to combine simulation information with experimental data. The
SIAC Magic Toolbox provides a codebase for efficient, effective, flexible filters for
general data. It takes in two data files: one data file consisting of information on
the mesh and a second data file consisting of information from the corresponding
approximation, either modal or nodal data. If desired, the user can choose param-
eters that correlate to the amount of dissipation, accuracy, and scaling. Otherwise
these parameters are set as default parameters. The toolbox then returns the filtered
information in the same format.
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1 Introduction and Background

In this article, we introduce the SIAC Magic Toolbox [7], a software package to
enable practical utilization of mathematical filters that allow for revealing hidden
information contained in data. These filters have proven useful in streamline and
vortex visualization [13], aeroacoustics [22], shock regularization [26], adaptivity
[6], and data extraction [19, 20]. Smoothness-Increasing Accuracy-Conserving fil-
tering is a filter family that generalizes a post-processing technique introduced for
finite element approximations to elliptic equations by Bramble and Schatz [3] and
extended to linear hyperbolic equations and discontinuous Galerkin methods by
Cockburn, Luskin, Shu, and Süli [5]. They are based on rich mathematical theory
that ties together utilizing moments, Fourier information, and information from dual
equations. A summary of the developments of SIAC as well as applications can be
found in [8].

While most of the previous developments of SIAC filtering have concentrated
on developments in the theory, here we introduce a Julia package that allows for
applying SIAC filters. The SIAC Magic Toolbox only requires the data values and
mesh information. The user can then test the effect of different moment conditions,
smoothness of the filter, and scaling on their data. The toolbox will return the filtered
values.

We start by introducing the basics of SIACfilters and then proceed to introduce the
SIACMagic Toolbox, discuss its computational performance, and provide examples
generated by the toolbox.

1.1 Smoothness-Increasing Accuracy-Conserving (SIAC)
Filters

To illustrate the ability of SIAC to perform on a given data set, it is useful to outline
how SIAC works for general data as well as through the error estimates.

Assume that fh(x), x = (x1, x2, . . . , xd) is the set of given data that approximates
a function f (x) on a discrete set of points that comprise amesh andwhere h describes
the data spacing. Then the filtered data is given by convolving fh with a kernel
function, K H (·). In a continuous setting, this is written as

f ∗
h (x) = K H (x) � fh(x) =

∫
R

K H (x − y) fh(y)dy. (1)

where H represents the kernel scaling. In a discrete setting where only point values
are given, the discrete convolution is done using exact quadrature.

The filtered error can be decomposed into a term that only depends on how the
kernel is designed (the potential for data extraction) and a term that relies on the
discretization error:
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‖ f − f ∗
h (x)‖ ≤ ‖ f − K H () � f ‖︸ ︷︷ ︸

Kernel design

+‖K H () � ( f − fh())‖︸ ︷︷ ︸
Discretization Error

≤ O(Hr+1) + O(hs)

(2)
where ‖ · ‖ is some norm. The first term in the error estimate is only controlled by
the filter/post-processor design. The second term is determined by the discretization
error and how the filter/post-processor is linked to the discretization error through
the scaling. As noted in Mock and Lax [18] and Bramble and Schatz [3], the goal
is to obtain an optimal balance between these two terms (and hence h and H ). This
allows for taking advantage of the patterns of information from the choice of data
representation and thus damping nonphysical noise.

In the following sectionwe discuss the formulation and the underlyingmechanism
in the design of Smoothness-Increasing Accuracy-Conserving (SIAC) filters.

SIAC Formulation. Assume that the kernel is comprised of r + 1 (scaled) function
translates of a given function,

K (·) =
r+1∑
γ=1

cγψTγ
(·), (3)

where K H (·) = 1
H K

( ·
H

)
. K H (·) can be viewed as a normalized probability density

function. Here, cγ are the weights of some kernel basis function, ψ. The weights
are obtained by solving a system of equations defined by enforcing consistency and
(mechanical/statistical) moments,

∫
R

K (x − y)ym dy = xm, m = 0, 1, 2, . . . , r, (4)

as is also done in image processing. Hence, this gives information about the mean,
variance, standard deviation, etc. Further, it ensures that the first term is only con-
trolled by the number of moments, regardless of the choice of kernel basis function,

‖ f − K H () � f ‖ ≤ Cm Hr+1.

Mock and Lax [18] describe the importance of satisfying moment conditions and
pre-processing data in order to recover accuracy for discontinuous functions. The
pre-processing of data is important for methods not based on Galerkin orthogonality.

In the Cartesian coordinate system, utilizing a compact kernel basis function can
aid in computational efficiency. Hence, ψ is usually chosen to be a B-spline kernel,

BT,1 = χ[− 1
2 , 12 )

, BT,n = BT,n−1 � BT,1,

where Tn represents the knot matrix for the nth order spline (i.e. B-spline breaks)
[16]. For a symmetric kernel (r even), the general form of the knot matrix is
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Linear kernel

BT1,2

BT2,2

BT3,2

K(3,2)

Quadratic kernel

BT1,3 BT5,3

K(5,3)

Fig. 1 Example B-spline kernels (solid lines) consisting of 2p + 1 B-Splines (dashed lines) of
order p + 1 for p = 1 (left) and p = 2 (right)

T =

⎛
⎜⎜⎜⎝

− n+r
2

−(n+r)+2
2 · · · n−r

2− n+r−2
2

−(n+r)+4
2 · · · n+2−r

2
...

...
. . .

...
r−n
2

r−n+2
2 · · · n+r

2

⎞
⎟⎟⎟⎠ , (5)

where each rowgives theB-Spline breaks of theγth B-spline [16] (γ = 1, . . . , r + 1).
Examples of the usual kernels used for p = 1, 2 are given in Fig. 1.

As discussed by Bramble and Schatz [3] and Thomeé [24], choosing the kernel
basis function to be B-Splines has an added advantage when it comes to extracting
information as derivatives can bewritten as divided differences of lower order splines,

∂α

∂xα
BTn (x) = ∂α

H BTn−α(x),

where ∂α
H represents the αth divided difference. This is an essential property in order

to maximize the accuracy extracting capability for piecewise polynomial data. The
general B-spline SIAC kernel is then

K (r+1,n)
H (x) =

r+1∑
γ=1

cγ BTγ ,n(x). (6)

Here, BT,n represents nth-order central B-spline with knot sequence, T and smooth-
ness n − 2. The scaling, H , is generally tied to the spacing of the data.

For the symmetric kernel with equally spaced knots, the Fourier transform of the
SIAC kernel illustrates the different parameters that make for a flexible filter. The
Fourier transform is given by
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F(K ) = K̂ (ξ) = sinc

(
ξ

2

)n

︸ ︷︷ ︸
controls dissipation

⎛
⎝c r+2

2
+ 2

� r
2 �∑

γ=1

cγ cos

((
γ − r + 2

2

)
ξ

)⎞
⎠

︸ ︷︷ ︸
moment conditions

(7)

Thus there are three parameters that affect the performance of the filter: the number
of kernel basis functions which is tied to the number of moments, the smoothness
that is tied to the amount of dissipation, and the scaling that takes advantage of the
patterns of information contained in the data. Note that this satisfies the classical
definition of a spectral filter [25].

Why SIACWorks. The ability of SIAC to extract hidden data is not magic and more
complete theoretical discussions are given in [9, 14, 16, 19–22]. A review article
summarizing the theory and previous applications can be found in [8]. The theoretical
framework essentially relies on the ability to take advantage of the patterns of noise,
which is hidden in the Fourier information. This pattern of the error will be found
in any data that is represented by piecewise polynomials and results in obtaining
different convergence orders when analyzing the errors in the solution versus the
dispersion and dissipation errors. The pattern of the error for discontinuous Galerkin
methods was studied by Adjerid et al. in [1], where the authors examine the leading
term of the error. It is also discussed in [19, 20]. This results in a discrepancy in
the error analysis when investigating through Taylor series versus Fourier space. For
example, for data from discontinuous Galerkin solutions, the typical convergence
rate is O(h p+1/2) and the dispersion and dissipation errors are of O(h2p+1,2p+2) [2,
11, 23, 27]. In [11], it was shown that the non-physical oscillations are damped
exponentially fast in time, allowing the physical eigenvalue to dominate the wave
propagation. It is the information from these eigenvalues that the SIAC filter extracts.
Because it utilizes convolution, it can translate the higher accuracy in Fourier space to
physical space. This ensures that the filter works for data generated from both linear
and nonlinear equations. Note that for data generated from Galerkin-type methods,
the translation of the information from Fourier space to physical space is done by
encoding the information of the dual equation by utilizing the information in the
“noise” that is measured by the negative-order norm,

‖ f − fh‖H−�(�) = sup
�∈C∞

0 (�)

( f − fh,�)

‖�‖H �

, (8)

where � is the solution to the dual equation at the final time. As the dual may
not be unique, such as for non-linear equations, we take the supremum over all
solutions that are continuous with compact support. Assuming that the solution has
enough smoothness to allow for recovering sufficient accuracy (i.e. Cs , where s is
the convergence rate), the optimal orders of accuracy are given in Table1.



80 X. Docampo-Sánchez and J. K. Ryan

Table 1 Methods and highest order of convergence on locally translation invariant mesh as given
in [3, 5, 12, 14, 24, 28]

Method B-splines Norm Possible
convergence order

Number Order

Elliptic & Parabolic

Ritz-Galerkin [3,
10, 24]

2p − 1 p-1 L2, L∞ 2p − 2, p ≥ 3

Spectral
Element [15, 28]

L2, L∞ p + 2, (2p +
1)(2p + 3) > 2M2

Linear hyperbolic

Standard
Galerkin [5]

2p + 1 p+1 L2 2p, p ≥ 1

Discontinuous
Galerkin [5, 14]

2p + 1 p+1 L2, L∞ 2p + 1, p ≥ 1

Active Flux [12] 3 1 L∞ 4

Remark 1 It is possible to extend this discussion to extracting accuracy for deriva-
tive information. This can be seen by replacing u with v = ∂u

∂x , where = (α1, α2,

. . . , αd). To achieve the same superconvergence order as the approximation itself,
the B-splines are of order n + |α|.
Remark 2 The second estimate in Eq. (2) is affected by the underlying equation,
numerical scheme, and smoothness, n − 2.

The traditional extension to multi-dimensions is via a tensor product:

KH (x) = K�x1 (x1)K�x2 (x2) · · · K�xd
(xd).

However, amore computationally efficientmulti-dimensional kernel is theLineSIAC
kernel [9], which is a rotated one-dimensional kernel,

K H () = K� () ⇒ f �
h (x, y) =

∫
�

K�

(
�(0) − �(t)

ht

)
f (�(t))dt (9)

with the filtering performed along a line. In 2D, the line is defined by�(t) = (x, y) +
λ(cos(θ), sin(θ)), with an angle of rotation θ = tan

(
�y
�x

)
. An illustration of the

difference in the support size for the two-dimensional tensor product filter versus the
line filter is given in Fig. 2. For the kernel consisting of 5 B-splines of order 3 over
a structured mesh, the tensor product filter requires 196 2D integrals while the line
filter requires 21 1D integrals. For both implementations, the integrals are computed
using exact quadrature. This necessitates the integration to respect both the B-spline
breaks as well as element interfaces. For an approximation of polynomial degree p
using a B-spline kernel of order n in each smooth region, the quadrature is computed
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196 2D-integrals

Integral region

Mesh

Evaluation point

21 1D-integrals

Fig. 2 Footprints for the tensor product (left) and line (right) SIAC kernels on a uniform mesh.
The kernel given is K (5,3)

H () (a 5 B-spline kernel of order 3)

using � p+n
2 � quadrature points per region. It is possible to utilize inexact quadrature,

but this needs many more points and will affect the performance of the filter.

2 The SIAC Magic Toolbox

In this section we outline the necessary components for using the SIACMagic Tool-
box as well as the computational challenges. We also present a comparison of the
computational performance in terms of CPU time and the ability to run on many
cores.

2.1 How It Works

The SIAC magic toolbox [7] is a standalone tool written in Julia [4]. It takes in two
files: one containing information on the data and one containing the corresponding
mesh information. The output is then the filtered values. Currently, it is supporting
conforming meshes constructed of simplices. Support for non-conforming meshes
and higher-order elements will be added in the future.

All the necessary tools for filtering are contained in the MSIAC package. Inside
of Julia, it only requires activating the package. A test.jl file is also included
to check that the package was installed correctly. The main function that reads in
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the data and filters the solution is given in Toolbox Code 1. The user can specify
the parameters pertaining to dissipation, moments, and scaling, or choose to use
default values provided. Additionally, it’s possibly for the user to load their own
mesh and data files from gmesh or vtk (c.f. Toolbox 1). The toolbox utilizes Julia’s
multi-threading and distributed memory capability.

function filter_data (mesh, data, parameters)
modes = l2_projection(data)
kernel = set_kernel(parameters)
for point in data

map = find_kernel_breaks(mesh, point, kernel) # Footprint
point* = sum( gauss(map, kernel, modes)) # Convolution

end
end

Toolbox Code 1: Main SIAC function. The modal information is first constructed
from the given function values at the quadrature points. The kernel is then con-
structed using either default or user-specified values. Within the for loop, the kernel
footprint is first defined and then the convolution is performed using quadrature

In the Toolbox 1 example, the data is assumed to be sampled at quadrature points
(Legendre, Lobatto, or Radau) and is converted to modal information as shown
in Toolbox Code 1. The mesh file contains information on the mesh map. That
is, element indices, connectivity, and boundaries. In Toolbox Code 3, the assumed
mesh data structure is shown together with an illustration for one element, 5, that
has neighboring elements 2, 6, 8, and 4 and is defined by nodes 6, 7, 11, and 10. The
node structure contains information on the coordinates and the surrounding nodes as
well as a type designation.

2.2 Computational Performance

Collecting the spline breaks and element interfaces presents the most challenging
aspect of implementing the filters. This is because it requires determining the inter-
section of the mesh on which the data is given as well as the reduced points of
continuity of the kernel (i.e. kernel breaks). This determines the filter footprint and
hence requires evaluating more integrals than the number of elements in the sup-
port of the kernel. This is the reason that most of the CPU time is spent computing
the filter footprint, making the tensor product filter intractable in multi-dimensions
without using HPC. The Line filter aids in alleviating this difficulty and remains a
one-dimensional filter in multiple dimensions.

To determine the intersections of the kernel breaks and element interfaces, the
algorithm avoids querying the point location and instead utilizes sorted knot matrices



Magic SIAC Toolbox: A Codebase of Effective, Efficient, and Flexible Filters 83

data = load_data(meshFile,fieldFile);
#--- For more Options:
# degree {select degree}
# modalExp {default expansions: "legendre" for quads and

"hierarchy" (modified legendre) for tris}
# structured {defaults as false}
# reverse {defaults as false}
data = load_data(meshFile,fieldFile, modalExp="Pk",

structured=false, reverse=false);
data = load_data(meshFile,fieldFile, degree=p);

Toolbox Code 2: The user can load pre-existing data from .vtu files and prescribe
the necessary parameters or utilize default values

struct element
nodes :: List of ordered vertex indexes forming element
neigh :: List element neighbors
type :: 4 (quad) 3 (triangle)

end
struct node

xyz :: vertex coordinates
ele :: List of elements surrounding vertex
type :: 1 (interior) 0 (boundary edge) -1 (boundary corner)

end

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

1

4

7

2

5

8

3

6

9

6 7

10 11

Toolbox Code 3: The assumed mesh data structure (top) and an illustration (bot-
tom) for one element (=5) and one node (6)

to finding the direction along a line where the next mesh or kernel break will be
located. This is illustrated in Fig. 3 and themain function is shown in ToolboxCode 4.
For example, if there is one B-spline break per element and the breaks are translates
of x̄, with x̄ being along the mesh diagonal in element e, the line segments in e
are (e−,−, x̄) and (x̄, e+,+), with e−,− representing the lower left corner and e+,+
representing the upper right corner. As an example, consider a kernel consisting of
three uniform B-splines of order two, i.e. r = 2, n = 2. The knot matrix is given by
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Integral split

kdir · h

Fig. 3 Illustration of the line kernel footprint, integral breaks, and search direction, kdir

Hours

Mins

Secs

# elements: 1.6k 6.4k 25.6k

# points: 40k 160k 640k

L
IN

E

T
E
N
S
O
R

K7,4

K5,3

K3,2

Tensor Line

K3,2

K5,4

K7,5

Filter support for 1 point

Fig. 4 Performance of code for both the tensor product and Line filter using three different kernels
traditionally used to extract information for discontinuous Galerkin approximations. The shades
of red represent the performance of the tensor product filter for the K 3,2 K 5,3 and K 7,4 kernels
(Darkest → lightest), while the corresponding shades of purple show the performance of the line
filter

T =
⎛
⎝−2 −1 0

−1 0 1
0 1 2

⎞
⎠ . (10)

The sorted knot matrices, T− = (−2,−1, 0) and T+ = (0, 1, 2), give the direction
along the line to search for the next kernel/data mesh intersection, denoted kdir .

In Fig. 4, CPU times using a Dell XPS with four cores are given for both filters
when post-processing a solution sampled at 25 points per element. The shades of
red represent the performance of the tensor product filter for the K 3,2 K 5,3 and K 7,4

kernels, while the shades of purple show the performance of the line filter. While the
times indicate that the line filter is faster, the tensor product filter benefits more from
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/
t p

K7,4

K5,3

K3,2

Tensor

Line

cores

25.6k elements, 640k points
Line
(mins)

Tensor
(hrs)

CPUs/ Order 4 48 4 48
2 5.8 0.5 1.7 0.1
3 6.9 0.7 4.7 0.3
4 14.5 1.1 11.4 0.8

Fig. 5 Parallelization performance of the tensor product SIAC filter versus the Line SIAC filter
on MareNostrum4, with a maximum of 48 cores (1 node). Data originated from a discontinuous
Galerkin approximation to Burgers equation

parallelization. This can be observed in Fig. 5 (left) where the speedup factors for
each filter are plotted using up to 48 cores from the MareNostrum4 supercomputer:
the speedup for the tensor product filter scales almost linearly. For the line filter, the
calculation times per point are low. Note that the overall CPU times (right) for the
line filter are measured in minutes while the times for the tensor product filter are
measured in hours. The results indicate that both filters benefit from parallelization,
and that the tensor product filter should be used in an HPC-environment.

for t in (T-,T+)
xp = eval point, e=13
for i in t

xn = kdir * h * i
Spn = segment(xp,xn)
if xn in elmt[e]

store(xn,elmt[e])
xp = xn

else
(j,xp) = intersect(Spn,elmt [13])
store(xp,e,elmt[e].neigh[j])
e = elmt[e].neigh[j] #8

end
end

end

Toolbox Code 4: mesh intersections. The algorithm takes in an evaluation point
and determines the line segments that are in the kernel support along the direction
kdir
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Table 2 One- and two-dimensional capabilities of the SIAC Magic Toolbox

2.3 Current Capabilities

The current capabilities of the SIACMagic Toolbox are given in Table2, which also
connects the code corresponding to published (and unpublished) theory. Addition-
ally, the 3D Line filter is available for structured and shape regular hexahedral and
tetrahedral elements. For the data input file, nodal or modal information can be speci-
fied. While the toolbox has not been tested for non-conforming meshes, in principle,
it should be able to handle such mesh types since the kernel footprint algorithm
loops around all the neighbours at every element interface. Curved meshes are not
supported at the moment but will be in the future.

3 Numerical Examples

In the following section, we present results demonstrating the ability of the SIAC
Magic Toolbox to effectively raise the order of convergence of data arising from
simulations. In each example, data was produced from a discontinuous Galerkin
approximation. Error contours for both the tensor-product SIAC filter and Line SIAC
filter are shown.
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Table 3 Errors for the 2D Burgers equation with source term for the provided data as well as the
Line SIAC and tensor-product SIAC filters

N ||e||L2 Rate ||e||L2 Rate ||e||L2 Rate

p = 1 402 3.02e-03 2.01 3.34e-04 3.32 1.37e-04 3.05

802 7.52e-04 2.00 4.74e-05 2.82 1.63e-05 3.07

p = 2 402 4.01e-05 3.00 9.37e-06 6.04 4.66e-07 4.65

802 4.93e-06 3.02 2.95e-07 4.99 1.52e-08 4.93

DG Line Tensor Product

Burgers Equation with Source Term In the first example, we present the results of
post-processing data that is taken from a discontinuous Galerkin approximation to
Burgers equation with a source term,

∂u

∂t
+ ∂

∂x

(
u2

2

)
+ ∂

∂y

(
u2

2

)
= f (x, y).

The approximation is taken over a uniform quadrilateral mesh and the source term
is taken such that the exact solution is u(x, y, t) = sin(π(x + y)), where (x, y) ∈
[−1, 1]2. At the final time, the data is passed into the SIAC Magic toolbox and is
filtered using both the Line SIAC filter and tensor-product filter. Both filters are taken
such that they satisfy 2p moment conditions and have smoothness of order p − 1,
and hence composes a filter utilizing 2p + 1 B-splines of order p + 1. In Table3 the
errors are presented for piecewise linear and piecewise quadratic approximations and
the corresponding error contours are given in Fig. 6. For this nonlinear equation, both
filters are able to raise the convergence rate from p + 1 to 2p + 1, with the errors
for tensor-product SIAC filtered approximation being lower than those for LSIAC.

DG Tensor Filter Line Filter

Fig. 6 Error contours for the 2D Burgers with source term for the provided p = 2 data on a 40 × 40
mesh. The data is read into the toolbox and the error contours for the tensor-product SIAC and Line
SIAC filters are shown
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3.1 Perturbation of Quadrilateral Elements

We next explore the ability of the Line SIAC and tensor product SIAC filters to
perform on L2−projected functions defined on random perturbations of a uniform
quadrilateral grids for p = 1 and p = 2 on a 40 × 40mesh.We consider the functions
u(x, y) = e−(x2+y2) as well as u(x, y) = sin(x) cos(y). The mesh and corresponding
function and error contours are presented in Fig. 7. Both the tensor product and line
filters reduce the errors from the initial data.

3.2 LSIAC Filtering: Triangular Meshes and Paraview

In this example we utilize data in a Paraview format on structured and unstruc-
tured triangular meshes. We present the error contours for piecewise linear data
(p = 1, n = 202) for an L2−projected sine wave in Fig. 8.

Polynomial approximation: p = 1. Tensor Product Filter, K3,2

Error contours (log)

Mesh 1 u = e−(x2+y2) Data Filtered

Polynomial approximation: p = 2. Line Filter, K5,3

Error contours (log)

Mesh 2 u = sin(x) cos(y) Data Filtered

Fig. 7 Performance of the tensor product and line filters on two different meshes consisting of
40 × 40 perturbed quadrilateral elements when post-processing L2-projected analytic functions
corresponding to u(x, y) = e−(x2+y2) (top) and u(x, y) = sin(x) cos(y) (bottom). The filters use
three B-splines of order two
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L2 projection LSIAC filter

Structured

Unstructured

Fig. 8 Error contours for the LSIAC (right) filtered solutions on a structured and unstructured
triangular mesh. The given data is an L2−projection of a sine function and is imported from
Paraview

4 Summary

The SIACMagic Toolbox has been created to enable easy access to flexible filtering
tools and increased use in practical applications. The toolbox only requires the data
values and mesh information. The user is able to test different parameters related
to the dissipation, accuracy, and scaling. This allows the parameters to be tuned to
provide optimal effectiveness for a given application. Alternatively, the user can use
the default values defined by the toolbox. The toolbox will return the filtered values.

Use of the toolbox automatically ensures consistency, r moments, and n − 1
smoothness. Enforcement of r moments allows for convergence up to order r + 1
(and r + 2 if the filter is symmetric) while providing the capability to capture features
of the data. Essentially, SIAC filters work by reducing noise in the data by capturing
appropriate patterns of information that correspond to the physically relevant eigen-
values. It is applicable for periodic and non-periodic boundary conditions as well as
structured and unstructuredmeshes. Because it is based on convolution, it is effective
for both linear and nonlinear equations as well as different data types such as finite
element methods, including discontinuous Galerkin and Spectral Element methods,
as well as Active Flux methods. It can easily incorporate data from experiments
through quasi-interpolation [17].
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A Review of Cartesian Grid Active Flux
Methods for Hyperbolic Conservation
Laws

Erik Chudzik and Christiane Helzel

Abstract In 2011, Eymann and Roe introduced a new class of truly multidimen-
sional finite volume methods. These so-called Active Flux methods use concepts,
which are quite different from concepts that are typically used in numerical schemes
for hyperbolic conservation laws. In particular the method is based on the use of
point values as well as cell average values, it uses a continuous reconstruction and
does not rely on the use of Riemann solvers. We will review the current state of the
art of Cartesian grid Active Flux methods and present recent results of our group.
These include a discussion of different evolution formulas for the update of the point
values, results on the linear stability of the resulting methods as well as a discussion
of limiters. Furthermore, we explore the use of Active Flux methods on Cartesian
grids with adaptive mesh refinement.

Keywords Active flux methods · Hyperbolic conservation laws

1 Introduction

TheActive Fluxmethod, as introduced byEymann andRoe [9, 10], is a fully discrete,
truly multi-dimensional, third order accurate finite volume method with compact
stencil in space and time. The method uses point values as well as cell average values
of the conserved quantities as degrees of freedom. The point values, which are located
along the grid cell boundary, and the cell average values of the previous time level
provide a globally continuous, piecewise quadratic reconstruction, that preserves the
cell averages. Point values are evolved in time using trulymultidimensional evolution
operators which may be derived from the partial differential equation.

The evolution of the cell average values is computed using a finite volume
approach. A quadrature rule, typically Simpson’s rule, is used to compute the numer-
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ical fluxes. The point values at the previous, an intermediate and the new time level
are used as nodes in the quadrature formula.

The fully discrete form and the local stencil in space and time lead to a method
which is accurate even on coarse grids [19–22]. Another distinctive property of
Active Flux methods is the use of a globally continuous reconstruction. As pointed
out by Roe [18], methods based on piecewise continuous reconstructions typically
introduce “one-dimensional physics” due to the use of Riemann solvers. Due to their
high accuracy even on coarse grids and their ability tomodel themulti-dimensionality
of the mathematical problem, Active Flux methods are interesting candidates for the
computation of complex fluidmechanical processes. Thismotivates our current work
on extending these methods for the approximation of multi-dimensional nonlinear
systems.

Abgrall [1] pointed out that the Active Flux method allows to combine different
writings of hyperbolic problems in a single numericalmethod.While the conservative
form is used for the update of the cell average values, the primitive form or an entropy
formulation might be used for the update of the point values.

Extensions of theActive Fluxmethod to higher than third order have recently been
explored for advection [19], acoustics [22] and general one-dimensional hyperbolic
problems [2].

2 The Cartesian Grid Active Flux Method

In this sectionwepresent themain components of theActiveFluxmethod for one- and
two-dimensional hyperbolic problems.While the evolution of the cell average values
is presented in a form valid for general hyperbolic problems in divergence form, we
restrict our description of the evolution of the point values to the simplest case of
linear advection. In Sect. 3 the evolution of the point values for further hyperbolic
problems is discussed.

The Active Flux method is a truly multi-dimensional scheme, however the outline
of the method can most easily be explained for one-dimensional conservation laws

∂t q(x, t) + ∂x f (q(x, t)) = 0, (1)

where q : IR × IR+ → IRs is a vector of conserved quantities and f : IRs → IRs is
a flux function.

TheActive Fluxmethod uses cell average values and point values of the conserved
quantities, which are denoted by

Qn
i ≈ 1

�x

∫ x
i+ 1

2

x
i− 1

2

q(x, tn)dx, Qn
i± 1

2
≈ q(xi± 1

2
, tn).

In order to describe a time step from tn to tn+1, we assume that for all i the quantities
Qn

i and Qn
i± 1

2
are at least third order accurate in space and time. The update of the

cell average values is computed using a finite volume method
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Qn+1
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2
− Fi− 1
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)
,

where the numerical fluxes are computed using Simpson’s rule, i.e.

Fi± 1
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= 1
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(
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i± 1
2
) + f (Qn+1
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f (q(xi± 1
2
, t)) dt.

The crucial step of the Active Flux method is the computation of the point values

Q
n+ 1

2

i± 1
2
and Qn+1

i± 1
2
at the intermediate and new time level. In this section we describe

the update of the point values for the simplest case of linear advection with advection
speed a ∈ IR, i.e.

∂t q + a∂xq = 0.

The point values can be approximated using the well known exact evolution formula
q(xi± 1

2
, tn + τ ) = q(xi± 1

2
− a · τ , tn), τ ∈ {�t

2 ,�t}. Using the point values and the
cell average values, a continuous, piecewise quadratic reconstruction qrec can be
computed, which preserves the cell averages and agrees with the point values at the
grid cell interfaces. In grid cell i the reconstruction can be expressed in the form

qreci (ξ) = Qn
i− 1

2
(3ξ2 − 4ξ + 1) + Qn

i (6ξ − 6ξ2) + Qn
i+ 1

2
(3ξ2 − 2ξ), (2)

with 0 ≤ ξ ≤ 1. Thus for advection the approximation of the point values has for
k ∈ { 12 , 1}, τ = k�t the form

Qn+k
i+ 1

2
=

{
qreci (1 − aτ/�x) : a > 0
qreci+1(−aτ/�x) : a < 0.

For one-dimensional advection with advection speed a > 0 we observe
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.
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Fig. 1 Degrees of freedom
used for two-dimensional
Cartesian grid Active Flux
method

An approximation is only introduced by replacing the exact solution q(x, tn) by the
third order accurate piecewise quadratic function qrec. The application of Simpson’s
rule provides the exact integral. We will see below that the two-dimensional case
is slightly different and that this difference leads to both a reduced stability and
additional difficulties of the limiting process.

In the two-dimensional case, i.e. for the approximation of

∂t q + ∂x f (q) + ∂yg(q) = 0,

withq : IR × IR × IR+ → IRs , f, g : IRs → IRs , we use aCartesian grid. The degrees
of freedom of the method are again cell average values and point values of the
conserved quantities. The point values are located along the grid cell boundary as
illustrated in Fig. 1.

A piecewise quadratic and globally continuous reconstruction, which preserves
the cell average values, can be described using appropriate basis functions. See [4,
13] for details. The update of the cell average values is performed by a finite volume
update of the form

Qn+1
i j = Qn

i j − �t

�x

(
Fi+ 1

2 , j − Fi− 1
2 , j

)
− �t

�y

(
Gi, j+ 1

2
− Gi, j− 1

2

)
, (3)

where the numerical flux is computed using the two-dimensional Simpson’s rule.
The flux across a vertical grid cell interface has the form
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.

Analogously, the flux at a horizontal grid cell interface can be computed. The crucial
part of the Active Flux method is the update of the point values at the intermediate
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and new time level. For advection with advection speeds a, b ∈ IR, i.e. for scalar
equations of the form

∂t q + a∂xq + b∂yq = 0, (5)

we can again use the exact evolution formula q(x, y, tn + τ ) = q(x − a · τ , y − b ·
τ , tn), τ ∈ {�t

2 ,�t}. In order to use this exact evolution formula, we need a recon-
struction of the numerical solution at time tn . For each two-dimensional Cartesian
grid cell a quadratic reconstruction of the form

qreci j (ξ, η) =
9∑

k=1

ck Nk(ξ, η) (6)

with coefficients c1, . . . , c9 and basis functions N1, . . . , N9 given in Table3 of [13] is
used. The reconstruction interpolates the point values depicted in Fig. 1 and preserves
the cell average.

For the advection equation, the flux computation can now be interpreted as an inte-
gration of the reconstructed function over a rhomboid as indicated in Fig. 2 (left). An
important difference to the one-dimensional case is that in themulti dimensional case
Simpson’s rule is no longer exact for the reconstructed function. The reason is that
the rhomboid will in general lie in two neighbouring grid cells and the integral over a
piecewise quadratic function can in general not be computed exactly with Simpson’s
rule. Thus, we introduce two approximations when we compute numerical fluxes.
The first approximation is introduced by our piecewise quadratic reconstruction and
the second approximation is introduced by using Simpson’s rule. This has conse-
quences for the linear stability of the Active Flux method. Furthermore, it makes
limiting of the Active Flux method more difficult in the multi-dimensional case.
Both aspects will now be discussed in more detail.

Fig. 2 Flux computation for advective transport using (left) Simpson’s rule and (right) exact inte-
gration
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2.1 Linear Stability of the Active Flux Method

In [7], we studied the linear stability of the Cartesian grid Active Flux method. Here
we briefly present our results for the two-dimensional advection equation (5) with
double periodic boundary conditions on an equidistant grid with �x = �y. Under
these conditions we write the method in the form

Qn+1 = AQn, (7)

whereQn ∈ IR4m2
consists of all degrees of freedom at the time level tn , i.e. all point

value degrees of freedom and all cell average values, and A ∈ IR4m2×4m2
describes

the update of the Active Flux method during one time step.
A linear method of the form (7) is Lax-Richtmyer stable, iff ‖An‖ is bounded

independently of n. Here ‖ · ‖ is the spectral norm. The method is stable if all eigen-
values λ of A satisfy the condition |λ| ≤ 1 and in addition if |λ| = 1 the geometric
and algebraic multiplicity need to match. See [8] for more details.

In Fig. 3 (first row) we show the eigenvalues for the Active Flux method for the
advection equation (5) using a = b and different time step restrictions. While this
is not a general stability proof, we observe that on this particular grid there exist
eigenvalues with magnitude larger than one for time steps satisfying CFL = 0.9,
i.e. the computation on this grid is unstable. For CFL = 0.75 the magnitude of the
eigenvalues is bounded by one and the computation is stable.

In [7] we systematically investigated different advection speeds and always
obtained stable results as long as the CFL number is bounded by 0.75. For the
special cases b = 0 or a = 0 the method is stable as long as the time step is bounded
by CFL ≤ 1. In practical computations we typically use CFL ≤ 0.7.

In the second row of Fig. 3 we show the eigenvalues for the Active Flux method
with exact integration for the flux computation. In this case the method is stable for
time steps satisfying CFL ≤ 1.

In [13] we showed the eigenvalues for the one-dimensional Active Flux method
applied to the advection equation. In this case the magnitude of the eigenvalues is
bounded by one as long as the time steps satisfy CFL ≤ 1.

2.2 Bound Preserving Reconstructions for Active Flux
Methods

The continuous, piecewise quadratic Active Flux reconstructionmight introduce new
extrema. This can lead to unphysical oscillations, in particular near discontinuities
or shock waves.

In [3, 13] several boundpreserving reconstructions for the one-dimensionalActive
Flux method have been presented. Possible reconstructions presented in [13] include
a hyperbolic reconstruction as well as a piecewise polynomial reconstruction, con-
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(a) (b)

(c) (d)

Fig. 3 Eigenvalues for the matrix A describing one time step of the Cartesian grid Active Flux
method with a = b, �x = �y = 1/20, CFL = 0.75 and CFL = 0.9. (First row) flux computation
using Simpson’s rule and (second row) flux computation using exact integration

sisting of a constant part and a quadratic part. Both of these limited reconstructions
preserve the cell average and interpolate the point values at the grid cell boundary.
In [3, Theorem 6] the so-called power law limiting was introduced, which has the
form

pN (x) = Qn
i− 1

2
+ (Qn

i+ 1
2
− Qn

i− 1
2
)

(
x − xi + �x/2

�x

)N

xi− 1
2

≤ x ≤ xi+ 1
2
,

with N =
Qn

i+ 1
2
−Qn

i

Qn
i −Qn

i− 1
2

. This reconstruction is monotone, preserves the mean and inter-

polates the point values. While all of those reconstructions efficiently limited oscil-
lations, as illustrated by several simulations that can be found in [3, 13], the new
cell average values might not be exactly bound preserving even for linear advection.
The reason is that Simpson’s rule is not necessarily exact for those reconstructions.
Furthermore, there is no straight forward way to extend these reconstructions to the
multi-dimensional case.

These shortcomings motivated us to introduce bound preserving limited recon-
structions based on previous work of Zhang and Shu [7, 23]. In the two-dimensional
case, let
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Mi j := max
(x,y)∈Ci j

qreci j (x, y), mi j := min
(x,y)∈Ci j

qreci j (x, y),

with qreci j as in (6), denote the minimum and the maximum of the Active Flux recon-

struction in grid cell Ci j . Furthermore, M̄i j and m̄i j denote the maxima and minima
of all the point values of q used for the Active Flux reconstruction in grid cell Ci j ,
i.e.

M̄i j := max
{
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}
.

For Qn
i j ∈ [m̄i j , M̄i j ] the limited reconstruction has the form

q̃reci j = θ(qreci j (x, y) − Qn
i j ) + Qn

i j , with θ = min

{∣∣∣ M̄i j − Qn
i j

Mi j − Qn
i j

∣∣∣,
∣∣∣ m̄i j − Qn

i j

mi j − Qn
i j

∣∣∣, 1
}

.

(8)
If Qn

i j /∈ [m̄i j , M̄i j ], we do not apply limiting in order not to decrease the accuracy
near local extrema.

In each grid cell, this limited reconstruction is a single quadratic function, which
preserves the cell average and satisfies m̄i j ≤ qreci j (x, y) ≤ M̄i j for all (x, y) ∈ Ci j .
Although the reconstruction is no longer globally continuous, we can still apply the
exact evolution operators.When computing the numerical fluxes, we however need to
decide which point values are used at the old time level. We use the point values from
the limited reconstruction in upwind direction. For smooth solutions applying the
limiter does not decrease the order of convergence. The application of this limiting
strategy in the one- and three-dimensional case is straight forward. We obtain the
following result.

Theorem 1 The one-dimensional Active Flux method for advective transport with
bound preserving piecewise quadratic reconstruction does not produce new minima
or maxima in the new cell average values.

Proof In the one-dimensional case, the flux computation using Simpson’s rule is
exact for a reconstruction, which consists of a single parabula in each grid cell.
Thus, the new cell average values agree with exact averages over parts of the bound
preserving reconstruction and thus are bound preserving.

Remark 1 The result does not extend to the two- and three-dimensional case, since
the flux computation using Simpson’s rule is no longer exact.

For the two-dimensional advection equation the numerical flux can easily be com-
puted exactly by integrating over the triangular regions indicated in the right plot of
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Fig. 2. This would lead to a bound preserving approximation of the cell average val-
ues. However, such an approach can not be extended to more general hyperbolic
problems. Therefore, we are currently exploring alternative approaches which pre-
serve prescribed bounds of the solution. In practical applications the preservation of
positivity is often an important requirement for numerical schemes. For example,
when approximating the Euler equations of gas dynamics, pressure and density need
to remain positiv. Hu et al. [14] proposed to combine a high-order accurate flux with
the low order bound preserving Lax-Friedrichs flux approximation. More precisely,
the idea is to write the finite volume update of the cell averages (3) in the form

Qn+1
i j = 1

4

(
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�t
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)
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4
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�t

�y
Gi, j+ 1

2

)
.

If one of the four terms on the right hand side becomes negative, then the corre-
sponding numerical flux is replaced by a convex combination of the Lax-Friedrichs
flux and the Active Flux flux.

We used this new approach to approximate solutions of the advection equation
(5) with advection speeds a = 0.5, b = 0.25 on a grid with 128 × 128 mesh cells
discretising the unit square. The initial values consist of a Gaussian hump and a
square shaped discontinuity.

By using the bound preserving reconstruction (8) and the limiter of Hu et al. [14],
no new minima are introduced. Numerical results are shown in Fig. 4.

By using the standard form of the Active Flux method with bound preserving
reconstruction (8) and Simpson’s rule to compute numerical fluxes, we observed
undershoots or overshoots in the cell average values of size ≈ 10−3.

Fig. 4 Approximation of the advection equation using the bound preserving approach. The solution
is shown at t = 0, t = 0.5 and t = 1
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3 Multi-dimensional Approximation of Point Values

In this section we present different exact and approximative truly multi-dimensional
evolution formulas that have successfully been used for the update of the point values
in two-dimensional Active Flux methods.

3.1 Advective Transport in a Divergence Free Velocity Field

We consider a scalar hyperbolic problem of the form

∂t q + ∂x (a(x, y, t)q(x, y, t)) + ∂y (b(x, y, t)q(x, y, t)) = 0, (9)

with given functions a and b that satisfy ∂xa(x, y, t) + ∂yb(x, y, t) = 0.
The numerical flux functions of theActive Fluxmethod require point values of q at

the intermediate and new time level, which can be computed using the characteristic
curves

x ′(t) = a(x(t), y(t), t)

y′(t) = b(x(t), y(t), t)

of the partial differential equation. Starting with the position of the point value, the
ode system for the characteristics is solved backwards in time for a half or a full
time step. The point values of the conserved quantity q are obtained by evaluating
the Active Flux reconstruction (6) at the foot point of the associated characteristic
curve. Together with Kiechle and Chudzik, see [15], we used this approach to obtain
a third order accurate method for the Vlasov-Poisson system.

3.2 Burgers’ Equation

For the two-dimensional Burgers’ equation

∂t q(x, y, t) + ∂x

(
1

2
q2

)
+ ∂y

(
1

2
q2

)
= 0, (10)

with q : IR2 × IR+ → IR, approximative evolution formulas for the update of the
point values have been presented in [7].

For smooth solutions (10) can equivalently be written in the advective form

∂t q + q∂xq + q∂yq = 0,
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which suggests the implicitly defined solution

q(x, y, t) = q(x − q(x, y, t)t, y − q(x, y, t)t, 0).

Starting with an appropriate initial guess, we iteratively compute

(
Q

n+ 1
2

i− 1
2 , j

)�

= qrec
(
xi− 1

2
−

(
Q

n+ 1
2

i− 1
2 , j

)�−1 �t

2
, y j −

(
Q

n+ 1
2

i− 1
2 , j

)�−1 �t

2

)

(
Q

n+ 1
2

i− 1
2 , j− 1

2

)�

= qrec
(
xi− 1

2
−

(
Q

n+ 1
2

i− 1
2 , j− 1

2

)�−1 �t

2
, y j− 1

2
−

(
Q

n+ 1
2

i− 1
2 , j− 1

2

)�−1 �t

2

)

(
Q

n+ 1
2

i, j− 1
2

)�

= qrec
(
xi −

(
Q

n+ 1
2

i, j− 1
2

)�−1 �t

2
, y j− 1

2
−

(
Q

n+ 1
2

i, j− 1
2

)�−1 �t

2

)

and analogously for the full time step. The initial guess is computed from neighbour-
ing cell average values, i.e. we set
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Using Taylor series expansion, it can be shown that each iteration improves the
accuracy by one order, see [7]. Since the initial guess is a first order accurate approx-
imation, it is enough to iterate twice.

Once the point values at the intermediate and new time level have been computed
the numerical fluxes can be obtained using (4) and the cell average values can be
evolved using (3). Numerical results are shown in Sect. 4.

3.3 Linear Acoustic Equations

For the acoustic equations

∂t p + c∇ · u = 0 (11)

∂tu + c∇ p = 0, (12)

exact evolution operators for the update of the point values have been proposed by
Eymann and Roe [10] for irrotational flow problems and by Fan and Roe [11] and
Barsukow et al. [4] for the general case.
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A form, which is particularly useful for the implementation, was given in [4]:

p(x, t) = ∂r (rMr {p(x, 0)}) |r=ct − 1

ct
∂r

(
r2Mr {n · u(x, 0)}) |r=ct (13)

u(x, t) = u(x, 0) − 1

ct
∂r

(
r2Mr {np(x, 0)}

) |r=ct

+
∫ ct

0

1

r
∂r

(
1

r
∂r

(
r3Mr {(n · u(x, 0))n

) − rMr {u(x, 0)}
)

dr. (14)

HereMr denotes the sphericalmean over a discwith radius r . In this representation of
the exact solution all derivative terms are expressed as derivatives in radial direction.
This avoids to work with delta functions.

Together with Maria Lukáčová we currently investigate Active Flux methods for
linear hyperbolic systems using the method of bicharacteristics in order to com-
pute the evolution of the point values. This is based on earlier work of Lukáčová-
Medvid’ová et al. [16, 17]. For the two-dimensional linear acoustic equations we
use a third order accurate approximative evolution operators of the form

p(P) ≈ 1

π

∫ 2π

0
(p(Q(θ)) − u(Q(θ)) cos(θ) − v(Q(θ)) sin(θ)) dθ − p(P ′)(15)

u(P) ≈ 1

π

∫ 2π

0

(
− p(Q(θ)) cos(θ) + u(Q(θ))

(
2 cos2(θ) − 1

2

)

+2v(Q(θ)) sin(θ) cos(θ)
)
dθ (16)

v(P) ≈ 1

π

∫ 2π

0

(
− p(Q(θ)) sin(θ) + 2u(Q(θ)) sin(θ) cos(θ)

+v(Q(θ))

(
2 sin2(θ) − 1

2

))
dθ, (17)

where P := (x̄, ȳ, tn + τ ) is the point at which we want to compute the solution,
P ′ := (x̄, ȳ, tn) and Q(θ) := (x̄ + c · τ cos(θ), ȳ + c · τ sin(θ), tn). The resulting
formulas are easier to compute than the exact evolution formulas. For acoustics
we observe an accuracy that compares well with the accuracy of the Active Flux
method with exact evolution operator. Test calculations will be shown in Sect. 4.
This motivates us to further explore the use of the method of bicharacteristics for
further linear hyperbolic systeme.
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4 Cartesian Grid Active Flux Methods with Adaptive Mesh
Refinement

Together with Donna Calhoun [6], we developed Active Flux methods for Cartesian
grids with adaptive mesh refinement.We implemented themethod in ForestClaw [5],
which is a software for parallel adaptive mesh refinement of patch-based solvers. It
turns out that the Active Flux method is well suited for the use on adaptively refined
grids. Here we briefly review our approach.

A typical ForestClaw grid structure is shown in Fig. 5. Each patch typically con-
sists of 8 × 8 or 16 × 16 grid cells and two additional rows and columns of ghost
cells. Ghost cells are used to implement the transfer of data between grid patches.
Along the physical boundary they are also used to implement boundary conditions.
The following transfer operators are needed

1. A transfer from fine grids to coarse grids is needed if grid patches are coarsened.
The same approach is used to compute ghost cell values of coarse grids from
neighbouring fine grids.
This transfer can easily be implemented, since the fine mesh contains all the
information needed on the coarse grid. The cell average values on the coarse grid
are obtained by averaging cell average values of the underlying fine grids. The
appropriate point values are copied from the fine grids.

2. A transfer from a coarse grid to a fine grid is needed if a patch is marked for
refinement. The same approach is used to compute ghost cell values of a fine
mesh from a neighbouring coarse patch.
We use the degrees of freedom of the coarse grid to compute the Active Flux
reconstruction. From this reconstruction we compute the cell average values and
the point values on the fine grid.

3. For neighbouring grid patches of the same refinement level the ghost cell infor-
mation can be copied from the neighbouring grid.

In addition to local refinement and coarsening, our adaptively refined Active Flux
method allows sub-cycling in time, i.e. while a single time step is taken on the coarse
grid, several smaller time steps may be taken on the finer grids. In order to allow sub-
cycling we need two rows and columns of ghost cells. Without sub-cycling one row
and column of ghost cells would be sufficient due to the local stencil of the method.

Fig. 5 ForestClaw grid
structure with Cartesian grid
patches of three different
refinement levels [6]
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Fig. 6 Approximation of Burgers equation using the Active Flux method with adaptive mesh
refinement and bound preserving limiter

All the details can be found in [6]. Numerical convergence studies, documented in
[6], confirm third order accuracy.

In our first test computation we consider solutions of Burgers’ equation with
piecewise constant initial values as shown in the left plot of Fig. 6. The initial values
are

q(x, y, 0) =
{
2 : 0 ≤ x, y ≤ 1/4
1 : otherwise.

At later times shock waves and rarefaction waves develop as shown in the next two
plots. Here we used adaptively refined patches of Cartesian grids on three different
levels.

In the second test computation we consider the approximation of a stationary
vortex modeled by the two-dimensional acoustic equations (11) and (12). This test
problem was proposed by Barsukow et al. [4]. It is similar to the Gresho vortex
problem [12] but with ∇ p = 0 beside ∇ · u = 0 to obtain stationary solutions of the
acoustic equations. The solution has the form

p(r) = 0, u(r) = n

⎧⎨
⎩

5r : 0 ≤ r ≤ 0.2
2 − 5r : 0.2 < r ≤ 0.4

0 : r > 0.4

with r = √
x2 + y2, u = (u, v)T , n(θ) = (− sin(θ), cos(θ))T and θ ∈ [0, 2π). We

start with a discretisation of this profile on the adaptively refined grid and compute
solutions at time t = 100. Here the Active Flux method with the approximative
evolution operator (15)–(17) was used to update the point values. Figure7 shows |u|
at the final time both as two-dimensional plot that also shows the grid patches of the
adaptively refined mesh as well as as scatter plot. While the method does not exactly
preserves the steady state, the numerical results are very accurate.
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Fig. 7 Approximation of the vortex problem using the Active Flux method with adaptive mesh
refinement. The point values are evolved in time using the approximate evolution operator (11)–
(12). We show |u| at time t = 100 in a two-dimensional plot, which also indicates the grid patches,
and in a scatter plot. The solid line in the right plot shows the exact solution

In our final test we perform a convergence study for the Lukácǒvá acoustic test
problem [16], for which the solution has the form

p(x, y, t) = −1

c
cos(2πct) (sin(2πx) + sin(2πy))

u(x, y, t) = 1

c
sin(2πct) cos(2πx)

v(x, y, t) = 1

c
sin(2πt) cos(2πy).

Weconsider this problemon the domain [−1, 1] × [−1, 1]with periodicity condition
and c = 1. Starting with the data at time t = 0 we compute solutions at time t = 1
using Active Flux methods based on the exact evolution operator (13), (14) as well as
the approximative evolution operator (15)–(17). The results of a convergence study,
comparing the numerical solutionwith the exact solution, are documented in Tables1
and 2. The Active Flux method with exact evolution operator is only slightly more
accurate. However, the currently used approximative evolution operator, derived by

Table 1 Error at time t = 1 measured in the ‖ · ‖1-norm and EOC for the Lukácǒvá test problem
using exact evolution with CFL = 0.275

Level Error EOC

p u, v p u, v

2 3.328532e-04 2.628078e-05 – –

3 4.180608e-05 3.276039e-06 2.9931 3.0040

4 5.232828e-06 4.564793e-07 2.9981 2.8433
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Table 2 Error at time t = 1 measured in the ‖ · ‖1-norm and EOC for the Lukácǒvá test problem
using the EG2 evolution operator with CFL = 0.275

mx = my Error EOC

p u v p u v

64 3.417769e-
04

3.818359e-
05

3.797061e-
05

– – –

128 4.286948e-
05

4.622912e-
06

4.596061e-
06

2.9950 3.0461 3.0464

256 5.365616e-
06

5.793141e-
07

5.746239e-
07

2.9981 2.9964 2.9997

using the method of bicharacteristics, reduces the stability of the resulting Active
Flux method.

5 Conclusions

We have presented a brief overview of the Active Flux method, an evolving finite
volume method for hyperbolic problems.

An important component of the Active Flux method is an exact or approxima-
tive evolution operator for the update of the point values. Different truly multi-
dimensional evolution operators have been discussed.

Even for scalar problem, where exact or approximated evolution operators are
easily available, there is an additional difficulty by going from the one to the mul-
tidimensional case due to the fact that Simpson’s rule, which is used for the flux
computation, is not exact when integrating a piecewise quadratic function. We have
shown that this reduces the stability of theActive Fluxmethod andmakes the limiting
process more difficult.

Finally, we illustrated that Active Flux methods can easily be used on adaptively
refined Cartesian grid patches.
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Moving-Mesh Finite-Volume Methods
for Hyperbolic Interface Dynamics

Christian Rohde

Abstract The numerical discretization of continuum-mechanical free boundary
value problems for hyperbolic conservation laws becomes challenging when the
dynamics of the interface depend sensitively on smaller-scale effects. A proper
tracking of the interface and an efficient solution of the conservation laws in the
bulk domains can be realized by a heterogeneous multi-scale ansatz combined with
recently introduced moving-mesh concepts for finite-volume methods. To illustrate
the approach we focus on two applications: the tracking of phase boundaries in com-
pressible liquid-vapour flow and dimensionally mixed models for two-phase flow in
fractured porous media. In the first case phase transition effects lead to non-standard
interface dynamics. In the latter case the coupling conditions for the bulk domains
involve the solution of evolution equations in the fractures which are represented as
hypersurfaces.

Keywords Hyperbolic conservation laws · Moving-mesh methods · Two-phase
flow · Fracturing porous media

1 Introduction

Free boundary value problems are ubiquitous in the mathematical modelling on
the continuum-mechanical level. Applications include the dynamics of multi-phasic
systems, self-gravitating fluids, fluid-solid interactions and so on. They also occur
artificially whenmixed-dimensional models are employed that are derived from fully
dimensional but geometrically extreme settings. This applies to fracture propagation
or the dynamics of thin fluid layers. We address in this note free boundary value
problems that are governed by hyperbolic conservation laws in the bulk domains.
Moreover we are interested in complex interfacial motions that can not directly writ-
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ten in e.g. weak-solution frameworks but require to solve an additional transmission
problem, which typically involves smaller-scale physics.

We start with a more precise description of the class of free-boundary value
problems we address here. Let some domain D ⊂ R

d and T > 0 be given. By U ⊂
R

m wedenote the state space for the unknowns. The functions f 1, . . . , f d : U → R
m

are smooth flux vectors which are summarized in F := ( f 1| · · · | f d) and supposed
to satisfy the hyperbolicity condition

spec
(
D f 1(u)n1 + · · · + D f d(u)nd

) ⊂ R (1.1)

for all u ∈ U and n = (n1, . . . , nd)
T ∈ Sd−1.

For each t ∈ [0, T ]wesearch a co-dimension-1manifoldΓ = Γ (t) and a function
u = u(·, t) : D±(t) → U ⊂ R

m that satisfy an initial-boundary value problem for
the system of first-order hyperbolic conservation laws given by

ut + f 1(u)x1 + · · · + f d(u)xd
= 0 in D±(t). (1.2)

The interface Γ (t) evolves from some initially given manifold Γ0 that defines the
partition D = D0,− ∩ Γ0 ∩ D0,+. For t ∈ (0, T ] the manifold Γ is also assumed to
separate the domain D into the disjunct bulk domains D±(t) according to

D = D−(t) ∩ Γ (t) ∩ D+(t). (1.3)

Besides appropriate initial/boundary conditions for the bulk unknowns, wellposed-
ness of (1.2) requires to prescribe an evolution law for the interface in each ξ ∈ Γ (t)
by its speed σ = σ(ξ , t) ∈ R in normal direction n = n(ξ , t) ∈ Sd−1. W.l.o.g. we
assume here that n points into D+(t). The interfacial dynamics is typically deter-
mined from transmission conditions posed across the interface Γ . In an abstract
setting and with some appropriate operator B they take the form

B[u±, σ ;n](ξ , t) = 0. (1.4)

In (1.4) we used the traces u±(x, t) = limε→0 u(x ± εn, t). A sample configuration
for the evolution of the interface and the bulk domains is sketched in Fig. 1.

For hyperbolic conservation laws (1.2), the obvious purely algebraic choice of the
Rankine-Hugoniot conditions

B[u±, σ ;n] = −σ �u� + � f 1(u)n1 + · · · + f d(u)nd� (1.5)

ensures the conservation of the unknown’s components across Γ (t). Note that we
used the notation �w� = w+ − w− for the trace difference of some field w on D.
The Rankine-Hugoniot conditions are a necessary condition for u to be a weak
solution of (1.2) on the entire domain D. In this case there are a multitude of
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Fig. 1 Sketch of the initial configuration and a snapshot for t > 0 (d = 2)

finite-volume methods that work properly on mesh topologies that do not support an
explicit representation of the interface Γ (t). We may refer to [4, 13] for more recent
overviews only.

Rather, in this note we are interested in free boundary value problems of type
(1.2), (1.4) that involve substantially more complex interfacial dynamics. Multi-
phase/multicomponent flows or flows in heterogeneous porous media provide such-
like scenarios. The numerical solution approach might then require an explicit track-
ing of the interface. To face the corresponding discretization challenge we have
developed aversatilemoving-meshmethod that canbe combinedwith standardfinite-
volume method: the moving-mesh finite-volume (MMFV) method. The moving-
mesh algorithm resolves a time-varying (d − 1)-dimensional manifold directly
within the d-dimensional mesh, which means that the interface is represented in each
discrete point of time by a subset ofmoving-mesh cell-surfaces. The underlyingmesh
is a conforming simplicial partition that fulfills the Delaunay property. It includes
as core novelty local re-meshing algorithms that keep the (initially given) quality of
the mesh. Open-source implementations of the moving-mesh algorithms in 3D are
available via [2, 5]. Moving mesh methods are frequently used in fluid mechanics.
However, we focus on multi-dimensional methods that include the approximation of
interfaces like in e.g. [11, 21, 22, 25]. Up to our knowledge, none of these methods
combines the following properties:

• the interface is explicitly preserved as a (d − 1)-dimensional manifold in the mov-
ing mesh for all times,

• the MMFV method ensures by re-meshing that the quality of the initial mesh is
preserved in time,

• the re-meshing routines are (in generic cases) restricted to local changes close to
the interface,

• the MMFV method allows the approximation of interfacial motion with normal
speeds different to fluid velocities or interface tip evolution.

After a short overview on the MMFV method in Sect. 2 we will report on two
specific applications with complex interfaces. In Sect. 3 we consider compressible
liquid-vapour flow with phase transitions. In this case the interfacial speed is not
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Fig. 2 Affine deformation of
a volume Cn

i (t) with vertex
pn

k in [tn, tn+1] (d = 2)

determined from an algebraic system of equations like (1.5) but requires to solve a
micro-scale molecular dynamics system. Different from this set-up is the application
in Sect. 4 on two-phase flow in fractured porous media. The evolution in the two
bulk porous media domains is then coupled by a transmission condition (1.4), that
involves an evolution equation on the interface Γ (t) itself. These sections base on
the material in [5, 9, 19].

2 A Moving-Mesh Finite-Volume Method for Interface
Tracking

Finite-volume methods on moving meshes in one space dimension have been first
introduced for hyperbolic conservation laws by Harten and Hyman in [16]. For
multiple space dimensions the development started with e.g. [12, 24] leading to a by
now too large to cite amount of literature on moving-mesh methods for hyperbolic
conservation laws. Most of the works refer to the design of error-optimizing meshes
(see e.g. [17] for an overview) but much less has been done concerning the explicit
tracking of interfaces as part of the solution of free-boundary value problems like
(1.2), (1.4). This section is devoted to the design of such amoving-meshfinite-volume
(MMFV) method. Precisely, the method will capture the discrete interface in each
point of time as a family of mesh facets of a Delaunay-type unstructured mesh. In
the discrete bulk domains, the partial differential equations (1.2) are solved by (time-
explicit) finite-volume schemes leading to a piecewise constant approximation of the
solution at each time point. The crucial challenge for the design of a corresponding
movingmesh is then to prevent the formationof small-size cells thatwould deteriorate
the time-step via the CFL-condition and render the entire approach inefficient. We
achieve the preservation of themesh quality by aligning the discrete interface tracking
with a local re-meshing procedure.

In the remainder of the section we review our MMFV approach that roots for
the one-dimensional and two-dimensional setting in [8, 9], respectively, and has
just recently been extended to three space dimensions [2]. To introduce this MMFV
method we set for the sake of simplicity D = R

d , and let for N ∈ N a time partition
t0 = 0 < t1 < · · · < t N = T of [0, T ] be given. For n ∈ {0, . . . , N − 1} let I n ⊂ N

be some index set. DefineΔtn := tn+1 − tn and tn+ 1
2 := (tn+1 + tn)/2. A fixed mesh

�T n on R
d is then a set �T n := {Cn

i | Cn
i closed d − simplex, i ∈ I n} such that the

volumes Cn
i cover Rd , and such that we have either for the (d − 1)-dimensional
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Hausdorff measure Hd−1(Cn
i ∩ Cn

j ) = 0 or, if Hd−1(Cn
i ∩ Cn

j )d−1 �= 0, that the set
Sn

i, j := Cn
i ∩ Cn

j is a common facet of Cn
i and Cn

j . We define pair index sets for
facets by En = {

(i, j) ∈ I n × I n |Hd−1(Sn
i, j ) �= 0

}
, and the mesh width hn as the

maximum of all edges’ length. For each (i, j) ∈ En we define nn
i, j ∈ Sd−1 as the

outer unit vector of Sn
i, j w.r.t. Cn

i . For i ∈ I n , the index set of all neighbors of Cn
i is

given as N n(i) = { j ∈ I n |Hd−1(Sn
i, j ) > 0}. Furthermore, we collect the vertices of

the mesh in the set {pn
k | k ∈ K n}.

To define amovingmesh wemove vertices of the fixedmesh �T n . Therefore let the
shift of a vertex pn

k in [tn, tn+1] be given by vectors sn
k ∈ R

d satisfying the geometric
CFL condition

Δtn|sn
k | ≤ 1

2
hn ∀ k ∈ K n. (2.1)

Then, by a slight abuse of notation, the vertex motion function is defined by

pn
k (t) := pn

k (t
n) + (t − tn)sn

k . (2.2)

Based on these notions we proceed to

Definition 1 (Moving mesh for n ∈ N) Let the fixed mesh �T n on Rd be given. For
i ∈ I n , let L(Cn

i ) be the space of affine mappings from Cn
i to Rd and define

Φn
i :

{ [tn, tn+1] → L(Cn
i ),

t 
→ Φn
i (t) = Φ

n,t
i ,

(2.3)

with

Φ
n,t
i (x) := x + (t − tn)

(
sn

kd+1
+

∑

l=1,...,d

λl(x)(sn
kl

− sn
kd+1

)
)

(x ∈ Cn
i ). (2.4)

Here (λ1(x), . . . , λd+1(x))T denotes the barycentric coordinate of x in K n
i , and

sn
k1

, . . . , sn
kd+1

are the shifts of the vertices pn
k1

, . . . ,pn
kd+1

of Cn
i .

We call T = T (t) a moving mesh in [tn, tn+1], if

T (t) = {
Φ

n,t
i (Cn

i )
}

i∈I ∀ t ∈ [tn, tn+1]. (2.5)

Note that we have T (tn) = �T n . The geometric CFL condition (2.1) guarantees that
T (t) defines for all t ∈ [tn, tn+1] a fixedmesh onRd that has the samemesh topology
as �T n , i.e., the same index sets I = I n, N (i) = N n(i), E = En, K = K n can be
used as a start. In particular we obtain a fixed mesh �T n+1 on R

d with volumes
Cn+1

i = Φ
n,tn+1

i (Cn
i ). This motivates to define the (time-dependent) volumes Cn

i (t)
and the time-dependent facets Sn

i, j (t) of the moving mesh T = T (t) by

Cn
i (t) := Φ

n,t
i (Cn

i ) and Sn
i, j (t) := Φ

n,t
i (Sn

i, j ) ∀ t ∈ [tn, tn+1]. (2.6)
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Analogously, the vectornn
i, j (t) denotes the outer normal of Sn

i, j (t), see Fig. 2 for some
illustration. By sn

i, j we denote the (constant) shift vector for the center of gravity of
Sn

i, j (t).
To define a finite-volume scheme on T we introduce the numerical flux gn

i, j =
gn

i, j (u, v) for (1.2) and the geometrical flux hn
i, j = hn

i, j (u, v) as Lipschitz-continuous
functions that satisfy for all u, v ∈ U and all (i, j) ∈ I × N (i) the consistency and
conservation properties

(i) gn
i, j (u, u) = F(u) · nn

i, j (t
n+ 1

2 ),

(i i) hn
i, j (u, u) = −(

nn
i, j (t

n+ 1
2 ) · sn

i, j

)
u,

(i i i) gn
i, j (u, v) + hn

i, j (u, v) = −
(
gn

j,i (v, u) + hn
j,i (v, u)

)
.

Note that the " · " in (i) has to be understood componentwise.
For cell averages {un

i ∈ U}i∈I given, the mapping

FVS : ({un
i }i∈I , T |[tn ,tn+1]

) 
→ {un+1
i }i∈I

is called finite volume step for (1.2), if the values un+1
i are computed from

∣∣Cn
i (tn+1)

∣∣ un+1
i

= ∣∣Cn
i (tn)

∣∣ un
i − Δtn

∑

j∈N (i)

∣∣∣Sn
i, j

(
tn+ 1

2
)∣∣∣

(
gn

i, j (u
n
i , u

n
j ) + hn

i, j (u
n
i , u

n
j )

)
. (2.7)

Remark 1 The finite volume step (2.7) involves the numerical flux gn
i, j and the

geometrical flux hn
i, j . To motivate in particular the form of the latter flux we inte-

grate (1.2) over the space-time cell Cn
i (t) (see (2.6) and Fig. 2). Application of the

Reynolds transport theorem for the time derivative and the Gauß theorem for the
spatial derivatives implies

∫

Cn
i (tn+1)

u(x, tn+1) dx

=
∫

Cn
i (tn)

u(x, tn) dx −
(∫ tn+1

tn

∫

∂Cn
i (t)

(
F(u(ξ , t)) − u(ξ , t)sn

i (ξ , t)T
) · n dξ dt

)

.

Here sn
i (·, t) : ∂Cn

i (t) → R
d denotes the shift of a point ξ from ∂Cn

i (t), which is
computed as time derivative of (2.4).

Using the finite volume step the MMFV scheme on a moving mesh T to fixed
meshes �T 0, . . . , �T N−1 on the time intervals [t0, t1],…,[t N−1, t N ], respectively, is
summarized in the following algorithm.
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Algorithm 1 (MMFV method on a given moving mesh)
Require: u0, T, T
1: t0 = 0, n = 0
2: {u0

i }i∈I =
{

1|C0
i (0)|

∫
C0

i (0) u0 dx
}

i∈I
� Initial values

3: while tn < T do
4: {un+1

i }i∈I = FVS({un
i }i∈I , T |[tn ,tn+1])

5: tn+1 = tn + Δtn , n = n + 1

Of course the method can only be stable if the wave speeds from (1.1) are captured
by a CFL condition which we suppose to be satisfied. We define the approximate
solution computed within Algorithm 1 as the piecewise constant function

uh(x, t) = un
i if t ∈ [tn, tn+1) and x ∈ Cn

i (t).

We note that the finite-volumemethod in Algorithm 1 is conservative by its construc-
tion and the evaluation of the geometrical quantities at tn+ 1

2 . Themethod is (formally)
first-order accurate but higher-order order accuracy can be achieved by standard
means using appropriate multiple evaluation of numerical/geometrical fluxes and
corresponding time-stepping methods. However, the overall accuracy is limited by
the approximation for the free boundary which will be discussed as the next step.

To care about the approximation of the free boundary Γ = Γ (t), we combine
the MMFV method from Algorithm 1 with a special tracking of the interface. The
basic idea of the final method is to track a discrete interface that consists of a set of
connected facets of the moving mesh. This enables us to model the flux across the
interface by (special) numerical fluxes, and paves the way to solve even evolution
equations on the interface.

First, we let for some n ∈ {0, . . . , N − 1} a discrete interface Γ n
h be given as a

connected set of facets. Denote by E ⊂ E the set of index pairs (i, j), such that
Sn

i, j ∈ Γ n
h holds (, which implies (i, j) ∈ E ⇒ ( j, i) ∈ E). Furthermore let K ⊂ K

be the index set of all vertices pn
k on Γ n

h , i.e., k ∈ K. This defines implicitly discrete
bulk domains Dn

h,± with corresponding volume index sets I±.
Taking into account (1.4) the interfacial dynamics in the interval [tn, tn+1] requires

to determine first facet speeds σ n
i, j for (i, j) ∈ E . For the interface tracking, they

have to be computed using information from the smaller scales. In the framework of
hyperbolic conservation laws it is likely that this information can be gained for some
interface facet Sn

i, j from a (possibly approximate) solution of a nn
i, j -rotated Riemann

problem for (1.2) with initial states u = un
i and v = un

j . Therefore, we assume an
interface solver

R(nn
i, j ; u, v) = (R1(nn

i, j ; u, v), R2(nn
i, j ; u, v), R3(nn

i, j ; u, v))T (2.8)
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Fig. 3 Motion of the (blue) discrete interface Γ n
h for d = 2: cell volumes Cn

i , Cn
j , Cn

i ′ , Cn
j ′ and

facets Sn
i, j , Sn

i ′, j ′ of the interface Γ n
h at time t = tn (left figure) and corresponding geometry at time

t = tn+1

to be given. Here R1 ∈ R provides the speed of the interface in the Riemann solution
and R2 ∈ U and R3 ∈ U stand for the respective trace states at the interface. We
define then for all (i, j) ∈ E the facet speeds from

σ n
i, j := R1(nn

i, j ; un
i , u

n
j )

The (up to now prescribed) shift sn
k of a vertex p

n
k for k ∈ K in [tn, tn+1] is computed

from

sn
k :=

∑

(i, j)∈E, i∈I−,pn
k ∈Sn

i, j

(
σ n

i, j

∣
∣Sn

i, j

∣
∣ nn

i, j

)/ ∑

(i, j)∈E, i∈I−,pn
k ∈Sn

i, j

∣
∣Sn

i, j

∣
∣, (2.9)

and by sn
k := 0 for k ∈ K \ K. Thus we obtain from (2.2) the vertex motion function

pn
k (t) for all k ∈ K and a moving mesh T with interface tracking from Definition 1.

Note that the discrete interface Γ n+1
h is given by the union

⋃
(i, j)∈E Sn+1

i, j . A sketch
of the interface motion is displayed in Fig. 3.

To define a MMFV method with interface tracking it remains to make precise the
choice of the numerical and geometrical fluxes. We use our numerical and geomet-
rical fluxes for (i, j) ∈ E \ E as before in the finite-volume step (2.7) but insert the
Godunov flux at interface facets with index pairs (i, j) ∈ E , i.e.,

gn
i, j (u, v) = F(R2(nn

i, j ; u, v)) · nn
i, j (t

n+ 1
2 ),

hn
i, j (u, v) = −σ n

i, j (u, v)R2(nn
i, j ; u, v).

