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This book is dedicated to our friend and 
colleague Jeremy Gray in honour of his 
contributions to the history of mathematics 
during the first 75 years of his life—and to all 
students in the world interested in getting to 
know how the integrated history and 
philosophy of mathematics may be written.1 

1 Drawing by Jemma Lorenat.



Preface 

The historiography of mathematics has a long history. In spite of this we have to 
admit that there is a lack of standard introductory books to this field, which students 
can turn to in order to find orientation in what may be basic problems in the subject 
and how they can start to pursue it. Questions of this type have been posed by one 
of us, Lizhen Ji, a mathematician with strong interest in the history of mathematics, 
to many colleagues. During the last few years he discussed them with historians 
and philosophers of mathematics. Finally, this led to the idea of compiling a book 
addressing such questions in a more direct way and to dedicate it to our colleague 
and friend Jeremy Gray. 

Jeremy’s wide range of interests and the broadness of his research in the history 
of mathematics is shown by his publications; it suffices to mention the great number 
and thematic spectrum of the books he wrote or co-edited to prove this point. Let us 
here just give a list of topics for books written by him during the past four decades: 
ideas of space from antiquity to the twentieth century (1979), linear differential 
equations and group theory (1986), Desargues (with J. Field, 1987), Hilbert (2000), 
modernism in nineteenth-/twentieth-century mathematics (2008), complex function 
theory (jointly with U. Bottazzini, 2013) and Poincaré (2016). In addition, in the last 
few years he published a series of textbooks on the history of mathematics, which 
grew out of his lectures at Warwick University. They treat the history of geometry in 
the nineteenth century (2007), real and complex analysis in the nineteenth century 
(2015), abstract algebra (2018) and differential equations and variational calculus 
(2021). Jeremy also kept close contact with the community of mathematicians 
as well as that of philosophers of mathematics and was immensely active in the 
dissemination of historical knowledge by preparing teaching material for the Open 
University, Milton Keynes, Warwick University and beyond. 

We thank Jeremy for contributing himself to the book by writing down some 
Reflections on his path into the historiography of mathematics (Part VII). This is a 
nice piece showing a not so untypical effect for newcomers to our subdiscipline of 
the history of science on the one hand and mathematics on the other. In relation to 
the weak institutional backing for the history of mathematics, the heterogeneity of 
backgrounds needed to work in it as well as the diversity of epistemic goals pursued,
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viii Preface

of styles and methods of work, and of the diversity of its audiences, there is often 
no direct (“linear”) career path leading young scientists into the heart of the field. 
Jeremy’s reflections give a smiling look back on the path he himself followed. 

We tried our best to present in our book for Jeremy a collection of reading 
material containing information and sometimes even some kind of orientation for 
young researchers worldwide, who are about to enter research in the history of 
mathematics. Among them there is an impressively large group of young historians 
of mathematics at and from the Northwest University of Xi’an. We hope and expect 
that members of this group will soon be contributing to the international enterprise 
of the historical studies in the mathematical sciences. Through the mediation of one 
of us, Chang Wang, we had the chance to communicate with this group during the 
preparation of this book. All contributions to it, with the only exception of Jeremy’s 
reflections, have been carefully read and commented by young Chinese historians 
of mathematics. The comments have been given to the attention of the authors in 
addition to the remarks of the usual peer reviews for each of the chapters. Our 
thanks go to the members of all three (partly overlapping) groups of authors, peer 
commentators and young researchers from Xi’an.2 

Keeping the interests of our colleague Jeremy Gray in mind, the panorama of 
topics in this book is essentially concentrated on the history of mathematics in what 
is usually referred as the “modern European” area with one exception: Anjing Qu’s 
discussion of mathematical practices in (ancient) Chinese astronomy (in Part III). 
This remark leads us to the task of outlining the spectrum of topics which appear 
here for illustrating the “Richness of the History of Mathematics”. To keep the 
foreword as concise as possible we give here only a short overview of the structure 
of the book, with very selective information on the topics covered. 

The book starts with a collection of essays on methods and problems of the 
historiography of mathematics (Part I). It documents how diverse the approaches 
to writing the history of mathematics can be. The first two chapters address 
the question of how one may embark—and how some researchers have indeed 
engaged—in historical work on mathematics. The first one by Tinne Hoff Kjeldsen 
gives an inviting discussion of this question by a present researcher in this field. 
The second one by Bruno Belhoste and Karine Chemla shows that this is not a 
twentieth century or even presentist question but has deep roots in the development 
of mathematics itself. They exemplify this point by a study of the role of history 
in the teaching and research carried out at the early Ecole Polytechnique. In the 
next two chapters we find the reflections of Lizhen Ji, a mathematician interested 
in the history of mathematics, and Viktor Blåsjö, a historian of mathematics with 
particular interest in the cooperation with mathematicians. Ji provides guidance for 
beginners in the history of mathematics, considering many different sources about 
historical thinking and the methodology of historical research. Blåsjö argues that 
the time is ripe for comparative interpretative work of well-researched episodes in 
history (his example is the calculus) and that mathematically trained researchers

2 See the acknowledgments and the list of contributors below. 
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are needed for this enterprise. In the final chapter of this part, Niccolò Guicciardini 
shows the usefulness, perhaps even necessity, of reflexive anachronistic rewritings 
of technical passages in historical works, exemplified with Newton’s treatment of 
the inverse problem for a body moving under central forces. 

The contributions of Part II shed glances from different directions into the 
historical practice of mathematics and of mathematicians. With regard to geometry, 
David Rowe presents less known aspects of Felix Klein’s early work in projective 
and algebraic geometry. Two chapters on the history of arithmetic follow. Catherine 
Goldstein shows the peculiar blend of methods that Poincaré put into play in his 
early works in number theory, again basically ignored in the existing literature. 
Nicola Oswald focuses on the correspondence between Hurwitz, Gordan and Hilbert 
on transcendence proofs for e. She analyses how it led to three variations of a proof 
of transcendence for e, which aimed to simplify the argument, and she contrasts 
these various proofs from the viewpoint of their later reception. Colin McLarty 
examines what the mathematical practices underlying various uses of the concept 
of function are like today and historically from the perspective of a philosopher 
of mathematics. The part is rounded off by two contributions on the formation 
of a mathematician. The first one by Jemma Lorenat deals with this issue from a 
gender point of view, with a case study in the history of the late nineteenth century. 
The second one gives an autobiographical report of John Stilwell; it tells how he 
himself became a mathematician deeply involved with the history of mathematics. 
This report may be read as a kind of parallel with Jeremy Gray’s reflections on his 
path into the history of mathematics (Part VII). 

Questions linked with the interrelation of mathematics with the natural sciences 
are addressed in Part III. In our book we can highlight again only selected topics in 
this vast field. The part starts with a glimpse by Anjing Qu into this relationship 
in an extra-European context, the only one in this book as already stated. Our 
author analyses the mathematical practices used in the construction of astronomical 
tables in Yuanjia li, a calendar-making system of the fifth century CE. The next 
chapter written by Jesper Lützen discusses the changing relationship between 
mathematical geometry and physics in the late nineteenth-century European context. 
As a result the classical identification between the concepts of the empirical space 
of natural science, geometry and the mathematical concept of space was broken up 
and new interrelation between more abstract space concepts of mathematics—like 
manifolds—and mechanics came into sight (several decades before the relativistic 
“revolution” of the early twentieth century). Jed Buchwald studies the usage of 
scalar and vector potentials in different theories of electrodynamics of the nineteenth 
century and the conditions or relations between them. He shows that the role of 
such relations as free choices was not clearly stated before 1903 in a paper by H.A. 
Lorentz. About 20 years later (after Weyl’s contribution to relativistic electrody-
namics, see Part IV) they were called “gauge” choices. Of course mathematical 
investigations in natural sciences go far beyond the classical fields of “application” 
in astronomy and physics. The last chapter of this part, written by June Barrow-
Green—a former doctoral student of Jeremy—focuses on a collaboration between 
the mathematician Hilda Hudson and the medical scientist Ronald Ross. Their joint
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work led to an early contribution to the mathematical study of epidemics. The most 
important part of it took place during World War I and thus before the seminal 
papers of Kermack and McKenzie (1927ff.), which are influential for modelling the 
dynamics of epidemics until the present. 

The topic of  modernism in mathematics is taken up in Part IV. This concept was 
imported from cultural and social history into the history of mathematics by Herbert 
Mehrtens and became one of Jeremy’s particular concerns. The first chapter of this 
part, written by Leo Corry, steps back and reconsiders the issue from the wider scope 
of the cultural history in which the topic of modernism was bred. Corry examines 
anew in which respect the question may be useful for the study of the history of 
mathematics. Inside mathematics, it may not be so easy to discern what it means 
to be “modern”. Tom Archibald discusses the question for integration theory in the 
twentieth century. Cantorian set theory is often taken as a core feature of modernism 
in mathematics, standing in counter-position to other strands in twentieth-century 
mathematics, in particular Brouwerian intuitionism. José Ferreirós, in contrast, 
argues that many mathematicians were inclined to revise and weaken set theory, and 
therefore speaks of set theories of the twentieth century in the plural. An extreme 
example of this was Brouwer, who elaborated his own intuitionistic understanding 
of sets (another is Weyl’s predicativist system). Furthermore, he finds that Brouwer’s 
program for reforming mathematics can very well be placed under the heading of 
modernist approaches to mathematics. Finally Erhard Scholz takes the opportunity 
of this book to discuss two key figures of twentieth century mathematics, Felix 
Hausdorff and Hermann Weyl, which have been labelled by Mehrtens as two 
characteristic representatives of what he considered as, respectively, the modern and 
the counter-modern camp in mathematics of the last century. In spite of the rather 
different stance of the two protagonists with regard to modernism Scholz does not 
agree with labelling Weyl as “counter-modern”. 

The next part (Part V) addresses the question of how mathematicians interacted 
with the broader philosophical discourse of their time. Vincenzo de Risi unearths 
a debate in the eighteenth and nineteenth centuries on what was called the 
direction theory of parallels. After a transformation of the question posed, this 
discussion played a key role in the debates raised by the later emergence of 
non-Euclidean geometry. The related developments were also heavily intertwined 
with epistemological questions of early modern mathematics and, more generally, 
with philosophical debates between followers of, respectively, Leibniz and Kant. 
At the end of the nineteenth century the scene for references of mathematics to 
philosophical issues had diversified in various ways. In his chapter on Zeuthen’s 
understanding of enumerative geometry, Nicolas Michel finds strong references to 
the Danish reception of the philosophy of Henri Bergson, supplemented by holistic 
psychology. Finally Umberto Bottazzini discusses Federico Enriques’ epistemology 
of mathematics and sketches his broader view of a “scientific philosophy” which 
Enriques developed in reference to views held by members of the Vienna circle. 

All this leads over to issues in the philosophy of mathematics (Part VI). 
Dirk Schlimm examines why Frege, Cantor and Gödel thought about the object 
of mathematics in Platonist terms, and why this may matter still today. James
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Tappenden, for his part, argues that one may observe a strong connection between 
the history and the philosophy of mathematics. He addresses this topic through a 
discussion of the work of Riemann and Weierstrass in complex function theory 
and analyses their implicit philosophy in their way of forming, presenting and 
understanding mathematical concepts. In the last chapter of this part—a short 
literary piece—Jeremy Avigad reflects on “what we talk about” when we “talk” 
mathematics. 

The closing part of the book (Part VII) presents two cases of how one may 
become a historian of mathematics: The first one by Snezana Lawrence—also a 
former PhD student of Jeremy—shows how even a twisted route may lead into this 
field. The second and final one contains Jeremy Gray’s reflections on his own path 
into the history of mathematics. His recollections show that this trajectory was also 
far from any established career route through well-established institutions which are 
anyway rare in our part of the world. 

Please do not overlook that, in addition to an index of names, the appendix to 
this book contains a selection of photographs which show our venerated colleague 
at different stages of his life and in different environments. 

Paris, France Karine Chemla 
Sevilla, Spain José Ferreirós 
Ann Arbor, MI, USA Lizhen Ji 
Wuppertal, Germany Erhard Scholz 
Xi’an, China Chang Wang 
January 10, 2023 
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Part I 
Practicing the History of Mathematics



Chapter 1 
A Problem-Oriented Multiple Perspective 
Way into History of Mathematics – What, 
Why and How Illustrated by Practice 

Tinne Hoff Kjeldsen 

Abstract This chapter is written with students in mind. It introduces and describes 
a problem-oriented multiple perspective approach to history of mathematics, which 
is a methodology to history of mathematics that is based on an action-oriented 
conception of history. It is explained how this approach is an open approach to 
history of mathematics in the sense that the research is driven by a question-
answer strategy where the decisive factors for the development have not been 
decided beforehand, and it is clarified in what sense this approach moves beyond 
the internal/external division in the historiography of mathematics. The approach 
is illustrated by three examples from the history of twentieth century mathematics. 
The first is focused on the invention of the concept of a general convex body, and 
is a case that can be seen as an exemplar of the move of mathematics into an 
autonomous enterprise, which is an aspect of the twentieth century mathematics. 
The second case is concerned with the influence of WWII in the development 
of mathematical programming. It is an example of how conditions, or urgencies, 
in society might influence the development of mathematics together with more 
internal motivated driving forces. The third example deals with Nicolas Rashevsky’s 
early development of mathematical biology. This case demonstrates how conditions 
within the sciences, and in society, have a significant influence on what kind of 
research is being developed, and how mathematical modelling can function as a 
research tool at the frontier of science. As such, the chapter is an attempt to lay 
out, present and explain the theoretical perspective and methodology for a problem-
oriented multiple perspective approach to history of mathematics and illustrate its 
strengths and versatility through the three examples. 
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4 T. H. Kjeldsen

1.1 Introduction 

This chapter is written with students in mind. As the title indicates, the focus 
is on presenting what I call a problem-oriented multiple perspective approach to 
history of mathematics (shortened to a p-oriented m-perspective approach in the 
following) as one way into doing research in history of mathematic (Kjeldsen 2012, 
2019).1 This is one of many ways of thinking about history of mathematics, so 
let me begin with a disclaimer: The chapter is not a textbook-like introduction to 
methodology; it does not provide general guidelines on how to do e.g. archival 
work etc. and it does not present a survey of the historiography and methodology 
of history of mathematics. If one wants to become acquainted with historiography 
of mathematics in a more general setting, Wardhaugh (2010) and Stedall (2012) 
are two short introductions to the field. The conference proceedings (Remmert et 
al. 2016) addresses “how the historiography of mathematics has been influenced 
by the contexts and motivations of its practitioners” (p. 1), and is a good place to 
look for the history of historiography of mathematics in the nineteenth and twentieth 
centuries. For history of science, the book by Helge Kragh (1994) An introduction 
to historiography of science is also to be recommended for students in history of 
mathematics. More recent reflections on the historiography of science can be found 
in e.g. (Karstens 2014) where Karstens presents an overview of various turns in the 
history of science from the early twentieth century to the present, and (Kuukkanen 
2012) in which Kuukkanen discusses the active role of the historian and calls for 
more ‘reflexivity’ in the historiography of science. This being said, what is the 
chapter then about? It is an attempt to present some aspects of a p-oriented m-
perspective approach and to be explicit about some reflections on doing research in 
history of mathematics related to this approach, illustrated by concrete examples. 
The intention has been to move a step back and to illustrate and reflect on some 
issues and questions lying underneath and leading up to concrete pieces of research 
within a problem-oriented multiple perspective approach. That is, to illustrate and 
discuss the terms that such an approach to history of mathematics sets for research, 
as well as ways it opens into research – and as such, the paper has a subjective 
element, presenting primarily my own approach and sources of inspiration. 

In the following, we will first look briefly at a few historians of mathematics’ 
experiences with, and thoughts about, history of mathematics. Then the approach 
of a p-oriented m-perspective way into history of mathematics is presented, 
followed by three examples for illustration. The chapter ends with a discussion and 
concluding remarks.

1 I have borrowed the term ‘multiple perspective’ from Bernard Eric Jensen, who is a general 
historian, i.e. not a historian of mathematics or science (Jensen 2003). The problem-orientation is 
inspired from the Roskilde Model of problem-oriented learning and project work (Andersen and 
Heilesen 2015), see Andersen and Kjeldsen (2015a, b) for the theoretical foundation and a review 
of the key concepts. 
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1.2 A Few Historian of Mathematics’ Accounts 
of Experiences with Research 

In 2004, Ivor Grattan-Guinness published a paper in Historia Mathematica on his 
experiences and thoughts about doing history of mathematics (Grattan-Guinness 
2004). He distinguished between two ways of treating or interpreting mathematics 
of the past, which he called ‘history’ and ‘heritage’ respectively. He characterized 
‘history’ as an approach to past mathematics where the actors (by which he meant 
the historians) are concerned with answering questions of “what happened in the 
past”, give descriptions and (sometimes) also try to give explanations as to “why” 
(Grattan-Guinness 2004, p. 164). In contrast to this, he found that the actors of the 
‘heritage’ approach (whom he named inheritors), are concerned with the question 
“how did we get here?” – an interpretation of past mathematics where “the present 
is photocopied onto the past” (p. 165, Italic in the original). He deemed both 
ways of working with past mathematics legitimate but warned against confusing 
them, i.e. not taking heritage for history, heritage being, he wrote, “frequently the 
mathematicians’ view” (p. 165). So here, we see a separation of dealing with the 
past based on the actor’s profession – not exclusively but almost, and only one of 
them counts as history, according to Grattan-Guinness. 

Michael Fried, working also with a distinction between non-historical and 
historical ways of dealing with the past, called for a more elaborated, more 
fine-grained division, than the one proposed by Grattan-Guinness (Fried 2018). 
Fried is interested in distinguishing between different approaches or attitudes 
to the past and how they “place one in different relations to the past”, as he 
phrased it (p. 6). Like Grattan-Guiness, Fried operates with a division between 
a historical and a non-historical position, which he sees as two poles. With 
respect to this division, he singled out three categories with various sub-categories 
of ways of relating to mathematics of the past, which he placed on a scale 
from non-historical to historical relationships. The three main categories are 
‘mathematicians’, ‘mathematician-historians’ and ‘historians of mathematics’, with 
‘mathematician-historians’ ranging in the middle and placed somewhere in between 
the two poles. Fried characterized ‘mathematicians’ as those who “see themselves 
doing mathematics, not history”, when they deal with mathematics of the past; 
‘mathematician-historians’ as being “generally mathematicians who see themselves 
engaged in an historical enterprise and yet to a greater or lesser degree ( . . . ) see  a  
continuity between the mathematics of the past and their own mathematical work; 
and ‘historians of mathematics’ as those who “see themselves doing history and 
their mode of experiencing the past is historical in the sense . . .  [that] they relate 
to the past as something utterly apart from the present, the past as a problem” (p. 
7). In 2014, Fried and Viktor Blåsjö had a short dispute about the historiography 
of mathematics, Blåsjö advocating for critical internalism in historiography of 
mathematics (Fried 2014; Blåsjö  2014). Blåsjö further elaborated on this issue as a 
historiography of mathematics from the mathematician’s point of view, questioning
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the division between historical and non-historical treatments of past mathematics, 
basically based solely on the actors’ (the authors’) profession (Blåsjö 2021). 

Both Grattan-Guinness’s and Fried’s distinctions between a ‘historical’ and 
a ‘heritage’ approach and a ‘historical’ and a ‘non-historical’ relation to past 
mathematics, respectively, are to some extent rooted in the debate about internalist 
and externalist approaches to history of mathematics.2 Joan Richards described 
how she, at the Madison “Conference on Critical Problems and Research Frontiers 
in History of Science and History of Technology” in 1991, experienced hostility 
and an internal division in the history of mathematics group. Her impression 
was that historians of mathematics “were actively engaged in drawing an even 
sharper line to divide themselves into these two groups [intenalists and externalists]” 
(Richards 1995, p. 123), which she coined “the critical problem in the history of 
mathematics” at that time (p. 124, italic in the original). Instead of distinguishing 
between mathematicians and historians dealing with past mathematics, she placed 
the internalist/externalist debate in the context of new developments in history of 
science and philosophy of mathematics. Drawing on examples from work on history 
of mathematics, she advocated for exploring various approaches: “the creativity”, 
she wrote, “of the history of mathematics lies on the fractal boundary between 
internalism and externalism” (p. 134). David Rowe also discussed new trends and 
old images in the history of mathematics at that time, pointing out that “the ever 
widening range of interests among scholars and students alike reflects one of the 
major trends now taking place in the history of mathematics. This trend is linked 
with a shift from a relatively narrow, Eurocentric vision of a monolithic body of 
knowledge to a broader, multi-layered picture of mathematical activity embedded 
in a rich variety of cultures and periods” (Rowe 1996, p. 4).  

In his essay from 2000, ‘Formen der Mathematikgeschichte’, Moritz Epple 
discussed the meaning of causality in relation to historical work. His understanding 
of causality in historical work does not entail historical laws that the episodes 
are following. Causal relationships are understood as consisting of a web of 
relations that is produced by historical events themselves, and which constrain or 
create different domains of possibilities for the realization of individual events. 
He interpreted the internalism/externalism controversy as a disagreement about the 
decisive (he called them causal) factors that affect the development of mathematics, 
where internal accounts seem to adhere to the strong hypotheses that mathematics is 
an autonomous science developing solely according to some inner rules dictated by 
the rationality of mathematics, immune to influences from outside (Epple 2000, p.  
146). In such purely internal representations of history of mathematics, the decisive 
factors responsible for the development of mathematical concepts and mathematical 
knowledge are sought for only within mathematics itself. As a reaction, external 
(to the sciences) representations developed where the decisive factors were sought

2 Basically, internalism accounts represent the point of view that mathematics develops without 
any influences from outside of mathematics whereas externalism considers factors from outside of 
mathematics in historical accounts. 
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for from outside the sciences themselves. Epple advocates for a form of history of 
mathematics where the nature of the causal factors that influence the development of 
mathematics has not been decided beforehand. This approach would be open to both 
kinds of explanations (internal and external) and makes it possible to investigate 
how internal and external factors are intertwined in various events. In his work 
on the history of topology, he emphasized that in order to accomplish this, the 
historian needs to analyze “[ . . .  ] the weave of concrete scientific action rather 
than an abstract life of mathematical ideas” if they wish to “adhere to the goal 
of producing a causally coherent account of developments like the emergence of 
topology” (Epple 1998, p. 307). 