(2.10)

It is the choice (2.10) that integrates smaller-scale information via the adjacent state
R2(nn

i, j ; u, v) computed by the interface solverR in (2.8). The interface solverR is
evaluated only once for each facet and the state R3(nn

i, j ; u, v) is then used to calculate
the flux associated with the geometrically identically facet Sn

j,i .
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Now all tools for the tracking algorithm are given, which is summarized in

Algorithm 2 (MMFV method with interface tracking)
Require: u0, T, �T 0 with Γ 0

h
1: t0 = 0, n = 0
2: {u0

i }i∈I =
{

1|C0
i (0)|

∫
C0

i (0) u0 dx
}

i∈I
� Initial values

3: while tn < T do
4: Compute R for all (i, j) ∈ E . � Compute interface motion
5: Compute moving mesh with interface tracking T |[tn ,tn+1] in [tn, tn+1].
6: Γ n+1

h = ⋃
(i, j)∈E Sn+1

i, j

7: {un+1
i }i∈I = FVS({un

i }i∈I , T |[tn ,tn+1])
8: tn+1 = tn + Δtn , n = n + 1

Algorithm 2 provides an approximation for the free-boundary value problem (1.2),
(1.4). In [9]wehave proven thatAlgorithm2cankeepplanar traveling-wave solutions
exactly, preserves mass and satisfies (using entropy-dissipative numerical fluxes in
the bulk regions) a discrete entropy inequality. A full convergence analysis for d = 1
can be found in [8].

However, Algorithm 2 will not terminate if the geometrical CFL condition (2.1)
fails. In this case the point motion functions leads to a vertex distribution at tn+1 that
cannot be meshed with the given (time-invariant) mesh topology. Let us assume that
the geometricalCFLcondition is always satisfied (likewe assume it for the hyperbolic
CFL conditions). Both can be achieved by reducing the time step. But even if mesh
topology can be kept the sole movement of points from the discrete interface might
lead to very small volumes in the bulk domains and (in view of curvature changes)
very small or very big distances of interface vertices. As a remedy an additional
post-processing of the mesh is necessary for any time step. The re-meshing operator
RE = RE(T (tn+1)) is supposed to construct the fixed mesh �T n+1 such that

– the approximate interface Γ n
h is preserved in �T n+1 (up to a given tolerance),

– the mesh parameter hn+1 of �T n+1 is above a critical threshold,
– and the distance of interface vertices of �T n+1 remains in a prescribed interval.

To achieve these criteria based on given mesh parameters, additional vertices might
be placed or deleted on Γ n

h and in a small neighborhood around the interface. The
resulting vertices set will then bemeshed.Wewill not define this re-meshing operator
RE here but note that moving-mesh concepts that realize the constraints mentioned
above in d ∈ {1, 2, 3} space dimensions have been introduced in [2, 5]. They ensure
that the fixed meshes at any time step preserve an initially given Delaunay property.
These are essentially the new contributions for our final MMFV method.
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Algorithm 3 (MMFV method with interface tracking and re-meshing)
Require: u0, T, �T 0 with Γ 0

h ,mesh parameters
1: t0 = 0, n = 0
2: {u0

i }i∈I =
{

1|C0
i (0)|

∫
C0

i (0) u0 dx
}

i∈I 0
� Initial values

3: while tn < T do
4: Compute R for all (i, j) ∈ En . � Compute interface motion
5: Compute moving mesh with interface tracking T |[tn ,tn+1] in [tn, tn+1].
6: {ûn+1

i }i∈I n = FVS({un
i }i∈I n , T |[tn ,tn+1])

7: �T n+1 ← RM(T (tn+1)) � Re-meshing step
8: Determine Γ n+1

h from Γ n
h (tn+1) and �T n+1.

9: Projection {un+1
i }i∈I n+1 ← {ûn+1

i }i∈I n

10: tn+1 = tn + Δtn , n = n + 1

Within Algorithm 3, step 7, the topology of the mesh can change due to the re-
meshing process. This is different as in Algorithms 1, 2 and implies that all index
sets can change and must be augmented with the upper index n. For the same reason
a projection step is needed for the approximate finite-volume solution uh and the
determinations of the approximate free boundary Γ n

h at t = tn .
In the sequel we provide results obtained with Algorithm 3 for two different

applications.

3 Phase-Boundary Dynamics in Compressible
Liquid-Vapour Flow

As first instance of a free boundary value problem for the conservation law system
(1.2) we consider the Euler equations for compressible flow given by

	t + ∇ · (	v) = 0,
(	v)t + ∇ · (	v ⊗ v) + ∇ p = 0,

Et + ∇ · ((E + p)v) = 0
in D±(t) for t ∈ (0, T ). (3.1)

The unknowns of the system (3.1) are the fluid density 	 = 	(x, t) > 0, the fluid
momentumdensity	v = (	v)(x, t) ∈ R

d , the total energy density E = E(x, t) ∈ R,
and the interface Γ (t). The total energy density satisfies E = 	ε + 1

2	|v|2, with ε

denoting the specific internal energy.
To close the system, the pressure p, the specific internal energy ε, and the tem-

perature T are connected by equations of state (EOS). We express the pressure by
p(	, T ) = 	2ψ	(	, T ), with ψ being the specific Helmholtz free energy. The spe-
cific internal energy results from ε(	, T ) = ψ(	, T ) − T ψT (	, T ) and the entropy
S from S = S(	, T ) = −∂T ψ(	, T ). The system (3.1) is hyperbolic [10], if the EOS
satisfy
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p	(	, S) > 0, T (	, S) > 0. (3.2)

Here, we choose the Helmholtz free energy from [15] that is consistent with a
Lennard-Jones potential on themolecular scale (see below), and governs in particular
noble gases. Using the admissibility criterion (3.2) we deduce that (for small enough
temperatures) the state space splits in two separate regions in (0,∞) × R

d+1, that are
identified with a vapour (+) and a liquid (–) fluid phase. The domains D± = D±(t)
are then the subsets of D occupied by the ±-phase. The unknown interface Γ (t)
forms the joint boundary of these two sets.

Thus (3.1) fits to the general class of free boundary value problemswith hyperbolic
dynamics from Sect. 1. It remains to fix the transition operator B from (1.4) to deter-
mine the motion of the interface Γ (t). It is well known that the Rankine-Hugoniot
conditions (1.5) do not suffice to ensure well-posedness of the free-boundary value
problem but have to be augmented by a further condition (see for [23] for a review in
the isothermal case). Various suggestions of additional algebraic relations have been
made but up to now there is no choice that would ensure the unique solution of the
Riemann problem in the entire state space.

Therefore there is no Riemann-problem based interface solver R as required in
(2.8) for the MMFV method. As a remedy we have suggested in [19] a molecular-
dynamics based interface solver Rmd. Rmd determines for the continuum mechan-
ical states u, v in (2.8) a corresponding initial particle state in a special linked-cell
approach [3]; using a prescribed number of particles. Then, molecular-dynamics
simulations are run and (ensemble-averaged) results provide an estimate for the
facet speed and the trace states using the Irving-Kirkwood formulas. In this way we
obtained the globally applicable interface solverRmd. We conclude the section with
a simulation of the MMFV method from [19].

Example 1 (Condensating droplet in 2D)Weconsider the domain D = (−1.5, 1.5)2.
Initially it is separated in the liquid droplet domain D0,−(0) =
{x = (x1, x2) ∈ R

2 | |x|22 < 0.15} and the vapour complement D0,+ in D. The initial
data in primitive variables are chosen as

(	, (v1, v2), T )(x, t) =
⎧
⎨

⎩

(0.62, (0, 0), 0.8) x ∈ D0,−,

(0.06, (0, 0), 0.9) x ∈ D0,+ and x1 ≥ −0.5,
(0.06, (0.5, 0), 0.9) otherwise.

At the left boundary, at x1 = −1.5, we prescribe inflow boundary conditions by
setting ghost cell values corresponding to (	, (v1, v2), T ) = (0.06, (0.5, 0.0), 0.9).
Otherwise, we use outflow boundary conditions. The setting induces a vapour wave
traveling to the right and colliding with the droplet. The evolution of the density and
velocity fields using the MMFV method with the Lax-Friedrichs flux in the bulk
domains is displayed in Fig. 4. Since the droplet is initially not in equilibrium a
relaxing condensation process is started. When the vapour wave reaches the droplet
it gets deformed and convected through the domain.
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Fig. 4 Density (color) and velocity (arrows) for t = 0.0, 0.2, 0.3, 0.5, 1.25, 5.0 (upper left to lower
right). The pictures display the impingement of a density wave on an initially static droplet with
lower temperature. The results are taken from [19]

4 Fracture Propagation in Porous Media

Mixed-dimensionalmodelling for flow in porousmedia is frequently usedwhen deal-
ing with extreme geometries like fractures. For fractures with e.g. disc-like structures
in 3D, the originally fully dimensional fractures are reduced to co-dimension-1 struc-
tures dissecting the surrounding fully dimensional bulk region. This discrete fracture
network approach has been pioneered for Darcy flow in [20] and has been since then
extended to various fields. In this section we refer mainly to the works [6, 7] on
two-phase flows in fracturing porous media which assume the fractures to be filled
with debris such that they can be also considered as a porous medium.

To introduce the model we denote for t ∈ [0, T ] by Γ = Γ (t) a hypersurface
(i.e., a fracture as free boundary), that forms together with the surrounding bulk
domain D = D(t) the entire domain D ⊂ R

d . The function ω = ω(ξ , t) > 0 is the
corresponding fracture aperture function in ξ ∈ Γ (t), see Fig. 5 for a sketch of the
geometrical setting.

The bulk domain D(t) and the fracture Γ (t) are filled with two immiscible and
incompressible fluids. The flow dynamics is then described in D(t) by the wet-
ting fluid saturation S = S(·, t) : D(t) → [0, 1], the global pressure P = P(·, t) :
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Fig. 5 Dimensional reduction of fully dimensional fracture domain D f (t) to a hypersurface Γ (t)
as fracture in the domain D(t)

D(t) → R, and the total velocity v = v(·, t) : D(t) → R
d . If we neglect gravita-

tional forces, capillarity effects and set the porosities equal to 1, the unknowns obey

St + ∇ · ( f (S)v) = qw,

v + λ(S)K∇ P = 0,

∇ · v = qw + qnw

in D(t). (4.1)

Here, the function f = f (S) is the (nonlinear) fractional flux function, λ = λ(S)

is the mobility, K = K(x, t) is the positive-definite bulk permeability matrix, and
qn/nw = qn/nw(x, t) indicate fluid source terms. On the interface Γ (t) we search
for the reduced quantities SΓ = SΓ (·, t) : Γ (t) → [0, 1], PΓ (·, t) : Γ (t) → R and
vΓ (·, t) : Γ (t) → R

d−1 that satisfy

(ωSΓ )t + ∇ξ · (ω f (SΓ )vΓ ) = � f (S)v · n� + ωqΓ
w ,

ωvΓ + λ(SΓ )KΓ ∇ξ (ωPΓ ) = 0, in Γ (t).

∇ξ · (ωvΓ ) = �v · n� + ω(qΓ
w + qΓ

nw)

(4.2)

The notations with upper Γ -index refer to the same physical but possibly dimen-
sionally reduced quantities as in (4.2). The differential operators with lower index ξ

are the differential operators on the fracture manifold. The systems (4.1), (4.2) are
closed at the hypersurface Γ (t) by the mass conservation and momentum balance
relations

f (S±) = f Γ (SΓ ),

v± · n± = −λ(SΓ )K Γ
n

(
PΓ − P±

ω/2
+ PΓ − P+ − P−

ω/4

)
.

(4.3)

The number K Γ
n > 0 is the projection ofK in the normal direction. Byfixing a normal

vector n ∈ Sd−1 we can naturally determine domains D±(t) around Γ (t) (see Fig.
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5). This defines then the trace evaluations S±, v± as well as the brackets �·�, like in
Sect. 3. The entire discrete fracture network model (4.1)–(4.3) has to be augmented
by initial conditions and boundary conditions for the saturations, pressures, and total
velocities in bulk and fracture domains. The initial fracture hypersurface Γ0 has to
be prescribed.

The fracture interface Γ (t) moves at the tips in tangential direction (fracture
growth) and not in normal direction as the phase boundary in Sect. 3. Since we
exclude closing of the fracture by assuming ω(·, t) > 0 for all t ∈ [0, T ], we have
Γ (t1) ⊆ Γ (t2) for t1 < t2, meaning that Γ (t1) remains static for t > t1. To ensure
in particular mass conservation coupling to the two-phase dynamics in the fracture
is then essential, see (4.3)1. The new feature of the mathematical model (4.1)–(4.3)
concerning the evolution of the fracture Γ = Γ (t) is its growth by dynamical frac-
turing. Possible driving forces for fracturing are the hydromechanical pressure or a
suitable stress distribution in the solid skeleton. The resulting growth of the tip has
to be computed from a smaller-scale model that relies on energetic considerations
like the Griffith criterion. In the sequel we assume that the motion of the fracture is
given and refer to [6] for the coupling with a smaller-scale fracture model.

Remark 2 (i) For S ≡ SΓ ≡ 1, the model (4.1)–(4.3) reduces to the single-phase
case as described in [20]. For ω = const., we reconstruct the models as in e.g.
[1, 14], but obtain different coupling conditions. For unsaturated flow we refer
also to the more recent work [18].

(ii) The systems (4.1) in D(t) and (4.2) in Γ (t) are of mixed hyperbolic-elliptic
type. However, the dynamics is driven by the nonlinear hyperbolic equation for
the saturation such that it fits to the general conservation law set-up in Sect. 1.

A mixed-dimensional MMFV method for (4.1)–(4.3) has been introduced in [7]
which relies on the moving-mesh approach from [5]. The latter realizes in particular
the growth of Γ (t) at its tip(s) by adding new vertices and re-meshing such that the
moving mesh is a conforming triangulation in every discrete time step. Nevertheless,
an interface solverR in the sense of (2.8) is also needed. (4.1)1 is a scalar conservation
law that depends on the total velocity as parameter. Thus, the solution of the Riemann
problem produces two waves. The wave of interest for R is associated with the
fracture. Therefore the speed of the wave of interest is zero but the computation of
the adjacent states, which are not equal to the end states of the Riemann problem,
involves the solution of (4.2) for the dynamics within the fracture. We point out that
the geometrical flux hn

i j vanishes since all facets Sn
i j of Γ (tn) that do not include the

tip(s) do not move within [tn, tn+1]. The numerical flux gn
i j is chosen as the exact

flux, evaluated in the adjacent states, see (2.10). The (prescribed) movement of the
tip (a vertex of the mesh) is represented as the point motion function which induces
a movement of the mesh locally around the tip vertex. The fluxes can be taken again
as in (2.10) evaluating the bulk saturations in the (Godunov) flux.

We conclude with an illustration of the resulting MMFV method.
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Fig. 6 Saturation fields for a domain with two horizontal fractures at t = 0.1, 1.1, 1.5. The left
hand side pictures correspond to a tip speed s = 0.1 of the lower fracture Γ2(t) and the right hand
side pictures to the speed s = 1.0. The results are taken from [7]

Example 2 (Two-phase flow fronts in fracturing domain) Let D = (0, 2) × (0, 1).
We consider two horizontally aligned fractures Γ1/2(t) with constant aperture ω =
0.01 such that the upper fracture is defined by Γ1 = (0.2, 2) × {0.75} and is kept
static. The tip of the lower fracture Γ2 = Γ2(t) moves with speed s ∈ {0.1, 1.0}
from left to right reaching the right boundary at t = 1.8, 18, respectively. The initial
saturation in D is zero and no-flux boundary conditions are prescribed on ∂ D \ (Γ1 ∩
Γ2(t)). The lower fracture acts as inlet for the wetting fluid whereas for the upper
fracture outlet conditions are prescribed.

The numerical solutions at different time steps can be observed from Fig. 6.
Discontinuous saturation fronts travel through the fracture Γ2 and invade into the
bulk domain. From t = 1.5 on the front has reached Γ1 which acts as a barrier for
further vertical expansion transporting the wetting-phase to the right boundary.
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Mixed Dimensional Modeling with
Overlapping Continua on Cartesian
Grids for Complex Applications

Malgorzata Peszynska, Tyler Fara, Madison Phelps, and Nachuan Zhang

Abstract We outline a strategy for prototyping computational models for com-
plex applications on domains with disparate volumes. Instead of mixed dimensional
approaches, we exploit the idea of overlapping continua and Cartesian grids. This
strategy allows to build prototypes and explore model sensitivities in a robust sim-
ulation framework. As specific examples we consider thermal conduction in human
tissue and hypothermia, Richards-Darcy coupled system for soil-root flow, andmixed
use traffic simulation on and off paved paths in urban environment.

Keywords Cartesian grids · Mixed dimensional modeling · Overlapping continua

1 Introduction

In this paper we outline a strategy for rapid construction of prototype computational
schemes for complex physical problems on domains with disparate volume. Instead
of body fitting and unstructured grids we use overlapping continua, immersed bound-
ary and fictitious domain techniques [13, 18] within an algorithmic framework based
on Cartesian grids and semi-implicit iterative schemes known from multiphysics
applications and frameworks [1, 3]. This approach is robust and simple and allows
to focus on application-specific challenges.

We consider systems which involve some form of mixed-size domain and cou-
plings for models involving some discretizations of PDEs. Recently, there is abun-
dance of theoretical and applications oriented work on mixed dimensional setting
for a variety of applications: blood flow, hydro–mechanical coupling in fracture net-
works, andmore. The theoretical basis: detailed delicate functional analytic setting of
the PDEs and of the underlying finite element approximations involves distributed
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Fig. 1 Cartoons of three domains considered in this paper for the applications to a hypothermia
modeling [2], b vegetation-soil systems [22] cmixed-use traffic network along some paths (in black)
and off-path (white)

line sources or hybrid coupled continua–network models; see, e.g., [12, 28] and
earlier applications oriented work including [7, 9, 11].

Our approach is to start from images to define the geometry of the computa-
tional domainΩ ⊂ R

d which we project on a Cartesian grid. The lower dimensional
domains are the unions of some grid/voxel cells embedded within the originalΩ; see
Fig. 1. Next we apply the concept of overlapping continua [6, 27] or the homogenized
models [10] to handle the mixed dimensional coupling. For discretization, we use the
well known practical computational framework of lowest order mixed finite element
methods implemented as cell centered finite differences (CCFD), and we develop
model approximations and enhancements suitable for the selected phenomena.

This strategy allows to build prototype models, propose their extensions and
enhancements, and investigate their robustness, flexibility, and sensitivity with case
studies which guide how to extend, modify, and interpret the models, while paying
attention to numerical discretization (h, τ ), and implementation (solver). This paper
illustrates the simplicity and potential of this methodology which we recommend as
a stepping stone towards refinement strategies beyond the applications we discuss.

We select three disparate applications dubbedH, RS, and Twhich involve coupled
variables defined on model- and variable-specific domains which may overlap, with
mixed dimensional setting; see Fig. 1. The computational models solved on these
domains are discretizations of PDEs which communicate on the intersection of the
domains, or are “aware” of the variables defined on these other domains. The models
H, RS and T are on modeling hypothermia problems in tissue, water uptake in large
root-soil systems, and mixed-use traffic flow on a campus domain. From solver point
of view, case H is semilinear, and case RS and T require care in the treatment of
advective terms.

The outline of this paper is as follows. In Sect. 2 we recall the basic algorithm for a
scalar parabolic–hyperbolic PDE implemented as CCFD. In Sect. 3 we introduce the
H (hypothermia) model, an extension of the linear bioheat flow model [10, 15, 19]
for which we exploit fictitious domain approach as well as introduce the nonlinear
feature of vasoconstriction. In Sect. 4 we employ an extension of d = 1 Richards-
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Darcy models for RS (root-soil) systems from [4, 26] to mixed dimensional setting
in d ≥ 2. In Sect. 5 we develop model T for mixed-species traffic flow on a campus
network involving several species whose trajectories may or may not be confined to
pathways, and which may or may not be aware of other traffic participants.

While due to the scope we cannot cover all the details, the models H, RS, and
T can help in further construction of more refined models, also for other complex
applications. Such refined models can take advantage of sensitivity studies carried
out with the prototype models.

2 Notation and Flow Models

In the paper we apply the following common notation. First, χS denotes the charac-
teristic function of a set S, |S| its measure, and S its closure. For a function f on S,
〈 f 〉S denotes its average on S. We work in spatial domains which are open bounded
setsΩ ⊂ R

d , d = 1, 2, 3, possibly partitioned into some material subdomains, open
sets Ωm . The case d ≤ 2 is natural for Sect. 5, and the problems in Sects. 3 and 4
work with d ≤ 3. For the boundary ∂Ω or that of any of the subdomains ∂Ωm , η is
a unit normal vector pointing outward, and we assume that these boundaries are suf-
ficiently smooth. We will consider Dirichlet conditions on ∂ΩD and flux conditions
on ∂ΩN .

We will denote by 0 ≤ t ≤ T the time variable, with T the final time of the
simulation. In time–discrete models, tn is the time step, and t0 = 0 denotes the
initial time. With uniform time stepping we have tn = nτ .

2.1 CCFD as the P0-RT[0] Mixed Finite Element Scheme

We consider first a generic scalar parabolic quasi-linear homogeneous PDE

c∂t u − ∇ · (D∇u) + ∇ · ( f (u)) + C(u) = 0, x ∈ Ω, t > 0 (1)

which is supplemented by some boundary and initial conditions. Assume D is a
symmetric uniformly positive definite tensor, c is uniformly nonnegative, f is suf-
ficiently smooth, and C(u) = cb(x, u, t)u is the Helmholtz term. (See (H) model
below). For nonlinear implicit parabolic problem, D = D(u), and c∂t u derives from
some ∂tC(u) (See (RS) model below). When c = 0, C = 0, (1) is a steady flow
problem, an elliptic PDE (See (T) model below).

For spatial discretization, we assume thatΩ = Ωh = ⋃
(i j)∈Th

ωi j on some under-
lying background Cartesian grid of rectangular cells ωi j of center xi j whose edges Eh
align with ∂Ω and with the material interfaces, with maxi j |ωi j | = h2. The cells are
identified with voxels (image pixels); someωi j /∈ Ω are “key-outs” outside the union
Th of indices as in Fig. 1. The unknown u is approximated by piecewise constants
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ui j ≈ u(xi j ); we collect uh = (ui j )(i j)∈Th . The flux components qh defined over the
edges Eh are from the mixed finite element RT[0] space. This discretization is well
known [20] for its locally conservative properties and easiness for modeling nonlin-
ear multi-physics applications. Since Dirichlet conditions are satisfied weakly [20],
fictitious domain strategies [13] are their natural extension.

Applying implicit-explicit time stepping, we seek unh which solves

M(unh) = (Mh + τn Ah)u
n
h + τC(unh) + τ∇h · Fh(u

n−1
h ) = Mun−1

h . (2)

HereMh is themassmatrix, and Ah is the stiffnessmatrix incorporating the boundary
conditions; C applies pointwise to each degree of freedom of unh . Further, Fh is the
numerical flux defined based on f , and ∇h · is the discrete counterpart of ∇· on the
grid Th . For scalar problems we use Godunov flux; when u is a vector, we require a
Riemann solver [8, 17]. For nontrivial Fh , we apply operator splitting: we solve the
advection portion c∂t u + ∇ · f (u) = 0 explicitly, followed by an implicit diffusion-
reaction step solved directly or by iteration, time-lagging the nonlinearity and/or the
coupling. After unh is found, we retrieve the fluxes qn

h . In what follows we drop the
reference to h, n.

2.2 Coupled Overlapping Continua Models

We consider next a system based on (1)

c1∂t u1 − ∇ · (D1∇u1) + c(u1 − u2) = f1, x ∈ Ω1, t > 0 (3a)

c2∂t u2 − ∇ · (D2∇u2) + c(u2 − u1) = f2, x ∈ Ω2, t > 0 (3b)

The model (3a, 3b) when Ω1 = Ω2 is known as the Barenblatt model for multiscale
flow in porousmedia [6, 27] postulated for the flowdynamics in compositemultiscale
media with vastly different storage c j , Dj . See also [16] for illustrations.

In this paper Ω1 is a continuum, and Ω2 is “almost” one-dimensional, Ω2 ⊂ Ω1

with 0 < |Ω2| << |Ω1| in the sameRd measure, and c = c(x) = CχΩ1∩Ω2(x),C ≥
0, only active onΩ1 ∩ Ω2. Our scheme for (3a, 3b) extends directly those in Sect. 2.1,
and the coupling can be resolved by iteration or directly. This alternative to mixed
dimensional setting allows an easy proof–of–concept complex nonlinear dynamics.

We consider three models which we call in shorthand by H, RS, and T. In Hmodel
of hypothermia we have constant coefficients except possibly nonlinear cb to model
vasoconstriction. For the root-soil problem RS, c2 = 0, and the model for u1 is the
nonlinearRichards equation,whereD1 = D1(u1) and c1 = c1(u1) feature degenerate
behavior.We also consider amodel T of overlapping continua involvingmixed traffic
participants utilizing different trajectories. In that model f (x, u) = v(x, u) f̄ (u),
and v(x, u) is computed solving an auxiliary elliptic problem similar to (1) with
c = 0, C = 0.
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3 Hypothermia Model: Perfusion and Vasoconstriction

We aim to build a qualitatively realistic model for the temperature in the complex
tissue domain Ω such as in Fig. 1a connected to the rest of the body Ωbody (not
shown). When exposed to low external temperatures, the body thermoregulation
system attempts various strategies to prevent hypothermia and tissue damage. While
these mechanisms are complex and not completely understood by physiologists,
our prototype model based on overlapping continua and fictitious domain concepts
could eventually aid, e.g., in developing patient-specific hypothermia therapy or
cryo–preservation strategies which require rapid turnaround time from an image to
simulation.

3.1 Blood Perfusion Model

The bodyΩ is composed ofΩvessel,Ωcapillaries,Ωtissue. Heat transport is by convection
in Ωvessel,Ωcapillaries and by conduction in Ωtissue. Metabolic sources and products
and energy are exchanged between Ωcapillaries and Ωtissue; the latter process, called
perfusion, makes heat conduction in Ωcapillaries ∪ Ωtissue similar to flow in porous
medium; see, e.g., recent developments in [23].

Literature offers variousmodels for thermal perfusion that simplify or enhance the
overlapping continuamodel (3a, 3b) onΩ = Ωtissue,with θ|Ωcapillaries ≈ θ∗ = const, the
arterial temperature. In particular, the so-called Pennes model from [19] postulates
C(θ) = cb(θ − θ∗) in

c∂tθ − ∇ · (k∇θ) + C(θ) = 0, x ∈ Ω, t > 0. (4)

Here c and k are the volumetric heat capacity and thermal conductivity, and
cb = cbhvb = const, where cbh and vb are blood volumetric heat capacity and perfu-
sion rate. Here and below we ignore heat sources. In [10], cb(θ − θ∗) is derived by
homogenization techniques in Ωcapillaries,Ωtissue made of ε-size unit cells Y with a
Robin boundary condition imposed on the interface Γ = Y ∩ ∂Ωcapillaries ∩ ∂Ωtissue,
and vb is shown to be proportional to |Γ |. In [7], Ωvessel is treated as a 1D domain,
with convection in Ωvessel coupled to that in Ωcapillaries ∪ Ωtissue ⊂ R

3. Several multi-
equation models use a similar approach, e.g. [14, 25].

3.2 Fictitious Domain and Immersed Boundary Approaches

We aim to apply (4) in a realistic setting involving Ωvessel and a complicated external
boundary ∂Ω . For the former, we include a penalty term cvessel(θ − θ∗) on Ωvessel

to enforce θ|Ωvessel ≈ θ∗; for the latter, we proceed similarly on some Ω̃ \ Ω with
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Ω̃ of simpler shape than Ω . These treatments resemble the Immersed Boundary
[18] and fictitious domain [13] approaches. We define C(θ) = C(x)(θ − θ∗), with C
equal cb, cvessel, cD on each x ∈ Ω \ Ωvessel, Ωvessel, Ω̃ \ Ω , and θ∗ = θ∗(x) equal
θbody, θvessel, θD , respectively. We postulate an extension of (4) to Ω̃ as follows

c̃∂t θ̃ − ∇ · (k̃∇θ̃) + C(θ̃) = 0, x ∈ Ω̃, t > 0, (5)

The coefficients c, k can be extended to Ω̃ in any convenient way as long as (5) is
well-posed. The model (5) is next approximated by the mixed finite elements/CCFD
setting as described in Sect. 2.1.

3.3 Examples: Model Adaptivity for Hypothermia

We illustrate the effect of the blood perfusion term cb(θ − θ∗) and fictitious domain
term cD(θ − θ∗) in a hypothermia example based on geometry in Fig. 1a aiming for
a physically motivated scenario to simulate the onset of frostbite in the human hand
exposed to cold air over t ≤ T = 1200 s. We extend Ω = Ωhand ⊂ Ω̃ by Ωair so
that Ω̃ is a large enough rectangular domain. The tissue in Ωhand has heterogeneous
properties including large blood vessels. We identify ∂Ωwrist = ∂Ω ∩ {x : x2 = 0}
as part of ∂ΩD made of ∂Ωwrist ∪ ∂Ωnonwrist .

We start with a d = 1 slice of the 2d domain where the effect of cb, cD is easily
quantified. Convergence studies (not shown) show expected order O(τ + h2).

Example 1 Consider Ω = (0, L), L = 0.15 m, and Ω ⊂ Ω̃ = (−0.5, 0.15) with
Ωvessel = ∅. Let c = 3 × 106, k = 0.3, θ∗ = 37. Set ∂Ωnonwrist = {0}, ∂Ωwrist =
{0.15} and θnonwrist = −40, θwrist = 37. Let θ(x, 0) = θinit(x) = −40χ[−0.05,0] +
( 15403 x − 40)χ[0,0.15] = limt→∞ θ(x, t). To simulate, we let τ = 1, and h = 10−4,
with M = 2000 cells. We try cb ∈ {0, 10, 102, 103} and cD ∈ {0, 100, 101, . . . , 108}.

Figure 2 illustrates how cb and cD work together. Large cb drives θ|Ω towards θ∗,
and θ|Ω is essentially steady state at t = T . In turn, a large cD more strictly enforces
θ|Ω̃\Ω = θD , though one must keep the condition number κ(Mh) of (2) reason-
able. For example, cb = 103, cD = 107, gives θ(0, t N ) = −39.42, which reasonably
approximates the Dirichlet condition at ∂Ωnonwrist .

We consider next the 2d example, where the hand is protected by mitten material
in Ωmitten, case (M), or not, case (N ). Other notation is adapted easily.

Example 2 We use a uniform grid 100 × 133 over Ω̃ shown in Fig. 3. The
coefficients c, k, cb, θ∗ are given in Table 1. We use θ|∂Ωnonwrist = θ∗

air = −40 ◦C,
θ|∂Ωwrist = θ∗

body = 37 ◦C, and let θ(x, 0) = χΩθbody + χΩ̃\Ωθair.

The model exhibits qualitatively intuitive behavior, as shown in Fig. 3. Next we
post-process the results to analyze the extent of hypothermia and possible frostbite,
i.e. θ(x, t) < 0 ◦C. Frostbite is avoided in case (M) at least until t = 1200, but occurs
in case (N ), affecting about 11% of cells in Ωhand.
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Fig. 2 Simulation results for Example 1. Left: near steady-state solutions (t = 1200); various cb
and cD = 107. Right: near steady-state solutions; cb = 103 and various cD

Fig. 3 Simulation results for Examples 2 and 4. Cases are denoted by superscripts

Table 1 Material parameters for Examples 2 and 4

Domain Material c (J K−1 m−3) k (W m−1 K−1) cb (W m−3) θ∗ (◦C)
Ω1 Bone 2.7 × 106 0.31 10−3 37

Ω2 Muscle 3.7 × 106 0.49 10−3 37

Ω3 Nerve 4.1 × 106 0.49 10−3 37

Ω4 Skin 3.7 × 106 0.37 10−3 37

Ω5 Tendon 3.8 × 106 0.47 10−3 37

Ωvessels Blood 3.8 × 106 0.52 105 or 1 37

Ωmitten Goose down 1512 0.16 0 37

Ω̃ \ Ω Air 858 0.024 105 –40

Next we address the quality of model adaptation. The term C(θ) simulates per-
fusion in Ωhand \ Ωvessels and acts as a penalty term in Ωvessels and Ω̃ \ Ω . While
cb has physiological/modeling meaning [10], cvessel and cD are chosen somewhat
ad-hoc to ensure, respectively, θ|Ωvessel ≈ θ∗|Ωvessel and θ|∂Ωnonwrist ≈ θ∗|Ωair . We test
the quality of the adapted model by checking if this first condition holds. We record
θmax = maxi j θni j at t

n = T . When cvessel = 105, case (N ) has θmax = 35.7. However,
when cvessel = 1, case (N ) has θmax = 9.8. Case (M) is similar.



136 M. Peszynska et al.

3.4 Hypothermia with Vasoconstriction

With model sensitivity to cb, cD, cvessel reasonably understood, we extend (4) to
account for defense against hypothermia with vasoconstriction, when decrease in
the body temperature captured by thermoreceptors induces arterial smooth muscle
constriction, reducing blood flow in extremities to retain heat near the core body.
However, such action may cause permanent morphological changes, e.g. frostbite,
in extremities.

To model vasoconstriction, we recall cb in (4) depends on Γ , thus we hypothesize
that cb decreases when sensory data S(θ) = 〈θ〉Ω decreases, affecting the venous
blood temperature ≈ S(θ) returning to the body. Without increased metabolism, the
body core temperature θbody may decrease, further decreasing S(θ), cb, and θ∂Ωwrist .
We postulate the following simple model

θ∂Ωwrist = θ∗ = θbody, cb = cb(θbody); dθbody

dt
+ cB(θbody − S(θ))+ + λ = μ, (6)

with μ ≥ 0 representing metabolism and λ a Lagrange multiplier ensuring θbody ≤
37, mimicking thermoregulation.We solve (6) coupled to (4) semi-implicitly, requir-
ing some cB ≥ 0,μ ≥ 0, and some model for cb = cb(θbody).

Example 3 We consider data as in Example 1, and consider (4), (6) first with (a)
constant fixed θbody = 37, θ∗ = 37, cb = 103. Next we set up the variable nonlin-
ear model with cB = 10. We also consider two vasoconstriction model variants (b)
cb(θ) = 103χθ>10, and (c) cb(θ) = 103 θbody

37 χθ>10. For dramatic effects, we consider
μ = 0, study θbody(t) and retrieve the position x∗ ∈ Ω : θ(x∗, t) = 0 which indicates
the extent of frostbite.

Simulations for Example3 confirm intuition. Upon vasoconstriction (b-c), frost-
bite is more extensive than in (a), but not dramatically. There is not much difference
in θ between (b) and (c), but there is difference in θbody between (b-c).

Example 4 We consider data as in Example 2, but with cb = 10−3. We repeat the
experiments for t ≤ T = 120 s, varying cb, cD and the vasoconstriction model, with
S(θ) = 〈θ〉. We set cb = const (vaso model off), or variable cb(θ) ∼ χθ>10 (vaso
model on) to model an instantaneous response to θ.

The results in Table 2 demonstrate some model sensitivity to the parameters.
There is little dependence on cb if cb ≤ 104, perhaps because cvessel is fixed. As
expected, less frostbite occurs when vasoconstriction is not active; see also Fig. 3 for
comparison of θvaso and θno vaso.

Summary: We believe the CCFD implementation of the H model is robust with
the fictitious domain and model variants. The results agree qualitatively with the
intuition; the most crucial parameters are cb and cvessel.
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Table 2 Sensitivity of the H model with vasoconstriction in Example 4 at t = T = 120 s to cb,
cD , and the choice of vasoconstriction model (vaso or off). We define #frostbite as the number of the
cells ωi j where θi j |t=T < 0, and #off those with θi j |t=T < 10

cD cb vaso #frostbite #off θmin θmax θave

106 10−3 Yes 42 165 –16.03 36.99 27.28

106 10−3 No 42 165 –16.03 36.99 27.28

106 102 Yes 42 163 –16.04 36.99 27.29

106 102 No 42 163 –15.98 36.99 27.29

106 104 Yes 32 131 –15.37 36.99 28.18

106 104 No 22 124 –11.81 36.99 28.28

106 105 Yes 1 3 –0.02 36.98 32.76

106 105 No 0 2 8.38 36.98 32.78

107 104 Yes 6 40 –9.03 36.99 32.66

107 104 No 5 39 –6.65 36.99 32.70

107 105 Yes 0 2 0.87 37 34.46

107 105 No 0 2 8.70 37 34.47

4 Root–Soil Flow Model in d ≥ 1

Consider a complex domain shown in Fig. 1b representing a plant root embedded
in soil, adapted from [22]. Our long-term goal is to simulate water flow in this root-
soil system combined with other coupled phenomena including surface and above-
surface models plus energy equation. Therefore, even though roots have a much
smaller volume than reasonable soil volumes, we aim to build a general flexible
physically meaningful RS model in d ≥ 1.

Our RS model extends the d = 1 overlapping continua root-soil models from [4,
26], a nonlinear Richards-Darcy generalization of (3a, 3b). We consider Ωr ⊂ Ωs ⊂
R

d , with d ≥ 1, both with positive Rd measures |Ωr | << |Ωs |, and denote soil/root
variables by subscripts s/r . We maintain the overlapping continua feature and do
not resolve the root’s micro-structure. We use Richards equation in unsaturated soil
domain Ωs for (incompressible) water flow in Ωs coupled to saturated flow in Ωr as
follows

φs
∂Ss
∂t

+ ∇ · qs = −c(Ps − Pr ), x ∈ Ωs, t > 0, (7a)

∇ · qr = c(Ps − Pr ), x ∈ Ωr , t > 0, (7b)

qs = −Ks

μ
k(Ss) (∇Ps − ρg∇D) , qr = −Kr

μ
(∇Pr − ρg∇D) , (7c)

Ps(x, 0) = Ps,ini t , x ∈ Ωs, (7d)

Ps(x, t) = −Pc(Ss,D), x ∈ ∂Ωs,D; qs · η = qs,N , x ∈ ∂Ωs,N , (7e)

Pr (x, t) = Pr,D, x ∈ ∂Ωr,D; qr · η = qr,N , x ∈ ∂Ωr,N . (7f)
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Here Ss is the saturation (volume fraction) of water, Pm and qm are the pressure and
flux of the fluid in Ωm . We have Ps = −Pc(Ss), where Pc is capillary pressure. In
addition, φ and K are porosity and permeability of the medium, k(S) is the relative
permeability, μ and ρ are viscosity and density of the fluid, g is the gravitational
acceleration, D is the depth under the soil’s surface, and c = crsχΩr is the exchange
term between root and soil, with crs ≥ 0. Initial and boundary data are as stated in
(7d)–(7f).

The model (7a) is derived when d = 1 in [4, 26] based on several modeling
assumptions. Model in [4] emphasizes the geometrical complexity of the root-soil
exchange, and works in potentials Pm

g as variables. The idea is to set up the fluid
exchange between root and soil in a simple manner and avoid discretization at the
scale of individual xylems through which the actual water transport takes place. To
this end, the radial character of the flow to the roots, the low conductivity of the inner
portion of the roots (endodermis), along with high permeability of epidermis and
medium permeability of cortex, are assumed. In [26] this model is extended to allow
subroots and root network with stochastic updates to this d = 1 model, and predict
that dry and wet zones will develop in the soil as a result of water uptake by plant
roots. Both [4, 26] provide formulas for crs .

4.1 Computational Model Specifics for d ≥ 1 and Challenges

First we consider crs = 0. The main well known difficulty when working with
Richards equation in any dimension is the nonlinear degenerate parabolic charac-
ter of the problem due to the behavior of k(S), Pc(S). We illustrate this behavior
using the well known algebraic model based on experimental data known as van-
Genuchten-Mualem model

Pc(S) = 1

α
(S− 1

m − 1)
1
ν , k(S) = Sε

[
1 −

(
1 − S

1
m

)m]2
. (8)

The set of parameters ε = 1
2 , m = 1 − 1

ν
, α = 10−4, and ν = 2.237 characterizes

fine soil; see this and others collected in [21]. A change of variables in (7a) reveals
that an equivalent model reads

∂t S − ∇ · (Ds(S)∇S) + ∇ · As(S) = 0.

Here Ds(S) ≥ 0 but degenerates to 0 when S ↓ 0. Thus the model features a degen-
erate behavior, while the nonlinear advective term A(S) when D �= const requires
careful treatment of this hyperbolic term. Due to these difficulties, the use of lower
order numerical scheme such as that in Sect. 2.1 is appropriate, and so is the use of
upwinding. Furthermore, the choice of primary unknowns is delicate, since Pc(S)

is unbounded near S ↓ 0, but P−1
c (p) is unbounded when p ↓ 0. These features

prompted various analyses of numerical schemes and delicate discussion of nonlin-
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ear solvers; see, e.g., [5, 20, 21, 24]. In particular, [5, 24] prove O(h + τ ) error
estimates to the mixed finite element method, but some of this work requires reg-
ularization and strong assumptions on smoothness. In turn, [21] evaluates the fully
implicit CCFD schemes for nontransformed, nonregularized models with strong
heterogeneities and locally large fluxes, and test variants of averaging, implicit or
semi-implicit solutions, and different choices of primary unknowns.

When crs > 0, the computational model for RS system features an additional
difficulty, sincemost likely |Ωr | << |Ωs |.With the approachweoutlined inSect. 2.1,
this is, however, not an issue. We are able to simulate successfully the flow of water
in the overlapping continua system; this is illustrated by our examples below.

4.2 Examples for RS Model

Example 5 We considerΩr = Ωs = (0, L) and L = 1m, other data in Table 3, and
k(S), Pc(S) given by (8). To model evaporation and precipitation at the surface of
the ground, we impose Neumann boundary conditions at x = 0, and at x = L:

qs(0, t) = qs,top, qr (0, t) = qr,top, qs(1, t) = 0, qr (1, t) = 0, (9)

qs,top =
⎧
⎨

⎩

− 4 × 10−7, if t ∈ (0, 1.2] ∪ (3.5, 4] [days],
2 × 10−7, if t ∈ (1.5, 2] [days],
0, otherwise,

qr,top =
{− 10−8, if t ∈ (0, 1.2] ∪ (1.5, 2] ∪ (3.5, 4] [days],

0, otherwise.

The simulation results in Fig. 4 show response of the system to the infiltration
through boundary (9) over 4 days.

Table 3 Parameter values for Example 5

Parameter φs Ks [m2] Kr [m2] μ[Pa · s] ρ[kg/m3] g[m/s2] c τ [s] h[m]
Value 0.4 10−11 5 × 10−12 10−3 103 9.8066 10−10 600 1/50

Fig. 4 Solutions Ps , Ss , and Pr in Example 5: Ss and Ps rise when there is precipitation, and drop
due to the root’s absorption of water from the soil under dry weather
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Fig. 5 Numerical solution for Pr , Ps , and Ss , from Example 6. For Ps , Ss , the contour ∂Ωr is
superimposed over Ωs to guide the eye. Vertical axis is aligned with gravity

Example 6 We continue with data from Example 5 in Ωs = [0, 1] × [0, 1], grid
120 × 80 over t ≤ T = 3600 s. We simulate infiltration with the Richards–Darcy
model, starting from initial (pressure-saturation) equilibrium (by settingqs = qr = 0,
Ps = Pr , and Ps,top = Pr,top = 0), addingwater only from the left top portion of ∂Ωs ,
with no flux conditions elsewhere. We use the coupling coefficient crs = 10−8.

The plots in Fig. 5 show that the Pr is well equilibrated with Ps . The water from the
left boundary eventually reaches the root. The solutions feature sharp fronts as usual
for Richards equation. The system strongly depends on crs .

Summary:We find the RSmodel based onRichards-Darcy equations quite complex.
As long as its Richards portion is well calibrated, the model is robust. In the coupled
system, there is high sensitivity to the coefficient crs .

5 Mixed-Use Traffic Flow on Campus

Traffic flow models can have continuum (PDE) or discrete (individual based model)
form. The former have gained interest since the LWR models [17] and present inter-
esting hyperbolic structure of the underlying PDE, the (macroscopic) transportmodel
ut + ∇ · f (u) = 0 (supplemented by inflow boundary conditions) for the average
density u (of cars) with flux function f (u), e.g., f (u) = (1 − u

umax
)uv. However,

these traffic models for cars on paved roadways are inherently one-dimensional, and
since the spatial scale is much larger than the average length of of car, individualis-
tic behavior is not preserved.In contrast, microsopic individualistic behavior models
are important for emergency scenarios such as during tsunami or wildfires as well
as for urban and architectural design considerations of possible congestion patterns.
However, suchmodels on network can become unmanageable, and efforts to manage
their complexity involve upscaling to a model resembling “Darcy flow” [9].

Computational models of traffic scenarios start with an image such as in Fig. 1c
which describes the paths Ω P within a domain Ω ⊂ R

2. One possible model for
traffic on this network augments the LWR flux with −K∇u, where K is a diffusion
tensor and v captures the preferred direction of motion; both are based on the mean
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value and standard deviation of transition probabilities between sites at each time
step [9]. However, this approach does not include coupling between the different
species nor allow travel off the network.

The model we build accounts for the traffic on and off Ω P as well as for inter-
actions between the species. Our simulations might support the design, control, and
monitoring of robot trajectories as well as of campus pathways.

5.1 Background and Model Development

We consider traffic with M = 3 species: human pedestrians, humans on bicy-
cles, and autonomous delivery robots, numbered m = 1, 2, . . . 3. We let average
densities u = (u1, . . . uM) and flux function f (u) = ( f1(u), . . . fM(u)). We set
fm(x, t; u) = vm(x, t; u) f̄m(u) to separate the trajectories vm(x, t; u) from traffic
awareness modelled by f̄m(u). While robots or bicycles can only travel on paved
paths within someΩ P ⊂ Ω , humans can alter their trajectory and veer offΩ P when
they are aware of a (possible) congestion.

Flow and trajectories: Each speciesm has a trajectory given by the velocity field
vm = vm(x), x ∈ Ω . Most can only move on the paved paths, i.e. so that supp vm ⊂
Ω P . Typically most species are aware of others and may alter their speed locally
in time, but most cannot alter their trajectories. For some species, say m ′, we allow
v′
m = v′

m(x, t, (um)m) with supp vm ′ \ Ω P �= ∅ depending on the current conditions.
To determine a trajectory vm , assume that speciesm intends to get from some inlet

point xinm ∈ ∂Ω to someoutlet point xoutm ∈ ∂Ω .We solve a pseudo-potential problem
∇ · vm = 0 for ψm so that vm = −Km∇ψm . We set ∂ΩD = Γin ∪ Γout where each
Γin, Γout is a small region of ∂Ω around the inlet and outlet, respectively, and require
the Dirichlet conditionψ|Γin = 1, andψ|Γout = 0, and we require Neumann condition
vm · n|∂ΩN = 0 on ∂ΩN = ∂Ω \ ∂ΩD . Solving for vm is a well-posed problem with
a scheme for “flow” from Sect. 2.1.

It remains to set up the species specific “mask” K to determine these paths pref-
erentially and allow, e.g., to set up alternative pathways to stairs, or set up ad-hoc
detours. In the simplest scenarios we simply set K |Ω P = κm and K |Ω\Ω P = 0, and
κm can be calibrated to an average speed of species m. Also, the species “aware” of
traffic are allowed to alter their trajectory with Km = Km(x, y, (um)m) built heuris-
tically. For example, if at some point (x, y) ∈ Ω P we have a traffic congestion in
some area ΩC , we would set Km |ΩC = 0 and Km |Ω\ΩC = κm , and recalculate vm to
avoid ΩC .

The transport model: With fm = vm f̄m and a given vm , f̄m(u) can be a linear or
nonlinear flux function, e.g., the LWR model.

Scheme: To approximate the flow and transport solutions, we follow Sect. 2.1 and
[8, 17] and apply Godunov’s method, under CFL condition. For M > 1 the situation
is more complicated but for the simple case studies we develop the Godunov method
suffices. For the simulations in d = 1, we report grid refinement studies; we also
confirm grid error for the nonlinear problems to be O(

√
h) (not shown).
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5.2 Examples of Simulations with T Model

To build up our intuition, we illustrate the coupled dynamics of the M = 2 species
with Ω = (0, 2), assuming they travel in the same direction. The pedestrian density
is u1, and that of robots is u2. We construct the flux functions heuristically to model
the interaction between the species, and in particular “traffic awareness”. Species 1
(humans) do not feature awareness of other species and f̄1(u) = u1(1 − u1) (LWR
model), but f̄2(u) = v2(u1)u2 where the robots slow down considerably when they
notice humans, with

v2(u1) =
⎧
⎨

⎩

0.5, u1 < 0.5
−4u1 + 2.5, 0.5 ≤ u1 ≤ 0.6

0.1, u1 > 0.6.
(10)

Example 7 We prescribe uinit1 (x) = χ[0.6,0.7](x) and uinit2 (x) = 0.1χ[0.4,0.8] to illus-
trate the traffic flow and “traffic awareness": the robots start ahead, alongside and
behind human pedestrians on the 1d network; see Fig. 6.

We see that u1 feature a rarefaction typical in LWR traffic flow models [17]. Also,
the robots follow linear advection away from pedestrians, but develop two traveling
waves for robots ahead and behind the humans according to (10). The snapshot at
t = 0.75 shows that u2|[0.5,0.65] matches linear advection, but when u1 > 0.6, the
robots slow down to v2(u1) = 0.1 causing a large spike.

Example 8 Now we consider the campus network with Ω P shown in Fig. 1c. We
simulate mixed dimensional network traffic on Ω P with the occasional traffic off
Ω P . We design trajectories of the species as shown in Fig. 7, and we simulate the
transport as shown in Fig. 8. In one variant, (a) humans stay on pavement. In another,
(b) humans venture off the path to avoid congestion.

Fig. 6 Illustration for Example 7: plots at at time t = 0.75 including grid refinement for u2 with
h2,1 = 5 · 10−3, h2,2 = 1.25 · 10−3, and h2,3 = 3.125 · 10−4 with finest grid hi, f = 7.8125 · 10−5

for i = 1, 2
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(v3(x)) (v2(x)) (v1(x),(a)) (v1(x),(b))

Fig. 7 Trajectories vm in Example 8 for u3 (bicycles), u2 (robots) and u1 (humans) on a paved
paths and b on the grass due to congestion

Fig. 8 Results of Example 8
at time t = 0.5 show the
average human concentration
u1 in case (a). In case (b)
due to congestion by u2 and
u3 the pedestrians alter v1 off
the network Ω P to avoid the
bottleneck (a) (b)

Summary: The computational framework of overlapping continua allows to sim-
ulate complex traffic patterns involving species of very different trajectories. More
work is needed to identify the data for such simulations and applications to the design
of campus network and of, e.g., robot software.

6 Summary and Outlook

Our implementation for each of the applications H, RS, and T is efficient and based
on a common robust CCFD frameworkwhich allows for approximate enforcement of
Dirichlet conditions and easy accounting for complex domains. The model approxi-
mations and enhancements were easily introduced; we also identified critical model
components and parameters. For H, it is the cb coefficient, and its role in the vaso-
constriction. For RS, it is by far also the exchange coefficient crs . For T, it is the
local velocity, the mask K , and the interaction models between the species. These
elements should be validated with data.

However, parameter identification based on experimental or imaging data remains
quite challenging for coupled systems, where identifying proper relationships and
models can be difficult. The prototype models we presented serve as a useful first
step to identify the main features of dynamics.
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Abstract We consider new finite volume methods of staggered type for incom-
pressible Navier–Stokes equations. These methods, called PolyMAC, generalize the
MAC scheme to general meshes. We briefly describe the different versions of Poly-
MAC and present guidelines for an efficient use. To do so, we define a benchmark
of 3D Navier–Stokes problems based on the successive benchmarks established dur-
ing previous FVCA conferences. Finally, we identify weaknesses of each PolyMAC
version and suggest ways to improve the current performances.

Keywords Finite volumes · General meshes · Staggered scheme · Navier–Stokes

1 Introduction

Weare interested in the discretisation of the incompressibleNavier–Stokes equations:
find �u and p such that

∂t �u + (�u · ∇)�u − νΔ�u + ∇ p = �f in Ω ,

∇ · �u = 0 in Ω ,
(1)

where �u is the velocity, p the pressure and ν > 0 is the viscosity. In this instance,
the domain Ω ⊂ R

3 is the unit cube in 3D.
In this paper, we compare three versions of PolyMAC, a Finite Volume (FV)

discretisation scheme which generalizes the MAC [9] scheme to general meshes.
Indeed, MAC-like schemes yield robust discretisations of fluid dynamics equations
and prevent the emergence of spurious modes, but are restricted to Cartesian meshes.
The comparison is made on a benchmark of Navier–Stokes problems defined on
variousmeshes introducedduring the different FVCAconferences [4, 7].Weestimate
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the order of convergence of each PolyMAC method and the density of the resulting
linear system and we propose guidelines for the use of PolyMAC. Note that all three
schemes are implemented on the TRUST platform [5].

The remaining of this paper is organised as follows. In Sect. 2, we describe briefly
the different versions of PolyMAC and how they differ. Section3 presents the differ-
ent meshes and the equations approximated in this paper, while the numerical results
are detailed in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 PolyMAC

The key idea behind the MAC scheme, namely the staggering of the velocity and
pressure unknowns, is transposed in the PolyMAC context by selecting as unknowns
the normal component of the velocity at the faces and the pressure at the center of
the cells. Depending on the version of PolyMAC considered, auxiliary unknowns
are introduced, but the staggering of the main unknowns allows to keep the benefits
of the MAC method.

2.1 PolyMAC I

PolyMAC I is a mimetic FV discretisation very similar to the one analysed in [3],
except for the discretisation of the convection term, which we summarise here. First,
we use the incompressibility constraint to rewrite the convection term as ∇ · (�u ⊗ �u)

and we introduce the vorticity �ω = ∇ × �u to rewrite the diffusion term as ∇ × �ω.
Equation (1) becomes:

∂t �u + ∇ · (�u ⊗ �u) + ν∇ × �ω + ∇ p = �f in Ω ,

∇ × �u − �ω = 0 in Ω ,

∇ · �u = 0 in Ω .

(2)

To discretize the system (2), we use the velocity at the faces, the vorticity on the
edges and the pressure at the cells. First, from the velocity at the faces, we build
a velocity at the elements, which we then convect with itself in order to build an
approximation of the convection operator ∇ · (�u ⊗ �u) at the elements. This operator
is then expressed in terms of the velocities at the faces and gives C(ut

f ) in a matrix
form. Note that the convection operator can be chosen to be upwind or centered.

The resulting linear system can then be written as

⎛
⎝

Mu
Δt + C(ut

f ) R G
RT − 1

ν
Mωωω 0

GT 0 0

⎞
⎠

⎛
⎝

ut+Δt
f

νωωωt+Δt
e

pt+Δt
c

⎞
⎠ =

⎛
⎝

Mu
Δt u

t
f

0
0

⎞
⎠ , (3)
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where the unknowns are written in bold letters with a subscript indicating where
the unknown is discretized ( f at the faces, e on the edges and c at the cells) and
with a superscript indicating the time step. Note that without the convection term
C(ut

f ), the system matrix is symmetric. Furthermore, the Navier–Stokes equations
are linearised at each time step by approximating the convective flow by the velocity
solution at the previous time step, here ut

f .

2.2 PolyMAC II

Unfortunately, PolyMAC I presents a saddle point in the linear system (3). As a
consequence, one must use a direct solver at each time step since the system matrix
evolves during the simulation. PolyMAC I is therefore very costly in terms ofmemory
and computational time. A second version of PolyMAC was then designed, with the
aim of a simpler matrix in the top left block.

This was achieved by discretising Eq. (1) with the help of an auxiliary variable,
here, the velocity vector at the cells. The momentum equation is first discretized on
the auxiliary variables, i.e. at the cells and yields the second line in the matrix. Then,
the convective and diffusive terms are interpolated from the cells to the faces and
injected in the corresponding equations, which gives the first line of the matrix. The
linear system takes the form

⎛
⎝

I
Δt C f (ut

e) + D f (ut
e) GMPFA

f

0 I
Δt + Cc(ut

e) + Dc(ut
e) G

MPFA
c

GT 0 0

⎞
⎠

⎛
⎝
ut+Δt

f

ut+Δt
c

pt+Δt
c

⎞
⎠ =

⎛
⎝

I
Δt u

t
f

I
Δt u

t
c

0

⎞
⎠ , (4)

and the objective is reached, as the top left block is now proportional to the identity:
a SIMPLE-like method can be used to solve the saddle-point problem.1

For the equation at the cells, the convective term is computed as for PolyMAC I.
For the diffusive term, the MPFA-O scheme [1] is used to discretize the gradient of
the velocity, of which we take the discrete divergence. The gradient of the pressure
is also discretized by a MPFA-O scheme.

Note that PolyMAC II is briefly described in [8].

2.3 PolyMAC III

PolyMAC II still presents difficulties: on some meshes, such as tetrahedral meshes,
the MPFA-O scheme requires a large stencil and the numerical cost of the method
becomes prohibitive. So, a third version of PolyMAC, PolyMAC III, was designed,

1 Note that in the numerical experiments of this paper, we still use a direct solver, as the main goal
is to compare the accuracy of each scheme.



152 P.-L. Bacq et al.

which keeps a simpler top left block than PolyMAC I, while keeping the numerical
cost under control.

PolyMAC III starts, as PolyMAC I, from the formulation of Eq. (2). The diffusive
term is again computed via the vorticity. Here, the pressure gradient is computed
by a mimetic method called HFV [6], which introduces auxiliary variables at the
faces, in this instance, the pressure at the faces p f . The convection is computed as
for PolyMAC I. The system matrix then has the following form

⎛
⎜⎜⎝

I
Δt + C(ut

f ) R GHFV
c GHFV

c

R̃ − 1
ν
Mωωω 0 0

GT 0 0 0
0 0 Pc Pf

⎞
⎟⎟⎠

⎛
⎜⎜⎝
ut+Δt

f

ωωωt+Δt
e

pt+Δt
c

pt+Δt
f

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

I
Δt u

t
f

0
0
0

⎞
⎟⎟⎠ (5)

where the last line in the matrix and the blocks Pi with i ∈ {c, f } are defined by a
continuity relation on the pressure gradient across the faces.

3 Test Problems

The different versions of PolyMAC are compared with the help of a series of 3D
meshes defined in benchmarks established during previous cycles of the FVCA con-
ferences [4, 7]. Thosemeshes are listed in Table1 and some of them are illustrated on
Fig. 1. One of the objective of this work is to characterize the convergence properties
of PolyMAC and so, for each mesh, we consider several sizes.

Table 1 Numerical results obtained for the different problems with all three PolyMAC methods:
from left to right, the order of convergence in velocity, the order of convergence in pressure and the
sparsity ratio of the linear system

PolyMAC Order convergence Sparsity ratio

Velocity Pressure

I II III I II III I II III

Hexa 1.08 1.11 1.11 1.20 1.20 1.20 0.06 0.08 0.04

Locally
Refined (3D)

1.53 1.71 1.53 1.26 1.26 1.26 0.08 0.07 0.04

Kershaw (3D) 2.67 0.63 0.78 3.45 0.72 0.75 0.01 0.01 0.00

CheckerBoard 0.84 1.23 0.84 0.96 1.26 1.14 0.08 0.06 0.04

Voronoi 0.36 1.02 0.90 −1.77 1.74 1.68 0.16 0.13 0.11

Tetrahedra 1.23 / 1.20 0.87 / 0.78 0.02 / 0.01

Random 1.05 / 1.05 0.72 / 0.90 0.05 / 0.03
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Fig. 1 Representation of some meshes from the benchmark

We consider Eq. (1) and theNavier–Stokes problemdescribed in [2]whichmodels
a rotating flow whose exact solution is given by

�u =
⎛
⎝
y − z
z − x
x − y

⎞
⎠

p = (x2 + y2 + z2) − xy − xz − yz − 1
4 ,

(6)

and the right-hand-side is computed with the exact solution. The viscosity is equal
to ν = 10−2 and the Reynolds is equal to 100. The numerical results are presented
in the next section.

4 Numerical Results

In this section, we compare the performances of the three PolyMAC schemes on the
problems described in Sect. 3. The discrete systems (3), (4) and (5) are solved with
a direct solver, here, a LU-factorisation.

First, we evaluate the accuracy of each scheme. To do so, we draw the error in
velocity and pressure with respect to the number of velocity and pressure elements
respectively. These results are shown on Fig. 2. For those results, we estimate the
orders of convergence for each scheme, as presented in Table1. Second, we consider
the sparsity of the linear systems resulting from each discretisation. To do so, we
compute the sparsity ratio of the linear matrix associated to each problem also in
Table1. This ratio is equal to the number of non-zero elements (nnz) divided by the
total number of elements in the matrix (n).

Looking at the velocity convergence on the left panel of Fig. 2, we observe that
all schemes behave very similarly on the Hexa mesh. This is due to the fact that all
schemes reduce to very similar discrete problems on such amesh. Otherwise, conclu-
sions are not so easily drawn. First, PolyMAC I seems more efficient on Kershaw
(3D)meshes. For theVoronoimesh, PolyMACIII seems themost accurate scheme,
while PolyMAC II works better on the CheckerBoard and Locally Refined
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Fig. 2 Convergence curves of the different PolyMAC versions on 3D meshes—left: velocity con-
vergence; right: pressure convergence. PolyMAC I is represented in blue, PolyMAC II in green
and PolyMAC III in red. The different meshes are represented by different symbols detailed in the
caption of each image. In black, we show different orders of convergence

(3D) meshes. On the other hand, PolyMAC I and PolyMAC III show similar perfor-
mance on the Tetrahedra and Random meshes, for which we could not get any
results with PolyMAC II because of memory restrictions.

However, the convergence orders in Table1 paint a clearer picture: for each mesh,
the highest order of convergence is highlighted in bold. We see clearly that for
all meshes where there were no memory problem—except for the Kershaw (3D)
meshes—PolyMAC II is the better choice.

Let us consider briefly the convergence in pressure, represented on the right panel
of Fig. 2 and the estimation of the order of convergence is represented in Table1.
The order of convergence is generally around 1.0.2 Moreover, the variation between
schemes seems to be less pronounced than in the velocity case. Globally, PolyMAC II
behaves more consistently than the other two versions, but the difference is small.

To get more insight into the relative complexity of each method as well as their
memory requirements, we finally computed the sparsity ratio of the resulting linear
systems. The latter is computed as the number of non-zero elements nnz divided by
the total number of elements available in the matrix n2 where n is the dimension
of the matrix (multiplied by 100 to express the sparsity ratio as a percentage). This
indicates how sparse the resulting matrix is. The sparser the matrix the lighter the
memory requirements and the more efficient the solving stage will be. Results are

2 Except for the PolyMAC I scheme on the Voronoi and Kershaw (3D) meshes. Note how-
ever that in the Kershaw (3D) case, we only have two data points and the value of the order of
convergence needs to be considered carefully.
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shown in the last three columns of Table1. The first obvious observation is that the
third scheme PolyMAC III yields the sparsest linear systems and will then have the
most cost-efficient solving step.

Regarding PolyMAC I and PolyMAC II schemes, the situation is a little bit more
complicated. On most cases, the density of the linear system is similar between
the two. On the Tetrahedra and Random meshes the sparsity of the matrix
explodes, which leads to too large memory requirements. This is due to the fact
that the PolyMAC II method uses a larger stencil to approximate the unknowns,
which leads to denser matrices on tetreahedra. However, for the Voronoi mesh,
PolyMAC I leads to much denser matrices.

Those conclusions are globally confirmed by numerical tests we did on 2Dmeshes
and which are not included in this paper to keep it short, but will be part of a future
paper. We observed two main differences with the conclusions drawn for the 3D
cases. On one hand, PolyMAC II was consistently the most accurate scheme with
the highest order of convergence, except on a 2D version of the Kershaw mesh. On
the other hand, PolyMAC II also showed significantly more sparsity than the other
two schemes on 2D cases.

5 Conclusions

In this paper, we investigate the properties of three different schemes developed by
theCEA to ultimatelymodelmultiphase compressible flows. The idea is to generalize
the MAC scheme to general meshes in a finite volume framework, hence the name
PolyMAC. We describe briefly how the three variants are built and we introduce the
test problems and the different meshes we use to evaluate their performances.

We observe that PolyMAC II is globally the most accurate scheme, but it may
suffer froma higher numerical cost due to a higher density of the linear systemmatrix.
This has caused the numerical cost to explode on the Tetrahedra and Random
meshes. Generally, we would not recommand to use PolyMAC II if the mesh is
made up of tetrahedra. Concerning, the two other schemes, except on Kershaw
(3D) mesh, where PolyMAC I is significantly better, PolyMAC I and PolyMAC III
present a similar accuracy. This can be related to the fact that both PolyMAC I and
PolyMAC III share the same diffusion scheme. PolyMAC I being numerically more
costly, one would prefer PolyMAC III. Indeed, this latter scheme provides good
results while being numerically viable.

Preliminary results have nonetheless shown that on complicated industrial meshes
with verydeformedcells, bothPolyMACII andPolyMACIII couldbeunstable,while
PolyMAC I stayed robust. For these problematic cases, the values of the velocity
diverged because of the convective term. There were no indication in the numerical
experiments reported here to anticipate such behaviour. This could motivate the
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inclusion of more realistic test cases in academic benchmarks. To conclude, we
recommend the use of PolyMAC III as default scheme and to switch to PolyMAC II
if one requires more accuracy. If both PolyMAC III and PolyMAC II fail, PolyMAC I
can offer a reliable alternative, even if it can be numerically expensive to solve the
resulting linear system.
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Finite Volume Approximations
for Non-linear Parabolic Problems
with Stochastic Forcing

Caroline Bauzet, Flore Nabet, Kerstin Schmitz, and Aleksandra Zimmermann

Abstract We propose a two-point flux approximation finite-volume scheme for a
stochastic non-linear parabolic equation with a multiplicative noise. The time dis-
cretization is implicit except for the stochastic noise term in order to be compatible
with stochastic integration in the sense of Itô. We show existence and uniqueness of
solutions to the scheme and the appropriate measurability for stochastic integration
follows from the uniqueness of approximate solutions.

Keywords Stochastic non-linear parabolic equation · Multiplicative Lipschitz
noise · Finite-volume method · Upwind scheme · Diffusion-convection equation ·
Variational approach

1 Introduction

LetΛ be a bounded, open, connected and polygonal set ofR
d with 1 ≤ d ≤ 3.More-

over let (Ω,A,P) be a probability space endowed with a right-continuous, complete
filtration (Ft )t≥0 and let (W (t))t≥0 be a standard, one-dimensional Brownian motion
with respect to (Ft )t≥0 on (Ω,A,P).
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For T > 0, we consider the following non-linear parabolic problem forced by a
multiplicative stochastic noise:

du − Δu dt + div
(
v f (u)

)
dt = g(u) dW (t) + β(u) dt, in Ω × (0, T ) × Λ;

u(0, .) = u0, in Ω × Λ;
∇u · n = 0, on Ω × (0, T ) × ∂Λ;

(1)

where div is the divergence operator with respect to the space variable and n denotes
the unit normal vector to ∂Λ outward to Λ. After setting L f , Lβ and Lg in R

∗+, we
assume the following hypotheses on the data:

H1: u0 ∈ L2(Ω; H 1(Λ)) is F0-measurable.
H2: f : R → R is nondecreasing, L f -Lipschitz continuous with f (0) = 0.
H3: g : R → R is a Lg-Lipschitz continuous function.
H4: β : R → R is Lβ-Lipschitz continuous with β(0) = 0.
H5: v ∈ C 1([0, T ] × Λ; R

d) such that div(v) = 0 in [0, T ] × Λ and v · n = 0 on
[0, T ] × ∂Λ.

Remark 1 Note that for recent results on viscous stochastic conservation laws in
dimension 1, we also refer to [4].

1.1 Concept of Solution

We will be interested in the concept of solution as defined below, which we will call
a variational solution:

Definition 1 A predictable stochastic process u is a variational solution to Problem
(1) if it belongs to

L2(Ω;C ([0, T ]; L2(Λ))) ∩ L2(Ω; L2(0, T ; H 1(Λ)))

and satisfies, for all t ∈ [0, T ], in L2(Λ), and P-a.s. in Ω

u(t) − u0 −
∫ t

0
Δu(s) ds +

∫ t

0
div

(
v(s, .) f (u(s))

)
ds

=
∫ t

0
g(u(s)) dW (s) +

∫ t

0
β(u(s)) ds.

Existence, uniqueness and regularity of this variational solution is well-known in
the literature, see, e.g., [2].
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1.2 Outline

In this contribution, we propose a finite-volume approximation scheme for the solu-
tion of (1) in the sense ofDefinition1.We show existence and uniqueness of solutions
to the scheme. In Sect. 2, we introduce the notation for our finite-volume framework.
In Sect. 3, we introduce our finite-volume scheme. The main result is contained in
Sect. 4.

2 Admissible Finite-Volume Meshes and Notations

In order to perform a finite-volume approximation of the variational solution of
Problem (1) on [0, T ] × Λ we need first of all to set a choice for the temporal and
spatial discretization. For the time-discretization, let N ∈ N

∗ be given. We define the
fixed time stepΔt = T

N and divide the interval [0, T ] in 0 = t0 < t1 < · · · < tN = T
equidistantly with tn = nΔt for all n ∈ {0, . . . , N }. For the space discretization,
although we use the two-dimensional vocabulary, e.g., polygonal, edge, etc., what
we present is also valid in space dimension 1 ≤ d ≤ 3. We refer to [1] for a more
general definition of finite-volume admissible meshes in dimension 1 ≤ d ≤ 3.

Definition 2 (Admissible finite-volume mesh) An admissible finite-volume mesh T
ofΛ (see Fig. 1) is given by a family of open polygonal and convex subsets K , called
control volumes of T , satisfying the following properties:

• Λ = ⋃
K∈T K .

• If K , L ∈ T with K 	= L then int K ∩ int L = ∅.
• If K , L ∈ T , with K 	= L then either the (d − 1)-dimensional Lebesgue measure
of K ∩ L is 0 or K ∩ L is the edge if d = 2 (or the face if d = 3), denoted by
σ = K |L , separating the control volumes K and L .

• To each control volume K ∈ T , we associate a point xK ∈ K (called the center of
K ) such that: If K , L ∈ T are two neighbouring control volumes the straight line
between the centers xK and xL is orthogonal to σ = K |L .
Once an admissible finite-volume mesh T ofΛ is fixed, we will use the following

notations.

Fig. 1 Notations of the
mesh T associated with
Λ ⊆ R

2

xK xL

σ =K|L

dK|L

nK,σ
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2.1 Notation

• h = size(T ) = sup{diam(K ) : K ∈ T }, the mesh size.
• dh ∈ N the number of control volumes K ∈ T with h = size(T ).
• Eint := {σ : σ � ∂Λ} is the set of interior edges (or faces) of the mesh T .
• For K ∈ T , EK is the set of edges (or faces) of K , EK ,int = EK ∩ Eint and mK is
the d-dimensional Lebesgue measure of K .

• For K ∈ T and σ ∈ EK , nK ,σ is the unit normal vector to σ outward to K .
• Let K , L ∈ T be two neighbouring control volumes. For σ = K |L ∈ Eint, let mσ

be the (d − 1)-dimensional Lebesgue measure of σ and dK |L the distance between
xK and xL .

• For any vector uh = (uK )K∈T ∈ R
dh , we define the L2-norm on Λ by

‖uh‖L2(Λ) =
(

∑

K∈T
mK |uK |2

) 1
2

.

In the sequel, we note |x | the euclidean norm of x ∈ R
d with d ≥ 1.

3 The Finite-Volume Scheme

Firstly, we define the vector u0
h = (u0

K )K∈T ∈ R
dh by the discretization of the initial

condition u0 of Problem (1) over each control volume:

u0
K := 1

mK

∫

K
u0(x) dx, ∀K ∈ T . (2)

The finite-volume scheme we propose reads, for this given initial F0-measurable
random vector u0

h ∈ R
dh : For any n ∈ {0, . . . , N − 1}, knowing un

h = (un
K )K∈T ∈

R
dh we search for un+1

h = (un+1
K )K∈T ∈ R

dh such that, for almost every ω ∈ Ω , the
vector un+1

h is solution to the following random equations

mK

Δt
(un+1

K − un
K ) +

∑

σ=K |L∈EK ,int

mσvn+1
K ,σ f (un+1

σ )

+
∑

σ=K |L∈EK ,int

mσ

dK |L
(un+1

K − un+1
L )

= mK

Δt
g(un

K )(W n+1 − W n) + mK β(un+1
K ), ∀K ∈ T ,

(3)

where, by denoting γ the (d − 1)-dimensional Lebesgue measure,
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vn+1
K ,σ = 1

Δtmσ

∫ tn+1

tn

∫

σ

v(t, x) · nK ,σ dγ(x)dt,

and un+1
σ denotes the upstream value at time tn+1 with respect to σ defined as follows:

If σ = K |L ∈ EK ,int is the interface between the control volumes K and L , un+1
σ is

equal to un+1
K if vn+1

K ,σ � 0 and to un+1
L if vn+1

K ,σ < 0. Note also that W n+1 − W n =
W (tn+1) − W (tn) for n ∈ {0, . . . , N − 1}.
Remark 2 Since div(v) = 0 in [0, T ] × Λ, for any n ∈ {0, · · · , N − 1} and K ∈ T
one has

∑
σ=K |L∈EK ,int

mσv
n+1
K ,σ = 0. Thus, using that vn+1

K ,σ = (vn+1
K ,σ )+ − (vn+1

K ,σ )−

(where, for r ∈ R, r+ := max{r, 0} and r− := −min{0, r}) an equivalent formu-
lation of the scheme (3) is given by

mK

Δt
(un+1

K − un
K ) +

∑

σ=K |L∈EK ,int

mσ(v
n+1
K ,σ )−

(
f (un+1

K ) − f (un+1
L )

)

+
∑

σ=K |L∈EK ,int

mσ

dK |L
(un+1

K − un+1
L )

= mK

Δt
g(un

K )
(
W n+1 − W n

) + mK β(un+1
K ), ∀K ∈ T .

(4)

4 Main Result

Proposition 1 (Existence of a discrete solution) Assume that hypotheses H1 to H5

hold. Let T be an admissible finite-volume mesh of Λ in the sense of Definition2 with
a mesh size h and N ∈ N

∗. Then, there exists a unique solution (un
h)1≤n≤N ∈ (Rdh )N

to Problem (3) associated with the initial vector u0
h defined by (2). Additionally, for

any n ∈ {0, . . . , N }, un
h is a Ftn -measurable random vector.

Proof We fix n ∈ {0, . . . , N − 1} and choose an arbitrary vector un
h = (un

K )K∈T ∈
R

dh . Firstly, we will show that there exists at least one random vector un+1
h =

(un+1
K )K∈T ∈ R

dh such that (4) holds true P-a.s in Ω . To this end, we define the
mapping Pn : R

dh → R
dh , Pn = (Pn

1 , . . . , Pn
dh

) such that for any i ∈ {1, . . . , dh}

Pn
i (wK1 , . . . , wKdh

) = mKi

Δt
wKi − mKi β(wKi )

+
∑

σ=Ki |K j ∈EKi ,int

mσ(v
n+1
Ki ,σ

)−( f (wKi ) − f (wK j ))

+
∑

σ=Ki |K j ∈EKi ,int

mσ

dKi |K j

(wKi − wK j ) − mKi

Δt
ξn

i
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where ξn
i := un

Ki
+ g(un

Ki
)(W n+1 − W n). Obviously, Pn is a continuous mapping.

Next, we show that there exists � > 0 such that for all wh = (wKi )1≤i≤dh ∈ R
dh such

that |wh| = �,

(Pn(wh), wh)Rdh :=
dh∑

i=1

Pn
i (wh)wKi ≥ 0.

In this case, from [3, Lemma 4.3] it follows that there exists at least one wh ∈ R
dh

such that |wh | ≤ � and Pn(wh) = 0. We have

dh∑

i=1

Pn
i (wh)wKi =

dh∑

i=1

mKi

Δt
w2

Ki
−

dh∑

i=1

mKi β(wKi )wKi −
dh∑

i=1

mKi

Δt
ξn

i wKi

+
dh∑

i=1

∑

σ=Ki |K j ∈EKi ,int

mσ(vn+1
Ki ,σ

)−( f (wKi ) − f (wK j ))wKi

+
dh∑

i=1

∑

σ=Ki |K j ∈EKi ,int

mσ

dKi |K j

(wKi − wK j )wKi

=: I1 + I2 + I3 + I4 + I5.

Since β is Lipschitz continuous, the term I2 satisfies

I2 ≥ −Lβ‖wh‖2L2(Λ). (5)

Moreover, by discrete partial integration,

I5 =
∑

σ=Ki |K j ∈EKi ,int

mσ

dKi |K j

|wKi − wK j |2 ≥ 0. (6)

Now, we focus on the term I4. Since f is Lipschitz continuous and nondecreasing,
thanks to [1, Lemma 18.5], for any r ∈ R, using the notation Φ(r) = ∫ r

0 f ′(s)s ds,
for any a, b ∈ R, one has

b( f (b) − f (a)) =
∫ b

a
(s f (s))′ds − (b − a) f (a) =

∫ b

a
Φ ′(s)ds +

∫ b

a
( f (s) − f (a))ds

≥ (Φ(b) − Φ(a)) + 1

2L f
( f (b) − f (a))2.

Thus, since div v = 0 in [0, T ] × Λ and vn+1
Ki ,σ

= −vn+1
K j ,σ

, we obtain
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I4 ≥
dh∑

i=1

∑

σ=Ki |K j ∈EKi ,int

mσ(vn+1
Ki ,σ

)−(Φ(wKi ) − Φ(wK j ))

=
dh∑

i=1

Φ(wKi )
∑

σ=Ki |K j ∈EKi ,int

mσ(v
n+1
Ki ,σ

) = 0.

(7)

For the term I3, since −ab ≥ − 1
2 (a

2 + b2) one has

I3 ≥ − 1

2Δt

(
‖wh‖2L2(Λ) + ‖ξn

h‖2L2(Λ)

)
. (8)

From (5), (6), (7) and (8) for some α > 0, choosing Δt ≤ 1
2(α+Lβ)

we now get

dh∑

i=1

Pn
i (wh)wKi ≥ 1

2Δt
‖wh‖2L2(Λ) − Lβ‖wh‖2L2(Λ) − 1

2Δt
‖ξn

h‖2L2(Λ)

≥ α(min
K∈T

mK )|wh|2 − 1

2Δt
‖ξn

h‖2L2(Λ).

(9)

Then, setting

� :=
√

1

2α(minK∈T mK )Δt
‖ξn

h‖L2(Λ) > 0

we get (Pn(wh), wh)Rdh ≥ 0 from (9) for all wh ∈ R
dh such that |wh| = �. Hence,

there exists at least one element wh such that Pn(wh) = 0. Thus, un+1
h := wh ∈ R

dh

is solution to the numerical scheme (4).
Next, we will prove the uniqueness of the solution. Therefore, we assume that

there existwh = (wKi )1≤i≤dh ∈ R
dh and zh = (zKi )1≤i≤dh ∈ R

dh satisfyingPn(wh) =
Pn(zh) = 0. Taking Pn

i (wh) − Pn
i (zh), and using the initial formulation of the

scheme (3), for any i = 1, . . . , dh we obtain

mKi

Δt
(wKi − zKi ) − mKi (β(wKi ) − β(zKi ))

+
∑

σ=Ki |K j ∈EKi ,int

mσv
n+1
Ki ,σ

( f (wσ) − f (zσ))

+
∑

σ=Ki |K j ∈EKi ,int

mσ

dKi |K j

(
(wKi − wK j ) − (zKi − zK j )

) = 0,

where wσ and zσ are the upstream value with respect to σ.
Now, we adjust the method developed in the proof of [1, Proposition 26.1]: Using

the monotonicity of f , the fact that vn+1
Ki ,σ

= (vn+1
Ki ,σ

)+ − (vn+1
Ki ,σ

)− and taking the abso-
lute value, one has
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mKi

Δt
|wKi − zKi | +

∑

σ=Ki |K j ∈EKi ,int

mσ

dKi |K j

|wKi − zKi |

+
∑

σ=Ki |K j ∈EKi ,int

mσ(vn+1
Ki ,σ

)+| f (wKi ) − f (zKi )|

≤mKi |β(wKi ) − β(zKi )| +
∑

σ=Ki |K j ∈EKi ,int

mσ

dKi |K j

|wK j − zK j |

+
∑

σ=Ki |K j ∈EKi ,int

mσ(vn+1
Ki ,σ

)−| f (wK j ) − f (zK j )|.

(10)

For η > 0, x ∈ R
d we define ϕ(x) = exp(−η|x |) and for Ki ∈ T , i = 1, . . . , dh let

ϕKi := 1

mKi

∫

Ki

ϕ(x) dx .

Multiplying (10) byϕKi , taking the sum over i = 1, . . . , dh and rearranging the sums
on the right-hand side by fixing j and varying over i we obtain

dh∑

i=1

mKi

Δt
ϕKi |wKi − zKi | +

dh∑

i=1

ϕKi

∑

σ=Ki |K j ∈EKi ,int

mσ

dKi |K j

|wKi − zKi |

+
dh∑

i=1

ϕKi

∑

σ=Ki |K j ∈EKi ,int

mσ(v
n+1
Ki ,σ

)+| f (wKi ) − f (zKi )| ≤ I1 + I2 + I3

(11)

where

I2 ≤
dh∑

i=1

|wKi − zKi |
∑

σ=Ki |K j ∈EKi ,int

mσ

dKi |K j

|ϕKi − ϕK j |

+
dh∑

i=1

|wKi − zKi |
∑

σ=Ki |K j ∈EKi ,int

mσ

dKi |K j

ϕKi

(12)

and similarly, since (vn+1
K j ,σ

)− = (−vn+1
Ki ,σ

)− = (vn+1
Ki ,σ

)+ for σ = Ki |K j , using the Lip-
schitz continuity of f

I3 ≤
dh∑

i=1

L f |wKi − zKi |
∑

σ=Ki |K j ∈EKi ,int

mσ(v
n+1
K j ,σ

)−|ϕKi − ϕK j |

+
dh∑

i=1

| f (wKi ) − f (zKi )|
∑

σ=Ki |K j ∈EKi ,int

mσ(v
n+1
Ki ,σ

)+ϕKi .

(13)
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Now, plugging (12) and (13) into (11) and using the Lipschitz continuity of β we
obtain for all i = 1, . . . , dh

dh∑

i=1

ai |wKi − zKi | ≤
dh∑

i=1

bi |wKi − zKi | (14)

with

ai := mKi

(
1

Δt
− Lβ

)
ϕKi

bi :=
∑

σ=Ki |K j ∈EKi ,int

(
mσ

dKi |K j

+ mσ(vn+1
K j ,σ

)−
)

|ϕKi − ϕK j |.

Now, taking Δt ≤ 1
2Lβ

using the same arguments as in the proof of [1, Proposition
26.1], wemay choose η > 0 small enough such that ai > bi for all i = 1, . . . dh . Thus
wKi = zKi then follows from (14) for all i = 1, . . . , dh . Since the initial vector u0

h is
given, the existence of a unique solution (un

h)1≤n≤N ∈ R
dh follows by iteration. It is

left to prove that un
h is aFtn -measurable random vector for all n = 1, . . . , N .We have

already shown that for any given ξh ∈ R
dh there exists a unique wh = (wKi )1≤i≤dh ∈

R
dh such that Q(wh) = ξh where Q : R

dh → R
dh , Q(wh) = (Q1, . . . , Qdh )(wh) is

defined by Qi (wh) = Pi (wh) − mKi
Δt ξn

i for all i = 1, . . . , dh . Thus, un+1
h = Q−1(ξn

h )

P-a.s. in Ω , where ξn
h = (ξn

1 , . . . , ξ
n
dh

). Since Q−1 is continuous, if ξn
h is Ftn+1 -

measurable the same holds true for un+1
h . Indeed, let (ζk)k ⊂ R

dh be a sequence
such that ζk → ζ for some ζ ∈ R

dh for k → ∞. Then, for wk := Q−1(ζk) from (9)
and from the theorem of Bolzano-Weierstrass it follows that there exists w ∈ R

dh

such that, passing to an unlabelled subsequence if necessary, wk → w for k → ∞.
This strong convergence is enough to pass to the limit in Q(wk), and therefore
Q(w) = ζ. Thanks to uniqueness, we get convergence of the whole sequence (wk)k ,
hence limk→∞ Q−1(ζk) = Q−1(ζ) and Q−1 is continuous. �
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A New Analysis for a Super-Convergence
Result in the Divergence Norm
for Lowest Order Raviart–Thomas
Mixed Finite Elements Combined with
the Crank–Nicolson Method Applied
to One Dimensional Parabolic Equations

Fayssal Benkhaldoun and Abdallah Bradji

Abstract We consider the IRT0-MFEs (lowest order Raviart–Thomas mixed finite
elements) combined with the Crank–Nicolson method applied to parabolic equa-
tions in one dimensional space. We first justify the super-convergence of “velocity”
p = −u′ in H 1-norm when using IRT0-MFEs applied to one dimensional elliptic
equations. We subsequently extend the results to IRT0-MFEs as discretization in
space and Crank–Nicolson method applied to the one dimensional non-stationary
heat equation. More precise, we state and prove the super-convergence of “velocity”
p(t) = −ux (t) in the L2(H 1)-norm. The super-convergence result of IRT0-MFEs
combined with the Crank–Nicolson method is obtained thanks to a novel discrete a
priori estimate. This work is a continuation of the two papers [2, 3] which dealt with
the convergence in the divergence norm ofMFEMs applied to parabolic equations. It
is also an initiation of a future work addressing the analysis of the super-convergence
in the divergence norm of fully discrete MFE schemes applied to multi-dimensional
parabolic equations.

Keywords Parabolic equations · Super-convergence in the divergence norm ·
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1 Motivation and Aim of This Note

Let us consider the one dimensional non-stationary heat equation, as a model for one
dimensional parabolic equations

ut (x, t) − uxx (x, t) = f (x, t), (x, t) ∈ I × (0, T ), (1)

where I = (0, 1), T > 0, and f is a given function defined on I × (0, T ). This equa-
tion is equipped with an initial condition given by:

u(x, 0) = u0(x), x ∈ I, (2)

where u0 is a given function defined on I, and the homogeneous Dirichlet boundary
conditions

u(0, t) = u(1, t) = 0, t ∈ (0, T ). (3)

As a “formal” mixed formulation for (1)–(3) is (see for instance [7, p. 53]), for each
t ∈ (0, T ), find (p(t), u(t)) ∈ Hdiv(I) × L2(I) such that, for all (ϕ,ψ) ∈ L2(I) ×
Hdiv(I)

(ut (t),ϕ)L2(I) + (ϕ, div p(t))L2(I) = (ϕ, f (t))L2(I) , (4)

(ψ, p(t))L2(I) = (divψ, u(t))L2(I) , (5)

and
u(0) = u0. (6)

The space Hdiv(I) in the case of one dimension is given by the Sobolev space
Hdiv(I) = H 1(I). The mesh points of I = (0, 1) are denoted by 0 = x0 < x1 · · · <

xM+1 = 1, with M ∈ IN \ {0}, and the constant step is given by h = xi+1 − xi =
1/(M + 1). We consider the sub-intervals Ii = (xi , xi+1), for i ∈ �0, M�. The dis-
cretization of the spaces Hdiv(I) and L2(I) is performed using the IRT0-MFEs (see
[8, Sect. 7.2.2, pp. 235–236]):

V div
h = {v ∈ Hdiv(I) : v|Ii ∈ D0, ∀i ∈ �0, M�} (7)

and
Wh = {u ∈ L2(I) : u|Ii ∈ P0, ∀i ∈ �0, M�}, (8)

where P0 is the space of constant functions and

D0 = P0 ⊕ xP0.
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The space V div
h (resp. Wh) can be defined as the set of continuous functions (resp.

functions of L2(I)) which are linear (resp. constant) over each Ii , see [8, Proposition
3.2.1, p. 75]. The basis of V div

h is the set of usual piece-wise linear shape functions.
We shall use the following interpolation operators over the spaces V div

h and Wh ,
see [9]:

• The usual linear interpolation operator Πh over V div
h .

• The interpolation operator Jh over Wh given by Jhu(x) = Ji , for x ∈ Ii with Ji is
given by the mean value over Ii (see [9, p. 2])

Ji = 1

h

∫
Ii

u(x)dx. (9)

This gives the property
∫ 1
0 (u − Jhu) (x)dx = 0.

The discretization in time is performed using a constant time step k = T/(N + 1),
where N ∈ IN�. We shall denote tn = nk, for n ∈ �0, N + 1�. We need to use the
discrete temporal derivative operator ∂1 given by ∂1vn = (vn − vn−1)/k. We will
use the notation ∂0vn = vn and we will denote by vn− 1

2 the arithmetic mean value
vn− 1

2 = (vn + vn−1)/2.
The letter C in this note is a positive constant independent of h and k.
In order that the scheme we shall consider be meaningful, we assume that f ∈

C([0, T ]; L2(I)) and u0 ∈ H 2(I). We are interested in this work with the following
second order time accurate MFE scheme (based on the use of the Crank–Nicolson
method) introduced in [2]: Find (pn

h , un
h) ∈ V div

h × Wh such that:

• For any n ∈ �0, N� and for all ϕ ∈ Wh :

(
∂1un+1

h ,ϕ
)

L2(I) +
((

p
n+ 1

2
h

)
x
,ϕ

)
L2(I)

=
(

f (tn+ 1
2
),ϕ

)
L2(I)

, (10)

• For any n ∈ �0, N + 1�:

(
pn

h ,ψ
)

L2(I) = (
un

h,ψx
)

L2(I) , ∀ψ ∈ V div
h , (11)

where
p0

h = −Πh(u
0)x. (12)

Using some slight modifications on the proof of [2, (93), p. 96], we get:

N
max
n=0

‖ux (tn+ 1
2
) + p

n+ 1
2

h ‖H 1(I) ≤ C
(
h + k2

)
. (13)
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The aim of this contribution is bi-fold:

• We improve the order in space (which is only h) in (13) to order h2 by comparing

the discrete solution p
n+ 1

2
h with the linear interpolation Πh of p = −ux, i.e. that is

a super-convergence for the MFE scheme (10)–(12) (see [9]).
• Prove the order two in space stated in the previous item in the divergence norm (in
space), i.e. H 1-norm. More precise, we shall prove this super-convergence result
in L2(H 1)–norm.

Indeed, to the best of our knowledge, we are not aware of existing results which state
these super- convergence results for parabolic equations in the divergence norm in
space. We find the result of [7] in which a super-convergence result is obtained for a
first order time accurate RT0-rectangular scheme but the analysis is performed only
in L2–norm in space.

As stated in the abstract, this note is an extension to our previous works [2, 3]
which dealt with the analysis of the convergence of respectively second order time
accurate and first order time accurate MFE schemes for parabolic equation in the
divergence norm for velocity. In fact, as mentioned in our previous works [2–4], in
contrast to elliptic equations, there is a lack of literature dealing with the convergence
of fully discrete MFEMs in the divergence norm for velocity p = −∇u of parabolic
equations, see [7].

2 Super-Convergence of MFE Applied to Elliptic Equations

Before we state our main contribution, i.e. super-convergence of MFEs applied to
parabolic equation, let us first highlight the situation for elliptic equations. To the
best our knowledge, the results of this section are not stated explicitly in the existing
literature but they can be deduced from some known results in MFEMs, e.g. [8,
Theorem 7.4.1, p. 249]. Let us consider the following second order elliptic equation
in 1D:

− ωxx(x) = F(x), x ∈ I = (0, 1), (14)

with ω(0) = ω(1) = 0 and F ∈ L2(I).
The mixed formulation of the problem (14) is given by: Find (p,ω) ∈ H 1(I) ×

L2(I) such that, for all (ϕ,ψ) ∈ L2(I) × H 1(I)

(px,ϕ)L2(I) = (F,ϕ)L2(I) and (p,ψ)L2(I) = (ω,ψx)L2(I) . (15)

The MFE scheme for the problem (14) is: Find (ph,ωh) ∈ V div
h × Wh such that, for

all (ϕ,ψ) ∈ Wh × V div
h

(
(ph)x ,ϕ

)
L2(I) = (F,ϕ)L2(I) and (ph,ψ)L2(I) = (ωh,ψx)L2(I) . (16)
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Using the error estimate [8, (7.2.26), p. 237] yields the following first order esti-
mate for the MFE scheme (16)

‖ph − p‖1,I + ‖ωh − ω‖L2(I) ≤ Ch. (17)

The error estimate (17) is optimal and the comparison was performed with respect
to p and ω. However, we shall justify, see (23) below, that the approximate solution
(ph,ωh) is closer to some suitable interpolation of (p,ω) than the predicted by (17).
We refer to [6] and references therein for more details on the super-convergence
phenomenon and their uses.

From (15)–(16), we deduce that

a(μ, v) − b(v, η) = l(v), ∀v ∈ V div
h and b(μ, ν) = σ(ν), ∀ν ∈ Wh . (18)

where
(μ, η) = (ph − Πh p,ωh − Jhω)

a(μ, v) = (μ, v)L2(I) , b(v, η) = (η, vx)L2(I) ,

l(v) = (p − Πh p, v)L2(I) − (ω − Jhω, vx)L2(I) , ∀v ∈ V div
h ,

and σ(ν) = (
(p − Πh p)x , ν

)
L2(I), for all ν ∈ Wh . Applying Theorem [8, Theorem

7.4.1, p. 249] on (18) yields

‖ph − Πh p‖1,I + ‖ωh − Jhω‖L2(I) ≤ C (‖l‖X ′ + ‖σ‖M ′) , (19)

where (X, M) = (V div
h , Wh).

Let us now estimate ‖l‖X ′ and ‖σ‖M ′ which are involved in (19):

• Estimate of ‖l‖X ′ . Using the fact that vx is constant on each Ii and the definition
(9)

l(v) = (p − Πh p, v)L2(I) −
M∑

i=0

vx

∫ xi+1

xi

(ω − Jhω) (x)dx

= (p − Πh p, v)L2(I) . (20)

Gathering this with the known L2-estimate of the interpolation error gives |l(v)| ≤
Ch2|p|2,I‖v‖1,I. This implies that

‖l‖X ′ ≤ Ch2|p|2,I. (21)

• Estimate of ‖σ‖M ′ . Using the fact that ν ∈ Wh is constant on each Ii
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σ(ν) =
M∑

i=0

ν

∫ xi+1

xi

(p − Πh p)x (x)dx =
M∑

i=0

ν (p − Πh p) |xi+1
xi

= 0. (22)

Gathering (19), (21), and (22) yields the following Super-convergence result

‖ph − Πh p‖1,I + ‖ωh − Jhω‖L2(I) ≤ Ch2. (23)

3 Statement of the Main Results: Super-Convergence
of MFE, in the Divergence Norm, for (1)–(3)

Theorem 1 (New error estimate for the MFE scheme (10)–(12)) Let I = (0, 1).
Assume that the solution of (1)–(3) satisfies u ∈ C3([0, T ]; H 3(I)). Let us consider
the mesh points of I: 0 = x0 < x1 · · · < xM+1 = 1, where M ∈ IN�, with a constant
step h = 1/(M + 1). Let Ii be the the sub-intervals Ii = (xi , xi+1). Let k = T/(N +
1), where N ∈ IN�. We define tn = nk, for n ∈ �0, N + 1�. Let V div

h ⊂ Hdiv(I) =
H 1(I) and Wh ⊂ L2(I) be the two lowest order Raviart–Thomas finite element spaces
given respectively by (7) and (8). Let Πh be the usual linear interpolation over V div

h
and Jh be the interpolation over Wh given by the value of (9) on the sub-interval Ii .

Then, there exists a unique solution
(
(pn

h , un
h)

)N+1
n=0 ∈ (

V div
h × Wh

)N+2
for the MFE

scheme (10)–(12) and the following L2(Hdiv(I))–error estimate holds:

(
N∑

n=0

k
∥∥∥Πhux (tn+ 1

2
) + p

n+ 1
2

h

∥∥∥2

1,I

) 1
2

≤ C(h + k)2. (24)

To prove Theorem1, we need to use the following a priori estimate which we set
as theorem for its own importance:

Theorem 2 (Anewgeneric discretewell-posedness result)Under the same hypothe-

ses of Theorem1, let

((
ξn

h

)N+1
n=0 ,

(
ξ

n
h

)N+1

n=0

)
∈ (

V div
h

)N+2 × W N+2
h be satisfied:

• For any n ∈ �0, N�, for all ϕ ∈ Wh:

(
∂1ξ

n+1
h ,ϕ

)
L2(I)

+
((

ξ
n+ 1

2
h

)
x
,ϕ

)
L2(I)

= σn+1(ϕ), (25)

• For any n ∈ �0, N + 1�, for all ψ ∈ V div
h :

(
ξn

h ,ψ
)

L2(I) −
(
ξ

n
,ψx

)
L2(I)

= ln(ψ), (26)

where σn+1 ∈ M ′ (resp. ln ∈ X ′), for all n ∈ �0, N� (resp. for all n ∈ �0, N + 1�)
with (X, M) = (V div

h , Wh).
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Then, the following L2(Hdiv(I))–estimate holds:

(
N∑

n=0

k‖ξn+ 1
2

h ‖21,I
) 1

2

≤ C
(
L2 + Σ2 + ‖ξ0h‖2L2(I)

)
, (27)

where we have denoted Σ = maxN
n=0 ‖σn+1‖M ′ and L = maxN

n=0 ‖∂1ln+1‖X ′ .

Proof The proof of Theorem2 uses the techniques of the proof of [2, (23), p. 89].
Indeed, (27) generalizes a part in the estimate [2, (23), p. 89]. We will detail this in
the future paper [1]. �

3.1 Sketch of Proof of Theorem1

Taking t = tn+ 1
2
in (1) and multiplying both sides by ϕ ∈ L2(I) yields (recall that

p = −ux) (
∂1ξ

n+1
h ,ϕ

)
L2(I)

+
((

ξ
n+ 1

2
h

)
x
,ϕ

)
L2(I)

= σn+1(ϕ), (28)

where (ξ
n+1

, ξn
h ) = (Jhu(tn+1) − un+1

h ,Πh p(tn) − pn
h) ∈ Wh × V div

h , and, using rea-
soning similar to those used in (20) and (22)

σn+1(ϕ) =
(
∂1u(tn+1) − ut (tn+ 1

2
),ϕ

)
L2(I)

. (29)

On the other hand, multiplying p(tn) = −ux(tn) by ψ ∈ V div
h , using an integration

by parts, and using again reasoning similar to that used in (20) yield

(
ξn

h ,ψ
)

L2(Ω)d −
(
ξ

n
,ψx

)
L2(I)

= ln(ψ), (30)

where ln(ψ) = ((Πh p − p) (tn),ψ)L2(I). Using a Taylor expansion and the L2-
estimate of the interpolation error yields

|σn+1(ϕ)| ≤ Ck2‖ϕ‖L2(I) and |∂1ln+1(ψ)| ≤ Ch2‖ψ‖1,I. (31)

Applying now the a priori estimate (27) on (28) and (30) and using estimates (31)
together with the fact that ξ0h = 0 (stems from the initial condition (2)) yields the
desired estimate (24). This completes the proof of Theorem1. �

Remark 1 (An extension to 2D) The present results can be extended, for instance,
to two dimensional parabolic equations ut (x, t) − Δu(x, t) = f (x, t), for (x, t) ∈
Ω × (0, T ), whereΩ ⊂ IR2 is a rectangular domainmeshedwith regular rectangular
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elements denoted by Th . Let us define the interpolation operatorΠh , see [9], for every
K ∈ Th and side σ of K

Πh p|K = ΠK p and
∫

σ

(p − ΠK p) · nK ,σds = 0,

where nK ,σ is the unit vector normal to σ outward to K . The MFE scheme is given
by [2, (8)–(10), p. 87]. Following the same steps of the proof of Theorem1 and using
a multi-dimensional version of Theorem2 together with [9, Lemma 2.1, p. 2], we
are able to prove the following super-convergence result:

(
N∑

n=0

k
∥∥∥Πh∇u(tn+ 1

2
) + p

n+ 1
2

h

∥∥∥2

Hdiv(Ω)

) 1
2

≤ C(h + k)2.

This result will be detailed in [1].

4 Some Computational Results

We consider the particular case of (1) with u(x, t) = (1/π2) sin(π2t) sin(πx)
and T = 1. To show the numerical order (see [3]), we assume an expres-
sion for the error in a given norm denoted by | · | of the form |eh,k | =
C · hr + D · ks . This yields s = log2

((|eh,k | − |eh,k/2|
)
/
(|eh,k/2| − |eh,k/4|

))
and r = log2

((|eh,k | − |eh/2,k |
)
/
(|eh/2,k | − |eh/4,k |

))
. We show numerically in

the following two tables that the order of the errors in the approximation of the
“velocity” p = −ux, is around 2 in space and time. This order holds not only
in the norm of L2(Hdiv(I)) but also in the L∞(Hdiv(I))–norm. This confirms the
error estimate (24). The results of these two tables are computed respectively when
k = 1/1000 and h = 1/500. The sentence “Convergence Order” is abbreviated
to “CO”. We will denote by EP the error in the approximation of p = −ux. The
notation “–” corresponds to values of k or h of which the numerical order can not
be computed using the above stated formulas.

h ‖E P‖L∞(Hdiv)

Error CO
1/20 7.559238e-04 –
1/40 1.869095e-04 –
1/80 4.467610e-05 2.0002046
1/160 9.484347e-06 2.014951

k ‖E P‖L∞(Hdiv)

Error CO
1/150 1.821064e-04 –
1/300 4.488298e-05 –
1/600 1.060886e-05 2.0013352
1/1200 2.169986e-06 2.0219972
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5 Conclusion and Perspectives

A new analysis for a super-convergence result in the divergence norm towards the
“velocity” is proved for lowest order Raviart–Thomas mixed finite elements com-
binedwith theCrank–Nicolsonmethod applied to the non-stationary one dimensional
heat equation. This work is an initiation to a full work addressing the analysis of the
super-convergence in the divergence norm for fully discrete MFE schemes applied
to multi-dimensional parabolic equations.
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Abstract In this work, we extend the results of [3] to some second order time accu-
rate GSs (Gradient Schemes) applied to a general TFDE (Time Fractional Diffusion
Equation) with a space-dependent conductivity. The time fractional derivative is
taken in the Caputo sense. The space discretization is performed using the general
framework of GDM (Gradient Discretization Method) which encompasses several
numerical methods. The approximation of the Caputo derivative is given by the
known L2 − 1σ-formula. We prove a new discrete L∞(H 1)-a priori estimate which,
in turn, helps establishing a new L∞(H 1)-error estimate for the stated second order
time accurate GSs. The GDM considered in this work is restricted to the cases of the
numerical methods in which ‖ΠD · ‖L2(Ω) is a norm, whereΠD is the reconstruction
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1 Problem to Be Solved and Aim of This Work

We consider the following TFDE with space-dependent conductivity:

∂α
t u(x, t) − ∇ · (κ∇u)(x, t) = f (x, t), (x, t) ∈ Ω × (0, T ), (1)

where Ω is an open polygonal bounded subset in IRd , T > 0, 0 < α < 1, and κ and
f are given functions defined respectively on Ω and Ω × (0, T ). The operator ∂α

t is
the Caputo derivative given by, for a function ϕ defined on (0, T )

∂α
t ϕ(t) = 1

Γ (1 − α)

∫ t

0
(t − s)−αϕ′(s)ds. (2)

Initial and homogeneous Dirichlet boundary conditions are given by, for a given
function u0 defined on Ω

u(x, 0) = u0(x), x ∈ Ω and u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ). (3)

For the sake of simplicity of the present note, we assume that the conductivity κ
satisfies κ ∈ C1(Ω) and for some given κ0 > 0

κ(x) > κ0 > 0, ∀x ∈ Ω. (4)

Fractional Partial Differential equations are important models because of their ability
to represent several phenomena in applications, see for instance [1] and references
therein. This work is an extension and improvement of our paper [3] in which a new
L∞(H 1)-error estimate for a first order time accurate cell-centered SUSHI scheme
for aTFDE is proved. In this paper, we extend the results of [3] to some second order
time accurate schemes applied to a more general TFDE using the general generic
framework GDM developed in [8]. One of the features of GDM is that the results
we obtain are valid for the numerous numerical methods which are encompassed
by GDM, e.g. SUSHI, Conforming FEMs (Finite Element Methods), Mixed FEMs,
and Multi-point Flux Approximation MPFA-O Scheme. This work also improves
some results of [4] in which an L2(H 1)-error estimate is proved for a first order time
accurate GS applied to a TFDE. In this note, we apply GDM combined with the
L2 − 1σ-formula, which is (at least) a second order approximation of the Caputo
derivative (2) (see (9)–(10)) and developed in [1] and references therein, to a TFDE
with a space dependent conductivity. We shall show a new L∞(H 1)-error estimate.
Such an error estimate is obtained through a new a priori estimate. The present results
improve, in addition to the results of [3, 4], the L∞(L2)-error estimate proved in [5]
for a second order time accurate SUSHI scheme applied to a TFDE.
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2 Space Discretization

Definition 1 (Approximate gradient discretization, cf. [8]) Let Ω be an open
domain of IRd , with d ∈ IN�. An approximate gradient discretization is given by
D = (XD,0,ΠD,∇D), where

1. The set of discrete unknowns XD,0 is a finite dimensional vector space on IR.
2.The linear mappingΠD : XD,0 → L2(Ω) is the reconstruction of the approximate
function.
3. The gradient reconstruction ∇D : XD,0 → L2(Ω)d is a linear mapping which
reconstructs, from an element of XD,0, a “gradient” (vector-valued function) over
Ω . The gradient reconstruction must be chosen such that ‖∇D · ‖L2(Ω)d is a norm on
XD,0. Let us define the bi-linear form 〈·, ·〉D,κ given by

〈u, v〉D,κ =
∫

Ω

κ(x)∇Du(x) · ∇Dv(x)dx, ∀(u, v) ∈ XD,0 × XD,0. (5)

In order to analyse the convergence of the gradient schemes, we consider the fol-
lowing parameters related to the meshD given in Definition1. These parameters are
given in [8, Definitions 2.2–2.5]:

1. The coercivity of the discretization is measured via the constant CD given by

CD = max
v∈XD,0\{0}

‖ΠDv‖L2(Ω)

‖∇Dv‖L2(Ω)d
.

This yields the Poincaré inequality: ‖ΠDv‖L2(Ω) ≤ CD‖∇Dv‖L2(Ω)d .
2. The consistency of the discretization is measured through the interpolation error
function SD : H 1

0 (Ω) → [0,+∞) defined by, for all ϕ ∈ H 1
0 (Ω)

SD(ϕ) = min
v∈XD,0

(
‖ΠDv − ϕ‖2L2(Ω) + ‖∇Dv − ∇ϕ‖2L2(Ω)d

) 1
2
.

3. The limit-conformity of the discretization is measured through the conformity
error function WD : Hdiv(Ω) → [0,+∞) defined by, for all ϕ ∈ Hdiv(Ω)

WD(ϕ) = max
u∈XD,0\{0}

1

‖∇Du‖L2(Ω)d

∣∣∣∣
∫

Ω

(∇Du(x) · ϕ(x) + ΠDu(x)divϕ(x)) dx

∣∣∣∣ .

Assumption 1 (Additional assumption on the gradient discretisation) We assume,
in addition, that the generic mesh D = (XD,0,ΠD,∇D) is chosen such that ‖ΠD ·
‖L2(Ω) is a norm on XD,0. This includes, for instance, Conforming FEMs, Cell-
Centered SUSHI, and MFEMs.

As an example of schemes for which ‖ΠD · ‖L2(Ω) is not a norm on XD,0, we quote
Hybrid Mimetic Mixed methods (see [8, Chap. 13]).
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3 Approximation of the Caputo Derivative and Properties

The second order approximation of the Caputo derivative (2) that we use here was
introduced in [1]. We refer also to [5] for some highlights and properties (which
we shall use in this work) of such an approximation. The time discretization is
performed with a constant time step k = T/(N + 1), where N ∈ IN�, and we shall
denote tn = nk, for n ∈ �0, N + 1�. We denote by ∂1 the discrete first time derivative
given by ∂1v j+1 = (v j+1 − v j )/k. We will also use the notation ∂0vn = vn .

Throughout this paper, the letter C stands for a positive real number independent
of the parameters of the space and time discretizations.

For the sake of completeness of this work, we recall the principles of the second
order approximation of the fractional order derivative (2). Such approximation is
performed thanks to the L2 − 1σ-formula. Let us consider the “fractionalmesh point”
tn+σ = (n + σ)k where σ = 1 − α/2. We define the two-point barycentric element
vn+σ by vn+σ = σvn+1 + (1 − σ)vn .

Using (2), the value ∂α
t u(tn+σ) is given by

1

Γ (1 − α)

⎛
⎝ n∑

j=1

∫ t j

t j−1

(tn+σ − s)−αus(s)ds +
∫ tn+σ

tn

(tn+σ − s)−αus(s)

⎞
⎠ ds. (6)

The L2 − 1σ-formula is based on the approximation of the terms of the sum (resp.
the last term) using quadratic interpolations (resp. a linear interpolation) in (6) of
∂α

t u(tn+σ). The stated quadratic interpolations interpolate the function u on each
sub-interval (t j−1, t j ) on the points t j−1, t j , t j+1. This yields, see [1, (27)–(28), p.
429]

∂α
t u(tn+σ) ≈ k1−α

Γ (2 − α)

n∑
j=0

cσ,n
n− j∂

1u(t j+1), (7)

where cσ,0
0 = σ1−α and for all n ≥ 1, cσ,n

0 = σ1−α + bσ
0 , c

σ,n
n = dn+σ−1,α − bσ

n−1, and

cσ,n
j = d j+σ−1,α + bσ

j − bσ
j−1, ∀ j ∈ �1, n − 1� (8)

with

bσ
l = 1

2 − α

(
(l + σ + 1)2−α − (l + σ)2−α

) − 1

2

(
(l + σ + 1)1−α + (l + σ)1−α

)

and ds,α = (s + 1)1−α − s1−α.
For any n ∈ �0, N� and ϕ ∈ C3([0, T ]), we define the error Tn

1(ϕ) by

T
n
1(ϕ) = ∂α

t ϕ(tn+σ) −
n∑

j=0

kλn+1
j ∂1ϕ(t j+1), (9)
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where (see [1, Lemma 2])

λn+1
j = cσ,n

n− j

kαΓ (2 − α)
and

∣∣Tn
1(ϕ)

∣∣ ≤ Ck3−α‖ϕ(3)‖C([0,T ]). (10)

The following properties hold for the approximation (9)–(10), see [1, 5]:

λn+1
j+1 > λn+1

j > λ0 = 1

2T αΓ (1 − α)
and

n∑
j=0

kλn+1
j ≤ T 1−α

Γ (2 − α)
(11)

and for all
(
β j

)N+1
j=0 ∈ IRN+2 and for all n ∈ �0, N�

(
σβn+1 + (1 − σ)βn

) n∑
j=0

λn+1
j (β j+1 − β j ) ≥ 1

2

n∑
j=0

λn+1
j

(
(β j+1)2 − (β j )2

)
.

(12)

4 Formulation of a GS and Statement of the Main Results

We have, thanks to a convenient Taylor expansion, for any function ϕ ∈ C2([0, T ])

σϕ(tn+1) + (1 − σ)ϕ(tn) = ϕ(tn+σ) + T
n
2(ϕ), (13)

where

|Tn
2(ϕ)| ≤ k2

2
‖ϕ‖C2([0,T ]). (14)

Replacing t with tn+σ in Eq. (1) and taking into account (9), (10), (13), and (14), we
suggest the following GS, for the problem (1)–(3), which is inspired by the finite
volume scheme given in [5].

Definition 2 (Formulation of a GS for (1)–(3)) Let α ∈ (0, 1) be given and
σ = 1 − α/2 ∈ (0, 1). Let D = (XD,0,ΠD,∇D) be a gradient discretization in
the sense of Definition1 and satisfies Assumption1. Assume in addition that f ∈
C ([0, T ]; L2(Ω)

)
and u0 ∈ H 2(Ω). As approximation for (1)–(3), we define the

following GS:

1. Find u0
D ∈ XD,0 such that for all v ∈ XD,0

〈u0
D, v〉D,κ = − (∇ · (κ∇u0),ΠDv

)
L2(Ω)

. (15)

2. For all n ∈ �0, N�, find un+1
D ∈ XD,0 such that, for all v ∈ XD,0
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n∑
j=0

kλn+1
j

(
∂1ΠDu j+1

D ,ΠDv
)

L2(Ω)
+ 〈un+σ

D , v〉D,κ = ( f (tn+σ), ΠDv)L2(Ω) .

(16)

Using the techniques of the proof of [5, Theorem 1] together with [8, Theorem 2.28],
we obtain respectively the following L∞(L2) and L∞(H 1

0 )-error estimates:

N+1
max
n=0

‖u(tn) − ΠDun
D‖L2(Ω) ≤ C(k2 + E

k
D(u)) (17)

and
N

max
n=0

(
λn+1

n

)− 1
2 ‖∇un+σ − ∇Dun+σ

D ‖L2(Ω) ≤ C(k2 + E
k
D(u)), (18)

where for any function u ∈ C([0, T ]; H 2(Ω)), we denote by

E
k
D(u) = max

j∈{0,1} max
n∈� j,N+1�

ED(∂ j u(tn)) (19)

and, for any u ∈ H 2(Ω),

ED(u) = max (CDWD(κ∇u) + (CD + 1)SD(u), WD(κ∇u) + 2SD(u)) . (20)

As stated in [5, Remark 1], the L∞(L2)-error estimate (17) is optimal in the sense that
it is the same one known for a Crank-Nicolson finite volume scheme approximating
the heat equation in [7]. Since λn+1

n is of order k−α, the L∞(H 1
0 )-error estimate

(18) implies that ‖∇Dun+σ
D − ∇un+σ‖L2(Ω) is of order k− α

2 (k2 + E
k
D(u)) which is a

conditional convergence and consequently is not optimal. The aim of this paper is to
prove an unconditional L∞(H 1

0 )-error estimate not only for the SUSHI method but
also for the large class of GDM applied to the general Eq. (1). We shall improve the

estimate (18) in the sense that the coefficient
(
λn+1

n

)− 1
2 of the left hand side is removed

and that the convergence not only holds on the barycentric points {tn+σ, n ∈ �0, N�},
but also on the mesh points {tn, n ∈ �0, N + 1�} (see (21) below).
Theorem 1 (New L∞(H 1)-error estimate for the GS (15)–(16)) In addition to the
hypotheses of Definition2, we assume that the solution u of (1)–(3) (resp. the con-
ductivity κ ∈ C1(Ω)) satisfies u ∈ C3([0, T ]; C2(Ω)) (resp. (4)). Let Ek

D(u) be the

expression given by (19)–(20). Then, there exists a unique solution
(
un
D

)N+1
n=0 ∈ X N+2

D,0

for the GS (15)–(16) and the following L∞(H 1)-error estimate holds:

n=N+1
max
n=0

‖∇u(tn) − ∇Dun
D‖L2(Ω) ≤ C(k2 + E

k
D(u)). (21)

To prove Theorem1, we first define an approximation of the operator −∇(κ∇·)
in Definition3 below. Such approximation, which exists and is unique thanks to
Assumption1, is inspired by the discrete Laplace operator introduced in [9] in the
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context of SUSHI. We subsequently need also to use the new discrete L∞(H 1)-a
priori estimate given in Lemma1 below.

Definition 3 (Approximation of the operator −∇(κ∇·)) Under the hypotheses of
Theorem1 and for any u ∈ XD,0, we define the discrete operator Δκ

D relative to
∇(κ∇), as the unique element of XD,0 satisfying

− (
ΠDΔκ

Du,ΠDv
)

L2(Ω)
= 〈u, v〉D,κ, ∀v ∈ XD,0. (22)

Indeed, when Assumption1 is satisfied, (ΠD·,ΠD·)L2(Ω) becomes an inner product
on XD,0. The existence and uniqueness of Δκ

Du results then from the Riesz repre-
sentation theorem in XD,0 for the inner product (ΠD·,ΠD·)L2(Ω).

Lemma 1 (New discrete L∞(H 1)-a priori estimate) Under the hypotheses of The-
orem1, we assume that there exists

(
ηn
D

)N+1
n=0 ∈ X N+2

D,0 such that for all n ∈ �0, N�
and v ∈ XD,0

n∑
j=0

kλn+1
j

(
∂1ΠDη

j+1
D ,ΠDv

)
L2(Ω)

+ 〈ηn+σ
D , v〉D,κ = (Sn+1, v

)
L2(Ω)

, (23)

where Sn+1 ∈ L2(Ω), for all n ∈ �0, N�, and η0
D = 0. Let us denote S = maxN

n=0 ‖
Sn+1‖L2(Ω). Then, the following L∞(H 1)-a priori estimate holds:

N+1
max
n=0

‖∇Dηn
D‖L2(Ω) ≤ CS. (24)

Proof The proof follows that of [3, Lemma 2, p. 310] with some minor modifica-
tions. Taking v = −Δκ

Dηn+σ
D in (23), using twice the definition (22), and using the

inequalities xy ≤ x2/2 + y2/2 and (12) together with hypothesis (4) yield

‖∇Dηn+1
D ‖2L2(Ω) ≤ 1

λn+1
n

⎛
⎝ n∑

j=1

(λn+1
j − λn+1

j−1)‖∇Dη
j
D‖2L2(Ω) + (S)2

κ0

⎞
⎠ . (25)

Applying now a mathematical induction on (25), as in the proof of [3, Lemma 2],
yields estimate (24). �

4.1 Sketch of Proof of Theorem1

The existence and uniqueness for (15)–(16) can be proved as in [4, Proof of Theorem
4.1, p. 506]. To prove (21), we compare theGS (15)–(16) with the following auxiliary
GS: For any n ∈ �0, N + 1�, find un

D ∈ XD,0 such that

〈un
D, v〉D,κ = (−∇ · (κ∇u)(tn),ΠDv)L2(Ω) , ∀v ∈ XD,0. (26)
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1. Comparison between the solutions of (26) and (1)–(3). The following estimates
hold, see [4]:

n=N+1
max
n=0

‖∇u(tn) − ∇Dun
D‖L2(Ω)d + n=N+1

max
n=1

‖∂1(u(tn) − un
D)‖L2(Ω) ≤ CE

k
D(u).

(27)
2. Comparison between (15)–(16) and (26). Let us define the auxiliary error ηn

D =
un
D − ūn

D ∈ XD,0. Taking n = 0 in (26), using the fact that u(0) = u0, and comparing
with (15) imply that η0

D = 0. From (26), we deduce that

〈un+σ
D , v〉D,κ = − (σ∇ · (κ∇u)(tn+1) + (1 − σ)∇ · (κ∇u)(tn),ΠDv)L2(Ω) . (28)

Subtracting (28) from (16), subtracting
∑n

j=0 kλn+1
j

(
∂1ΠDu j+1

D ,ΠDv
)

L2(Ω)

from both sides of the result, and using (13), (1), and (9), we find that
(
ηn
D

)N+1
n=0

satisfies the hypothesis (23) of Lemma1 with

Sn+1 =
n∑

j=0

kλn+1
j ∂1

(
u(t j+1) − ΠDu j+1

D
)

+ T
n
1(u) + T

n
2(∇ · (κ∇u)). (29)

Using (27), (11), (10), and (14) implies that ‖Sn+1‖L2(Ω) ≤ C(k2 + E
k
D(u)). This

estimate and the a priori estimate (24) imply that maxN+1
n=0 ‖∇Dηn

D‖L2(Ω) ≤ C(k2 +
E

k
D(u)). Gathering this estimate with the error estimate (27) implies the desired

estimate (21). �

5 Conclusion and a Perspective

We applied the GDM combined with the L2 − 1σ-formula to a TFDE with a space
dependent conductivity. A new L∞(H 1)-error estimate is proved thanks to a new
well developed a priori estimate. The GDM considered in this work is restricted to
the particular case of Assumption1. One of the main perspectives is to extend the
results to GDM without the restriction of Assumption1.
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Compatible Discrete Operator Schemes
for Solidification and Segregation
Phenomena

Jérôme Bonelle and Thomas Fonty

Abstract The appearance of macro-segregations in the ingot casting process has led
to the development of a solidification model in the Computational Fluid Dynamics
software code_saturne. It relies on a mixture model encompassing mass, momentum,
energy and solute transport equations. After having implemented this model for
the Finite Volume (FV) scheme of code_saturne, it is here implemented for the
Compatible Discrete Operator (CDO) framework. The resulting solidification and
segregation predictions are validated against an academic test case. Integral and local
comparisons are performed and exhibit a good agreement of the CDO approach with
results obtained with the FV scheme and with the commercial software SOLID®.
Moreover, the CDO approach relying on a strong velocity-pressure coupling brings a
significant improvement in terms of robustness with respect to the time step, allowing
for faster computations.

Keywords CDO · Navier–Stokes · Solidification · Segregation
MSC (2010) 65N08 · 76D05 · 76D99 · 76M12

1 Introduction

The manufacturing process of ingot casting is widespread in the nuclear indus-
try. High quality ingots are expected to forge a nuclear vessel reactor for instance.
Understanding the solidification process and the solute redistribution is of paramount
importance. This process can namely lead to a potential segregation of alloys (chem-
ical heterogeneities) that are likely to alter the mechanical properties of the materi-
als. A numerical segregation model has been introduced in a previous work [6] in
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code_saturne, the open-source and general-purpose Computational Fluid Dynamic
(CFD) software [7] developed at EDF R&D. This work relies on a cell-centered
colocated Finite Volume (FV) scheme and a fractional step algorithm for the veloc-
ity/pressure coupling. In this paper, we adapt the same segregation model to the
Compatible Discrete Operator (CDO) framework [3, 4, 8] with a fully coupled veloc-
ity/pressure algorithm. We compare on an academic test case this new approach to
the existing one in code_saturne and to the one inside SOLID® [1], a commercial soft-
ware dedicated to this kind of simulation. SOLID® relies on a staggered FV scheme
along with a fractional step algorithm for the velocity/pressure coupling.

2 Segregation Model

Segregation involves multi-scale and multi-physics phenomena in a solid and liq-
uid phase (cf. [9] for a review). A trade-off between the accuracy of a model and
its complexity has to be found. In this work, we focus on the simulation of the
macro-segregation phenomenon of a binary alloy induced by the thermo-solutal
convection. Second-order phenomena such as solid grain movement, solidification
shrinkage or deformation of the solid network are ignored. The model implemented
in code_saturne relies on the seminal works of Benon and Incropera [2] and that
of Voller and Prakash [11]. For a given variable y, the associated mixture average
variable is denoted by ym := gl yl + (1 − gl)ys where gl is the average liquid fraction
on a representative elementary volume and yl (resp. ys) is the average variable in
the liquid (resp. solid) phase. The model at stake considers the conservation laws
for the mixture. The mixture is always assumed to be at the thermodynamic equilib-
rium. No motion in the solid phase is assumed. The micro-segregation is modelled
through a closure law named the lever rule. Starting from the Navier–Stokes equa-
tions for an incompressible flow and for a Newtonian and laminar fluid under the
Boussinesq approximation, a drag force is added in the momentum Eq. (1) following
the Kozeny–Carman model [5]. The incompressibility constraint (2) states the mass
conservation. The solidification process is namely seen as an evolutive porous media
where the porosity decreases when the solid portion increases. The conservation of
the energy (3) is solved using the temperature Tm as main unknown and a source term
is added to take into account the phase change. Since one assumes a thermodynamic
equilibrium, Tm = Ts = Tl . Themass density ρ, the dynamic viscosity μ, the thermal
(resp. solutal) conductivity λT (λC ), the specific heat capacity cp, the latent heat L ,
the thermal (resp. solutal) coefficient of expansion βT (resp. βC ) are all assumed to be
constant. Let Ω be the computational domain. One considers homogeneous Dirich-
let boundary conditions for the velocity and a zero-mean constraint for the pressure.
Dirichlet and homogeneous Neumann boundary conditions are set on the temper-
ature while a no-flux boundary condition is enforced for the solute concentration
Cm . Initially, the fluid is at rest and ∀x ∈ Ω , Tm(x, 0) = T0,Cm(x, 0) = C0. With all
these assumptions, choices of modeling and settings, we end up with the following
system to solve: Find (Um, p, Tm,Cm) ∈ H 1

0(Ω) × L2
0(Ω) × H 1(Ω) × H 1(Ω) s.t.
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Fig. 1 Example of phase diagram in the case of a binary alloy

∂t (ρUm) + div(Um ⊗ ρUm) − divμ grad(Um) + μ

K (gl)
Um + grad(p)

= ρg
(
1 − βT (Tm − Tm,0) + βC(Cl − Cl,0)

)
,

(1)

div(Um) = 0, (2)

cp
(
∂t (ρTm) + div(ρUmTm)

) − divλT grad(Tm) = −ρL∂t (gl(Tm,Cm)) + Sth,

(3)

∂t (ρCm) + div(
1

gl + kp(1 − gl)
Cm · ρUm) − divλC grad(Cm) = 0, (4)

with kp the partition coefficient and g the gravity vector. K (gl) := α
g3l

(1−gl )2
where α

is a scaling factor depending on the material. The function gl(Tm,Cm) is simplified
by assuming a linearized liquidus slope (ml) and the lever rule Cs = kpCl ; see Fig. 1
for an example of phase diagram considered in the case of a binary alloy. From the
definition of a mixture variable and the lever rule, one gets: Cl = 1

gl+kp(1−gl )
Cm .

3 Numerical Scheme

The CDO framework [4] is used for the discretization of the system of equations
described in Sect. 2. The discretization of the Navier–Stokes equations relies on the
CDO face-based scheme as defined in [3, 8]. The degrees of freedom (DoFs) for the
velocity are the component-wise mean-values over faces and cells, the mean-values
over cells for the pressure. As proved in [8], an inf-sup property holds and we thus do
not need any stabilization technique. The fully-coupled velocity-pressure coupling
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results in a saddle-point problem. DoFs for the temperature and solute concentration
are also defined as the mean-value over faces and cells. All the algebraic systems to
solve are reduced to only the face DoFs thanks to a static condensation technique.
In all conservation equations (momentum, energy, solute), the time discretization
relies on an implicit Euler time scheme and the advection scheme is centered for
the momentum equation and is an upwind scheme for the other equations. Variable
properties such as the liquid fraction gl or the solute concentration in the liquid phase
Cl are defined in each cell. The main algorithm to solve the new state of the system
at time tn+1 := tn + Δt from the state at time tn is described in Algorithm1.

Algorithm 1 High-level algorithm
Require: Un , pn , Cn

m , T
n
m , g

n
l

1: Initialize the thermo-solutal non-linear algo.: k = 0, r∞ = 2ε, T n+1,0
m ← T n

m andCn+1,0
m ← Cn

m
2: while k < Nmax AND r∞ > ε do
3: Cn+1,k+1

m ← Solve the discrete counterpart of (4)
4: Prepare the implicit/explicit source term contribution from ∂tgl := ∂gl

∂Tm
|Cm∂t Tm +

∂gl
∂Cm

|Tm∂tCm ≈ ∂gl
∂Tm

|Cm
T n+1,k+1
m −T n

m
Δt + ∂gl

∂Cm
|Tm Cn+1,k+1

m −Cn
m

Δt

5: T n+1,k+1
m ← Solve the discrete counterpart of (3)

6: gn+1,k+1
l ← Solidification path from the knowledge of T n+1,k+1

m and Cn+1,k+1
m

7: r∞ = maxc∈Cells

(
|T n+1,k+1

m,c − T n+1,k
m,c |/T0, |Cn+1,k+1

c − Cn+1,k
c |/C0

)
and k ← k + 1

8: end while
9: Update Cn+1

l , K (gl ) (forcing term) and the buoyancy source term from the new thermo-solutal
state.

10: Un+1, pn+1 ← Compute the Navier–Stokes system (Picard algorithm on the convective term)

4 Numerical Results

We compare three approaches: (1) the code_saturne CDO approach presented in
Sect. 3, (2) the colocated FV approach of code_saturne [7] referred as code_saturne
FV in the following and (3) the staggeredFVapproach of the 2Dcommercial software
SOLID® [10].

In code_saturne FV, the spatial discretization is centered without slope test for the
advection, a two-point flux approximation is used for the diffusion operator and the
Rhie and Chow filter is employed to prevent checker-board issues as all variables are
co-located at the cell centers. A SIMPLEC algorithm is employed with a constant
time step. An Euler implicit time scheme is used with up to 10 inner iterations to
converge over the Navier–Stokes and thermo-solutal system of equations.

The saddle-point problems arising from the CDO discretization are solved using
a generalized conjugate residual (GCR) with a symmetric Gauss-Seidel block pre-
conditioning. SOLID® computations rely on an upwind advection scheme with a
PISO-like velocity-pressure coupling. code_saturne CDO and FV approaches use
the same solidification/segregation model which presents some simplifications with
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Table 1 Test problem data for the adapted Voller and Prakash benchmark. The lower part corre-
sponds to values specific to the simplified phase diagram

Specific heat cp = 1 Latent heat L = 5

Density ρ = 1 Viscosity μ = 1

Thermal conductivity λT = 0.001 Thermal coefficient of
expansion

βT = 0.01

Solutal conductivity λC = 0 Solutal coefficient of
expansion

βC = 0.01

Liquidus temperature Tliq = 0.1 Solidus temperature Tsol = −0.1

Initial temperature T0 = 0.5 Reference temperature Tref = 0.5

Hot wall temperature Thot = 0.5 Cold wall temperature Tcold = −0.5

Gravity magnitude g = 1000 Initial solute
concentration

C0 = 1

Melting temperature Tmelt = 0.2 Eutectic temperature Teut = −0.1

Liquidus slope ml = −0.1 Partition coefficient kp = 0.1

respect to the SOLID® model where the momentum equation is formulated over the
liquid phase instead of the mixture and the energy equation is expressed in enthalpy.
Computations were performed with code_saturne 8.0.

4.1 Case Description

We adapted the Voller and Prakash’s benchmark [11] to a segregation problem for
a binary alloy (non-dimensionalized properties are listed in Table1). The geometry
is a 2D squared cavity of unit measure with wall boundary conditions. A cold wall
condition (Tm = Tcold) is applied on the left, and a hot wall (Tm = Thot) on the right.
Adiabatic conditions are imposed on the upper and lower parts of the domain. The
domain is initially at rest at Tm = T0 and Cm = C0. The simulation ends at 750 s. A
uniform Cartesian mesh (Δx = Δy = 1/100) is used.

4.2 Results

Three criteria are used to compare the code_saturne CDO, code_saturne FV and
SOLID® approaches:

1. integral quantities as the solidification rate SR and the segregation index SI (know-
ing that C0 = 1)
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Fig. 2 Time evolution of integral quantities

SR := 1

Vtot

∑

i∈Ncells

(
1 − gl,i

)
Vi , SI :=

√
1

Vtot

∑

i∈Ncells

(
Cm,i − 1

)2
Vi ,

where Vtot = ∑
i∈Ncells

Vi with Vi the volume of cell i ,
2. snapshots at the final time of the velocity, temperature and liquid fraction,
3. profiles at three different heights y = (0.25, 0.5, 0.75) in the domain.

Results. The integral quantities are displayed on Fig. 2 and are similar between the
code_saturne CDO and FV computations. The snapshots on Fig. 3 display the fields
at the final time of the simulation for the liquid fraction, the temperature and the
velocity magnitude. One observes a good visual agreement of the results.
At the final time of the simulation, we plot the profiles of the values of liquid frac-
tions (Fig. 4), of temperatures and velocity magnitudes (Fig. 5) with a comparison
to SOLID® simulation results when available. One observes a good agreement of
the computed profiles with respect to the SOLID® reference. Some discrepancies
of code_saturne CDO and code_saturne FV approaches with respect to SOLID® are
likely related to the distinct models used in these solvers.

Analysis.We obtained similar results between code_saturne CDO and code_saturne
FV. SOLID® results present some differences as the system of equations is a bit dif-
ferent. Regarding the performances, the choice of the time step was driven by an
upstream analysis that compared the error on the maximum velocity with respect to
reference values associated to a SOLID® computation on a refined mesh. Values for
the time step are 0.001s for code_saturne FV approach, 1.0 s for code_saturne CDO
and 0.01s for SOLID®. code_saturne CDO appeared as more robust, keeping a good
quality of results for large time steps and allowed for faster computations: the CDO
computation took 40min while the FV approach took around 40h to run. Discrep-
ancies between code_saturne and SOLID® approaches are linked to the difference of
model and especially the way to handle the eutectic state. The non-linearity induced
by this eutectic state will be the object of further investigations.
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Fig. 3 Snapshots at the final simulation time

Fig. 4 Liquid volume fraction profiles at different heights
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Fig. 5 Profiles at different heights
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Trefftz Approximation Space for Poisson
Equation in Perforated Domains

Miranda Boutilier, Konstantin Brenner, and Victorita Dolean

Abstract For the Poisson equation posed in a planar domain containing a large num-
ber of polygonal perforations, we propose a low-dimensional approximation space
based on a coarse polygonal partitioning of the domain. Similar to other multi-scale
numerical methods, this coarse space is spanned by basis functions that are locally
discrete harmonic.We provide an error estimate in the energy norm that only depends
on the regularity of the solution over the edges of the coarse skeleton. For a specific
edge refinement procedure, this estimate allows us to establish superconvergence of
the method, even if the true solution has low general regularity. Combined with the
Restricted Additive Schwarz method, the proposed coarse space leads to an efficient
two-level iterative linear solver which achieves the fine-scale finite element error in
few iterations. The numerical experiment showcases the use of this coarse space over
test cases involving singular solutions and realistic urban geometries.

Keywords Multi-scale finite element method · Trefftz method · Domain
decomposition

1 Introduction

Let D be an open simply connected polygonal domain inR2. We denote by
(
�S,k

)
k a

finite family of perforations in D such that each�S,k is an open connected polygonal
subdomain of D. The perforations are mutually disjoint such that �S,k ∩ �S,l = ∅
for any k �= l. We denote �S = ⋃

k �S,k and � = D \ �S , assuming that the family(
�S,k

)
k is such that � is connected. Note that the latter assumption implies that �S,k

are simply connected.
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In this contribution we consider the following model problem

⎧
⎪⎨

⎪⎩

−�u = f in �,
∂u

∂n
= 0 on ∂� ∩ ∂�S,

u = 0 on ∂� \ ∂�S.

(1)

Our motivation behind this linear problem lies in the applications to urban flood
modeling. In this context, u would represent the flow potential (pressure head) and(
�S,k

)
k
can be thought of as a family of impervious structures such as buildings,

walls, etc. Although the problem (1) is overly simplified to be directly used for
urban hydraulic modeling, the more general nonlinear elliptic or parabolic models
are common in free surface flow simulations. Such models arise from ShallowWater
equations either by neglecting the inertia terms [1] or within the context of semi-
implicit Froude-robust time discretizations [7].

One of the challenges of the numerical modeling of urban floods is that the small
structural features may significantly affect the flow. Luckily, modern terrain sur-
vey techniques are able to generate high-resolution topographic data. For example,
the data set used in this article provided by Métropole Nice Côte d’Azur allows
for the infra-metric description of the urban geometries [2]. Depending on the geo-
metrical complexity of the computational domain, the numerical resolution of (1)
may become increasingly challenging. In this contribution, we present a numerical
strategy involving two levels of space discretization. The first is based on a coarse
polygonal partitioning of �, while the second is associated with the fine-scale trian-
gulation and is designed to resolve the small scale details of the model domain. With
these two levels of space discretization, we introduce a low-dimensional functional
space that serves to approximate the locally harmonic component of the solution.
This coarse approximation space, called here the Trefftz or discrete Trefftz space, is
built upon basis functions that satisfy the local Laplace problems either exactly or
numerically and have piecewise linear traces along the edges of the coarse mesh. We
note that this coarse space can be readily extended toward higher-order polynomi-
als approximation of the traces. The resulting coarse space can be employed either
to approximate the solution over the coarse polygonal grid, or as a component of
an iterative two-level domain decomposition (DD) solver for the algebraic problem
resulting from the fine-scale discretization. Those are two approaches investigated
in this contribution.

When using the Trefftz space to build the coarse approximation method, our
methodology is similar to MsFEM [10] as we numerically compute localized basis
functions, using fine-scale information in the computation.MsFEM-like methods for
elliptic problems in domains containing a large number of perforations or inclusions
can be found in [8, 11, 12], with application to both Dirichlet and Neumann condi-
tions on the perforation boundaries. In comparison to these methods, our approach
leads to a denser coarse space. In terms of size, our coarse problem is comparable
to that obtained from polytopal methods such as the Virtual Element method (VEM)
[4]. Due to degrees of freedom associated with the intersection between the perfora-
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tions and the coarse skeleton, the coarse approximation achieves superconvergence
for a specific edge refinement procedure.

Asmentioned, our second approach combines the coarse approximationwith local
subdomain solves in the two-level Restricted Additive Schwarz (RAS) method [6], a
DDmethod that can be used to efficiently solve sparse linear systems. This results in
an efficient iterative solver for the algebraic system resulting from the fine-scale finite
element (FE) method. The obtained algorithm improves the precision of the original
coarse approximation in the spirit of iterative multi-scale methods (see e.g. [9]). We
note that alternatively, the discrete Trefftz space can be used within a two-level DD
preconditioner for a Krylov method [5].

2 Schur Complement Problem and Trefftz Approximation

We begin with a coarse discretization of�which involves a family of polygonal cells(
� j

)
j=1,...,N , the so-called coarse skeleton�, and the set of coarse grid nodes that will

be referred to byV. The construction is as follows. Consider a finite nonoverlapping
polygonal partitioning of D denoted by

(
D j

)
j=1,...,N and an induced nonoverlapping

partitioning of � denoted by
(
� j

)
j=1,...,N such that � j = D j ∩ �. We will refer to

(
� j

)
j=1,...,N

as the coarse mesh over �. Additionally, we denote by � its skeleton,
that is � = ⋃

j=1,...,N ∂� j \ ∂�S .
Based on the coarse partitioning and with the problem (1) in mind, we can split

H 1(�) into a direct sum of its subspaces H 1
�(�) and H 1

�(�). Here, H 1
�(�) is a

subspace of functions vanishing at� and H 1
�(�) its H 1-orthogonal complement. The

functions from H 1
�(�) are referred to as locally harmonic; note that they also have

zero normal traces on ∂�S . Using the orthogonal decomposition introduced abovewe
can express theweak formulation of (1) as the following Schur complement problem:
Find u = u� + ub with u� ∈ H 1

�(�) ∩ H 1
∂�\∂�S

and ub ∈ H 1
�(�) satisfying

{
(u�, v)H 1(�) = ( f, v)L2(�) ∀v ∈ H 1

�(�) ∩ H 1
∂�\∂�S

(�),

(ub, v)H 1(�) = ( f, v)L2(�) ∀v ∈ H 1
�(�).

(2)

We remark that the local “bubble” component of the solution ub can be computed
from (2) locally (and in parallel) on each � j , while the problem for u� is globally
coupled over �.

We now proceed with the approximation of the locally harmonic component u�.
For this, we introduce the Trefftz coarse space, a finite-dimensional subspace VH of
H 1

�(�) that is spanned by the functions that are piecewise linear on the skeleton �.
Let (ek)k=1,...,Ne

denote a nonoverlapping partitioning of � such that each “coarse
edge” ek is an open planar segment, and we denote H = maxk=1,...,Ne |ek |. We note
that a straight segment of � may be subdivided into multiple edges (see Fig. 2). The
set of coarse grid nodes is given byV = ⋃

k=1,...,Ne
∂ek .
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The coarse nodal basis is defined by the following set of boundary value problems.
For all � j and for all s = 1, . . . , NV, find φ

j
s ∈ H 1(� j ) such that φ

j
s is the weak

solution to the following problem

⎧
⎪⎪⎨

⎪⎪⎩

�φ
j
s = 0 in � j ,

∂φ
j
s

∂n
= 0 on ∂� j ∩ ∂�S,

φ
j
s = gs on ∂� j \ ∂�S,

(3)

where gs is a skeleton “hat” basis function such that gs : � → R is continuous on
�, linear on each edge ek and satisfies g(xi ) = δis for all nodes xi .