In the next section, I present a problem-oriented multiple perspective approach 
to history of mathematics – an approach, which has this “openness”, that Epple is 
advocating for, built into it, and which moves beyond the internalism/externalism 
division. 

1.3 A Problem-Oriented Multiple Perspective Approach 
to History of Mathematics 

I have on several occasions talked and written about what I call a multiple 
perspective approach to history of mathematics, how I see this as an open approach 
and how it moves beyond this division between internalism and externalism, see e.g. 
Kjeldsen (2012, 2019). In the following I will recap the ideas of the approach. 

As indicated in footnote 1, I am inspired by the general historian Bernard Eric 
Jensen’s thoughts about history as an academic discipline, and how people work 
with and use history. The underlying premise is an action-oriented conception of 
history where people are viewed as being shaped by history and being shapers 
(makers) of history. History is understood as collections of processes that people 
make or create through their projects in life as well as the intended and unintended 
consequences of these projects. To understand and explain historical-social pro-
cesses means to gain insights into how people have acted and thought at different 
times and cultures (Jensen 2003, p. 378). 

If we think of mathematics as a form of knowledge that is produced and 
develops through activities and projects that people, mathematicians, carry out in 
their work and life, such a conception of history can be adapted to history of 
mathematics. People’s activities and projects are conditioned by the past, the present 
and the actors’ (people’s) expectations for the future. Historical-social processes 
in the making of mathematics can then be investigated and analyzed from various 
perspectives or points of observation by taking points of departure in concrete 
episodes of people’s mathematical activities and projects from where connections 
and relations can be studied. It can be e.g. from practices of mathematics, from 
interdisciplinary perspectives, from institutions, from political, power and/or finan-
cial perspectives, from personal networks, from specific views on the nature of
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Fig. 1.1 The function of a 
problem formulation as a 
guidance for research 

mathematics, from a specific culture, to name some. Such a multiple perspective 
approach to history of mathematics opens for exploring the interplay between 
developments of mathematics and the broader historical-social conditions of its 
development where both internal and external factors can be considered – in this 
sense, the “openness” mentioned above, is built into this approach. 

When we do research in history of mathematics, there is always ‘something’, 
some research question, curiosity, agenda, motivation or suchlike that drives our 
research. This ‘something’ guides the investigations that the historian chooses to 
conduct and the analyses that are performed, whether this is articulated by the 
historian or not. In a problem-oriented research strategy, a question-answer process 
drives the research and the purpose is to find plausible answers to an articulated 
problem or complex of problems. A problem-formulation gives a direction for the 
research project of the historian and determines its boundaries – it functions as a 
‘steering gear’ and guides the project (see Fig. 1.1). 

A well-formulated problem/research question or group of research questions is 
an important part of all kinds of research. In history of mathematics research, it 
will help the historian to make decisions about what to include and what to leave 
out; it can function as a filter for what is important – issues that do not contribute to 
answering the research question, can be left out. Figure 1.1 is an attempt to illustrate 
the difference between having an articulated research question and a broader topic. 
A problem that one is trying to solve or investigate provides a direction for one’s 
research, here represented by an arrow. A topic does not give a direction in itself to 
what to include and what to leave out; it is usually too broad. The blob in Fig. 1.1 
illustrates this. It is not always an easy task to come up with a problem formulation, 
and often it is a dynamical process that sometimes continues throughout most of 
the historian’s research and writing processes. Sometimes the process begins with 
a topic and a problem formulation crystalizes during the work. In other cases, the 
initial topic may not constrain the problem formulation since other areas that do not 
belong to the initial topic might turn up as important aspects to research. Sometimes 
the process begins with a question that crosses over a variety of topics or is not 
confined to a topic at all. A good place to start is with curiosity – something that 
strikes one as being weird or interesting, and reflections about why this is so. 

In a multiple perspective approach, the question of which perspective(s) to 
choose, is answered or justified by the problem – the research question(s) of 
the historian. It raises, as all research approaches do, the question of reliability. 
Reliability concerns the trustworthiness of the analyses and conclusions performed 
and drawn by the historian. It depends on the ‘evidence’, so to speak, that has 
been available to/has been investigated by the historian, the material and sources. 
It also depends on the relation between the problem/the research question(s) of 
the historian, the methodological frameworks and tools used by the historian in
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Fig. 1.2 Relation between 
problem – the research 
question, the chosen 
perspective of the actors and 
sources used. The figure is 
also presented in Kjeldsen 
(2019) 

the analyses, and the chosen perspectives of the actors under investigation, the 
actors’ motivations, goals and actions (see Fig. 1.2). The double arrows indicate 
the dynamics of the research process, and that all three corners might influence each 
other and change along the way. The initial research question, e.g., might change 
during the research process, which might change the choice made by the historian 
of which perspective of the actors, that is the lens, the vantage point, or point of 
observation from which to perform the investigations of the actors’ actions and 
relations, which might cause a change in what sources are relevant and vice versa. 

As I wrote, my inspiration for a m-perspective approach to history comes from 
the general historian Jensen’s writings (see e.g. Jensen 2003). Recently, the notion 
of ‘scientific perspectives’ (Massimi and McCoy 2020) has caught attention among 
philosophers of science. The philosopher of science, Michela Massimi, in her 
book, Perspectival Realism, uses the notion of scientific perspective to offer an 
account of realism in science, which she calls a ‘perspectival realism’. The focus 
is epistemological; it is about scientific knowledge claims as categorized by actors, 
taking seriously, as she phrases it, “the historically situated nature of scientific 
knowledge when discussing its epistemic foundation” (Massimi 2022, p. 9). Hence, 
it has a resemblance to the multiple perspective approach to history outlined in this 
chapter, in particular when the research question deals with epistemological issues 
in the historical development of mathematics. 

Regarding the research questions (the problem-formulation), they are governed 
by the historian’s curiosity or agenda, the processes in history of mathematics that 
the historian are interested in understanding and explaining – and these, again, 
are determined by the perspective of the historian. Hence, besides the actors’ 
perspective, which underlines the situatedness of the historical inquiry, there is 
also the historian’s perspective, which recognizes the role of the historian in the 
selections and interpretations of sources and data. This last element is related to 
reflectivity about historiographical practices. In the approach sketched here, with an 
action-oriented conception of history which takes the actors’ projects, perspectives, 
and social and scientific practices into account, and acknowledges the perspective 
of the historian, there cannot be one single account – but this does not mean 
that “anything goes”. I agree with Epple, that despite this difficulty historiography 
should not give up on the attempt to provide, in his framework, “causally coherent
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narratives” (Epple 1998, p. 308). More work on this issue needs to be done, and I 
will not go further into the discussion here, but end with quoting another general 
historian, Søren Mørch, who in paraphrasing (Jensen 2003) urges that: 

Historians should explain the position they take in relation to the subject they are writing 
about and the approach they are using so that the reader can better relate to the narrative 
that he or she is dragged into. (Mørch 2010, p. 503, my translation) 

In order to illustrate and reflect on the above in a concrete and specific way, I will 
give short extracts in the next sections from three examples where I have used a p-
oriented m-perspective approach and where I have analyzed the historical actors’ 
mathematical activities and projects from various perspectives dictated by the 
problem. The three cases also exemplify various factors influencing the development 
of mathematics. 

1.4 The Inventive Art of Minkowski and Epistemic Objects 
and Tools 

Minkowski’s ‘inventive art’, as David Hilbert called it in his memorial speech for 
Minskowski, is connected to convexity, which is a central notion in mathematics. 
The theory of convexity is useful in many areas of modern mathematics and in 
applied fields. The idea of a general convex body was crystallized in the period 
1887–1897. In monographs on convexity,3 the German mathematician Carl Her-
mann Brunn (1862–1939) is often credited as being the first to undertake systematic 
studies of general convex bodies in his thesis, with Hermann Minkowski (1864– 
1909) credited with further development of the theory. Both of them worked with 
convex bodies, in the same time period, but in two very different ways. Minkwoski’s 
work on and with convex bodies became very successful and generated new 
mathematical research areas of convexity theory and geometric number theory – 
it was very fruitful. Brunn’s work did not have the same effect. Walther von Dyck 
who was professor at the Technical University of Munich at that time described 
Brunn’s thesis as containing some naïve ideas, but nothing more than that.4 

This difference prompted several questions such as: What kinds of objects did 
Brunn and Minkowski study and why? How did they carry out their investigations, 
which methods did they use, which questions were they interested in and why? How 
and why was the theory of convex sets developed through Minkowski’s work?5 

3 See e.g. Bonnesen and Fenchel (1934), Klee (1963). 
4 See Hashagen (2003, p. 245). 
5 See Kjeldsen (2008, p. 60) and Kjeldsen (2009, pp. 85–86).
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These questions, among others, led to the following problem formulation (Kjeldsen 
2009, pp. 85–86): 

1. How and why did the concept of convex bodies emerge in the two trajectories of 
mathematical research of Brunn and Minkowski, respectively? 

2. Why did Minkowski’s strand of research lead to the development of a theory of 
convexity – in contrast to Brunn’s? Were the differences crucial for the object 
they studied and for what it could be used for and lead to? 

Answers to such questions, explaining differences in research practices and under-
standing whether such differences are significant or not, can be reached by analyzing 
concrete mathematical activities within the mathematical practices in which specific 
mathematical knowledge is produced. In this case, it can be reached by studying the 
mathematical activities of Brunn and Minkowski from the practice of mathematics 
guided by the research questions. 

Historiographical tools that are well suited to dealing with history of mathematics 
research that is focused on mathematical activities from the perspective of the 
actors, their projects, motivation and wishes studied through the lens of their math-
ematical practices, are the notions of epistemic objects and techniques. They have 
been adapted into historiography of mathematics by Epple (see e.g. Epple 1999) 
from Hans-Jörg Rheinberger’s methodological framework of epistemic things and 
technical objects (Rheinberger 1997). They are elements of what Rheinberger calls 
experimental systems, which he defines as the smallest working unit of research. 
Rheinberger developed his framework for investigating experimental practices of 
molecular biologists and, as Epple explains, even though at first sight the notion 
of technical object might not seem to play a role in mathematical research except 
perhaps for calculating (and measuring devices, surface models etc.) and thereby 
also might not seem to be generally applicable for historians of mathematics, that 
is not the case (Epple 1999, p. 15). Rheinberger’s notions of epistemic things and 
technical objects are not meant to be taken as stable entities belonging to theory and 
experimental practices, respectively, but are given a functional meaning. With this 
in mind, Rheinberger’s notion of technical object can be adapted to mathematical 
research where there also is a “technical machinery”, as Epple explains, of various 
mathematical techniques involved in concrete mathematical research activities. To 
circumvent the association with material machinery, Epple suggests that we in 
history of mathematics talk about epistemic techniques instead of technical objects. 

The notions of epistemic objects and epistemic techniques can distinguish 
between how problem-generating and answer-generating elements of particular 
research episodes function, interact and change in concrete episodes of mathemat-
ical research of a specific mathematician or group of mathematicians. They make 
processes in research practice visible. They can capture dynamics of knowledge 
production, and as such, they are suitable tools for providing answers to the kind of 
historical research questions formulated above. 

Brunn wrote his inaugural thesis About Ovals and Egg-surfaces in 1887 at the 
Ludwig-Maximilian University of Munich. At that time, a transition from empirical-
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intuitive to formal-deductive mathematics was taking place.6 Brunn’s thesis belongs 
to the empirical-intuitive tradition. In his thesis, he set out to perform what he 
called “elementary geometrical investigations of a special kind of real curves and 
surfaces – oval and egg surfaces” (Brunn 1887). By which he understood what we 
today recognize as convex bodies in two and three dimensions. He defined an oval 
as a closed plane curve that has two and only two points in common with every 
intersecting straight line in the plane, and a full oval as an oval together with its 
inner points. He defined what he called egg-surfaces and egg-bodies in a similar way 
as the corresponding spatial objects. These, Brunn wrote in his thesis, are objects 
whose properties were unknown and they generate questions. He asked questions 
and initiated investigations of curvature, area, volume, cross-sections and extremal 
properties of these objects. 

The questions that Brunn could ask, depended on his epistemic techniques, the 
tools with which he investigated the objects. This will be spelled out more clearly 
below in the comparison with Minkowski’s work. Brunn was devoted to what 
he called “Steiner’s methodology” of geometry, for which he gave the following 
reason: 

I [Brunn] was not entirely satisfied with the geometry of that time which strongly stuck to 
laws that could be presented as equations quickly leading from simple to frizzy figures 
that have no connection to common human interests. I tried to treat plain geometrical 
forms in general definitions. In doing so I leaned primarily on the elementary geometry 
that Hermann Müller, an impressive character with outstanding teaching talent, had taught 
me in the Gymnasium, and I drew on Jakob Steiner for stimulation. (Brunn 1913, p. 40) 

Brunn is referring to a nineteenth century controversy between the synthesists 
and the analysists, he himself siding with the synthesists – being of the opinion that 
synthesis was the proper way to argue in geometry. 

Minkowski came to define convex bodies from a very different direction – it came 
out of his work on the so-called minimum problem for positive definite quadratic 
forms in n variables. In a resumé of a talk “Über Geometrie der Zahlen” which 
he presented in 1891, he introduced the three-dimensional lattice as a collection of 
points with integer coordinates in space with orthogonal coordinates, in which he 
considered, as he wrote, “a very general category of bodies” that: 

are constructed in such a way that they circumscribe a particular lattice point – for instance 
the origin – in a certain way. . . .  [it] consists of all those bodies that have the origin as 
middle point, and whose boundary towards the outside is nowhere concave. (Minkowski 
1891/1911, pp. 264–265) 

At first, Minkowski’s epistemic objects were bodies of a certain shape and they 
were at the outset connected to lattice points. 

Two years later, in a talk where he presented an outline of his forthcoming book 
Geometrie der Zahlen, he introduced what he called the radial distance, S(a, b),

6 See Toepell (1996) and Hashagen (2003). 
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between two points a, and b, and its corresponding “Eichkörper”, S(ou) ≤ 1, which 
we recognize as its unit ball. If the triangular inequality holds, he argued, its 

“Eichkörper” then has the property that whenever two points u and v belong to the 
“Eichkörper” then the whole line segment uv will also belong to the “Eichörper”. On the 
other hand every nowhere concave body, which has the origin as an inner point, is the 
“Eichkörper” of a certain “einhellig” radial distance [i.e. a radial distance for which the 
triangular inequality holds]. (Minkowski 1893/1911, pp. 272–273) 

The manuscript for Minkowski’s talk clearly shows that he had realized by then 
that the essential property for his proof on the minimum theorem is the property of 
convexity, most notable in his famous lattice point theorem: 

If the Eichkörper for an “einhellig” and reciprocal radial distance has volume J ≥ 23 then 
the Eichkörper contains a lattice point in addition to the origin. 

[ . . . ]The hereby gained theorem about nowhere concave bodies with middle point 
seems to me to belong to the most fruitful in the whole of number theory. (Minkowski 
1893/1911, p. 274) 

With the lattice point theorem, Minkowski connected the volume of nowhere 
concave bodies with points with integer coordinates – and in his book on geometry 
of numbers from 1896, he developed his theory in n dimensions. The concepts 
of radial distance, Eichkörper, nowhere concave bodies and the lattice, which he 
introduced, came out of his work on the minimum problem for positive definite 
quadratic forms in n variables – and enabled him to prove the minimum theorem 
in a simple and elegant way using geometrical intuition. In his memorial speech for 
Minkowski, Hilbert named this method ofMinkowski’s “a pearl of theMinkowskian 
art of invention” (Hilbert 1909/1911, p. XI) – and no wonder, with this work, 
Minkowski moved number theory into a new epistemic place that led to a new 
research field, Geometry of Numbers, and to his beginning the further development 
of a theory of convex sets.7 

Following Minkowski’s line of work that led him to crystalize the concept of 
convex bodies by analyzing his papers, using the historiographical tools of epistemic 
objects and techniques, a process becomes visible. At first, Minkowski investigated 
positive definite quadratic forms in n variables. These were the epistemic objects. 
Regarding epistemic techniques, initially he set out to investigate the minimum 
problem using a geometrical interpretation of positive definite quadratic forms and 
analytic geometry. This technique was not so well understood at the time: there was 
a sketch produced by Gauss for the case of two variables and a work by Dirichlet 
for the case of three variables. Minkowski developed the technique for n variables, 
introducing the n dimensional lattice. This then became a new epistemic object 
under investigation, leading Minkowski to introduce further objects: a nowhere 
concave body with middle point; the radial distance with which he generalized 
the notion of distance; the Eichkörper. These were fundamental objects in the 
geometrical technique that he was developing for his number theoretical studies – 
they constituted the proof-technique.

7 For details, see Kjeldsen (2008, 2009). 
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Tom Bonnesen and Werner Fenchel, as they presented their subject in the 
introduction to their monograph on convex bodies, in 1934, considered Brunn’s 
egg-forms and Minkowski’s nowhere concave bodies to correspond to each other – 
as universal, de-contextualised mathematical entities (Bonnesen and Fenchel 1934). 
However, if we view and compare these objects and how they were treated by Brunn 
and Minkowski, we might ask: did they in practice investigate the same objects? 

Brunn’s egg-forms were abstractions of shapes of material objects in space, 
an interpretation that is supported by the names he gave them, which come from 
everyday experiences such as oval drawings and egg shapes. Minkowski’s bodies 
which, in the beginning, were described as nowhere concave towards the outside 
and surrounding the origin in a certain way, were developed by Minkowski as a tool 
to investigate the minimum problem. They were interpreted as “measure” bodies, 
which he constructed through a radial distance function, and they constituted a major 
part of his proof-technique. Minkowski’s nowhere concave bodies did not emerge 
from material objects – they were dictated by positive definite quadratic forms in n-
variables and their ability to measure distance, hence they “lived” in n-dimensional 
manifolds. 

Within the framework of a multiple perspective approach to history of math-
ematics with a focus on specific episodes of mathematicians’ development of 
mathematical knowledge, the notions of epistemic objects and techniques are useful 
tools in the historiography of mathematics in the sense that they provide a frame-
work to analyze the dynamics of knowledge production in concrete mathematical 
practices. The framework helps us to understand and “see” the embeddedness 
of mathematical, epistemic objects in the epistemic techniques used in particular 
research episodes, and how, in concrete mathematical research activities, the 
conception of a mathematical object and the way it develops and crystallizes 
is embedded in mathematical practice. In relation to the case of Brunn’s and 
Minkoski’s research regarding the development of general convex bodies, we saw 
that the questions that Brunn and Minkowski could ask depended on the epistemic 
techniques by which they investigated their objects. Brunn could not have asked the 
question of how large the volume of an egg-body must be for it to have a lattice 
point. He had no lattice and no tools to link the volume of an egg-body to spatial 
points with integer coordinates. The object, and what one can do with it, depends on 
the epistemic techniques that are available to us – to the specific actors in question. 
The ability to shed light on this and its significance for the historical development of 
mathematics from its practices makes epistemic objects and techniques useful tools 
in the historiography of mathematics.
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1.5 The Significance of World War II for the Developing 
of Mathematical Programming 

The second example is from the development of mathematical programming – 
or mathematical optimization, which the Society of Mathematical Programming 
changed the name of the society to in 2010.8 It is concerned with theories and 
techniques for how to minimize or maximize a real function subject to (inequality) 
constraints on the variables. The so-called Diet Problem of selecting a set of foods 
that will satisfy specific requirements of daily uptake of vitamins, at minimum 
cost, is an example of a linear programming problem, where all the involved 
functions (the one to be optimized and the functions describing the constraints) are 
linear functions. Its key theoretical results circle around duality theorems. In the 
USA, mathematical programming developed in connection with the Second World 
War.9 At a first glance, focusing on these two aspects, duality and World War II, 
might seem to call for an internal and external historical investigation respectively. 
However, using a m-perspective approach with the perspective of the actors as the 
point of departure and guided by the research questions formulated below, illustrates 
how in this case the historical investigation moved beyond the internal/external 
division and provided opportunities to explore interactions between the creation of 
mathematics and (some) conditions for its development in a broader socio-economic 
context. 

Among others, the research questions that guided the historical investigations 
and analyses were: 

1. How did ideas of duality emerge in linear programming? What role did they play 
for the development of mathematical programming? 

2. What role did the military play for the emergence and development of math-
ematical programming and what influence did it have on the establishment of 
mathematical programming as a research area? 

A linear programming problem is a finite dimensional optimization problem of 
finding the maximum or minimum of a linear function subject to linear inequality 
constraints. To such a problem, one can formulate a similar problem, called the dual 
problem, using the same data. If the original problem, called the primal problem, is 
a maximum problem, the dual is a minimum problem, and vice versa. The duality 
theorem states that if one of the two problems, the primal or the dual, has a finite 
optimal solution, so does the other one, and the optimal values are equal. 

In the USA, George B. Dantzig (1914–2005) was one of the protagonists. He 
worked during the Second World War at the US Air Force’s Combat Analysis 
Branch of Statistical Control. He worked on calculation of what they called a

8 See the webpage of the society http://www.mathopt.org/ 
9 Similar ideas were published by the Russian economist and mathematician Leonid V. Kan-
torovich in 1939, see Kantorovich (1939/1960) and  Leifman (1990). 

http://www.mathopt.org/
http://www.mathopt.org/
http://www.mathopt.org/
http://www.mathopt.org/
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program. An Air Force program was a tool for logistic planning of operations and 
activities. According to Dantzig, it took more than 7 months to construct a consistent 
program (Dantzig 1982). After the war, Dantzig was re-hired by the Air Force to 
work on how to speed up the construction of programs. However, the advent of 
the computer opened up the possibility of calculating not only consistent programs, 
but also the least expensive one. That changed the focus of the work, and Dantzig 
and his group developed a mathematical model for the Air Force problem – the 
minimization of a linear form subject to linear inequalities. Today we recognize this 
as a linear programming problem. 