Let VH,0 = VH ∩ H 1
∂�\∂�S

(�). The Galerkin method based on the coarse space
reads as follows: find uH ∈ VH,0 such that

(uH , vH )H 1(�) = ( f, vH )L2(�) ∀vH ∈ VH,0. (4)

Combining best approximation property of the coarse approximation uH , classical
FE interpolation theory in one dimension, and an interpolation inequality we obtain
the following error estimate for the approximation of u�.

Proposition 1 Assume that there exists a finite nonoverlapping partitioning
(γl)l=1,...,Nγ

of � such that the traces of u belong to H 2(γl) for all l; assume in
addition that the set of coarse edges (ek)k is a subdivision of (γl)l . There exists
C > 0 depending only on (D j ) j such that

‖∇(u� − uH )‖L2(�) ≤ C H
3
2

⎛

⎝
Nγ∑

l=1

‖u‖2H 2(γl )

⎞

⎠

1
2

. (5)

We remark that the broken H 2 norm in the right-hand side of (5) involves only
the traces of the solution along the sections of the coarse skeleton. Therefore, the
estimate is valid for u having low general regularity that is due, for example, to
corner singularities; moreover the constant involved in the estimate is independent
of the shape and distribution of the perforations. The estimate (5) provides an a priori
criterion for the adaptation of the coarse mesh: one has to ensure that the edge norm
in the right-hand side is small. For f regular enough, this can be achieved by moving
the coarse edges away from the “bad” perforation corners. We further note that this
estimate is especially valuable for a so-called space or edge refinement, which is a
procedure that involves splitting the edges of an otherwise fixed coarse grid. In that
case, one observes the superconvergence of the error with a rate of 3/2.
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3 Discrete Trefftz Space and Two-Level Schwarz Method

In this section, we introduce the two-level RAS method based on the discrete Trefftz
method. Let us consider the triangulation of � which is assumed to be conforming
with respect to the polygonal partitioning

(
� j

)
j=1,...,N

(see Fig. 1). We denote by
Vh the space of piecewise linear continuous function over this triangulation. The
associated fine-scale FE discretization of (1) results in the linear system Au = f .
Because the triangular mesh resolves the the perforations, the latter system may be
quite large; moreover the size of the triangular elements may vary by several orders
of magnitude. As a result, the matrix A is expected to be poorly conditioned.

Let us begin with the coarse space component. In most practical situations, the
coarse basis functions defined by (3) cannot be computed analytically. Therefore,
we consider the FE approximation of VH denoted by VH,h . The basis of the discrete
Trefftz space is obtained through the FE approximation of (3). LetRH be a transition
matrix from the discrete Trefftz basis of VH,h toward the standard FE nodal basis of
Vh . The FE counterpart of (4) can be expressed algebraically as uH = M−1

H f , where
M−1

H = RT
H (RHART

H )−1RH .
Below, we will show how the coarse space introduced in the previous section can

be combined with RAS to construct a simple yet efficient iterative linear solver for

the fine-scale finite element method. Let
(
�′

j

)

j=1,...,N
denote the overlapping parti-

tioning of � such that � j ⊂ �′
j . In practice, each �′

j is constructed by propagating
� j by a few layers of triangles. Consider classical boolean restriction matrices R′

j

associated to the family
(
�′

j

)

j=1,...,N
. The iterative procedure is given by

un+ 1
2 = un + M−1

R AS(f − Aun)

un+1 = un+ 1
2 + M−1

H (f − Aun+ 1
2 )

(6)

Fig. 1 Left: coarse (thick lines) and fine (thin lines) discretizations, with the coarse nodes shown
by red dots. Right: FE solution with f = 1
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where M−1
R AS =

N∑

j=1

(
R′

j

)T
D j (A′

j )
−1R′

j andA
′
j = R′

jA
(
R′

j

)T
, whileD j denote the

partition-of-unity matrices. We note that this iterative two-level RAS iteration is
classical in domain decomposition literature for a general coarse matrix M−1

H . As
well, the local matrix solves and assembly of restriction and extension matrices can
be done in parallel, forming an efficient algorithm for sparse matrices A.

4 Numerical Results

In this section, we illustrate the performance of the discrete Trefftz space within
two different scenarios involving either a standalone Galerkin approximation (4) or
an iterative approach (6). In particular, we will provide numerical evidence of the
error estimate (5) over the case involving a solution with a corner singularity. The
numerical investigation of the iterative algorithm (6) shows that the fine-scale FE
error can be achieved in few iterations.

Convergence of the discrete Trefftz approximation method: We begin with a
test case involving a classical L-shaped domain with a reentering corner (Fig. 2).
The domain is defined by D = (−1, 1)2, �S = (0, 1)2, and � = D \ �S . We con-
sider the problem (1) with a zero right-hand side and a non-homogeneous Dirichlet
boundary condition on ∂� \ ∂�S provided by the singular exact solution u(r, θ) =
r

2
3 cos( 23 (θ − π/2)).
In order to assess the convergence of the discrete Trefftz method, we consider

two strategies regarding the refinement of the coarse partitioning. The procedure
involving the reduction of the diameter of the coarse cells will be referred to as mesh
refinement. The sequence of such meshes will be constructed as follows: first the
background domain D is partitioned into N = (2p + 1)2, p ∈ N, squares, then the
coarse cells� j are generated by excluding�S . The choice of N being a square of an
odd number ensures the consistency of themesh sequence in terms of the shape of the

Fig. 2 Coarse and fine discretizations of the L-shaped domain with no (left) and one (right) addi-
tional degree(s) of edge refinement
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Fig. 3 Coarse approximation error for L-shaped domain with edge (blue) and mesh (orange)
refinement in L2 norm (left) and the energy norm (right)

elements. Alternatively, we consider the edge refinement procedure, which accounts
for subdividing the edges of an original “3 × 3 grid”. This edge refinement approach
is illustrated by Fig. 2 and is inspired by the Multiscale Hybrid-Mixed method [3],
where the superconvergence in the energy norm has equally been observed. Let us
stress that under these refinement procedures, none of the coarse grids will have
degree of freedom located at the corner (0, 0). As a result, the corner singularity will
be captured by the basis functions associated with the L-shaped domain. We also
note that in order to improve the precision of the fine-scale FE method, the size of
the triangles is graded in the vicinity of the corner (0, 0).

Figure3 reports the error in L2 and the energy norms as functions of maximal
coarse edge length H . The black horizontal line represents the typical fine-scale FE
error. As expected, we observe that the convergence of the discrete Trefftz method
deteriorates as the coarse error approaches this value. In accordance with the error
estimate (5), for the edge refinement, we observe superconvergence in the energy
norm with the rate slightly superior to 3/2. We note that that the convergence rate
in L2 appears to be superior to 5/2. In contrast, the convergence resulting from the
mesh refinement seems to be controlled by the low global regularity of the solution.
For the mesh refinement, we observe the convergence rates typical for FE methods
on quasi-uniform meshes.

Convergence of the two-level iterativemethod:Next, we examine the performance
of the iterative scheme (6) over the L-shaped domain considered previously and
a domain based on realistic urban geometries for which the datasets were kindly
provided by Métropole Nice Côte d’Azur. The domain involving a small portion of
the structural topography of the city of Nice is shown in Fig. 1. The dataset contains
two kinds of structural elements, namely buildings (and assimilated small elevated
structures) and walls.

We report on Fig. 4 the convergence history of the iterative method for both
L-shaped and urban domains; more precisely, we report the convergence of the full
L2 error, that is the norm of the difference between the intermediate approximation
and some accurate solution of (1). Each figure reports the convergence history for
linear systems based on increasingly refined background triangulations. The typical
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Fig. 4 Convergence of the two-level iterativemethod for theL-shaped domain on 3 × 3 subdomains
(left) and the urban dataset on 8 × 8 subdomains (right). The black horizontal lines show the error
of the fine-scale FE method

width of the overlap in RAS method is of diam(� j )/20. For the realistic data set, we
solve (1) with f = 1; the fine-scale FE solution is reported on Fig. 1. As the exact
solution is not available for the case based on the urban data, we use a reference
solution obtained on a very fine grid.

We observe that the error of the fine-scale FE method (black lines) can be reached
relatively fast. Further iterations do not improve the overall precision of the approxi-
mate solution even though the algebraic errormaydecrease. For theL-shapeddomain,
the convergence of the full error is essentially exponential; moreover the decay rate
of the full error remains consistent with respect to the finite size h of the fine-scale
triangulation.
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Structure Preserving Finite Volume
Approximation of Cross-Diffusion
Systems Coupled by a Free Interface

Clément Cancès, Jean Cauvin-Vila, Claire Chainais-Hillairet,
and Virginie Ehrlacher

Abstract We propose a two-point flux approximation finite-volume scheme for the
approximation of two cross-diffusion systems coupled by a free interface to account
for one-dimensional vapor deposition. The moving interface is addressed with a
cut-cell approach, where the mesh is locally deformed around the interface. The
scheme preserves the structure of the continuous system, namely: mass conservation,
nonnegativity, volume-filling constraints and decay of the free energy. Numerical
results illustrate the properties of the scheme.

Keywords Cross-diffusion system · Cut-cell method · Finite volume scheme ·
Free energy dissipation · Moving interface · Vapor deposition

1 A Free Interface Cross-Diffusion Model

We address a toy model to describe a physical vapor deposition process used for the
fabrication of thin film layers [3]. We consider the evolving domain

Ω(t) = (0, X (t)) ∪ (X (t), 1), t > 0,

where R+ � t → X (t) ∈ [0, 1] is the free interface between the solid (left) and
the gas (right). Traces and jumps at the interface are respectively denoted by
f s, f g, [[ f ]] = f g − f s . We consider n different chemical species represented by
their densities of molar concentration c = (c1, . . . , cn)

T . The local conservation of
matter reads:

∂t c+ ∂x J = 0, t > 0, x ∈ Ω(t), (1a)
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for somemolar fluxes J := (J1, . . . , Jn)
T . Cross-diffusion phenomena are modelled

differently in each phase. In the solid phase, the fluxes are given by

Ji = −
n∑

j=1

κs
i j

(
c j∂x ci − ci∂x c j

)
, in (0, X), i ∈ {1, . . . , n},

with cross-diffusion coefficients κs
i j = κs

ji > 0, which rewrite more compactly

J = −As(c)∂x c, in (0, X), (1b)

with a linear diffusion matrix As(c) (see [1]). In the gaseous phase, the fluxes are
defined implicitly via the Maxwell–Stefan linear system (see [2])

Ag(c)J = −∂x c, and
n∑

i=1

Ji = 0, in (X, 1), (1c)

where Ag(c) is identical to As(c), except for possibly different cross-diffusion coef-
ficients κ

g
i j = κ

g
j i > 0. The system is completed with an initial condition (c0, X0),

no-flux conditions on the fixed boundary and the following conditions across the
moving interface:

J s(t) − X ′(t)cs(t) = 1{X (t)∈(0,1)}F(t) = Jg(t) − X ′(t)cg(t), t > 0, (1d)

where F accounts for reaction mechanisms [6, 7] and is defined, for some constant
reference chemical potentials μ

∗,s
i , μ

∗,g
i ∈ R, by the Butler–Volmer formulas: for

i ∈ {1, . . . , n},

Fi = cs
i exp

(
μ

∗,g
i − μ

∗,s
i

2

)
− cgi exp

(
μ

∗,s
i − μ

∗,g
i

2

)
,

= 2
√

cs
i cgi sinh

(
−1

2
[[log(ci ) − μ∗

i ]]
)

.

(1e)

Finally, the interface evolves according to

X ′(t) = −1{X (t)∈(0,1)}
n∑

i=1

Fi . (1f)

Note that, in the limit cases X (t) = 0 or X (t) = 1, (1d)–(1f) imply that we recover a
single phase problem with zero-flux boundary conditions. The system enjoys several
important properties we aim at preserving at the discrete level: First, mass con-
servation follows from the local conservation (1a), no-flux conditions on the fixed
boundary and the conservative condition (1d). Second, the system preserves the
nonnegativity of the concentrations and the volume-filling constraints

∑n
i=1 ci = 1
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(satisfied by the initial condition), and we refer to such a solution as admissible.
Finally, the functional

H(c, X) =
∫ X

0
hs(c) +

∫ 1

X
hg(c), (2)

with density hα(c) = ∑n
i=1 ci (log(ci ) − μ

∗,α
i ) − ci + 1, forα ∈ {s, g}, can be shown

to formally satisfy, for some positive semi-definite mobility matrices Ms, Mg , the
free energy dissipation relation [4, 5]

d

dt
H(c(t), X (t)) = −

∫ X (t)

0
∂x log(c)T Ms(c)∂x log(c)

−
∫ 1

X (t)
∂x log(c)T Mg(c)∂x log(c) + F(t)T [[log(c) − µ∗]] ≤ 0.

(3)

One deduces from the dissipation inequality that stationary solutions (c̄, X̄) must
be constant in (each connected part of) Ω̄ = (0, X̄) ∪ (X̄ , 1) and moreover, if X̄ ∈
(0, 1), Fi (c̄s

i , c̄gi ) = 0 should hold for any i . We characterize in [3] the stationary
states of (1), as partially stated in Proposition1.

Proposition 1 (Stationary states) Let m0 = m0,s + m0,g > 0 be the initial amount
of matter in the system. The one-phase solutions (m0, 0, 1) and (0,m0, 0) are sta-
tionary. Define the coefficients βi = exp

([[μ∗
i ]]

)
. There exists a stationary solution

where the two phases coexist (i.e. such that X̄ ∈ (0, 1)) if and only if

min

(
n∑

i=1

m0
i βi ,

n∑

i=1

m0
i

1

βi

)
> 1. (4)

Moreover, under (4), this stationary state is unique and explicitly computable from
X̄, which is itself solution to a convex scalar equation.

Let us remark that, under condition (4), one-phase stationary states are not expected
to be stable.

2 Finite Volume Scheme

We consider N ∈ N
∗ reference cells of uniform size Δx = 1

N . The N + 1 edge
vertices are denoted by 0 = x 1

2
, x 3

2
, . . . , xN+ 1

2
= 1. We consider a time horizon T >

0 and a time discretization with mesh parameter Δt defined such that NT Δt = T
with NT ∈ N

∗. The concentrations are discretized as cp
Δx = (cp

i,K )i∈{1,...,n}, K∈{1,...,N }
for p ∈ {0, . . . , NT }. The interface is discretized in time as X p for p ∈ {0, . . . , NT },
and we denote by xK p+ 1

2
∈ [0, 1] the closest vertex to X p (the left vertex in case
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of equality). At time t p−1 = (p − 1)Δt , the mesh is locally modified around X p−1:
the cells K p−1 and K p−1 + 1 are deformed, as presented initially in Fig. 1, where
we denote by K the interface cell to alleviate the notations. To account for this
deformation, we introduce Δ

p−1
K the size of cell K at discrete time t p−1:

Δ
p−1
K =

⎧
⎪⎨

⎪⎩

(X p−1 − xK p−1− 1
2
) if K = K p−1,

(xK p−1+ 3
2
− X p−1) if K = K p−1 + 1,

Δx otherwise.

With this notation, the initial concentrations c0 ∈ L∞(Ω0;A) are naturally dis-
cretized as c0i,K = 1

Δ0
K

∫
K c0i dx . Starting from the knowledge of cp−1

Δx , X p−1, our
scheme consists in

(i) solving the conservation laws and updating the interface position, leading to
(cp,�

Δx , X p).
(ii) updating the mesh to Δ

p
K and post-processing the interface concentrations into

the final values cp
Δx .

2.1 Conservation Laws

The conservation laws (1a) are discretized implicitly as, for K ∈ {1, . . . , N }, i ∈
{1, . . . , n},

1

Δt
(Δ

p,�

K cp,�

i,K − Δ
p−1
K cp−1

i,K ) + J p,�

i,K+ 1
2
− J p,�

i,K− 1
2

= 0. (5a)

where we have introduced the intermediate quantity (see the intermediate mesh in
Fig. 1)

Δ
p,�

K =

⎧
⎪⎨

⎪⎩

(X p − xK p−1− 1
2
) if K = K p−1,

(xK p−1+ 3
2
− X p) if K = K p−1 + 1,

Δx otherwise.

The bulk fluxes (1b)–(1c) are discretized in a way that preserves the bulk part of
the dissipation structure (3). We refer to [4] (resp. [5]) for the discretization of (1b)
(resp. (1c)) in a single-phase and fixed domain context, since we prefer to highlight
our contribution to the treatment of the interface coupling. Because of the moving
interface, a correction term −X ′(t)c appears in (5a) in the interface cells, see (1d),
and the numerical interface fluxes are given by a discretization of (1e) as

J p,�

i,K p−1+ 1
2

= F p,�

i = cp,�

i,K p−1 exp

(
μ

∗,g
i − μ

∗,s
i

2

)
− cp,�

i,(K p−1+1) exp

(
μ

∗,s
i − μ

∗,g
i

2

)
,
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Finally, (1f) is discretized as

X p = X p−1 − Δt
n∑

i=1

F p,�

i . (5b)

We denote a solution to (5) by (cp,�

Δx , X p).

2.2 Post-processing

When X p crosses the center of a cell, one needs to update the interface cell from K p−1

to K p and to adjust the concentrations accordingly. First, we can derive from (5b) a
linear CFL condition to enforce |X p − X p−1| ≤ Δx

2 , which in particular ensures that
|K p − K p−1| ≤ 1 and simplifies the post-processing process (X p cannot cross xK+ 3

2

in Fig. 1). If K p = K p−1, then we can directly iterate the scheme with cp
Δx = cp,�

Δx .
Otherwise, let us illustrate the case of a right displacement K p = K p−1 + 1 and let
us use again the notation K := K p−1 for simplicity. We perform the following steps
(see the final mesh in Fig. 1)

(i) Projection: The value cp,�

i,K is assigned to the virtual cell (xK− 1
2
, X p). We assign

this value to both the fixed cell K = (xK− 1
2
, xK+ 3

2
) and the new interface cell

(K + 1) = (xK+ 1
2
, X p):

cp
i,K = cp

i,K+1 = cp,�

i,K . (6)

(ii) Average: X p replaces xK+1 as the interface node. We average the value in the
cell (K + 2) = (X p, xK+2):

cp
i,K+2 = 1

Δx + Δ
p,�

K+1

[
Δ

p,�

K+1cp,�

i,K+1 + Δx cp,�

i,K+2

]
. (7)

(iii) In all other cells, cp
i,K = cp,�

i,K .

2.3 Numerical Analysis

Let us introduce the discrete version of the free energy functional (2):

Hp(cp
Δx , X p) =

n∑

i=1

∑

K≤K p

Δ
p
K hs(cp

i,K ) +
n∑

i=1

∑

K≥K p+1

Δ
p
K hg(cp

i,K ). (8)
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Fig. 1 A virtual mesh displacement between t p−1 = (p − 1)Δt and t p = pΔt

Proposition2 gives some a priori estimates fulfilled by a solution to the scheme,
leading to existence of a solution.

Proposition 2 (Structure preservation) Given an admissible solution (cp−1
Δx , X p−1),

there exists an admissible solution (cp
Δx , X p) to the scheme (5). Moreover, the amount

of matter of each species is conserved and a discrete version of the dissipation relation
(3) is satisfied:

cp
Δx ≥ 0, and

n∑

i=1

cp
i,K = 1, K ∈ {1, . . . , N },

N∑

K=1

Δ
p
K cp

i,K = m0
i , i ∈ {1, . . . , n},

Hp(cp
Δx , X p) ≤ Hp(cp−1

Δx , X p−1).

We sketch some ingredients of the proof below, see [3] for details.

Proof Concerning conservation of matter, it follows from summing the conservation
laws (5a) over the cells K and the fact that the fluxes are conservative that, for any
i ∈ {1, . . . , n},
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N∑

K=1

Δ
p,�

K cp,�

i,K =
N∑

K=1

Δ
p−1
K cp−1

i,K .

If K p = K p−1, the result follows immediately. Otherwise, it follows by construction
of the post-processing formulas (6)–(7).

The proof of the nonnegativity of the concentrations follows from a contradic-
tion argument with an appropriate truncation of the fluxes. One even obtains strict
positivity if cp−1

Δx > 0.
The volume-filling constraints are proved by summing the conservation laws (5a)

over i and using a normalized version of (5b).
Thanks to strict positivity, a chain rule holds [4, 5] and the continuous dissipative

structure (3) can be translated at the discrete level. Besides, convexity implies that
the post-processing (6)–(7) cannot make the free energy increase.

Finally, the existence proof follows from a topological degree argument, arguing
by deformation to two independent one-phase systems in fixed domains.

3 Numerical Results

The numerical scheme has been implemented in the Julia language. The nonlinear
system is solved with Newton method and stopping criterion ‖Res‖l2(Δx) ≤ 10−12,
where Res is the residual of the scheme. Jacobians are efficiently automatically
computed thanks to the ForwardDiff and SparseDiffTools packages.

Let us introduce a test case: we fix an initial interface X0 = 0.51 and smooth
initial concentrations c01(x) = c02(x) = 1

4 (1 + cos(πx)) , c03(x) = 1
2 (1 − cos(πx))

that will be suitably discretized. The cross-diffusion coefficients are taken equal in
each phase, with values κ12 = κ21 = 0.2, κ23 = κ32 = 0.1, κ13 = κ31 = 1 (diagonal
coefficients do not play any role). The reference chemical potential µ∗,s,µ∗,g are
given by eµ

∗,s = [0.2 0.4 0.4], eµ
∗,g = [1.2 0.1 0.1], so as to fulfill the equilibrium

condition (4).
We illustrate the properties of the scheme on a uniform mesh of N = 100 cells

with time step Δt1 = 6 × 10−4 and a final time T1 = 5. Snapshots of the simula-
tion are presented in Fig. 2, where one notices the formation of a discontinuity at
the free interface and convergence to the two-phase stationary solution. We also
study the long-time asymptotics: we first compute accurately the stationary solu-
tion (c∞, X∞) obtained in Proposition1. Then we study the relative free energy
Hp(cp

Δx , X p) − H∞(c∞, X∞) and relative interface X∞ − X p over time.The results
are given in Fig. 3a, indicating exponential speed of convergence and decrease of both
functionals. In particular, our scheme is well-balanced and preserves the asymptotics
of the continuous system.

Our second test is devoted to a convergence analysis with respect to the size of
the mesh. We consider a fixed time stepΔt2 = 10−4, a final time T2 = 0.25, uniform
meshes from 23 to 210 cells and we compare the different solutions with respect to a
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(a) Initial profiles (b) t = 0.25

(c) t = 1.0 (d) Stationary profiles

Fig. 2 Concentration profiles at different times

(a) Long-time asymptotics (b) Convergence analysis

Fig. 3 (H(c(t), X (t)) − H(c∞, X∞)) and (X∞ − X (t)) as functions of time (left). Convergence
analysis of the solution under space grid refinement (right)

reference solution computed on a finer grid of 211 cells. The space-time (resp. time)
L1 error on the concentrations (resp. on the interface) are displayed in Fig. 3b. One
clearly observes convergence, at first order in space for the concentrations. These
results should be compared with the second order accurate one-phase schemes [4, 5].
On the one hand, it is plausible that the interface treatment induces the loss of order.
On the other hand, the discrete L1((0, 1)) space distance we use to compare solutions
is not perfectly adapted since the solutions are defined in slightly different domains.
Rescaling all quantities might offer more insights into the convergence properties.
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Finite Volume Scheme for the Diffusive
Field-Road Model: Study of the Long
Time Behaviour

Matthieu Alfaro and Claire Chainais-Hillairet

Abstract We consider the field-road system, a model for fast diffusion channels in
population dynamics, consisting of two parabolic equations posed on sets of different
dimensions and coupled through exchange terms on “the road”. We propose a finite
volume scheme for this model, the analysis of which requires an unconventional
discrete Poincaré-Wirtinger inequality, and establish somenumerical analysis results.

Keywords Field-road model · Finite volume method · Long time behaviour ·
Entropy dissipation

1 Presentation of the Field-Road Model

The field-roadmodel was introduced in [2] to describe the spread of invasive species
in presence of networkswith fast propagation. It consists in a reaction-diffusion equa-
tion on the half plane RN−1 × {xN > 0} (the field, N ≥ 2) coupled with a diffusion
equation on the hyperplaneRN−1 × {xN = 0} (the road). The coupling is ensured by
the boundary terms on the field and the zeroth-order term on the road. This problem
has been widely studied in the literature from a theoretical viewpoint. In the present
work, we consider the purely diffusive field-roadmodel, see [1], in a bounded domain
and we study its numerical approximation by a TPFA finite volume scheme. We will
briefly give some properties satisfied by the scheme and state its long time behaviour
obtained by an entropy method. The originality of this work comes from the differ-
ence of dimension between the field and the road and the exchange terms between
both. In particular a refinement of Poincaré-Wirtinger inequality will be required for
the analysis.
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We restrict the presentation to the case N = 2. The road is defined by ω, an
open bounded interval, while the field is defined byΩ = ω × (0, L)with L > 0.We
denote by n the outward normal to Ω , and also to ω. The field-road model writes as
follows: ⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tv = d�v, in Ω × {t > 0},
d∇v · n = μu − νv|ω, on ω × {t > 0},
d∇v · n = 0, on ∂Ω \ ω × {t > 0},
∂t u = D�u + νv|ω − μu, in ω × {t > 0},
D∇u · n = 0, on ∂ω × {t > 0},

(1)

where v = v(x, y, t) (resp. u = u(x, t)) denotes the density of individuals in the
field (resp. in the road), with x ∈ ω, 0 < y < L . Furthermore, d and D are positive
diffusion coefficients, and μ and ν positive transfer coefficients between the field
and the road. The system (1) is supplemented with (nonnegative) initial conditions
v0 = v0(x, y) on Ω and u0 = u0(x) on ω.

In Sect. 2, we present the finite volume scheme. Its first properties, including
dissipation, are presented in Sect. 3. Exponential decay in time to the associated
steady-state is proved in Sect. 4. It requires to relate entropy and dissipation, via
an unconventional discrete Poincaré-Wirtinger inequality adapted to the field-road
model. Last, in Sect. 5, we present some simulations, sustaining our convergence
result and exploring further effects.

2 The TPFA Finite Volume Scheme

2.1 Meshes and Notation

Let us first consider a mesh of Ω made of a family of control volumes, a family of
edges and a family of points: MΩ = (TΩ, EΩ,PΩ). We use classical notations: K
for a control volume, σ for an edge, xK for an interior point of K (named as the center
of K ). The mesh is admissible in the sense that it satisfies the usual orthogonality
property, see [4]. We also consider an admissible mesh of ω, Mω = (Tω, Eω,Pω).
We denote by K ∗ a control volume of Tω , σ∗ an edge (a point in practice) of Eω and
xK ∗ an interior point of K ∗.

In TΩ , we can distinguish the control volumes that have an edge on the road from
the other ones that are strictly included in the field, which writes TΩ = T r

Ω ∪ T f
Ω .

For the edges of EΩ we can also distinguish the interior edges from the boundary
edges, included in ω or included in ∂Ω \ ω (considered as exterior edges). We have
EΩ = E int

Ω ∪ Er
Ω ∪ Eext

Ω . For an interior edge σ ∈ E int
Ω , we may write σ = K |L .

We assume the compatibility of the two meshes MΩ and Mω: every control
volume of Tω must coincide with an edge of Er

Ω . More precisely, for all σ ∈ Er
Ω ,
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there exists a unique K ∈ T r
Ω such that σ is an edge of K and a unique K ∗ ∈ Tω such

that σ coincide with K ∗. Therefore, we will use the notation σ = K |K ∗.
The measures of control volumes or edges are denoted by mK , mK ∗ , mσ , mσ∗

(which is set equal to 1 in our case). We also define by dσ or dσ∗ the distance
associated to an edge σ ∈ EΩ or σ∗ ∈ Eω , usually defined as the distance between
the centers of twoneighbouring cells (or the distance from the center to the boundary),
so that the transmissivities are defined by

τσ = mσ

dσ
∀σ ∈ EΩ, τσ∗ = mσ∗

dσ∗
∀σ∗ ∈ Eω.

In view of time discretization, we consider a time step δt .

2.2 The Scheme

Let us denote by ((vn
K )K∈TΩ,n≥0, (v

n
K ∗)K ∗∈Tω,n≥1, (unK ∗)K ∗∈Tω,n≥0) the discrete

unknowns. We start with the discretization of the initial conditions: v0
K and u0K ∗

are defined as the mean values of v0 and u0 respectively over K ∈ TΩ and K ∗ ∈ Tω .
The scheme we propose is a backward Euler scheme in time and a two-point flux

approximation finite volume scheme in space. It writes as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mK
vn
K − vn−1

K

δt
+ d

∑

σ=K |L
τσ(vn

K − vn
L) + d

∑

σ=K |K ∗
τσ(v

n
K − vn

K ∗) = 0,∀K ∈ TΩ,

− dτσ(vn
K − vn

K ∗) = mK ∗(μunK ∗ − νvn
K ∗), ∀σ ∈ Er

Ω,σ = K |K ∗,

mK ∗
unK ∗ −un−1

K ∗

δt
+ D

∑

σ∗=K ∗|L∗
τσ∗(unK ∗ − unL∗)

+ mK ∗(μunK ∗ − νvn
K ∗) = 0,∀K ∗ ∈ Tω.

(2)

At each time step, the scheme consists in a square linear system of equations of size
#TΩ + 2#Tω . We can obtain a weak formulation of the scheme by multiplying the
equations in (2) by some test values and summing over TΩ , Er

Ω , Tω . For a given
vector ((ϕK )K∈TΩ

, (ϕK ∗)K ∗∈Tω
, (ψK ∗)K ∗∈Tω

), we obtain

∑

K∈TΩ

mKϕK
vn
K − vn−1

K

δt
+

∑

K ∗∈Tω

mK ∗ψK ∗
unK ∗ − un−1

K ∗

δt

+ d
∑

σ=K |K ∗
τσ(vn

K − vn
K ∗)(ϕK − ϕK ∗) = −D

∑

σ∗=K ∗|L∗
τσ∗(unK ∗ − unL∗)(ψK ∗ − ψL∗)

− d
∑

σ=K |L
τσ(vn

K − vn
L)(ϕK − ϕL) −

∑

K ∗∈Tω

mK ∗(μunK ∗ − νvn
K ∗)(ψK ∗ − ϕK ∗). (3)

This weak formulation (3) is equivalent to the scheme (2).
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3 Existence of a Solution and First Properties

Existence, Uniqueness and Positivity of the Solutions to the Scheme

Assuming that vn−1
K = 0 for all K ∈ TΩ and un−1

K ∗ = 0 for all K ∗ ∈ Tω and choosing
ϕK = νvn

K , ϕK ∗ = νvn
K ∗ , ψK ∗ = μunK ∗ in (3) yields existence and uniqueness of a

solution to the scheme (2) at each time step.
Assuming now that vn−1

K ≥ 0 for all K ∈ TΩ and un−1
K ∗ ≥ 0 for all K ∗ ∈ Tω choos-

ingϕK = ν(vn
K )−,ϕK ∗ = ν(vn

K ∗)−, ψK ∗ = μ(unK ∗)− (where x− denotes the negative
part of x ∈ R) in (3) yields by induction the nonnegativity of the solution to the
scheme (2) at each time step:

vn
K ≥ 0 ∀K ∈ TΩ, vn

K ∗ ≥ 0, unK ∗ ≥ 0 ∀K ∗ ∈ Tω.

Mass conservation and steady-state

Choosing the test vector constant equal to 1 in (3) leads to the conservation of the
total mass:

∑

K∈TΩ

mKvn
K +

∑

K ∗∈Tω

mK ∗unK ∗ =
∫

Ω

v0dxdy +
∫

ω

u0dx, ∀n ≥ 0. (4)

We will denote by M0 the total mass.
A steady-state verifies vn

K = vn−1
K = v∞

K for all K ∈ TΩ and unK ∗ = un−1
K ∗ = u∞

K ∗
for all K ∗ ∈ Tω , with vn

K ∗ = v∞
K ∗ for all K ∗ ∈ Tω . With ϕK = νv∞

K , ϕK ∗ = νv∞
K ∗ ,

ψK ∗ = μu∞
K ∗ in (3), we obtain that the steady-state is constant in space, i.e. v∞

K =
v∞ = v∞

K ∗ and u∞
K ∗ = u∞ and, from the mass conservation,

{
νv∞ − μu∞ = 0,

mΩv∞ + mωu
∞ = M0,

so that
v∞

μ
= M0

μmΩ + νmω
= u∞

ν
. (5)

From now on, we assume that M0 is positive, so that v∞ and u∞ are also positive.

Relative entropies and dissipations

For any twice differentiable function Φ satisfying

Φ ′′ > 0, Φ(1) = 0, Φ ′(1) = 0,
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we define, as in [3], a discrete entropy, relative to the steady state (v∞, u∞), by

Hn
Φ =

∑

K∈TΩ

mKv∞Φ(
vn
K

v∞ ) +
∑

K ∗∈Tω

mK ∗u∞Φ(
unK ∗

u∞ ), ∀n ≥ 0. (6)

Lemma 1 Let ((vn
K )K∈TΩ,n≥0, (v

n
K ∗)K ∗∈Tω,n≥1, (unK ∗)K ∗∈Tω,n≥0) be a solution to the

scheme (2) and (v∞, u∞) the associated steady-state defined by (5), then the discrete
entropy defined by (6) is dissipated along time, as follows:

Hn
Φ − Hn−1

Φ

δt
≤ −Dn

Φ ≤ 0 ∀n ≥ 0, (7)

with Dn
Φ =d

∑

σ=K |K ∗
τσ(vn

K − vn
K ∗)

(

Φ ′(
vn
K

v∞ ) − Φ ′(
vn
K ∗

v∞ )

)

+ d
∑

σ=K |L
τσ(vn

K − vn
L)

(

Φ ′(
vn
K

v∞ ) − Φ ′(
vn
L

v∞ )

)

+ D
∑

σ∗=K ∗|L∗
τσ∗(unK ∗ − unL∗)

(

Φ ′(
unK ∗

u∞ ) − Φ ′(
unL∗

u∞ )

)

+μu∞ ∑

K ∗∈Tω

mK ∗

(
unK ∗

u∞ − vn
K ∗

v∞

)(

Φ ′(
unK ∗

u∞ ) − Φ ′(
vn
K ∗

v∞ )

)

≥ 0. (8)

Proof Due to the convexity of Φ, we have

Hn
Φ − Hn−1

Φ

δt
≤

∑

K∈TΩ

mK
vn
K − vn−1

K

δt
Φ ′(

vn
K

v∞ ) +
∑

K ∗∈Tω

mK ∗
unK ∗ − un−1

K ∗

δt
Φ ′(

unK ∗

u∞ ).

Then, we apply (3) with ϕK = Φ ′(
vn
K

v∞ ), ϕK ∗ = Φ ′(
vn
K ∗

v∞ ), ψK ∗ = Φ ′(
unK ∗

u∞ ), which

leads to the entropy-dissipation relation (7). The dissipation termDn
Φ rewrites as (8)

thanks to (5). Moreover it is nonnegative due to the monotonicity of Φ ′. �

4 Long-Time Behaviour: Convergence to the Steady-State

From now on, we will focus on the special case where Φ(x) = (x − 1)2/2 (fre-
quently denoted as Φ2). Forgetting the superscript n, the corresponding entropy and
dissipation are denoted byH2 and D2 and they are equal to:
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H2 = 1

2

∑

K∈TΩ

mK
(vK − v∞)2

v∞ + 1

2

∑

K ∗∈Tω

mK ∗
(uK ∗ − u∞)2

u∞ ,

D2 = d
∑

σ=K |K ∗
τσ

(vK − vK ∗)2

v∞ + d
∑

σ=K |L
τσ

(vK − vL)
2

v∞

+D
∑

σ∗=K ∗|L∗
τσ∗

(uK ∗ − uL∗)2

u∞ + μu∞ ∑

K ∗∈Tω

mK ∗
(uK ∗

u∞ − vK ∗

v∞
)2

.

We notice that the relative entropy H2 corresponds to a weighted L2 distance
between the solution to the scheme and its steady-state, that have the same total
mass, while the dissipation D2 corresponds to a weighted L2 norm of a discrete
gradient of the solution on the field and the road, with additional exchange terms
on the road. Proposition 1 states a crucial relation between entropy and dissipation
which can be seen as a kind of discrete Poincaré-Wirtinger inequality adapted to the
field-road model.

Proposition 1 Let us consider a set ((vK )K∈TΩ
, (vK ∗)K ∗∈Tω

, (uK ∗)K ∗∈Tω
) of discrete

values with a total mass

M0 =
∑

K∈TΩ

mKvK +
∑

K ∗∈Tω

mK ∗uK ∗ ,

and (v∞, u∞) defined by (5). There exists a constant Λ depending on the domain Ω

and on the data M0, μ, ν, d, D such that

H2 ≤ 1

Λ
D2. (9)

Proof Weonly give a sketch of the proof. Let � > 0,we denote byΩ� = ω × (−�, 0)
the “thickened” road and Ω+ = ω × (−�, L) the enlarged domain. Thanks to (5),
we can define a probability measure γ on Ω+ by

dγ(x, y) =
(

v∞

M0
1Ω(x, y) + 1

�

u∞

M0
1Ω�

(x, y)

)

dxdy.

We also introduce two piecewise constant functions f and v̄ on Ω+ defined by

f (x, y) =
∑

K∈TΩ

vK

v∞ 1K (x, y) +
∑

K ∗∈Tω

uK ∗

u∞ 1K ∗×(−�,0)(x, y),

v̄(x, y) =
∑

K ∗∈Tω

vK ∗

v∞ 1K ∗×(−�,0)(x, y).
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We notice that γ( f ) = 1, so that H2 can be rewritten as

H2 = M0

2

∫

Ω+
( f (x, y) − γ( f ))2dγ(x, y)

= M0

4

∫

Ω+

∫

Ω+
( f (x, y) − f (x ′, y′))2dγ(x, y)dγ(x ′, y′).

The integral over Ω+ × Ω+ can be split into three terms corresponding to the inte-
grals over Ω × Ω , Ω� × Ω� and Ω × Ω� (counted twice). We may apply the proof
of the discrete mean Poincaré inequality in [4] to the first two terms, so that they are
bounded (up to a multiplicative constant) respectively by

∑

σ=K |L
τσ

(vK − vL)
2

v∞ and
∑

σ∗=K ∗|L∗
τσ∗

(uK ∗ − uL∗)2

u∞ .

In the cross term, we may introduce v̄ in this way:

( f (x, y) − f (x ′, y′))2 ≤ 2( f (x, y) − v̄(x ′, y′))2 + 2( f (x ′, y′) − v̄(x ′, y′))2.

The integral over Ω × Ω� of the first term in the above right hand side is bounded,
up to a multiplicative constant, by

∑

σ=K |K ∗
τσ

(vK − vK ∗)2

v∞ ,

thanks to a refinement of [4] to deal with the non symmetry of the domain. Last∫

Ω

∫

Ω�
( f (x ′, y′) − v̄(x ′, y′))2dγ(x, y)dγ(x ′, y′) is nothing else than

u∞

M0

∑

K ∗∈Tω

mK ∗
(uK ∗

u∞ − vK ∗

v∞
)2

which is a term appearing in the expression of D2. �

Lemma 1 and Proposition 1, combined with a discrete Gronwall lemma, lead to
the exponential decay of the relative entropy in time, and therefore of the distance in
L2-norm between the solution at time step n and the steady-state.

Theorem 1 Let ((vn
K )K∈TΩ,n≥0, (v

n
K ∗)K ∗∈Tω,n≥1, (unK ∗)K ∗∈Tω,n≥0) be a solution to the

scheme (2) and (v∞, u∞) the associated steady-state defined by (5), then we have,
for all n ≥ 0,

Hn
2 ≤ (1 + Λδt)−n

(
1

2v∞

∫

Ω

(v0 − v∞)2dxdy + 1

2u∞

∫

ω

(u0 − u∞)2dx

)

.
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5 Numerical Experiments

We consider two test cases inspired from [1]. Let L = 20, the road and the field are
defined by ω = (−2L , 2L) and Ω = ω × (0, L). For the first test case, there is no
individual on the road at t = 0; the initial condition is given by

v0 = 1[−2.5,2.5]×[0,5] and u0 = 0 =⇒ M0 = 25.

For the second test case, we assume that there are individuals on the road at t = 0,
but v0 and u0 ensure that the total mass M0 remains the same:

v0 = 1.5 · 1[−2.5,2.5]×[2.5,5] and u0 = 1.25 · 1[−2.5,2.5] =⇒ M0 = 25.

Moreover, for both test cases, we choose μ = 1 and ν = 5, so that they have the same
steady state: (v∞, u∞) = (1/80, 5/80).We also fix the diffusion coefficient for the
field d = 1 and we choose different values for the diffusion coefficient on the road
D. The mesh we use for the simulations is made of 14336 triangles.

We plot on Fig. 1 the evolution of the relative entropy with respect to time for
D = 0.01, 1, 100. As expected, we observe an exponential decay towards 0 in time,
with a decay rate depending on D. We also notice that the results are almost the same
for both test cases.

Figure2 shows the evolution of the decay rate Λ (computed experimentally) as
a function of D. We observe that Λ behaves as a monotone function of D for both
test cases. We notice some speed-up of the decay rate when D si sufficiently large.
Moreover, we observe that the two curves are almost the same. This suggests that the
decay rate essentially depends on D and the steady state (v∞, u∞). The latter keeps
a trace of the initial total mass but not of the initial “fragmentation” (Test Case 1 vs.
Test Case 2). The dependence on the transfer coefficients, μ and ν, would deserve
further investigations.

2esactseT1esactseT

Fig. 1 Discrete relative entropy Hn
2/H0

2 as a function of time for different values of D.
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2esactseT1esactseT

Fig. 2 Decay rate Λ as a function of the diffusion coefficient D.
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An Approximate Two-Point Dirichlet
Flux for Quasilinear Convection
Diffusion Equations

C. Chainais-Hillairet, R. Eymard, and J. Fuhrmann

Abstract We define, in the case of quasilinear convection-diffusion equations, an
approximation of the numerical fluxes obtained by extending the Scharfetter and
Gummel fluxes (defined in the case of linear convection—diffusion). We show that
this approximation is compatible with the asymptotic thermal equilibrium on an
application example.

Keywords Quasilinear convection–diffusion equation · Scharfetter–Gummel
flux · Long time behavior · Log-sobolev inequalities

1 Numerical Fluxes for Quasilinear Convection-Diffusion

Quasilinear convection-diffusion equations occur in a number of interesting applica-
tions in semiconductor physics, biology and other fields. Thermodynamical consis-
tency of numerical fluxes is a requirement for two point flux finite volume discretiza-
tions of these problems. For the linear case, Scharfetter and Gummel [1] defined
such fluxes based on the analytical solution of a two point Dirichlet boundary value
problem defined at the interfaces between neighboring control volumes. In [2], this
approach was generalized to the quasilinear case, resulting in a nonlinear integral
equation for the numerical flux. Recently, in [3] a new approximation scheme for this
problem was found. In this contribution, we review the results from [3] and apply
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Fig. 1 Two control volumes
in a finite volume scheme

the method to a two-dimensional demonstration example. We consider the nonlinear
conservation law

ut + divJ = 0 (1)

with nonlinear fluxes depending on the unknown function u and its gradient in a
bounded domainΩ ⊂ R

d (d ≥ 1), supplemented by initial and boundary conditions
(letting ∂Ω = Γ D ∪ Γ N , we consider Dirichlet boundary conditions on Γ D and
no-flux boundary conditions on Γ N ). Let ζ and η be nonlinear functions depending
on the unknown u, such that

(i) η ∈ C(R,R) is Lipschitz continuous with Lipschitz constant Lη.
(ii) ζ ∈ C1(R,R) is Lipschitz continuous with Lipschitz constant Lζ and ∃r >

0 such that ζ ′(s) ≥ r ∀s ∈ R.

(iii) q ∈ C1(Ω̄,Rd).

Define the nonlinear flux
J = −∇ζ(u) + η(u)q. (2)

Consider an implicit Euler, two-point flux finite volume scheme (Fig. 1)

mK
un+1

K − un
K

Δt
+

∑

σ∈EK ,int∪ED
K

mσFn+1
Kσ = 0. (3)

The numerical flux Fn+1
Kσ through the edge σ of a control volume K is sought

as a consistent and conservative approximation of
1

mσ

∫

σ

J · nK ,σ. It is defined as

a function of un+1
K and un+1

L if σ is the common edge of two neighboring control
volumes K and L (we will denote σ = K |L , and σ ∈ EK ,int). It is a function of un+1

K
and uD

σ if σ is an edge of K included in the Dirichlet boundary Γ D (we will denote
σ ∈ ED

K in this case and define by uD
σ an approximation of the Dirichlet data uD on

σ). Let

qK ,σ = 1

mσ

∫

σ

q · nKσds ∀σ ∈ EK (4)
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Then we set Fn+1
Kσ = F(un+1

K , un+1
Kσ , qK ,σ, dσ), where F verifies the following prop-

erties, which are shown to be sufficient for the convergence of the numerical scheme
in the case divq = 0 [2].

Definition 1 The functionF : (a, b, q, h) ∈ R
3 × R+ 
→ F(a, b, q, h) ∈ Rdefines

an admissible numerical flux if:

(i) F is Lipschitz-continuous with respect to a and b.
(ii) F is increasing with respect to a, decreasing with respect to b.
(iii) F(a, b, q, h) + F(b, a,−q, h) = 0 for all (a, b, q, h) ∈ R

3 × R+.

(iv) There exists c ∈ [a⊥b, ab] such that F(a, b, q, h) = qη(c) − ζ(b) − ζ(a)

h
.

(v) (a − b)F(a, b, q, h) ≥ −
∫ b

a
qη(s)ds + (ξ(b) − ξ(a))2

h
with ξ(s) =

∫ s

0

√
ζ ′(t)dt .

For linear functions η, ζ, Scharfetter and Gummel [1] in the context of semiconduc-
tor device simulation define these numerical fluxes by qy − y′ if y : [0, h] → R is
such that (qy − y′)′ = 0, y(0) = a, y(y) = b. Eymard, Fuhrmann and Gärtner in [2]
generalized this idea to the nonlinear case: Search for the solution y : [0, h] → R

to (
q η(y) − (ζ(y))′

)′ = 0, y(0) = a, y(h) = b, (5)

and define F(a, b, q, h) as the constant value of qη(y(s)) − (ζ(y))′(s). For a < b,
the numerical flux F(a, b, q, h) can be obtained as the unique solution of

H(F(a, b, q, h)) = h where H(x) =
∫ b

a

ζ ′(s)
qη(s) − x

ds. (6)

For a > b, it is given byF(a, b, q, h) = F(b, a,−q, h), and for a = b, it is given by
F(a, b, q, h) = qη(a). It is then proved to be admissible in the sense of Definition 1.

In general one cannot analytically solve the integral equation (6). A few special
cases beyond the linear one resulting in the classical Scharfetter-Gummel scheme
allow for a simplified treatment [4, 5]. In [6], the integral in (6) has been replaced by
various fixed quadrature rules. We propose in [3] an adaptive quadrature approach,
based on the definition of Fδ(a, b, q, h) for an approximation parameter δ > 0.

First, set Fδ(a, a, q, h) = qη(a) and Fδ(a, b, q, h) = Fδ(b, a,−q, h) for a > b
as for the SG-nl fluxes so that it is sufficient to consider now that a < b.

Let (yi )i∈Z ∈ R
Z be a given sequence, independent of a, b, q, h, such that:

1. the sequence (yi )i∈Z is increasing,
2. yi tends to ±∞ as i → ±∞,
3. supi∈Z(yi+1 − yi ) = δ ∈ (0,+∞).

Given a < b, we denote ia ∈ Z the index such that a ∈ [yia
, yia+1) and ib ∈ Z

the index such that b ∈ (yib
, yib+1]. If ia < ib, we define N = 1 + ib − ia and we
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Fig. 2 Presentation of the approximation points (yi )i∈Z and (yi )0≤i≤N

set y0 = a, y1 = yia+1, . . . , yN−1 = yib
, yN = b. This case is illustrated in Fig. 2. If

ia = ib, we let N = 1 and we define y0 = a, y1 = b.
Denoting by F (q)

god the Godunov flux function, define Hδ(x), for any x ∈ (−∞,

F (q)

god(a, b)), by

Hδ(x) =
N−1∑

i=0

ζ(yi+1) − ζ(yi )

F (q)

god(yi , yi+1) − x
(7)

where

F (q)

god(u, v) =
⎧
⎨

⎩

min
s∈[u,v] qη(s) if u ≤ v,

max
s∈[v,u] qη(s) if v ≤ u.

(8)

Remark that F (q)

god(a, b) ≤ F (q)

god(yi , yi+1) for i = 0, . . . , N − 1. Then Fδ(a, b, q,

h) is defined as the solution to the nonlinear equation:

h = Hδ(Fδ(a, b, q, h)). (9)

One should be aware that Fδ depends on the full sequence (yi )i∈Z, not only on δ.

Lemma 1 (δ-fluxes are well defined and admissible) [3] Let a < b. Then the func-
tion Hδ defined by (7) is increasing and strictly convex, and there holds

lim
x→−∞ Hδ(x) = 0 and lim

x →
< F (q)

god(a,b)

Hδ(x) = +∞. (10)

As a consequence,Fδ(a, b, q, h) is well defined as the unique solution to the equation
Hδ(x) = h. Moreover, the δ-fluxes defined by (7)–(9) are admissible in the sense of
Definition 1.

Lemma 2 (For δ → 0, the δ-fluxes approximate the SG-nl fluxes) [3] There exists
CF > 0, only depending on Q, M, Lη, Lζ and r where M ≥ h and Q > |q|, such
that, for a ≤ b,

0 ≤ F(a, b, q, h) − Fδ(a, b, q, h) ≤ CFδ, (11)

Due to (11), we can consider that F0 coincides with F , the SG-nl flux. Therefore, in
the sequel, we can use Fδ with δ = 0 to denote the SG-nl flux.
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2 The Drift-Diffusion Case and Thermal Equilibrium

For Γ D = ∅, also consider the special case q = −∇V with V ∈ L∞(Ω) ∩ H 1(Ω)

such that
∫
Ω

V = 0 and q · n = 0 on Γ = ∂Ω in a weak sense. Under the additional

conditionη(0) = 0 andη(s) > 0 for all s > 0,withμ(t) = ∫ t
1

ζ ′(s)
η(s) ds one can express

J = −η(u)∇ (μ(u) + V (x)) . (12)

Let g := −ΔV ∈ L2(Ω) and set gK = 1

mK

∫

K
g(x)dx . Define (VK )K∈T by

−
∑

σ=K |L
τσ(VL − VK ) = mK gK , ∀K ∈ T , and

∑

K∈T
mK VK = 0. (13)

Now, instead of Eq. (4), express qK ,L in the numerical scheme (3) by

qK ,L = − VL − VK

dσ
∀σ = K |L ∈ Eint. (14)

In [3] it is shown that the resulting δ-scheme is mass conserving, has a unique
solution, and yields nonnegative solutions for nonnegative initial values. Moreover,
the convergence proof from [2] can be adapted to this case.

Lemma 3 (Consistency of the SG-nl flux with the special form of the continuous
flux) For all a, b ∈ (0,+∞), there exists c ∈ [a⊥b, ab], denoted in the sequel
c = χ(a, b), such that

F(a, b, q, h) = −η(c)

(
μ(b) − μ(a)

h
− q

)
. (15)

This definition of χ(a, b) allows to characterize the entropy behavior with respect to
the thermal equilibrium defined by the SG-nl scheme.

Lemma 4 (Thermal equilibrium) For any M0 > 0, there exists one and only one
(uK )K∈T with uK ≥ 0 such that

∑

K∈T
mK uK = M0 > 0, (16)

and
∀K ∈ T , ∀σ ∈ EK ,int,σ = K |L , F(uK , uL , qK ,L , dσ) = 0. (17)

Moreover, we have uK > 0 for all K ∈ T , and there exists one and only one λ ∈ R

such that
∀K ∈ T , μ(uK ) + VK = λ.



230 C. Chainais-Hillairet et al.

Consequently, the SG-nl scheme preserves the thermal equilibrium of the continuous
problem characterized by the existence of λ ∈ R such that μ(u) + V = λ.

Lemma 5 (Discrete solutions uniformly bounded for δ small enough) Let (u0
K )K∈T

be given, with u0
K > 0 for all K ∈ T . Then there exist B > 0 and B > 0, only depend-

ing on maxK u0
K , minK u0

K , maxK VK , minK VK and μ, and δ0 > 0, only depending
on maxK u0

K , minK u0
K , maxK VK , minK VK , μ and on M, such that, for all δ < δ0,

any solution (un
K )K∈T ,n≥0 of the δ- scheme is such that

∀n ∈ N, ∀K ∈ T , 0 < B ≤ un
K ≤ B.

Lemma 6 (Decay of the relative entropy) Let (u0
K )K∈T with u0

K > 0 be given. Let
(u∞

K )K∈T be the thermal equilibrium given by Lemma 4 for M0 = ∑
K∈T mK u0

K ,
and let (un

K )K∈T ,n≥0 be the solution to the δ-scheme (δ ≥ 0). For any n ∈ N, we
define the discrete entropy En and the associated discrete dissipation Dn+1 by:

En =
∑

K∈T
mK

(
�(un

K ) − �(u∞
K ) − μ(u∞

K )(un
K − u∞

K )
)

(18)

Dn+1 =
∑

σ∈Eint,σ=K |L
τση(un+1

σ )
(
μ(un+1

K ) − μ(un+1
L ) − μ(u∞

K ) + μ(u∞
L )

)2
, (19)

with un+1
σ = χ(un+1

K , un+1
L ) defined by (15). Then there exists β ≥ 0, only depending

on Ω , ‖g‖L2(Ω), Lη, Lζ , such that

En+1 − En

Δt
+ Dn+1 ≤ βδ. (20)

Theorem 1 (Convergence to the discrete thermal equilibrium) Let (u0
K ) be given,

with u0
K > 0 for all K ∈ T and M0 the associate mass. Let (un

K )K∈T ,n≥0 the transient
discrete solution and (u∞

K )K∈T the thermal equilibrium defined by Lemma 4. Let
δ0 > 0, B > 0 and B > 0 be given by Lemma 5, and β > 0 be given by Lemma 6.
Then there exists α > 0 only depending on μ, η, B and B, such that, for any δ ∈ [0, δ0)
and for any n ∈ N, it holds

1

2
min
[B,B]

μ′ ∑

K∈T
mK (un

K − u∞
K )2 ≤ En ≤ βδ

(1 − (1 + αΔt)−n)

α
+ E0(1 + αΔt)−n.

Note that, for Δt ≤ 1/α, it holds (1 + αΔt)−n ≤ exp(− 1
2αnΔt), which shows in

this case the exponential decay of En, up to δ.
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3 A Numerical Experiment

Amending the numerical results provided in [3], in the present contribution we pro-
vide results of a 2D simulation inspired by [7]. LetΩ = (−10, 10) × (−10, 10). For
V (x) = −|x|2

2 , regard the convective porous medium equation

−∇(um + αu) + u∇V = 0 (21)

with homogeneous Neumann boundary conditions. For xa = (2,−2) and xb =
(−2, 2), define the initial value

u0(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp
(
− 1

6−|x−xa |2
)

if |x − xa| <
√
6

exp
(
− 1

6−|x−xb |2
)

if |x − xb| <
√
6

0 else

(22)

For α = 0, this problem has an equilibrium solution

ueq(x) =
(

C − m − 1

m
V (x)

) 1
m−1

+
(23)

where the constantC is given frommass conservation
∫
Ω

ueq = ∫
Ω

u0.We discretize
Ω by a grid of 60 × 60 discretization points and a timestep of 0.1. For α > 0, the
equilibrium solution can be obtained numerically from

α log ueq(x) + m

m − 1
ueq(x)m−1 − (C − V (x)) = 0 (24)

Figure3 shows the solution at three moments of the evolution. Figure4 demon-
strates the evolutionof the discrete relative entropy, its finite difference timederivative
and the discrete dissipation rate for the degenerate case (violating the assumption

]

Fig. 3 Evolution from u0 (22) to ueq (23) under (21) for α = 0
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Fig. 4 Relative entropy E (18) (left), dissipation rate D (19) (right, lines) and ∂t E (right, dots) for
different values of δ during evolution from u0 (22) to ueq (23) under (21) for α = 0

Fig. 5 Relative entropy E (18) (left), dissipation rate D (19) (right, lines) and ∂t E (right, dots) for
different values of δ during evolution from u0 (22) to ueq (23) under (21) for α = 0.1

Table 1 Estimated values of β from Lemma 6

δ α = 0 α = 0.1

10−1 1.06 · 10−12 6.60 · 10−13

10−2 7.59 · 10−12 4.51 · 10−12

10−3 7.53 · 10−11 9.90 · 10−11

10−4 0 5.60 · 10−10

ζ ′ ≥ r > 0).We note that D becomes slightly negative for δ = 0.1. The same data for
α = 0.1 is shown in Fig. 5. The solution for α = 0.1 is visually not distinguishable
from the one shown in Fig. 3. In both cases, a decrease of δ leads to a closer approach
to the equilibrium for large times. As in the 1D case, the interesting observation is
that for the nondegenerate case, the slope of the numerical dissipation rate does not
depend on α.

From the computation, we also can estimate the value of β from Lemma 6 the
resulting values shown in Table1 essentially are not distinguishable from roundoff
error, supporting the hypothesis that β = 0 could be proven.
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The Two-Point Finite Volume Scheme
for the Microscopic Bidomain Model
of Electrocardiology

Zeina Chehade and Yves Coudière

Abstract We are interested in the approximation of a cardiac microscopic model.
It is a set of Laplace equations with non-standard, time-dependent, transmission
conditions, for which finite volume methods are of real interest. The transmission
conditions state as ordinary differential equations on the jumpof the potential, namely
the transmembrane voltage, so thatwekeep this voltage as an unknown in our scheme.
Here we extend the two-point flux approximation to the discretization of this model,
show that it converges, and compute error estimates.

Keywords Finite volumes · Error estimate · Cardiac EMI model

1 Introduction

The standard mathematical model for describing the spread of excitation of a car-
diac tissue is a system of reaction-diffusion equations, obtained by homogeniza-
tion of a microscopic model. It fails to capture effects of small scale tissue orga-
nization, relevant to cardiac fibrillation [3]. For these reasons, we aim at finding
numerical approximations of themicroscopic cardiacmodel, called the extracellular-
membrane-intracellular (EMI) model, as defined in [1, 5].

The general EMI model is a set of NC + 1 Laplace equations. For sake of sim-
plicity, we will work only with NC = 1 cell, denoted Ω1 within a tissue sample Ω

(Ω1 ⊂ Ω). The extracellular matrix (ECM) is denoted by Ω0 := Ω\Ω1 (see Fig. 1).
Scalar electrical conductivity coefficients σ0 > 0 and σ1 > 0 are given in the two
subdomains. Themain physical unknowns are the electrical potentials u0 and u1. The
normal flux of current at the interface between subdomains is continuous, whereas
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Fig. 1 Geometrical setup of
the EMI model with one cell

the electrical potential jumps between subdomains. This jump defines the voltage
v = u1 − u0 on the cell membraneΣ := Ω0 ∩ Ω1. The system is closed by ordinary
differential equations (ODEs) that link the flux of current to the voltage on the cell
membrane. The equations read

−σkΔuk = 0, in Ωk, k = 0, 1, (1)

−σ0∇u0 · n0 = σ1∇u1 · n1 = − (cm∂tv + f (v)) , on Σ, (2)

where the unit vectors n0 and n1 are normal to Σ outward to Ω0 and Ω1, as depicted
in Fig. 1. The function f defines the ionic current, and models membrane elec-
trophysiology, while cm > 0 is the membrane surface capacitance. In general, the
function f also depends on a set of state variablesw defined onΣ (i.e. f = f (v,w)),
and the model is closed by a system of ODE, ∂tw = g(v,w) on Σ . Here we con-
sider a simplified model without state variables w. The equations are completed by
mixed boundary conditions −σ0∇u0 · n0 = gN on Γ N , and u0 = gD on Γ D , where
Γ D ∪ Γ N = ∂Ω is the boundary of the tissue sample. The equations are supple-
mented with initial data on Σ , v(0, ·) = v0, and we look for a solution u0, u1 for
t ∈ [0, T ] for any T > 0. From previous work [1], we know that there exists a weak
solution in L2(0, T ; H 1(Ω0) × H 1(Ω1)).

There has been someattempts at solving this systemof equations byfinite elements
or boundary element methods [1, 4, 5], but not with finite volumes methods (FVM).
Since the dynamics of the phenomena is written on the interface between subdomains
(through jump conditions), and the model relies on the continuity of the current flux
we believe that FVM are a relevant choice for the EMI model. We start here by
studying the simple two-point flux approximation (TPFA) for Eqs (1) and (2). It is
essential to carefully write the discrete flux on the cell membrane Σ . Following the
usual track, and assuming enough regularity (see Sect. 4), we are able to compute
some error estimates for the jump v in L∞(0, T ; L2(Σ)), as well as in a discrete
L2(0, T, H 1)-like norm for u0 and u1. For this purpose, we assume that Ω0 and Ω1

are polygonal domains.
Sections2, 3, and 4 describe the scheme, its well-posedness, and the error esti-

mates; Sect. 5 discusses the current result, and on-going work.
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2 The Numerical Scheme

We consider a standard FV-admissible mesh T , as defined in e.g. [2], with control
volumes K ∈ T , and cell centers (xK )K∈T . We assume that the mesh T is consistent
with the subdomainsΩ0 andΩ1: any K ∈ T is such that, either K ⊂ Ω0, or K ⊂ Ω1,
so that we define Ti = {K ∈ T , K ⊂ Ωi } (i = 0, 1).We also split the set of themesh
interfaces into: the set E� of interfaces e = K |L (using notations from [2]) such
that (K , L) ∈ Ti × Ti for some i ∈ {0, 1}; the set EΣ of interfaces e = K |L such
that (K , L) ∈ T0 × T1; and the set ED (resp. EN ) of the boundary faces e = K | for
which K ⊂ Ω0 and e ⊂ Γ D (resp.Γ N ). Let E = E� ∪ EΣ ∪ ED ∪ EN , and denote by
(xe)e∈E the points xe at the intersection of the interface e and the line (xK , xL) if e ∈
E� ∪ EΣ , and the perpendicular projection of xK on e if e ∈ ED ∪ EN . Regarding the
time discretization, we set Δt = T

N , for any N > 0 and tn = nΔt , for n = 0, . . . N .
An edge e = K |L ∈ EΣ may be such that (K , L) ∈ T0 × T1 or (K , L) ∈ T1 × T0.

Below, we always use the convention that K ∈ T0 and L ∈ T1.
The integral form of Eq. (1) on any cell K ∈ T at time tn reads

−
∑

e∈EK

∫

e
σk∇uk(t

n, ·) · nK e = 0, (3)

where EK is the set of interfaces e ∈ E that form the boundary of K ∈ T , and the
vector nK e is the unit normal to e outward of K . The integral of Eq. (2) on any
interface e = K |L ∈ EΣ (with the above convention) at time tn reads

−
∫

e
σ0∇u0(t

n, ·) · nK e =
∫

e
σ1∇u1(t

n, ·) · nLe

= −
(

cm

∫

e
∂tv(tn, ·) +

∫

e
f (v(tn, ·))

)
. (4)

There are NT = card(T ) equations (3), and NΣ = card(EΣ) equations (4), so that
we take NT + NΣ unknowns at each time tn (n = 1 . . . N ), which are the vectors
un
T := (un

K )K∈T ∈ R
NT , approximating the u(tn, xK ), and vn

EΣ := (vn
e )e∈EΣ ∈ R

NΣ ,
approximating the v(tn, xe). Using a semi-implicit Euler time-stepping method, our
numerical scheme states, for n = 1, 2 . . . N , as the NT + NΣ equations

−
∑

e∈EK

Fn
K e = 0, for all K ∈ T , (5)

−Fn
K e = Fn

Le = −
( cm

Δt
(vn

e − vn−1
e ) + f (vn−1

e )
)

|e| , for all e = K |L ∈ EΣ, (6)

with some given initial values v0
EΣ = (v0

e )e∈EΣ ∈ R
NΣ . The numerical flux formula

Fn
K e for e ∈ EK and K ∈ T approximate the exact flux:
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Fn
K e =τe(u

n
L − un

K ) if e = K |L ∈ EK ∩ E�, K ∈ T , (7)

Fn
K e =τe(u

n
L − un

K − vn
e ) if e = K |L ∈ EK ∩ EΣ, K ∈ T0, L ∈ T1, (8)

Fn
K e =τe(g

D,n
e − un

K ) if e = K | ∈ EK ∩ ED, K ∈ T0, (9)

Fn
K e = − gN ,n

e |e| if e = K | ∈ EK ∩ EN , K ∈ T0. (10)

In these expressions, the coefficient τe has the usual value τe = τK eτLe
τK e+τLe

if e = K |L ∈
E� ∪ EΣ , and τe = τK e if e = K | ∈ ED , where τK e = σi |e|

dK e
for all e ∈ EK and K ∈ Ti

(i = 0, 1). The quantities |e| and dK e are the measure of the interface e and the
Euclidean distance dK e = d(xK , e). At last, we take gD,n

e = gD(tn, xe) and gN ,n
e |e| =∫

e gN (tn, ·).
Expressions (7), (9), and (10) are standard, but expression (8) is obtained on

an interface e = K |L between K ∈ T0 and L ∈ T1 after introducing two auxil-
iary unknowns, named uK ,e and uL ,e, approximating u0(tn, xe) and u1(tn, xe), and
flux expressions Fn

K e = τK e(uK ,e − uK ) and Fn
Le = τLe(uL ,e − uL). The auxiliary

unknowns are eliminated with the conservation and jump conditions:

τK e(uK ,e − un
K ) + τLe(uL ,e − un

L) = 0, uL ,e − uK ,e = vn
e . (11)

Instead of the usual solution, we find that uK ,e = τK eun
K +τLeun

L−τLev
n
e

τK e+τLe
, and uL ,e =

τK eun
K +τLeun

L+τK ev
n
e

τK e+τLe
, and then Formula (8) for the flux.

3 Discrete Norms, Discrete Problem, Coercivity

In this section, we establish existence and uniqueness of the discrete solution.
First, from Eqs. (5) and (6), and the definitions (7)–(10), we observe that the

scheme writes as the following block linear system, at each time step

(
A B

B� C + cm
Δt D

) (
un
T

vn
EΣ

)
=

(
Gn

− (− cm
Δt v

n−1
EΣ + f (vn−1

EΣ )
) |e|

)
, (12)

where A ∈ R
NT ×NT is the usual TPFAmatrix,with nonzero entriesaK L = −τe if e =

K |L , and aK K = ∑
e=K |L∈EK

τe. Thematrix B ∈ R
NT ×NΣ has nonzero entries bK e =

τe, and bLe = −τe (for e ∈ EΣ ), and the matricesC, D ∈ R
NΣ×NΣ are diagonal, with

cee = τe and dee = |e| (for e ∈ EΣ ). The vector Gn ∈ R
NT gathers the contributions

of the boundary data.
We multiply scalarly Eq. (12) by the unknown vector

(
un
T vn

EΣ

)�
, or equivalently,

we multiply Eq. (5) by un
K and sum over K ∈ T , multiply Eq. (6) by vn

e and sum
over e ∈ EΣ . After reordering the summation over the set of edges, it yields
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∑

e∈E�

τe|un
L − un

K |2 +
∑

e∈EΣ

τe|un
L − un

K − vn
e |2 +

∑

e∈ED

τe|un
K |2 +

∑

e∈EΣ

cm

Δt

∣∣vn
e

∣∣2 |e|

=
∑

e∈ED

τegD,n
e un

K −
∑

e∈EN

gN ,n
e un

K |e| +
∑

e∈EΣ

cm

Δt

(
vn−1

e − f (vn−1
e )

)
vn

e |e| . (13)

Equation (13) shows that the linear system (12) is symmetric and positive-definite. In
addition, we can introduce the semi-norm of a vector (uT , vEΣ ) =
((uK )K∈T , (ve)e∈EΣ ) by

|(uT , vEΣ )|1,T

:=
(

∑

e∈E�

τe|uL − uK |2 +
∑

e∈EΣ

τe|uL − uK − ve|2 +
∑

e∈ED

τe|uK |2
)1/2

, (14)

This latter formula defines a norm, since if |(uT , vEΣ )|1,T = 0, one can observes
that uK = 0 for all K ∈ T0, and there exists u ∈ R such that uL = u for all L ∈ T1,
and ve = u for all e ∈ EΣ . Consequently, if |(uT , vEΣ )|1,T = 0, there exists u ∈ R

such that uK = ve = u for all K ∈ T and e ∈ EΣ .
Using these norms, Eq. (13) rewrites as:

∣∣(un
T , vn

EΣ )
∣∣2
1,T + cm

Δt
‖vn

EΣ ‖20,Σ = (
un
T

� vn
EΣ

�) (
A B

BT C + cm
Δt D

) (
un
T

vn
EΣ

)
. (15)

Finally, the FV formulation allows to write the problem as an evolution problem
on Σ only, computing the Schur complement of (12) and iterating with

(
C − B� A−1B + cm

Δt
D

)
vn
EΣ =

( cm

Δt
vn−1
EΣ − f (vn−1

EΣ )
)

|e| − B� A−1Gn. (16)

4 Convergence Analysis

In this section, a convergence analysis is carried out by proving the following error
estimates theorem.

Theorem 1 Assume that f is Lipschitz continuous in R. Given T > 0, and the dis-
crete setup from above, assume that uk ∈ C2([0, T ] × Ωk), and consider un

T and
vn
EΣ defined by un

K = ui (tn, xK ) for all K ∈ Ti (i = 0, 1), and vn
e = u1(tn, xe) −

u0(tn, xe) for all e ∈ EΣ , and n = 0 . . . N. The discrete errors (εn
T , ηn

EΣ ) are defined
by εn

T = un
T − un

T and ηn
EΣ = vn

EΣ − vn
EΣ . We associate to (ηn

EΣ )n the L∞(0, T ;
L2(Σ)) function ηEΣ (t, x) = ηn

e for t ∈]tn−1, tn[ (n = 1 . . . N), and x ∈ e (e ∈ EΣ ).
If the initial approximation v0

EΣ is such that ‖v0 − v0
EΣ ‖0,Σ ≤ Ch, then there exists

C > 0, depending only on the data, such that
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‖ηEΣ ‖L∞(0,T ;L2(Σ)) ≤ C(h + Δt),

(
N∑

n=1

Δt
∣∣(εn

T , ηn
EΣ )

∣∣
1,T

)1/2

≤ C(h + Δt), (17)

where we have defined h = maxK∈T diam(K ).

Proof We denote by F̂n
K e := ∫

e σi∇ui · nK e the exact flux out of cell K ∈ Ti

(i = 0, 1) through the edge e ∈ EK , and by F
n
K e the flux associated to (un

T , vn
EΣ )

with Formulas (7)–(10). By subtracting Eqs. (5) and (6) defining the approximation
solution, from Eqs. (3) and (4) verified by the exact solution, the equations on the
error vectors (εn

T , ηn
EΣ ) for n = 1 . . . N , write

−
∑

e∈EK

(F
n
K e − Fn

K e) = −
∑

e∈EK

Rn
K e |e| , (18)

on all K ∈ T , where the consistency error is Rn
K e = 1

|e|
(

F
n
K e − F̂n

K e

)
; and

− (F
n
K e − Fn

K e) + |e| Rn
K e = (F

n
Le − Fn

Le) − |e| Rn
Le = − (

cm T n
e + Sn

e

) |e|
−

( cm

Δt
(ηn

e − ηn−1
e ) + f (vn−1

e ) − f (vn−1
e )

)
|e| , (19)

on all e = K |L ∈ EΣ , where the additional consistency errors are defined by

T n
e = 1

|e|
∫

e
∂tv(tn, ·) − vn

e − vn−1
e

Δt
, Sn

e = 1

|e|
∫

e
f (v(tn, ·)) − f (vn−1

e ). (20)

For n = 0, we have η0
EΣ = v0

EΣ − v0
EΣ . We multiply by εn

T and ηn
EΣ and obtain (like

we obtained (13) and the coercivity inequality (15))

∣∣(εn
T , ηn

EΣ )
∣∣2
1,T + cm

Δt
‖ηn

EΣ ‖20,Σ ≤
( cm

Δt
ηn−1
EΣ − (

f (vn−1
EΣ ) − f (vn−1

EΣ )
)
, ηn

EΣ

)

0,Σ

+
∑

e=K |L∈E�

|e| Rn
K e(ε

n
L − εn

K ) +
∑

e=K |∈ED

|e| Rn
K e(−εn

K ) +
∑

e=K |∈EN

|e| Rn
K e(−εn

K )

+
∑

e=K |L∈EΣ

|e| Rn
K e(ε

n
L − εn

K − ηn
e ) − (

cm T n
EΣ + Sn

EΣ , ηn
EΣ

)
0,Σ ,

where (·, ·)0,Σ denotes the natural scalar product on EΣ associated to ‖ · ‖0,Σ , and
T n
EΣ := (T n

e )e∈EΣ ∈ R
NΣ and Sn

EΣ := (Sn
e )e∈EΣ ∈ R

NΣ . We have Rn
K e = 0 for e ∈ EN

(see def. of gN ,n
e above). We have

∣∣ f (vn−1
e ) − f (vn−1

e )
∣∣ ≤ ληn−1

e for all e ∈ EΣ ,
where λ > 0 is the Lipschitz constant for f , and then we obtain
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Δt
∣∣(εn

T , ηn
EΣ )

∣∣2
1,T + cm‖ηn

EΣ ‖20,Σ ≤ cm

(
1 + λ

cm
Δt

)
‖ηn−1

EΣ ‖0,Σ‖ηn
EΣ ‖0,Σ

+ Δt Rn
∣∣(εn

T , ηn
EΣ )

∣∣
1,T + Δt

(
cm‖T n

EΣ ‖0,Σ + ‖Sn
EΣ ‖0,Σ

) ‖ηn
EΣ ‖0,Σ , (21)

where Rn = Rn(u0, u1) =
(∑

e∈E�∪ED∪EΣ
|e|2
τe

∣∣Rn
K e

∣∣2
)1/2

. UsingYoung inequalities,

we first prove that

Δt

2

∣∣(εn
T , ηn

EΣ )
∣∣2
1,T + cm

2
‖ηn

EΣ ‖20,Σ ≤ cm

2

(
1 + λ

cm
Δt

)2

‖ηn−1
EΣ ‖20,Σ

+ Δt

2

∣∣Rn
∣∣2 + cmΔt

(
‖T n

EΣ ‖0,Σ + 1

cm
‖Sn

EΣ ‖0,Σ
)

‖ηn
EΣ ‖0,Σ . (22)

The last term is bounded for any α > 0 as follows:

cmΔt

(
‖T n

EΣ ‖0,Σ + 1

cm
‖Sn

EΣ ‖0,Σ
)

‖ηn
EΣ ‖0,Σ ≤ cmα

2
‖ηn

EΣ ‖20,Σ

+ cm

2α
Δt2

(
‖T n

EΣ ‖0,Σ + 1

cm
‖Sn

EΣ ‖0,Σ
)2

. (23)

We combine (22) and (23), choosing α > 0 such that 1 − α = 1
1+ λ

cm
Δt
, to obtain

Δt
∣∣(εn

T , ηn
EΣ )

∣∣2
1,T + cm

1 + λ
cm

Δt
‖ηn

EΣ ‖20,Σ ≤ cm

(
1 + λ

cm
Δt

)2

‖ηn−1
EΣ ‖20,Σ

+ Δt
∣∣Rn

∣∣2 +
(
1 + λ

cm
Δt

)
2Δt

λ

(
c2m‖T n

EΣ ‖20,Σ + ‖Sn
EΣ ‖20,Σ

)
. (24)

From (24) we extract an estimation on ηn
EΣ , and a recurrence shows that

‖ηn
EΣ ‖20,Σ ≤

(
1 + λ

cm
Δt

)3n

‖η0
EΣ ‖20,Σ + Δt

cm

n−1∑

i=0

(
1 + λ

cm
Δt

)3i+1

|Rn−i |2

+ 2Δt

λcm

n−1∑

i=0

(
1 + λ

cm
Δt

)3i+2 (
c2m‖T n

EΣ ‖20,Σ + ‖Sn
EΣ ‖20,Σ

)
,

which proves that, for all n = 1 . . . N ,

‖ηn
EΣ ‖0,Σ ≤ exp

(
3

2

λ

cm
T

) (
‖η0

EΣ ‖20,Σ + 1

cm
R2
T + 2cm

λ
T 2
EΣ + 2

λcm
S2
EΣ

)1/2

,
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with R2
T = Δt

∑N
n=1|Rn|2, S2

EΣ = Δt
∑N

n=1‖Sn
EΣ ‖20,Σ , T 2

EΣ = Δt
∑N

n=1‖T n
EΣ ‖20,Σ .

In the second step, we start again the computation from inequality (21), and after
some standard calculations, we show that

Δt
N∑

n=1

∣∣∣(εn
T , ηn

EΣ )

∣∣∣
2

1,T ≤ cm‖η0EΣ ‖20,Σ + 2c2m T 2
EΣ + 2S2EΣ + 2(λ + 1)T max

n=1...N
‖ηn

EΣ ‖20,Σ .

It remains to estimate the consistency errors RT , SEΣ , and TEΣ . Assuming C2

regularity, and the Lipschitz continuity of f , the estimates for Sn
e and T n

e are obtained
by the usual Taylor expansions (see Eq.(20)):

∣∣Sn
e

∣∣ ≤ λ‖v‖2,∞ (h + Δt), and
∣∣T n

e

∣∣ ≤
C‖v‖2,∞ (h + Δt), where ‖v‖2,∞ denotes itsC2 uniform norm. Standard results (see
[2]) are used to estimate the terms Rn

K e in all cases excepts for e = K |L ∈ EΣ . In
this case,

F̂n
K e =

∫

e
σ0∇u0(t

n, ·) · nK e = |e| σ0∇u0(t
n, xe) · nK e + |e| AK

= +τK e(u0(t
n, xe) − u0(t

n, xK )) + |e| (AK + BK ) (25)

= −τLe(u1(t
n, xe) − u1(t

n, xL)) + |e| (AK − BL),

since σ0∇u0(tn, xe) · nK e = −σ1∇u1(tn, xe) · nLe. Here, |AK | ≤ M‖u0‖2,∞h and
|BK | ≤ M‖u0‖2,∞h (resp. |BL | ≤ M‖u1‖2,∞h) by Taylor expansion, with M =
max(σ0,σ1). Instead of Eq. (11), we have that τK e(u0(tn, xe) − un

K ) + τLe(u1(tn, xe)

− un
L) = − |e| (BK + BL) and vn

e = u1(tn, xe) − u0(tn, xe) (recall that un
K = u0(tn,

xK ) and un
L = u1(tn, xL)). Hence we find that

u0(t
n, xe) = τK eun

K + τLeun
L − τLev

n
e

τK e + τLe
− |e|

τK e + τLe
(BK + BL). (26)

The discrete flux associate to un
K = u0(tn, xK ) and un

L = u1(tn, xL) is

F
n
K e = −F

n
Le = τK e(u

n
K ,e − un

K ) = −τLe(u
n
L ,e − un

L), (27)

where un
K ,e and un

L ,e are defined as in (11) (with vn
e = u1(tn, xe) − u0(tn, xe)). In

view of Eq. (26), we have u0(tn, xe) = un
K ,e − |e|

τK e+τLe
(BK + BL).

At last, we subtract (27)–(25), and we use the previous remark, to obtain the last
estimate: Rn

K ,e = − τK e
|e| (u0(tn, xe) − ūn

K ,e) − (AK + BK ) = τK e BL −τLe BK
τK e+τLe

− AK , then
|Rn

K ,e| ≤ max(|BK |, |BL |) + |AK | ≤ 2M max(‖u0‖2,∞, ‖u1‖2,∞)h.
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5 Conclusion and Perspectives

In conclusion, the TPFA naturally generalizes to the EMI model. An error estimate
was obtained on the transmembrane voltage v on the interfaceΣ , though under strong
regularity assumptions. The convergence analysis, without error estimate, might be
easily deduced from the existence proof from [1], and obtained with minimal data
regularity.We believe that the extension tomany cells (NC > 1) is straightforward (as
in [1]), and also that the consistency estimates generalize to functions ui ∈ H 2(Ωi )

and v ∈ H 1(0, T ; L2(Σ)).
In practice, the scheme is intended to be used for simulating billions of cardiac

cells, using HPC solutions developed within the EuroHPC MICROCARD consor-
tium. In reality, the ODEs from Eq. (2) are coupled with large sets of nonlinear
equations that needs time-integration specific to cardiac models. The FVM simplify
the implementation of this coupling, by introducing the voltage v as an explicit
unknown. Moreover, a a Dirichlet-to-Neumann operator on Σ can be introduced to
rewrite the problem as an evolution equation on the membrane only. This give rise
to approximation with boundary element methods. Again, the discrete Dirichlet-to-
Neumann operator may be reconstructed with the FVM, as in Eq. (16).

On a short term, we plan to implement the scheme, and compare it to finite
elements and a boundary elements discretizations on simple 2D and 3D test cases.
Afterwards, we would like to generalize the scheme to a FV-like method that is more
robust with respect to the available meshes.
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Improved Crouzeix-Raviart Scheme
for the Stokes Problem

Eric Chénier, Erell Jamelot, Christophe Le Potier, and Andrew Peitavy

Abstract The resolution of the incompressible Navier-Stokes equations is tricky,
and it is well known that one of the major issue is to compute a divergence free
velocity. The non-conforming Crouzeix-Raviart finite element are convenient since
they induce piecewise mass conservation and satisfy the inf-sup condition. However,
spurious velocities may appear and damage the approximation. In this contribution,
we propose a scheme that allows one to reduce the spurious velocities by discretizing
the gradient of pressure with a symmetric MPFA scheme (finite volume MultiPoint
Flux Approximation) [1, 2].

Keywords Stokes problem · Crouzeix-Raviart scheme · MPFA scheme · Finite
element method · Nonconforming method

1 Motivation

The TrioCFD [3] code is a computational fluid dynamics (CFD) simulation soft-
ware developed at the CEA. It is dedicated to the numerical simulation of turbulent
flows for scientific and industrial applications, particularly in the nuclear field. Let
Ω , the domain of study, be an open connected bounded domain of Rd , d = 2, 3,
with a polygonal (d = 2) or Lipschitz polyhedral (d = 3) boundary � with constant
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physical properties. Let T > 0 be a simulation time. The TrioCFD code solves the
incompressible Navier-Stokes equations which read:

Find (u(x, t), p(x, t)) such that ∀(x, t) ∈ Ω × (0, T ),

⎧
⎨

⎩

∂ tu − ν �u + (u · grad )u + grad p = f(x, t),
div u = 0,

u(x, 0) = u0(x).
(1)

We consider here Dirichlet boundary conditions for the velocity u, and we impose a
normalization condition for the pressure p: u = 0 on �,

∫

Ω
p = 0. The vector field

u represents the velocity of the fluid and the scalar field p represents its pressure
divided by the fluid density which is supposed to be constant. The first equation of
(1) corresponds to the momentum balance equation and the second one corresponds
to the mass conservation. The constant parameter ν > 0 is the kinematic viscosity
of the fluid. The vector field f represents the body force divided by the fluid density.
We first consider the steady Stokes problem which reads:

Find (u, p) such that ∀x ∈ Ω :
{−ν�u + grad p = f, in Ω

div u = 0, in Ω.
(2)

The resolution of (2) leads to a well-posed saddle point problem [4]. In TrioCFD
code, the spatial discretization of Problem (2) is based on first order nonconforming1

Crouzeix-Raviart finite element method [5] that we call the P1
nc − P0 scheme. The

outline of this article is as follows: in Sect. 2, we provide some notations for the
discretization. Next, we recall the P1

nc − P0 scheme and an improved version imple-
mented in TrioCFD code for simplicial meshes, that we call the P1

nc − (P0 + P1)

scheme. This last discretization reduces the spurious velocities in 2D. It is also effi-
cient in 3D, except when the source term is a strong gradient. In order to obtain
the same accuracy in 3D than in 2D, one must increase the number of degrees of
freedom of the discrete pressure space, which leads to a more expensive numerical
scheme. Our aim is to develop a new numerical scheme that would reduce the spuri-
ous velocities both in 2D and 3D, but at a lower cost. We present such a scheme in
Sect. 3 and numerical illustrations in Sect. 4.

2 The P1
nc − P0 Scheme [5]

We call (O, (xd ′)d
d ′=1) the Cartesian coordinates system, of orthonormal basis

(ed ′)d
d ′=1. We denote the � the boundary of Ω and its outgoing normal vector n� .

Consider (Th)h a simplicial triangulation sequence of Ω , we use the following index
sets:

1 Let vh , the discrete velocity obtained with the Crouzeix-Raviart finite element, then vh /∈
H(div 0,Ω) := {v ∈ L2(Ω) / div v = 0}.
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• IK (resp. IF ) denotes the index set of the elements (resp. facets2), such that
Th :=

⋃

�∈IK

K� (resp. Fh :=
⋃

f ∈IF

F f ) is the set of elements (resp. facets).

• IS denotes the index set of the vertices, such that (Sj ) j∈IS is the set of vertices
• IF = I i

F ∪ Ib
F (resp. IS = I i

S ∪ Ib
S ), where ∀ f ∈ I i

F , Ff ⊂ Ω (resp. ∀ j ∈ I i
S ,

Sj ⊂ Ω) and ∀ f ∈ Ib
F , Ff ⊂ � (resp. ∀ j ∈ Ib

S , Sj ⊂ �).

WedenoteL2(Ω) = [L2(Ω)]d×d and L2
zmv(Ω) := {q ∈ L2(Ω) | ∫

Ω
q = 0}. Let’s

introduce spaces of piecewise regular elements:
We set Ph H 1 = {

v ∈ L2(Ω) ; ∀� ∈ IK , v|K�
∈ H 1(K�)

}
and PhH1 = [Ph H 1]d ,

endowed with the scalar product:

(v,w)h :=
∑

�∈IK

(Grad v,Gradw)L2(K�) ‖v‖2h =
∑

�∈IK

‖Grad v‖2
L2(K�)

.

Let f ∈ I i
F such that Ff = ∂ KL ∩ ∂ K R and let n f the unit normal that is outward

KL oriented. The jump of a function v ∈ Ph H 1 across the facet Ff , in n f direction,
is defined as follows: [v]F f := v|KL − v|K R . For f ∈ Ib

F , we set: [v]Ff := v|F f .
We also define the operator divh such that:

∀v ∈ PhH1, ∀q ∈ L2(Ω), (divh v, q) =
∑

�∈IK

(div v, q)L2(K�).

For all D ⊂ R
d , and k ∈ N

∗, we call Pk(D) the set of order k polynomials on D,
Pk(D) = (Pk(D))d , and we consider the space of the broken polynomials:

Pk
disc(Th) =

{
q ∈ L2(Ω); ∀� ∈ IK , q|K�

∈ Pk(K�)
}

, Pk
disc(Th) := (Pk

disc(Th))d .

We let P0(Th) be the space of piecewise constant functions on Th .

∀k ∈ N, Qk,h := Pk(Th ) ∩ L2
zmv(Ω). (3)

Wewill now describe three numerical schemes to solve (2) for which the components
of the velocity is discretized with the first order nonconforming Crouzeix-Raviart
finite element method [5, Sect. 5, Example 4]. For simplicity, we suppose now that
f ∈ L2(Ω).

Let us consider Xh (resp. X0,h), the space of nonconforming approximation of
H 1(Ω) (resp. H 1

0 (Ω)) of order 1:

Xh =
{

vh ∈ P1
disc(Th) ; ∀ f ∈ I i

F ,

∫

F f

[vh] = 0

}

, (4)

2 The term facet stands for face (resp. edge) when d = 3 (resp. d = 2).
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X0,h =
{

vh ∈ Xh ; ∀ f ∈ Ib
F ,

∫

F f

[vh] = 0

}

. (5)

Let us set Qh = Q0,h and X0,h = (X0,h)
d . We now define the following bilinear

forms:

aν,h :
{
X0,h × X0,h → R

(u′
h, vh) �→ ν (u′

h, vh)h
and bh :

{
X0,h × Qh → R

(vh, qh) �→ −(divh vh, qh)
.

(6)
The discretization of variational formulation of problem (2) reads:

Find (uh, ph) ∈ X0,h × Qh |
{

aν,h(uh, vh)h + bh(vh, p) = (f, vh)L2(Ω) ∀vh ∈ X0,h,

bh(uh, qh) = 0 ∀qh ∈ Qh .
(7)

Suppose there exists φ ∈ H 1(Ω) ∩ L2
zmv(Ω) such that f = gradφ. In that case, the

solution to Problem (2) is (u, p) = (0,φ). By integrating by parts, since vh /∈ H1(Ω),
we have:

∀vh ∈ X0,h, (f, vh)L2(Ω) = −(divh vh,φ) +
∑

f ∈Ii
F

∫

F f

[vh · n f ] φ. (8)

The jump term in (8), acts as a numerical source, which numerical influence is
proportional to 1/ν. Hence, we cannot obtain exactly uh = 0, this velocity is called
spurious velocity. There are different strategies to cure this well-known problem:

• Projecting the test-function on the right hand side of (8) on a discrete subspace
of H(div ;Ω)3 [6]. This method makes the jump term in (8) vanish. The main
advantage of this method is that it improves the velocity approximation when ν
is small. But, when solving Navier-Stokes, one must modify the source term, the
mass matrix and the convection term.While the implementation of the source term
is straightforward, changing the mass matrix may slow down the pressure solver.

• Increasing the space of the discrete pressure [7, 8].

This last method consists of adding degrees of freedom for the pressure dis-
cretization on the vertices. The resulted discretization is called the P1

nc − (P0 + P1)

scheme. The space of discrete pressure is then defined as Q̃h = Q0,h ⊕ Q1,h . It has
been shown that the scheme is well posed and give a good approximation for the
gradient of pressure, and it is the scheme currently used in TrioCFD code. Compared
to P1

nc − P0 scheme, the P1
nc − (P0 + P1) scheme gives a better approximation of

the velocity in the sense that the discrete mass conservation equation is strength-
ened. Indeed, for any q̃h ∈ Q̃h , we write: q̃h = q0,h + q1,h , where q0,h ∈ Q0,h and
q1,h ∈ Q1,h . Let us consider the bilinear form used to define the P1

nc − (P0 + P1)

scheme:

3 H(div ; Ω) := {v ∈ L2(Ω)/div v ∈ L2(Ω)}.
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b̃h :
{
X × Q̃h → R

(vh, q̃h) �→ −(divh vh, q0,h) + (vh, grad q1,h)L2(Ω)
. (9)

Then, one can show, for d = 2 that [8, Theorem 4.3.2]:

Property 1 Let vh ∈ Vh := {wh ∈ Xh | ∀qh ∈ Q̃h, b̃h(wh, qh) = 0}.
Then for d = 2, we have: for all q2,h ∈ Q2,h (defined by (3)),

b̃h(vh, q2,h) = (grad q2,h, vh)L2(Ω) = 0.

Even if q2,h /∈ Q̃h , we show that b̃h(vh, q2,h) = 0. This case of “superconvergence”
allows to obtain a better robustness with respect to the viscosity. This is illustrated
with numerical experiments in the Sect. 4. The proof of Property 1 relies on a 2D
quadrature formula which uses the degrees of freedom of the discrete pressure and
cannot be extended in 3D with the same degrees of freedom. To recover Property 1
in 3D, we must introduce P2 discrete pressure degrees of freedom, located on the
edges of the mesh. This increases the number of unknowns by the number of edges,
which leads to an expensive linear system. Hence, we look for a numerical scheme
which could be as precise in 3D than in 2D, but at a lower cost. In the next Section,
we propose a new strategy, which relies on the multi-points flux approximation to
discretize the pressure gradient term in (2).

3 The P1
nc − P0

Mps Scheme

Here, we use the symmetric MPFA scheme [2] (where MPFA stands for multi-
points flux approximation) to discretize the pressure gradient term in (2), in the case
of a simplicial mesh. This scheme is part of the gradient scheme formalism and
the resulting diffusion operator converge with the hypothesis given by [9, Theorem
12.5]. The discrete pressure space remains Qh = Q0,h . We call this new scheme the
P1

nc − P0
Mps scheme. Let us consider the 2D case. We start by splitting the triangles

into three quadrangles, connecting the barycentre of the triangle to the midpoint of
each edges. Considering some qh ∈ Qh , we will calculate an affine approximation
of qh on each quadrangle. To do so, we need to add temporary auxiliary unknowns
located at one third of the edges (see Fig. 2b) to approximate the gradients of the
affine pressures in exact ways.

Let j ∈ IS . We denote NK , j the number of triangles with Sj as vertex and NS, j

the number of neighbouring vertices. Notice that in 2D, NK , j = NS, j . We define the

macro-element M j such that M j :=
⋃

�∈IK , j

K �. Let’s renumber the vertices so that:

S0 = Sj , IS,0 = {1, · · · , NS,0} and for all i ∈ IS,0, Si Si+1 ⊂ Fh (setting SNS,0+1 =
S1). For i ∈ IS,0 we denote by:

• Ki the triangle of vertices S0Si Si+1, and we call its barycentre Gi .
• Fi the edge such that Fi = S0Si , and we call Mi its midpoint.
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Fig. 1 Notations in case NS,0 = 6 and j ∈ Ii
S

Fig. 2 MPFA Scheme for j ∈ Ii
S and NS,0 = 6

Fig. 3 MPFA Scheme for j ∈ Ib
S and NS,0 = 4

• Fi,0 the edge opposite to S0 in Ki .
• F̃i the half-edges defined by S0 and the midpoint of Fi .
• Qi the quadrangle of vertices S0 Mi Gi Mi+1 (Fig. 2a for S0 ⊂ Ω and Fig. 3a for

S0 ⊂ �).

For i, j ∈ IS,0, we denote by Si, j the normal vector outgoing of K j at Fi and of
norm |Fi |. For i ∈ IS,0, we call S0,i the normal vector outgoing of Ki at Fi,0. On
Fig. 1a, we representM0 in case S0 ⊂ Ω and NS,0 = 6. On Fig. 1b, we represent the
triangle K1 with the vectors (S j,1)

2
j=0 and its barycentre G1.

Let qh ∈ Qh . We set qh|K�
:= q�. Consider S0 ⊂ Ω (Fig. 2). Let us build a piece-

wise affine approximation of qh on each quadrangle (Qi )
NS,0

i=1 (see Fig. 2a). We call

this approximation q̃h . We first introduce auxiliary discrete pressure values (q̃i )
NS,0

i=1
on the thirds of the inner edges of M0 (see Fig. 2b). For all j ∈ IS,i , we define
Gi (qh) := grad q̃h|Qi , using an integration by part as it is done in [2, Sect. 3]:



Improved Crouzeix-Raviart Scheme for the Stokes Problem 251

|Qi |Gi =
∫

Qi

Gi (qh) =
∫

∂Qi

q̃hn� = q̃i
Si,i

d
+ q̃i+1

Si+1,i

d
+ qi (−

Si,i

d
− Si+1,i

d
).

Hence, noticing that |Qi | = |Ti |
d+1 , we have:

Gi (qh) = 1

|Qi |
(

(q̃i − qi )
Si,i

d
+ (q̃i+1 − qi )

Si+1,i

d

)

= d + 1

d |Ti |
(

q̃i Si,i + q̃i+1 Si+1,i + qi S0,i
)
. (10)

In order to preserve the flux across the inner edges of M0, we write that:

∀i ∈ IS,0, Gi (qh) · Si+1,i + Gi+1(qh) · Si+1,i+1 = 0. (11)

These NS,0 equations with NS,0 unknowns (the auxiliary discrete pressure values
(q̃i )

NS,0

i=1 ) lead to a well posed linear system. Thus, we can evaluate the auxiliary

discrete pressure values (q̃i )
NS,0

i=1 with the data (qi )
NS,0

i=1 . Therefore, we can explicitly

express the pressure gradients (Gi (qh))
NS,0

i=1 (10).
Consider now S0 ⊂ � (see Fig. 3). According to [4, proof of Proposition IV.3.7], if
f ∈ H1(Ω), the solution (u, p) to Problem (2) is such that:

grad p|∂ Ω · n|∂ Ω = f · n|∂ Ω − ν�u · n|∂ Ω, (12)

where n|� is the unit outward normal vector at �.
In our numerical experiments, we make explicit the auxiliary discrete pressure

values located on � (i.e. q̃1 and q̃4 on Fig. 3-(b)) by imposing that for all i ∈ IS,0

such that Fi ⊂ �: ∫

F̃i

Gi (qh) · n|� =
∫

F̃i

f · n|�. (13)

This approximation gives good numerical results, as will be shown later in the numer-
ical section. Again, the auxiliary discrete pressure values solve a well posed linear
system. They can be written with the data (qi )

NS,0

i=1 , and we can explicitly express
Gi (qh).

For i ∈ IS , we let (Qi, j ) j ∈ IS,i be the set of quadrangles built around Si , and we
call Qh the mesh of all the quadrangles Qh := ( (Qi, j ) j∈IS,i )i∈IS . Let qh ∈ Qh . Let
i ∈ IS . In the macro-element Mi , we call Gi, j (qh) the local reconstructed gradient
of qh . We now define the MPFA gradient reconstruction as the operator Gh :

Gh :
{

Qh → P0(Qh)

qh �→ Gh(qh)
| ∀i ∈ IS, ∀ j ∈ IS,i , Gh(qh)|Qi, j = Gi, j (qh|Mi ). (14)

If the data f is of low regularity, one can enhance the space of discrete pressure,
adding the auxiliary unknowns on the boundary as degrees of freedom.

Let gh(·, ·) be the following bilinear form:
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gh :
{
Xh × Qh → R

(vh, qh) �→ (Gh(qh), vh)L2(Ω)
. (15)

The discretization of (2) using the MPFA scheme for the pressure gradient reads:

Find (u, p) ∈ X0,h × Qh |
{

aν,h(uh, vh) + gh(vh, ph) = (f, vh)L2(Ω) ∀vh ∈ Xh

bh(uh, qh) = 0 ∀qh ∈ Qh
, (16)

where the bilinear forms aν,h(·, ·) and bh(·, ·) are defined by (6). Notice that the linear
system related to variational formulation (16) is not symmetric.

4 Numerical Results on the Stokes Problem

In this Section, we give some 2D numerical results which compare the P1
nc − P0

Mps

scheme to the P1
nc − P0 and P1

nc − (P0 + P1) schemes. More numerical results
(including on the Navier-Stokes problem) of the P1

nc − P0
Mps are available in [10].

Consider Problem (2) with prescribed solution such that: (u, p) = (0,ϕ). When ϕ
is some affine function, then both P1

nc − (P0 + P1) and P1
nc − P0

Mps schemes give
exactly uh = 0. When ϕ is some quadratic function, then P1

nc − (P0 + P1) scheme
gives exactly uh = 0, as a consequence of Property 1.

We notice that, compared to the P1
nc − P0 scheme, the spurious velocities are

greatly reduced by P1
nc − (P0 + P1) and P1

nc − P0
Mps schemes. These schemes mit-

igate the amplitude of spurious velocities and therefore provide a less viscosity-
dependent error simulation. This is illustrated by the resolution of (2) with (u, p)

defined by (17). The errors resulted for h = 0.1 and h = 0.0125 are given by Tables1
and 2. In these tables, we see that the P1

nc − P0
Mps scheme gives intermediate results.

Also, we notice that the spurious velocities errors become overriding when:

• ν ≤ 100 with h = 0.1 and ν ≤ 100 with h = 0.0125 for the P1
nc − P0.

• ν ≤ 10−2 with h = 0.1 and ν ≤ 10−3 with h = 0.0125 for the P1
nc − P0

Mps .
• ν ≤ 10−3 with h = 0.1 and ν ≤ 10−5 with h = 0.0125 for the P1

nc − (P0 + P1).

The tipping viscosity point,where the spurious velocities errors becomedominant,
depends on the velocity error generated by the gradient approximation and therefore
the mesh size. As these schemes converge with different orders when u = 0, it can
be seen that decreasing the mesh size reduces the viscosity at which this point is
reached more or less depending on the order.

(u, p) =
(

(cos(2πx) − 1) sin(2πy)

−(cos(2πy) − 1) sin(2πx)
, sin(2πx) sin(2πy)

)

(17)
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Table 1 Velocity and pressure errors for (u, p) in (17) for h = 0.1
ν ‖u − uC R

h ‖0 ‖u − uTrioh ‖0 ‖u − uMps
h ‖0 ‖p − pC R

h ‖0 ‖p − pTrioh ‖0 ‖p − pMps
h ‖0

1.00 × 10−2 2.47 × 10−1 2.45 × 10−2 3.23 × 10−2 1.88 × 10−1 2.73 × 10−2 2.11 × 10−2

1.00 × 10−3 2.46 × 100 2.58 × 10−2 1.33 × 10−1 1.88 × 10−1 2.48 × 10−2 1.95 × 10−2

1.00 × 10−4 2.46 × 101 8.79 × 10−2 1.30 × 100 1.88 × 10−1 2.48 × 10−2 1.95 × 10−2

1.00 × 10−5 2.46 × 102 8.46 × 10−1 1.30 × 101 1.88 × 10−1 2.48 × 10−2 1.95 × 10−2

Table 2 Velocity and pressure errors for (u, p) in (17) for h = 0.0125

ν ‖u − uC R
h ‖0 ‖u − uTrioh ‖0 ‖u − uMps

h ‖0 ‖p − pC R
h ‖0 ‖p − pTrioh ‖0 ‖p − pMps

h ‖0
1.00 × 10−2 3.41 × 10−3 3.65 × 10−4 4.33 × 10−4 2.22 × 10−2 1.49 × 10−3 1.11 × 10−3

1.00 × 10−3 3.38 × 10−2 3.65 × 10−4 5.42 × 10−4 2.22 × 10−2 3.79 × 10−4 2.98 × 10−4

1.00 × 10−4 3.38 × 10−1 3.66 × 10−4 3.23 × 10−3 2.22 × 10−2 3.50 × 10−4 2.78 × 10−4

1.00 × 10−5 3.38 × 100 4.21 × 10−4 3.19 × 10−2 2.22 × 10−2 3.50 × 10−4 2.78 × 10−4
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Towards a Finite Volume Discretization
of the Atmospheric Surface Layer
Consistent with Physical Theory

Simon Clément, Florian Lemarié, and Eric Blayo

Abstract We study an atmospheric column and its discretization. Because of
numerical considerations, the column must be divided into two parts: (1) a sur-
face layer, excluded from the computational domain and parameterized, and (2) the
rest of the column, which reacts more slowly to variations in surface conditions. A
usual practice in atmospheric models is to parameterize the surface layer without
excluding it from the computational domain, leading to possible consistency issues.
We propose here to unify the two representations in a Finite Volume discretization.
In order to do so, the reconstruction inside the first grid cell is performed using the
particular functions involved in the parameterizations and not onlywith polynomials.
Using a consistency criterion, surface layer management strategies are compared in
different physical situations.

Keywords Finite volume · Monin-Obukhov theory · Surface flux scheme

1 Introduction

A common difficulty for atmospheric models is to represent the surface layer (SL),
i.e. the area directly and almost instantaneously influenced by the presence of the
ground or the ocean. The scales in the SL (approximately the first 10m of the air
column) are so small that the resolution needed for a numerical model to repre-
sent the phenomena correctly is out of reach. However, the Monin-Obukhov (MO)
theory, which generalises the wall law to density-stratified fluids, provides under
certain simple hypotheses (quasi-stationarity, horizontal homogeneity, etc.) an ana-
lytical formulation of the solution in the SL and the expression of the fluxes (heat,
momentum) exchangedwith the atmosphere above it.At the discrete level, the present
treatment of this SL in numerical models is inconsistent: it is both treated like the
rest of the atmosphere column by a standard numerical scheme (polynomial profile)
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Fig. 1 Continuous equations in the computational domain (δa,+∞) and constant flux in the SL
(0, δa). The MO theory specifies the complex constant u�eτ and a range of possible values for δa

when discretising the equations, and in a parameterised form (MO profile, which is
a perturbation of a logarithmic profile, see e.g. [1]) for the calculation of fluxes. The
consequences of this inconsistency are still poorly assessed in the context of atmo-
spheric modeling, but we can mention for instance that in the context of combustion,
it is mentioned in [2] that the way the wall law is implemented in a given code and
the way it interacts with the numerical methods used (in particular the turbulence
scheme) can influence the numerical results as much as a particular choice of wall
law. In this paper, we will address this inconsistency and propose a new finite volume
formulation to remedy it.

The turbulent Ekman layer model. Our approach is derived hereafter in the case of
the 1D vertical Ekman layer model [3] in the neutral case. It includes the Coriolis
effect with a constant parameter f and a vertical turbulent flux term 〈w′u′〉:

∂t u + i f u + ∂z〈w′u′〉 = i f uG (1)

where i is the imaginary unit. The constant nudging term uG pulls the solution
towards the geostrophic equilibrium (a large-scale solution where the pressure gra-
dient balances the Coriolis force). The horizontal wind u (in m.s−1) is a complex
variable accounting for both orientation and speed of the wind. The so-called Boussi-
nesq hypothesis states that the turbulent flux is proportional to the gradient of u:
〈w′u′〉 = −Ku∂zu where Ku ≥ 0 is the turbulent viscosity. In the SL, the MO the-
ory states that this turbulent flux is constant along the vertical axis and provides its
analytical expression. We thus obtain the system of equations given in Fig. 1.

Usual approach in atmospheric models. The usual choice made in current atmo-
spheric models is to consider that the SL extends from the wall to the center of the
first cell (let us note z1/2 this altitude). In practice this means that compatibility con-
straints should apply at z = z1/2 to correctly connect the profile as parameterized in
the SL with the upper profile obtained using the numerical model. However the usual
practice is to integrate the region z ≤ z1/2 corresponding to the SL into the compu-
tational domain and then use the MO parameterization only to predict a surface flux
at z = 0. The impact of this approximation is poorly documented to date: (i) the
extent of the SL is fixed for purely numerical reasons and not for physical reasons,
which does not guarantee that the solution will converge with the resolution; (ii)
the solution in the area z ≤ z1/2 is both parameterized and computed by the model,
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without ensuring the consistency of these two profiles. The coupling between the SL
and the rest of the model is thus weak: the model provides the flow information at
z = z1/2 to the SL scheme and the latter provides in exchange a surface flux to the
model at z = 0. In general no other interaction exists. For example, with this kind of
coupling, the SL structures cannot really interact with the rest of the flow. For more
details and numerous references, see [4].

A few studies address this issue: several alternatives for implementing a wall law
in a Large Eddy Simulation solver are proposed in [2]; a first step toward a proper
Finite Volume (FV) approach is proposed by [5], where the authors extend the SL to
the entire first cell (0, z1) and design a scheme adapted to FV.

In this paper,wepropose to implement directly in theFVdiscretization the existing
assumptions underlying theMO theory. In order to do so, the reconstruction inside the
first grid cell is performed using the analytical functions involved in the wall laws and
not onlywith polynomials. This approach also allows to relax the artificial assumption
δa = z1/2 and to extend the height of the SL beyond the first grid point if necessary
(note that the log-layer mismatch, a well known numerical problem in Large Eddy
Simulations, comes from a too thin SL). By being able to choose the thickness of
the SL based on physical—and not only numerical—criteria, the consistency of the
schemes is improved. The vertical resolution can thus be refinedwithout changing the
continuous equations solved by the discretization, thus answering the issues raised
in [6]. Numerical experiments with a 1D Ekman layer model are performed, and SL
management strategies are compared for different types of stratification.

2 The Finite Volume Scheme

Spline reconstruction of solutions.The space domain is divided into M cells delimited
by heights (z0 = 0, . . . , zm, . . . , zM). The size of the mth cell is hm+ 1

2
= zm+1 − zm

and the average of u(z) over this cell is noted um+ 1
2

= 1
h

m+ 1
2

∫ zm+1

zm
u(z)dz. The space

derivative of u at zm is noted φm . Figure2 summarizes these notations. Averaging
the evolution equation over a cell gives the semi-discrete equation

Fig. 2 Summary of the
notations related to the
discretisation
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(∂t + i f )um+ 1
2
− Ku,m+1φm+1 − Ku,mφm

hm+ 1
2

= i f uG (2)

The reconstruction of u(z) = Sm+ 1
2
(z − zm+ 1

2
) is chosen to be a quadratic polyno-

mial (higher order schemes can be similarly derived, see [1]). The continuity of u(z)
and its space derivative φ between cells yields the relation:

hm−1/2

6
φm−1 + hm+1/2 + hm−1/2

3
φm + hm+1/2

6
φm+1 = ūm+ 1

2
− ūm− 1

2
(3)

which is a FV approximation used in fourth-order compact schemes for the first
derivative ∂zu and second-order for ∂2

z u (e.g. [7]).

Usual treatment of the SL with Finite Volume methods. The typical treatment of the
SL in atmospheric models is to use the evolution equation in the first cell (z0, z1) to
compute u 1

2
and then assume that this averaged value is the wind speed at the center

of the cell in the Monin-Obukhov theory applied with δa = z1. The corresponding
bottom boundary condition is then

Ku,0φ
n+1
0︸ ︷︷ ︸

Surface flux

= u2
�eτ with u� = BULK( un

1
2︸︷︷︸

Average around z 1
2

) (4)

where BULK is a routine based on the Monin-Obukhov theory, eτ =
un+1

1
2

||un
1
2
|| , and n

denotes the time step. This method has several drawbacks:

• The value at the center of the cell is systematically larger than the average value
because of the concavity of Monin-Obukhov profiles. This leads to a systematic
underestimation of the surface flux by the SL scheme. A specific SL scheme was
designed in [5] to prevent this bias.

• The evolution equation is not compatible with the constant flux hypothesis that
defines the SL, as introduced in Sect. 1.

• δa, the height of the SL, is driven only by the space step and does not take into
account any physical consideration.

On the incompatibility. According to the wall law, Ku,0 should be equal to the (very
small) molecular viscosity Kmol ≈ 10−5 m2.s−1. However, the boundary condition
Ku,0φ0 = u2

�eτ does not have the same influence depending on the numerical scheme
used to discretize (2):

• Finite Differences: Injecting the boundary condition in the evolution equation at
the first grid level gives

(∂t + i f )u1/2 = 1

h1/2

(

Ku,1
u3/2 − u1/2

h1
− u2

�eτ

)

(5)

where one can see that the value Ku,0 does not intervene in the equation.
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• Finite Volumes: applying (∂t + i f ) to (3) and using the polynomial reconstruction
and the equations of Fig. 1, one can see that the FV scheme implicitly uses

(∂t + i f )u(z1) = Ku,1φ1 − u2
�eτ

h1/2
+ (∂t + i f )

(
φ1

3
+ u2

�eτ

6Ku,0

)

h1/2 (6)

The (small) value of Ku,0 directly appears when we assume the parabolic profile
inside the first grid cell. As a result, u(z1) scales with 1

K0
and exhibits unreasonable

values. To obtain physically plausible profiles, one can replace Ku,0 by Ku,δ: the
wall law is then denied and (∂zu)(z0) is multiplied by Kmol

Ku,δ
. Note that this problem

would not occur if the simple FV approximation hmφm ≈ um+ 1
2
− um− 1

2
was used

instead of (3).

Toward a Finite Volume scheme coherent with the physical theory. To address the
drawbacks of the usual method presented above, we now construct a numerical
boundary condition that is coherent with the continuous model with a free value of
δa, named “FV free”:

Ku,δ φn+1
δ︸ ︷︷ ︸

Flux at δa

= u2
� efreeτ with u� = BULK( un(δa)︸ ︷︷ ︸

Reconstruction at δa

) (7)

where efreeτ = un+1(δa)
||un(δa)|| is the orientation of u(δa) obtained with the spline recon-

struction. For the sake of simplicity, we assume in the following that δa < z1 (this
hypothesis being easily relaxed by using the Monin-Obukhov profiles as the recon-
struction in cells entirely contained in the SL). In the first grid cell, we assume that
the constant flux hypothesis applies for z < δa and we separate this cell into two
parts: the surface layer (0, δa) and the “sub-cell” (δa, z1). This split corresponds to
the change of governing equations in Fig. 1. Let h̃ = z1 − δa be the size of the upper
sub-cell (δa, z1) and ũ = 1

h̃

∫ z1
δa

u(z)dz be the corresponding averaged value of u. The
following subgrid reconstruction is used:

u(z) =

⎧
⎪⎪⎨

⎪⎪⎩

S1/2

(

z − z1 + δa

2

)

, z ≥ δa

∫ z

0

u2
� efreeτ

Ku,z′
dz′, z < δa

(8)

where a closed-form of the integral for z < δa is given by MO theory. The quadratic
spline S1/2 used for reconstruction is computed with the averaged value ũ, the size
of the sub-cell h̃ and the fluxes at the extremities φδ and φ1: its definition S1/2(ξ) =
ũ + φ1+φδ

2 ξ + φ1−φδ

2h̃

(
ξ2 − h̃2

12

)
is thus similar to the one in the other cells.
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3 Numerical Experiments

The strategies to handle the SL are now compared through a test of consistency:
for several strategies, the differences between a low-resolution and a high-resolution
simulations are compared. The smaller the difference between the low-resolution
and the high-resolution simulations, the better the consistency of the scheme. The
proposed strategy “FV free” is compared with “FV1” (the typical current practice
with Finite Volumes), “FV2” (an intermediate between “FV free” and “FV1”: similar
to “FV free” but where the height of the surface layer δa is set to z1) and “FD” (a
Finite Difference reference).

• The turbulent viscosity is parameterized with a one-equation turbulence closure
based on turbulent kinetic energy. The code is available at [8] and an in-depth
description in [1]. An Euler implicit time scheme integrates the model over a full
day of simulation.

• Parameters are �t = 30 s, uG = 8 m.s−1, f = 10−4 s−1

• For “FV free” the same δa is used in both low- and high-resolution simulations,
whereas the resolution imposes δa in the other configurations.

• The vertical levels of the low resolution simulation are taken as the 25 first of the
137-level configuration of the atmospheric model Integrated Forecasting System
at ECMWF (European Centre for Medium-Range Weather Forecasts). The high-
resolution simulation has 3 timesmore cells: two grid levels are added in each of the
low-resolution grid cells. The usual SL strategies are designed for low-resolution
configurations: the latter can hence be considered as reference solutions, compared
through the sensitivity to the resolution.

Neutral case: In the neutral case (constant density), the difference between low and
high resolution of the “FV free” scheme is small at low altitude (see Fig. 3). This is
mainly due to two factors:

• δa = zlow−res
1
2

is the same for both low and high resolutions, whereas for the other

surface flux schemes the continuous equations change with δa.
• The initial relative difference for u� (Fig. 3, left panel) is already much smaller
than with the other schemes. This is a consequence of the imposed wall law: at
initialization, there is already a logarithmic profile in the surface layer, instead of
evolving toward a kind of compromise between the parameterized and themodeled
values.

Stratified case: We now focus on a stratified model [3] that includes more of the
physical behavior of atmospheric models: the turbulence closure depends on the
density ρ such that ∂zρ ∝ −∂zθ where θ is the potential temperature. We designed
two cases:

1. A stable stratification, obtained with an initial temperature increasing with the
altitude, and a surface temperature decreasing with time. The initial potential
temperature is 265K in the first 100m of the atmosphere and then gains 1◦C
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Fig. 3 Relative difference between low-resolution and high-resolution simulations with several
strategies for the SL handling. Left: Relative difference in u� as a function of time. Center: vertical
profiles of the wind speed at the end of the simulation. Right: Relative difference of the wind speed
between low- and high-resolution along the vertical (note the log scale)

every 100m; the surface temperature starts at 265K and loses 1◦C every ten
hours. The “low resolution” uses 15 grid points in the 400m column and the
“high resolution” uses 45 grid points.

2. An unstable stratification, obtained with a surface temperature following a daily
oscillation between 279 and 281K, and initial profiles of temperature and wind
set to constant values of 280K and 8m · s−1 respectively. The “low resolution” is
composed of 50 grid levels of 10m each; 15 additional stretched levels between
500 and 1080m make sure that the upper boundary condition is not involved in
the results. The “high resolution” divides every space cell into 3 new space cells
of equal sizes.

The differences between the two simulations are displayed in Fig. 4. In the stable
case, the difference between the high resolution and the low resolution results does
not significantly change with the surface flux schemes. The “FV2” scheme is not
very consistent because it tries to follow the continuous model but with δa changing
with the resolution. The Finite Difference or the “FV1” methods suffer less from
this problem because, even if δa changes, it is assumed that the evolution equation
is integrated inside the surface layer. In [9], authors also find that the sensitivity of
their Large Eddy Simulation model to the grid spacing is “more likely related to
under-resolved near-surface gradients and turbulent mixing at the boundary-layer
top, to the [sub-grid scale] model formulation, and/or to numerical issues, and not
to deficiencies due to the use of improper surface boundary conditions”.
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Fig. 4 Relative difference of the wind speed between low- and high-resolution simulations for
several SL strategies. left: stable stratification. Right: unstable stratification

In the unstable case, the “FV free” scheme (with δa = zlow−res
1
2

) seems much more

robust than the other schemes in the first 200m (remind that the height of the SL is
approximately 10m). Above this height the differences between the high resolution
and the low resolution simulations are not clearly influenced by the SL treatment.
Note also that, as in the stable case, the “FV2” scheme is also less consistent: enforc-
ing theMO theory in the first cell increases the sensitivity of the solution to δa because
the SL is then tightly coupled with the computational domain. Finally, the “FV free”
scheme combines good consistency properties with a SL scheme coherent with the
physical theory.
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Thermodynamically Consistent
Discretisation of a
Thermo-Hydro-Mechanical Model
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Abstract We consider in this work a Thermo-Hydro-Mechanical (THM) model
coupling the non-isothermal single phase flow in the porous rock and the linear
thermo-poro-elasticity. This type of models plays an important role in several appli-
cations such as e.g. the hydraulic stimulation of deep geothermal systems, or the
risk assessment of induced seismicity in CO2 storages. Compared with the isother-
mal case, the thermal coupling induces additional difficulties related in particular
to the nonlinear convection term. Starting from the pioneer work of Coussy [2], we
introduce a thermodynamically consistent discretisation of the THM coupled model
which naturally leads to a discrete energy estimate. Our approach applies to a large
class of Finite Volume schemes for the flow and energy equations but to fix ideas we
consider the Hybrid Finite Volume (HFV) discretisation [3]. It is combined with a
conforming Galerkin approximation of the mechanics. Our methodology accounts
for a wide range of thermodynamical single phase fluid model and of thermo-poro-
elastic parameters, as well as for diffusive or convective dominated energy transport.
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1 Continuous Model

Weconsider a Thermo-Poro-Mechanical (THM)model under the hypothesis of small
perturbations for the skeleton accounting for small transformations, displacement
and variations of porosity [2]. Linear isotropic thermo-poro-elastic constitutive laws
are considered for the skeleton assuming small variations of temperature around the
reference temperature T0. The Darcy law is used for the fluid velocity and the Fourier
law for the thermal conduction. Thermal equilibrium is assumed between the fluid
and the skeleton, and the fluid dissipation is neglected on an assumption of small
Darcy velocities. The mechanical inertial term is modelled using the freezed specific
average fluid—rock density m0. Following [2], the resulting THM model is

∂t (�φ) + div(�V) = hm in(0, τ ) × Ω, (1a)

∂t (Ss + �φs) + div(�sV) + 1

T0
divq = he

T
in (0, τ ) × Ω, (1b)

m0∂
2
t u − div(σ(u, p, T )) = h in (0, τ ) × Ω, (1c)

with

V = − K

μ
∇ p , q = −λ∇T , (1d)

∂tφ = b∂t (divu) − 3αφ∂t T + 1

N
∂t p , (1e)

∂t Ss = 3αs Ks∂t (divu) − 3αφ∂t p + Cs

T0
∂t T , (1f)

σ(u, p, T ) = σe(u) − bp I − 3αs Ks(T − T0)I , (1g)

σe(u) = E

1 + ν

(
ε(u) + ν

1 − 2ν
(divu)I

)
. (1h)

The primary unknowns of the model (1) are the fluid pressure p, the fluid tem-
perature T and the skeleton displacement field u. They are solutions of the nonlinear
system of PDEs coupling the fluid mass conservation equation (1a), the total entropy
conservation equation (1b), and the skeleton momentum balance equation (1c). The
closure laws (1d)–(1h) define the Darcy velocity V, the conductive heat flux q, and
account for the linear thermo-poro-elastic constitutive laws defining the porosity φ,
the volumetric skeleton entropy Ss and the total stress tensor σ (from the effective
stress tensor σe). The parameters E and ν are the effective Young modulus and Pois-
son coefficient, N is the Biot modulus, b the Biot coefficient, Ks = (1+(d−2)ν)E

d(1+ν)(1−2ν)
is

the bulk modulus, d the space dimension, 3αs is the volumetric skeleton thermal
dilation coefficient, 3αφ is the volumetric thermal dilation coefficient related to the
porosity, Cs is the skeleton volumetric heat capacity, and m0 is the average fluid
skeleton specific density considered freezed at its initial value.
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To simplify the presentation, the fluid is assumed incompressible with a constant
specific density � > 0 , a constant dynamic viscosity μ > 0, and the gravity terms
are not considered. The fluid specific entropy s and internal energy e depend only on
the temperature T and are such that de = Tds. Note that the methodology presented
below readily extends to the case with gravity terms, general fluid thermodynamics,
and p, T dependent viscosity.

To prepare the discretisation, we need to recast (1b). We have

∂t (�φs) + div(� sV) = �φ∂t s + �V · ∇s + s (∂t (�φ) + div(�V))︸ ︷︷ ︸
=hm by (1)

= �φ

T
∂t e + 1

T
�V · ∇e + shm,

where we have used the relation de = Tds in the second line. This leads to replacing
(1b) with

∂t Ss + �φ

T
∂t e + 1

T
�V · ∇e + 1

T0
divq = he

T
− shm . (2)

To keep the presentation simple, we consider no-flow, no-energy flux and no-
displacement boundary conditions.

2 Discretisation

LetM denote the set of cells, and F the set of faces of the mesh, with internal faces
gathered in F int and boundary faces in F ext. The subset FK ⊂ F denotes the set of
faces of the cell K ∈ M, and we denote by σ = K |L the face between two cells
K , L; the notation σ = K |· is used for a face σ ∈ FK ∩ F ext. For the pressure and
temperature discretisation, we define the vector space of discrete unknowns

XD = {v = ((vK )K∈M, (vσ)σ∈F ) : vK ∈ R for all K ∈ M, vσ ∈ R for all σ ∈ F}.

We let ∇D : XD → L∞(Ω)d be the HFV gradient reconstruction operator, and
the cellwise constant function reconstruction operator �D : XD → L2(Ω) is such
that for all v ∈ XD and all K ∈ M, (�Dv)|K = vK . For the displacement field
discretisation, we denote by UD a finite-dimensional subspace of H 1

0 (Ω)d .
The HFV Darcy and Fourier fluxes are denoted respectively by VK ,σ and GK ,σ

defined from XD to R such that, for all v,w ∈ XD, all K ∈ M and σ ∈ FK ,

∫
K

K

μ
∇Dv · ∇Dw =

∑
σ∈FK

VK ,σ(v)(wK − wσ),
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and ∫
K

λ

T0
∇Dv · ∇Dw =

∑
σ∈FK

GK ,σ(v)(wK − wσ).

Let the index σ,+ denote either σ if no upwinding is used, or an upwind choice
between K and L if σ = K |L ∈ F int and an upwind choice between K and σ if
σ = K |· ∈ F ext. A key ingredient of the spatial discretisation that enables an energy
estimate is the following discretisation of �V · ∇e = div(�eV) − e div(�V) on K ,
which includes a possible upwinding eσ,+ of the discrete internal energy: for p ∈ XD
and e ∈ XD,

∑
σ∈FK

eσ,+�VK ,σ(p) − eK
∑

σ∈FK

ρVK ,σ(p) =
∑

σ∈FK

ρVK ,σ(p)(eσ,+ − eK ).

We consider a time discretisation (tn)n=0,...,N of the time interval (0, τ ) with t0 = 0
and t N = τ , and denote by δt (n+ 1

2 ) = tn+1 − tn the time step n. If f = ( f n)n=0,...,N

is a family of functions, the discrete time derivative of f is defined as

δ
(n+ 1

2 )

t f = f n+1 − f n

δt (n+ 1
2 )

.

We also set u̇ = (u̇n)n=0,...,N with u̇n = un−un−1

tn−tn−1 and we write δ
(n+ 1

2 )

t u̇ = 2 u̇n+1−u̇n

tn+1−tn−1 .
For given discrete pressures p ∈ (XD)N+1, temperatures T ∈ (XD)N+1 and displace-
ment field u ∈ (UD)N+1, the discrete porosity φ = (φn)n=0,...,N and skeleton entropy
Ss = (Sns )n=0,...,N are families of cellwise constant functionsΩ → R onM such that
φ0, S0s are given (e.g., as projections of the continuous initial porosity and entropy)
and, for all n = 0, . . . , N − 1,

δ
(n+ 1

2 )

t φn = bπM(δ
(n+ 1

2 )

t divu) − 3αφδ
(n+ 1

2 )

t �DT + 1

N
δ

(n+ 1
2 )

t �D p,

δ
(n+ 1

2 )

t Ss,D = 3αs KsπM(δ
(n+ 1

2 )

t divu) − 3αφδ
(n+ 1

2 )

t �D p + Cs

T0
δ

(n+ 1
2 )

t �DT,

where πM is the projection on piecewise constant functions onM, that is, (πM f )|K
= 1

|K |
∫
K f for all K ∈ M.

We also define, for • = {m, e} and n = 0, . . . , N − 1, the function ĥn+1• : Ω → R

as the piecewise constant function onM equal on K ∈ M to the average ĥn+1
•,K of h•

on (tn, tn+1) × K . The function ĥn+1 : Ω → R
d is defined in the same way from h.

Setting ξnK = ξ(T n
K ) and ξnσ = ξ(T n

σ ) for ξ ∈ {e, s}, the time stepping is defined
by the discrete system:

�|K |δ(n+ 1
2 )

t φK +
∑

σ∈FK

�VK ,σ(pn+1) = |K |̂hn+1
m,K ∀K ∈ M, (3a)
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VK ,σ(pn+1) + VL ,σ(pn+1) = 0 ∀σ = K |L ∈ F int,

VK ,σ(pn+1) = 0 ∀σ ∈ F ext.
(3b)

|K |
(
δ

(n+ 1
2 )

t Ss,K + �
φn
K

T n+1
K

δ
(n+ 1

2 )

t eK
)

+ 1

T n+1
K

∑
σ∈FK

�VK ,σ(pn+1)(en+1
σ,+ − en+1

K )

+
∑

σ∈FK

GK ,σ(T n+1) = |K |
(
ĥn+1
e,K

T n+1
K

− ĥn+1
m,K s

n+1
K

)
∀K ∈ M.

(3c)
GK ,σ(T n+1) + GL ,σ(T n+1) = 0 ∀σ = K |L ∈ F int,

GK ,σ(T n+1) = 0 ∀σ ∈ F ext.
(3d)

∫
Ω

m0(δ
(n+ 1

2 )

t u̇) · v +
∫

Ω

σe(un+1) : ε(v)

−
∫

Ω

(
b�D pn+1 + 3αs Ks�DT n+1

)
div(v) =

∫
Ω

ĥn+1 · v ∀v ∈ UD.

(3e)

Here, (3a)–(3b) discretise the mass conservation (1a), (3c)–(3d) discretise the
entropy equation (2), and the mechanical equation (1c) is discretised by (3e). We
note that, combining the mass and energy equations, the discretization of the term

∂t (�φe) + div(�eV) is conservative. Note also that the discretization δ
(n+ 1

2 )

t u̇ defined
above is a natural extension of the classical formula un+1−2un+un−1

(δt)2 in the case of a
constant time step δt .

3 Energy Estimate

Let us define the discrete Darcy and Fourier diffusive terms by

D(pn+1) =
∫

Ω

K

μ
∇D pn+1 · ∇D pn+1, F(T n+1) =

∫
Ω

λ

T0
|∇DT n+1|2,

and we assume that

M :=
[ 1

N −3αφ

−3αφ
Cs
T0

]
is definite positive.

The discrete energy is E = (En)n=0,...,N with En : Ω → R given by
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En = 1

2

[
�D pn �DT n

]
M

[
�D pn

�DT n

]
+ �φn�Den

+ 1

2

E

1 + ν

(
|ε(u)|2 + ν

1 − 2ν
(divu)2

)
.

Let us also set the discrete specific free enthalpy of the fluid as

gn+1 = �Den+1 + �D pn+1

�
− �DT n+1�Dsn+1.

Then, any solution of the discrete system (3) satisfies the following discrete energy
estimate: for all n = 0, . . . , N − 1,

∫
Ω

m0

2
δ

(n+ 1
2 )

t |u̇|2 +
∫

Ω

δ
(n+ 1

2 )

t E + D(pn+1) + F(T n+1)

≤
∫

Ω

(̂
hn+1
e + gn+1ĥn+1

m

) +
∫

Ω

ĥn+1 · u̇n+1.

To deduce a control on the primary discrete unknowns, we make the following
assumptions.

– Throughout the simulation, φ ≥ φ∗ > 0; the model itself does not contain any
mechanism that ensures that the continuous porosity remains positive, so this
assumption is mandatory (see the introduction of [1]), but can also easily be
checked during the simulation.

– The energy and entropy laws satisfy: e(T ) ≥ 0 for all T , and e − T s is sub-
quadratic in the sense that lim|T |→∞

e(T )−T s(T )

|T |2 = 0.
– The mass, energy and momentum source terms hm, he,h are bounded.
– The thermo-poro-elastic parameters satisfy 1

N > 0, Cs > 0, αφ ≥ 0, E > 0, ν ∈
(0, 1

2 ).
– The specific average density satisfies m0 ≥ m∗ > 0.

Then, using a discreteGronwall lemmawe can show that there existsC , depending
only on the data, such that for all small enough maximum time step (such a condition
is only needed if h �= 0), one has

‖u̇‖L∞(0,τ ;L2(Ω)) + ‖�D p‖L∞(0,τ ;L2(Ω)) + ‖�DT ‖L∞(0,τ ;L2(Ω)) + ‖u‖L∞(0,τ ;H 1(Ω))

+
∥∥∥∇D p

∥∥∥
L2(0,τ ;L2(Ω))

+ ‖∇DT ‖L2(0,τ ;L2(Ω)) + ‖�De‖L∞(0,τ ;L1(Ω)) ≤ C.

4 Numerical Validation

We investigate in this section the numerical convergence of the scheme based on the
following analytical solution
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Table 1 Material properties

Symbol Quantity Value Unit

E Young modulus 2.5 Pa

ν Poisson’s coefficient 0.25 –

N Biot’s modulus 0.25 Pa−1

b Biot’s coefficient 1.0 –

K Bulk modulus 2.0 Pa

μ Fluid viscosity 1.0 Pa s

φ0 Initial porosity 4 –

λ Effective thermal conductivity 0.1 W m−1 K−1

� The fluid specific density 1 Kg m−3

3 αs The volumetric skeleton thermal dilation
coefficient

1 K−1

3 αφ The volumetric thermal dilation
coefficient related to the porosity

1 K−1

T0 Reference temperature 1 K

m0 Average fluid skeleton specific density 0 Kg m−3

Cs The skeleton volumetric heat capacity 0.5 J m−3 K−1

Fig. 1 Square domain Ω

with its triangular mesh
i = 2 using 56 × 4 cells

u(x, t) = 10−1e−t

(
x2y2

−x2y2

)
,

p(x, t) = e−t sin (x) sin (y) , T (x, t) = e−t (2 − sin (x) sin (y)) ,

on the domain Ω = (0, 1)2 and time interval (0, τ ) with τ = 1. The fluid internal
energy and entropy are defined by e(T ) = T and s(T ) = log( T

T0
). Dirichlet boundary

conditions are imposed for p, T and u on (0, τ ) × ∂Ω and the source terms hm ,
he and h are computed based on the data set defined in Table 1. The domain Ω

is discretized using the first family of triangular meshes from [4] as illustrated in
Fig. 1. Each mesh indexed by i ∈ {1, 2, 3, 4} includes #M = 56 × 4i−1 triangles.
The HFV discretisation [3] of the flow and energy equations is combined with the P2

conforming Finite Element method for the mechanics to ensure the inf-sup condition
and avoid potential oscillations of the pressure field at short times in the undrained
regime. We consider a uniform time stepping of (0, τ ) with time step �t = 10−4

chosen small enough to reduce the error due to the time discretization and focus on
the convergence in space.
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Table 2 Errors and convergence rates obtained with the centered scheme using K = I

Mesh P ∇P T ∇T U ∇U

Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

1 3.41E-
03

– 7.40E-
02

– 5.10E-
04

– 7.40E-
02

– 1.30E-
02

– 5.17E-
02

–

2 8.67E-
04

1.97 3.68E-
02

1.01 1.29E-
04

1.98 3.68E-
02

1.01 3.89E-
03

1.74 2.41E-
02

1.10

3 2.19E-
04

1.99 1.84E-
02

1.00 3.49E-
05

1.89 1.84E-
02

1.00 1.07E-
03

1.86 1.15E-
02

1.06

4 5.50E-
05

1.99 9.17E-
03

1.00 1.41E-
05

1.31 9.18E-
03

1.00 2.81E-
04

1.93 5.62E-
03

1.03

Table 3 Errors and convergence rates obtained with the upwind scheme using K = I

Mesh P ∇P T ∇T U ∇U

Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

1 3.44E-
03

– 7.40E-
02

– 9.84E-
04

– 7.93E-
02

– 1.33E-
02

– 5.11E-
02

–

2 8.79E-
04

1.97 3.68E-
02

1.01 3.18E-
04

1.63 3.93E-
02

1.01 3.93E-
03

1.76 2.39E-
02

1.09

3 2.26E-
04

1.96 1.84E-
02

1.00 1.28E-
04

1.31 1.96E-
02

1.00 1.07E-
03

1.87 1.15E-
02

1.06

4 5.96E-
05

1.92 9.17E-
03

1.00 6.25E-
05

1.03 9.81E-
03

1.00 2.81E-
04

1.93 5.62E-
03

1.03

The coupled nonlinear system is solved at each time step using a fixed-point
method on cell pressures p and temperatures T accelerated by a Newton-Krylov
algorithm [1]. At each iteration of theNewton-Krylov algorithm, the p, T sub-system
is solved using a Newton-Raphson algorithm and the contact mechanics is solved
using a semi-smooth Newton method.

The L2 space time errors for p, T,u and their gradients are exhibited in Tables 2,
3 and 4 as functions of themesh number i . Both the upwind and centered schemes are
considered for the thermal convection as well as the two values of the permeability
K = I and K = 100 I, respectively corresponding to equilibrated and convection
dominated regimes. We first note that, due to the instability of the centered scheme
in the convection dominated regime, this scheme fails to provide a solution for
K = 100 I as a result of a failure of the nonlinear algorithm used to solve the scheme.

Regarding the displacement field, second and first order convergence rates are
observed in all cases for respectivelyu and∇u. This is in accordancewith the cellwise
constant reconstruction�D of the pressure and temperature in the displacement field
variational formulation (3e). The convergence rates for p and ∇ p are respectively
roughly 2 and 1 in all cases as could be expected. On the other hand, the converge
rates for T and ∇T depend on the approximation of the convection term and on the
convection diffusion regime. For equilibrated convection and diffusion, the centered
scheme provides a higher convergence rate for T (order 2, except on mesh 4 where
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Table 4 Errors and convergence rates obtained with the upwind scheme using K = 100 I

Mesh P ∇P T ∇T U ∇U

Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

1 3.49E-
03

– 7.40E-
02

– 3.15E-
02

– 6.24E-
01

– 1.94E-
02

– 8.12E-
02

–

2 9.08E-
04

1.94 3.68E-
02

1.01 1.45E-
02

1.12 3.84E-
01

0.70 5.18E-
03

1.91 3.64E-
02

1.16

3 2.47E-
04

1.88 1.83E-
02

1.00 6.66E-
03

1.12 2.38E-
01

0.69 1.30E-
03

1.99 1.63E-
02

1.16

4 7.45E-
05

1.73 9.17E-
03

1.00 2.97E-
03

1.16 1.48E-
01

0.69 3.14E-
04

2.05 7.16E-
03

1.19

the time error starts to dominate) than the upwind scheme (order between 1 and 2).
An order 1 is observed on∇T for both schemes. In the convection dominated regime,
the upwind scheme exhibits a convergence rate slightly better than 1 for T and an
order roughly equal to 0.7 for ∇T .
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Justification of Generalized Interface
Conditions for Stokes–Darcy Problems

Elissa Eggenweiler, Joscha Nickl, and Iryna Rybak

Abstract For accurate modeling and numerical simulation of free-flow and porous-
medium flow systems, the correct choice of coupling conditions at the common inter-
face is essential.Most of the interface conditions available in the literature are limited
to flows parallel or perpendicular to the porous layer. This significantly limits the
number of applications that can bemodeled in a physicallymeaningfulway.Recently,
generalized coupling conditions for arbitrary flowdirections to the fluid–porous inter-
face have been developed using homogenization and boundary layer theory. These
conditions were validated numerically, however, their justification via error estimates
was up to now an open question. In this work, we derive new interface conditions that
extend the generalized coupling conditions by some higher-order boundary layer cor-
rectors. Under additional regularity and boundedness assumptions, we obtain error
estimates that justify our newly developed coupling conditions.

Keywords Free flow · Porous medium · Interface conditions · Homogenization ·
Boundary layer theory

1 Introduction

Coupled systems of free flowand porous-mediumflowplay an important role inmany
fields of biological, environmental, and technical applications. Examples include
blood flow through vessels and body tissues, surface water/groundwater flows, or
water management in fuel cells. To investigate such coupled flow systems different
spatial scales can be employed. At the pore scale, the detailed pore geometry is
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resolved and the flow in the entire fluid domain is described by one system of partial
differential equations. However, computation of the pore-scale flow field is often
infeasible for practical applications, and thusmacroscalemodels are preferred. At the
macroscale, the free-flow and porous-medium regions are modeled as two different
continua separated by a fluid–porous interface. Since the flow in coupled systems
is highly influenced by complex interface-driven processes, the correct choice of
interface conditions to couple the two flowmodels is crucial for physically consistent
modeling and accurate numerical simulation.

Depending on the application of interest, there exists a variety of macroscale
models describing fluid flows in coupled systems, e.g., [3, 4]. In this work, we are
interested in steady-state, single-phase fluid flows at low Reynolds numbers where
the porous medium is fully saturated with the fluid occupying the free-flow domain.
From the macroscale perspective, such systems are typically described by the Stokes
equations in the free-flow region, Darcy’s law in the porous medium, and appropriate
coupling conditions on the fluid–porous interface. Traditional coupling concepts [1,
8] for the Stokes–Darcy problem are based on the Beavers–Joseph condition which
is valid only for fluid flows parallel to the porous medium. Hence, these traditional
coupling conditions are not applicable to general filtration problems where the flow
contacts the fluid–porous interface at an arbitrary angle [5].

Recently, alternative interface conditions have been developed in [6] accounting
for arbitrary fluid flows in Stokes–Darcy systems. These conditions are derived using
periodic homogenization and boundary layer theory and are confirmed, so far, only
numerically. In this paper, we extend the work done in [6] and derive a set of gener-
alized coupling conditions including additional higher-order terms in comparison to
the ones in [6]. These terms lead to a more accurate description of coupled flow prob-
lems. In addition, we provide error estimates that justify the newly derived coupling
conditions.