To discuss how to solve such a programming problem, Dantzig consulted John 
von Neumann (1903–1957), who, besides being a professor at the Institute for 
Advanced Study at Princeton University in the USA, also held consulting jobs for 
the military in the post-war period. On one of these visits to Princeton, Dantzig met 
Albert W. Tucker (1905–1995), who was a professor at the mathematics department 
at Princeton. The Office of Naval Research, who was a major player for funding 
of research in the USA in the years after WWII, funded a summer project to 
explore the mathematics. Tucker became principal investigator of the project and 
two younger mathematicians, Harold W. Kuhn (1925–2014) and David Gale (1921– 
2008) worked initially with Tucker within the project. Their first results, which 
included existence and duality theorems for linear programming, were derived in 
1949. 

Gale, Kuhn, and Tucker’s results were published in 1951 in the proceedings 
of a conference, which is now thought of as the “zero’s” conference on linear 
programming (Gale et al. 1951). Their paper was the first publication of duality 
theorems in linear programming which explains Tucker’s surprise, when Dantzig 
in his text book on linear programming of 1963, ascribed duality to von Neumann 
and not to Tucker and his group. Dantzig’s answer was “because he [von Neumann] 
was the first to show me” (Dantzig 1982, p. 45). Dantzig further explained that von 
Neumann did so when they had met together in the fall of 1947. Dantzig has a longer 
description of what went on at that meeting in his recollections from 1982. Von 
Neumann had just a few years earlier finished a book on game theory together with 
the Austrian economist Oscar Morgenstern. According to Dantzig, at their meeting, 
von Neumann outlined a theory for the Air Force problem analogous to the one he 
and Morgenstern had developed for games, and he conjectured that the Air Force 
problem is equivalent to a two-person zero-sum game (Dantzig 1982, p. 45). 

Dantzig’s description of what went on was written two decades later and cannot 
be taken at face value. Recollections are reconstructions that are influenced by later 
events, personal developments and reflections. However, that does not mean that 
they are not valuable sources in historical investigations. They can reveal essential 
things that are relevant for the historical study at hand. In the present case, where 
the focus is on the duality theorem and the significance of the military involvement 
in the mathematicians’ research on linear programming, Dantzig’s description 
reveals several links in a concrete communicative situation, links between actors, 
institutions, mathematics and circumstances of the time. There is a link between 
two mathematicians, between a professor in academia and a mathematician working
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in the Air Force, which was brought about because of WWII and the involvement 
and organization of civilian scientists for the war effort in the USA.10 There is a 
link between the Air Force problem and games, and the underlying mathematical 
theories of linear inequality and convexity. There was a sharing and transmission of 
knowledge across various institutional boundaries – all of it conditioned by WWII 
and the post-war organization of science support in the USA. 

John von Neumann was probably the only one who could have made the 
connection between game theory and linear programming at that time.11 The 
involvement of game theory was important both internally at the mathematically 
theoretical level and externally for the focus on these two subjects in the post-war 
military funding of mathematical research.12 

Mina Rees (1902–1997) was another important actor for the early development 
of mathematical programming in the USA. She had served as a technical assistant 
to Warren Weaver during the war, and in the post war-period, she was head 
of the Office of Naval Research’s mathematics program. She wrote about the 
establishment of a separate Logistic Branch in the Office of Naval Research because 
of the possibilities that some of the mathematical results of linear programming 
“ . . .  could be used by the Navy to reduce the burdensome costs of their logistics 
operations”. This, she concluded “ . . .  has proved to be a most successful activity 
of the Mathematics Division of ONR, both in its usefulness to the Navy, and in 
its impact on industry and the universities” (Rees 1977, p. 111). So while the 
involvement of Tucker seems to have been almost a coincidence, the establishment 
of the Office of Naval Research logistic program and the funding of mathematical 
programming was not. This was rather because of a deliberate strategy on behalf 
of the Office of Naval Research to promote and to some extent control scientific 
research in the post-war period. 

The research moved into academia through the project funded by the Office of 
Naval Research and the connection to von Neumann and his work. Tucker and 
Kuhn continued working on mathematical programming, funded in the beginning 
by the Office of Naval Research and later by the National Science Foundation 
(NSF) of the USA. In 1949, they tried to extend the duality result for linear 
programming to the nonlinear case, and the following year they presented their 
results in a talk entitled Nonlinear Programming, which they gave at the Second 
Berkeley Symposium on Mathematical Statistics and Probability and published in 
the proceedings (Kuhn and Tucker 1950). They did not succeed in deriving a duality 
result in the paper,13 but they proved the now famous Kuhn-Tucker conditions 
for nonlinear programming. An analysis of their paper, however, suggests that the

10 See for example Owens (1989), Schweber (1988), Zachary (1997). 
11 For an elaboration of that, see Kjeldsen (2000, 2001, 2003, 2009). 
12 See e.g. Leonard (1992) and Mirowski (1991). 
13 The first duality result for nonlinear programming is due to Werner Fenchel (1953), see Kjeldsen 
(forthcoming-a). 
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duality result for linear programming was in fact their motivation for extending the 
field on linear programming into nonlinear programming.14 

All the way through, the historian’s (i.e. my) underlying perspective of driving 
forces in historical developments of mathematics, studied from the perspective of 
the actors’ motivations and opportunities to engage in this kind of mathematics, 
guided by the research questions above, has illustrated that internal and external 
factors interacted in crucial ways. These interactions were significant for the field 
of mathematical programming, both for its theoretical development and for its 
establishment as a mathematical sub-discipline. 

1.6 Rashevsky and “The Power of a Superman” 
for Developing Mathematical Biology 

The final example includes a perspective of interdisciplinarity with respect to prac-
tices of scientific research and the establishment of new interdisciplinary research 
fields with mathematics. It concerns the Ukrainian scientist Nicolas Rashevsky’s 
(1899–1972) early work in bringing mathematics to biologists to create a physico-
mathematical foundation for biology. Trained as a theoretical physicist, his hope was 
that mathematics could do for biology what it had done for physics. It turned out 
not to be so easy to convince biologists of the usefulness of mathematics in biology. 
My perspective for the piece of research presented here was interdisciplinarity, the 
move of mathematics as a scientific practice into other sciences and the creation of 
new interdisciplinary research fields – here the beginning of mathematical biology. 
The research was guided by questions of how Rashevsky argued for and viewed 
the epistemic role of mathematics in biology, and the emergence of mathematical 
modeling in biology. Rashevsky ran into problems in his encounters with biologists, 
and his early work on cell division and his philosophical ideas have been analyzed 
by taking his motivation and goals into account, as well as his perception of the role 
of mathematics as a method to gain knowledge in biology. 

Rashevsky immigrated to the USA in 1924, to Pittsburg where he worked at 
the research department of Westinghouse Electric and Manufacturing Company. 
While he was there, he did research in the dynamics of colloid particles and the 
division of drops, drawing an analogy to cell division, but being well aware that just 
because there are some similarities, a biologist would never assume that the exact 
same phenomenon occurs in cells. However, he claimed, “the observation of such 
a “model” justifies the more general assumption, that some kind of variation of the 
surface tension of the cell, probably of a much more complicated nature, may be 
responsible for the cell-division” (Rashevsky 1931, pp. 143–144).15 

14 See Kjeldsen (2000). 
15 Rashevsky was neither the first one to suggest this analogy nor the first person to attempt to 
introduce mathematical and physical methods into biology, see e.g. (Israel 1993; Keller  2002).
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In 1934, he received a Rockefeller Fellowship that took him to the University of 
Chicago where he worked on bringing mathematical methods to biology. The time 
was favorable for Rashevsky’s vision. Warren Weaver, who was the director for 
the Natural Sciences of the Rockefeller Foundation, was very much in favor of the 
Foundation undertaking “a long-range program of support of quantitative biology – 
a program that would seek to apply to outstanding problems of biology some of the 
methods and machines that had been so successful in the physical sciences” (Rees 
1987, p. 501). 

Rashevsky was critical towards the experimental practices of biologists. In a 
paper in Nature in 1935, he explained why and emphasized the crucial role he 
thought mathematics had to play: 

. . . our experiments do not and cannot reveal those hidden fundamental properties of 
Nature. It is through mathematical analysis that we must infer, from the wealth of known, 
relatively coarse facts, to the much finer, not directly accessible fundamentals. (Rashevsky 
1935, p. 528). 

The way to proceed, according to Rashevsky, was through what he called “paper 
and pencil” models. We do not have to actual build a model, he wrote in a paper 
in Physics from 1931, we can satisfy ourselves “by investigating mathematically, 
whether such a model is possible or not. [..] The mathematical method has a greater 
range of possibilities, than the experimental one, the latter being often limited by 
purely technical difficulties.” (Rashevsky 1931, p. 144) 

The thought that mathematics could or should play a role in biology was not 
foreign. When the biologist Reginald G. Harris took over as director of the marine 
biology teacher-training laboratory, the Cold Spring Harbor Laboratory at Long 
Island, New York, he gathered mathematicians, physicists, chemists and biologists 
for research symposia on quantitative biology. Rashevsky participated in 1934 with 
a paper on cell division. He presented his work to date on his mathematical model for 
cell division, which he had worked on and published in a series of papers, extending 
and developing the model. In the paper he presented at the symposium, he began by 
asking if we need to assume some special independent mechanisms to explain cell 
division. His opinion was, no, cell division can be explained as a direct consequence 
of the forces arising from cell-metabolism. 

He calculated the forces, acting on a unit volume, which is produced in a cell 
by a gradient of concentration of a substance due to metabolism. He idealized 
cells as homogenous and spherical. With these assumptions, he was able to deduce 
that when the radius of a cell reached a critical seize, division of the cell would 
decrease the free energy of the system. With reference to the principle of free 
energy, he took this, not as a definite explanation of cell division, but as a proof 
of a possible explanation, and concluded that cell division can be explained as a 
direct consequence of the forces arising from cell metabolism. (Rashevsky 1934) 

The discussion following the talks at the symposia is published in the proceed-
ings, and it captures the biologists’ reaction to Rashevsky’s model. They were quite 
critical, “What is the nearest example in nature to this theoretical case?” they wanted 
to know, continuing with a dismissal because, in their opinion “ . . .  it doesn’t help
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as a general solution, because a spherical cell isn’t the commonest form of cell.” 
(Rashevsky 1935, p. 198) 

In the introduction to the first edition of his monograph Mathematical Bio-
physics: Physico-Mathematical Foundations of Biology from 1938, Rashevsky 
addressed this “problem of reality”, which he was faced with from the biologists, 
writing in a way that indicates that he was losing his patience: 

We start with a study of highly idealized systems, which at first may even not have any 
counterpart in real nature. This point must be particularly emphasized. The objections may 
be raised against such an approach, because such systems have no connection with reality; 
and therefore any conclusions drawn about such idealized systems cannot be applied to real 
ones. Yet this is exactly what has been, and always is, done in physics. The physicist goes 
on studying mathematically, in detail, such nonreal things as “material points,” “absolutely 
rigid bodies,” “ideal fluids,” and so on. There are no such things as those in nature. Yet 
the physicist not only studies them but applies his conclusions to real things. And behold! 
Such an application leads to practical results – at least within certain limits. This is because 
within these limits the real things have common properties with the fictitious idealized ones! 
Only a superman could grasp mathematically at once all the complexity of a real thing. We 
ordinary mortals must be more modest and approach reality asymptotically, by gradual 
approximation. (Rashevsky 1938, p. 1, italic in the original) 

On one hand, there was a clash in scientific practice between Rashevsky’s 
physico-mathematical approach with an emphasis on theory and the biologists’ 
approach with an emphasis on collecting facts and performing experiments. These 
epistemological differences across the disciplinary boundaries functioned as con-
straints; there was no common ground for what was considered to be meaningful or 
useful knowledge between Rashevsky and his group and the biologists. On the other 
hand, there were social-economic factors at that time in the USA that promoted 
interdisciplinary research, especially the Rockefeller Foundation that supported 
Rashevsky financially.16 Retrospectively, the analogy of droplets did not work for 
the phenomenon of cell division. Rashevsky’s model failed to explain cell division. 
Michael Conrad evaluated the early work on mathematical biology in a piece on the 
history of the Society of Mathematical Biology as follows: 

that mathematical biology was not in a good repute [1970s], and theoretical biology was 
in the doghouse as well. [ . . .  ] This atmosphere was the natural aftermath of the truly great 
advances in molecular biology initiated in the fifties by the discovery of the significance 
of DNA. [ . . . ] a generation of theoretical “speculation” was being sent to the graveyard in 
body bags. (Conrad 1996, p. 8)  

Coming back to Rashevsky, his work – his activities to create a physico-
mathematical foundation for mathematical biology – is historically interesting even 
though his model for cell division failed. It exhibits various kinds of difficulties 
in interdisciplinary collaboration. It illustrates the uncertainty inherent in research 
at the frontier where new areas are explored and/or new methods are employed. 
Due to the focus on promoting interdisciplinary research and the funding he

16 For Rashevsky’s relationship with the Rockefeller Foundation, see Abraham (2004). For a 
scientific biography of Rashevsky, see Shmailov (2016). 
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received, Rashevsky was able to place mathematical biology on the agenda in the 
scientific community regarding both research and education.17 He also launched 
the first journal in the field The Bulletin of Mathematical Biophysics, which is now 
the official journal, renamed Bulletin of Mathematical Biology, of the Society of 
Mathematical Biology. 

1.7 Discussion and Concluding Remarks 

In history of mathematics with a problem-oriented research strategy, the product 
of research is a process of formulating questions and deriving answers. It goes 
together with a functional conception of sources in the sense that the function 
of a source is determined by the problem (or problem complex) the historian has 
decided to explore. This also means that the question of validation of such historical 
research hinges on the relevance of the chosen problem or problem complex. 
The historian must be able to justify the chosen research questions within the 
field of inquiry. In the problem-oriented project organized pedagogical model of 
teaching and education in the Roskilde Model (Andersen and Kjeldsen 2015a, b), 
the exemplary principle (for the sciences in the sense of Wagenschein) has been the 
answer. This can also function as the answer for research. The questions – or the 
exemplars – one chooses to answer, or investigate, must be an exemplar that shed 
light and gives insights into relevant issues in the field. 

We will look at the three cases above one by one. The first case might in some 
sense be taken as representative for some aspects of twentieth century mathematics, 
namely the move into an autonomous enterprise. Minkowski generalized concepts 
that he envisioned through geometrical intuition, into n-dimensional space in order 
to be able to use them to solve number theoretical problems – most notably the 
minimum problem for positive definite quadratic forms. Minkowski conducted what 
we can call interdisciplinary work within mathematics, by developing a geometrical 
method to deal with number theory. In this endeavor, he crystalized the concept of a 
general convex body in a process of connecting different mathematical disciplines – 
this gave rise to the new mathematical research fields of geometry of numbers 
and the theory of convexity. The former he developed in his book Geometry of 
Numbers and the latter he began to develop in manuscripts that he did not have 
the time to publish before he died in 1909 at the age of 45. They were found 
after his death among his papers and published in his collected works. The contrast 
between Minkowski’s and Brunn’s work, and especially the very different impact

17 See Kjeldsen (2019). For a discussion of the significance of the case of Rashevsky for teaching 
in mathematics education, see Kjeldsen (2017), Kjeldsen (forthcoming-b), Jessen and Kjeldsen 
(2021). 
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their various strands of research had on further developments in mathematics, sheds 
light on some characteristics for the growth of mathematics.18 

The second case is an exemplar of how conditions, or one might say, urgency, 
in society might influence the development of mathematics, together with more 
internal developments of mathematics. The realization of the connection between 
linear programming and game theory sparked the idea of looking for duality 
results, so here again we see the fruitfulness of interdisciplinary research within 
mathematics as such. However, in this case we also see a significant influence from 
society outside of mathematical institutions. The connection between the two fields 
and their further developments were realized and promoted during the war because 
of the organization of civilian scientists for the war effort in the USA. After the 
war, the connection was maintained through the roles these scientists played in 
various advisory boards and the continuing military support for research in game 
theory and mathematical programming in the universities and in agencies such as the 
Rand Cooperation, funded among others by the Office of Naval Research. Through 
these connections and funding, the Air Force programming problem moved into 
academic mathematical research in the universities and became a research object of 
mathematicians working in academia. 

The two cases of convexity theory and mathematical programming are further 
connected, in the sense that Werner Fenchel developed the first duality theorem for 
nonlinear programming during a sabbatical in the USA. He met Albert Tucker when 
he (Fenchel) was visiting the Institute for Advanced Study at Princeton. Fenchel was 
the leading expert on the theory of convex bodies, and by then the significance of 
convexity theory had been recognized among the people working in mathematical 
programming. Tucker invited Fenchel to prolong his stay in Princeton and to give 
a lecture course in convexity. Fenchel’s famous lecture notes Convex Cones, Sets 
and Functions (Fenchel 1953) from this course, which were published in 1953, is a 
classic in mathematical programming literature. 

The third case is an exemplar of how conditions within the sciences, what is 
deemed important in academia at large, and in society, have a significant influence 
on what kind of research is being developed. On one hand, it is an exemplar of issues 
that arise and become important when mathematics emmigrates, so to speak, into 
other sciences and tries to promote a different (mathematical) way of knowledge 
production, along with non-disciplinary issues of funding from the surrounding 
society. On the other hand, it is an exemplar of how mathematical modelling can 
serve as a research tool at the frontier of science as well as an explorative tool in the 
sense of Axel Gelfert (see Gelfert 2018). 

Taken together, the three cases are meant to be in some sense exemplars for 
research questions addressing internal mathematical, external societal and external 
(to mathematics) epistemological factors. They illustrate how such factors might

18 The case was used in connection with philosophical ideas regarding the growth of mathematics 
of how new objects are introduced into mathematics and how we are able to reason with new 
objects, see Kjeldsen and Carter (2012). 
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be intertwined in the emergence and developments of new mathematical objects, 
theories and interdisciplinary areas of research. As such, the studies presented in 
this paper contribute to our understanding of how mathematics, as developed and 
cultivated by people, and conditions of a particular time and place interfere in the 
history of mathematics – brought about by a problem-oriented multiple perspective 
approach. 
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Chapter 2 
Mathematics, History of Mathematics 
and Poncelet: The Context of the Ecole 
Polytechnique 

Bruno Belhoste and Karine Chemla 

Abstract Jean-Victor Poncelet (1788–1867) is known as a geometer whose mathe-
matical contributions were crucial for the development of what would later become 
projective geometry. In this chapter, we focus on his practice of mathematics, and 
notably on the fact that Poncelet systematically intertwined mathematical activity 
with both historical and philosophical reflections about mathematics. Indeed, many 
practitioners of mathematics at the time, most of whom Poncelet was in contact 
with, also conducted historical work on mathematics and wrote on the philosophy 
of mathematics. However, we argue that, in this context, Poncelet’s practice of 
mathematics was unique, being characterized by an intimate interrelation between 
these three fields of inquiry. Our aim here is more specifically to shed light 
on the shaping of Poncelet’s practice. We suggest that his training at the École 
Polytechnique, between 1807 and 1810, played an important role in this respect. 
Our argument unfolds in three main steps. We point out characteristic features of the 
training of students at the École Polytechnique that, in our view, left a hallmark on 
Poncelet’s mathematical practice. We particularly bring to the fore the importance 
given to collective work and to reading in students’ learning (Part 2). In this respect, 
two aspects were instrumental: the constitution of a collection of books at the library 
of the École—which aimed to be a collection of reference for “the arts and the 
sciences”—and the production of historical works that relied on this collection and 
were thought to be useful for the learning and the advancement of mathematics (Part 
3). Lastly, we focus on the journal established at the École in 1804, Correspondance 
pour l’École Polytechnique à l’usage des élèves de cette école, which reflects several 
aspects of the life at the École. We argue that the journal gives clues about how, like 
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teachers, students were encouraged to practice mathematics, in particular geometry, 
in relation to elements of their history (Part 4). This publication shows how this 
interest in history meshes with an emphasis on the comparison between methods. It 
also indicates that former students continued to practice mathematics in this way. 

2.1 Introduction: A Specific Mathematical Practice 

Of Jean-Victor Poncelet’s (1788–1867) mathematical works, several books as well 
as articles and manuscripts remain. The most famous of the books is undoubtedly 
the Traité des propriétés projectives des figures, whose first edition appeared in 
1822 and which arguably marks the beginning of projective geometry.1 Poncelet 
continued writing works on the topic until 1833. However, thereafter, absorbed by 
his occupations as a military officer, he devoted himself almost entirely to mechanics 
and machines, returning to geometry only shortly before his death.2 Indeed, in 1862 
and 1864, Poncelet, feeling the need to document the mathematical discoveries he 
had made during the first half of his life, published two volumes that made public 
manuscripts he had composed before the publication of his 1822 treatise. As its full 
title makes clear, (Poncelet 1862) contains in particular the text of seven notebooks 
written in 1813 and 1814, while he was held in Saratoff, after having been taken 
prisoner during a battle fought in Russia by the Grande Armée.3 As for (Poncelet 
1864), it brings together the manuscripts of articles that Poncelet had published 
prior to 1822 as well as letters he had exchanged with various protagonists at the 
time. Poncelet added notes to all these documents, in 1862 and 1864, respectively. 
Later, taking the opportunity of the publication of a second edition of the Traité des 
propriétés projectives des figures, “revised, corrected and with new annotations” 
(“revue, corrigée et augmentée d’annotations nouvelles”, Poncelet 1865), Poncelet 
added to the treatise a second volume that likewise made public manuscripts of 
articles published after 1822 as well as other unpublished documents, to all of 
which, again, he added annotations (Poncelet 1866). Perhaps even more important 
from a historical viewpoint, insofar as these sources shed light on the process of 
maturation that led to the 1822 treatise, (Poncelet 1864) further makes unpublished

1 (Poncelet 1822). Gray (2005) is devoted to this book. Gray (2007: 11–78) outlines the history of 
projective geometry in France in the first half of the nineteenth century, focusing in particular on 
Poncelet’s contributions. 
2 (Didion 1869: 49–59) gives a complete bibliography of Poncelet’s works that shows this shift in 
his publications. The reader will also find in this book a biography of Poncelet. 
3 Poncelet joined the Grande Armée on June 17, 1812, and the Russian army took him prisoner 
on November 18, 1812. (Didion 1869: 109, 116). He arrived in Saratoff in March 1813 and began 
his first notebook in April 1813 (Poncelet 1862: 1). Irina Gouzévitch and Dimitri Gouzévitch 
(1998) deal with this period of Poncelet’s life and also compare the remaining manuscript of the 
first notebook with the published text; (Belhoste 1998) offers a survey of Poncelet’s mathematical 
work in these notebooks. 
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drafts available in which, after his return from Russia to France in September 1814, 
we see the mathematician honing his reflections on geometry, during the moments 
of leisure that his life as an officer in Metz left to him.4 

What is striking in all these documents is what they reveal of the mathematical 
practice that Poncelet brought into play in his research. In particular, Poncelet’s 
works are full of references to authors of the past, whose works he discusses.5 More-
over, his mathematical developments are intertwined with philosophical reflections 
about mathematics, which are mainly related in one way or another to the issue of 
the relationship between geometry and analysis. These historical and philosophical 
reflections made a decisive contribution to the development of his theory of ideal 
elements, on which his entire projective geometry is based. 