The paper is organized as follows. In Sect. 2, we formulate the problem setting and
present the mathematical flow models including the interface conditions developed
in this work. Section 3 is devoted to the derivation of the new interface conditions
and error estimates. We discuss the presented results and give an outlook on future
work in Sect. 4.

2 Problem Setting and Flow Models

In this section, we first introduce the geometrical setting and present the assumptions
on the flow system. Then, we provide the microscopic and the macroscopic flow
models. The latter includes the new interface conditions derived in Sect. 3.

At the macroscale, the coupled flow domain � ⊂ IR2 consists of the free-flow
region �ff = (0, L) × (0, h) and the porous medium �pm = (0, L) × (0,−H), that
are separated by a sharp fluid–porous interface �, i.e., � = �ff ∪ � ∪ �pm (Fig. 1,
left). In this work, we consider the horizontal interface � = (0, L) × {0}, where
the unit normal vector on � is n = e2 and the unit tangential vector is τ = e1. At
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Fig. 1 Coupled flow domain at the macroscale (left part of domain) and at the pore scale (right part
of domain) with a scaled unit cell Y ε = Y ε

f ∪ Y ε
s (left). Boundary layer stripe Zbl = Z+ ∪ S ∪ Z−

(right)

the pore-scale, the entire flow domain �ε ⊂ IR2 comprises the free-flow region �ff ,
the interface �, and the pore space �ε

pm ⊂ IR2 of the porous medium, i.e., �ε =
�ff ∪ � ∪ �ε

pm. We assume that the porous medium is constructed by the periodic
repetition of the scaled unit cell Y ε = (0, ε) × (0, ε) consisting of a fluid part Y ε

f
and a solid part Y ε

s (Fig. 1, left). Here, ε denotes the characteristic pore size with
L/ε, H/ε ∈ IN.For further details on the constructionof the periodic porousmedium,
we refer to [6, 7].

We study steady-state, laminar (Re � 1), single-phase flows of an incompressible
fluid that has constant viscosity. We assume that the fluid contains only one chemical
species and fully saturates the pore space of the porous medium. The solid inclusions
are supposed to be impermeable, rigid, and non-deformable. Moreover, the coupled
system is considered to be isothermal.

2.1 Microscopic Flow Model

Under the prescribed assumptions, the fluid flow in the entire flow domain �ε is
described by the non-dimensional Stokes equations

−�vε + ∇ pε = 0 , ∇·vε = 0 in �ε ,
∫
�ff

pε dx = 0 ,

vε = 0 on ∂�ε \ ∂�, {vε, pε} is L-periodic in x1 ,

vε = (vin
1 (x1), 0) on (0, L) × {h} , vε

2 = ∂vε
1

∂x2
= 0 on (0, L) × {−H} .

(1)

Here, vε = (vε
1, v

ε
2) and pε denote the fluid velocity and pressure, vin

1 is a prescribed
inflow velocity. Problem (1) is also considered in [6], on which our work is based. It



278 E. Eggenweiler et al.

describes a coupled flow system where the flow direction is arbitrary to the porous
region.

2.2 Macroscopic Flow Model

At the macroscale, the fluid flow in the free-flow region �ff is modeled by the non-
dimensional Stokes equations

−�vff + ∇ pff = 0 , ∇·vff = 0 in �ff ,
∫
�ff

pff dx = 0 ,

{vff , pff} is L-periodic in x1 , vff = (vin
1 (x1), 0) on (0, L) × {h} ,

(2)

and in the porous-medium domain �pm by the non-dimensional Darcy equations

vpm = −Kε∇ ppm , ∇·vpm = 0 in �pm ,

ppm is L-periodic in x1 , v
pm
2 = 0 on (0, L) × {−H} .

(3)

Here, vff , pff , vpm and ppm are the fluid velocity and pressure in the free-flow and
porous-medium region, respectively, and Kε = ε2K is the permeability tensor. The
entries of K are defined in a standard way, e.g., [7, Eq. (1.17)].

In order to obtain a complete macroscale model formulation, i.e., to couple equa-
tions (2) and (3), conditions on the fluid–porous interface � need to be specified.
In Sect. 3, we derive a new set of interface conditions for the Stokes–Darcy prob-
lem (2)–(3) that read

vff
1 = −εN bl

1
∂vff

1

∂x2

∣
∣
∣
∣
�

+ ε2
2∑

j=1

M j,bl
1

∂ ppm

∂x j

∣
∣
∣
∣
�

− ε2
(
Ebl
1 + Lbl

1

) ∂

∂x1

∂vff
1

∂x2

∣
∣
∣
∣
�

, (4)

vff
2 = v

pm
2 − ε2W bl ∂

∂x1

∂vff
1

∂x2

∣
∣
∣
∣
�

, (5)

ppm = pff − ∂vff
2

∂x2

∣
∣
∣
∣
�

+ N bl
s

∂vff
1

∂x2

∣
∣
∣
∣
�

− ε

2∑

j=1

M j,bl
ω

∂ ppm

∂x j

∣
∣
∣
∣
�

+ε
(
Lbl

η + Ebl
b + N bl

1

) ∂

∂x1

∂vff
1

∂x2

∣
∣
∣
∣
�

. (6)

Constants N bl
1 , M j,bl

1 , Ebl
1 , Lbl

1 , W bl, N bl
s , M j,bl

ω , Lbl
η and Ebl

b for j = 1, 2 appearing in
conditions (4)–(6) are obtained from solutions to boundary layer problems defined
on the boundary layer stripe Zbl = Z+ ∪ S ∪ Z− (Fig. 1, right). These constants are
given by (14), (19), [6, Eqs. (3.15b), (3.15c), (3.26b), (3.26c)] and by

W bl = −
∫

Z−
tbl1 dy , (7)
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where tbl1 is the solution to [6, Eq. (3.14)]. All constants can be computed numerically
based on the pore geometry near the fluid–porous interface. Due to lack of space, we
do not provide the values of the constants for specific pore geometries in this paper
(for N bl

1 , M j,bl
1 , N bl

s and M j,bl
ω , see [6]).

Remark 1 Coupling conditions (4)–(6) have the same form as the ones proposed
in [10], however, the constants appearing in these conditions are not exactly the same.
A thorough comparison of interface conditions (4)–(6) with the conditions from [10]
will be presented at the conference.

Remark 2 The set of interface conditions (4)–(6) extends the conditions derived
in [6] by additional higher-order terms which take into account the variation of shear
stress along the interface.

3 Derivation of Interface Conditions

In this section, we present the main steps for the derivation of the higher-order
generalized interface conditions (4)–(6), and provide error estimates for the model
approximation. Since our work is an extension of [6], we follow the procedure pro-
posed in [6, Sect. 3.2] and use the same notations introduced therein. The goal
is to construct an accurate approximation {vε

approx, pε
approx} of the pore-scale solution

{vε, pε} such that the error of the model approximation {vε − vε
approx, pε − pε

approx} is
sufficiently small. Then, interface conditions can be formulated based on the derived
model approximation.

In order to find an approximation of the pore-scale solution we apply homoge-
nization and boundary layer theory. We expand the pore-scale velocity and pressure
as follows

vε(x) = v0(x, y) + εv1(x, y) + ε2v2(x, y) + OL2(�ε)2(ε
3)

pε(x) = p0(x, y) + εp1(x, y) + OL2(�ε)(ε
3/2), (8)

where y = x/ε and vi , pi are 1-periodic functions in y1 for i ∈ IN0. The final approx-
imation {vε

approx, pε
approx} is constructed based on (8) during several steps as in [6].

We tag the first approximation of the pore-scale solution by the superscript 0, i.e.,
{v0,εapprox, p0,ε

approx}. This approximation is then improved by adding boundary layer
correctors. The resulting new approximation is indicated by a rising superscript, i.e.,
{v1,εapprox, p1,ε

approx}. In an analogous way {vn,ε
approx, pn,ε

approx} is constructed for the index
n ∈ IN.We introduce the error functionsUn,ε = vε − vn,ε

approx and Pn,ε = pε − pn,ε
approx

corresponding to the approximation {vn,ε
approx, pn,ε

approx}. The error functions according
to the final model approximation {vε

approx, pε
approx} are denoted by Uε and Pε.
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3.1 Model Approximation

In this section, we construct an approximation of the pore-scale solution {vε, pε}
based on the work in [6]. We explain why additional terms of order ε are needed in
the approximation and we provide the corresponding boundary layer problems.

We found out that for the pore-scalemodel approximation {v6,εapprox, p6,ε
approx} derived

in [6, Sect. 3.2.6] the error estimates that can be obtained are not sufficient. Since
v6,εapprox is of order ε

2, we expect that for the velocity error it holds ‖U6,ε‖L2(�ε)2 ≤ Cεi

with i > 2. However, we realized that such an estimate is not possible when the
approximation {v6,εapprox, p6,ε

approx} is used.Thus,weneed to improve this approximation.
Careful examination of [2, 6] leads us to the following conclusion. For better error
estimates we need to improve the result from [6, Corollary 3.5]: instead of the factors
ε3/2 and ε5/2 we need ε5/2 and ε7/2, respectively.

At this stage,we remark that the solution {vcf , pcf} to [6, Eqs. (3.44), (3.45)] should
not be used for the approximation {v6,εapprox, p6,ε

approx} since this leads to an undesirable
contribution of the velocity error function U6,ε on the top boundary. Thus, instead of
{v6,εapprox, p6,ε

approx}, we use

v6,ε,mod
approx = v6,εapprox + ε2H(x2)vcf , p6,ε,mod

approx = p6,ε
approx + ε2H(x2)pcf , (9)

as a basis for our work in this paper.

Improvement of Approximation from [6]. To find out how approximation (9) can
be improved we study the corresponding weak formulation given by [6, Eq. (3.53)].
We identify the integral terms that are sources for a low estimation order, i.e., terms
that are bounded by Cε3/2 or Cε2 under the assumptions in Remark 3. These terms
are given in [6, Eqs. (3.11), (3.20), (3.21), (3.24), estimates on p. 743]. To improve the
pore-scale approximation (9) we add boundary layer correctors such that in the weak
formulation according to the new approximation, the integral terms of low order are
eliminated. In this way, we obtain sufficiently good estimates for the errors Uε and
Pε (Theorem 1).

In the following, we provide details on the correction of approximation (9) w.r.t.
the integral terms in [6, Eq. (3.20), (3.21), (3.24), estimates on p. 743] since the other
corrections are of order ε3 and do not appear in the new interface conditions (4)–(6).
To eliminate the integral term given in [6, Eq. (3.21), (3.24), estimates on p. 743],
we define two boundary layer problems. The first one reads

�ycbl − ∇ybbl = �yζ
bl in Z+ ∪ Z−, (10)

∇y·cbl = 0 in Z+ ∪ Z−, (11)

�cbl�S = �∇ycbl − bblI�Se2 = 0 on S, (12)

cbl = 0 on ∪∞
k=1(∂Ys − (0, k)), {cbl, bbl} is 1-periodic in y1 . (13)

Since there exists γ ∈ (0, 1) such that eγ|y2|�yζ
bl ∈ L2(Zbl)2, where ζbl is the solu-

tion to [6, Eq. (3.44)], system (10)–(13) is a boundary layer problem after [7].
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Thus, we know that there exists a unique solution to (10)–(13) and that the veloc-
ity cbl and the pressure bbl stabilize exponentially (in the sense of [7, Eqs. (3.33),
(3.34), (3.38), (3.39)]) to constants in the free-flow region

Ebl =
(∫ 1

0
cbl1 dy1, 0

)

, Ebl
b =

∫ 1

0
bbl dy1 , (14)

and to zero in the porous medium. We extend the velocity cbl to zero in � \ �ε, and
set cbl,ε(x) = cbl(x/ε) and bbl,ε(x) = bbl(x/ε).

The second boundary layer problem is given by

�yξ
bl − ∇yη

bl = −
(

2
∂tbl

∂y1
− sble1+H(y2)N bl

s e1

)

in Z+ ∪ Z− , (15)

∇y·ξbl = 0 in Z+ ∪ Z− , (16)

�ξbl�S = �∇yξ
bl − ηblI�Se2 = 0 on S , (17)

ξbl = 0 on ∪∞
k=1(∂Ys − (0, k)), {ξbl, ηbl} is 1-periodic in y1 . (18)

We know that there exists γ ∈ (0, 1) such that eγ|y2|∇ytbl ∈ L2(Zbl)2 and
eγ|y2| (sbl − H(y2)N bl

s

) ∈ L2(Zbl). Thus, problem (15)–(18) fits in the form of the
AUX problem from [7]. Therefore, we know that there exists a solution to (15)–(18)
which is unique. Furthermore, we know that the boundary layer velocity ξbl and pres-
sure ηbl stabilize exponentially to boundary layer constants in the free-flow region
and to zero in the porous medium. These boundary layer constants are given by

Lbl =
(∫ 1

0
ξbl1 dy1, 0

)

, Lbl
η =

∫ 1

0
ηbl dy1 . (19)

The boundary layer velocityξbl is extended to zero in� \ �ε andwedefineξbl,ε(x) =
ξbl(x/ε) and ηbl,ε(x) = ηbl(x/ε).

The improved approximations of the pore-scale velocity and pressure are

v7,εapprox = v6,ε,mod
approx − ε2

(
cbl,ε − H(x2)Ebl + ξbl,ε − H(x2)Lbl

) ∂

∂x1

∂vff
1

∂x2

∣
∣
∣
∣
�

,

p7,ε
approx = p6,ε,mod

approx − ε
(
bbl,ε − H(x2)Ebl

b + ηbl,ε − H(x2)Lbl
η

) ∂

∂x1

∂vff
1

∂x2

∣
∣
∣
∣
�

.

At this stage, corrections of the compressibility effects using boundary layer
problems are needed similar to [6, Sect. 3.2.5] in order to obtain accurate error esti-
mates (Theorem1).Note that all further corrections of approximation {v7,εapprox, p7,ε

approx}
are of higher order and do not appear in the derived conditions (4)–(6). Thus, we do
not provide details on these corrections here.

Final Approximation. We obtain the following final error functions
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Uε = vε − v7,εapprox + OL2(�ε)2(ε
3) , Pε = pε − p7,ε

approx + OL2(�ε)(ε
2) . (20)

Note that higher-order terms due to corrections of compressibility effects are included
in OL2(�ε)2(ε

3) for the velocity and in OL2(�ε)(ε
2) for the pressure.

We formulate interface condition (6) in such a way that all integral terms over �

appearing in theweak formulation vanish. Interface conditions (4) and (5) are derived
due to the requirement �Uε�� = 0 necessary forUε ∈ H 1(�ε)2.With the constructed
error functions (20) and under the assumptions given in Remark 3, we obtain the
following result.

Corollary 1 For Uε and Pε defined in (20) the following estimate holds

‖∇Uε‖L2(�ε)2×2 ≤ Cε7/2‖Pε‖L2(�ε) + Cε5/2‖∇Uε‖L2(�ε)2×2 . (21)

Estimate (21) improves the result from Corollary 3.5 in [6].

Remark 3 For the proof of Corollary 1 we assume that the derivatives ∂2vffk
∂xi ∂x j

, ∂2 ppm

∂xi ∂x j

exist and are continuous for i, j, k = 1, 2 satisfying the following uniform bounds
w.r.t. ε > 0 for a constant C > 0:

∥
∥
∥
∥

∂2vff
k

∂xi∂x j

∥
∥
∥
∥

C0(�ff )

≤ C ,

∥
∥
∥
∥

∂2 ppm

∂xi∂x j

∥
∥
∥
∥

C0(�ε
pm)

≤ C .

3.2 Error Estimates for Model Approximation

In this section, we provide the error estimates of the model approximation that justify
the homogenization ansatz (8) onwhich the derivation of the interface conditions (4)–
(6) is based. Under the assumptions given in Remark 3 and using the theory of very
weak solutions [9], we obtain the following result.

Theorem 1 Let us suppose the geometry as described in Sect.2 and the velocity and
pressure error function given by (20). Then, for a fixed ε̃ > 0 there exists a constant
C > 0 such that the following estimates hold for all 0 < ε < ε̃:

‖∇Uε‖L2(�)2×2 ≤ Cε5/2 , ‖Uε‖L2(�pm)2 ≤ Cε7/2 , ‖Uε‖L2(�ff )2 ≤ Cε3 ,

‖Uε‖L2(�)2 ≤ Cε3 , ‖Pε‖L2(�ε) ≤ Cε3/2 .

4 Discussion and Future Work

In this work, we derived new generalized coupling conditions for arbitrary flows
to the fluid–porous interface in Stokes–Darcy systems using homogenization and
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boundary layer theory. These conditions are an extension of the ones proposed
in [6] by additional higher-order terms. To justify the new conditions we derived
error estimates of the model approximation based on regularity and uniform bound-
edness assumptions for the free-flow velocity and the porous-medium pressure.
Validation of the developed conditions by comparison of pore-scale resolved to
macroscale numerical simulations will be presented at the conference. Moreover, the
derived conditions will be compared to existing interface conditions in the literature,
e.g., [6, 10].
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8. Jäger,W.,Mikelić, A., Neuss, N.: Asymptotic analysis of the laminar viscous flowover a porous
bed. SIAMJ. Sci. Comput. 2, 2006–2028 (2001). https://doi.org/10.1137/S1064827599360339
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Two Entropic Finite Volume Schemes
for a Nernst–Planck–Poisson System
with Ion Volume Constraints

Jürgen Fuhrmann, Benoît Gaudeul, and Christine Keller

Abstract Modeling and simulation of ion transport in electrolytes is an important
tool to investigate electrochemical devices as well as biological systems at the cell
scale. Well designed models follow first principles of non-equilibrium thermody-
namics and include the fact that ions have a finite size. It is highly desirable that
these properties are valid as well for discretized models. In this contribution, we
present two numerical fluxes for two-point flux finite volume schemes which fulfill
these requirements. We review recent results on entropic behavior and convergence.
Concluding, we present first simulation results for biological ion channels.

Keywords Finite volume methods · Drift-diffusion equations · Generalized
Nernst–Planck–Poisson system · Finite size effects · Ion channels

1 Introduction

Consider a bounded connected polytopal domain� ⊂ R
d , and finite simulation hori-

zon T > 0. We model the evolution of the concentration c0 of a solvent and N
dissolved species: ci , i ∈ [[1, N ]]. Due to finite particle sizes, the mixture satisfies a
volume filling constraint

∑N
i=0 vi ci = 1,where vi are themolar volumes of a species.

We will use this constraint using ratios of molar volumes ki = vi
v0
:
∑N

i=0 ki ci = 1
v0

.

The coefficients (k1, . . . , kN ) are parameters of the problem and k0 is by defini-
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tion equal to 1. As the molar volumes are not the same, the total concentration
c := ∑N

i=0 ci is not uniform. The set of positive concentrations ci , i ∈ [[1, N ]] such
that c0 is positive is denoted by

A = {(c1, ..., cN ) ∈ (0,+∞)N |c0 := 1

v0
−

N∑

i=1

ki ci > 0}.

For the sake of clarity, we will let C = (c1, ..., cN ) ∈ A and consider c0 and c as
functions of C without clearly expressing the dependency. The dissolved species
follow a conservation equation:

∂t ci − div DiNi = 0, Ni = ci∇ (hi (C) + zi�) ∀i ∈ [[1, N ]]. (1)

where zi the charge number and Di > 0 the diffusion coefficient are parameters of
the problem, while hi (C) the chemical potential depends on all the concentrations
through:

hi (C) = log
ci

c
− ki log

c0
c

∀i ∈ [[1, N ]]. (2)

This system is supplemented with a Poisson equation for the potential:

− � � =
N∑

i=1

zi ci , (3)

Note that we have assumed that the solvent carries no charge, in other word that
z0 = 0. As in [1], we consider a Dirichlet boundary condition for the potential on a
non-negligible part of the boundary�D ⊂ ∂� and homogeneousNeumann boundary
condition on �N = ∂� \ �D:

� = �D on (0, T ) × �D, ∇� · n = 0 on (0, T ) × �N,

where �D is in H 1(�) ∩ L∞(�) and assumed to be constant in time.
The system is supplemented with the following no flux boundary conditions for

the concentrations:

ci∇ (hi (C) + zi�) · n = 0 on (0, T ) × ∂�, for all i ∈ [[1, N ]],

and with an initial condition C0 satisfying:

C0 ∈ L∞(�, Ā) and
∫

�

c0i (x) dx > 0 ∀i ∈ [[0, N ]]. (4)

Notice that, for any t ∈ [0, T ], i ∈ [[1, N ]]:
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∫

�

ci (0, x) dx =
∫

�

ci (t, x) dx,

so that the mass is preserved. Another key property of the system is the dissipation
of a free energy. In this case, the chemical free energy density H(C) is defined as
follows:

H(C) :=
N∑

i=0

ci log
(ci

c

)
=

N∑

i=0

ci log ci − c log c.

The total free energy is formed by the integral of the chemical free energy density
and electrical terms:

E(C,�) =
∫

�

H(C) + |∇�|2
2

dx −
∫

�D

�D∇� · n dγ. (5)

Proposition 1 Let (C,�) be smooth solutions of (1)–(4) such that C(t, x) ∈ A. For
such solutions, E is a convex Lyapunov functional. Moreover, we have:

∂t E +
∫

�

n∑

i=1

Di ci |∇hi (C) + zi�|2 dx = 0.

The proof is found in [2], Proposition 1.1.
Our notion of weak solution relies on a reformulation of the fluxes:

Ni = ∇ci + ci∇
(
−ki log c0 + (ki − 1) log c + zi�

)
, (6)

the space of H 1 functions satisfying the Dirichlet boundary conditionsH�D = { f ∈
H 1(�), f|�D = 0} and the cylinder QT = (0, T ) × �. More precisely:

Definition 1 A couple (C,�) is aweak solution of (1)–(4) ifC ∈ L∞(QT ;A)with
log(c0) ∈ L2((0, T ); H 1(�)), and � − �D ∈ L∞((0, T ),H�D) and they satisfy

1. for all ϕ ∈ C∞
c ([0, T ) × �)N , i ∈ [[1, N ]]
∫∫

QT

ci∂tϕi dx dt +
∫

�

c0i ϕi (0, x) dx − Di

∫∫

QT

∇ci · ∇ϕi

−Di

∫∫

QT

ci∇
(−ki log c0 + (ki − 1) log c + zi�

) · ∇ϕi dx dt = 0;

2. for all ψ ∈ H�D and almost all t ∈ (0, T ),

λ2
∫

�

∇�(t, x) · ∇ψ(x) dx =
∫

�

ψ(x)

N∑

i=1

zi ci (t, x) dx .
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2 Two Point Flux Finite Volume Approximations

For the space discretization, we use the standard notation of an admissible finite
volumemesh

(T , E, (xK )K∈T
)
, see [2]. Control volumes are denoted by K ∈ T with

respective measures mK , edges are denoted by σ ∈ E , and their (d − 1)-dimensional
measure by mσ . Since our method relies on a two-point flux approximation (TPFA),
we suppose that the mesh satisfies the classical orthogonality condition [3], Chap.
9. For the time discretization, we consider an increasing finite family of times 0 =
t0 < t1 < · · · < tNT = T . We denote by �tn = tn − tn−1 for 1 ≤ n ≤ NT , by �t =
(�tn)1≤n≤NT

, and by h�t = max1≤n≤N �tn .
Wewill use boldface notations for vectors whose number of components is depen-

dent on the mesh while keeping the uppercase notation C when we also consider
different species.

The initial data C0 is discretized into
(
C0

K

)
K∈T ∈ ĀT by setting

c0K ,i = 1

|K |
∫

K
c0i (x) dx ∀K ∈ T , i ∈ [[1, N ]]. (7)

Assume that Cn−1 = (
Cn−1

K

)
K∈T ∈ ĀT is given for some n > 0. We define how to

compute (Cn,�n) = (
cn

K ,�n
K

)
K∈T . To that extent, for all K ∈ T and all σ ∈ EK =

Eint ∪ Eext, the set of interior and exterior edges, we define the mirror values Cn
Kσ

(resp. �n
Kσ) of Cn

K (resp. �n
K ) across σ by setting :

Cn
Kσ =

{
Cn

L if σ = K |L ∈ Eint,
Cn

K if σ ∈ Eext,
�n

Kσ =

⎧
⎪⎨

⎪⎩

�n
L if σ = K |L ∈ Eint,

�n
K if σ ∈ EN ,

1
mσ

∫
σ �D dγ if σ ∈ ED.

For σ ∈ E , we set dσ = |xK − xL | if σ = K |L ∈ Eint , dσ = |xK − xσ| if σ ∈ Eext,
and τσ = mσ

dσ
. Given u = (uK )K∈T ∈ R

T , we define the oriented and absolute jumps
of u across σ ∈ EK by DKσu = uKσ − uK , and Dσu = |DKσu|.

Both schemes we consider are based on a backward Euler scheme for the time
discretization and a TPFA finite volume scheme for the space discretization. They
are written as follows:

−
∑

σ∈EK

τσ DKσ�n = mK

N∑

i=1

zi c
n
K ,i , ∀K ∈ T , (8a)

mK
cn

K ,i − cn−1
K ,i

�tn
+

∑

σ∈EK ,int

Fn
Kσ,i = 0, ∀K ∈ T , i ∈ [[1, N ]]. (8b)
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cn
K ,0 = 1

v0
−

N∑

i=1

ki c
n
K ,i , ∀K ∈ T . (8c)

To close the system (8), all that remains is to define the numerical fluxes Fn
Kσ . They

are defined with functions Fi of the primary unknowns (Cn
K , Cn

L ,�n
K ,�n

L):

Fn
Kσ,i =

{
0 if σ ∈ Eext
τσ DiFi (CK , CL ,�K ,�L) if σ = K |L ∈ Eint

(9)

The different schemes considered in this contribution correspond to different
choices of F . All of them satisfy F(CK , CL ,�K ,�L) = −F(CL , CK ,�L ,�K ),

so that the numerical fluxes are locally conservative. Both schemes are extensions
of the schemes studied in [1], and one of them is based on the Scharfetter-Gummel
scheme [4] and features the Bernoulli function B(u) = u

eu−1 .
The centered flux is derived from (1), which suggests the following definition:

Fi (CK , CL ,�K ,�L) = −cK ,i + cL ,i

2
DKσ

(
hi (C) + zi�

)
, ∀i ∈ [[1, N ]]. (C)

The associate flux can be seen as a particular case in the TPFA context of the fluxes
introduced in [5].

The Sedan flux is named after the SEDAN III simulator [6] which inspired this
discretization approach. It was independently introduced as well in [7]. Formula (6)
for the fluxNi suggests to use a classical Scharfetter-Gummel scheme, but for amod-
ified potential � + νi (C) instead of only �, where νi (C) = hi (C) − log ci . Thus,
for all i ∈ [[1, N ]], we let:

Fi (CK , CL ,�K ,�L) = B
(
DKσ(νi (C) + zi�)

)
cK ,i − B

(
DLσ(νi (C) + zi�)

)
cL ,i .

(S)

2.1 Main Results

Energy decay is one of the key properties of the continuous model, see Proposition 1.
This property is transposed to the discrete setting by both discretizations considered.
The discrete energy functional ET has to be thought of as a discrete counterpart of
the continuous energy functional E , see (5). It is defined by:

ET (Cn, �n) =
∑

K∈T
mK H(Cn

K ) + 1

2

∑

σ∈E
τσ

(
Dσ�n)2 −

∑

K∈T

∑

σ∈ED∩EK

τσ�D
σ DKσ�n .
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Our first result focuses on a fixed mesh analysis. It states that the nonlinear system
corresponding to each scheme admits a solution which preserves the physical bounds
on the concentrations and the decay of the energy:

Theorem 1 Let (T , E, (xK )K∈T ) be an admissible mesh and let C0 be defined by (7).
Then, for all 1 ≤ n ≤ NT , the nonlinear system of equations (8)–(9), supplemented
either with (C) or (S), has a solution (Cn,�n) ∈ AT × R

T . Moreover, the solution
to the scheme satisfies, for all 1 ≤ n ≤ NT ,

ET (Cn,�n) − ET (Cn−1,�n−1) ≤ �tn

N∑

i=1

∑

σ∈E
Fn

Kσ,i DKσ(hi (Cn) + zi�
n),

and
∑

K∈T
cK ,i mK =

∫

�

c0i (x) dx ∀i ∈ [[0, N ]].

In [2], this result is stated in Theorem 2.1 and proven in Sect. 3 using the convexity
of H(C) and a topological invariant on a three stage homotopy.

Once a discrete solution to the scheme (Cn,�n)1≤n≤N is at hand, we can define an
approximate solution (CT ,�t,�T ,�t). It is the piecewise constant function defined
almost everywhere by

CT ,�t(t, x) = Cn
K , �T ,�t(t, x) = �n

K if (t, x) ∈ (tn−1, tn] × K .

Let
(Tm, Em, (xK )K∈Tm

)
m≥1 be a sequence of admissible meshes such that

hTm , h�tm −→
m→∞ 0 while the mesh regularity remains bounded (see [1] for the defi-

nition of the regularity of the mesh). A natural question is the convergence of the
associated sequence of approximate solutions (CTm ,�tm ,�Tm ,�tm )m≥1 towards aweak
solution to the continuous problem. Our second result focuses on convergence and
is stated in Theorem 2 (Theorem 2.2 in [2]). Its proof is detailed in [2], Sect. 4. The
proof is based on compactness arguments and the identification of the limit requires
a non-degeneracy assumption.

Theorem 2 For the two schemes under study, a sequence of approximate solutions
(CTm ,�tm ,�Tm ,�tm )m≥1 satisfies, up to a subsequence:

CTm ,�tm −→
m→∞ C in L2(QT )N+1, �Tm ,�tm −→

m→∞ � in L2(QT ).

Moreover if inf mesh m
n∈[[1,NT,m ]]

K∈Tm

cn
m,K ,0 > 0, (C,�) is a weak solution in the sense of

Definition 1.
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3 Towards Simulation of Charge Transport in Ion Channels

Ion channels are pore-forming proteins in the membrane of biological cells that
control a large part of biological processes. They are important targets for the devel-
opment of medications and effective therapies. The behavior of ion channels can be
studied by measuring the current response to a time-dependent voltage difference.
The interpretation of the measured current-voltage (IV) relation is therefore of great
importance for biology, physiology, and medicine.

We provide first results towards the numerical simulation on a calcium (Ca2+)
selective ion channel using the Sedan scheme introduced in this paper.

For this purpose, the Nernst-Planck-Poisson system consisting of (1)–(2)–(3) is
adapted to the physical situation by removing the simplifications introduced for the
theoretical investigations, e.g. in the left hand side of (3), the electrostatic perme-
ability is introduced, and the right hand side is multiplied by the Faraday constant.
Calling for further investigation is the introduction of the pressure p which remains
from the consideration of the Stokes equation for electrolyte flow in mechanical
equilibrium [8]. After [9], define p by

− �p = ∇ · q∇φ (10)

and modify the chemical potentials to

hi (C, p) = log
ci

c
− ki log

c0
c

+ (vi − κiv0)(p − pre f ) ∀i ∈ [[1, N ]].

We define a rotational symmetric approximate geometry of an ion channel with
charged walls connecting the extracellular and the intracellular space. Simulations
were reduced to the appropriate 2D case. The model was implemented in Julia on
top of the VoronoiFVM.jl [10] package.

We investigate the stationary transport of ions. Dirichlet boundary conditions fix
the concentrations in both extracellular and intracellular domains: ci = [Ci ]intra. on
�intra. and ci = [Ci ]extra. on �extra. for i = 1, . . . , N . We apply a varying potential
difference along the channel: � = �intra. on �intra. and � = �extra. on �extra.. On the
channel wall, we introduce Ni · n = 0 on �wall (impermeable wall) and ∇φ · n =
σ
ε
on �wall (charged wall). For the pressure, we use (∇ p + q∇φ) · n = 0.
Figure 1 shows the distribution of the concentrations for the different ion species.

The parameter values used are given in Table 1. For this set of parameters, cations
accumulate in the channel due to the charged wall, while the concentration of anions
in the channel is the lowest. This leads to an increase of the pressure inside the
channel. The distributions of pressure and potential are given in Fig. 2.We calculated
the IV relation for different applied membrane potentials of�� = �intra. − �extra. ∈
[−80, 80] mV. We expect an inward cation current for a membrane potential �� <

20mV and an outward current for a membrane potential�� > 20mV. In addition to
themembrane potential we varied the channel radii, see Fig. 3 (left).We observe, that
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Fig. 1 Concentrations of Na+, Ca2+, Cl− ions. The parameter values used for the simulation are
given in Table 1

Table 1 Parameter values from [7] used to simulate a calcium ion channel

Symbol Meaning Value Unit

DCa2+ , DNa+ , DCl− Diffusion coeff. [0.79, 1.33, 2.03] ·
10−5

cm2/s

zH2O , zCa2+ , zNa+ ,
zCl−

Ion charge nr. 0, 2, 1, –1

MH2O , MCa2+ , MNa+ ,
MCl−

Molar weights 18.0, 40.1, 23.0, 35.5 g/mol

vH2O , vCa2+ , vNa+ ,
vCl−

Molar volumes [55.4, 26.20, 23.78,
17.39]·10−6

m3/mol

σ/ε Wall charge −1.6 · 10−20 C/nm2

r Channel radius 3 Å

[CaCl2]intra.,
[CaCl2]extra.

Bulk conc. 0, 10 mM

[NaCl]intra.,
[NaCl]extra.

Bulk conc. 32, 32 mM

�intra., �extra. Bulk potential –20, 0 mV

κCa2+ , κNa+ , κCl− Solvation nr. 10.0, 7.5, 3.9

the current increases for wider channels. An increase in the calcium concentration
in the extracellular fluid leads to an increase in the ionic current, see Fig. 3 (right).

Future research aims at the introduction of a selectivity filter within the ion chan-
nel, and the coupling to an elasticity model for the channel walls.
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Fig. 2 Distribution of electrostatic potential (left) and pressure (right). The parameter values used
for the simulation are given in Table 1

Fig. 3 IV curves for different channel radii (left) and Ca2+ concentrations (right). The parameter
values used for the simulation are given in Table 1. A membrane potential of �� = �intra. −
�extra. ∈ [−80, 80] mV was applied

Acknowledgements C.K. is supported by the German Research Foundation (DFG) via the Berlin
Mathematics Research Center MATH+ (project AA1-14).

References

1. Cancès, C., Chainais-Hillairet, C., Fuhrmann, J., Gaudeul, B.: A numerical-analysis-focused
comparison of several finite volume schemes for a unipolar degenerate drift-diffusion model.
IMA J. Numer. Anal. 41(1), 271–314 (2021)

2. Gaudeul, B., Fuhrmann, J.: Entropy and convergence analysis for two finite volume schemes
for a Nernst-Planck-Poisson systemwith ion volume constraints. Numer.Math. 151(1), 99–149
(2022)

3. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical
Analysis, vol. 7, pp. 713–1018. Elsevier (2000)

4. Scharfetter, D., Gummel, H.: Large-signal analysis of a silicon Read diode oscillator. IEEE
Trans. Electron Devic. 16(1), 64–77 (1969)

5. Cancès, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume
scheme for parabolic equations with gradient structure. Found. Comput. Math. 17(6), 1525–
1584 (2017)

6. Yu, Z., Dutton, R.: SEDAN III simulator (1988). http://www-tcad.stanford.edu/oldftp_sw/
Sedan-III/relB.8830.tar.Z

http://www-tcad.stanford.edu/oldftp_sw/Sedan-III/relB.8830.tar.Z
http://www-tcad.stanford.edu/oldftp_sw/Sedan-III/relB.8830.tar.Z


294 J. Fuhrmann et al.

7. Liu, J.-L., Eisenberg, B.: Molecular mean-field theory of ionic solutions: a Poisson-Nernst-
Planck-Bikerman model. Entropy 22(5), 550 (2020)

8. Dreyer, W., Guhlke, C., Landstorfer, M.: A mixture theory of electrolytes containing solvation
effects. Electrochem. Commun. 43, 75–78 (2014)

9. Fuhrmann, J.: Comparison and numerical treatment of generalised Nernst-Planck models.
Comput. Phys. Commun. 196, 166–178 (2015)

10. Fuhrmann, J.: VoronoiFVM.jl: Solver for coupled nonlinear partial differential equations based
on the Voronoi finite volume method (2022). https://doi.org/10.5281/zenodo.3529808

https://doi.org/10.5281/zenodo.3529808


Dimensional Reduction by Fourier
Analysis of a Stokes-Darcy Fracture
Model

Martin J. Gander, Julian Hennicker, Roland Masson, and Tommaso Vanzan

Abstract We consider a Stokes flow along a thin fracture coupled to a Darcy flow
in the surrounding matrix domain. In order to derive a dimensionally reduced model
representing the fracture as an interface coupled to the surroundingmatrix, we extend
the methodology based on Fourier analysis developed in [1] for a Darcy-Darcy cou-
pling.We show that this approach not only allows us to derive error estimates between
the solutions of the full and mixed-dimensional models, but also leads to a model
correction term compared with what is obtained from the classical reduction tech-
nique based on integration along the fracture width combined with profile closure
assumptions [2, 3].
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1 Stokes-Darcy Fracture Model

Let us consider the matrix domains Ω1 = (−L1,−δ) × R, Ω2 = (δ, L2) × R and
the fracture domain Ω f = (−δ, δ) × R as illustrated in Fig. 1.

We consider the following Darcy (in the matrix) Stokes (in the fracture) coupled
model:

−μ�u + ∇ p = 0 on Ω f ,

divu = 0 on Ω f ,

div(ui ) = fi on Ωi , i = 1, 2,

ui = −Ki∇ pi on Ωi , i = 1, 2,

combined with the following coupling conditions on Γ1 = {−δ} × R and
Γ2 = {δ} × R:

ui · ni = u · ni on Γi , i = 1, 2, (1)

pi = p − μ(∇u ni ) · ni on Γi , i = 1, 2, (2)

μ(∇u ni ) · τ = αu · τ on Γi , i = 1, 2, (3)

where ni is the unit normal vector on Γi , oriented outward of Ωi , τ is the unit
vector tangent to the interfaces oriented in the positive y direction, μ > 0 is the
fluid kinematic viscosity, α is the Beaver-Joseph-Saffman parameter assumed to be
constant for simplicity, and Ki is the permeability tensor in subdomain Ωi . We also
set n = n1 = −n2 in what follows.

Fig. 1 Model problem geometry, with Ω1 = (−L1,−δ) × Γ , Ω2 = (δ, L2) × Γ , Γ1 = {−δ} ×
Γ , Γ2 = {δ} × Γ , and Ω f = (−δ, δ) × Γ . The unit normals on Γ j pointing outside of Ω j are
denoted by n j , j = 1, 2. Note that the Fourier analysis below will be carried out on unbounded
domains by setting Γ = R
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2 Dimensional Reduction by Fourier Analysis

2.1 Elimination of the Fracture by Fourier Analysis

Let us set u =
(
u
v

)
, δi = (−1)iδ, and take the Fourier transform in the y direction

of the Stokes equations and of the transmission conditions. Setting in short

ûi = ûi · n(δi , k), p̂i = p̂i (δi , k),

leads to the system

−μ∂xx û(x, k) + μk2û(x, k) + ∂x p̂(x, k) = 0 x ∈ (−δ, δ), (4)

−μ∂xx v̂(x, k) + μk2v̂(x, k) + ik p̂(x, k) = 0 x ∈ (−δ, δ), (5)

∂x û(x, k) + ikv̂(x, k) = 0 x ∈ (−δ, δ), (6)

p̂i = p̂(δi , k) − μ∂x û(δi , k) i = 1, 2, (7)

(−1)i+1μ∂x v̂(δi , k) = αv̂(δi , k) i = 1, 2, (8)

ûi = û(δi , k) i = 1, 2. (9)

Using that �p = 0 yields the equation ∂xx p̂(x, k) − k2 p̂(x, k) = 0, whose solution
is p̂(x, k) = C1(k)e|k|x + C2(k)e−|k|x . We next substitute this pressure solution p̂
into the momentum equations (4)–(5) of the previous system yielding four addi-
tional integration constants C j (k) with j = 3, 4, 5, 6. These 6 integration constants
can be computed using the divergence free condition (6) (providing two additional
equations on these 6 constants) and the transmission conditions (7)–(8). The last
two transmission conditions (9) are then used to provide the following two exact
transmission conditions of the model posed on Ω1 ∪ Ω2 eliminating the fracture
model:

μ|k|
(
Hex

1 (|k|δ) 0
0 Hex

2 (|k|δ)
)(

û2 + û2
û1 − û2

)
=

(
p̂1 − p̂2
p̂1 + p̂2

)
, (10)

where, setting ξ := |k|δ,

Hex
1 (ξ) = −4(1 + Cαξ2)e2ξ + (2 + 3Cαξ)e4ξ + (2 − 3Cαξ)

4ξ(1 + Cα)e2ξ + (1 + 2Cαξ)e4ξ + (2Cαξ − 1)
,

Hex
2 (ξ) = 4(1 + Cαξ2)e2ξ + (2 + 3Cαξ)e4ξ + (2 − 3Cαξ)

−4ξ(1 + Cα)e2ξ + (1 + 2Cαξ)e4ξ + (2Cαξ − 1)
,

(11)

and Cα := μ

αδ
is a dimensionless parameter governing the Beaver-Joseph-Saffman

condition (3). To simplify the presentation, we develop in the following the analysis
for the case α = +∞, i.e. Cα = 0, corresponding to replacing the Beaver-Joseph-
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Saffman condition by the no slip condition u · τ = 0. This approximation is valid
for a wide range of not too large rock permeabilities. The discussion of the general
case is postponed to Sect. 4.

2.2 Reduced Transmission Conditions

An asymptotic expansion of Hex
i , i = 1, 2, with respect to small ξ provides the

reduced transmission conditions

μ|k|
(
Hred

1 (|k|δ) 0
0 Hred

2 (|k|δ)
)(

û2 + û2
û1 − û2

)
=

(
p̂1 − p̂2
p̂1 + p̂2

)
, (12)

with the approximation Hred
i of Hex

i given by

Hred
1 (ξ) = ξ, Hred

2 (ξ) = 3

ξ3

(
1 + 4

5
ξ2

)
,

at order O(ξ5) and O(ξ). Note that these orders of approximation are the highest
ones providing a well-posed reduced model, i.e. such that |k| Hred

i (|k|δ) > 0 for all
k > 0. Setting for i = 1, 2

γn
i ui = ui · n

(
δi , ·

)
, γi pi = p1

(
δi , ·

)
,

provides the following reduced model with elimination of the fracture unknowns:

div(ui ) = fi on Ωi , i = 1, 2,

ui = −Ki∇ pi on Ωi , i = 1, 2,

− μ∂yy
(γn

1u1 + γn
2u2)

2
= γ1 p1 − γ2 p2

2δ
on R,

μ
(
1 − 4

5
δ2 ∂yy

) (γn
1u1 − γn

2u2)
2δ

= −δ2

3
∂yy

(γ1 p1 + γ2 p2)

2
on R.

(13)

2.3 Reconstruction Along the Fracture

As in [2, 3], the reconstruction along the fracture starts with averaging both the
Stokes unknowns and equations along the fracture width, setting

P̂ := 1

2δ

∫ δ

−δ

p̂(x, k)dx, Û := 1

2δ

∫ δ

−δ

û(x, k)dx, V̂ := 1

2δ

∫ δ

−δ

v̂(x, k)dx .



Dimensional Reduction by Fourier Analysis of a Stokes-Darcy Fracture Model 299

From the divergence free condition (6), we obtain by integration along the fracture
width the reduced material conservation equation

ik2δ V̂ = û1 − û2. (14)

By integration of the momentum equation (4), and taking into account the pressure
jump condition (7), we get that

μ|k|22δÛ = ( p̂1 − p̂2). (15)

By integration of the momentum equation (5), we get the relation

− μ(∂x v̂(δ, k) − ∂x v̂(−δ, k)) + μ|k|22δ V̂ + ik2δ P̂ = 0. (16)

Then, the classical approach developed in [2, 3] amounts tomake profile assumptions
along the width for U , V and P in order to derive both the coupling conditions and
the approximation of the wall friction term −μ(∂x v̂(δ, k) − ∂x v̂(−δ, k)).

In our approach the coupling conditions were already derived by Fourier analysis
and asymptotic expansions. The approximation of the friction term is obtained in the
same way from the Fourier expression of ∂x v̂(x, k) which can be shown to lead to

Fex (ξ) = δ
(∂x v̂(−δ, k) − ∂x v̂(δ, k))

V̂
= −2

ξ2
(
4ξe2ξ + e4ξ − 1

)
4ξe2ξ − e4ξ + 1

.

By asymptotic expansion for small ξ = |k|δ, we obtain the following approximation
Fred of Fex at order O(ξ4):

Fred(ξ) = 6 + 4

5
ξ2,

which leads to
6μ

δ
V̂ + μ̃|k|22δ V̂ + ik2δ P̂ = 0, (17)

with the modified tangential viscosity μ̃ =
(
1 + 2

5

)
μ.

Equations (14)–(17) are the reconstructed equations along the fracture. These
equations can be combined with (13) in order to obtain the following coupled for-
mulation of the reduced model:

div(ui ) = fi on Ωi , i = 1, 2,

ui = −Ki∇ pi on Ωi , i = 1, 2,

2δ ∂yV = γn
1u1 − γn

2u2, on R,

− 2μδ ∂yyU = γ1 p1 − γ2 p2 on R,
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6
μ

δ
V − 2μ̃δ ∂yyV + 2δ ∂y P = 0 on R,

U = γn
1u1 + γn

2u2
2

on R,

μ

δ

(
γn
1u1 − γn

2u2
)

= γ1 p1 + γ2 p2 − 2P on R. (18)

Compared with the classical approach developed in [2, 3] our methodology leads
to a correction term which amounts to replace the tangential viscosity μ by μ̃ in
the fifth equation of (18). This correction plays an essential role to obtain the error
estimates shown in the next section.

3 Error Estimates

We use the same setting as in [1] for the Darcy subproblems assuming for simplicity
that K1 = K2 = I and considering homogeneous Dirichlet conditions on ∂Ωi \ Γ .
For each subdomain i = 1, 2, we denote by ŝi ≥ 0 the Fourier transform of the
Steklov Poincaré operator with ŝi = |k| coth(|k|(Li − δ)), and we denote by R̂( fi )
the Fourier transform of γn

i ∇(�−1 fi ) with �−1 defined on Ωi with homogeneous
Dirichlet boundary conditions on ∂Ωi . In this section, the superscripts red and ex
are used for the reduced and exact model solutions. We assume in the following that
δ is such that δ ≤ L = min( L1

2 , L2
2 ).

3.1 Error Estimates on the Traces γi pi and γn
i ui

For the exact and reduced solutions we have, with • = red, ex,

û•
1 = −ŝ1 p̂

•
1 − R̂( f1), û•

2 = ŝ2 p̂
•
2 − R̂( f2).

We want to provide an error estimate for the errors on the traces

êpi = p̂exi − p̂redi , êui = ûexi − ûredi ,

for i = 1, 2 which are linked by the relations êui = (−1)i ŝi êpi .
From the exact and reduced transmission conditions (10) and (12), setting

Ei = Hex
i − Hred

i ,

and
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D(k) =
(

1

μ|k|ŝ1 + Hred
1

)(
1

μ|k|ŝ2 + Hred
2

)
+

(
1

μ|k|ŝ2 + Hred
1

) (
1

μ|k|ŝ1 + Hred
2

)
,

we obtain that

êu1 = −( 1
μ|k|ŝ2 + Hred

2 )E1(ûex1 + ûex2 ) − ( 1
μ|k|ŝ2 + Hred

1 )E2(ûex1 − ûex2 )

D(k)
,

êu2 = −( 1
μ|k|ŝ1 + Hred

2 )E1(ûex1 + ûex2 ) + ( 1
μ|k|ŝ1 + Hred

1 )E2(ûex1 − ûex2 )

D(k)
.

It remains to estimate |êui |. We can establish the following bounds

|E2(ξ)|
ξ

≤ C2,
|E1(ξ)|

ξ5
≤ C1, ∀ξ ≥ 0,

and
∣∣∣∣ 1

Hex
2 (ξ)

∣∣∣∣ ≤ C3ξ
3,

1

Hred
2 (ξ)

≤ C3ξ
3, k ≤ ŝi (k) ≤ k + 1

L
, ∀ξ, k ≥ 0,

with C1 = 1
45 , C2 = 81

175 , C3 = 1
3 . We deduce the estimates

|êui | =
[
μ|k|(|k| + 1

L
)C1|k|δ|ûex1 + ûex2 | + C2C3|ûex1 − ûex2 |

]
|k|4δ4, (19)

and

|êui | =
[
μ|k|(|k| + 1

L
)C1|ûex1 + ûex2 | + 1

μ|k|C2(C3)
2|k|2δ2| p̂ex1 + p̂ex2 |

]
|k|5δ5.

(20)
Estimates on êpi are readily deduced from the relations êui = (−1)i ŝ1êpi . An
improved estimate can also be derived on êp1 − êp2 using the additional bound
| 1ŝ1 − 1

ŝ2
| ≤ 1

|k|(L|k|+1) :

|êp1 − êp2 | ≤ μ
[
2(|k| + 1

L
)C1|ûex1 + ûex2 | + 1

2L
C2C3|ûex1 − ûex2 |

]
|k|5δ5. (21)

3.2 Error Estimates on the Fracture Mean Values U, V
and P

Let us proceed with the error estimates on the fracture mean values V̂ , Û and P̂ . For
the error êV = V̂ ex − V̂ red , we have from (14) the bound
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|êV | ≤ 1

|k|2δ |êu1 − êu2 |,

then, it suffices to apply (19) or (20) providing respectively an O(δ3) or an O(δ4)
error estimate.

Similarly, for the error êU = Û ex − Û red , we have from (15) the bound

|êU | ≤ 1

μ2δ|k|2 |êp1 − êp2 |.

Then, it suffices to apply (21) providing an O(δ4) error estimate.
To estimate the error on the mean pressure, it can be shown that there exists

C4 = 22
175 such that

|Fex (ξ) − Fred(ξ)|
ξ4

≤ C4, ∀ξ ≥ 0.

Then, we deduce from (16) and the definition of Fex the following error estimate for
êP = P̂ex − P̂red :

|êP | ≤ μ
[(

(1 + 2

15C3
)|k| + 1

C3
|k|−1δ−2

)
|êV | + C4

2
|k|3δ2|V̂ ex |

]
,

of order O(δ2).

4 Extension to the General Beaver Joseph Saffman
Condition

In the general case, the functions Hex
i and Fex depend on two dimensionless param-

eters, namely |k|δ and Cα = μ
αδ
. The extension distinguishes two cases, first α > 0

(including the previous case α = +∞ i.e. Cα = 0) and second α = 0. In the first
case, the asymptotic expansions of Hex

i and Fex are done for small values of |k|δ
at given Cα < +∞. This choice permits to recover the proper wall friction term in
the V momentum equation (22). We obtain the same model as in (18) with modified
coefficients for the fifth equation:

6μ
δ

1 + 3Cα
V − 2μ̃δ ∂yyV + 2δ ∂y P = 0. (22)

The tangential viscosity μ̃ =
(
1 + 2

5(3Cα+1)2

)
μ is again corrected compared with the

classical model reduction approach for which μ̃ = μ. The error estimates are the
same as in Sects. 3.1 and 3.2 with constants Ci , i ∈ {1, 2, 3, 4} depending on Cα.



Dimensional Reduction by Fourier Analysis of a Stokes-Darcy Fracture Model 303

In the second case, for α = 0 corresponding toCα = +∞, the expansions of Hex
i

are done w.r.t. small values of |k|δ and Fex = Fred = 0. We obtain the following
reduced model:

div(ui ) = fi on Ωi , i = 1, 2,

ui = −Ki∇ pi on Ωi , i = 1, 2,

2δ ∂yV = γn
1u1 − γn

2u2 on R,

− 2μδ ∂yyU = γ1 p1 − γ2 p2 on R,

− μ ∂yyV + ∂y P = 0 on R,

U = γn
1u1 + γn

2u2
2

on R,

μ

δ

(
1 − δ2

6
∂yy

)(
γn
1u1 − γn

2u2
)

= γ1 p1 + γ2 p2 − 2P on R,

(23)

which differs in the last equation from the model obtained by the classical model

reduction approach [3] providing the equation μ
δ

(
γn
1u1 − γn

2u2
)

= γ1 p1 + γ2 p2 −
2P . The error estimates for the case α = 0 differ from the ones of Sects. 3.1 and 3.2.
Setting C1 = 2

15 and C2 = 2
945 , we obtain

|êui | ≤ ε|k|(|k| + 1

L
)|k|5

(
C1|ûex1 + ûex2 | + C2|ûex1 − ûex2 |

)
δ5, i = 1, 2,

and

|êV | ≤ 1

|k|
|êu1 − êu2 |

2δ
≤ ε(|k| + 1

L
)|k|5

(
C1|ûex1 + ûex2 | + C2|ûex1 − ûex2 |

)
δ4,

|êP | ≤ ε|k||êV | ≤ ε2(|k| + 1

L
)|k|6

(
C1|ûex1 + ûex2 | + C2|ûex1 − ûex2 |

)
δ4,

|êU | ≤ 1

ε2δ|k|3 (|êu1 | + |êu2 |) ≤ (|k| + 1

L
)|k|3

(
C1|ûex1 + ûex2 | + C2|ûex1 − ûex2 |

)
δ4.

5 Conclusions

This work extends the dimensional reductionmethodology based on Fourier analysis
developed in [1] to the case of a Darcy-Stokes matrix fracture coupled model. This
analysis leads to correction terms which cannot be a priori obtained by the classi-
cal technique based on averaging along the fracture width combined with profile
assumptions on the velocities and pressure in the fracture [2, 3]. More precisely,
the new mixed-dimensional model exhibits a correction of the tangential viscosity
along the fracture in the case α > 0 and a second order correction term in the second
closure equation in the case α = 0. These terms play an essential role in the error
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estimates between the equip and mixed-dimensional models derived by the Fourier
analysis. Numerical tests are ongoing in order to assess numerically these results.
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Finite Volumes for Simulation of Large
Molecules

Martin Heida

Abstract We study a finite volume scheme for simulating the evolution of large
molecules within their reduced state space. The finite volume scheme under con-
sideration is the SQRA scheme developed by Lie, Weber and Fackeldey. We study
convergence of a more general family of FV schemes in up to 3 dimensions and
provide a convergence result for the SQRA-scheme in arbitrary space dimensions.

Keywords Finite Volume · SQRA · Voronoi

1 Smoluchovski Equation in High Dimension

The evolution of a large molecule over time can bemodelled using the Smoluchovski
equation where the state of the molecule is described by its position in the state
space. While the true state space consists of the positions and velocities of all atoms
of the molecule, for large molecules we can often identify several critical degrees of
freedom that dominate the behavior and the state of the molecule, which can be used
to reduce the dimension of the state space. Considering e.g. a critical bond within
the molecule, which can vary its angles (θ,φ) ∈ [0,π) × [0, 2π). If the molecule
has 3 such bonds, this leads to a polygonal subset Q of a d = 6 dimensional state
space X. The variable u(t, ·) : Q → IR will henceforth be indicating the probability
distribution to find the molecule in the state x ∈ Q at time t and u0 = u(0, ·) is the
initial distribution (or initial state u0 = δx0 , in case this is known precisely). The
evolution of u over time is described by the Smoluchovski equation with mobility κ
and chemical potential V
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u̇ = ∇ · (κ∇u) + ∇ · (κu∇V ) on [0, T ] × Q

Without going into details but referring to [5] we claim that the major point for the
understanding of long-term evolution of the molecule is the understanding of the
right hand side linear operator, i.e. its eigenvalues and eigenvectors.

From the numerical point of view, this results in the necessity to discretize the
following elliptic equation:

− ∇ · (κ∇u) − ∇ · (κu∇V ) = f on Q (1)

and to study the convergence behavior of the discretization. For simplicity we assume
in the following that κ, V ∈ C2(Q), f ∈ L2(Q) are real-valued functions.

The assumption V ∈ C2(Q) implies strict positivity of π := exp(−V ). Using a
transformation U = u/π we find that (1) is equivalent with

− ∇ · (πκ∇U ) = f. (2)

The particular challenges we address are, first, the choice of discretization approach
for π, as addressed in [3], and second the issues that arise from high dimensionality of
the problem, i.e. the curse of dimensionality, and the issue arising from V (x) → +∞
as x → ∂Q at least for some models, addressed in [4].

1.1 Discretization

Discretizing (2) on an admissible mesh in the sense of Definition 10.1 in Chapter 3
of [1] or in [2] we write T = (V, E,P) for the mesh consisting of convex polytope
control volumes V := {Ωi , i = 1, . . . , N } with mass mi ,(d − 1)-dimensional flat
interfaces EQ = {

σi, j
}
withmeasuremi, j and pointsPQ = {xi , i = 1, . . . , N }which

we sometimes call the cell centers. Two cells Ωi , Ω j are neighbors if σi, j := ∂Ωi ∩
∂Ω j has positive measure and we write i ∼ j . If i ∼ j , the distance of the cell
centers is hi, j := ∣∣xi − x j

∣∣.
In order to formulate discrete Dirichlet conditions, we follow [2] and enrich the

mesh with finitely many points P∂Q = (yk)k ⊂ ∂Q and virtual interfaces E∂Q ={
σi,k flat : ∃i with σi,k ⊂ ∂Q ∩ ∂Ωi

}
i.e., for every flat segment σi,k ⊂ ∂Q ∩ ∂Ωi

we chose yk ∈ σi,k such that (yk − xi )⊥σi,k and denote mi,k := ∣∣σi,k

∣∣ with hi,k :=
|yk − xi |. We further generalize the notation i ∼ j if σi, j ⊂ ∂Ωi or σi, j ⊂ ∂Ω j .
Then, when summing up over the interfaces in the calculations below, we do not
have to distinguish between inner interface of type ∂Ωi ∩ ∂Ω j and outer interfaces
of type ∂Q ∩ ∂Ωi .

We finally denote P = PQ ∪ P∂Q and E = EQ ∪ E∂Q and write
∑

j : j∼i for the
sum over all interfaces belonging to Ωi and

∑
j∼i for the sum over all interfaces E .

Given a family of admissible meshes Th = (Vh, Eh,Ph) we denote for Ωi ∈ Vh

the diameter hi = diamΩi . The family of meshes is called quasi uniform if for every
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xi , x j ∈ Ph , i ∼ j , it holds hi, j < h and if there exists R, r > 0 independent from
Th such that the following holds: For every Ωi ∈ Vh there exists x ∈ Ωi such that
Brhi (x) ⊂ Ωi ⊂ BRhi (x).

We make the following proposal for a discretization of (2)

∀xi ∈ PQ −
∑

j : j∼i

mi, j

hi, j
Si, j

(
UT , j − UT ,i

) = mi fT ,i , (3)

where fT ,i = ffl
Ωi

f is the average of f overΩi and Si, j = Sα,β

(
πi ,π j

)
is a Stolarsky

mean of πi and π j [6], πi = e−Vi , Vi = V (xi ) resp. Vi = V (yi ) and

Sα,β (x, y) =
(

β (xα − yα)

α
(
xβ − yβ

)

) 1
α−β

, α = 0, β = 0, α = β, x = y (4)

Stolarsky means can be extended to the critical points α = 0, β = 0, α = β, x = y
in a continuous way and generalize the logarithmic mean and other means. Inter-
estingly, for a choice α = 0 β = −1 one obtains the Scharfetter–Gummel scheme
with S0,−1(x, y) = xy(x − y)−1 log x

y . While we do not want to go into detail on
this aspect, we mention that α = 1,β = −1 yields S1,−1(x, y) = √

xy, which is the
SQRA scheme and refer for more information on motivation and background to [3].

From a discrete solution UT one can obtain a discrete uT reversing the above
transformationU = u/π. One obtains that uT ,i := UT ,iπi solves the discrete Smolu-
chovski

∀xi ∈ PQ −
∑

j : j∼i

mi, j

hi, j
Si, j

(
uT , j

π j
− uT ,i

πi

)
= mi fT ,i , (5)

In what follows we will provide convergence results for the above discretizations
in low dimensions, i.e. d ≤ 3 and in high dimensions for (3) only.

1.2 Results and Challenges

Our results are centered around two different questions that arise from the conver-
gence analysis of (3) and (5) in high dimensions: The first results in Sect. 2 deal with
the convergence of (3) and (5) in low dimensions up to d = 3. We will see that all
schemes converge with the same rate for U but that there is a different convergence
behavior in u: The classical Scharfetter-Gummel scheme has a better convergence
behavior than the other schemes for high gradients of V . From the analytical point
of view, it is interesting that for any choice of the Stolarsky mean, the rate of con-
vergence is not worse than the consistency of the mesh for the ordinary Laplace
operator, i.e. κ = π = 1.
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The results of Sect. 3 are centered around the convergence of a general finite
volume scheme of type (3) in high dimensions when the resolution of the underlying
grid is not homogeneous: In particular, we assume that the expected solution is almost
constant in some regions, where the resolution is chosen rough, while the resolution
is fine in regions of strong oscillations of the solution or the coefficients κ and π. We
will see that this can lead to good results by simultaneously bypassing the curse of
dimensionality to some extend. Furthermore, we deal with the case that the elliptic
parameter degenerates locally close to the boundary. This scenario is relevant in
chemistry as the potential V might tend to +∞ in some regions of the state space.

The mathematical challenge in the second case is that one cannot rely on the
“classical” pointwise evaluation of the limit function, but one has to compare the
discrete solution with a locally averaged continuous solution. In particular, Taylor
arguments have to be carried out in an averaged sense and one needs to be very careful
that averaged lower order terms really cancel each other out. Furthermore, also the
proof of the Poincaré inequality has to rely on dimensionless averaging arguments.

2 Convergence Results Based on Consistency, [3]

In this section, we assume κ = 1 for simplicity of notation, but mention that the
results in [3] hold more general. We then denote

L2(P) := {
U : PQ → IR

}
HT := {

U : P → IR | U |P∂Q ≡ 0
}

with the embedding HT ↪→ L2(P) and for ṽ ∈ L2(P), v ∈ H:T we introduce

‖v‖2HT :=
∑

i∼ j

mi, j

hi, j

(
v j − vi

)2
, ‖ṽ‖2L2(P) :=

∑

Ωi

mi ṽ
2
i . (6)

Definition 1 (Inf-sup stability) Let Th = (Vh, Eh,Ph) be a quasi uniform family of
admissible meshes. A family of bilinear forms ah on HTh is called uniformly inf-sup
stable with respect to two norms ‖·‖h,1, ‖·‖h,2 if there exists γ > 0 (independent
from h) such that

∀u ∈ HTh : γ ‖u‖h,1 ≤ sup
v∈HTh

ah (u, v)

‖v‖h,2
.

Wewrite (Rhu)i := (RTh u)i := u(xi ) onΩi . For a continuous and coercive bilin-
ear form a : H 1

0 (Q) × H 1
0 (Q) → IR, the associated linear operator A : H 2(Q) →

L2(Q) is defined by

∀u ∈ H 2(Q) ∩ H 1
0 (Q), v ∈ H 1

0 (Q) : a(u, v) =
ˆ

Q
v Au . (7)
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Definition 2 (Consistency) Let a : H 1
0 (Q) × H 1

0 (Q) → IR be bilinear and contin-
uous with linear operator A such that (7) holds and let Th = (Vh, Eh,Ph) be a
family of admissible meshes with ah : HTh × HTh → IR continuous bilinear forms.
The variational consistency error of ah in u ∈ H 2(Q) ∩ H 1

0 (Q) is the linear form
Eh (u; · ) : HTh → IR where

∀v ∈ HTh : Eh (u; v) :=
∑

i

vi

ˆ

Ωi

Au − ah (Rhu, v) . (8)

We say consistency holds for ‖ · ‖h,2 on HTh and u ∈ H 2(Q) ∩ H 1
0 (Q) if

‖Eh (u; · )‖h,2,∗ := sup
υ∈HTh \{0}

|Eh (u; υ)|
‖υ‖h,2

→ 0 as h → 0 .

A special role is played by

aD (u, v) =
ˆ

Q
∇u · ∇v , ah,D (u, v) =

∑

i∼ j

mi, j

hi, j

(
u j − ui

) (
v j − vi

)
,

with the corresponding consistency error Eh,D. This is the underlying concept of the
following definition:

Definition 3 (ϕ-consistency) Let Th = (Vh, Eh,Ph) be a quasi uniform family of
admissiblemeshes.We say thatTh isϕ-consistent for a continuousmonotone increas-
ing ϕ with ϕ(0) = 0 if for every u ∈ H 2(Q) ∩ H 1

0 (Q) there exists C ≥ 0 such that
for every h > 0

∥∥Eh,D (u; · )∥∥H∗
Th

≤ C ‖u‖H 2 ϕ (h) .

Our main results are formulated in terms of ϕ-consistency as follows:

Theorem 1 ([3], Theorem 1.4) Let d ≤ 3 and Th = (Vh, Eh,Ph) be a quasi uniform
family of admissible meshes and let the above assumptions on κ, V and f hold.
Moreover, let Th be ϕ-consistent (Definition 3). If U ∈ H 2(Q) ∩ H 1

0 (Q) is the solu-
tion of (2) and UTh the solution of (3) with discrete homogeneous Dirichlet boundary
conditions then

∥∥UTh − RTh U
∥∥2

HTh
≤ C1 ‖π‖2∞ ϕ(h)2 + C2hk ,

where k = 2 in general and k = 4 if the grid is cubic or d = 1. Here, C1 and C2

depend only on d and Q, r and R.

Theorem 2 ([3], Theorem 1.5) Let d ≤ 3 and Th = (Vh, Eh,Ph) be a quasi uniform
family of admissible meshes and let the above assumptions on κ, V and f hold.
Moreover, letTh be ϕ-consistent (Definition 3). If u ∈ H 2(Q) ∩ H 1

0 (Q) is the solution
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of (1) and uTh the solution of (5) with discrete homogeneous Dirichlet boundary
conditions then

∥∥uTh − RTh u
∥∥2

HTh
≤ C1

(‖u‖2H 2 + ‖u‖2∞ ‖V ‖2H 2

)
ϕ(h)2 + C2hk ,

where k = 2 in general and k = 4 if α + β = −1 and where C1 depends on Q, d, r
and R and C2 additionally depends on ‖V ‖C2 and ‖u‖H 2 .

On cubic grids, the above estimates further simplify.

Theorem 3 ([3], Theorem 1.7) Let d ≤ 3 and Th = (Vh, Eh,Ph) be a sequence of
cubic grids hZd and let the above assumptions on κ, V and f hold. If u ∈ H 2(Q) ∩
H 1

0 (Q) is the solution of (1) and uTh the solution of (5) with discrete homogeneous
Dirichlet boundary conditions then

∥∥uTh − RTh u
∥∥2

HTh
≤ Chk ,

where k = 2 in general and k = 4 if α + β = −1 and where C depends on on Q, d,
‖V ‖C2 and ‖u‖H 2 .

3 Finite Volume in High Dimension, [4]

Wewill now focus on (2)withκ = 1.Whenwe speak of periodic boundary conditions
below, we assume thatQ is a cube. We further assume π ∈ C2(Q). Since molecules
could face non self-penetrating conditions, the event V (x) → +∞ as x → x0 ∈
Q, i.e. π(x0) = 0 is a plausible scenario. However, we will be very general on our
assumptions on π. For every Ωi ∈ T we take a value πi and for every σ ∈ EQ we
take a value πσ . It may or may not hold for σ = σi j that πi j = πσi j = Sα,β(πi ,π j )

but we always assume that the discretization is such that πi ,π j ,πi j > 0 for every
i ∼ k. Finally, for every cellΩi we assume that there exist positive constants Ri > ri

such that

Bri (xi ) ⊂ Ωi ⊂ BRi (xi ) .

Since we are in high dimension and want to break the curse of dimensionality by
using a high resolution (i.e. small Ri ) only in a region as small as possible, we will
replace the typically used upper bound for Ri by a distribution of Ri .

In what follows, we write H 2
0 (Q) := H 2(Q) ∩ H 1

0 (Q) as well as H 2
per (Q) for

periodic H 2(Q) functions with mean value 0 and

H 2
(0)(Q) :=

{
U ∈ H 2(Q) |

ˆ

Q
U = 0, ∂νU = 0 on ∂Q

}
.
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These spaces clearly correspond to homogeneous Dirichlet boundary conditions
(BC), periodic or homogeneous Neumann boundary conditions.

In what follows, we write Ei = {σi j : i ∼ j} and for σ = σi j ∈ Ei we write
∂i,σi j = 1

hi j
(U j − Ui ). If σ ⊂ ∂Q ∩ ∂Ωi exists, we write Ei,∂ for the set of all such

piecewise flat subsets σ and include Ei,∂ into Ei and write ∂i,σ accordingly.
We then define discrete spaces incorporating discrete Dirichlet, Neumann (Neu)

and periodic boundary conditions (DBC) as follows:

– Dirichlet: HT ,0 := {U : P → IR | ∀σ ∈ E∂ Uσ = 0}
– Neu: HT ,(0) := {

U : P → IR | ∀i, σ ∈ Ei,∂ : ∂K ,σU = 0 ,
∑

K mkUK = 0
}

– Periodic: we periodize the discretization, consider discrete functions on the full
space and require identical values on “periodically shifted” cells. The correspond-
ing space will be called HT ,per .

In the following, we always match discrete with the corresponding continuous BC.
When there is no need to distinguish between the cases, we simply write H 2

BC(Q)

and HT ,BC and use the index BC accordingly throughout this work. We study the
discrete equation (9) i.e.,

∀i :
∑

σ∈Ei

mσπσ∂i,σUT = mi fi , (9)

in either one of the spaces HT ,0, HT ,(0) or HT ,per and with the additional con-
dition

´
Q πU = 0 in case of Neumann or periodic boundary conditions (BC) i.e.∑

i miUT ,i = 0.
Defining L2(T ) := {

v|PQ → IR
}
and

‖v‖2L2(T ) :=
∑

i∈V
miv

2
i , ‖v‖2HT ,π

:=
∑

σ∈E
mσhσπσ |∂σv|2 , (10)

as well as the pair of operators

R̃T : L2(Q) → L2(T ) ,
(
R̃T U

)

i
:=

 

Bri (xi )

U , (11)

R∗
T : L2(T ) → L2(Q) ,

(R∗
T U

)
(x) := Ui if x ∈ Ωi (12)

We extend R̃T to account for discrete Dirichlet BC by
(RT ,0U

)
i
:=

(
R̃T U

)

i
and

∀σ ∈ E∂ : (RT ,0U
)
σ

:= 0 , (13)

and for Neumann BC by RT ,(0)U := R̃T U −
(∑

i mi

(
R̃Th U

)

i

)
and
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∀σ ∈ E∂ : (RT ,(0)U
)
σ

:= (RT U )K , K ∈ Vσ . (14)

For periodic BC, we set RT ,perU := R̃T U −
(∑

K mK

(
R̃Th U

)

K

)
and find the

general relation RT ,BC : H 2
BC(Q) → HT ,BC.

Theorem 4 ([4] Theorem 2.5) Given a polygonal bounded domain Q ⊂ IRd and
U ∈ H 2(Q) a solution to (2) with f ∈ L2(Q) satisfying the boundary conditions BC
then for every admissible mesh T it holds: there exists a unique solution UT to (9)
for fT given by (9) satisfying the discrete boundary conditions BC. Furthermore

∥∥UT − RT ,BCU
∥∥

HT ,π
≤ (

I1,T (U ) + I2,T (U )
)

, (15)

I1,T (U ) =
(

∑

σ∈E
hσmσπ−1

σ

( 

σ

|π − πσ| |∇U |
)2

) 1
2

,

I2,T (U ) =
(

∑

σ∈E
mσπσhσ

( 

σ

∇U · νσ,K − ∂σ,KRT U

)2
) 1

2

.

Furthermore, there exists a constant C > 0 depending only on d such that for every
U ∈ H 2(Q) ∩ H 1

0 (Q) the following holds:

∣∣I1,T (U )
∣∣2 ≤ C

⎛

⎝
∑

i

R3
i

r3i
R2

i

∥∥√
π∇U

∥∥2

H 1(Ωi )
‖∇π‖2L∞(Ωi )

∑

σ∈Ei

 

σ

1

πκσ

⎞

⎠ , (16)

∣∣I1,T (U )
∣∣2 ≤ C

⎛

⎝
∑

i

R3
i

r3i
R2

i ‖∇U‖2H 1(Ωi )
‖∇π‖2L∞(Ωi )

∑

σ∈Ei

1

πσ

⎞

⎠ , (17)

∣∣I2,T (U )
∣∣2 ≤ C

⎛

⎝
∑

i

R2
i

(
Ri

ri

)d+1 ∥∥∇2U
∥∥2

L2(Ωi )

∑

σ∈Ei

πσ

⎞

⎠ . (18)

Theorem 4 provides only an estimate on the HT ,π-norm while we seek conver-
gence also in L2(T ). For this it is convenient to derive a Poincaré inequality. As the
above discussion suggests, we will seek for such an inequality with respect to the
weighted norms. In what follows, we assume thatQ has the following structure, even
though there are more general possible structures:

Definition 4 LetQ be simply connected, letω ⊂ Q be open convex and letπ : Q →
IR be a piecewise constant function. Letω(π,π0) := {x ∈ ω| π(x) ≥ π0}. Givenπ0 ≥
π1 > 0 we say that π is pseudo monotone on ω w.r.t π0, π1 and an open ball B ⊂
ω(π,π0) if for every x ∈ ω\ω(π,π0) and every y ∈ B there exists z ∈ ∂ω(π,π0)
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such that t �→ π(x + t (z − x)) is monotone increasing on [0, 1] and if π restricted
to the closed convex hull of ω(π,π0) is bigger or equal to π1.

Definition 5 Using ET ,x,y := {σ ∈ E | [x, y] ∩ σ = ∅} we define values πT (x) :=(R∗
T πT

)
(x) and the following for x ∈ ωi and corresponding Bi j ⊂ ωi :

aπ,T (x) := min

{(R∗
T πT

)
(x) , inf

y∈Bi j

inf
σ∈ET ,x,y

πσ

}
,

π̃T (x) :=
{(R∗

T πT
)
(x) if

(R∗
T πT

)
(x) ≥ π0 and aπ,T (x) ≥ π1

aπ,T (x) else
.

Next, we introduce the notation π̃T ,K := m−1
K

´
K π̃T . Based on this we write for

U ∈ L2(T ):

πV :=
ˆ

Q
π̃T (x) , U

π̃ := 1

πV

ˆ

Q
π̃T R∗

T U .

Theorem 5 ([4] Theorem 2.14) Under the above assumptions on Q and π and T
exists a constant C depending only on d, Q̃, C(T ,π0), π0 and ‖π‖∞ such that

∑

K

π̃T ,K mK

(
UK − U

π̃
)2 ≤ C ‖U‖2HT ,π

. (19)

References

1. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018
(2000)

2. Gallouët, T., Herbin, R., Vignal,M.H.: Error estimates on the approximate finite volume solution
of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal.
37(6), 1935–1972 (2000)

3. Heida, M., Kantner, M., Stephan, A.: Consistency and convergence for a family of finite volume
discretizations of the fokker–planck operator. ESAIM M2AN 55, 3017–3042 (2021)

4. Heida, M., Sikorski, A., Weber, M.: Consistency and order 1 convergence of cell-centered finite
volume discretizations of degenerate elliptic problems in any space dimension. WIAS Preprint
2913 (2022)

5. Lie, H.C., Fackeldey, K.,Weber,M.: A square root approximation of transition rates for amarkov
state model. SIAM J. Matrix Anal. Appl. 34, 738–756 (2013)

6. Stolarsky, K.B.: Generalizations of the logarithmic mean. Math. Mag. 48(2), 87–92 (1975)



PDE Models of Virus Replication
Coupling 2D Manifold and 3D Volume
Effects Evaluated at Realistic
Reconstructed Cell Geometries

Markus M. Knodel, Arne Nägel, Eva Herrmann, and Gabriel Wittum

Abstract Virus pandemics and endemics cause enormous pain and costs. Major
processes of the intracellular Hepatitis C virus (HCV) viral RNA (vRNA) replica-
tion cycle are restricted to the 2D Endoplasmatic Reticulum (ER) manifold, while
others take place in the 3D cytosol volume.Modeling the interplay of the major com-
ponents of the vRNA replication cycle with partial differential equations (PDEs), we
establish a system of surface PDEs (sufPDEs) for effects restricted to manifolds cou-
pled to PDEs describing volume effects. Using the diffusion coefficient of viral pro-
teins which we estimated based on experimental data, we discretize the population-
dynamics inspired nonlinear diffusion-reaction equation PDE/sufPDE system with
the aid of a vertex-centered Finite Volume scheme and evaluate it at unstructured
grids representing data based realistic reconstructed cell geometries. We describe
the numerical techniques applied and demonstrate the numerical robustness of our
simulations. Our framework might contribute to efficient development of antiviral
drugs and potent vaccines.
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1 Introduction

Viruses are a major challenge to animal and human health, global prosperity, econ-
omy, political and social systems, as the recent Covid19 pandemics has unveiled.
Infection with the Hepatitis C virus (HCV) [2] belongs to current global pandemic
virus diseases.

Spatial dependence is a crucial factor in the process all viruses use in order to
replicate. In case of HCV, the virus genome - viral RNA (vRNA) - replication takes
place within specific compartments called membranous web (MW) [2]. The MWs
are derived from altered regions of the the Endoplasmatic Reticulum (ER). The
ER is an interconnected intracellular membrane network, its surface is a connected
sum of g tori, g ≥ 1, enclosing the ER lumen. The intracellular vRNA replication
cycle is based upon complex vRNA, non structural virus proteins (NSPs) and host
interactions between the 3D cell volume space (called cytosol) and the curved 2D ER
surface/manifold embedded in the 3D volume. While the ER manifold is embedded
inside the volume space of the cell, the volume enclosed by the ER (lumen) is exempt
from the replication cycle processes.

In the recent years, we started to develop a framework to allow for fully 3D
spatio-temporal resolved virus replication models at an intracellular level for the
case of HCV. Our framework aims to mirror in vitro/in vivo experiments by means of
fully spatio-temporal resolved diffusion-reaction partial differential equation (PDE)
models. From the very beginning, all simulations are performed at geometries which
we reconstructed based on experimental data. As major processes of the vRNA cycle
are restricted to the curved 2DERmanifold embedded in 3D, our firstmodels focused
upon the evaluation of surface PDEs (sufPDEs) and described the interplay of vRNA,
NSPs, and a generic host factor. Next we introduced nonlinear population dynamics
inspired diffusion and reaction coefficients and different aggregate states for vRNA
and NSPs which allowed qualitative realistic modeling, cf. [5] and references given
therein. Further, we estimated the diffusion coefficient of the so-called NS5A HCV
protein by means of adjusting sufPDE simulation values to experimental time series
data, cf. [4].

This study merges effects restricted to the 2D ER manifold with those taking
place in the full 3D cytosol volume. We couple sufPDEs with PDEs where mani-
fold attachment and detachment is described by fluxes and reactions ensuring mass
conservation. As far as known, we use quantitative reliable parameters motivated by
experimentally based values to approach to quantitative reliable simulations.
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2 Grids, PDE Models, Discretization and Solvers

2.1 Data Based Unstructured Surface Mesh and Volume Grid

The geometry of our simulations is based on the same cell compartment data as in
our former studies [5]: We used fluorescence data z-stacks of stained ER and MW
surfaces of liver cells and reconstructed the surfaces of ER and MWs. Applying a
GPU implementation of an inertia moment based anisotropic filter and segmenting
the data, we created a triangular surface mesh (by means of the marching cube
algorithm), post processed with ProMesh [7]. The crucial difference of this study
to all our former studies is that up to now, all computations were performed upon
the (unstructured) triangular surface grids exclusively. Here, we enclose the surface
grids into a rectangular hexahedron which is filled with a full tetrahedral volume
(unstructured) mesh with the aid of tetgen [8]. Figure 1 displays screenshots of
the surface grid and volume mesh (at base level) opened in parts by a clip plane.
Table 1 lists the subdomains of the 3D computational domain Ω = Γ ∪ C ∪ W . Γ
is the external boundary of Ω ⊂ R

3.

cba

Fig. 1 Triangular surface and tetrahedral volume mesh. Different colors refer to different subdo-
mains. a ER surface grid of M (ribosome subdomains Ri appear as intersection of ER and - in a
not displayed—MW surfaces), b ER and MW surface grids, c Volume mesh of Ω opened with a
clip plane. Perspective of a, b differs to c

Table 1 Subdomains of computational domain Ω

Subdomain Property

2D manifold E ∪ R = M ⊂ Γ , embedded in 3D

E ⊂ M Reconstructed ER surfaces except for

∪7
i=1Ri = R ⊂ M 7 ribosomic zones: intersection ER/MW

surfaces

3D volume C ∪ W ⊂ Ω

C ⊂ Ω Cytosol (enclosed by the box B enclosing in
fact Ω)

∪7
i=1Wi = W ⊂ Ω 7 MW zones: volume enclosed by MW surfaces
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While M is embedded inside C ∪ W , the volume enclosed by M (lumen) is
excluded from the computational domain and not meshed - Ω is not stellated, but
M is entire part of the “external” boundary of Ω , i.e. Γ = M ∪ B.

2.2 Coupled sufPDE/PDE Model of Virus Replication

Those components whose movement is restricted to the ER surface are modeled with
the aid of sufPDEs on the 3D embedded 2D curved manifold domain M. Fully 3D
“volume” PDEs describe the other components defined in the full volume domain
Ω , which we also call “vPDEs” to account for their “volume” property. Technically,
the sufPDEs are defined on faces which as well act as faces of the boundary Γ of
Ω , where the vPDEs are defined. We model the exchange between surfaces and the
volume by means of coupling the vPDEs with the sufPDEs via Neumann boundary
conditions of the vPDEs which are mirrored by reactions of the sufPDEs. Exchange
may appear where Γ geometrically coincides with M, as M ⊂ Γ . To ensure mass
conservation, the values of the local reactions of the sufPDEs onMmandatory have
to match the values of the local flux conditions of the vPDEs on Γ . We describe the
interplay of the components listed in Table 2.

All vPDE and sufPDE systems have to be understood as local. For simplicity
of notation, we omit the notation of spatial and temporal variables everywhere in
the equation system notations. With the convention that a term with a subdomain

Table 2 Concentrations considered in the PDE model

Concentration Region Biophysical meaning

Surface concentrations defined at the 3D embedded curved 2D manifold M
RS
R R Ribosomal bound RNA

PS
R R Viral polyprotein translated at ribosomes

WS
C R Web (NSP) protein cleaved from the polyprotein

NS
E M NS5a NSP cleaved from the polyprotein

RS
E M polymerized free RNA attached to the ER

Volume concentrations defined in the 3D volume Ω

WV
W W Web (NSP) protein detached from ribosomes to form

MWs

NV
W W NS5a NSP detached from ribosomes incorporated into

MW

CV
W W Replication complex as combination of detached RS

R and
WS

C

RV
P Ω Polymerized free RNA moving in the full volume

HV Ω Host factor
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subscript indicates that the corresponding term contributes only in this specific sub-
domain, the sufPDE equation system to be evaluated only on the manifoldM reads:

∂t R
S
R =

[
divT(DR ∇T RS

R) − r1R
S
R

RS
R

RS
R + p1

WS
C

W S
C + p2

+ r7R
S
E (r0 − RS

R)

]
R

(1)

∂t P
S
R =

[
divT(DP ∇T PS

R ) + r2R
S
R

HV

HV + p3
− r3P

S
R

]
R

(2)

∂tW
S
C =

[
divT(DN ∇T W

S
C ) + r3P

S
R − r4W

S
C − v1r1R

S
R

RS
R

RS
R + p1

WS
C

W S
C + p2

]
R
(3)

∂t N
S
E = divT(DN ∇T NS

E ) + [
r3P

S
R − r5N

S
EW

S
C

]
R (4)

∂t R
S
E = divT

[
DS

R

(
1 + k1

NS
E

N S
E + p4

)
∇T RS

E

]
+ r6R

V
P − [

r7R
S
E (r0 − RS

R)
]
R (5)

whereas the vPDE equation system to be evaluated in the full domain Ω reads

∂tW
V
W = [

div(DN∇WV
W )

]
W (6)

∂t N
V
W =

[
div

(
DN

WV
W

WV
W + p5

∇NV
W

)]
W

(7)

∂tC
V
W =

[
div

(
DC

WV
W

WV
W + p6

∇CV
W

)]
W

(8)

∂t R
V
P = div

[
DV

R

(
1 + k2

NV
W

NV
W + p7

)
∇RV

P

]
+

[
r6C

V
W

HV

HV + p8

]
W

(9)

∂t H
V = div

[
DH

(
1 + k3

WV
W

WV
W + p9

)
∇HV

]
−

[
v2r6C

V
W

HV

HV + p8

]
W

(10)

with the Neumann boundary conditions which connect sufPDEs and vPDEs

n · [
DN∇WV

W

] = +r4WS
C ∀x ∈ R

n ·
[
DN

WV
W

WV
W+p5

∇NV
W

]
= +r5NS

EW
S
C ∀x ∈ R

n ·
[
DC

WV
W

WV
W+p6

∇CV
W

]
= +r1RS

R
RS
R

RS
R+p1

WS
C

W S
C+p2

∀x ∈ R
n ·

[
DV

R

(
1 + k2

NV
W

NV
W+p7

)
∇RV

P

]
= −r6RV

P ∀x ∈ M

(11)

where all other boundary conditions are no flux, i.e. Neumann zero conditions. The
initial conditions are such that all concentrations are zero everywhere for all compo-
nents, except for RS

R , which is a nonzero constant at one specificRi ,

RS
R(t = 0, x) =

{
r0, ∀x ∈ R2,

0, else.
(12)
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2.3 Technical Framework: Discretization, Solvers and DoF
Numbers

Temporal discretization: The complete PDE/sufPDE system is discretized by means
of an implicit Euler scheme of first order. The time step size is chosen adaptive and is
regulated with the aid of the corresponding number of Newton steps of the respective
former time step. So far, all reaction and diffusion terms are incorporated bymeans of
their implicit form, but we plan to switch the incorporation of corresponding signed
reaction terms into the explicit form, which, in part, might allow for bigger time step
sizes.

Spatial discretization: We perform the spatial discretization of the sufPDEs and
vPDEs with the aid of a vertex-centered finite volume (vcFV) scheme, called also
“box method” [1, 3], as such a scheme ensures the mass conservation of the trans-
ported components on the discrete level. Sketched in a nutshell, a dual grid reparti-
tions the computational domain of the PDE of type ∇D∇u + ru = 0, defined in
Ω ⊂ R

d , by means of non-overlapping control volumes (boxes), Ω̄ � ⋃n
i=1 Bi ,

where Bi ∩ Bj = ∅ if i �= j . Each box encloses exactly one vertex of the finite ele-
ment grid. Choosing u ∈ C(Ω) as in the FE case, but v ∈ L2(Ω), the weak form of
the PDE leads to

∑n
i=1(

∫
Bi
rudd x − ∫

∂Bi
n · D∇udσ) = 0. The numerical scheme

ensures the balance law, namely the fluxes into and from each box are balanced. In
case of themanifolds, themethodwas adopted, i.e. the boxes form lower-dimensional
parts of the manifold. At the boundary of the boxes, the normals are constructed tan-
gential to the manifold, as well the differential operators; e.g., the Laplace-Beltrami
operator “replaces” the Laplace operator.

Nonlinear solver: A Newton solver is applied to solve the highly nonlinear equation
system (1)–(10) leading to a huge systems of linear equations (SLEs).

Linear solver: At each iteration of the Newton solver, the SLEs are solved with a
BiCGStab solver which is preconditioned by means of a Geometric Multigrid Solver
(GMG).

GMG solver: The GMG applies a V-Cycle with 3 pre- and 3 postsmoothing steps
using Symmetric Gauss-Seidel (SGS). As base solver, we use an ILU preconditioned
BiCGStab. The GMG solver does not apply any kind of coarsening of the grid.
Moreover, the GMG solver applies a global refinement strategy of the already (due
to its experimental data based origin) quite fine coarse grid.

DoF numbers: Fig. 4 reports the number of the degrees of freedom (DoFs).

Technical framework: The numerical computations were performed with the UG4
framework [6] at the HLRS Stuttgart Apollo Hawk supercomputer.
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3 Simulations

Simulation screenshots: The simulations are running robust and reproduce all major
effects of the vRNA cycle, namely also with respect to the interplay of surface and
volume effects. The vRNA translates viral protein, which inducesMWgrowth. Inside
the MW, the vRNA gets replicated, while the host factor gets consumed, and some
newly produced vRNA attach to other ribosomes R, such that the cycle is closed.
Figure 2 displays screenshots of different components.

Mass conservation As the vPDE system incorporates several fluxes realized with
Neumann boundary conditions which mirror reactions (detachment and attachment)
of components from/to the manifold (modelling exchange between manifold and
volume), we checked exhaustively the numerical robustness and mass conservation
of these processes and found very robust mass conservation properties. Figure 3
displays the mass conservation properties for two scenarios:

I Exclusive production of PS on R, only nonzero reaction: r2 �= 0. Comparing
with the sums of PS,WS

C ,WV
W in case when PS reacts to WS

C onR, which itself
detaches to WV

W withinW , i.e. r2, r3, r4 �= 0; ri = 0 for i �= 2, 3, 4.
II All reactions nonzero except for r7 = 0, ri �= 0∀i �= 7; RS

E at M does not
“switch” into RS

R at R. Comparing with the case when in addition, RV
P in Ω

does not attach at M to form RS
E , i.e. r6 = r7 = 0, and ri �= 0∀i �= 6, 7.

Data shown for grid level 2 and Δt = 40s (constant time step possible at beginning).
The vcFV scheme induced integrals (due to Neumann conditions for the vPDEs) are
the same as those for the reaction terms of the sufPDEs. The sum of the compared
data agrees very well in both cases, as the relative differences demonstrate. (Note:
Mass conservation not dependent on grid level.)

Numerical grid convergence is demonstrated in Fig. 4 by comparing absolute values
for selected unknowns c integrated over their domainD, ID

L (c) = ∫
D cdmD (dmΩ =

dx3, dmM = dσ ), as the relative differences RD
L (c) = |(ID

L (c) − ID
L+1(c))/(ID

L (c)
+ ID

L+1(c))| decrease for increasing grid refinement level L .

(a) (b) (c)

Fig. 2 Simulation screenshots at t � 1h (grid level 1). a RS
E concentration on M merged with

RV
P concentration in complete Ω displayed with the aid of an opacity mapping functionality. b

WS
C concentration on M merged with WV

W concentration defined in W (opacity mapping). c HV

concentration in Ω , domain disclosed by means of a cut plane (no opacity mapping; edges of grid
faces visible)
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Fig. 3 Mass conservation: absolute values and relative differences. a Case I (PS
R , ri = 0∀i �= 2

versus PS
R ,WS

C ,WV
W , ri = 0∀i �= 2, 3, 4); b Case II (RV

P , ri �= 0∀i �= 6, 7, versus RV
P , RS

E , ri �=
0∀i �= 7). Results computed at grid level 2 and constant Δt = 40s

Level DoFs Vols
0 96,370 41,446
1 667,280 331,568
2 4,890,410 2,652,544
3 37,266,790 21,220,352
4 290,579,070 169,762,816
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Fig. 4 Left: DoF number at different grid levels and number of elements (tetrahedra). Right: Abso-
lute values IΩ

L (RV
P ) (volume) and IM
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E ) (manifold) for L ∈ {0, 1, 2, 3, 4} displayed with “real”

colors; relative differences RΩ
L (RV

P ) (black lines) and RM
L (RS

E ) (gray lines) with L ∈ {0, 1, 2, 3}
demonstrate profound numerical grid convergence

Some challenges for new 2d-3d coupling robustness: To avoid the need for an
extremely high number of Newton iterations per time step, the implementation of
an adaptive time step size governed by the number of Newton steps was crucial. To
simulate several biophysical hours using realistic parameters, the thus established
time step size varies drastically, up to five orders of magnitude.

For efficient parallel performance, we apply a hierarchical grid redistribution for
spatial grid level refinement higher than level one [6].

The correct assignment of the subdomains after tetrahedralization for all nodes,
faces and volumes was solved with the aid of a ProMesh script.
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4 Discussion and Conclusions

We have presented a PDE model of the intracellular vRNA cycle which couples vol-
ume and surface effects and we have described the numerical techniques we applied.
We have demonstrated mass conservation for the coupled surfPDE/vPDE system as
well as numerical grid convergence. The results shown in this paper demonstrate
the numerical robustness of our simulations, and are compatible with experimental
observations. Our study is a building block to establish an advanced quantitative
spatially-resolved understanding of virus replication dynamics to unveil the rela-
tion of form and function. In the long run, our framework might help facilitate the
development of direct antiviral agents and potent vaccines.

Acknowledgements The authors acknowledge the HLRS Stuttgart for the supplied computing
time on the HLRS Apollo Hawk supercomputer. MMK thanks Florian Frank (Erlangen University)
for stimulating discussions about the numerical methods.
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Structure-Preserving Schemes for
Drift-Diffusion Systems on General
Meshes: DDFV Versus HFV

Stella Krell and Julien Moatti

Abstract Wemade a comparisonbetween aDiscreteDualityFiniteVolume (DDFV)
scheme and a Hybrid Finite Volume (HFV) scheme for a drift-diffusion model with
mixed boundary conditions on general meshes. Both schemes are based on a non-
linear discretisation of the convection-diffusion fluxes, which ensures the positivity
of the discrete densities. We investigate the behaviours of the schemes on numerical
test cases.

Keywords DDFV · HFV · Positivity preserving methods · Discrete
entropy/dissipation relation · Long-time behaviour

1 Motivation

We are interested in the numerical discretization of drift-diffusion model. Let Ω

be a polygonal connected open bounded subset of R2, whose boundary Γ = ∂Ω is
divided into two parts Γ = Γ D ∪ Γ N with m(Γ D) > 0. The problem writes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t N − div(∇N − N∇φ) = 0 in R+ × Ω,

∂t P − div(∇P + P∇φ) = 0 in R+ × Ω,

−λ2div(∇φ) = C + P − N in R+ × Ω,

N = ND, P = PD and φ = φD on R+ × Γ D,

(∇N − N∇φ) · n = (∇P + P∇φ) · n = ∇φ · n = 0 on R+ × Γ N ,

N (0, ·) = Nin and P(0, ·) = Pin in Ω,

(1)
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where n denotes the unit normal vector to ∂Ω pointing outward Ω . Regarding the
data, (i) the parameter λ > 0 is the rescaled Debye length of the system, which
accounts for the nondimensionalisation (relevant values of this parameter can be very
small, inducing some stiff behaviours), (ii) the initial conditions Nin and Pin belong
to L∞(Ω) and are positive, (iii) the doping profile C is in L∞(Ω), and characterises
the semiconductor device used. In the following, we also assume that the boundary
conditions are the trace of some H 1 function on Ω , such that the following relation
holds:

log(ND) − φD = αN and log(PD) + φD = αP on Γ D, (2)

where αN and αP are two real constants. It follows that ND and PD are positive.
The solution to (1) enjoys some natural physical properties: the densities N and

P are positive for all time, and the solution converges exponentionaly fast towards
some thermal equilibrium (Ne, Pe,φe) -which is a stationary solution to (1)—where
Ne = eαN+φe

, Pe = eαP−φe
and φe is the solution to the Poisson-Boltzmann equation

{−λ2div(∇φe) = C + exp(αP − φe) − exp(αN + φe) in Ω,

φe = φD on Γ D and ∇φe · n = 0 on Γ N .
(3)

Relation (2) is a compatibility condition in order to ensure the existence of the thermal
equilibrium (3).When designing numerical schemes for (1), it is crucial to ensure that
the scheme preserves these properties at the discrete level. This structure preserving
feature is ensured by classical TPFA schemes on admissible orthogonal meshes (see
[1]). Unfortunately, these schemes cannot be used on general meshes. Following the
ideas introduced in [3], a nonlinear positivity preserving DDFV scheme for Fokker-
Planck equations has been introduced in [2]. In the spirit of these works, a nonlinear
structure preserving HFV scheme was introduced and partially analysed in [5]. The
aim of this paper is to introduce a nonlinear structure preserving DDFV scheme for
(1) based on the scheme of [2] and to compare it numerically with the HFV scheme
of [5].

2 Descriptions of the Schemes

The schemes used here are based on the same nonlinear strategy, introduced in [3],
consisting in the reformulation of the convection-diffusion fluxes:

∇N − N∇φ = N∇ (log(N ) − φ) and ∇P + P∇φ = P∇ (log(P) + φ) .

At the discrete level, both schemes relie on discrete gradients operators to approx-
imate the continuous gradients. The major issue lies in the discretisation of the
prefactors P and N , which will be handled by local reconstruction operators.
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This discretisation strategy is a way of ensuring (at the theoretical level) the
positivity of the discrete densities. We refer to [5, Theorem 1] (HFV scheme for
drift-diffusion system) and [2, Theorem 2.1] (DDFV scheme for a single advection-
diffusion equation) for proofs of this statement. We also refer the reader to these
proofs for more insight about the reconstruction operators. Both schemes are based
on a backward Euler discretisation in time. To fix ideas, we will use a constant time
step Δt > 0. For more precise descriptions and statements about the schemes and
the meshes, we refer to [2] (DDFV) and [5] (HFV).

Remark 1 (Generalisation to anisotropic models) In this paper, we consider
isotropic convection-diffusion equations for the charges carriers for the sake of
brevity. One could add anisotropic diffusion tensors and consider the framework
described in [5].

Both schemes rely on a spatial discretisation (or mesh) of the domain Ω . The
(primal interior) meshM is a partition of Ω in polygonal control volumes (or cells).
We let ∂M be the set of boundary edges, seen either as degenerate control volumes
(DDFV framework) or as edges (HFV framework). The primal mesh M is defined
as the reunion ofM and ∂M. Given a cell K ∈ M, we fix a point xK ∈ K , called the
center of K . For all neighboring primal cells K and L , we assume that ∂K ∩ ∂L is
a segment, corresponding to an internal edge of the mesh M, denoted by σ = K |L
and we let Eint be the set of such edges. We denotes by E = Eint ∪ ∂M the set of all
(internal and exterior) edges of the mesh, and define EK the set of edges of the cell
K ∈ M. For any K ∈ M and σ ∈ EK , we define nσK as the unit normal to σ outward
K . Given any measurable X ⊂ R

2, we denote by mX the measure of the object X .

2.1 The DDFV Scheme

In order to define the DDFV scheme, we need to introduce two othermeshes: the dual
mesh denoted M∗ and the diamond mesh denoted D (see [2] for more details). The
dual mesh M∗ is also composed of interior dual mesh M∗ (corresponding of cells
around vertex inΩ) and of boundary dual mesh ∂M∗ (corresponding of cells around
vertex on ∂Ω). For any vertex xK ∗ of the primalmesh satisfying xK ∗ ∈ Ω , we define a
polygonal control volume K ∗ by connecting all the centers of the primal cells sharing
xK ∗ as vertex. For any vertex xK ∗ ∈ ∂Ω , we define a polygonal control volume K ∗
by connecting the centers xK of the interior primal cells and the midpoints of the
boundary edges sharing xK ∗ as vertex and xK ∗ .We define the set E∗

int of internal edges
of the dual mesh similarly as Eint . We denote by nσ∗K ∗ the unit normal to σ∗ outward
K ∗. For each couple (σ,σ∗) ∈ E × E∗

int such that σ = [xK ∗ , xL∗ ] and σ∗ = K ∗|L∗,
we define the quadrilateral diamondDσ,σ∗ whose diagonals are σ and σ∗ (if σ ⊂ ∂Ω ,
it degenerates into a triangle). The set of the diamonds defines the diamond meshD ,
which is a partition ofΩ (Fig. 1). Finally, the DDFVmesh is made of T = (M,M∗)
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Fig. 1 Definition of the diamonds Dσ,σ∗ and related notations

andD. We now introduce the space of scalar fields which are associated to each cell
R

T , and space of vector fields constant on the diamonds
(
R

2
)D

:

uT ∈ R
T ⇐⇒ uT = (

(uK )K∈M , (uK ∗ )K ∗∈M∗
)
and ξD ∈

(
R
2
)D ⇐⇒ ξD = (

ξD
)

D∈D .

To enforce Dirichlet boundary conditions, we introduce the set of Dirichlet bound-
ary primal and dual cells: ∂MD = {K ∈ ∂M : K ⊂ ΓD} and ∂M∗

D = {K ∗ ∈ ∂M∗ :
xK ∗ ∈ Γ D}, and, for a given v ∈ C(Γ D), we define

EΓD
v = {uT ∈ R

T | ∀K ∈ ∂MD, uK = v(xK ) and ∀K ∗ ∈ ∂M∗
D, uK ∗ = v(xK ∗)}.

We also define discrete bilinear forms on RT and
(
R

2
)D

by

�vT , uT �T = 1

2

∑

K∈M
mK uK vK + 1

2

∑

K ∗∈M∗
mK ∗uK ∗vK ∗ , ∀(uT , vT ) ∈ (

R
T )2

,

(
ξD, ϕD

)

D =
∑

D∈D
mD ξD · ϕD, ∀(ξD, ϕD) ∈

((
R
2
)D

)2
.

The DDFV method is based on the definition of a discrete gradient operator ∇D :
R

T → (
R

2
)D

, defined by ∇DuT = (∇DuT
)

D∈D, where

∇DuT = 1

2mD
(mσ(uL − uK )nσK + mσ∗(uL∗ − uK ∗)nσ∗K ∗) ∀D ∈ D. (4)

Finally, we introduce a reconstruction operator on diamonds rD. It is a mapping from
R

T to R
D defined for all uT ∈ R

T by rDuT = (
rDuT

)

D∈D, where for D ∈ D,
whose vertices are xK , xL , xK ∗ , xL∗ , rDuT = 1

4 (uK + uL + uK ∗ + uL∗). One can
now introduce a DDFV discretisation of (u, w, v) → ∫

Ω
u∇w · ∇v, defined by
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TD : (uT , wT , vT ) →
∑

D∈D
mDrDuT ∇DwT · ∇DvT .

Now, we first discretise the data by taking the mean values of Nin , Pin and C on the
primal and dual cells, which define N 0

T , P
0
T and CT . Then, for all n ≥ 0, we look

for (Nn+1
T , Pn+1

T ,φn+1
T ) ∈ EΓD

N D × EΓD

PD × EΓD

φD solution to:

�
Nn+1
T − Nn

T
Δt

, vT �T+ TD(Nn+1
T , log(Nn+1

T ) − φn+1
T , vT ) = 0 ∀vT ∈ EΓD

0 , (5a)

�
Pn+1
T − Pn

T
Δt

, vT �T + TD(Pn+1
T , log(Pn+1

T ) + φn+1
T , vT ) = 0 ∀vT ∈ EΓD

0 , (5b)

λ2 (∇Dφn+1
T ,∇DvT

)

D
= �CT + Pn+1

T − Nn+1
T , vT �T ∀vT ∈ EΓD

0 . (5c)

In (5a) and (5b), we use the notation log(uT ) = (
(log(uK ))K∈M , (log(uK ∗))K ∗∈M∗

)
.

2.2 The HFV Scheme

In order to define the HFV scheme, we need to introduce a pyramidal submesh. To do
so, one has to assume that each cell K ∈ M is star-shaped with respect to its center
xK (we recall that xK is not necessarily the barycentre of K ). We then define PK ,σ

as the pyramid (triangle) of base σ and apex xK . Given any σ ∈ E , we denote by xσ

the barycentre of σ, and by dK ,σ the euclidean distance between σ and xK . Finally,
we define the hybrid discretisation (or mesh) as D = (M, E).

We now introduce the space of discrete (scalar) hybrid unknowns VD:

uD ∈ VD ⇐⇒ uD = (
(uK )K∈M , (uσ)σ∈E

)
,

where the uK ∈ R are the cell unknowns and the uσ ∈ R are the edges unknowns
(approximation of the trace of the solutions on the edges). To enforce Dirichlet
boundary conditions, for a given v ∈ C(Γ D), we define

V ΓD
D,v = {uD ∈ VD | ∀σ ∈ ∂MD, uσ = v(xσ)}.

As for the DDFV framework, we define a bilinear form on VD, discrete counterpart
of the inner product on L2(Ω) as

�uD, vD�M =
∑

K∈M
mK uK vK , ∀(uD, vD) ∈ V 2

D.

The HFV method is based on the definition of a discrete gradient operator ∇D :
VD → (R2)Ω which maps discrete hybrid unknowns onto piecewise constant func-
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tions on the pyramidal submesh. More precisely, given vD ∈ VD, K ∈ M and
σ ∈ EK ,

∇DvD|PK ,σ
= GK vD + SK ,σvD,

where, for some η > 0, the consistent and stabilisation parts of the gradient are given
by

GK vD = 1

mK

∑

σ′∈EK

mσ′vσ′nK ,σ′ and SK ,σvD = η

dK ,σ

(
vσ − vK − GK vK · (xσ − xK )

)
nK ,σ .

One can now define the discrete counterpart of (u, v) → ∫

Ω
∇u · ∇v as

aD : (uD, vD) →
∫

Ω

∇DuD · ∇DvD.

We introduce as previously local reconstruction operators on cells r K : VD → R,

such that for any uD ∈ VD, r K (uD) = 1

|EK |
∑

σ∈EK

uK + uσ

2
, where |EK | is the

cardinal of the finite set EK . One can now introduce a HFV discretisation of
(u, w, v) → ∫

Ω
u∇w · ∇v, defined by

TD : (uD, wD, vD) →
∑

K∈M
r K (uD)

∫

K
∇DwD · ∇DvD.

We now discretise the data by taking the mean values of Nin , Pin and C on the
cells and edges, which define P0

D, N 0
D and CD. Then, for all n ≥ 0, we look for

(Nn+1
D , Pn+1

D ,φn+1
D

) ∈ V ΓD

D,ND × V ΓD

D,PD × V ΓD

D,φD solution to:

�
Nn+1

D − Nn
D

Δt
, vD�M+ TD(Nn+1

D , log(Nn+1
D ) − φn+1

D
, vD) = 0 ∀vD ∈ V ΓD

D,0, (6a)

�
Pn+1
D − Pn

D

Δt
, vD�M+ TD(Pn+1

D , log(Pn+1
D ) + φn+1

D
, vD) = 0 ∀vD ∈ V ΓD

D,0, (6b)

λ2aD
(
φn+1
D

, vD

)
= �CD + Pn+1

D − Nn+1
D , vD�M ∀vD ∈ V ΓD

D,0. (6c)

As previously, we use the notation log(uD) = (
(log(uK ))K∈M , (log(uσ))σ∈E

)
.

2.3 Some Structural Differences Between Schemes

As highlighted by the unified presentation above, both schemes are very similar and
rely on the same features. Note that both local reconstruction operators rD and r K

take into account all the local unknowns of the geometric entity considered (diamond
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or cells), this property is the key point of the analysis of this kind of schemes, see
[2, 5]. However, the schemes exhibit differences, some of which are listed below:

• the discreteHFVgradient∇D includes a stabilisation term for the sake of coercivity
and the stabilisation parameter η has to be chosen a priori, whereas the DDFV one
is simpler and do not need any choice of parameter;

• the DDFV unknowns are all “volumic”, in the sense that there are associated to
geometric entities with non-zero two-dimensional measures, whereas the faces
unknowns of the HFV method have no mass and have no influence on the discrete
time derivative terms �Nn+1

D − Nn
D, vD�M and �Pn+1

D − Pn
D, vD�M;

• the cells unknowns of the HFV scheme can be eliminated before solving linear
systems, using a static condensation procedure (see [5, Sect. 5.1.2.]), this procedure
cannot be performed for the DDFV method;

• the HFV scheme can be used in 3D without any modification (the edges become
faces), whereas using a DDFV method in 3D requires more sophisticated changes
(see [4]).

3 Numerical Experiments

The two numerical schemes described here are nonlinear, hence their algebraic real-
isations boil down to the resolution of nonlinear systems of equations. To do so,
we use Newton method, with an adaptative time stepping strategies: if the Newton
method does not converge, we try to compute the solution for a smaller time step
0.5 × Δt . If the method converges, we use a bigger time step 1.4 × Δt . The initial
time step is denoted byΔtini , and we also impose a maximal time stepΔtmax . For the
HFV scheme, at each system resolution, a static condensation is used to eliminate
the cell unknowns (see [5, Sect. 5.1.2.]), and we use η = 1.5. Note that we use N ,
P and φ as discrete unknowns in the schemes.

The test case used below follow the framework used in [5] to describe a 2D
PN-junction, whose geometry is described in Fig. 2. The domain Ω is the unit
square ]0, 1[2. For the boundary conditions, we split Γ D = Γ D

0 ∪ Γ D
1 with Γ D

0 =

Fig. 2 PN diode geometry
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[0, 1] × {0} and Γ D
1 = [0, 0.25] × {1}. For i ∈ {0, 1}, we let ND = ND

i , PD = PD
i

andφD = log(ND
i )−log(PD

i )

2 onΓ D
i . To be consistentwith the compatibility condition (2)

we assume that there exists a constant α0 such that log(ND×PD)=α0. Therefore
for given ND and α0 we set PD = eα0

ND on Γ D .
Thus, one has αN = αP = α0

2 . The doping profile C is piecewise constant, equal
to −1 in the P-region and 1 in the N-region (see Fig. 2). Last, we use the following
smooth initial conditions: N0(x, y) = ND

1 + (ND
0 − ND

1 )(1 − √
y) and P0(x, y) =

PD
1 + (PD

0 − PD
1 )(1 − √

y).

3.1 Positivity

The test uses the following values: λ = 0.05, ND
0 = 0.1, ND

1 = 1 and α0 = −4.
We perform a test on a distorted quadrangle mesh (mesh_quad_6 of the FVCA 8
Benchmark),withΔtini = 1.4 10−3 andΔtmax = 0.1.We show inFig. 3 the evolution
of the minimal values of P and N , along with the time step and the number of
Newton’s iterations needed to compute the solutions at a given time for each time
step. The minimal values are taken on every unknowns (primal and dual cells for the
DDFV scheme, cells and faces for the HFV one). One can see that both schemes
compute, as expected by the theoretical results, positive densities. Theminimal values
computed are of the same order for both schemes. Moreover, both computations
proceed without the need of a time step reduction. Regarding the cost, it appears that
the HFV scheme needs more Newton iterations than the DDFV one (90 vs. 63). For

Fig. 3 Test-case. Evolution of the discrete minimal values, time step and cost
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both schemes, the number of iteration decay as the time increases, since the solutions
converge exponentially fast towards the equilibrium.

3.2 Long-Time Behaviour

At the continuous level, one usually quantify the distance between the solution
(N , P,φ) and the equilibrium (Ne, Pe,φe) by looking at the relative entropy,

defined asE(t) =
∫

Ω

NeH

(
N

Ne

)

+
∫

Ω

PeH

(
P

Pe

)

+ λ2

2
‖∇(φ − φe)‖2L2(Ω),with

H : s → s log(s) − s + 1. One can check that (N , P,φ) coincides with the equilib-
rium if and only if the relative entropy cancels. In the following, we are interested in
the evolution of the discrete counterparts of this quantities, defined as

E
n
D = �Ne

DH

(
Nn

D

Ne
D

)

, 1D�M+ �Pe
DH

(
Pn
D

Pe
D

)

, 1D�M+ λ2

2
aD

(
φn
D

− φe
D

,φn
D

− φe
D

)

for the HFV scheme (where 1D is the discrete elements whose coordinates are 1, and
the product, quotient and functions are applied coordinate-wise) and similar defini-
tion for the DDFV scheme. Note that the HFV entropy does not take into account the
edge unknowns of the discrete densities. To compute the discrete equilibrium, we
use a nonlinear scheme for (3) and get φe

D
, then we defined the associated densities

following the continuous relations Ne = eαN+φe
and Pe = eαP−φe

. We consider a
test case with physical data ND

0 = e, ND
1 = 1 and α0 = 0. We also use two different

values of the Debye length λ, respectively 1 and 0.01. We perform simulations on a
triangular mesh, with a Δtini = Δtmax = 0.1. On Fig. 4, we show the evolutions of
the discrete relative entropies along time, for the two values of λ and both schemes.

Fig. 4 Long-time behaviour. Evolution of the discrete relative entropies



334 S. Krell and J. Moatti

As expected, the convergence towards the equilibrium is exponentially fast, as in the
continuous framework. Moreover, it is remarkable to notice that the decay rates are
almost the same for both schemes. Moreover, with the small Debye length (Fig. 4b),
both schemes are able to capture the behaviour with a very fast evolution far from
the equilibrium, then slower once close to it.
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Abstract This paper aims at an efficient strategy to solve drift-diffusion problems
with non-linear boundary conditions as they appear, e.g., in heterogeneous cataly-
sis. Since the non-linearity only involves the degrees of freedom along (a part of)
the boundary, a reduced basis ansatz is suggested that computes discrete Green’s-
like functions for the present drift-diffusion operator such that the global non-linear
problem reduces to a smaller non-linear problem for a boundary method. The com-
puted basis functions are completely independent of the non-linearities. Thus, they
can be reused for problems with the same differential operator and geometry. Cor-
responding scenarios might be inverse problems in heterogeneous catalysis but also
modeling the effect of different catalysts in the same reaction chamber. The strategy
is explained for a mass-conservative finite volume method and demonstrated on a
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1 Introduction

Reduced basis approaches have gained popularity for the solution of partial differ-
ential equations (PDE), especially to address parameter dependencies [1, 11]. The
idea is to employ only a few simulations with a general purpose discretization and
high resolution to determine a (small) set of problem-specific basis functions (offline
phase). This then allows for a fast solution of the PDE using the previously computed
basis functions (online phase).

We present a new reduced basis approach for linear convection-diffusion equa-
tions with highly non-linear flux boundary conditions. Such models are often good
approximations in problems which involve surface chemistry, e.g., heterogeneous
catalysis or electrochemistry [7, 8]. Our approach decomposes the problem into a
set of linear problems to obtain the reduced basis and a non-linear problem which
only depends on the degrees of freedom on the boundary. Being essentially a discrete
representation of a type of Green’s function of the linear operator, the reduced basis
is independent of the non-linearity and can be reused for very different scenarios,
e.g. inverse problems for parametrizing the non-linear boundary condition, which
is a common task in surface chemistry applications. The connection to a type of
Green’s functions renders the approach closely related to boundary integral methods
like [12], but without explicit knowledge of the former. In principle, the problem can
be discretized by any method, e.g., finite volumes or finite element methods. Here,
we demonstrate the approach with Voronoi finite volume methods, which allow for
advantageous structural properties like conservation of mass or the non-negativity
of Y [5]. An algebraic formulation reveals that the reduced basis solution agrees
with the solution of the fully coupled problem discretized with the same underlying
method.

The rest of this paper is structured as follows. Section 2 introduces the model
problem and lays out its finite volume discretization. Section 3 concerns the design
and implementation of the set of reduced basis functions. Section 4 demonstrates
the approach in one model application. Finally, Section 5 gives an outlook to further
aspects and target applications.

2 Model Problem and FV Discretisation

For a given domain Ω , a (divergence-free) velocity field v, a positive diffusion
coefficient D ∈ R, and a right-hand side f ∈ L2(Ω), the model problem seeks some
function Y ∈ H 1(Ω) such that

div(Yv − D∇Y ) = f. (1)

On the boundary Γ := ∂Ω = Γin ∪ Γout ∪ Γnl ∪ Γrest, various boundary conditions
may apply. Here, we assume some inlet condition
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Y = Yin along Γin,

an outflow condition

n · (Yv − D∇Y ) = Yv · n along Γout,

and a non-linear boundary condition

n · (Yv − D∇Y ) = R(Y |Γnl) along Γnl (2)

for some given functional R. On the remaining part of the boundary Γrest we assume
homogeneous Neumann boundary conditions for simplicity. But this approach can
easily be extended to linear Robin boundary conditions.

Here, we consider a finite volume discretization of the model problem based on
some boundary-conforming Delaunay triangulation T , which computes a piecewise
constant approximation Yh ∈ P0(K) to Y with respect to the set of open, convex
Voronoi cells K. Each cell K ∈ K has some associated collocation point xK ∈ K .
The subset of cells at the boundary Γnl are denoted by Knl and their associated
collocation points are located on the boundary Γnl. Details on the implementation
can be found, e.g., in the documentation of the Julia package VoronoiFVM.jl [3]
which was also used as a basis for the implementation of the reduced bases.

Note, that we employ an exponential fitting flux discretization that ensures desir-
able structural properties like non-negativity and a maximum principle for Y under
certain conditions, e.g., if R = 0 and v is divergence-free [5]. A discussion and
numerical investigation of convergence rates of the exponential fitting scheme can
be found in e.g. [6, p. 536].

3 Reduced Basis Approach

This section describes the main idea to speed up the computation of the solution of
the model problem with the help of a reduced basis related to the boundary degrees
of freedom of the non-linear boundaryKnl. For this, observe that the discrete solution
Yh can be decomposed into

Yh = Y0 + Ynl := Y0 +
∑

K∈Knl

αK YK

where Y0 solves the discretized linear sub-problem for R = 0 and each YK solves
the discretized fully linear problem

div(YK v − D∇YK ) = 0

n · (YK v − D∇YK ) = χK along Γnl (3)
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and homogeneous boundary conditions on the remaining boundary Γ \ Γnl. Here,
χK is the characteristic function of ∂K ∩ Γnl for K ∈ Knl. Note, that YK can be
interpreted as a type of discrete Green’s function of the drift-diffusion operator for
its corresponding part ∂K ⊂ Γnl of the boundary.

To further investigate this on the algebraic level, let xnl, x0 and xK denote the
coefficient vectors of the Ynl, Y0 and YK parts, respectively. They are given by a
solution of the linear systems of equations

Ax0 = b0 (4)

AxK = bK , (5)

where A is the finite-volume discretization of the drift-diffusion operator, b0 encodes
all linear (Y -independent) boundary and right-hand side data, and bK encodes the
boundary condition (3). Note here, that the matrix A is the same in all computations
and it is therefore straightforward to solve for x0 and all xK efficiently and in parallel.
Also, for a constant inlet concentration and f ≡ 0, it holds Y0 ≡ Yin which allows
to avoid the computation of Y0 in that case.

To determine the coefficients xnl for Ynl = ∑
K∈Knl

αK YK , it is required to solve
the non-linear system

A(x0 + xnl) = b0 + bnl (x0 + xnl) ⇔ Axnl = bnl (x0 + xnl) (6)

where bnl(x) encodes the finite volume discretisation of the (non-linear) catalytic
boundary data. Inserting the decomposition into the reduced boundary basis xnl =∑

K∈Knl
αK xK and using (5), this is equivalent to seeking αK such that

∑

K∈Knl

αK bK = bnl

⎛

⎝x0 +
∑

K∈Knl

αK xK

⎞

⎠ .

In a finite volumemethod that approximates the boundary integrals in the assembly of
bK and bnl(x) by a quadrature rule evaluating in the collocation point, the non-linear
system to determine the coefficients αK can be rewritten into

αL = R

⎛

⎝Y0(xL) +
∑

K∈Knl

αK YK (xL)

⎞

⎠ for all L ∈ Knl. (7)

Here, xL ∈ Γnl denotes the collocation point of the cell L ∈ Knl. Note, that this is a
much smaller system to solve than the global system (6).

Remark 1 As usual in a reduced basis setting, computations can be split into an
offline and online phase. The offline phase computes the coefficients of the linear
part x0 and the reduced basis functions YK resp. their coefficients xK . The online
phase solves the reduced system (7) for a given function R.
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Remark 2 The amount of work in the online phase can be further reduced by com-
bining basis functions to larger ones or applying other compression techniques. In
some applications it might be sufficient to make use of only one basis function that
combines all YK into a single basis function. Then (7) turns into a single equation.

Remark 3 For solving (7) only boundary values of the reduced basis functions are
needed. There is no need to store the whole vector xK . In case volume information
is needed, e.g. for plotting or evaluating quantities of interest, the full solution can
be obtained from a linear solve, where the right-hand side vector

∑
K∈Knl

αK bK is
used.

4 Model Application and Numerical Example

This section studies a simple, but realistic model application that is based on the
catalytic CO oxidation according to the reaction equation

2CO + O2 → 2CO2

in a two-dimensional channel domainΩ := (0, 5) × (0, 1) at a small catalytic bound-
ary Γnl := 0 × (2, 3). The involved species mass fractions Y := (YCO, YO2 , YCO2)

with inletmass fractionsY in = (0.2, 0.8, 0) atΓin are advectedbyaHagen–Poiseuille
flow v(x, y) := vin(y(y − 1), 0)T from the inlet Γin := {0} × (0, 1) to the outlet
Γout := {5} × (0, 1). For the rest of the boundary Γinert, inert wall boundary condi-
tions are prescribed. For simplicity, mass action kinetics at the non-linear boundary
are assumed, which result in the reaction function

R(YCO, YO2 , YCO2) = k (YCO)2(YO2)
1,

where k is a reaction rate constant. Note, that all three species are involved and their
dynamics are coupled through stoichiometric coefficients according to the reaction
above. Altogether, we seek mass fractions Y that satisfy

div(Yv − D∇Y) = 0 in Ω

Y = Y in along Γin

n · (Yv − D∇Y) = 0 along Γinert

n · (Yv − D∇Y) = Yv · n along Γout

n · (Yv − D∇Y) = R(Y) (−2,−1, 1)T along Γnl. (8)

For the sake of simplicity, we assume that D is a positive scalar, i.e., that the diffusion
coefficients for all species coincide and that there is no cross-diffusion.

The global solution is computed using VoronoiFVM.jl which employs a
damped Newton method where the sparse linear systems are solved using a direct
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Table 1 Numbers of degrees of freedom for the global system and the reduced basis method as
functions of the refinement level

Refinement level Global degrees of freedom (N ) Reduced basis degrees of
freedom

0 108 2

1 363 3

2 1,323 5

3 5,043 9

4 19,683 17

5 77,763 33

6 309,123 65

7 1,232,643 129

Fig. 1 Computed mass fractions of CO and CO2 for D = 10−2, k = 1010 and vin = 1

solver. For the offline phase of the reduced basis method, we employ the same linear
solver. For the online phase, we exploit the linear dependence of the three non-linear
boundary conditions in (8) which reduces the number of degrees of freedom per cell
to one instead of three and automatically ensures the stoichiometry. The non-linear
system (7) is solved using the implemented Newton solver with default line search
and residual norm tolerance ftol = 10−11 from the NLsolve.jl package [10].
This tolerance is selected as low as possible while still yielding convergence across
all tested values of the reaction rate constant k. We test the approach for uniformly
refinedmesheswith n0 = 6, nlevel = 2 · (nlevel−1) − 1 nodes in each direction. Table 1
lists the number N of degrees of freedom for the global problem and the reduced
basis up to level 7.

Figure 1 shows a characteristic development of the mass fractions of CO and CO2

along the catalytic surface. The results obtained by the reduced basis approach and
the global solution agree within a tolerance close to ftol. While CO is consumed
and CO2 is produced, a boundary layer forms whose thickness is determined by
the ratio of D and vin. Note that the concentrations appear very uniform along the
catalytic surface. This suggests that the compression described in Remark 2 could
be applied here to further reduce the degrees of freedom for the online phase.

Figure 2 (left) compares the runtimes of a global solve via VoronoiFVM.jl
[3] and the reduced basis scheme as functions of the number of uniform refinements
for the parameters D = 10−2, k = 1010, vin = 1. It features the offline phase for
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Fig. 2 Runtimes as a function of the refinement level (left) for k = 1010 and number of Newton
iterations as a function of k (right), both for D = 10−2 and vin = 1

the reduced basis setup and the online phase that solves the global problem via
the reduced basis. For this and all other tested parameter settings, the online phase
of the reduced basis method outperforms the global solver by about two orders of
magnitude. In addition, the offline phase also comes at a significantly lower runtime.
This is partly due to the fact that the assembly of the drift-diffusion operator A in (4)
is executed in every Newton step by VoronoiFVM.jl whereas our offline phase
requires this to be executed only once.

The number of Newton iterations for a fixed k in all experiments was largely
independent of the refinement level and therefore is not shown. However, Fig. 2
(right) shows the number of Newton iterations on a fixed mesh (the finest one)
versus k. Here, we see that the number of iterations increases with k, but that the
reduced basis solver always requires a comparable number of Newton iterations as
the global solver.

5 Outlook

Here, we only discussed a simple model problem for catalytic CO oxidation and
demonstrated the approach for the case where the reduced basis covers the full reso-
lution of the global problem, simply by singling out the boundary ansatz functions.As
demonstrated, this already reduces the computational cost dramatically, especially
whenmany problems of the same type have to be solved on the same geometry where
only the non-linearity R(Y |Γnl) varies. The proposedmethodology is thus particularly
suited for inverse problems or uncertainty quantification with a parameter-dependent
non-linearity. Since the reduced basis is completely independent of the non-linearity,
this might even include qualitatively different models for the boundary reaction, e.g.
for different catalyst materials.
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However, there are a number of aspects which require or allow for an extension.
Particularly, this concerns the velocity field v for which no analytical expression is
available in many practical applications. Therefore v has to be obtained from a CFD
simulation. To ensuremass conservationwithin themodel transport problem and also
for the reduced basis, the discrete velocity field needs to be divergence-free according
to the methodology derived in [6]. Here we plan to investigate novel, less costly
divergence-free coupling strategies developed in the context of electrochemistry [4,
9]. A way to improve efficiency is to exploit that Y and thereby R(Y |Γnl) often
is smooth along the boundary. This motivates to reduce the basis at the boundary,
e.g., by combining the basis functions of neighbouring cells or considering wavelet
basis approaches. In fact, a single basis approach has already been successfully
applied [8].

A typical class of applications is flow problems coupled with surface chemical
reaction. Indeed, the current study is part of a joint effort to combine transport simu-
lations with detailed microkinetic models of heterogeneous catalysis. These hybrid
models shall be employed to interpret modern in situ surface characterization exper-
iments [2]. The corresponding complex employed instrumentation typically requires
rather large and non-standard reaction chambers whereas the catalyst samples are
rather small. We therefore expect the proposed methodology to be particularly effec-
tive, also because the resulting non-linear problems often are very challenging.
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tems” (Project No. 235221301) and under Germany’s Excellence Strategy–EXC 2008–390540038–
UniSysCat.

References

1. Benner, P., Ohlberger, M., Cohen, A., Willcox, K.: Model Reduction and Approximation.
SIAM, Philadelphia, PA (2017)

2. Frenken, J., Groot, I.: Operando research in heterogeneous catalysis. Springer (2017)
3. Fuhrmann, J., contributors: VoronoiFVM.jl: Finite volume solver for coupled nonlinear partial

differential equations (2019–2021). https://doi.org/10.5281/zenodo.3529808
4. Fuhrmann, J., Guhlke, C., Linke, A., Merdon, C., Müller, R.: Induced charge electroosmotic

flow with finite ion size and solvation effects. Electrochim. Acta 317, 778–785 (2019)
5. Fuhrmann, J., Langmach, H.: Stability and existence of solutions of time-implicit finite volume

schemes for viscous nonlinear conservation laws. Appl. Numer. Math. 37(1), 201–230 (2001)
6. Fuhrmann, J., Linke, A., Langmach, H.: A numerical method for mass conservative coupling

between fluid flow and solute transport. Appl. Numer. Math. 61(4), 530–553 (2011)
7. Fuhrmann, J., Zhao, H., Langmach, H., Seidel, Y.E., Jusys, Z., Behm, R.J.: The role of reactive

reaction intermediates in two-step heterogeneous electrocatalytic reactions: amodel study. Fuel
Cells 11(4), 501–510 (2011)

8. Matera, S., Blomberg, S., Hoffmann, M.J., Zetterberg, J., Gustafson, J., Lundgren, E., Reuter,
K.: Evidence for the active phase of heterogeneous catalysts through in situ reaction product
imaging and multiscale modeling. ACS Catal. 5, 4514–4518 (2015)

https://doi.org/10.5281/zenodo.3529808


Reduced Basis Approach for Convection-Diffusion Equations … 343

9. Merdon, C., Fuhrmann, J., Linke, A., Streckenbach, T., Neumann, F., Khodayari, M., Baltr-
uschat, H.: Inverse modeling of thin layer flow cells for detection of solubility, transport and
reaction coefficients from experimental data. Electrochim. Acta 211, 1–10 (2016)

10. Mogensen, P.K., Carlsson, K., Villemot, S., Lyon, S., Gomez, M., Rackauckas, C., Holy, T.,
Widmann, D., Kelman, T., Karrasch, D., Levitt, A., Riseth, A.N., Lucibello, C., Kwon, C.,
Barton, D., TagBot, J., Baran, M., Lubin, M., Choudhury, S., Byrne, S., Christ, S., Arakaki, T.,
Bojesen, T.A., Benneti, Macedo, M.R.G.: JuliaNLSolvers/NLsolve.jl: v4.5.1 (2020). https://
doi.org/10.5281/ZENODO.2682214

11. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equa-
tions: An Introduction. Springer (2015)

12. Träuble, M., Kirchner, C.N., Wittstock, G., Simos, T.E., Maroulis, G.: Nonlinear boundary
conditions in simulations of electrochemical experiments using the boundary element method.
In: AIP Conference Proceedings, vol. 963, pp. 500–503. AIP (2007)

https://doi.org/10.5281/ZENODO.2682214
https://doi.org/10.5281/ZENODO.2682214


A Skeletal High-Order Structure
Preserving Scheme for
Advection-Diffusion Equations

Julien Moatti

Abstract We introduce a nonlinear structure preserving high-order scheme for
anisotropic advection-diffusion equations. This scheme, based onHybridHigh-Order
methods, can handle general meshes. It also has an entropy structure, and preserves
the positivity of the solution. We present some numerical simulations showing that
the scheme converges at the expected order, while preserving positivity and long-time
behaviour.

Keywords Anisotropic advection-diffusion equations · General meshes ·
High-order schemes · Structure preserving methods

1 Motivations and Context

We are interested in the discretisation of a linear advection-diffusion equation on
general meshes with a high-order scheme. Let Ω be an open, bounded, connected
polytopal subset of Rd , d ∈ {2, 3}. We consider the following problem with homo-
geneous Neumann boundary conditions: find u : R+ × Ω → R solution to

⎧
⎪⎨

⎪⎩

∂t u − div(Λ(∇u + u∇φ)) = 0 in R+ × Ω,

Λ(∇u + u∇φ) · n = 0 on R+ × ∂Ω,

u(0, ·) = uin in Ω,

(1)

where n is the unit normal vector to ∂Ω pointing outwards from Ω . We assume
that the data satisfy: (i) Λ ∈ L∞(Ω;Rd×d) is a uniformly elliptic diffusion tensor:
there exists λ� > 0 such that, for a.e. x in Ω , Λ(x)ξ · ξ ≥ λ�|ξ|2 for all ξ ∈ R

d ; (ii)
φ ∈ C1(Ω) is a regular potential; (iii) uin ∈ L1(Ω) is a non-negative initial datum,
such that

∫

Ω
uin log

(
uin

)
< ∞. The solutions to (1) enjoy some specific and well-

known properties. First the mass is preserved along time, i.e. for almost every t > 0,
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∫

Ω
u(t) = ∫

Ω
uin = M where M > 0 is the initial mass. Second, the solution is

positive for t > 0. Last, the solution has a specific long-time behaviour: it converges
exponentially fast when t → ∞ towards the thermal equilibrium u∞, solution to the
stationary problem associated to (1), defined as u∞ = M∫

Ω
e−φ e−φ.

In order to get a reliable numerical approximation of such problems, one has to pre-
serve these structural properties at the discrete level. It is well-known that two-point
finite volume methods are structure preserving (see [2] for the long-time behaviour),
but these methods can only be used for isotropic tensors on meshes satisfying some
orthogonality conditions. On the other hand, finite volume methods (using auxil-
iary unknowns) for anisotropic problems on general meshes were introduced in the
past twenty years, but none of these linear methods preserve the positivity of the
solutions (see [7]). A possible alternative was proposed in [1], with the introduction
and analysis of a nonlinear positivity preserving Vertex Approximate Gradient VAG
scheme. Following these ideas, a nonlinear Hybrid Finite Volume (HFV) scheme
was designed in [3].

All the schemes discussed above are at most of order two in space (in L2 norm).
The aim of this paper is to introduce a high-order scheme preserving the three struc-
tural properties discussed above. Since theHFVmethod coincides with the low-order
version of the Hybrid High-Order (HHO) scheme introduced in [5], we propose an
HHO generalisation of the scheme introduced in [3]. Numerical results indicate that
this scheme offers a better efficiency in terms of computational cost than low order
schemes.

2 Discrete Setting and Scheme

2.1 Mesh

We define a discretisation of Ω as a pair D = (M, E), where:

• the meshM is a partition of Ω into cells, i.e., a finite family of nonempty disjoint
open polytopal subsets K of Ω such that Ω = ⋃

K∈M K ,
• the set of faces E is a partition of the mesh skeleton

⋃
K∈M ∂K into faces σ which

are subsets contained in hyperplanes ofΩ . We denote by EK the set of faces of the
cell K , and we define nK ,σ ∈ R

d as the unit normal vector to σ pointing outwards
from K .

The diameter of a subset X ⊂ Ω is denoted by hX = sup{|x − y| | (x, y) ∈ X2}. We
define the mesh size of D as hD = sup{hK | K ∈ M}. We refer to [6, Sect. 1.1] for
more detailed statements about the mesh and its regularity.
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2.2 Polynomials, Discrete Unknowns and Discrete Operators

In the following, k is a fixed non-negative integer. First, we introduce polynomial
spaces on a subset X ⊂ Ω: Pk(X) and P

k(X)d denote respectively the spaces of
polynomial functions X → R and polynomial vector fields X → R

d of degree at
most k. Given Y ⊂ X , we also define the L2-projector Π k

Y : C0(X) → P
k(Y ) by the

relation ∀w ∈ P
k(Y ),

∫

Y Π k
Y (v)w = ∫

Y vw.

We now introduce the set of discrete unknowns corresponding to the mixed-order
HHO method [4, 6], with face unknowns of degree k and (enriched) cells unknowns
of degree k + 1:

V k,k+1
D =

{

vD = (
(vK )K∈M, (vσ)σ∈E

)
∣
∣
∣
∣
∀K ∈ M, vK ∈ P

k+1(K )

∀σ ∈ E, vσ ∈ P
k(σ)

}

.

Given a cell K ∈ M, we let V k,k+1
K = P

k+1(K ) × ∏
σ∈EK

P
k(σ) be the restriction

of V k,k+1
D to K , and for any generic discrete unknown vD ∈ V k,k+1

D we denote by
vK = (

vK , (vσ)σ∈EK

) ∈ V k,k+1
K its local restriction to the cell K . Given any vD ∈

V k,k+1
D , we associate two piecewise polynomial functions vM : Ω → R and vE :⋃
K∈M ∂K → R such that

vM|K = vK for all K ∈ M and vE |σ = vσ for all σ ∈ E .

We also introduce 1D ∈ V k,k+1
D the discrete element such that 1K = 1 for any cell

K ∈ M and 1σ = 1 for any face σ ∈ E .
Now, given a cell K ∈ M, we define a local discrete gradient operator Gk

K :
V k,k+1

K → P
k(K )d such that, for any vK ∈ V k,k+1

K , Gk
K (vK ) satisfies

∫

K
Gk

K (vK ) · τ =
∫

K
∇vK · τ +

∑

σ∈EK

∫

σ

(vσ − vK )τ · nK ,σ ∀τ ∈ P
k(K )d . (2)

For any face σ ∈ EK , we also define the jump operator JK ,σ : V k,k+1
K → P

k(σ) by

JK ,σ(vK ) = Π k
σ(vK ) − vσ. (3)

2.3 Scheme

Following the ideas from [1, 3] our scheme relies on a nonlinear reformulation of
Problem (1). To do so, we introduce the logarithm potential � = log(u) and the
quasi-Fermi potential w = � + φ. At least formally, one has the following relation:

∇u + u∇φ = u∇ (log(u) + φ) = e� ∇w. (4)
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The scheme relies on this formulation. We will discretise the potentials as polynomi-
als, i.e. approximate � and w as discrete unknowns in V k,k+1

D . Then, mimicking the
relation u = e�, we will reconstruct the density thus ensuring its positivity. There-
fore, a solution

(
�nD

)

n≥1 to the scheme (9) corresponds to an approximation of the
logarithms of the solution u (density).

More specifically, for a given discretisation �D ∈ V k,k+1
D of the potential �,

one associates a discrete density
�
uD = (uM, uE) defined as a pair of piecewise

smooth functions where uM : Ω → R corresponds to the cells unknowns and
uE : ⋃

K∈M ∂K → R corresponds to the face unknowns, defined as

uM = exp(�M) and uE = exp(�E). (5)

Note that a discrete density
�
uD is not a collection of polynomials (which is highlighted

by the use of the wave under u), but it enjoys positivity, both on cells and faces, since
it is defined as the exponential of real functions.

Our scheme is based on local contributions on cells, split into a consistent term
and a stabilisation term. Given K ∈ M and ηl > 0, the classical discrete counterpart
of (w, v) 	→ ∫

K Λ∇w · ∇v is the bilinear form (see [4, Sect. 3.2.1])

aK : (wK , vK ) 	→
∫

K
ΛGk

K (wK ) · Gk
K (vK ) + ηl

∑

σ∈EK

ΛKσ

hσ

∫

σ

JK ,σ(wK )JK ,σ(vK ),

where ΛKσ = ‖Λ|K nKσ · nKσ‖L∞(σ). Similarly, given ηnl > 0, we define a local dis-
cretisation of (�,w, v) 	→ ∫

K e� Λ∇w · ∇v as a sum of nonlinear consistent (6a) and
stabilisation (6b) contributions:

CK (�K , wK , vK ) =
∫

K
e�K ΛGk

K (wK ) · Gk
K (vK ), (6a)

SK (�K , wK , vK ) = ηnl
∑

σ∈EK

ΛKσ

hσ

∫

σ

eΠ k
σ (�K ) + e�σ

2
JK ,σ(wK )JK ,σ(vK ). (6b)

We can now define a local application TK : V k,k+1
K × V k,k+1

K × V k,k+1
K → R by

TK (�K , wK , vK ) = CK (�K , wK , vK ) + SK (�K , wK , vK ) + εhk+2
K aK (wK , vK ),

(7)
where ε is a non-negative parameter. At the global level, we define TD : V k,k+1

D ×
V k,k+1

D × V k,k+1
D → R by summing the local contributions:

TD(�D, wD, vD) =
∑

K∈M
TK (�K , wK , vK ). (8)

We let φD ∈ V k,k+1
D be the interpolate of φ: for any K ∈ M, φK = Π k+1

K (φ) and for
all σ ∈ E ,φσ = Π k

σ(φ). Now, using a backward Euler discretisation in timewith time
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step Δt > 0, we introduce the following scheme for (1): find
(
�nD

)

n≥1 ∈
(
V k,k+1

D
)N

∗

such that
⎧
⎪⎨

⎪⎩

∫

Ω

un+1
M − unM

Δt
vM = −TD(�n+1

D , �n+1
D + φD, vD) ∀vD ∈ V k,k+1

D ,

u0K = uin |K ∀K ∈ M.

(9a)

(9b)

Given a solution
(
�nD

)

n≥1 to the scheme (9), as discussed above, we associate a

sequence of positive discrete densities
(

�
unD

)

n≥1
.

Remark 1 (Parameter ε) Note that TD is to be understood as a discretisation of
(�,w, v) 	→ ∫

Ω
(e� +ε)Λ∇w · ∇v, with ε ∼ εhk+2

D a small parameter. The ε pertur-
bation is used in order to show the existence result of Proposition 2 and can be seen
as a kind of stabilisation. The scaling factor hk+2

K in (7) is used to get the expected
order of convergence. In practice, numerical results for ε = 1 and ε = 0 are almost
the same. The influence of this term will be investigated in future works.

We define the discrete thermal equilibrium as
�
u∞
D = (ρ e−φM , ρ e−φE ), with ρ =

M/
∫

Ω
e−φM . One can show that

�
u∞
D (and the associated logarithm potential �∞

D ∈
V k,k+1

D ) is the only stationary solution to (9) with mass M .