For sure—and we return to this issue below—, other authors who belong to the 
same milieu as Poncelet, such as Charles-Julien Brianchon (1783–1864), also inter-
weave their mathematical works with historical developments. Moreover, at the time 
when Poncelet began to write about geometry, many practitioners were conducting 
their mathematical work in close connection with philosophical reflections. Suffice 
it to recall that, as early as 1813, a rubrique entitled “Mathematical Philosophy” 
appeared in the journal Annales de Mathématiques Pures et Appliquées that Joseph 
Diez Gergonne (1771–1859) launched in 1810. One of the first contributions in this 
rubrique was by Jacques Frédéric Français (1775–1833), who entered the École 
Polytechnique in 1797 and began to teach military arts at the École d’Artillerie et 
du Génie de Metz—precisely the École d’application in which Poncelet studied 
between 1810 and 1812, after his studies in Paris, at the École Polytechnique.6 

The following year, François-Joseph Servois (1767–1847), who had been one of 
Poncelet’s teachers at the Lycée de Metz in 1806 and was a friend of Gergonne, 
also published a contribution to this rubrique.7 What is more, the first article in the 
Annales de Mathématiques Pures et Appliquées whose title contained the cognate 
expression of “philosophy of mathematics” was published by “the editors,” in the

4 (Poncelet 1864: vi–vii). The war ended in June 1814, which put an end to Poncelet’s captivity 
and allowed him to leave Saratoff and reach Metz in September of the same year (Poncelet 1862: 
421, note date 1861; Didion 1869: 122, 124). 
5 This is less true of the Saratoff manuscripts, for reasons to which we return. The archives of the 
École Polytechnique keep many notes taken by Poncelet, on the basis of his reading of historical 
mathematical works. 
6 On Jacques Frédéric Français and his brother François (1768–1810), see (Taton 1970–1980a). 
Poncelet referred to the former as his teacher (Poncelet 1864: 107, 120, 593) and kept in touch 
with Jacques Frédéric after his return to Metz in 1814. He also commented on Français’s 1813 
publication (Français, 1813–1814, Poncelet 1864: 592–594, 197). Poncelet showed Français his 
drafts, and Français lent him precious books from the library of ancient books and manuscripts– 
notably mathematical–collected by Louis François Antoine Arbogast (1759–1803), which Français 
inherited. To get a sense of the scope of the library, see (Anonymous 1823). 
7 (Servois 1814–1815). On the relationships between the three men, see (Poncelet 1864: 32). 
Poncelet asserted that, as early as September 1814, he had communicated with Français about 
his Saratoff manuscripts, and shortly thereafter with Servois (Poncelet 1822: v–vi; 1864: 469). On 
Servois, see (Taton 1970–1980b). 
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second issue dated 1811–1812 (pp. 65–68), and it announced the publication of a 
book to which Poncelet would later refer: Józef Maria Hoëné de Wroński’s (1776– 
1853) Introduction to the Philosophy of Mathematics, which appeared in 1811 
(Wroński 1811). 

However, we argue that Poncelet’s mathematical practice not only articulates 
these three domains of inquiry—that is, mathematics, the history and the philos-
ophy of mathematics—with each other, but also attests to a much more intimate 
relationship between them than is demonstrated by these other practitioners.8 In 
this respect, Poncelet appears to be carrying out mathematical activity in a specific 
way, the closest match to it being Michel Chasles’s (1793–1880) practice as attested 
in the 1837 Aperçu historique sur l’origine et le développement des méthodes en 
géométrie.9 

In this essay, we aim to inquire into the shaping of this research practice. 
Our main focus will be to argue that the training Poncelet received at the École 
Polytechnique between 1807 and 1810 played a key role in the development of 
several facets of his mathematical practice.10 

Indeed, Poncelet entered the École Polytechnique in November 1807. However, 
falling seriously ill, in May 1808 he was authorized to return home. When he could 
go back to Paris, in October 1808, he had to repeat the first year of study (referred 
to as “second division”) at the École, starting the second year (“first division”) 
only in November 1809 and eventually completing his studies there in 1810.11 

Consequently, Poncelet was exposed to the teaching of a greater number of teachers. 
We will outline here only those who taught him mathematics during these years. 

The instituteur (teacher) in charge of teaching analysis to first-year students 
who started their studies in 1807 was Sylvestre-François Lacroix (1765–1843), 
whose lectures Poncelet thus followed.12 When Poncelet resumed studying in the 
first year in 1808, as well as during his second year (1809–1810), the analysis 
lectures were given by, respectively, André-Marie Ampère (1775–1836), and then 
Louis Poinsot (1777–1859) (Belhoste 2003: 252). In fact, during his first year at 
the École, Poncelet had already had Ampère as a répétiteur of Lacroix’s lectures.13

8 Somehow, Gergonne perceived the close intricacy between mathematics and philosophy that 
Poncelet’s work represents as well as the related depth of Poncelet’s contribution (Gergonne 
1826–1827). The fact that the text is part of the polemical exchanges between the authors about 
the priority dispute they had about duality should not overshadow Gergonne’s appreciation of 
Poncelet’s contribution. Poncelet (1866: 390–393) quotes this article in extenso. 
9 (Chasles 1837). As shown in (Chemla 2016), like Poncelet, Chasles developed a reflection on 
the reasons why analytical approaches to geometry had the virtues of generality and uniformity, 
aiming to find means of endowing geometrical approaches with similar virtues. His mathematical 
and philosophical endeavor was rooted in the historical reflection that he carried out on methods in 
geometry, starting from ancient Greek geometrical texts. 
10 On the establishment of the École Polytechnique, its early history as well as its international 
impact, see (Belhoste 2003). 
11 (Belhoste 1998). See also Poncelet’s testimony about his illness in (Poncelet 1866: 406). 
12 On this savant and his lectures of, as well as his treatises on, analysis, see (Caramalho 
Domingues 2008). 
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As for the other main lectures on mathematics, devoted to descriptive geometry 
and analysis applied to geometry, for the three years, Poncelet’s teacher was Jean 
Nicolas Pierre Hachette (1769–1834), who had assisted the creator of the discipline 
Gaspard Monge (1748–1818) from the very beginning of the École Polytechnique 
(Belhoste 1998: 12). 

In what follows, we will highlight characteristic features of the training of 
students at the École Polytechnique that, in our views, left a hallmark on Poncelet’s 
mathematical practice (Part 2). We will emphasize, in particular, the constitution of 
the collection of books at the library of the École and the production of historical 
works that relied on it (Part 3). We will then turn to the journal established by 
Hachette in 1804, Correspondance pour l’École Polytechnique à l’usage des élèves 
de cette école, which reflects several aspects of the life at the École that will prove 
important for us. We will argue that the journal gives clues about how students 
were encouraged to practice mathematics, and in particular geometry, in relation 
to elements of their history (Part 4). In another publication, we will argue that the 
lectures of analysis given at the École Polytechnique from the beginning might have 
encouraged a practice of mathematics in which historical and also philosophical 
reflections played an important role. 

Our contribution can be read from two different perspectives. In a sense, it sheds 
light on the shaping of Poncelet’s mathematical practice. Seen from another angle, 
it uses Poncelet as a witness to highlight the shaping, at the École Polytechnique, of 
a historico-mathematical culture in which Poncelet participated. 

2.2 The Shaping of the Training at the École Polytechnique 
and the Consequences for the Students 

2.2.1 Key Features of the Early École Polytechnique 
as an Institution 

Several documents attest to the fact that Monge played a major role in the conception 
of the École Polytechnique, which opened its doors at the end of 1794 under the first 
name of “École Centrale des Travaux Publics” (Belhoste 1994). For our purpose 
in this chapter, it will be useful to return to some aspects of the organization 
of the school, as described in the project of founding decree (projet d’arrêté)— 

13 On the lecture courses of analysis, see (Belhoste 2003, Chap. 8). (Caramalho Domingues 2008: 
403–422) reproduces several documents that shed light on the evolution of Lacroix’s lectures. A 
partial outline of the first year during which he taught (1799–1800, after Lagrange resigned) shows 
Lacroix relying on his Traité du calcul différentiel et du calcul intégral (three large volumes, 1797– 
1800). Starting in 1805 for the first year and in 1806 for the second year, Lacroix was teaching 
according to an official programme (pp. 417–420). His actual lectures for the first year (1805– 
1806) and for the second year (1806–1807) were summarized by an inspecteur des élèves so that 
they could be used by Ampère, when in 1808, the latter started lecturing.
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which Monge drafted and entitled “Institution de l’École Nationale des Travaux 
Publics”14 —as well as to the evolution of part of the initial project due to the 
circumstances. 

The founding decree placed the École under the orders of a director, assisted by 
two adjunct-directors. The teaching staff consisted of nine instituteurs. Altogether, 
with a secretary in charge of preparing the minutes of the meetings, they composed 
the Council, which met every 10 days, with the position of chair rotating among 
them every month.15 

Of relevance for our subject, in the original plan, the staff also included 
conservateurs (curators). For mathematics, a curator was in charge of models and 
drawings. However, more important to us will prove to be the curator in charge of 
the library, whose official duties were, according to the original idea, to “distribute 
classic and other books to students as well as to the teachers and to oversee access 
into the library” (Belhoste 1994: 55, document 4, clause XVI). To begin with, as the 
secretary’s duties fell to him, the librarian was also a member of the Council (Fourcy 
1828: 63). This latter feature of the organization remained true for decades, except 
between ca April 1, 1796 and June 19, 1797, when the functions of the secretary 
were distinguished from those of the librarian. The first two librarians were Pierre 
Jacotot (1755–1821), who resigned the 30 Germinal year III (April 19, 1795), and 
his successor François Peyrard (1759–1822), who remained librarian between the 6 
Floréal year III (April 25, 1795) and the 1 Frimaire year XIII (November 22, 1804) 
(Langins 1989). In the period during which the tasks of secretary were not fulfilled 
by the librarian, they were entrusted to Nicolas Halma (1755–1828).16 We return 
below to these three figures. The position of the librarian in the Council bespeaks an 
importance granted to the library in the school, which is essential for our argument. 

The founding decree further instituted the organization of the students, the 
rhythm of their days as well as the subjects they would study. Students would be 
divided into groups of 20 (brigades), led by a head (chef de brigade) chosen among

14 (Belhoste 1994: 37–58) reproduces this text as document 4 and establishes (pp. 10–13) that 
Monge completed it on ca. July 8, 1794. About 10 days later, a revision of the end of the text of the 
founding decree was put forward by Jacques-Élie Lamblardie (1747–1797), the then director of the 
École des ponts et chaussées (see document 6, pp. 66–70). Our page numbers for this article refer to 
the online version posted here: https://www.sabix.org/bulletin/b11/belhoste.pdf (accessed August 
15, 2022). The final decree was promulgated on the 6 Frimaire year 3 (November 26, 1794). In 
what follows, we rely on these documents. For a more nuanced account, we refer the reader to this 
article. 
15 At the time when Poncelet was a student, the Council had been divided into three different 
Councils. The institution corresponding to a similar composition as the initial Council was the 
Instruction Council (Conseil d’Instruction), responsible for “everything related to the teaching and 
the students’ study” (Belhoste 2003: 50). 
16 For the composition of the Council, see (Belhoste 2003: 52). Halma signed minutes of the 
Council as early as 12 Germinal year 4 (April 1, 1796) (Dooley n.d., vol.1: 189–190). (Dooley 
1994) publishes extracts of the minutes of the Council. However, we draw on (Dooley n.d.) in  
two volumes, which reproduce the minutes extensively. (Fourcy 1828: 94, 125–126), respectively, 
outlines the function of the secretary and explains the circumstances and the date when both 
positions were merged. 

https://www.sabix.org/bulletin/b11/belhoste.pdf
https://www.sabix.org/bulletin/b11/belhoste.pdf
https://www.sabix.org/bulletin/b11/belhoste.pdf
https://www.sabix.org/bulletin/b11/belhoste.pdf
https://www.sabix.org/bulletin/b11/belhoste.pdf
https://www.sabix.org/bulletin/b11/belhoste.pdf
https://www.sabix.org/bulletin/b11/belhoste.pdf
https://www.sabix.org/bulletin/b11/belhoste.pdf
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the 20 oldest students of the whole promotion. To each of these groups, a specific 
study room would be allocated. This organization of the space corresponded to a 
conception of the learning process. To begin with, plenary lectures would be given 
to students at precise hours of the day. Immediately afterwards, specific times of 
the day would be set aside for the brigades to meet in their respective rooms and 
repeat the lessons just learnt, in a collective and active way, that is, by putting into 
practice the operations taught during the general course. In other words, a form of 
mutual teaching was implemented, the collective organization encouraging students 
to form small groups to engage with the subjects taught and to go beyond what 
they had seen in class. Poncelet (1862: 457) provides evidence of how he and the 
students who belonged to the same group in study room number 6 discussed better 
ways of solving questions and of making drawings in descriptive geometry than 
those published by the teacher.17 Below, we return to the type of work Poncelet 
conducted with other students. 

As for the topics, with respect to mathematics, the founding decree instituted 
descriptive geometry and analysis as the pillars of the training. The original plan 
distinguished between teaching the methods for an initial 3-month period and 
working on their application in the subsequent years. In the first 3 months, a com-
plete overview of the branches taught during the curriculum would be dispensed, 
analysis and descriptive geometry being given in separate sets of lectures. Monge 
had thought of Joseph-Louis Lagrange (1736–1813) for this analysis course.18 After 
this 3-month period, analysis would only be taught as applied to geometry and 
mechanics, whereas descriptive geometry would be applied to various domains 
of the arts. The impossibility of applying this scheme in practice quickly led to a 
rethinking of the program. An elementary lecture course in algebraic analysis was 
created while, for the first 5 years, Lagrange actually taught lessons in analysis, 
but as a complementary topic, during the holidays, and precisely in the library. 
Indeed, his lectures were optional, being in fact mainly followed by more advanced 
students and other teachers.19 What matters for us is that this teaching would lead 
to the publication of two books, Théorie des Fonctions Analytiques (1797) and 
Leçons sur le Calcul des Fonctions (1801), which would have a key influence 
on the subsequent shaping of the course of analysis at the École Polytechnique, 
when the topic was given more weight in the curriculum. On the other hand, as 
early as 1795, the lectures devoted to analysis applied to geometry were placed in 
the hands of those teaching descriptive geometry, with a significant consequence: 
students were thereby confronted with the differences between the geometrical and 
the analytical ways of dealing with the same topics—a theme dear to Monge’s heart, 
as shown from his lectures at the École Normale de l’an III (Belhoste and Taton

17 See also (Poncelet 1862: 460–461). 
18 What follows draws on (Belhoste 2003: 235–247). For a more detailed analysis, see also (Wang 
Xiaofei 2017, 2020). 
19 (Belhoste 2003: 237). See Jean-Guillaume Garnier’s (1766–1840) testimony, in an autobio-
graphical manuscript, published by Adophe Quetelet (1839: 171) 
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1992). The centrality of this issue for Poncelet’s reflections on geometry is difficult 
to underestimate. 

2.2.2 Focus on the Management of the Library 

As we have just mentioned, the presence of the librarian as a member of the Council 
suggests the significance attached to the library. In fact, many more clues indicate 
that in the original organization of the school, the library was given special attention. 

Already in the first text outlining the organization of the new school in 1794 
(document 2, Belhoste 1994: 29–30), the suggestion was made that a specific space 
be devoted to the library. This was an innovation in comparison with the École 
des ponts et chaussées,20 however, not one that would be specific to the École 
Polytechnique: after the Revolution, the École des Mines would adopt a similar 
institution, creating a library to supply teachers and students with the books needed 
for the training.21 The same holds true more generally for the Écoles Centrales—the 
new type of school that replaced the former colleges of the Old Regime (schools of 
secondary level). 

The importance that the library had for the Council can be seen from the 
following episode: In April 1796, when some of the workers constructing the school 
buildings stopped work on account of lack of funding, the Council decided that 
the remaining workers would concentrate on the three rooms for drawing and the 
library.22 

Issues related to the library were brought to the Council, and the minutes of its 
meetings highlight several facets of the use of the library. In March 1796, the chefs 
de brigades put forward a request to the Council, asking “to extend the days when 
the library was open”.23 In response, in a new regulation approved by the Council on 
November 18, 1798, new opening hours for the library were set.24 In the meantime, 
in July 1796, the Council allowed those among the chefs de brigade deserving the 
privilege to borrow books at 9 am—that is, outside the opening hours—, if and 
only if they gave them back before 2 pm so that all students could use them.25 The 
testimony of the Danish astronomer Bugge who visited the École Polytechnique

20 (Laboulais 2014: 54, n. 16), based on Nathalie Montel, Une revue des savoirs d’État. De la 
genèse à la fabrique des Annales des ponts et chaussées au XIXe siècle, Habilitation, 2008, p. 534. 
21 On the process of the constitution of the collection and the various uses of the library thereby 
constituted that actors developed, see (Laboulais 2014). 
22 In what follows, we will refer to the minutes of the Council meetings using the transcription 
carried out in (Dooley n.d.). Here, see the minutes of 28 Germinal year 4 (April 17, 1796), in 
(Dooley n.d.: 73). 
23 Minutes of the 22 Ventôse year 4 (March 12, 1796), in (Dooley n.d.: 187). 
24 (Dooley n.d.: 238). 
25 See the minutes of the 2 Thermidor year 4 (July 30, 1796), in (Dooley n.d.: 200). 
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in 1798 further suggests that many students consulted books in the library.26 The 
borrowing of books appears to have been active, since the Council regularly required 
that all books be returned.27 What is more, in 1797, we see the Council inviting 
readers to borrow books in small quantities and to avoid those that were of daily use 
in the library.28 

We might interpret this extensive use of the library as an application of a 
general pedagogical idea, put forward during the French Revolution. It consisted in 
replacing the students’ copying of the master’s courses by their reading textbooks— 
which motivated the establishment of school libraries. This project was the starting 
point of the École Normale de l’an III. Monge adopted this idea for the École 
Polytechnique. This appears clearly in a statement he put forward with respect to 
how books should be employed in the training provided at the École Polytechnique. 
On the 20 Pluviôse year 3 (February 8, 1795), he asserted during a Council meeting: 

We should make [students] copy no manuscript that can be printed or handed out. However, 
the students may be required to carry out, and even carry out correctly what the book teaches 
him to do, and the use he has made of the book may be judged by the manner in which he 
operates. The same holds true of certain drawings . . . .29 

One of the students who entered the École Polytechnique in 1801, Georges 
de Chambray (1783–1848), has left us an interesting testimony of some of the 
ways students used books. For him, oral lessons in mathematics were useless— 
by which he clearly meant lessons in analysis rather than in descriptive geometry. 
In his view, for this topic knowledge was thus acquired through an extensive use of 
books, sometimes requiring the help of the chef de brigade or discussions with other 
students of his brigade (Chambray 1836: 45–47). Chambray went as far as stating 
this: 

However, the distinguished students of the École Polytechnique derived a particular advan-
tage from this excess of work that they had given themselves when studying transcendental 
mathematics, and that was to have acquired the conviction that they could learn almost 
anything without a teacher, with the help of books alone.30 

Chambray entered the school a couple of years after Lagrange had finished 
teaching there, and yet he still remembered hearing that Lagrange’s lectures were

26 Quoted in Bradley 1976: 166). 
27 See, for instance, the minutes for the 8 Nivôse year 5 (December 28, 1796) and of the 8 Nivôse 
year 6, in (Dooley n.d.: 100, 112–113), respectively. 
28 Minutes of the 8 Nivôse year 6 (December 28, 1797), in (Dooley n.d.: 113). 
29 “Il ne faut faire copier aucun manuscrit que l’on peut faire imprimer ou distribuer; mais on peut 
éxiger (sic) que l’Elève éxécute (sic), et éxécute (sic) bien ce que le Livre apprend à faire, et l’on 
juge de l’usage qu’il a pu faire du Livre par la manière dont il opère. Il en est de même de certains 
[dessins] . . . ” (Dooley: 148) 
30 “Toutefois, les élèves distingués de l’École Polytechnique retiraient un avantage particulier de 
ce travail excessif, auquel ils s’étaient livrés en étudiant les mathématiques transcendantes, c’était 
d’avoir acquis la persuasion qu’ils pouvaient apprendre presque tout sans maître, avec le seul 
secours des livres.” (Chambray 1836: 54). 
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meant for the “advancement of science,” being (as a result, we would add) “not 
compulsory” (Chambray 1836: 22–23). The books which Chambray needed to 
understand the lectures on analysis that were part of the regular program were 
textbooks. Poncelet leaves a strikingly different and yet similar testimony about 
the way he uses books while he was a student at the École Polytechnique. Indeed, 
he recalls how together with “M. Guillebon, an excellent friend, an honest and 
innocent mind under a sickly shell (a weak body),” who belonged to the same 
study room as he did, he “worked, during recreation hours, reading Lagrange’s 
Calcul des Fonctions and Mécanique Analytique, and so on.”31 In his engagement 
with books, like Chambray, Poncelet thus adopted the method of collective work 
encouraged by the institution. However, instead of replacing oral lessons with 
books, he looked to research books—and precisely Lagrange’s books—for further 
development. Poncelet could most probably have found these books in the library.32 

The thesis that, at the École Polytechnique, Poncelet made, more broadly, an 
extensive use of the library is supported by several pieces of evidence in his writings. 
To begin with, in his foreword to the second volume of Applications d’analyse et de 
géométrie, we read 

It was above all during the winters of ( . . .  ) 1815 to 1820 ( . . .  ) that I was finally able to 
resume the course of my geometrical ideas and read the scientific books and journals of 
which I had been entirely deprived since I left the École Polytechnique.33 

Moreover, when, in the first volume, he gives an account of how he conducted 
his research at Saratoff, Poncelet makes his interest in scientific libraries explicit 
and further gives important information about what he read before the Russian 
campaign, notably at the École Polytechnique. His account, in which he speaks of 
himself in the third person, reads as follows: 

. . .  he had to painstakingly redo, so to speak, one by one, the elements indispensable to 
mathematical studies, deprived as he was of any book, of any precision instrument, both 
of which were difficult to obtain in this city of Saratoff, which was, moreover, devoid 
of scientific libraries at the time. One should not therefore expect to encounter here the 
reflection or the distant echo of the profound analytical works of scholars such as Euler, 
Bernoulli, Huygens, Newton, d’Alembert, etc., nor even of the more recent and no less 
admirable works of [scientists] such as Lagrange, Legendre, Laplace, Monge and their 
disciples—works that had left no trace in his memory in the midst of the perils and anguish 
of such an unfortunate beginning to his military career.