3 Main Features of the Scheme

In this section, we present some results regarding the analysis of the scheme (9).
Given �D ∈ V k,k+1

D a discrete logarithm, we associate a discrete quasi-Fermi poten-
tial defined as wD = �D + φD − log(ρ)1D. By definition of ρ, one has wM =
log

(
uM
u∞
M

)
. Note that, for any (�D, vD) ∈ V k,k+1

D × V k,k+1
D , we have TD(�D, �D +

φD, vD) = TD(�D, wD, vD). We now state our fundamental a priori results.

Proposition 1 (Fundamental a priori relations) Let
(
�nD

)

n≥1 be a solution to the

scheme (9), and
(

�
unD

)

n≥1
be the associated reconstructed discrete density. Then, the

following a priori results hold:

(i) the mass is preserved along time: ∀n ∈ N
∗,

∫

Ω

unM =
∫

Ω

uin = M ,

(ii) a discrete entropy/dissipation relation holds: ∀n ∈ N,
E
n+1 − E

n

Δt
≤ −D

n+1,

where thediscrete entropy anddissipation are definedbyEn = ∫

Ω
u∞
MΦ1

(
unM
u∞
M

)

andDn = TD(�nD, wn
D, wn

D) ≥ 0withΦ1 : s 	→ s log(s) − s+1 (andΦ1(0)=1).

Proof Using 1D as a test function in (9a), alongside with (9b), we get the mass
conservation identity (i). To get (ii), we test (9a) withwn+1

D , and we use the convexity
of Φ1 alongside with the expression of wn+1

M .
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Note that the previous results hold for any ε ≥ 0. Following the ideas of [1, 3], the
entropy/dissipation relation should allow one to analyse the long-time behaviour of
the discrete solutions and to get convergence results. These aspects will be the topics
of future works. We now state an existence result, which holds only for positive ε.
The proof follows the strategy used in [3].

Proposition 2 (Existence of solutions) Assume that the stabilisation parameter ε
in (7) is positive. Then, there exists at least one solution

(
�nD

)

n≥1 to the scheme (9).

The associated densities
(

�
unD

)

n≥1
are positive functions.

4 Numerical Results

The numerical scheme (9) requires to solve a nonlinear system of equations at each
time step. To do so, we use a Newton method, with an adaptative time stepping
strategy: if the Newton method does not converge, we try to compute the solution
for a smaller time step 0.5 × Δt . If the method converges, we use for the subsequent
time step the value 2 × Δt . The maximal time step allowed is the initial time step.
Each time a linear system has to be solved we perform a static condensation (see
[6, Appendix B.3.2]) in order to eliminate (locally) the cell unknowns. Note that
the local computations are not implemented in parallel, but only sequentially. In the
sequel, we use the following stabilisation parameters: ε = ηnl = ηl = 1.

The tests considered below (on Ω =]0, 1[2) are the same as in [3], to which we
refer for more detailed explanations and descriptions. Given a (face) degree k, the
scheme (9) will be denoted by nlhho_k, whereas the HFV scheme of [3] will be
denoted by nlhfv. Note that nlhho_0 hinges on affine cell unknowns, whereas the
cell unknowns of nlhfv are constant: these two schemes hence do not coincide, and
nlhho_0 is expected to be more costly.

4.1 Proof of Concept: Convergence Order and Efficiency

Here, we are interested in the convergence of the scheme when (hD,Δt) → (0, 0).
To do so, we set the advective potential and diffusion tensor as φ(x, y) = −x and

Λ =
(
lx 0
0 1

)

for lx > 0. The exact solution is therefore given by

u(t, x, y) = C1 e
−αt+ x

2 (2π cos(πx) + sin(πx)) + 2C1π ex−
1
2 ,

where C1 > 0 and α = lx
(
1
4 + π2

)
. Note that uin vanishes on {x = 1}, but for any

t > 0, u(t, ·) > 0. Here, our experiments are performed using lx = 1 andC1 = 10−1.
We compute the solution on the time interval [0, 0.1], and we denote by (

�
unD)1≤n≤N f

the corresponding discrete density. Then, we compute the relative L2
t (L

2
x ) error on
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Fig. 1 Accuracy of transient solutions. Relative error on triangular meshes

Fig. 2 Accuracy versus computational cost. Relative errors on triangular meshes

the solution and on the gradient of the solution, defined as

√∑N f

n=1 δtn‖unM − u(tn, ·)‖2L2(Ω)

‖u‖L2
t (L2

x )

and

√∑N f

n=1 δtn‖GM(
�
unD) − ∇u(tn, ·)‖2L2(Ω)

‖∇u‖L2
t (L2

x )

where δtn = tn − tn−1and the discrete gradient GM(
�
unD) is defined by mimicking

the continuous relation ∇u = e� ∇� as a piecewise continuous function satisfy-
ing GM(

�
uD)|K = exp(�K )Gk

K (�K ) on K ∈ M. The L2 norms are computed using
quadrature formulas of order 2k + 5. Note that, with the chosen definitions, we do
not take into account the time t = 0. To plot the error graphs, we do simulations
on a triangular mesh family (Di )1≤i≤5, such that hDi /hDi+1 = 2. Since the time dis-
cretisation is of order one, on the i-th mesh of the family, we use a time step of
Δti = Δtk/2(i−1)×(k+2), where Δtk = 0.05/2k+2 is the initial time step used on D1.
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In Fig. 1, we see that the scheme, for face unknowns of degree k, converges at
order k + 1 in energy norm and k + 2 in L2 norm of the density. In Fig. 2, we plot the
errors as functions of the computing time to get the solution. It is remarkable to see
that, even with a low order discretisation in time, significant efficiency gains can be
reached by using a high value of k. The gain should be even bigger by parallelising
the local computations. Of course, the use of higher order time-stepping methods
should also lead to significant gains, and this should be investigated in future works.
However, the way of getting the entropy dissipation relation is currently unclear for
such time discretisations.

4.2 Discrete Long-Time Behaviour

We are now interested in the long-time behaviour of discrete solutions. We use
the same test-case as before, but with an anisotropic tensor: we set lx = 10−2. We
compute the solution on the time interval [0, 350], withΔt = 10−1, on two Kershaw
meshes of sizes 0.02 and 0.006. In Fig. 3, we show the evolution along time of
the L1 distance between

�
unD and u∞ = 2C1π ex− 1

2 computed as
∫

Ω
|unM − u∞|. We

observe the exponential convergence towards the steady-state, until some precision
is reached. The rates of convergence are similar to the exact one (α), and do not
depend on the size of the mesh.

Fig. 3 Long-time behaviour of discrete solutions. Comparison of the long-time behaviour on
Kershaw meshes for T f = 350 and Δt = 0.1
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4.3 Positivity

This last section is dedicated to assessing the discrete positivity preservation. We
set the advection field as φ(x, y) = − (

(x − 0.4)2 + (y − 0.6)2
)
and the diffusion

tensor as Λ =
(
0.8 0
0 1

)

.

Table 1 Positivity of discrete solutions

Computing
time

#resol Mincells Minfaces MincellQN MinfaceQN

nlhfv 1.77e+01 175 9.93e-04 7.36e-04 9.93e-04 7.36e-04

HMM 2.20e-01 50 −5e-03 −7.74e-02 −5e-03 −7.74e-02

nlhho_0 7.17e+01 224 1.00e-03 1.01-03 2.41e-06 1.01e-03

nlhho_1 4.13e+02 248 6.65e-04 2.05e-05 1.78e-04 3.57e-08

nlhho_2 1.45e+03 251 9.50e-04 5.99e-04 2.67e-07 1.06e-05

nlhho_3 3.87e+03 254 9.85e-04 8.58e-04 1.10e-05 1.79e-05

For the initial data, we take uin = 10−3 1B + 1Ω\B , where B is the Euclidean
ball

{
(x, y) ∈ R

2 | (x − 0.5)2 + (y − 0.5)2 ≤ 0.22
}
.We perform simulations on the

time interval [0, 5.10−4] with Δt = 10−5 on a refined tilted hexagonal-dominant
mesh (4192 cells). In Table 1, we show the minimal values reached by the schemes.
The values of “mincells” are defined as min{ 1

|K |
∫

K unM | K ∈ M, 1 ≤ n ≤ N f },
whereas “mincellQN” are the minimal values taken by the densities on the cell
quadrature nodes. Analogous definitions hold for the faces. The values of “#resol”
correspond to the number of linear systems solved during the computation. Note that
the size of these systems depends on the value of k. The HMM scheme is a linear
one (see [3]), therefore only one LU factorisation was performed to compute the
solution, which has 90 (resp. 503) negative cell (resp. face) unknowns.
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Automatic Solid Reconstruction from
3-D Points Set for Flow Simulation via
an Immersed Boundary Method

Gabriel F. Narváez, Martin Ferrand, Thomas Fonty,
and Sofiane Benhamadouche

Abstract Dealing with complex geometries for industrial applications is challeng-
ing in computational fluid dynamicworkflows. Current developments in scan devices
offer the possibility to represent very complex solid geometries in fluid dynamic
solvers. This paper proposes a novel approach for reconstructing solid geometry
from 3-D scans and flow simulation. Based on a 3-D point cloud, the approach auto-
matically reconstructs the solid surface by including local solid planes in any convex
computational cell. An immersed boundary method is then used to impose appro-
priate boundary conditions on the solid surfaces in the co-located finite volume con-
text. The present approach avoids the complex and time-consuming manual/assisted
meshing typical of body-fitted mesh workflows while showing satisfactory robust-
ness and accuracy.

Keywords 3-D solid scan · Point cloud · Fluid dynamic simulation · Immersed
boundary method

1 Introduction

Mesh paradigm for representing solids in contact with fluid can be classified into the
body-fitted methods (BFMs) and immersed boundary methods (IBMs). The BFMs
fit the mesh topology on the solid surface while the solid region is not included in
the computational mesh; thus, the boundary conditions can be directly imposed on
the mesh boundaries. In IBMs, the solid is embedded inside the fluid mesh, and the
wall boundary conditions are forced inside the mesh. Consequently, IBMs can avoid
the time-consuming manual/assisted meshing step since the mesh can be as simple
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as a Cartesian mesh. Complex solid geometries can be identified by 3-D scanning
techniques, which yield a set of points in the object surface (point cloud), fromwhich
the solid surface can be recovered through a process so-called surface reconstruction.
The reconstruction can be performed by interpolating a parametric surface [1, 6] or
implicitly through a signed scalar function [2, 8]. Recently, [2] developed a scalar
reconstruction for flow simulation in a finite element fluid solver. In the present work,
we propose a novel automatic solid reconstruction approach based on a 3-D point
cloud for a co-located finite volumes approach for fluid simulation.

2 Immersed Boundary Method

The set of governing Eq. 1 for a viscous flow is

⎧
⎪⎨

⎪⎩

∂ρ

∂t
+ div (ρu) = 0,

∂(ρu)

∂t
+ div(u ⊗ ρu) = −∇ p + ρg + div

(
τ
)

,

(1)

where u is the velocity, p the pressure and ρ the mass density of the fluid. Initial
and boundary conditions must supplement this system on the boundary ∂Ω for
velocity and pressure. Function of the dynamic molecular viscosity μ, the volume

viscosity κ and the strain rate tensor S = 1

2

(
∇ u + ∇ uT

)
, the viscous tensor for

a Newtonian fluid is τ = 2μS + (
κ − 2

3μ
)
tr

(
S
)
1. The discretization uses a semi-

implicit co-located finite volume scheme with an incremental pressure-correction
algorithm [3, 12]. The current developments are implemented in EDF open-source
CFD software code_saturne (available in https://www.code-saturne.org/cms/web/).
A specific finite volume control (cell) c can be composed of fluid boundaries ∂Ω

φ
c

and solid boundaries ∂Ωw
c (Fig. 1). Our approach considers that only one solid face

cuts each cell, dividing the cell in a volume occupied by fluid Ω
φ
c and the other by

solid Ωs
c .

The pressure gradient at cell c with immersed boundary is

Ωφ
c ∇c p =

∫

∂Ω
φ
c ∪∂Ωw

c

pdS =
∑

f ∈Fc

p f S
φ
c> f + pwS

w
c (2)

where Sφ
c> f (resp. S

w
c ) is the outwarding normal of the fluid (resp. immersed wall)

face, and pw = pc, to impose an homogeneous Neumann boundary condition.
The velocity boundary condition, namely the no-slip Dirichlet boundary condi-

tion, is transformed into a Neumann boundary condition where the wall shear stress
is an imposed function of the local flow velocities. The distance hw/c of the cell centre
to the wall is given by hw/c = (

xw
c − xφ

c

) · nw
c , where x

w
c is the immersed solid face

https://www.code-saturne.org/cms/web/


Automatic Solid Reconstruction from 3-D Points Set … 357

Fig. 1 2-D Sketch of a cellΩc with a solid volumeΩs
c and connected to the cellΩc through a fluid

face Sφ
c>c separated by a distance hc>c from the fluid cell centre xφ

c . The solid wall ∂Ωw
c separates

the fluid volume Ω
φ
c from the solid volume Ωs

c

centre, xφ
c is the fluid cell centre, and nw

c , the normal of the solid face pointing out-
ward the fluid. The shear stress estimation on the wall, in laminar or DNS turbulent
simulations of a Newtonian incompressible flow, can be estimated by a two-point

flux approximation τw

c
· Sw

c = μ
uw − uc
hw/c

Sw
c , where the no-slip condition uw = 0,

for fixed wall can be applied and the velocity at the cell uc is implicitly applied in
time.

3 Solid Reconstruction from 3-D Scan Point Cloud

We propose a straightforward hybrid surface reconstruction which uses the scan
points in a cell to reconstruct a plane that minimises the mean square error (step 1©
of Fig. 2). The wall plane is used to recompute the cell/face geometrical quantities,
such as the volume/surface and centre of gravity of the fluid part (steps 2©, 3©, and
4© of Fig. 2). Then, the distance to the wall plane can be computed to impose the wall
boundary conditions (steps 5© and 6© of Fig. 2). It should be noted that the algorithm
works for any convex cell and it converges to the actual wall area as the cell size is
reduced (Fig. 3).

For a given local point cloud in the cell Ωc, a plane nc ·
(
x − x pc

)
= 0 is fitted

by least square adjustment, relative to the centroid of the point cloud (x pc ). The wall-
normal vector is normalised nw

c = nc
‖nc‖ , but the orientation has to be set towards the

solid region.
Solid plane orientation: The plane orientation definition is essential to identify

solid and fluid regions. Then a dedicated algorithmhas been developed and integrated
to code_saturne to find the solid region. The algorithm numerically reproduces what
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Fig. 2 Flux chart of the algorithm to update fluid part of cell cut by a solid wall and impose
boundary conditions. Example with a hexahedral cell

Fig. 3 Convergence of the estimated wall area of current immersed boundary method (IBM), with
dense point cloud, and body-fitted method (BFM)

the scanner does: from a point source (where the scannerwas located), numerical rays
are traced in all directions (like the Discrete Ordinate Method to solve the radiative
transfer equation). It corresponds to a steady pure convection equation on φ, whose
continuous and discrete formulations, respectively, are:
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∇φ · (
x − x0

) = (1 − φ) δx0
(
x
)

(3)
∑

f ∈Fc

[
φ f − φc

] (
x f − x0

)
· Sφ,0

c> f = (1 − φc)Ωc �x0∈c, (4)

with x0 the source position and the indicator function �x0∈c = ∫

Ωc
δx0

(
x
)
dΩ = 1 if

the cell contains the source, and zero otherwise. The scalar at the facesφ f is estimated
by an upwind scheme. Cells with more than three scan points are penalised and stop
the rays (i.e., are fully solid cells with Sφ,0

c> f = 0). Thus, φ fills the fluid domain.
As many loops as available scans are performed, storing the maximum of φ. If it is
bigger than one-half, the cell is considered fluid. It means that ∇cφ points towards
the fluid region in solid cells in contact with the fluid. Given that nw

c should point
outward the fluid, it is inverted if ∇cφ · nw

c > 0.
Note that Sφ,0

c> f is the fluid face first guess to run the orientation algorithm. How-
ever, considering that cells with a solid plane (i.e., with scan points) are split into
solid and fluid parts, the fluid cell and face geometric quantities are then updated
using the deduced solid plane information.

Fluid cell quantities: The fluid and wall faces bound the fluid cell. The fluid
volume Ω

φ
c and centre of gravity xφ

c are computed by integrating the resulting fluid
cell c (polyhedron-shaped) composed by discrete pyramids with apex Gc and a base
face Sφ

c>c or S
w
c , whereGc is estimated by the sum of faces centres (xw

c , x
φ
f ) weighted

by the face surfaces (Sw
c , S

φ
fc|c ). Fluid face quantities: The wall unit vector nw and a

point on the wall (x p) are employed to identify if a vertex of the cell is inside the fluid
or the solid. The algorithm creates a new fluid face by removing the solid vertices
from the original face and, if required, adding fluid-solid interface vertices (Fig. 4).
Planes of neighbour cells c − c with a different intersection on the joint face create a
discontinuity (Fig. 5), which is overcome by setting the minimum fluid surface value
Sφ
c> f , with the corresponding centre of gravity x f , and then use it in the following

Fig. 4 Based on the sign of the inner product of vector
(
xv − x p

)
· nw , the algorithm loops over

the original face vertices (clockwise oriented) to obtain the vertices of the new fluid face. Left: solid
vertex with no phase transition between neighbours is removed. Right: solid to fluid change, the
solid vertex is projected onto the wall along the edge. The vertex is maintained if it is in the fluid
or on the wall
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Fig. 5 2-D sketch of possible discontinuity due to local wall reconstruction

correction. Solid face geometric quantities: Previously identified wall vertices xw
v

are employed for computing solid face quantities. Then, we propose the following
correction of the solid face that preserves the fluid quantities previously computed
and deals with the discontinuity presented in Fig. 5.

Sw
c = −

∑

f ∈Fc

Sφ
c> f ,

xw
c = xφ

c +
⎡

⎣Ωφ
c I −

∑

f ∈Fc

(
xφ
f − xφ

c

)
⊗ Sφ

c> f

⎤

⎦ · Sw
c

(Sw
c )2

.

(5)

4 Study Case

Theflowaround a circular cylinder is employed to validate the aforementioned imple-
mentations, in a domain (Lx × Ly × Lz) = 50D × 30D × 0.625D, with uniform
stream-wise velocity inlet U , pressure imposed outlet and free-slip lateral bound-
aries. The cylinder centre is located 20D from the inlet and 15D from the lateral
boundaries. We consider the body-fitted (BFM) and immersed boundary methods
(IBM), where BFM is applied in a cylindrical high-refined mesh and used to ver-

Table 1 Uniform Cartesian meshes for IBM simulations with a 3-D point cloud size of
Np = 144 000 on the cylinder surface. The point cloud density ensures at least 16 points per
cell

Mesh nx × ny Δx/D Δy/D #cells/D

Coarse 401 × 241 0.2 0.2 8

Medium 801 × 481 0.1 0.1 16

Fine 1601 × 961 0.05 0.05 32
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Fig. 6 Azimuthal variation of the skin-friction C f = τw
1
2 ρU2 and the pressure Cp = pw

1
2 ρU2 coef-

ficients for viscous flow around a circular cylinder. Results are also compared to references
[7, 13]

ify the IBM implementations in a Cartesian mesh with three different resolutions
(Table 1).

Flow is evaluated for Reynolds numbers Re = UD/ν equal to 40 and 200, respec-
tively, involving steady laminar separation and laminar unsteady separation regimes.
Although small spurious values appears for the skin-friction, it and the pressure coef-
ficient of the IBM solution converge to the BFM solution and fit with the reference
results (see Fig. 6 and Table 2). Consequently, the force coefficients, flow separation
and wake length also show a good agreement.

To summarise, we have developed a novel method for automatic solid surface
reconstruction from a 3-D points cloud applied to flow simulation by immersed
boundary method capability in the fully parallel open source solver code_saturne.
The solid reconstruction algorithm avoids the time-consuming manual (or assisted)
meshing step of the body-fitted methods workflow, and it can deal with any convex
cell geometry of fluid solvers based on finite-volume formulation. For the cylinder
study case, manual/assisted meshing by an expert could require about 10 minutes,
while the current algorithm can do it in fractions of a second, depending on the
point cloud size. Besides, current developments open perspectives of application,
such as scalar transport (e.g., temperature, sediments and pollutants) and real 3-D
scan applications for complex indoor and exterior spaces, which will be included in
subsequent publications.
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Table 2 DragCD and liftCL coefficients, separation angle θs and recirculating wake length Lw/D
and Strouhal number of the unsteady wake St

Re = 40

Study CD (CDp , CDτ ) θs Lw/D

[5] 1.49 126.4◦ 2.24

[10] 1.56 127.3◦ 2.14

BFM 1.560 (1.02, 0.54) 127.3◦ 2.22

IBM - Coarse 1.545 (0.996, 0.546) 131.2◦ 2.10

IBM - Medium 1.555 (1.003, 0.552) 128.3◦ 2.24

IBM - Fine 1.560 (1.010, 0.549) 128.2◦ 2.25

Re = 200

Study CD (CDp , CDτ ) CLmax (CL p , CLτ )max
a St

[9] 1.34 ± 0.044 0.69 0.197

[11] 1.35 ± 0.048 0.68 0.196

BFM 1.386 ± 0.051 (1.138,
0.248)

0.753 (0.689, 0.092) 0.191

IBM - Coarse 1.240 ± 0.022 (0.981,
0.259)

0.462 (0.438, 0.033) 0.191

IBM - Medium 1.324 ± 0.046 (1.059,
0.265)

0.623 (0.575, 0.057) 0.192

IBM - Fine 1.342 ± 0.046 (1.078,
0.264)

0.680 (0.622, 0.066) 0.192

aThe pressure CL p max and the viscous part CLτ max are not in phase
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Stokes–Brinkman–Darcy Models
for Coupled Free-Flow
and Porous-Medium Systems
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Abstract Coupled systems involving free flow and porous medium have gained sig-
nificant attention in recent years due to their prevalence in environment and industry.
Most of the coupling approaches are suitable only for flows parallel to the fluid–
porous interface, and a generalization of the coupling concept is required. In this
work, we consider a thin transition region between the free-flow and porous-medium
domains, which stores and transports mass, momentum, and energy. The flow sys-
tem of interest is incompressible and single-phase. The model comprises the Stokes
equations in the free-flow domain, the Brinkman equations in the transition region,
and Darcy’s law in the porous medium. These models are coupled through suitable
interface conditions. Numerical simulation results for the coupled full-dimensional
Stokes–Brinkman–Darcy model are provided. A dimensionally reduced formulation
for the coupled model is proposed in the case of a thin transition region. This model
consists of the averaged Brinkman equations of co-dimension one, which are cou-
pled to the full-dimensional Stokes and Darcy’s equations in the free flow and porous
medium, respectively.
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1 Introduction

Coupled free-flow and porous-medium systems appear in many environmental set-
tings and industrial applications, e.g., evaporation from soil influenced by wind,
industrial filtration, and drying processes. In a macroscale view, these flow systems
consist of two distinct sub-regions, and many coupling strategies have been devel-
oped in the past few years. Generally, the Stokes equations describe laminar flows
in the free-flow domain, and Darcy’s law describes the fluid flow in the porous-
medium domain. Flow behavior between the free-flow and porous-medium regions
can be described using a sharp interface or a transition region concept. For the sharp
interface approach, there exist coupled Stokes–Darcy models with different sets of
interface conditions, e.g., [2, 3, 5, 8]. Most of the coupling conditions are based on
the Beavers–Joseph approach in the tangential direction [2], and therefore they are
only suitable for the flows parallel to the interface. Recently, generalized coupling
conditions for arbitrary flow directions at the sharp interface have been developed
in [4] using homogenization and boundary layer theory.

An alternative approach is to consider a thin transition region between two flow
domains, which resolves storage and transfer of mass, momentum, and energy in the
tangential direction. The transition region approach can be regarded as a generaliza-
tion of the sharp interface concept. The Brinkman equations, which are an extension
of Darcy’s law, are applied to describe fluid flow in the transition region and take
the dissipation of the kinetic energy by viscous shear into account. In this paper, we
couple three different models (Stokes equations in the free-flow domain, Brinkman
equations in the transition region, and Darcy’s law in the porous-medium domain)
using suitable interface conditions. At the interface between the free flow and transi-
tion region, we consider the coupling conditions developed in [1, 9], where a stress
jump in the normal and tangential directions is involved. At the interface between the
transition region and porous medium, we use the classical coupling strategy based
on the Beavers–Joseph–Saffman condition [2, 3, 12].

The thickness of the transition region is significantly smaller than the size of
the whole flow domain. Therefore, the transition zone can be modeled as a lower-
dimensional inclusion in the coupled system. Several dimensionally reduced models
exist in the literature for flows in fractured porous media, e.g., [6, 7, 11]. We use
a similar approach in this work and propose a reduced Stokes–Brinkman–Darcy
model, which is derived by averaging the Brinkman equations across the transition
region and coupling these equations of co-dimension one to the full-dimensional
Stokes and Darcy’s equations.

The paper is arranged as follows. In Sect. 2, we propose the Stokes–Brinkman–
Darcy model for coupled free-flow and porous-medium systems In Sect. 3, we derive
the reduced formulation with suitable closure relations. The numerical simulation
results are presented in Sect. 4. Conclusions and future work are provided in Sect. 5.
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Fig. 1 Schematic representation of the coupled free-flow and porous-medium systems with a full-
dimensional transition region (left) and a lower-dimensional interface (right)

2 Coupled Stokes–Brinkman–Darcy Models

In this section, we propose the coupled Stokes–Brinkman–Darcy model for the free-
flow and porous-medium systems. The flow domain Ω = Ωff ∪ Ω tr ∪ Ωpm ⊂ IR2

consists of the free-flow regionΩff, transition regionΩtr, and porous-medium region
Ωpm (Fig. 1, left). We introduce a local coordinate system with the corresponding
unit normal vector n and unit tangential vector τ (Fig. 1). The interface between
the free-flow domain and transition region γff = Ωff ∩ Ω tr \ ∂Ω and the interface
between the transition region and porous-medium domain γpm = Ω tr ∩ Ωpm \ ∂Ω

are assumed to be smooth enough. The thickness of the transition region d > 0 is
much smaller than the size of the flow domain Ω , which motivates us to model the
transition region as a lower-dimensional interface γ (Fig. 1, right).

Both the transition region and porous-medium domain are assumed to be homo-
geneous. We consider single-phase and steady-state fluid flows at low Reynolds
numbers in domain Ω . The fluid is supposed to be isothermal and incompressible
with constant viscosity. The same fluid occupies the free-flow domain and fully sat-
urates the porous medium. We consider the Stokes equations in the free-flow region,
theBrinkman equations in the transition zone, andDarcy’s law in the porousmedium.
The flow models in these regions are coupled using suitable coupling conditions at
the interfaces γff and γpm, respectively.

2.1 Stokes Equations

Fluid flow in the free-flow region is described by the Stokes equations. Since the
fluid is incompressible, we have mass conservation

∇ · vff = 0 in Ωff, (1)

where vff is the free-flow velocity. In the case of laminar flows, we disregard the
convective acceleration and use Newton’s law to get the momentum conservation
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equations
− ∇ · T (vff, pff) = fff in Ωff, (2)

where pff is the free-flow pressure, fff is the momentum source term, T (v, p) =
μ∇v − pI is the stress tensor, μ is the dynamic viscosity, and I is the identity tensor.
On the external boundary of the free-flow domain Γff = ∂Ωff \ γff, we consider the
Dirichlet boundary conditions

vff = vff on Γff, (3)

where vff is a given function.

2.2 Brinkman Equations

To describe the flow in the transition region, the Brinkman equations are used

∇ · vtr = 0 in Ωtr, (4)

μK−1
tr vtr − ∇ · Teff(vtr, ptr) = ftr in Ωtr, (5)

where vtr and ptr represent the velocity and pressure in the transition region, respec-
tively, Ktr is the permeability of the transition region, ftr is the momentum source
term, and Teff (v, p) = μeff∇v − pI represents the stress tensor in the transition
region with the effective viscosity μeff. The permeability tensor Ktr is symmetric,
positive definite, and bounded.

On the external boundary of the transition region Γtr = ∂Ωtr \ {γff ∪ γpm}, the
following Dirichlet boundary conditions

vtr = vtr on Γtr (6)

with a given function vtr are imposed.

2.3 Darcy’s Law

Darcy’s equations are used to describe the slow flow in the porous-medium region

∇ · vpm = q, vpm = −Kpm

μ
∇ ppm in Ωpm, (7)

where vpm is the fluid velocity through the porous medium, ppm is the fluid pressure,
Kpm is the intrinsic permeability, and q is the source term. The permeability tensor
Kpm is symmetric, positive definite, and bounded.



Coupled Stokes–Brinkman–Darcy Models 369

On the external boundary Γpm = ∂Ω \ γpm, we consider the following Dirichlet
boundary condition

ppm = ppm on Γpm, (8)

where ppm is a given function.

2.4 Interface Conditions

In coupled Stokes–Brinkman–Darcy models, suitable interface conditions have to
be chosen on the interfaces γff and γpm.

On the interface between the free flow and the transition region, we consider
continuity of velocity

vtr = vff on γff. (9)

According to [1], a stress jump exists between the free-flow domain and transition
region

T(vff, pff) · ntr − Teff(vtr, ptr) · ntr = μ√
Ktr

βvff on γff, (10)

where Ktr is the permeability component, β denotes the symmetric positive semi-
definite friction tensor, and ntr = n is the unit outward normal vector from Ωtr on
interfaces (Fig. 1, left).

Across the interface between the transition region and the porous medium, we
consider the mass conservation

vtr · ntr = vpm · ntr on γpm, (11)

and the balance of normal forces

− ntr · Teff(vtr, ptr) · ntr = ppm on γpm, (12)

wherentr = −n. The tangential velocity on the interfaceγpm satisfies thewell-known
Beavers–Joseph–Saffman condition

vtr · τ =
√
Kpm

α

∂vtr
∂n

· τ on γpm. (13)

Here, α > 0 is the slip coefficient and Kpm = τ · Kpmτ .
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3 Dimensionally Reduced Model

Weconsider the thickness in the transition region d to bemuch smaller than the length
of the flow domain Ω . This motivates us to model the transition region as a complex
interface γ of co-dimension one (Fig. 1, right), which allows storage and transport of
mass and momentum in and along the interface, respectively. The transition region is
described as Ωtr = {

x ∈ IR2
∣∣x = s + ξ d

2n, s ∈ γ, ξ ∈ [−1, 1]}. To derive a reduced
model, we project the Brinkman equations (4)–(5) on the local orthogonal reference
system in normal and tangential directions on γ and average them in the vertical
direction.

Integrating the incompressibility condition (4) in the vertical direction and consid-
ering the mass conservation equation in (9) and (11) across γff and γpm, respectively,
we obtain

vff · n∣∣
γff

− vpm · n|γpm + d
∂Vτ

∂τ
= 0 on γ, (14)

where the averaged tangential velocity is defined as Vτ :=
(
1
d

∫ d
2

− d
2
vtr · τ dn

)
.

Integrating the momentum conservation equations (5) in the vertical direction and
taking interface conditions (10) on γff and (12)–(13) on γpm into account, we have

(
pff − μ

∂vff
∂n

· n + μ√
Ktr

n · βvff

)∣∣∣∣
γff

− ppm|γpm (15)

= d

(
Fn − μMnnVn − μMnτVτ + μeff

∂2Vn

∂τ 2

)
on γ,

(
− μ

∂vff
∂n

· τ + μ√
Ktr

τ · βvff

)∣∣∣∣
γff

+ μeff
α

√
Kpm

vtr · τ

∣∣∣∣
γpm

(16)

= d

(
Fτ − μMτnVn − μMττVτ + μeff

∂2Vτ

∂τ 2
− ∂P

∂τ

)
on γ.

Here, we defineMab := aTK−1
tr b for vectors a,b ∈ IR2, the averaged normal veloc-

ity Vn :=
(
1
d

∫ d
2

− d
2
vtr · n dn

)
, the averaged pressure P :=

(
1
d

∫ d
2

− d
2
ptr dn

)
, and the

averaged source terms Fn :=
(
1
d

∫ d
2

− d
2
ftr · n dn

)
, Fτ :=

(
1
d

∫ d
2

− d
2
ftr · τ dn

)
.

To close the model, we need to express vtr · τ |γpm in (16) and ∂vtr
∂n · τ

∣∣
γff
,

∂vtr

∂n
· n∣∣

γff/γpm

in (10) and (12) in terms of (Vn, Vτ , P). Assuming a quadratic profile in the tangential
direction and applying the tangential velocity continuity in Eq. (9) and the Beavers–
Joseph–Saffman condition (13), we obtain the closure condition
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vtr · τ
∣∣
γpm

=
√
Kpm

(
6Vτ − 2vff · τ |γff

)

(
αd + 4

√
Kpm

) , (17)

∂vtr
∂n

· τ

∣∣∣∣
γff

= − (
6αd + 12

√
Kpm

)
Vτ + (

4αd + 12
√
Kpm

)
vff · τ |γff

d
(
αd + 4

√
Kpm

) . (18)

Assuming linear normal velocity in the transition region and applying continuity of
normal velocities in (9) and (11), we obtain the closure condition

∂vtr
∂n

· n
∣∣∣∣
γff

= −
(
Vn − vff · n|γff

)

0.5d
,

∂vtr
∂n

· n
∣∣∣∣
γpm

=
(
Vn − vpm · n|γpm

)

0.5d
. (19)

Remark 1 If there is no transition region (d = 0), Eq. (14) becomes the mass con-
servation and Eq. (15) reverts to the normal stress jump between the free-flow domain
and porous-medium region.

4 Numerical Simulations

In this section, we present numerical results for the full-dimensional model (1)–
(13) and the proposed reduced model (1)–(3), (7)–(8), (10), (12), (14)–(19). We
discretize both models using the second-order finite volume method on staggered
grids (MAC scheme) as in [10]. In all regions we consider uniform rectangular grids
conforming at the interfaces. The computation domain is Ω = [0, 1] × [0, 2] with
interfaces γff = (0, 1) × {1.2} and γpm = (0, 1) × {0.8}. We choose the parameters
μ = μeff = 1, β = 0, Ktr = Kpm = I, and α = 1. The local basis is set as τ = e1
and n = e2.

In this section, we present numerical simulation results for both flow models.
The analytical solution that satisfies the incompressibility conditions (1), (4) and the
coupling conditions (9)–(13) on both interfaces is chosen as follows

uff = cos (x1)ex2−0.8, vff = sin (x1)ex2−0.8, pff = sin (x1 + x2 − 0.8),

utr = cos (x1)ex2−0.8, vtr = sin (x1)ex2−0.8, ptr = sin (x1 + x2 − 0.8), (20)

ppm = (0.8 − x2) sin (x1),

where vff = (uff, vff) and vtr = (utr, vtr). The source terms and the boundary condi-
tions are obtained by substituting the chosen parameters and the exact solution (20)
into Eqs. (2), (3), and (5)–(8).

Starting from h = 1
10 , the grid size is decreased by a factor of two at each refine-

ment level, where seven refinement levels are considered. For the convergence anal-
ysis, we compute the L2-errors for all primary variables

ε f = ‖ f − fh‖2, f ∈ {uff, vff, pff, utr, vtr, ptr, ppm}, (21)
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Fig. 2 Convergence analysis for all primary variables (full-dimensional model)

Fig. 3 Comparison between the full- and reduced-dimensional models: tangential velocity profile
at x1 = 0.5 (left) and x2 = 1 (right)

where fh is the numerical solution. The simulation results are visualized in Fig. 2
and demonstrate the second-order convergence of the discretization scheme.

We validate the reduced model (1)–(3), (7)–(8), (10), (12), (14)–(19) against the
full-dimensionalmodel (1)–(13). The averaged source terms Fn, Fτ and the boundary
conditions on ∂γ for the reduced model are obtained by averaging the corresponding
terms across the transition region. Numerical simulation results for both models are
obtained with grid size h = 1

320 and presented in Fig. 3.We compare velocity profiles
in the middle of the domain at x1 = 0.5 (Fig. 3, left) and along γ (Fig. 3, right). In the
latter case, we average the velocity of the full-dimensional model across transition

region u full
tr = 1

d

∫ d
2

− d
2
u full

tr dx2.

5 Conclusions

In this paper, we proposed the full- and reduced-dimensional Stokes–Brinkman–
Darcy models for coupled free-flow and porous-medium systems with transition
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region. This concept describes storage and transfer of mass and momentum in the
tangential direction. The coupled model consists of the Stokes equations in the free-
flow domain, the Brinkman equations in the transition region, and Darcy’s law in
the porous-medium domain. In the reduced formulation, the Brinkman equations are
averaged across the transition region. Suitable coupled conditions are chosen at the
respective interfaces. Both models are discretized with the MAC scheme and the
numerical simulation results are provided. Well-posedness of the full-dimensional
and reduced-dimensional Stokes–Brinkmann–Darcy models will be presented at the
conference.
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Robust and Efficient Preconditioners
for Stokes–Darcy Problems
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Abstract Coupled systems of porous media and free flow can be modelled by the
Stokes equations in the free-flow domain, Darcy’s law in the porous medium, and
an appropriate set of coupling conditions on the fluid–porous interface. Discretisa-
tion of the coupled Stokes–Darcy problem leads to a large, sparse, ill-conditioned,
and nonsymmetric linear system. We discretise the system using the MAC scheme,
i.e., the finite volume method on staggered grids. To accelerate convergence of the
GMRESmethod, efficient preconditioners are needed. We propose a block diagonal,
a block triangular and a constraint preconditioner for the Stokes–Darcy problemwith
the classical set of coupling conditions based on the Beavers–Joseph condition and
the generalised coupling conditions which were developed for arbitrary flow to the
interface. We show the robustness and efficiency of the proposed preconditioners in
numerical experiments.
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1 Introduction

Coupled free-flow and porous-medium flow problems appear routinely in science
and engineering, e.g., interaction between surface and groundwater, water-gas man-
agement in fuel cells, industrial filtration, etc. The most widely studied problem in
the literature is the Stokes–Darcy problem for coupled single-fluid-phase flows with
different sets of interface conditions on the fluid–porous interface, see e.g., [1, 10,
11, 13]. Solving such coupled flow problems in a monolithic way is challenging
because the system of linear equations arising from discretisation is ill-conditioned.
However, for validation purposes, the monolithic approach is the method of choice.
Thus, proper preconditioning techniques are needed.

The Stokes–Darcy problem with the classical set of interface conditions (conser-
vation of mass, balance of normal forces, the Beavers–Joseph–Saffman condition on
the tangential velocity) has been well-studied in the last two decades. Several pre-
conditioning strategies have been developed recently for this problem, e.g., [4, 6–8,
12, 15]. However, the Beavers–Joseph–Saffman condition [2] is only applicable for
flows parallel to the fluid–porous interface. That restricts the amount of applications
which can be accurately modelled. Recently, generalised coupling conditions suit-
able for arbitrary flow directions have been proposed in [11]. The purpose of this
work is to develop robust and efficient preconditioners for the Stokes–Darcy problem
with these generalised interface conditions and with the Beavers–Joseph condition
without Saffman simplification.

Discretisation of the Stokes–Darcy problem leads to a saddle-point type matrix.
Therefore, we adjust preconditioning techniques developed for saddle-point sys-
tems [3, 5].We extend the results available in literature [4, 7, 8, 12] and propose three
different preconditioners for the Stokes–Darcy problemwith the Beavers–Joseph and
the generalised interface conditions: block diagonal, block triangular and constraint
preconditioners. We study the effectiveness and robustness of these preconditioners
and provide numerical simulation results.

The paper is organised as follows. In Sect. 2, we describe the coupled Stokes–
Darcy problem. In Sect. 3, we briefly describe the discretisation scheme and propose
three different preconditioners for the discrete problem. The benchmark problem and
the numerical simulations results are presented in Sect. 4. Conclusions and future
work follow in Sect. 5.

2 Problem Formulation

The coupled domain Ω = Ωpm ∪ Ωff consists of the free-flow region Ωff and the
porous-medium domain Ωpm coupled at the sharp fluid–porous interface Γ (Fig. 1).
In this paper,we restrict ourselves to a two-dimensional setting.We consider a steady-
state, single-phase flow of an incompressible and isothermal fluid at low Reynolds
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Fig. 1 Flow system
description

numbers (Re � 1). The solid phase is supposed to be nondeformable and rigid
leading to a constant porosity.

The fluid flow in the free-flow domain Ωff is described by the Stokes equations

∇ · vff = 0, −∇ · T(vff , pff) = 0 in Ωff , (1)

where vff is the fluid velocity, pff is the fluid pressure, T (vff , pff) = μ∇vff − pffI
is the nonsymmetric stress tensor, μ is the dynamic viscosity, and I is the identity
tensor.

Fluid flow in the porous medium is described by Darcy’s law

∇ · vpm = 0, vpm = −K
μ

∇ ppm in Ωpm, (2)

where K is the intrinsic permeability tensor, which is symmetric, positive definite,
and bounded.

Equations (1) and (2) are of different types. To couple them on the interface Γ ,
various sets of interface conditions have been proposed in the literature. In this paper,
we consider the classical set of coupling conditions which are valid for parallel flows
to the interface as well as generalised conditions which have been recently developed
in [11] and are applicable to arbitrary flows.

The following coupling conditions—the conservation of mass across the inter-
face (3), the balance of normal forces (4) and the Beavers–Joseph condition (5) on
the tangential velocity [2]—are typically used in the literature

vff · n = vpm · n on Γ, (3)

−n · T (vff , pff)n = ppm on Γ, (4)

(
vff − vpm

) · τ −
√
K

αBJ
(∇vff n) · τ = 0 on Γ. (5)

Here, n = −nff = npm is the unit vector normal to the fluid–porous interface Γ

pointing outwards from the porous-medium domain Ωpm, τ is the unit vector tan-
gential to the interface (Fig. 1), αBJ > 0 is the Beavers–Joseph slip coefficient, and√
K = √

τ · Kτ .
The generalised coupling conditions consist of the conservation of mass (3), an

extension of the balance of normal forces (6) and a generalisation of the Beavers–
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Joseph condition (7):

−n · T (vff , pff) n − μN bl
s (∇vff n) · τ = ppm on Γ, (6)

(
vff − vintpm

)
· τ − ε

(
Nbl · τ

)
(∇vff n) · τ = 0 on Γ. (7)

Here, the interfacial velocity is defined as

vintpm = −ε2Mbl

μ
∇ ppm,

and the boundary layer coefficients N bl
s ∈ R, Nbl = (N bl

1 , N bl
2 )� ∈ R

2 and Mbl =
(M j,bl

i )i, j=1,2 ∈ R
2×2 are computed numerically based on the theory of homogeni-

sation and boundary layers [11].

3 Discretisation and Preconditioners

The coupled Stokes–Darcy problems (1)–(5) and (1)–(3), (6), (7) are discretised
using the finite volumemethod on staggered grids (MAC scheme) [16]. The resulting
systems of linear equations are of the form

Ax = b, A ∈ {ABJ, AER}, x = (vff , pff , ppm)�, (8)

where ABJ corresponds to the discretised Stokes–Darcy problem with the classical
coupling conditions (3)–(5) including the Beavers–Joseph condition and AER cor-
responds to the generalised coupling conditions (3), (6), (7) derived in [11]. Both
matrices are large, sparse and ill-conditioned.

While the discrete coupled Stokes–Darcy equations are of the more favourable
double saddle point form for the Beavers–Joseph–Saffman interface condition [4, 7,
8], the matrices ABJ and AER are nonsymmetric:

ABJ =
⎛

⎝
ABJ B�

BJ,2 C�
BJ,2

BBJ,1 0 0
CBJ,1 0 −DBJ

⎞

⎠ , AER =
⎛

⎝
AER B�

ER,2 C�
ER,2

BER,1 0 0
CER,1 0 −DER

⎞

⎠ . (9)

To solve system (8) efficiently, we use flexible GMRES [14, Chap. 9.4.1]. For
this algorithm, we have to use the right preconditioning

AP−1x = b, x = Px. (10)

We consider the block diagonal preconditioner
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Pdiag =
⎛

⎝
A 0 0
0 SB 0
0 0 − (

D + σC1A−1C�
2

)

⎞

⎠ (11)

based on the preconditioner developed in [7], the block triangular preconditioner

Ptriang =
⎛

⎝
A B�

2 0
0 −SB 0
0 0 − (

D + σC1A−1C�
2

)

⎞

⎠ (12)

based on [3] and the constraint preconditioner

Pcon =
⎛

⎝
A B�

2 0
B1 0 0
0 0 − (

D + σC1A−1C�
2

)

⎞

⎠ (13)

based on [4, 8]. Here, SB := B1A−1B�
2 is the Schur complement, A ∈ {ABJ, AER},

Bi ∈ {BBJ,i , BER,i }, Ci ∈ {CBJ,i ,CER,i }, for i = 1, 2, and D ∈ {DBJ, DER}. The con-
stant σ ≥ 0 is fitted for each problem formulation.

4 Numerical Results

4.1 Benchmark Model

We study a flow scenario where the flow is arbitrary to the fluid–porous interface
Γ . The coupled domain is divided into the free-flow region Ωff = (0, 1) × (0, 0.5)
and the porous-medium domain Ωpm = (0, 1) × (0,−0.5) that are separated by the
interfaceΓ = (0, 1) × {0}. To get a closedmodel, the following boundary conditions
are implemented on the external boundary,

μ(∇v − pI)n = 0 on Γout,

μ(∇v − pI)n = −pbn on {y = −0.5},
v = 0 on Γwall,

v = (0,−0.2sin(πx)) on Γin,

(14)

for Γout = {x = 0} × (0, 0.1) ∪ {x = 1} × (0, 0.5), Γin = {y = 0.5}, Γwall = ({x =
0} ∪ {x = 1})\Γout and pb = 10−6 − x (Fig. 2). Due to the flow being arbitrary to
the fluid–porous interface Γ , the Beavers–Joseph coupling conditions (3)–(5) are
not suitable and the generalised coupling conditions (3), (6), (7) are recommended.

We consider an isotropic porous medium constructed by periodically distributed
circular solid inclusions of radius r = 0.25ε, where ε is the scale separation param-
eter. The permeability k11 and the boundary layer constants M1,bl

1 and N bl
1 from the
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Fig. 2 Flow problem for the numerical results

Fig. 3 Permeability k11 and
boundary layer constants
M1,bl

1 and N bl
1 of the

geometry

generalised coupling conditions (3), (6), (7) corresponding to the considered geom-
etry are given in Fig. 3. The permeability k11 and the boundary layer constant M1,bl

1
have to be scaled by ε2.

4.2 Robustness and Efficiency Analysis

To show the robustness and efficiency of the exact versions of the precondition-
ers Pdiag given in (11), Ptriang given in (12), and Pcon given in (13) we consider
three different values for the viscosity μ ∈ {10−5, 10−3, 1} and two different scale
separation parameters ε ∈ {1/20, 1/200} which yields different permeability ten-
sors K = k11I and different boundary layer constants M1,bl

1 . We consider the grid
width h = 1/80 and set αBJ = 1 for the Beaver–Joseph coupling condition (5) as
routinely used in the literature. We fit the parameter σ by determining the optimal
σ ∈ {0, 1, . . . , 10} using a brute-force search. The Stokes–Darcy problem is discre-
tised using our in-house C++ software. We solve the preconditioned system (8) with
the restarted flexible GMRES method using 20 restarts in Matlab. The initial solu-
tion x0 is the zero vector. The iterations are stopped once ‖Axn − b‖2 ≤ 10−8‖b‖2
is reached or after nmax = 2000 iteration steps. All computations were carried out
on a laptop with an AMD Ryzen™ 5 2500U processor and 12.0GB RAM using
MATLAB.R2019b. The number of iterations until the flexible GMRES algorithm
reaches the given tolerance are displayed in Table1. In Fig. 4 we plot the relative
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Fig. 4 Relative residuals for the classical conditions (3)–(5) (left) and the generalised coupling
conditions (3), (6), (7) (right)

Table 1 Iterations for different values of μ and ε appearing in k11 and M1,bl
1 in the coupled Stokes–

Darcy system with h = 1/80
Preconditioners for ABJ Preconditioners for AER

ε μ σ Pdiag σ Ptriang σ Pcon σ Pdiag σ Ptriang σ Pcon

1/20 10−5 2 49 1 33 2 27 0 139 0 91 0 60

1/20 10−3 2 38 1 28 2 22 0 129 0 82 0 53

1/20 1 1 41 1 27 2 23 0 124 0 75 0 61

1/200 10−5 1 31 1 24 2 20 1 135 10 107 3 69

1/200 10−3 1 31 1 23 2 19 3 135 3 100 0 65

1/200 1 2 35 1 25 2 22 6 135 3 100 2 74

residuals ‖Axn − b‖2/‖Ax0 − b‖2 against the number of iterations n for ε = 1/20
and μ = 10−3.

It can be seen in Fig. 4 that all three preconditioners significantly reduce the
number of iteration steps. The needed CPU time to solve problem (8) is decreased
using the developed preconditioners. Here, we choose the parameters ε = 1/20 and
μ = 10−3. To solve the nonpreconditioned system in the case of the Beavers–Joseph
coupling condition 1207 seconds are needed. The diagonal preconditioner Pdiag

reduces the CPU time to 54.01 s, the triangular preconditioner Ptriang needs 52.53s,
and the constraint preconditioner Pcon requires 42.64s. For the generalised cou-
pling conditions 1413s are necessary to solve the system without preconditioning.
It takes 97.22 s to solve the system with the diagonal, 78.70 s with the triangular and
72.22 s with the constraint preconditioner. Furthermore, all preconditioners show a
high robustness with respect to changes in the viscosity μ, the permeability k11 and
the boundary layer constant M1,bl

1 as shown in Table1. While all preconditioners
provide an improvement of the convergence, the constraint-preconditioned system
AP−1

con needs the fewest number of iteration steps and the smallest CPU time until
convergence for every considered case. Therefore, in practical applications the use
of Pcon is recommended.
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5 Conclusions and Future Work

In this paper, we have considered the coupled Stokes–Darcy systemwith the classical
set of interface conditions comprising the Beavers–Joseph coupling condition and
with generalised interface conditions that were recently developed for arbitrary flows
to the interface. To discretise the coupled problem the MAC scheme was used. We
have suggested and evaluated three preconditioners: a block diagonal Pdiag, a block
triangularPtriang, and a constraint preconditionerPcon. The robustness and efficiency
of these preconditioners were shown in numerical experiments for a benchmark
model with arbitrary flow to the interface. This work was especially focused on the
monolithic solution of the governing coupled system and the development of suit-
able preconditioners to the latter. In a further step we will compare the efficiency
of the monolithic approach to a partitioned coupling one. For the system resulting
from the classical conditions this has already been done in a comparative study in
[15] where the coupling library preCICE [9] was used for the partitioned case. The
incorporation of the generalised coupling conditions into preCICE and a comparison
of the solution approaches are part of future work. Furthermore, we strive for apply-
ing the preconditioners to systems resulting from real-world scenarios. Therefore,
we want to investigate their scalability with respect to both, runtime and memory
consumption.
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A DDFV Scheme for Incompressible
Two-Phase Flow Degenerate Problem
in Porous Media

Thomas Crozon, El-Houssaine Quenjel, and Mazen Saad

Abstract We propose a Discrete Duality Finite Volume (DDFV) scheme to dis-
cretize the degenerate systemmodeling incompressible immiscible two-phase Darcy
flow in porous media problem. This method allows general meshes with fewer lim-
itations, the upwind mobility term in the discretization combined with minimum
mobility in the cross term and the degeneracy give a maximum principle. Moreover,
we establish some energy estimates on the approximate solutions, an existence result,
and we give numerical tests to illustrate the efficiency of the proposed scheme.

Keywords Degenerate incompressible two-phase · Darcy flow · Finite volume
scheme · DDFV scheme

1 Introduction

In this paper, we build a Discrete Duality Finite Volume scheme for the incompress-
ible immiscible two-phase Darcy flow continuous model [3]. One particular aspect
is to cope with degeneracy coming from the mobilities. It has been done in vari-
ous works, with convergence results. For instance in [7, 11] the authors use a Two
Point Flux Approximation on orthogonal meshes. The fluxes are approximated using
upwind approach with regard to the phase pressures or centered approximation for
the capillary term and upwind for the convective one. A similar idea is developed in
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[8] with a Control Volume Finite Elements discretization on simplicial conforming
meshes. It uses a sub-upwinding scheme with regard to the stiffness coefficient and
the phase pressure to keep the physical bounds and energy estimates, also showing
existence and convergence results. In [1] a Vertex Approximate Gradient scheme is
constructed for general meshes using upwind approach, this scheme is convergent
but it does not guarantee the maximum principle on the saturation. In this paper, we
build a scheme on general meshes. The originality of our scheme is to propose two
different upwind approximations, in the normal direction we use an upwind approxi-
mation of mobilities with respect to the discrete gradient of the phase pressure and in
the tangential direction the mobilities are split into two parts in which an upwind and
a minimum of approximation are used. These approximations allow the maximum
principle on the saturations. We then show some energy estimates and the existence
of the approximate solution. Finally, we exhibit numerical tests to show the efficiency
of our method.

2 Continuous Model

Let t f > 0 and Ω be a bounded connected subset of R2. The incompressible two-
phase Darcy flow reads

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(x)∂t sα + div
( �V α

)
= 0,

�V α = −Krα(sα)

μα
Λ(x)∇ pα, ∀α ∈ {nw,w},

Pc(snw) = pnw − pw,

sw + snw = 1

(1)

with nw,w denoting resp. the non-wetting and aqueous phases. In (1), φ(x) denotes
the porosity, sα the phase saturation, Λ(x) the permeability tensor, pα the phase
pressure, �V α the phase velocity, and Pc the capillary pressure. We neglect the gravity
effects (as in a horizontal slice of the medium) and source-sink rate terms since
their contributions can be added without technical difficulties. The phase mobility
function Mα(sα) is defined as the ratio of the relative permeability of the phase
Krα over its viscosity μα. The mobility is increasing with the saturation and we will
consider the continuous constant extension outside of [0, 1]. NoticeMα(sα = 0) = 0
is known as the degeneracy issue. It is assumed that Pc is increasing and Pc(snw =
0) = 0; moreover the total mobility function M(s) = Mnw(s) + Mw(1 − s) verifies
M(s) ≥ m0 > 0, where s is the non-wetting saturation. The porosity verifies 0 <

φ0 ≤ φ(x) ≤ φ1 a.e. (almost everywhere). Also, the permeability is a symmetric
positive-definite matrix and essentially bounded, in addition to uniformly elliptic i.e.
there exist constants Λ > 0 and Λ such that Λ|z|2 ≤ Λ(x)z · z ≤ Λ|z|2 for all z ∈
R

2 and for almost every x . The system (1) is completed by some initial distribution
of pα, in addition to the boundary conditions
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Vα · n = 0 on ΓN × (0, t f ), pα = pα,Dir on ΓDir × (0, t f ) for α ∈ {w, nw},

where n is the outward normal to ΓN , and ∂Ω = ΓN ∪ ΓDir with |ΓDir| > 0.
The global pressure p introduced in [3] is given by p = 0 when snw = 0 and the

relationM(snw)∇ p = Mw(sw)∇ pw + Mnw(snw)∇ pnw. Usedwith the capillary term

ξ(snw) =
∫ snw

0

√
Mw(1 − u)Mnw(u)

M(u)
P ′
c(u) du, we find energy estimates to over-

come the degeneracies.

3 DDFV Discretization and Discrete Operators

In the DDFV framework, we use three different meshes of Ω ⊂ R
2. Let us recall

briefly the meshes and their notations [2, 4, 6, 9].
The primal mesh denoted by M is composed of M the interior primal mesh, a

partition of Ω made of disjoint open polygonal cells, and ∂M the set of boundary
edges seen as degenerated cells. For each cell K ∈ M one defines a unique point xK
called its center. Usually we take the barycenter, for the boundary cells we take the
midpoint as the center.

The dual mesh is constructed from the vertices of the primal mesh. To any
interior vertex xK ∗ , we define a polygonal control volume K ∗ built by connecting all
the centers of the primal cells sharing xK ∗ as a vertex. The set of cells is called the
dual mesh and writtenM∗. When the vertex xK ∗ is on ∂Ω , we construct a dual cell
connecting xK ∗ with of the primal cell centers xK and the midpoint of the boundary
edges sharing xK ∗ as vertex. This last collection is the boundary dual mesh, denoted
∂M∗. Finally, one has the dual meshM∗ = M∗ ∪ ∂M∗.

For two cells K and L , we assume that ∂K ∩ ∂L is either empty, a vertex, or
a segment. In this last case, we write σ = K |L , this is the case of convex cells for
simplicity. We denote E the set of the edges of the primal mesh, and EK stands for
the edges of K . Likewise, we define E∗ the edges of the dual mesh, and following
E∗
K ∗ are the edges of K ∗.
The diamond mesh is based on the segments of those two previous meshes. For

each edge σ = K |L having xK ∗ and xL∗ as vertices, denoting σ∗ = K ∗|L∗, we define
the quadrilateral diamond Dσ,σ∗ joining xK , xK ∗ , xL and xL∗ (if σ ⊂ ∂Ω then it is a
triangle see Fig. 1). The set of the diamond is a partition of Ω , it gives the diamond
mesh D. In the end the DDFV mesh is composed of T = (M,M∗) and D (see
Fig. 1).

For every cell K ∈ M or K ∗ ∈ M∗, mK and mK ∗ designate their measure. In
addition dK and dK ∗ are the diameters of the control volumes. For a diamond D =
Dσ,σ∗ , with xK , xL , xK ∗ and xL∗ as vertices, we define mσ and mσ∗ the lengths of
the edges, mD its measure, dD its diameter, αD is the angle between (xK , xL) and
(xK ∗ , xL∗). We have mD = 1

2mσmσ∗ sin(αD). We will use nσ,K the outward unit
normal to σ, as well we have nσ∗,K ∗ .



388 T. Crozon et al.

Fig. 1 DDFV mesh
example with notations

Furthermore we define some regularity quantification of the mesh that gives infor-
mation on its shape. In other words, it ensures that any two edges are comparable and
excludes small interfaces or degenerate diamond subdomains. One defines αT the
real number in ]0, π

2 ] satisfying sin(αT ) = min
D∈D

| sin(αD)|. We define and assume

some regularities conditions according to [10], and the mesh size hT = maxA∈T dA.
We denote by R

T the space comprising the elements of the vector form uT =
((uK )K∈M, (uK ∗)K ∗∈M∗). In the DDFV approach, the discrete gradient operator is a
linear mapping from R

T to (R2)D, its purpose is to mimic a gradient [4]. ∇DuT is
defined, for every uT ∈ R

T , constant on each diamonds cells D by

∇DuT = 1

sin(αD)

(
uL − uK

mσ∗
nσ,K + uL∗ − uK ∗

mσ
nσ∗,K ∗

)

, ∀D ∈ D.

We consider the space XT ,δt of piecewise constant time dependent vectors ofRT .
One writes uT ,δt (t) = unT ∈ R

T for t in (tn, tn+1]. Then, we can define a piecewise
constant in time gradient ∇DuT ,δt and the following discrete L2-norm

∥
∥∇DuT ,δt

∥
∥
2 =

(
N−1∑

n=0

δt
∑

D∈D
mD|∇DunT |2

) 1
2

with t f = Nδt.

4 DDFV Scheme for System (1)

In this paper, we want to take into account Dirichlet boundary conditions on the
pressures. We suppose that the vertices of ΓDir are vertices of the primal mesh, then
the centers of the boundary primal cells are exclusively in ΓDir or exclusively in ΓN.
We will separate ∂M and ∂M∗\ΓDir

∂MDir = {
K ∈ ∂M, xK ∈ ΓDir

}
, ∂MN = {

K ∈ ∂M, xK ∈ ΓN\ΓDir
}
,
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∂M∗
Dir = {

K ∗ ∈ ∂M∗, xK ∗ ∈ ΓDir
}
and ∂M∗

N = {
K ∗ ∈ ∂M∗, xK ∗ ∈ ΓN\ΓDir

}
.

For N ∈ N
∗, we consider the time subdivision t0 = 0 < t1 < ... < tn−1 < tn <

... < t N = t f of [0, t f [. The will take the time step δt = tn − tn−1 constant. We
perform an implicit method with a DDFV discretization of each phase flow.

Furthermore we first discretize the initial condition by taking the mean values
of snw,0 and sw,0 on the primal and dual cells. Then, for all n ≥ 0 we look for
(pn+1

nw , pn+1
w ) in XT ,δt , or equivalently (snw, pw), solution to the system of discrete

equations (2)–(7). One writes the discrete primal equations, where the V α,n+1
K L are

the projected velocity at the interface σ = K |L (resp. V α,n+1
K ∗L∗ for σ∗ = K ∗|L∗):

φK (sn+1
α,K − snα,K ) − δt

mK

∑

σ=K |L∈EK

V α,n+1
K L = 0 ,∀α ∈ {nw,w},∀K ∈ M, (2)

and its dual counterpart for every K ∗ ∈ M∗ ∪ ∂M∗
N

φK ∗(sn+1
α,K ∗ − snα,K ∗) − δt

mK ∗

∑

σ=K ∗|L∗∈E∗
K∗

V α,n+1
K ∗L∗ = 0 ,∀α ∈ {nw,w}. (3)

We keep the relations between the saturations:

sn+1
nw,K + sn+1

w,K = 1, sn+1
nw,K ∗ + sn+1

w,K ∗ = 1 ,∀K ∈ M,∀K ∗ ∈ M∗. (4)

Thenwe close the discrete systemwith link between the pressures and the saturations
∀K ∈ M,∀K ∗ ∈ M∗

Pc(s
n+1
nw,K ) = pn+1

nw,K − pn+1
w,K and Pc(s

n+1
nw,K ∗) = pn+1

nw,K ∗ − pn+1
w,K ∗ . (5)

In addition we have the discrete Neumann (6) and Dirichlet (7) boundary conditions.

V n+1
α,K L = 0 ,∀α ∈ {nw,w},∀K ∈ ∂MN, (6)

pn+1
α,K = 0 and pn+1

α,K ∗ = 0 ,∀α ∈ {nw,w},∀K ∈ ∂MDir ,∀K ∗ ∈ ∂M∗
Dir .

(7)
The novelty of our contribution is the expression of the projected velocity at the

interface σ = K |L (resp. for σ∗ = K ∗|L∗ )
∫

σ=K |L
Mα(sα)Λ∇ pα · nK L dσ(s) ≈ V α,n+1

K L :=

Mup,n+1
α,K L τK L(p

n+1
α,L − pn+1

α,K ) +
√

Mmin,n+1
α,K L

√

Mup,n+1
α,K ∗L∗ηD(pn+1

α,L∗ − pn+1
α,K ∗)

, (8)
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V α,n+1
K ∗L∗ = Mup,n+1

α,K ∗L∗τK ∗L∗(pn+1
α,L∗ − pn+1

α,K ∗) +
√

Mmin,n+1
α,K ∗L∗

√

Mup,n+1
α,K L ηD(pn+1

α,L − pn+1
α,K ).

(9)
Themobility is distributed following the normal and the tangential components of the
approximate gradient.We apply different upwind approaches with respect to the sign
of the flow of each phase. The presence of the square root is to force the coercivity
of the scheme i.e. there exists γ > 0 depending only on the mesh regularity such that

V α,n+1
K L (pn+1

α,L − pn+1
α,K ) + V α,n+1

K ∗L∗ (pn+1
α,L∗ − pn+1

α,K ∗) ≥ γ(τK LM
up,n+1
α,K L (pn+1

α,L − pn+1
α,K )2

+ τK ∗L∗Mup,n+1
α,K ∗L∗(pn+1

α,L∗ − pn+1
α,K ∗)

2).

In the crossed term the modified mobilities Mmin,n+1
α,K L are particularly chosen to keep

the maximum principle (resp. for Mup,n+1
α,K ∗L∗ and Mmin,n+1

α,K ∗L∗ )

Mup,n+1
α,K L :=

⎧
⎨

⎩

Mα(sn+1
α,L ) if pn+1

α,L − pn+1
α,K ≥ 0

Mα(sn+1
α,K ) otherwise

, Mmin,n+1
α,K L := Mα(min(sn+1

α,K , sn+1
α,L )).

(10)
We take for the permeability or stiffness tensor on the diamond its mean-value on

D. For the porosity approximation, one takes as mean value on the cell

ΛD = 1

mD

∫

D
Λ(x) dx, φK = 1

mK

∫

K
φ(x) dx . (11)

We now can give the transmissibility coefficients τK L = mσ

mσ∗

〈ΛDnK L ,nK L〉
sin(αD)

,

τK ∗L∗ = mσ∗

mσ

〈ΛDnK ∗L∗ ,nK ∗L∗ 〉
sin(αD)

, ηD = 〈ΛDnK L ,nK ∗L∗ 〉
sin(αD)

. (12)

5 Energy Estimates

We now state two properties of the scheme (2)–(12) and an existence result. We refer
to the forthcoming article [5] for more details.

Lemma 1 (Maximum principle) Let (pnw,T ,δt , pw,T ,δt ) be a solution to the numeri-
cal scheme (see Sect.4). Then, forα ∈ {nw,w}, the discrete saturation of theα-phase
obeys its physical bounds i.e.

0 ≤ sn+1
α,K ≤ 1, ∀K ∈ T ,∀n ∈ �0 ; N − 1�.
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We multiply the discrete equation by (sn+1
nw,K )− = −min(sn+1

nw,K , 0) ≥ 0, for the
minimizing cell of the mesh for snw. One has, thanks to the degeneracy Mnw(snw,K )

(snw,K )− = 0. For the cross-term of the flow through σ = K |L we have:
√

Mmin,n+1
nw,K L

√

Mup,n+1
nw,K ∗L∗(pn+1

nw,L∗ − pn+1
nw,K ∗)(sn+1

nw,K )− =
√

Mnw(sn+1
nw,K )(sn+1

nw,K )−

×
√

Mup,n+1
nw,K ∗L∗(pn+1

nw,L∗ − pn+1
nw,K ∗) = 0

Then, handling the rest as in [11], we deduce the physical bound. The following
lemma in addition to a norm equivalence [10] leads to the energy estimates. We
adapt the pathway of [8] to the DDFV-framework to find (13).

Lemma 2 For every K , L neighbours inM (resp. K ∗, L∗ inM∗), there holds:

m0((pL − pK )2 + (ξL − ξK ))2 ≤ Mup
nw,K L

(
pnw,L − pnw,K

)2 + Mup
w,K L

(
pw,L − pw,K

)2
.

Proposition 1 (Energy estimates) Let (pα,T ,δt )α∈{nw,w} be solution of our scheme
(2)–(12). Then there exists a constant C independent of the discretization parameters
hT and δt , depending on the mesh regularity, such that

∥
∥∇D pT ,δt

∥
∥2
2 + ∥

∥∇DξT ,δt

∥
∥2
2 ≤ C. (13)

Proposition 2 (Existence) The scheme (2)–(12) admits at least a solution.

6 Numerical Results

We test our scheme on a framework similar to the one used in [8, 11]. We simulate
second recovery of oil in an isotropic and anisotropic 2D reservoirs. Our domain of
interest is Ω = (0, 1m)2, with the uniform porosity φ = 0.206. The relative perme-
abilities are squared functions of the saturation kr,α(sα) = (sα)2, with fluid viscosities
given: μnw = 9 × 10−5 Pa s and μw = 10−3 Pa s. The capillary pressure is a lin-
ear function in terms of the oil saturation Pc(snw) = Pmaxsnw with Pmax = 105 Pa.
The domain is initially occupied by oil with uniform saturation, where the oil is
at the standard atmospheric pressure Patm = 1.013 × 105 Pa. Under the pressure
ple f tw = 4.6732 × 105 Pa, water with few oil (sle f tw = 0.99) is injected in the under
left corner (x = 0, 0 ≤ y ≤ 0.2 and 0 ≤ x ≤ 0.2,y = 0). This pressure displaces the
oil which flows freely outside the medium where the extraction zone is located in
the upper right corner (x = 1, 0.8 ≤ y ≤ 1 and 0.8 ≤ x ≤ 1,y = 1) and is at the
atmospheric pressure (see Fig. 2). The rest of the boundary is impervious. We take
δt = 0.001 s, with 50000 iterations. To solve the nonlinear system (2)–(12) we use
a Newton method with a preconditioning of the Jacobian matrix. We take s = snw

and p = pw as primary variables.
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Fig. 2 Quadrangle mesh with boundary conditions

(a) t = 10 s (b) t = 20 s (c) t = 40 s (d) t = 50 s (e) Scale

Fig. 3 Isotropic flow, upside snw and downside pw

Case 1: isotropic Case 2: homogeneous anisotropic

Λ = 10−10 ×
[
0.15 0
0 0.15

]

[m2]. Λ = 0.15 × 10−10 × Rθ0 ×
[
1 0
0 5

]

× R−1
θ0

[m2].

Rθ0 denotes the rotation matrix where θ0 = π/6.
In the first case, water flows in the medium regardless of the direction. Figure3

illustrates the behavior of the oil saturation and water pressure with respect to mesh
deformation at t = 10, 20 , 40 and 50 s. Since there is no direction preferred, the
oil is diagonally pushed to the extraction corner. At the final time, most of the oil is
extracted. We indicate that the approximated saturation verifies its physical bounds
between 0 and 1. In the second case, the permeability tensor is globally anisotropic.
The favorised direction is the y-axis rotated with an angle of π/6. Figure4 depicts
the oil saturation and water pressure subject to this anisotropy and distortion of the
mesh at the times t = 5, 10 , 20 and 25 s. Compared to the first test, the y-eigenvalue
is bigger in this test so the water pushes the oil through the vertical direction faster
than through the horizontal direction. We see at t = 25 s most of the oil is extracted,
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(a) t = 5 s (b) t = 10 s (c) t = 20 s (d) t = 25 s (e) Scale

Fig. 4 Uniform anisotropic flow with a rotation, upside snw and downside pw

compared to the first test where there is still oil at t = 40 s. We highlight that we
also have the saturation in [0, 1] which confirms the theoretical result proved in
Lemma 1.
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