31 “ . . .  M. Guillebon, excellent ami, esprit droit et naïf sous une chétive enveloppe, avec lequel je 
piochais, pendant les heures de récréation, le Calcul des fonctions et la Mécanique analytique de 
Lagrange, etc. . . .  ” (Poncelet 1862: 457). 
32 (Bradley 1976:173–175 and related footnotes) suggests that in 1807, the École expected students 
to own their books and that it bought books in large numbers so that it could sell them to students 
at a reduced price. She reproduces lists of books thus bought. We find the Mécanique Analytique, 
but no other book by Lagrange. 
33 (Poncelet 1864: VII), our emphasis. “Ce fut surtout pendant les hivers ( . . .  ) 1815 à 1820 
( . . . ) que je pus enfin reprendre le cours de mes idées géométriques et prendre connaissance des 
livres et des journaux scientifiques dont j’avais été entièrement privé depuis ma sortie de l’École 
Polytechnique.” 
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The Author, who left the École Polytechnique in November 1810, (...) had little thought, 
in such an agitated life, of devoting himself to the abstract sciences. Reduced to his 
recollections of the Lycée de Metz and the École Polytechnique, where he had cultivated 
with predilection the works of Monge, Carnot and Brianchon, it must be acknowledged 
that he was unable to borrow anything from the last writings published before his return to 
France in September 1814.34 

In the notes added to his 1862 book—for instance in (Poncelet 1862: 143, 
311)—, Poncelet returns to the Saratoff period to express regret for the lack of 
correct acknowledgement of his predecessors’ works in his notebooks. He associates 
this problem with the conditions under which he was working at the time and refers 
to his 1822 treatise, in which he considers that he has settled the issue. This sheds 
light on one of the uses Poncelet associated with a library. 

These observations invite us to examine the sort of book that Poncelet and the 
other students could find in the library. 

2.3 Collecting Books for the Library and Working 
on the History of Mathematics 

2.3.1 The Constitution of the Library’s Book Collection 

In Monge’s draft for the founding decree, one of the essential duties of the school 
Council was to examine the books that would be used for the students’ learning 
(Belhoste 1994: 38, document 4, clause 25). Lamblardie’s revised write-up repeats 
this clause with slight modifications (Belhoste 1994: 70, document 6, clause 24). 
However, it adds emphasis on the Council’s responsibility with respect to books 
in a way that widens the use intended for them. Indeed, in the enumeration that 
this time lists the school Council’s primary duties, we read that one of its key 
attributions would be precisely “to choose the books and models of all kinds that 
could contribute most efficiently to the [students’] advancement and thus to order

34 (Poncelet 1862: IX), our emphasis. “ . . .  il dut refaire péniblement, et pour ainsi dire un à 
un, les éléments indispensables aux études mathématiques, privé qu’il était de tout livre, de tout 
instrument de précision, difficiles à se procurer dans cette ville de Saratoff, d’ailleurs dépourvue 
alors de bibliothèques scientifiques. On ne doit donc pas s’attendre à rencontrer ici comme le 
reflet ou l’écho lointain des profonds travaux analytiques des Euler, des Bernoulli, des Huygens, 
des Newton, des d’Alembert, etc., ni même des travaux plus récents et non moins admirables des 
Lagrange, des Legendre, des Laplace, des Monge et de leurs disciples, travaux qui n’avaient laissé 
aucune trace dans sa mémoire au milieu des périls et des angoisses d’un aussi malheureux début 
dans la carrière des armes. L’Auteur, sorti en novembre 1810 de l’École polytechnique, ( . . . ) ne  
songeait guère, dans une vie aussi agitée, à s’occuper des sciences abstraites. Réduit à ses souvenirs 
du lycée de Metz et de l’École polytechnique, où il avait cultivé avec prédilection les ouvrages de 
Monge, de Carnot et de Brianchon, on doit reconnaître qu’il n’a rien pu emprunter aux derniers 
écrits publiés avant sa rentrée en France, en septembre 1814.” In effect, the references that we find 
in the Saratoff notebooks are mainly to Monge, Carnot and Brianchon. 
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them or to approve them.”35 These documents confirm the emphasis the institution 
placed on the library. 

In application of the latter regulation, the minutes of the Council meetings 
regularly mention discussions about books and the opportunity to acquire them for 
the library. On 8 Frimaire year 4 (December 9, 1795), the Council approved the 
acquisition of a “list of several elementary books” put forward by the curator of 
the library Peyrard.36 It also validated the funding that Peyrard suggested using to 
this effect: In 1795, the school established the Journal de l’Ecole Polytechnique, 
whose sales generated profits that could be employed for the purchase of books. 
On 12 Frimaire year 4 (December 3, 1795), at the request of its author, the Council 
nominated two referees to examine a textbook for artillery by Durtubie, and twenty 
days later, on 2 Nivôse year 4 (December 23, 1795), the referees presented a report, 
in which they emphasized the book’s appropriateness for instruction and suggested 
“sending it to the competition for elementary books.”37 

Books given as gifts likewise had to receive the approbation of the Council. For 
example, on 8 Vendémiaire year 5 (September 29, 1796), the Council accepted 
Lesage’s gift of his brochure on elasticity, asking that “it be deposited in the 
library.”38 Similarly, it expressed its gratitude when, on 18 Brumaire year 7 
(November 8, 1798) and on 12 Floréal year 6 (May 1st, 1798), the curator Peyrard 
and the teacher Labey presented to the library, respectively, “a new edition of 
Bezout’s algebra, with additions” and “the part 2 of [Labey’s] translation of Euler’s 
Differential Calculus.”39 On the second complementary day of year 3 (September 
18, 1795), Monge presented a report on a miscellanea devoted to stereotomy, on 
the basis of which “the Council decided that it be deposited in the library.”40 Even 
La Peyrouse’s travel book that was sent by the Ministry of the Navy for the school 
library went through the Council, on 8 Vendémiaire year 5 (September 29, 1796).

35 Our emphasis. “ . . .  sur le choix des ouvrages et des modèles en tout genre qui pourront 
contribuer le plus efficacement à leur avancement et qui seront à ordonner ou à approuver.” 
(Belhoste 1994, document 6: 67, clause 4). 
36 (Dooley n.d.: 51). 
37 (Dooley n.d.: 175, 177, respectively). The book is Théodore D’Urtubie’s (1741–1807) Le 
manuel de l’artilleur, which had many editions—it has proved difficult to determine the date of 
the first edition, but the second dates from 1787. 
38 (Dooley n.d.: 95). This is probably a work by Georges-Louis Lesage (1724–1803), however we 
could not identify the actual title. 
39 (Dooley n.d.: 233, 220, respectively). The former book is part of Cours de mathématiques, 
à l’usage de la marine et de l’artillerie, par Bézout. Édition originale, revue et augmentée 
par Peyrard et renfermant toutes les connaissances mathématiques nécessaires pour l’admission 
à l’École Polytechnique. Its publication was carried out “chez Louis” in Paris, in 1798. The 
latter work is the second volume of Jean-Baptiste Labey’s (1752–1825) Introduction à l’analyse 
infinitésimale par Léonard Euler, traduite du latin en français, avec des Notes et des Éclaircisse-
ments par J. B. Labey, Professeur de Mathématiques aux Écoles Centrales du Département de la 
Seine. It was published “chez Barrois aîné,” in Paris and in 1796. 
40 (Dooley n.d.: 166). 
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On the same day, the Council further decided on the acquisition from its 
bookseller Bernard of a book on acoustics,41 and later “for the library, of the 
latest volumes from the Academy of Sciences.”42 Similarly, on 18 Frimaire year 
7 (December 8, 1798), the purchase of other journals was again decided for the 
library.43 In the Spring of 1796, the Council projected other costly acquisitions, 
such as Euler’s complete works, and on three occasions discussed how to secure 
this purchase from a financial viewpoint.44 An inventory of the collection and lists 
of books that were lacking were a part of reports that the Council would send to the 
Directoire as argument justifying a required budget.45 

On 12 Thermidor year 6 (July 30, 1797) the procurement of books had extended 
to Adrien-Marie Legendre’s (1752–1833) book “on the properties of numbers,” 
Lagrange’s “forthcoming memoir,” “Bossut’s Calcul différentiel et integral” and Le 
langage du calcul by Étienne Bonnot de Condillac (1714–1780).46 On 28 Nivôse 
year 7 (January 17, 1799), a long list of books was approved.47 The fact that 
it includes, in addition to textbooks in multiple copies and journals, Condorcet’s 
Manière de compter,48 Hougthon’s Voyage en Afrique and Linné’s Œuvres indicates 
that the library was no longer thought of as simply a support for the students’ 
learning. 

This is a conclusion on the evolution of the library that Luigi Pepe (1996) has 
drawn from an analysis of other channels—different from the commercial channels 
discussed above—through which books were sent to the library. Indeed, the bulk of 
the books that entered into the library had wholly different origins. 

When the École Polytechnique opened at the end of 1794, its library was for 
its main part constituted with a large number of books received from the library 
of the École du génie de Mézières, to which the revolutionary Comité de Salut

41 (Dooley n.d.: 220). Similarly, on 8 Pluviôse year 5 (January 27, 1797), the Council decided the 
acquisition of “a copy of Brissot’s physics” (p. 101), of “a copy of [Baltard’s] book,” after the latter 
had presented his Études à l’usage des ingénieurs civils, militaires et géographes (p. 231). On 8 
Brumaire year 7 (October 29, 1798), the Council also decided the acquisition of Le tir de l’artillerie 
by Lombard d’Auxonne (we do not know to which title exactly this book refers), of Durtubie’s 
book on artillery (that is, the artillery textbook examined in 1795), as well as of Gassendi’s Aide-
Mémoire d’artillerie (p. 233) This list is not exhaustive. On Bernard as the approved bookseller of 
the École, see (Bradley 1976: 173–174). 
42 (Dooley n.d.: 111). 
43 (Dooley n.d.: 242). On the periodicals in the library, see (Bradley 1976: 167, 169–170). 
44 8 Floréal year 4 (April 27, 1796), as well as 12 Floréal year 4 (May 1, 1796) and 22 Floréal year 
4 (May 11, 1796), see (Dooley n.d.: 73, 193). 
45 See the minutes of the 2 Ventôse year 4 (January 21, 1796), in (Dooley n.d.: 184). 
46 (Dooley n.d.: 127). 
47 (Dooley n.d.: 256–257). 
48 This title refers to a book by Marie Jean Antoine Nicolas de Caritat, marquis de Condorcet 
(1743–1794), posthumously published in 1798 under the title Moyens d’apprendre à compter avec 
facilité (Paris: Moutardier, 1798). 
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Public had put an end.49 The first librarian Pierre Jacotot, who gave lectures on 
mathematics in the first months of the Ecole and would resign from his position 
of librarian in April 1795, established the first inventory on 2 Nivôse year III 
(January 19, 1795).50 At the time, the library amounted to 564 volumes, 76 of 
which were listed under mathematics.51 Among the latter, we find eighteenth-
century textbooks on mathematics and engineering. The books also included some 
older titles by Leonhard Euler (1707–1783), Daniel Bernoulli (1700–1782), and 
Pierre Varignon (1654–1722). Of note are Isaac Newton’s (1642–1727) Philosophie 
naturelle,52 Gottfried-Wilhelm Leibniz’ (1646–1716) Oeuvres philosophiques, and 
Condorcet’s Essai d’analyse. Interestingly, the oldest volume of all was the Examen 
des oeuvres that the inventory attributes to Girard Desargues (1591–1661), but 
that refers to Jacques Curabelle’s 1644 diatribe against the Lyon mathematician’s 
work on stonecutting and other methods.53 The other main rubriques were physics, 
chemistry, hydraulics and military architecture, as well as civil architecture, history 
and travel, to which we must add the Encyclopédie and memoirs published by 
various Academies. 

The Revolution led to the confiscation of books from émigrés as well as from 
ecclesiastic institutions and former scientific societies. These books were kept in 
depots to which the librarians of the École Polytechnique went to select books for 
the library (Fourcy 1828: 16–17; Bradley 1976: 166–168). This represented another 
essential channel through which the collection was constituted. Jacotot started this 
work, which was actively continued by his successor François Peyrard.54 

49 (Anonymous 1892) outlines the history of the various types of acquisitions carried out for the 
library at different stages and provides useful documents. 
50 On Jacotot’s biography, see (Barbier 1999). On his actions as a librarian, and also the 
reproduction of his inventory, see (Pepe 1996: 157–160 and 174–178 (appendix 1)), whose analysis 
we summarize here. We are grateful to Enrico Giusti for having helped us gain full access to this 
article. However, (Pepe 1996) has the incorrect name of Jacolot. See also (Langins 1989). 
51 The figure seems to refer to physical volumes and not to titles. We cannot analyze the 
classification. However, what counts as mathematics in this inventory awaits discussion. (Pepe 
1996: 158) establishes that of these 76 mathematical volumes, 65 came from Mézières. 
52 In other words, Newton’s Philosophiae Naturalis Principia Mathematica, first published in 
London in 1687. 
53 (Poncelet 1866: 312; 1865: 409) refer to this book by Curabelle (1585–16?) using in both cases 
the word “diatribe.” In the latter reference, Poncelet mentions reading this book in detail and 
keeping the manuscript of excerpts he had copied. For a translation and an analysis of Desargues’s 
work on conics, see (Field and Gray 1987). 
54 For Peyrard’s biography, and his actions as a librarian, we draw on (Langins 1989) as well  
as on (Pepe 1996). (Pepe 1996: 163–166) deals with Peyrard as a librarian. (Pepe 1996: 180– 
185) reproduces an extract—concentrating on mathematical books — of the library’s inventory 
completed by Peyrard on 27 Germinal year 4 (April 16, 1796). (Anonymous 1892: 128–129, fn 
2) outlines a biography of Peyrard and gives a substantial bibliography of his works. (Anonymous 
(P. L. B.) 1893) offers a biography that reproduces important documents on François Peyrard, in 
particular the public lecture courses in mathematics that Peyrard gave at the end of the 1780s. We 
could not identify the author to whom the initials P.L.B. refer.
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Peyrard, who originated from Haute-Loire and had been trained in the human-
ities and philosophy, enrolled in the “Gardes Françaises” to go to Paris. After 
having followed public lectures and taught mathematics—notably in public lecture 
courses—, he took an active role in the revolution, becoming in particular in 1793 
a member of the Committee of Public Instruction of the Department of Paris, 
in which Monge and Lagrange were also members. In April 1795, Peyrard was 
nominated librarian at the École Polytechnique, a position from which he would be 
expelled in 1804, becoming thereafter a teacher of mathematics and astronomy at 
the Lycée Bonaparte. His action as a librarian at the École Polytechnique is generally 
considered to have radically changed the size and the nature of the library. 

The assessment is clearly correct with respect to the size: Indeed, the catalogue 
that Peyrard established one year after having become librarian already lists 3400 
books, among which 270 volumes belong to “mathematics and mechanics”. His 
1801 inventory, classified by author, refers to 7555 books (Bradley 1976: 169), 
and Langins (1989) mentions an evaluation that the library held 10,000 books 
when Peyrard left his position. Peyrard continued looking for books in the depots. 
However, the library also benefited from requisitions carried out by French forces in 
conquered countries. After the annexation of Belgium to the French Republic, a set 
of eighty books on mathematics and architecture was sent from Belgian collections 
to the library of the École Polytechnique (Pepe 1996: 159–163). The list of these 
books, established by Peyrard on October 11, 1795, is reproduced in (Pepe 1996: 
178–180). 

As Pepe rightly emphasizes, the list points out a key shift in nature with respect to 
the books that had been catalogued by Jacotot, since it includes many sixteenth- and 
seventeenth- century mathematical treatises of international provenance. Among 
these books, let us point out the 1703 edition of Euclid’s complete works, published 
by David Gregory (1659–1708) in Oxford; the 1710 edition of Apollonius’ Conics, 
also published in Oxford by Edmund Halley (1656–1742); and, last but not least, the 
1621 edition of Diophantos’ Arithmétiques, by Claude-Gaspard Bachet de Méziriac 
(1581–1638). In fact, the catalogue produced by Peyrard in April 1796 shows that 
the librarian had worked along the same lines in his choice of books from the depots. 
Indeed, the library now further included other editions of Apollonius’ Conics and 
of Euclid’s works, as well as, for Archimedes’ works, the 1544 editio princeps 
published in Basel and the 1615 Paris edition. It also contained a large number 
of classic scientific works of the early modern period, and in particular the works 
of authors such as “Euler, Bernoulli, Huygens, Newton, d’Alembert”, as well as 
“Lagrange, Legendre, Laplace, Monge,” which, as we have seen above, Poncelet 
mentions in the opening pages of Applications d’Analyse et de Géométrie (see 
footnote 34). For Pepe (1996:163, 166), these acquisitions are more broadly what 
turned a library that would serve as a support for teaching into an institution that 
would become a library of reference for scientific works and beyond, since Peyrard 
did not limit himself in his choice of books.55 

55 See (Langins 1989) and (Pepe  1996: 165).
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This evaluation is consistent with Peyrard’s perception of the book collection 
he had established. Indeed, in the autobiographical defense signed by Peyrard on 
September 23, 1804, when he was threatened with being fired from the École—a 
memoir on which (Langins 1989) mainly draws—, Peyrard asserts about the time 
before he took the position: “it is true to say that there was not yet the beginning of 
the library that exists today and that contains almost all the good books, both ancient 
and modern, dealing with the sciences and the arts.”56 Quite significantly for our 
purpose, a few months earlier, on 28 Frimaire year 11 (December 19, 1803), Peyrard 
had written the following to Fourcroy: “All the works in the Ecole Polytechnique 
library are classified according to format, contents and chronological order. I should 
like to see an inventory in conformity with this classification . . .  This would provide 
a catalogue by order of contents and by chronological order of the best books, 
and would subsequently provide a brief summary of human knowledge.”57 The 
expression of his wish testifies to two essential points. First, in his view, the physical 
arrangement of the books on the shelves was historically meaningful. Moreover, the 
library was rich enough to offer in abridged form an overview of human knowledge. 

As early as 1798, the Danish astronomer Thomas Bugge (1740–1815) had also 
noted the value of the library for scholarship in the domains taught at the École 
(Bradley 1976: 166). In the same year, as a member of the commission who had 
been dispatched to Italy in 1796 to collect books and art works for French libraries 
and museums, Monge sent to the library of the École about 200 precious and 
valuable works that Napoleon’s victories had enabled him to acquire for France 
(Pepe 1996: 166–173, 1997).58 On January 26, 1801, Peyrard signed an inventory 
of books from Italy—which is reproduced in (Pepe 1996: 192–195). These works 
would further expand the scope of the library by enriching it with rare and precious 
books. However, Monge’s work in Italy would not simply concern the library of 
the École Polytechnique. Most importantly for us, in his capacity as the officer in 
charge of the requisition of books and artworks, between the beginning of 1796 and 
July 1797, Monge was also in charge of choosing manuscripts from the Vatican 
library and of sending them to the French national library. He selected, in particular, 
several codices of great significance for the history of science. Among them, let us 
mention the Vaticanus Graecus 190, which contained an important ancient edition of

56 (our emphasis) “il est vrai de dire que l’on n’avait pas encore le commencement de la 
bibliothèque qui existe aujourd’hui et qui renferme presque tous les bons livres anciens et 
modernes relatifs aux sciences et aux arts.” Quoted in (Langins 1989). 
57 Bradley’s translation (Bradley 1976: 169) and our emphasis. The original is quoted in note 
21, p. 177: “Tous les ouvrages de la Bibliothèque de l’Ecole Polytechnique sont classés par 
ordre de format, par ordre de matière et par ordre chronologique. Je désirerais qu’on en fit 
(sic) dresser un inventaire conforme cette classification... un catalogue par ordre de matière et 
par ordre chronologique des meilleurs ouvrages... offrirait par conséquent le tableau abrégé des 
connaissances humaines.” 
58 On 28 Vendémiaire year 7 (October 19, 1798), the minutes of the Council meeting report that 
books and objects coming from Italy were given to the school and distributed to the appropriate 
services in the École, including the library. 
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Euclid’s Elements that would contribute to Peyrard’s fame as well as the Vaticanus 
Graecus 184 and 1038—which included editions of Ptolemy’s Almagest that would 
soon be useful for Halma (Pepe 1996: 169). 

These last remarks raise a key question: how can we better appreciate the impact 
of a library of this kind at the École on both the staff and the students, and, in 
particular, on Poncelet? 

2.3.2 Editing Anew and Translating Greek Works of Antiquity 
for the Present 

Langins (1989) provides several pieces of evidence showing that, from the begin-
ning of the nineteenth century at the latest, for the staff as well as for other savants, 
the library of the École Polytechnique was a place where they came to carry out 
research. At least in hindsight, Poncelet shared the idea that the library was rich 
enough to allow one to deal with any question extensively. Writing, in 1862, about 
a memoir Jules de la Gournerie (1814–1883)—professor of descriptive geometry 
at the École Polytechnique—had published in 1851 in the school journal, Poncelet 
wrote: 

It is regrettable that this skillful teacher did not take advantage of his position at our alma 
mater to elucidate the historical aspect of this interesting question.59 

However, the first person who drew on the library’s collection for his works 
was none other than Peyrard himself. In 1804, Peyrard published a translation into 
French entitled Les élémens de géométrie d’Euclide, traduits littéralement . . .  60 The 
title page, which refers to Peyrard as the librarian of the École Polytechnique, does 
not mention that the translation contains only books I, II, III, IV, VI, XI, XII—a point 
that the table of contents makes explicit. Only in the second edition (Peyrard 1809) 
does Peyrard—now referred to as “professeur de mathématiques et d’astronomie 
au Lycée Bonaparte”—announce the additional translation of book V, thereby still 
leaving aside Euclid’s arithmetical books. 

The preface to the first edition emphasizes the relationship between the project 
of translating ancient Greek mathematical works and the environment of the École 
Polytechnique. It opens as follows: 

When I was appointed Librarian of the École Polytechnique, I formed the project of giving 
to the public a literal translation of the works of Euclid and Archimedes, the two greatest

59 (Poncelet 1862: 457). “Il est regrettable que cet habile professeur n’ait pas mis à profit sa position 
à notre mère École, pour élucider la partie historique de cette intéressante question.” 
60 (Peyrard 1804). We return to this edition and the following ones below. See (Aujac 1990, 2007, 
Xiaofei 2017), on which we draw for the description of the editions. 
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geometers of antiquity. I thought that it was in some way my duty to devote my spare time 
to works that were similar to those of the École Polytechnique.61 

All such references were removed from the preface to the second edition of 
1809—a preface written a few years after Peyrard’s dismissal from the Ecole and 
which is much more historical in nature, featuring a different approach to history 
than the first. In the context of our chapter, it is important to emphasize that the 
edition of Euclid’s works on which Peyrard drew for his 1804 translation was the 
one published in Oxford by Gregory in 1703 (Aujac 1990: 396). As we have seen 
above, this was precisely an edition that was among the books sent from Belgium 
that Peyrard completed listing on October 11, 1795. This remark sheds light on the 
connection between the library and the research Peyrard was carrying out. 

In the same 1804 preface, Peyrard announced for the following year the 
publication of a “literal translation of Archimedes’ complete works” and indicated 
that a subscription would be open until 1 Vendémiaire year XIII. Money for this 
should be sent to him at the École Polytechnique or to the publisher F. Louis. 
Monge and Gaspard de Prony (1755–1839) subscribed to this Archimedes volume 
(Langins 1989). The book in question was in fact only published in 1807, without a 
list of subscribers and with another publisher.62 In 1804, Peyrard explained that, 
Archimedes’ works not being “elementary enough”, he had instead decided to 
compose a “supplement,” in which he dealt with the same topics as Archimedes, 
following “Archimedes’ principles” (Peyrard 1804: x–xi). The supplement was 
included in the 1804 volume of Euclid’s Elements. 

2.3.3 The Viewpoint of the School Council on the Editions 
and Translations of Greek Works of Antiquity 

Interestingly, Langins (1989) notes the following paragraph in the minutes of the 
Council meeting of 19 Prairial year XII (June 8, 1804): 

The deliberation on purchasing a copy of the Oxford edition of Archimedes for the library 
(an action suggested by Peyrard) gave several members the opportunity to discuss the 
advantages that would result for the students’ benefit, for the  advancement of the exact 
sciences and for the glory of the École, if, following a regular and well-designed plan, it 
succeeded in obtaining translations of the ancient Greek and Latin authors in which the 
teachers of the École would have worked together with the most learned men of letters

61 (Peyrard 1804: ix), our emphasis. “Lorsque je fus nommé Bibliothécaire de l’Ecole Polytech-
nique, je formai le projet de donner au public une traduction littérale des Œuvres d’Euclide et 
d’Archimède, les deux plus grands Géomètres de l’antiquité. Je pensois qu’il étoit en quelque 
sorte de mon devoir de consacrer mes momens de loisir à des travaux qui fussent analogues à ceux 
de l’Ecole Polytechnique.” 
62 (Peyrard 1807). Joseph Delambre contributed a memoir to this edition (see below). The second 
edition (Peyrard 1808) was revised by Delambre (Aujac 1990: 396; Aujac 2007: 234). 
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to establish the genuine text, and to render it faithfully by adding to it the necessary or 
interesting notes that the most direct study of these authors would provide them.63 

This paragraph contains multiple pieces of evidence that are important for our 
argument. 

First, Peyrard suggests that the Oxford edition of Archimedes’ works be 
purchased—a decision approved by the Council. Interestingly, Peyrard’s foreword 
to the 1807 translation of Archimedes’ works—which is comparable in its historical 
approach with the preface to his second edition of Euclid’s Elements—ends with 
an overview of the translations and commentaries published since the sixteenth 
century (Peyrard 1807: xxxv–xxxvii). This overview mentions the 1544 Basel 
edition—which Peyrard dates from 1545—as well as the 1615 Paris edition: we 
have indicated above that both editions were already available in the library of the 
École. The overview is concluded by a reference to the 1792 edition published 
by Giuseppe Torelli (1721–1781) in Oxford—precisely the one whose purchase 
is under consideration—, Peyrard praising the elegance and the faithfulness of its 
Latin translation as well as its critical notes, to which his text refers.64 It would be 
interesting to clarify how Peyrard had access to this edition after he left the École 
Polytechnique. 

Second, the deliberation about the purchase leads the Council to broaden the 
discussion in a way that shows the members establishing a link between the 
publication of such books and the work students and staff carry out at the École 
Polytechnique. To their eyes, translations of the kind Peyrard had begun planning 
would be useful for the students. We will return to the evidence we have that, in the 
subsequent years, historical texts were used in this way. Let us simply note for now 
that Peyrard’s translation of Archimedes’ works as well as the second edition of his 
Euclid’s Elements both bear the mark that the government approved of their use in 
lycées. 

Third, the Council imagines that teachers at the school could cooperate with men 
of letters to produce editions of such Greek texts. Does this suggest an implicit 
criticism of Peyrard? We cannot tell. However, interestingly, the Council sees an

63 Quoted following Langins (1989) and adding emphasis. “La délibération d’acheter un exem-
plaire de l’édition d’Archimède d’Oxford pour la bibliothèque (action suggérée par Peyrard) 
fournit à plusieurs membres l’occasion de développer les avantages qui résulteraient pour l’utilité 
des élèves, pour l’avancement des sciences exactes et pour la gloire de l’École si d’après un 
plan régulier et bien combiné elle parvenait à se procurer les traductions des anciens auteurs 
grecs et latins dans lesquelles les Professeurs de l’École auraient concouru avec les plus savants 
littérateurs pour établir le véritable texte, le rendre fidèlement en y ajoutant les notes nécessaires 
ou intéressantes que leur fourniraient (sic) l’étude plus immédiate de ces auteurs.” 
64 It seems that in the 1807 edition, Torelli is mentioned only through a letter by Delambre, which 
Peyrard reproduces. However, in the notes to the second edition of Archimedes’ works in 1808, 
Peyrard refers to Torelli’s critical notes on several occasions. One would need to study on the basis 
of which edition Peyrard carried out his translation and how the 1808 edition differs from the 1807 
one. 
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operation of this kind as useful for the “glory of the École”—as useful to this end, 
perhaps, as the library. 

Fourth, the Council outlines a scheme that should be followed for such publica-
tions, and it is noteworthy that this scheme describes precisely Peyrard’s work in 
the subsequent years. Indeed, the Council pointed out the necessity of establishing 
a genuine text before translating. Peyrard had not carried out this operation for 
his first publications, since we have seen that he had relied on Oxford editions. 
However, his third edition of Euclid’s works (Peyrard 1814–1818) would fill this 
gap precisely. We have mentioned above that Monge had sent to the French national 
library, from the Papal manuscript collection in Rome, the Vaticanus Graecus 190. 
For his subsequent edition, Peyrard offered a critical edition of Euclid’s text, in 
addition to a French as well as a Latin translation. For this, Peyrard relied on the 
manuscripts gathered in the “Imperial”— soon to become “Royal”— “Library,” 
and especially on the Vaticanus Graecus 190—to which philologists now refer as 
“Codex P” in the honor of Peyrard’s work on it. Similarly, and during the same 
years, Nicolas Halma, whom we have met above as secretary of the École between 
1796 and 1797 and who, around 1810, with Lagrange’s support, became librarian at 
the École des ponts et chaussées,65 produced, in addition to a French translation, a 
critical edition of Ptolemy’s Almagest (Halma 1813–1816): For this work, he, too, 
drew on the manuscripts of the Imperial Library taken from Rome. 

Echoing with the scheme outlined by the Council of the École, both Peyrard and 
Halma emphasized that their translations were literal. Moreover, Peyrard’s 1804 
edition of Euclid’s Elements and the 1807 rendering of Archimedes’ works had 
explanatory notes to the translations.66 Similarly, Halma completed his edition and 
translation of the Almagest with notes which were composed by Joseph Delambre 
(1749–1822). As already mentioned, the same Delambre had also been closely 
involved in Peyrard’s publication on Archimedes, for which he composed a memoir 
titled “De l’Arithmétique des Grecs,” to which we return shortly.67 

In conclusion, these remarks support the idea that the École Polytechnique 
contributed to the conception—and hence to the shaping—of how a corpus of 
ancient Greek authors in mathematics should be—and actually was—produced at 
the beginning of the nineteenth century. 

A final point from the Council’s discussion deserves emphasis: the idea that 
translations of this kind would serve the advancement of science. Interestingly, in the 
historical introduction to his edition and translation, Halma raises the same question, 
and his answer is interesting for us to consider. Indeed, Halma writes: 

What benefit can we derive from Ptolemy’s Mathematical Composition, [when we know] 
the degree of perfection that astronomy has now reached? What will be the usefulness of a

65 (Guoyt de Fère and François-Fortuné 1858). 
66 For Euclid, see (Peyrard 1804: 559–573) and for Archimedes, see (Peyrard 1807: 445–536). 
67 (Wang Xiaofei 2017: 44–55 and Wang Xiaofei 2022) analyze this memoir and the very unusual 
approach that Delambre takes to the history of arithmetic. 
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new translation of this book, after the two Latin versions that we have had for a long time? 
And is it not a retrograde step for science to take it back, as it were, to its cradle?68 

A few pages later, Halma offers the following answer to this rhetorical question: 

( . . . ) as a result, instead of slowing down the progress of science, on the contrary, it is a 
way of enlightening it in its march, to publish a translation—free from the errors rightly 
reproached to these [previously discussed] two versions—of the work that presents its first 
steady steps, or the  first operations guided by the spirit of method and calculation that 
reigns there. (...). And since science is interested in finding, in an  accurate interpretation of 
the meaning of our author, the observations he reports and the methods he employs, that of 
the modern languages to which the treasures of its literature have ensured the universality 
that, in the past, the Greek language had in the East, and the Latin language in the West, was 
the most suitable to spread everywhere the knowledge of these observations that cannot be 
dispensed with and of these methods that are still fruitfully studied.69 (pp. V–VI) 

We note the emphasis that Halma places on the history of the methods in his 
answer. This will appear to be a common theme for many teachers who used 
historical material in the context of the École. 

Lastly, let us add that the Council nominated a committee in which Monge, 
Prony, Lacroix, Labey, Hachette, and Siméon Denis Poisson (1781–1840) took part, 
to think about the opportunity of its project about ancient classical texts (Langins 
1989). In other words, several teachers who would have Poncelet as a student after 
he entered the École 3 years later, had been involved in the reflection on such uses 
of ancient Greek mathematical texts. In fact, years later, Poncelet remembered that 
one of his own personal inquiries in geometry, at the École, involved reflections on 
Greek mathematicians of antiquity. He formulated this memory in a note that he 
added in 1864 to a notebook written in the winter of 1815–1816. In this notebook, 
the young Poncelet asserted, about the line described by a point, that “the simplest

68 (Halma 1813–1816: I) “Quel fruit peut-on retirer de la Composition Mathématique de Ptolémée, 
au degré de perfection où l’astronomie est aujourd’hui parvenue? Quelle sera l’utilité d’une 
nouvelle traduction de ce Livre, après les deux versions latines que nous en avons depuis long-
temps? Et n’est-ce pas faire rétrograder la science, que de la ramener, pour ainsi dire, à son 
berceau?” 
69 (Halma 1813–1816: V-VI, our emphasis). Needless to say, the modern language to which Halma 
refers as the language enjoying universality is French. “C’est donc, au lieu de rallentir (sic) les 
progrès de la science, l’éclairer au contraire dans sa marche, que de publier, de l’ouvrage qui en 
expose les premiers pas assurés, ou les premières opérations dirigées par l’esprit de méthode et de 
calcul qui y règne, une traduction exempte des fautes justement reprochées à ces deux versions. 
( . . . ). Et puisque la science est intéressée à trouver dans une interprétation exacte du sens de notre 
auteur, les observations qu’il rapporte et les méthodes qu’il emploie, celle des langues modernes 
[that is, French] à laquelle les trésors de sa littérature ont assuré l’universalité qu’avoient eue 
autrefois la langue grecque en orient, et la langue latine dans l’occident, étoit la plus propre à 
répandre partout la connoissance de ces observations dont on ne peut se passer, et de ces méthodes 
toujours étudiées avec fruit.” 
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among these lines had already been studied by the Ancients.”70 Poncelet’s 1864 
note reads as follows 

This very extensive class includes not only Nicomedes’ conchoid, Diocles’ cissoid, Conon’s 
and Archimedes’ spiral, but a large number of other lines with simple or multiple 
convolutions. During my stay in 1808 and 1809 at the École Polytechnique, I dealt with 
these curves with a kind of exclusive perseverance, in connection with the research on . . .  
(here, Poncelet returns to the piece of work that he developed through discussions with 
students of the same study room as him and that we have mentioned in Sect. 2.1).71 

We have already mentioned hints suggesting that the historical work undertaken 
on Greek mathematical texts had an impact on the teaching of mathematics. For 
instance, from 1807 onward, Peyrard’s editions were published with reference to the 
government’s adoption of the books for the libraries of the lycées. Moreover, in his 
Traité d’arithmétique, Jean-Guillaume Garnier included a chapter on the “arithmetic 
of the Greeks” that was based on Delambre’s memoir.72 What clues can we gather, 
more specifically, on the way in which mathematical texts of the past were used to 
train students at the École Polytechnique? 

2.4 Hachette and the Correspondance sur l’Ecole 
Polytechnique 

One way of approaching the latter question is to examine a journal that Jean-
Nicolas-Pierre Hachette established in 1804 under the title Correspondance pour 
l’École Polytechnique à l’usage des élèves de cette école.73 Indeed, in addition to 
reflecting most aspects of the institutional life of the École, this bulletin published 
works by students, former students and teachers that bespeak interesting features of 
their practice of mathematics. 

As we have seen, Hachette assisted Monge in teaching descriptive geometry and 
analysis applied to geometry, and he was Poncelet’s teacher in these fields during the 
three years that Poncelet spent at the École. Poncelet does not seem to have harbored 
a great admiration for Hachette, describing methods the latter taught as “long,

70 (Poncelet 1864: 255). “ . . .  dont les plus simples avaient déjà occupé les Anciens (*).” 
71 (Poncelet 1864: 255). Italics in the original text. “Cette classe fort étendue comprend non-
seulement la conchoïde de Nicomède, la cissoïde de Dioclès, la spirale de Conon et d’Archimède, 
mais un grand nombre d’autres lignes à circonvolutions simples ou multiples, dont je me suis 
occupé avec une sorte de persévérance exclusive, pendant mon séjour en 1808 et 1809 à l’École 
Polytechnique, à propos des recherches sur . . .  ”. 
72 The first edition of Garnier’s treatise was published in 1803 and did not include a chapter of 
this kind. However, as early as 1808, the second edition presented this chapter of the history of 
arithmetic. See (Wang Xiaofei 2017: 160; and Wang Xiaofei 2022). 
73 Published under the form of booklets appearing at regular intervals, the Correspondance was 
republished as three books, with slightly different titles (Hachette (ed.) 1808); (Hachette (ed.) 
1814); (Hachette (ed.) 1814–1816). We refer to its articles through these three volumes. 
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complicated and cumbersome” (Poncelet 1862: 457). The expression “estimable 
professor” (Poncelet 1822: 399) by which Poncelet refers to Hachette seems much 
less enthusiastic than the adjectives he uses for Lacroix and Ampère. That said, 
Poncelet appears to have been an avid reader of the Correspondance, to which his 
writings refer constantly.74 

2.4.1 Problems and Methods Taken from the Library for 
Collective Use 

As the title of the Correspondance makes explicit, the journal was primarily meant 
for use by the students. To begin with, it published, in particular, students’ works, 
thereby reflecting the students’ personal research. We will find Poncelet among 
them. 

In fact, Hachette and other professors put forward problems and theorems, on 
which the students worked together, submitting solutions and demonstrations, some 
of which Hachette edited and published in the Correspondance. For example, in 
July 1806, Hachette published a solution by Louis Puissant (1769–1843) for a 
problem in analytic geometry, and he concludes the article with the statement of 
a theorem, “invit[ing] the students of the École Polytechnique to provide a proof of 
this theorem.”75 

Interestingly, some of these problems were explicitly attached to a mathematical 
text of the past. For instance, the first issue of the Correspondance, in April  
1804, presents a “note about activities carried out at the École during the years 
XI-XII”—which covered the academic years 1802–1803 and 1804–1805. These 
activities include a rubrique—“On the Contact between Spheres”—that begins with 
the quotation of a problem by Pierre de Fermat (160?–1665) in his “treatise De 
contactibus sphericis.” The problem consists in finding a sphere tangent to four 
other spheres whose centers and radii are known.76 Hachette does not only translate 
the quote by Fermat, but he also mentions the year and place of the publication 
of Fermat’s selected works, from which he is quoting, as well as the number of 
the question in the treatise.77 We will see that such precision characterizes the 
references that Hachette makes to the books that most probably he consulted—

74 We give a single example: (Poncelet 1822: 78). 
75 (Hachette (ed.) 1808: 191–193, in particular p. 193). 
76 As early as 1794, Monge had put forward this problem to the “students-instructors,” whom he 
trained to become the chefs de brigade of the first promotion (Belhoste 2009). 
77 The book in question is in the old collection of the library of the École Polytechnique, but 
Hachette does not give its title: Varia Opera mathematica D. Petri de Fermat, senatoris Tolosani. 
Accesserunt selectae quaedam ejusdem epistolae, vel ad ipsum a plerisque doctissimis viris 
Gallicè, Latine, vel Italice, de rebus ad Mathematicas disciplinas, aut physicam pertinentibus 
scriptae, 1679, Toulouse: J. Pech. The quotation is in (Hachette (ed.) 1808: 8).  
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and invited students to consult—in the library. The Correspondance thus provides 
evidence of one way the library was used in training the students. 

In the same note, Hachette mentions other related problems tackled by the first 
students trained at the École, such as the problem of finding a circle touching three 
other given circles. The following issue, in August–September 1804, begins with 
an article titled “Activities carried out at the École: Memoir on the contact between 
spheres,” in which Hachette brings together several solutions given to seven related 
problems in the context of “research carried out at the École Polytechnique.”78 The 
solution to the first problem makes use of a property for which a footnote refers to 
a precise paragraph of Monge’s Géométrie descriptive. Another footnote attributes 
the solution to the fifth problem explicitly to a former student, Charles-André Dupin 
(1784–1873). For the sixth problem—precisely the problem of the three circles—, 
a footnote refers the reader to analytical solutions given by, respectively, Newton in 
his Arithmetica Universalis as well as Euler and Nicolas Fuss (1755–1826), through 
the indication of, respectively, a precise book with page number and a precise 
volume of the Mémoires de l’Académie de Pétersbourg. All these publications could 
be found in the library of the École. 

Problems were also formulated by other contributors, such as the former student 
Louis Poinsot, at the time a “teacher at the Lycée Bonaparte.” In the January 1807 
issue, Hachette published part of a letter Poinsot sent him on January 6, 1807, 
which ends with the statement of a problem.79 In the subsequent issue of May 
1807, Hachette published several solutions that he “received” for the “issue raised 
by Poinsot.”80 

Students frequently returned to problems that had been raised earlier, with new 
solutions. For example, in the same issue of January 1807, Hachette published 
another solution to the problem relating to the three circles that he had received 
from Augustin-Louis Cauchy (1789–1857), a student at the École between 1805 
and 1807.81 Moreover, in 1811, it was again to this problem as well as to the 
problem relating to Poinsot’s question that Poncelet devotes the only article of 
his published in the Correspondance.82 Let us note that a practice of this kind 
encouraged students to compare different methods for the solution of the same 
problem, including methods that had been put forward by authors of the past. 

In his “Memories from the École Polytechnique (1809-1810),” Poncelet (1862: 
443–446) reproduces verbatim the solution published in 1811 to the problem of the 
three circles. On this occasion, he gives evidence about the students’ interaction 
with Hachette in the context of the publication of their solutions. Indeed, Poncelet 
asserts that he had given Hachette the article two years earlier, in 1809, and that the

78 (Hachette (ed.) 1808: 17–28). 
79 (Hachette (ed.) 1808: 245–246). 
80 (Hachette (ed.) 1808: 305–307). 
81 (Hachette (ed.) 1808: 193–195). 
82 (Hachette (ed.) 1814: 271–274). On the relation between Poinsot’s problem and the problem 
solved, see Poncelet (1862: 446). 
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editor “had demanded that several passages that he considered useless or foreign to 
the question be deleted” (p. 443, our emphasis). 

In the same document, Poncelet (1862: 447–457) published a note that derives 
from a manuscript that he dates from his second year at the École Polytechnique 
(1809–1810) (Poncelet 1862: 456–457). Interestingly, the manuscript points out that 
it makes use of a method that Gilles Personne de Roberval (1602–1675) put forward 
for tangents, which seems to echo an article also published in January 1809 in the 
Correspondance by Louis Gaultier (1776–1852), a former student who had entered 
the school in 1798 and was, when he wrote, a teacher at the Conservatoire des arts 
et métiers.83 We thus see how the historical inquiry of some of the students made 
ancient ways of approaching problems available to all, which then became part of a 
collective culture. 

2.4.2 History of Mathematics as Part of the Students’ Activities 
at the École 

The articles published in the Correspondance by Hachette point out other uses of 
history as well as other uses of the library. 

In the first issue of 1805 (Pluviôse year XIII), in the rubrique “Activities carried 
out at the École,” for descriptive geometry, Hachette published a “Complete solution 
of the triangular pyramid.”84 The first paragraph mentions, with careful dating, the 
contributions to spherical trigonometry—a subpart of his topic—prior to Neper, 
that is, in his view, those of Hipparchus, Theodosius, Menelaus, Gebert (sic) and 
Regiomontanus. His historiography emphasizes a break in the treatment of the topic, 
with the application of algebra to geometry, and points to the works of Euler and 
Lagrange—with precise references—as the pinnacle of what could be achieved 
through “taking this new route open to modern geometers” (p. 41). However, 
Hachette continues, even though the formulas thereby produced give the “simplest 
arithmetic operations” to solve the problems that can be raised, “they do not indicate 
the geometric constructions that lead the most directly from the lines given to the 
lines sought-for.” And, here, Hachette returns to the historiography of the subject, 
with another, parallel, line of development. 

He grants that “the inventors of the art of stereotomic drawing (art-du-trait)”— 
that is, the carpenters and stonecutters, on whose methods Monge had relied to shape 
his descriptive geometry— had undoubtedly “solved these problems in this way.”85 

But he laments that they did not produce writings testifying to this fact. Hachette 
further indicates that “the Arabs” and “the Goths” “frequently made use of this

83 (Hachette (ed.) 1814: 24) mentions Gaultier’s work in relation to Roberval’s method, and gives 
an outline on pp. 27–28 and 87–93. 
84 (Hachette (ed.) 1808: 41–51). 
85 On stereotomic drawing, see (Sakarovitch 1998). 
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art,” lamenting here too that they “transmitted neither the names of the inventors, 
nor the principles of geometry on which this art was based.” Hachette could again 
assign names and refer to precise books only starting from the end of the sixteenth 
century: he points to the architectural treatise by Philibert de l’Orme (1514–1570), 
the treatise on stonecutting by Mathurin Jousse (ca. 1575–1645), and a treatise on 
stone- and wood-cutting by Amédée François Frézier (1682–1773) as well as to 
the mathematical treatise by the Jesuit priest “Deschalles” (Claude François Milliet 
Dechales (1621–1678)). Hachette further refers to François Derand (1591–1644) 
and Desargues’s treatises on stonecutting, with, however, no precise bibliographic 
indication. Among these works, Jousse’s book features in Jacotot’s inventory, and 
Mundus Mathematicus by “Deschales”, in Peyrard’s 1796 catalogue (number 45, 
Pepe 1996). Moreover, we have already mentioned, in the library, Curabelle’s 1644 
diatribe— especially on stonecutting— against Desargues’s work. Derand’s book 
on the art of vaults as well as de l’Orme’s and Frézier’s treatises are all in the old 
collection of the library of the École. Hachette concludes this second part of his 
historiography with Monge’s descriptive geometry, presented as the pinnacle of this 
line of development, and he situates his article in line with his master’s work, adding 
to it precisely for the purpose of his lectures at the École Polytechnique. 

In sum, Hachette writes a mathematical article for the students, and includes in 
it a historiographic treatment of the subject. His historiography situates Monge’s 
contribution in one of the two traditions of approach to geometrical problems that 
he outlines: Hachette, thereby, projects backwards on the history of mathematics 
the two types of method, the comparison of which Monge emphasized in his 
lectures. In addition, the history of mathematics that Hachette offers emphasizes 
the contributions of scholars who were not from Europe as well as those of scholars 
who worked in the context of practical activities. All these features characterize the 
type of historiography that Poncelet and later Chasles would develop. 

A last point deserves emphasis: Hachette’s historical treatment was made 
possible thanks to the book collection available to him at the time. This remark 
holds true for another article that Hachette published in the January 1809 issue 
of the Correspondance on spherical epicycloids.86 He begins with a reference to 
Charles Etienne Louis Camus’s (1699–1768) Traité de statique (Peyrard’s 1796 
catalogue number 34, Pepe 1996: 182) and explains where spherical epicycloids 
occur in the theory of machines, before turning to his treatment of epicycloids in 
general and tackling the problem of the geometric construction of their tangents. 
Note that Gaultier’s article that we have mentioned above, and on the basis of 
which Poncelet would compose a manuscript, applies Roberval’s method precisely 
to the determination of the tangent of epicycloids. After having introduced the 
definition of spherical epicycloids, Hachette refers the students to volume III of 
Johann Bernoulli’s (1667–1748) works, using a precise bibliographic reference. 
This is precisely a book that the library acquired in the set sent from Belgium and 
that features in Peyrard’s catalogue (Pepe 1996: 179, 181, respectively).

86 (Hachette (ed.) 1814: 22–27). 
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Hachette seems to have spent time on these volumes of Johann Bernoulli’s works. 
Indeed, in November 1805, in an article devoted to the computation of the shortest 
twilight, he refers to Johann Bernoulli’s research on it and quotes extensively the 
excerpt of a letter published in January 1693 and included in volume I of Bernoulli’s 
works (p. 64).87 Hachette further refers to “the Portuguese geometer” Pedro Nuñes’ 
(1502–1578) solution to this problem by means of spherical trigonometry—yet 
another book possessed by the library. Hachette then turns to Monge’s geometrical 
solution, which he invites students to prove geometrically, while he himself 
establishes it analytically in the last pages of the article. This publication thus 
illustrates the mixture of history and mathematics to which students were exposed 
and in which they were encouraged to participate, being thereby invited to proceed 
using different methods and comparing them.88 We find exactly the same mixture 
in an article that Hachette composed on the double refraction of light, in which the 
author quotes extensively Christiaan Huygens’ (1629–1695) treatise on light.89 

Interestingly, the Correspondance also sheds light on an entirely different way 
in which students were invited to think about the sciences on the basis of their 
history. Indeed, since 1804, a course of “grammar and belles-lettres” had been 
established for both first-year and second-year students, and it was given by François 
Andrieux (1759–1833) (Belhoste 2003: 176–179). In the issue of July 1805, the 
Correspondance gives an outline of the content of these classes and publishes the 
topics given for students to compose a written essay.90 One of the topics given to 
first-year students reads as follows: 

Hiero, king of Syracuse, writes to the geometer Archimedes, his relative and friend, to urge 
him not to make geometry a purely intellectual and speculative science, but to apply it 
to useful inventions, for example, to build war machines to defend [Syracuse] against the 
Romans who threaten Syracuse. 

Archimedes agrees, and he promises the king machines whose effect will be sure and 
prodigious Hiero’s Letter and Archimedes’ answer. 

(See Plutarch, Titus-Livius, Polybius, etc.)91 

The composition had to offer an outline of the two elements of the list italicized. 
Moreover, the teacher gave three books in which the students could find information, 
and the authors’ names were also italicized. It is noteworthy that valuable editions 
of Plutarque’s Vitae Illustrium virorum and of Tite-Live’s works were among the 
books Monge sent from Rome to the library of the Pantheon (Pepe 1996: 196). We

87 (Hachette (ed.) 1808: 148–151). 
88 (Hachette (ed.) 1808: 193) mentions yet other types of solution to the problem. 
89 (Hachette (ed.) 1814: 281–289). 
90 (Hachette (ed.) 1808: 86–88). 
91 “Hiéron, roi de Syracuse, écrit au géomètre Archimède, son parent et son ami, pour l’engager à 
ne pas faire de la géométrie une science purement intellectuelle et spéculative, mais à l’appliquer 
à des inventions utiles, par exemple, à construire des machines de guerre pour se défendre contre 
les Romains qui menacent Syracuse. Archimède y consent, et promet au roi des machines dont 
l’effet sera sûr et prodigieux Lettre d’Hiéron et réponse d’Archimède. (Voyez Plutarque, Tite-Live, 
Polybe, etc.)” (p. 88, italics in the original). 
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are fortunate enough to have a composition of a first-year student on this topic: 
Charles-Hippolyte de Paravey (1787–1871), who was at the École between 1803 
and 1806.92 The manuscript further bears the marks of the teacher. 

To the second-year students, Andrieux proposed another topic touching the 
history of science, which the Correspondance reproduced, the italics likewise 
indicating the task and the sources to use: 

Viviani, a student of Galileo’s, defends his master before the inquisition in Florence in 1633. 
Galileo was accused of heresy for having taught and maintained the movement of the earth 
around the sun. 

Speech. 
(See Laplace, Exposition du système du monde, book 5; Histoire de l’astronomie 

moderne).93 

The reflection on the history of science to which the students were invited 
thus went beyond the simple search for various historical methods to solve some 
problems or the correct attribution of results to their true inventors. 

2.4.3 The Pursuit of this Form of Practice After School Years 
and the Formation of a Network 

Through the Correspondance, students were thus incited to work on the same 
problems and hence encouraged to practice joint research of the kind Monge had 
aimed to foster. They were also put in contact with former students, entering into a 
network of scholars who would remain in contact with one another and devote time 
to mathematical research (Belhoste 1998: 12). Among the former students, we have 
evoked Poinsot and Gaultier. Many more sent articles to the Correspondance, and, 
interestingly for our purpose, these contributors, like Gaultier, regularly displayed an 
interest in mathematics mixed with an interest in the history and also the philosophy

92 See the digitized version of Papiers divers du chevalier de Paravey (1871). V. Docu-
ments sur l’École polytechnique at the link: https://gallica.bnf.fr/ark:/12148/btv1b10090440m/ 
f7.item.r=catalogue%20de%20la%20bibliothèque%20de%20l’Ecole%20polytechnique (accessed 
on August 5, 2022). The letter attributed to Hiéron is on pp. 14–15 of the pdf, and the answer 
attributed to Archimedes is on pp. 15–16. After the École Polytechnique, Paravey entered the ponts 
et chaussées École d’application, and there too, he was asked to compose texts on topics relating 
to the history of science. One such topic reads (see the same set of documents on p. 23): “Ecole 
des ponts et chaussées. Concours du 28 mars 1809: de la manière d’écrire l’histoire des sciences 
et des arts, soit dans les ouvrages où elle est réunie à l’histoire politique des peuples, soit dans les 
ouvrages dont elle constitue l’objet spécial. Nota. Un des points importants de la question proposée 
consiste à examiner comment une histoire bien faite des sciences et des arts est un moyen de les 
propager, d’en préparer et d’en hâter les progrès.” See his composition on pp. 23–25. 
93 “Viviani, élève de Galilée, défend son maître devant l’inquisition, à Florence, en 1633. Galilée 
étoit accusé d’hérésie pour avoir enseigné et soutenu le mouvement de la terre autour du soleil. 
Discours. (Voyez  Laplace, Exposition du système du monde, liv. 5;  Histoire de l’astronomie 
moderne).” (p. 89, italics in the original). 
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of mathematics. They thus seem to have acquired a way of practicing science at the 
École and to continue with a practice of this kind through their exchanges. 

Among them, we have mentioned Jacques Frédéric Français as the author of one 
of the first articles of the “philosophie mathématique” rubrique, in the Annales de 
Mathématiques pures et appliquées, (Français 1813–1814) and also as someone to 
whom Poncelet would show his first Saratoff results and who would lend Poncelet 
books from Arbogast’s library. Français, having entered the École Polytechnique in 
1797, continued contributing to the Correspondance after he left the school.94 

Another former student who sent letters and contributions to Hachette and was 
quite influential on Poncelet, Charles-Julien Brianchon, illustrates quite nicely the 
nature of the engagement with history to which these mathematicians had been 
exposed and which they continued in their work. 

In a letter sent from Metz, on January 3, 1807, to Hachette—who reproduced it 
in the Correspondance95 —, Brianchon put forward and proves properties of curves 
of the second degree. Brianchon hesitantly attributes the first of these properties to 
Colin Maclaurin (1698–1746): one might assume that he had read Maclaurin’s work 
and relied on his memory to suggest this attribution. Brianchon further emphasizes 
the ease with which the concept of transversal—to which he associates the name 
of Lazare Carnot (1753–1823) and Servois—enables one to derive properties 
that would require much longer treatments through analysis and even descriptive 
geometry. We recognize the constant comparison carried out between methods and 
their relative merits. Brianchon adds: “It is undoubtedly curious to find in several 
ancient authors, notably in Pappus, some traces of research of this kind.”96 

In the case of the article just examined, a mathematical text is interspersed 
with historical remarks. In January 1813, Hachette published another article of 
exactly the same type by Brianchon, titled “Géométrie de la règle.” This article 
addresses problems on conics that Brianchon suggests solving using only a ruler. 
Interestingly, at the end, Brianchon adds historical remarks.97 There, he first 
emphasizes that the solution to some of the problems was given in lecture courses 
on architecture—a point that he proves by referring to the work by François Blondel 
(1618–1686), using the following reference: “Résolution des quatre principaux

94 After a letter to Hachette on April 17, 1807, which the latter published (Hachette (ed) 1808: 320– 
321), Français sent an article that would be published in the issue of January 1808 (Hachette (ed) 
1808: 337–349). The last pages of the article return to a problem raised earlier by Hachette. In the 
issue of January 1810, Français has two articles published. The first offers yet another solution to 
Fermat’s problem (Hachette (ed) 1814: 63–69). The second (Hachette (ed) 1814: 69–70) is devoted 
to the problem for which Poncelet claims to have given, in 1809, with Guillebon, a much better 
solution to the students of their study room. This is the topic of the third manuscript published 
in his “Memories from the École Polytechnique (1809–1810),” Poncelet (1862: 456-461). In it, 
Poncelet criticizes explicitly the methods published by Hachette and Français, among others. 
95 (Hachette (ed.) 1808: 281–289). 
96 (Hachette (ed.) 1808: 309). “il est sans doute curieux de retrouver dans plusieurs auteurs anciens, 
notamment dans Pappus, quelques traces de ce genre de recherches.” 
97 (Hachette (ed.) 1814: 386–387). 
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Problèmes d’Architecture; au Louvre, 1673, in-folio.” The first catalogue, by 
Jacotot, already mentions this book as possessed by the library of the École (Pepe 
1996:177). What is more, this reference shows that Brianchon’s historiography had 
points in common with Hachette’s. 

In the same 1813 article, Brianchon further adds remarks on Blaise Pascal’s 
(1623–1662) works on conics in a way that shows the depth and the accuracy of 
his knowledge of the historical evidence. In particular, Brianchon refers the reader 
to Pascal’s works and to “a letter written by Leibnitz and placed at the end of the 
fifth or last volume of the 1779 edition.” Strikingly, this edition of Pascal’s works 
is number 112 in Peyrard’s catalogue of the library established in April 1796 (Pepe 
1996: 184). These remarks cogently suggest that Brianchon, probably when he was 
a student, made extensive use of the library. 

However, it also seems that Brianchon continued this practice of working 
with books after he left the École. Indeed, the next letter that Brianchon sent— 
from Toledo, this time—on April 8, 1810 and that Hachette published in January 
1811 is more purely historical in nature.98 Brianchon had had in the hands “by 
chance” a Latin edition of Ptolemy’s Almagest—whose reference he gives with all 
due details—and had identified that this book in fact contains “the fundamental 
principle” of the “theory of transversals”—what is now generally called Menelaus 
theorem. Brianchon thus translates the related pages of the Almagest, and in italics 
establishes a relationship between Ptolemy’s formulation and Carnot’s statements. 
Similarly, the following year, in 1812, Hachette published in the Journal de l’Ecole 
Polytechnique a translation of Fermat’s Latin text from which he had selected 
the problem of the four spheres.99 In these ways, just as Peyrard and Halma had 
sought to translate Greek classical texts of antiquity into French in order to broaden 
their accessibility, Brianchon and Hachette were producing the means of shaping a 
culture of mathematics that could be shared. 

The preceding remarks shed light on why Poncelet’s introduction to his 
1822 treatise, precisely after mentioning Brianchon’s discovery about Ptolemy’s 
Almagest, refers to Brianchon as someone to whom we “owe a lot for the history of 
projective properties”.100 

The last of these former students worth mentioning with respect to the Corre-
spondance is Olry Terquem (1782–1862), who became a student at the École in 
1801 and who was also in close contact with Poncelet as the latter was developing 
the research that led to the publication of the 1822 Traité. In January 1816, 
Terquem, at the time a teacher in artillery schools, published an article titled 
“Histoire de l’algèbre. Sur l’algèbre des Indiens”, which he had written on the

98 (Hachette (ed.) 1814: 257–260). 
99 Hachette, “Du Contact des sphères par Fermat, traduit par M. Hachette”, Journal de l’Ecole 
Polytechnique, septième et huitième cahier, second volume, 1812, pp. 279–289. 
100 (Poncelet 1822: xxxvii–xxxviii). 
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basis of recent English publications on the topic.101 In fact, Terquem would be 
more broadly one of the most active proponents of the history of mathematics in 
the nineteenth century. In particular, in the context of the journal he established 
in 1842 with Camille-Christophe Gerono (1799–1891) under the title Nouvelles 
Annales de mathématiques, from 1855 and until his death, he published what can be 
considered as the first journal devoted to the history of mathematics, that is, a yearly 
supplement, with a separate pagination, titled Bulletin de bibliographie, d’histoire et 
de biographie mathématiques. This publication would leave the enduring imprint of 
a practice of mathematics shaped to train students at the École Polytechnique on the 
history of mathematics, notably thanks to the library to which Peyrard contributed 
in such a remarkable manner. 

2.5 Conclusion 

In this chapter, we have focused on certain publications linked with the École 
Polytechnique. They have allowed us to observe the activity in the history of 
mathematics that developed in this context, in relation to the way students were 
encouraged to learn. A key point has emerged: the interest in the history of 
mathematics, which was made possible essentially thanks to the library, was 
intimately connected with the practice of comparing methods, in which students 
were trained. This interest was also encouraged by the fact that teachers and former 
students selected problems to which students were invited to find new solutions 
and for which the literature of the past offered other methods. The publications 
under consideration were mainly about geometry. We will turn to analysis, which 
presents a different case, in another publication that we will devote to the practice 
of philosophy of mathematics in the same context. 

To date, we have shown that for geometry, a mathematical culture took shape, 
in which students and former students participated, Poncelet among them. As a 
student, as we have seen, he contributed a solution to the problem of finding a circle 
tangent to three given circles. Moreover, with a friend from the same study room he 
read extensively books which they probably found in the library. Later, he continued 
studying ancient treatises, such as what he referred to as Maclaurin’s posthumous 
treatise of algebra (Bruneau 2011). The notes to his 1822 treatise show the extent of 
his historical knowledge. 

In our view, this context sheds interesting light on several features of the Traité 
des propriétés projectives des figures. 

To begin with, the book, as Poncelet defines it, centers precisely on methods. 
Indeed, in (Poncelet 1822: vi), we read: 

The purpose of this book, however voluminous it may seem, is not so much to multiply 
the number of these properties as to indicate the path that we must follow. In brief, I

101 (Hachette (ed.) 1814–1816: 4–17, 275–283 + Plate 271). 
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have sought, above all, to perfect the method of proving and discovering using simply 
geometry.102 

The specificity of the “path” to be followed could be best illustrated by returning 
to old problems and showing how the new method allowed him to deal with them. 
This is what Poncelet does when, in his Traité des propriétés projectives des figures, 
he returns precisely to the problem of the three circles (Poncelet 1822: 141). First, 
in a footnote, he outlines the history of the treatment of this problem as well as the 
related problem about spheres. Three points deserve our attention in this historical 
account. 

First, when he mentions research of the past, he lists: “Appollonius (sic), Viète, 
Fermat, Newton, Euler, and Fusse (sic), etc.”: if we set aside Apollonius and Vieta, 
these are precisely the names of those whose contributions were mentioned in the 
various articles in the Correspondance. In other words, a historiography had taken 
shape, which Poncelet inherited.103 

Second, when Poncelet mentions modern and “general” approaches to the 
problems, he adds comments to the list of those he refers to by adding that they 
are, “for the most part, former students or professors of the École Polytechnique.” 

Third, interestingly, in this footnote, Poncelet goes deeper into Pascal’s com-
ments on these two problems, and he quotes Pascal—who refers to Apollonius and 
Vieta—from volume 4 of the same 1779 edition that had been used by Brianchon. 
Did Poncelet study this edition in the library of the École? Did he have access to it 
in Arbogast’s library that Français kept (Anonymous 1823: 494)? We do not know. 
However, the mere fact that he refers to it explicitly as well as the precision of the 
bibliographic reference both show that his use of books was similar to Hachette’s 
and to Brianchon’s. 

In these pages, Poncelet makes explicit his reason for returning to the three circles 
problem: he aims to show that the methods he has introduced lead to the properties 
in a mostly “simple” and “natural” way, which in addition will be generalizable. 
Comparison between methods would remain central to his mathematical work. 

For this, the “path” followed by others was crucial, a task for which historical 
research was important. We cannot thus be surprised to read Poncelet stating in 
1843: 

. . .  Since, as it is worth repeating here, what interests us most in the history and philosophy 
of science is the path through which the human mind has arrived at the discovery of 
fundamental truths.104 

102 “Le but de ce livre, quelque volumineux qui il paraisse, est moins de multiplier le nombre de 
ces propriétés que d’indiquer la route que l’on doit suivre. En un mot, j’ai cherché, avant tout, à 
perfectionner la méthode de démontrer et de découvrir en simple Géométrie.” 
103 Gaultier (1813: 126)—also a former student of the École—repeats exactly the same references. 
104 “ . . .  car, il est bon ici de le répéter, ce qui intéresse le plus dans l’histoire et la philosophie 
des sciences, c’est la  route par laquelle l’esprit humain est parvenu à la découverte des vérités 
fondamentales.” “Extrait des Comptes rendus de l’Académie des Sciences, t. XVI, 1843, p. 947 à 
964,” quoted in (Poncelet 1866: 346). Our emphasis.



2 Mathematics, History of Mathematics and Poncelet: The Context. . . 59

Acknowledgements It is a tremendous pleasure for us to dedicate this chapter to our friend 
Jeremy, whose affection and constant support throughout the years have enlightened our lives. 
Our most sincere thanks go to the Fondation des Treilles, thanks to whom we could write this 
chapter during a research stay (September–October 2022). We are also grateful to Qianqian Feng, 
Richard Kennedy, as well as to the editors of the book and to the two readers, whose comments 
helped us improve our argument. 

References 

Anonymous. 1823. Notice d’une bibliothèque de mathématiques, de philosophie, de physique et 
de chimie, à vendre de gré à gré. In Bulletin général et universel des annonces et nouvelles 
scientifiques, ed. M. le Baron de Férussac, 493–495. 

———. 1892. La Bibliothèque de l’École Polytechnique. Les Nouvelles de l’Intermédiaire 34 (10 
décembre 1892): 123–131. 

Anonymous (P. L. B.). 1893. François Peyrard. Les Nouvelles de l’Intermédiaire 6 (28 février 
1893): 43–46. 

Aujac, Germaine. 1990. Science grecque et révolution française. Bulletin de l’Association 
Guillaume Budé : Lettres d’humanité 49: 395–409. https://doi.org/10.3406/ 
bude.1990.1757. Link: http://www.persee.fr/web/revues/home/prescript/article/bude_1247-
6862_1990_num_49_4_1757. 

———. 2007. La Science grecque revisitée aux entours de la révolution. In Les Autorités. 
Dynamiques et mutations d’une figure de référence à l’Antiquité, ed. Didier Foucault and Pascal 
Payen, 227–250. Grenoble: Jérôme Millon. 

Barbier, Paul. 1999. Pierre Jacotot (1756-1821), Professeur de Collège à Dijon, Bibliothécaire 
de l’Ecole centrale des Travaux publics. Bulletin de la SABIX (Société des Amis de la 
Bibliothèque et de l’Histoire de l’École Polytechnique) 20: 17–38. https://www.sabix.org/ 
bulletin/b20/jacotot.html; https://journals.openedition.org/sabix/872. 

Belhoste, Bruno. 1994. De l’Ecole des ponts et chaussées à l’Ecole centrale des 
travaux publics. Nouveaux documents sur la fondation de l’Ecole polytechnique. Bul-
letin de la SABIX (Société des Amis de la Bibliothèque de l’Ecole Polytechnique) 
11: 1–29. https://doi.org/10.4000/sabix.617. http://journals.openedition.org/sabix/617;https:// 
www.sabix.org/bulletin/b11/belhoste.pdf. References are made to the latter digitization, since 
the former is incomplete. 

———. 1998. De l’École polytechnique à Saratoff, les premiers travaux géométriques de Poncelet. 
Bulletin de la SABIX (Société des Amis de la Bibliothèque de l’Ecole Polytechnique) 19: 9–29. 
http://www.sabix.org/bulletin/b19/belhoste.html. 

———. 2003. La Formation d’une technocratie. L’Ecole polytechnique et ses élèves de la 
Révolution au Second Empire. Paris: Belin. 

———. 2009. Charles Dupin et l’héritage de Monge en géométrie. In Charles Dupin (1784-1873). 
Ingénieur, savant, économiste, pédagogue et parlementaire du Premier au Second Empire, ed.  
Carole Christen and François Vatin, 81–97. Rennes: Presses Universitaires de Rennes. 

Belhoste, Bruno, and René Taton. 1992. Leçons de Monge. In L’Ecole Normale de l’An III. Leçons 
de mathématiques. Laplace-Lagrange-Monge, ed. Jean Dhombres, 266–459. Paris: Dunod. 

Bradley, Margaret. 1976. An Early Science Library and the Provision of Textbooks: The Ecole 
Polytechnique, 1794-1815. Libri 26: 165–180. 

Bruneau, Olivier. 2011. Le De Linearum de MacLaurin: Entre Newton et Poncelet. Revue d’histoire 
des mathématiques 17: 9–39. 

Caramalho Domingues, João. 2008. Lacroix and the Calculus, Science Network Historical Studies. 
Vol. 35. Basel: Birkhäuser. 

Chasles, Michel. 1837. Aperçu historique sur l’origine et le développement des méthodes en 
géométrie, particulièrement de celles qui se rapportent à la géométrie moderne, suivi d’un


 25964 21838 a 25964
21838 a
 
http://doi.org/10.3406/bude.1990.1757

 9329 22945 a 9329 22945
a
 
http://www.persee.fr/web/revues/home/prescript/article/bude_1247-6862_1990_num_49_4_1757

 26287 30694 a 26287 30694 a
 
https://www.sabix.org/bulletin/b20/jacotot.html

 9123 31801 a 9123 31801 a
 

 3456 36229 a 3456 36229 a
 

 16606 36229 a 16606 36229 a
 

 32217 36229 a 32217 36229 a
 
https://www.sabix.org/bulletin/b11/belhoste.pdf

 -687
41764 a -687 41764 a
 


60 B. Belhoste and K. Chemla

mémoire de géométrie sur deux principes généraux de la science : la dualité et l’homographie. 
Bruxelles: M. Hayez. 

Chemla, Karine. 2016. The Value of Generality in Michel Chasles’s Historiography of Geometry. 
In The Oxford Handbook of Generality in Mathematics and the Sciences, ed. Karine Chemla, 
Renaud Chorlay, and David Rabouin, 47–89. Oxford: Oxford University Press. 

Curabelle, Jacques. 1644. Examen des oeuvres du Sieur Desargues. Paris: M. et I. Henault. 
de Chambray, Marquis Georges. 1836. Sur l’École Polytechnique. Paris: Anselin Libraire. 
Didion, Monsieur, and le Général. 1869. Notice sur la vie et les ouvrages du Général J.-V. Poncelet. 

Lue à l’Académie impériale de Metz dans la séance du 18 mars 1869. Paris: Gauthier-Villars, 
Imprimeur-Libraire. 

Dooley, E.L. 1994, November. Procès verbaux des Séances du Conseil de l’Ecole polytechnique 
de l’an III (1794) à l’an VII (1799). Transcription des registres à partir de microfiches, par 
le Colonel E. L. Dooley (Virginia Military Institute). Recension par Emmanuel Grison, Ecole 
polytechnique, mise en page et révision à la Bibliothèque de l’Ecole polytechnique. Bulletin 
de la SABIX 12: 8–64. https://doi.org/10.4000/sabix.703. http://journals.openedition.org/sabix/ 
703. 

———. n.d. Transcription des procès-verbaux des séances du conseil d’instruction et 
d’administration de l’Ecole Polytechnique. De l’An 3 à l’An 7. Transcription par E.L. Dooley, 
Virginia Military Institute. Recension par E. Grison, Ecole Polytechnique. Vol. 1: Transcription. 
Vol. 2: Index. 

Field, J.V., and Jeremy J. Gray. 1987. The Geometrical Work of Girard Desargues. New York:  
Springer. 

Fourcy, Ambroise. 1828. Histoire de l’École Polytechnique. Paris: chez l’auteur, à l’École 
Polytechnique. 

Français, Jacques Frédéric. 1813–1814. Philosophie mathématique. Sur la théorie des quan-
tités imaginaires. Annales de Mathématiques pures et appliquées 4: 222–227. http:// 
www.numdam.org/item?id=AMPA_1813-1814__4__222_1. 

Gaultier de Tours, Louis. 1813. Mémoire sur les moyens généraux de construire graphiquement un 
cercle déterminé par trois conditions, et une sphère déterminée par quatre conditions. Journal 
de l’École polytechnique 16e cahier (tome IX): 124–214. 

Gergonne, Joseph Diez. 1826–1827. Réflexion sur le précédent article. Annales de Mathé-
matiques pures et appliquées 17: 272–276. http://www.numdam.org/item?id=AMPA_1826-
1827__17__272_1. 

Gouzévitch, Irina, and Dimitri Gouzévitch. 1998. La Guerre, la captivité et les mathématiques. 
Bulletin de la SABIX (Société des Amis de la Bibliothèque et de l’Histoire de l’Ecole 
Polytechnique) 19: 31–68. https://www.sabix.org/bulletin/b19/gouzevitch.html. 

Gray, Jeremy. 2005. Jean Victor Poncelet, Traité des propriétés projectives des figures, first edition 
(1822). In Landmark writings in Western mathematics, 1640-1940, ed. Ivor Grattan-Guinness, 
366–390. Amsterdam: Elsevier. 

———. 2007. Worlds Out of Nothing. A Course in the History of Geometry in the 19th Century. 
London: Springer. 

Guyot de Fère, François-Fortuné. 1858. L’abbé Nicolas Halma. In Nouvelle Biographie Générale 
depuis les temps les plus reculés jusqu’à nos jours, ed. Le Hoefer, 200–203. Paris: Firmin 
Didot. 

Hachette, Jean Nicolas Pierre, ed. 1808. Correspondance sur l’Ecole Impériale Polytechnique 
à l’usage des élèves de cette école. Tome premier: 1804 (April)-1808 (March). Paris: Chez  
Bernard. 

———, ed. 1814. Correspondance sur l’Ecole Polytechnique à l’usage des élèves de cette école. 
Tome Second: 1809 (January)-1813 (January). Paris: Me Veuve Courcier. 

———, ed. 1816. Correspondance sur l’Ecole Royale Polytechnique à l’usage des élèves de cette 
école. Tome troisième: 1814 (January)-1816 (January). Paris: Me Veuve Courcier. 

Halma, Nicolas. 1813–1816. Composition Mathématique de Claude Ptolémée, traduite pour la 
première fois du grec en français, sur les manuscrits originaux de la Bibliothèque Impériale


 7930 15191 a 7930 15191
a
 

 20894 15191 a 20894
15191 a
 
http://journals.openedition.org/sabix/703

 32586 27367 a 32586 27367 a
 
http://www.numdam.org/item?id=AMPA_1813-1814__4__222_1

 16696 34009 a 16696 34009 a
 
http://www.numdam.org/item?id=AMPA_1826-1827__17__272_1

 9415 38437 a 9415 38437 a
 


2 Mathematics, History of Mathematics and Poncelet: The Context. . . 61

de Paris par M. Halma et suivie des notes de M. Delambre: Vol. 1: chez H. Grand. Vol. 2: 
imprimerie de J.M. Eberhart, imprimerie du collège royal de France. 

Laboulais, Isabelle. 2014. La bibliothèque de l’École des mines, lieu de savoir et lieu de mémoire 
pour les ingénieurs. Revue de la BNU 10: 44–55. https://doi.org/10.4000/rbnu.1627. http:// 
journals.openedition.org/rbnu/1627. 

Langins, Janis. 1989. Histoire de la vie et des fureurs de François Peyrard, bibliothécaire de l’Ecole 
polytechnique de 1795 à 1804 et traducteur renommé d’Euclide et d’Archimède. SABIX 3: 2– 
12. https://www.sabix.org/bulletin/b3/peyrard.html;https://journals.openedition.org/sabix/556. 

Pepe, Luigi. 1996. La formazione della biblioteca dell’ Ecole Polytechnique. Il contributo 
involontario del Belgio e dell’Italia. Bollettino di storia delle scienze matematiche 16: 155– 
198. 

———. 1997. Gaspard Monge: un matematico nella storia delle grandi biblioteche italiane (1796-
1798). Bollettino di Storia delle Scienze Matematiche 17: 155–187. 

Peyrard, François. 1804. Les élémens de géométrie d’Euclide, traduits littéralement et suivis d’un 
Traité du cercle, du cylindre, du cône et de la sphère, de la mesure des surfaces et des solides, 
avec des notes, par F. Peyrard, Bibliothécaire de l’Ecole Polytechnique. Ouvrage approuvé par 
l’Institut National. Paris: F. Louis.  

———. 1807. Œuvres d’Archimède, traduites littéralement, avec un commentaire par F. Peyrard, 
Professeur de Mathématiques et d’Astronomie au Lycée Bonaparte, suivies d’un Mémoire 
du traducteur sur un nouveau miroir ardent et d’un autre Mémoire de M. Delambre sur 
l’arithmétique des Grecs. Ouvrage approuvé par l’Institut et adopté par le gouvernement pour 
les bibliothèques des lycées. Dédié à Sa Majesté l’Empereur et Roi. Paris: F. Buisson. 

———. 1808. Œuvres d’Archimède, traduites littéralement, avec un commentaire par F. Peyrard, 
Professeur de Mathématiques et d’Astronomie au Lycée Bonaparte, suivies d’un Mémoire 
du traducteur sur un nouveau miroir ardent et d’un autre Mémoire de M. Delambre sur 
l’arithmétique des Grecs. Ouvrage approuvé par l’Institut et adopté par le gouvernement pour 
les bibliothèques des lycées. Dédié à Sa Majesté l’Empereur et Roi. Seconde édition, 2 volumes. 
Paris: F. Buisson. 

———. 1809. Les élémens de géométrie d’Euclide, traduits littéralement et suivis d’un Traité du 
cercle, du cylindre, du cône et de la sphère, de la mesure des surfaces et des solides, avec 
des notes, par F. Peyrard, professeur de mathématiques et d’astronomie au Lycée Bonaparte. 
Seconde édition augmentée du cinquième livre. Ouvrage approuvé par l’Institut et adopté par 
le gouvernement pour les bibliothèques des lycées. 2nd edition. Paris: F. Louis. 

———. 1814–1818. Les œuvres d’Euclide, en grec, en latin et en français, d’après un manuscrit 
très-ancien qui était resté inconnu jusqu’à nos jours, par F. Peyrard, traducteur des œuvres 
d’Archimède. Ouvrage approuvé par l’Institut de France. Dédié au Roi. 3 volumes. Paris: 
Patris. 

Poncelet, Jean-Victor. 1822. Traité des propriétés projectives des figures; ouvrage utile à ceux qui 
s’occupent des applications de la géométrie descriptive et d’opérations géométriques sur le 
terrain. Paris: Bachelier, libraire, quai des Augustins. 

———. 1862. Applications d’analyse et de géométrie qui ont servi de principal fondement au 
Traité des propriétés projectives des figures, comprenant la matière des sept cahiers manuscrits 
rédigés à Saratoff dans les prisons de Russie 1813 à 1814 et accompagnés de divers autres 
écrits, anciens ou nouveaux, annotés par l’auteur et suivis d’Additions par MM. Mannheim et 
Moutard, anciens élèves de l’École polytechnique. Tome 1. Paris: Mallet-Bachelier. 

———. 1864. Applications d’analyse et de géométrie qui ont servi de principal fondement au 
Traité des propriétés projectives des figures, avec Additions par MM. Mannheim et Moutard, 
anciens élèves de l’École Polytechnique. Tome deuxième et dernier. Paris: Gauthier-Villars. 

———. 1865. Traité des propriétés projectives des figures; ouvrage utile à ceux qui s’occupent 
des applications de la géométrie descriptive et d’opérations géométriques sur le terrain. 
Tome premier. Deuxième édition, revue, corrigée et augmentée d’annotations nouvelles. Paris:  
Gauthier-Villars, Imprimeur-libraire. 

———. 1866. Traité des propriétés projectives des figures; ouvrage utile à ceux qui s’occupent 
des applications de la géométrie descriptive et d’opérations géométriques sur le terrain.


 19260 3014 a 19260 3014 a
 

 32586 3014 a 32586 3014 a
 
http://journals.openedition.org/rbnu/1627

 724 7442 a 724 7442 a
 

 18672 7442 a 18672 7442 a
 


62 B. Belhoste and K. Chemla

Tome second. Deuxième édition, revue par l’auteur et augmentée de sections et d’annotations 
nouvelles ou jusqu’ici inédites. Paris: Gauthier-Villars, Imprimeur-libraire. 

Quetelet, Adolphe. 1839. Notice sur Jean-Guillaume Garnier. Annuaire de l’Académie royale des 
sciences et belles-lettres de Bruxelles 5: 161–207. 

Sakarovitch, Joël. 1998. Epures d’architecture, de la coupe des pierres à la géométrie descriptive, 
XVIe-XIXe siècles. Basel: Birkhäuser. 

Servois, François-Joseph. 1814–1815. Philosophie mathématique. Réflexions sur les divers sys-
tèmes d’exposition des principes du calcul différentiel, et, en particulier, sur la doctrine des 
infiniment petits. Annales de Mathématiques pures et appliquées 5: 141–170. 

Taton, René. 1970–1980a. Français, François (Joseph) and Français, Jacques Frédéric. In Dictio-
nary of Scientific Biography, ed. C. C. Gillispie, 110–112. 

———. 1970–1980b. Servois, François-Joseph. In Dictionary of Scientific Biography, ed. C. C. 
Gillispie, 325–326. 
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Chapter 3 
Advice to a Young Mathematician 
Wishing to Enter the History 
of Mathematics 

Lizhen Ji 

Abstract In this chapter, I will try to explain some basic issues in doing the 
history of mathematics, which seem almost self-evident though often not easy to 
be followed or followed consciously (or conscientiously), and then illustrate the 
importance of some of these points by examining several well-known historical 
studies on the famous testamentary letter of Galois written on the eve of his fatal 
duel, showing some damaging consequences for violating these basic points. We 
conclude with the notion of the spacetime of mathematics which can provide 
one common framework for multiple approaches to the study of the history of 
mathematics and illustrate its use by two examples concerning some works of 
Poincaré and Hilbert. 

3.1 Introduction: Reasons for Writing This Chapter 

After spending many years in the world of mathematics, I want to understand better 
some global and historical aspects of mathematics by doing some research on the 
history of mathematics.1 Several years ago, I started to look for books and papers 
which can serve as helpful guides to young people and mathematicians who want 
to learn proper ways to do some good research on the history of mathematics. After 
a period of relatively extensive search through various sources and asking multiple 
historians of mathematics whom I could have a chance to meet or interact, I could 

1 Partly motivated by the metaphor: if one has lived for life in a big city with a long history such as 
London, Paris, Beijing, and Rome or Xi’an, it is reasonable to expect that this person should know 
something about the major historical landmarks and main roads connecting them in the city, and 
some important events in the history of the city and their impacts on the development of the city, 
in particular, their current impacts. Now replace the big city by mathematics. 
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not find many such writings on the historiography of mathematics, or rather the 
methodology of the history of mathematics. Partly because of this, during multiple 
meetings of the editors of this book The Richness of the History and Philosophy 
of Mathematics, I tried to emphasize the idea of asking the experts on the history 
and philosophy of mathematics who are contributing to this book to share their 
experiences and explain their perspectives on “what, why and how” about the history 
of mathematics. I strongly believe that this should be helpful to several groups of 
people, especially the young historians and mathematicians who are interested in 
history, since many problems about the history of more recent mathematics, for 
example, the late nineteenth century and twentieth century mathematics, need to be 
studied or understood better, hence contributions from the younger generations and 
mathematicians are needed. Naturally, to make it easier for these people to enter the 
field, it is probably helpful, or even definitely desirable, for them to learn from the 
experiences, not only the works, of the experts in the history of mathematics. 

Probably because of my persistence on the above point, José Ferreirós suggested 
that I could try to write one such introductory paper first, which could then be 
improved by experienced experts. Though this is a challenging task, writing such 
an article is a good learning experience for me: not only the benefit from the 
demanding process of finding out what have been written already about basic 
and important problems in the historiography of mathematics but also a good 
opportunity to interact with the experts in history with concrete questions in mind. 
So I took the challenge and wrote an article titled Some Perspectives on the History 
of Mathematics: What, Why, and How (Ji 2022). Since there are not many books and 
papers discussing basic issues in the methodology of the history of mathematics,2 I 
tried to look up as many books as possible on the methodology of general history and 
related philosophy books. After all, the history of mathematics should have shared 
some similarities with the general history about basic questions and big issues.3 

Both for my own education and for the convenience of the possible readers, I quoted 
extensively from various writings in order to convey more balanced views of many 
experts, for example, to avoid the danger of distorted meanings of chopped quotes. 
After working on it intensively and exclusively over a period of several months, I 
made the article definitely too long to be included in this book (for example, the 
references occupy over 17 pages). Several people suggested to pick out only certain 
parts and produce a much shorter and more focused paper. This paper is the outcome 
of this shortening process. In some sense, it is a different and improved paper.

2 See some illuminating quotes from several influential writers on historiography to explain why 
working historians often do not want to talk too much about “what, why, and how” of their subjects 
in Ji (2022, §1.2). 
3 Maybe the following description of the historian of mathematics is reasonable: a historian of 
mathematics is a historian who studies the history of mathematics. Therefore he/she needs to know 
basic techniques in the study of history, and also has a good command of mathematics topics under 
study. Other subjects such as philosophy are also needed, and he/she should be able to write up 
his/her research results in an authentically historical, yet accessible, way which are of historical 
value to the readers. 
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José Ferreirós originally suggested a title Advice to a young mathematician 
wishing to enter the history and philosophy of mathematics for my article, which 
was also endorsed by Erhard Scholz. In this reduced version, I took their suggested 
title except dropping one key word “philosophy”, since I do not know enough about 
philosophy even after some struggles with it and hence could not say much about it 
which might be useful. 

After writing this lengthy article (Ji 2022), thinking over various issues discussed 
in it and reading more books and articles on the methodology of history, I had a 
revelation recently: Many points I studied and quoted in Ji (2022) are all reasonable 
and almost self-evident, even though some of them may have not been discussed so 
explicitly or naively by experts in history. But What is difficult is how to make them 
a part of working habit4 and to apply them to do research on some concrete and 
solid problems in the history of mathematics.5 

One point emphasized in Ji (2022) is the dialectic perspective: instead of choos-
ing sides between opposing views, one needs to take all of them into consideration 
without going to extremes in following either of them and to combine them in 
fruitful ways. To achieve this, it is certainly important to learn and use various basic 
points in the historiography of mathematics, while keeping in mind that though 
having some guiding principles is important, one should not be bounded by them 
absolutely or pursue the extreme cases allowed by them. For example, to describe a 
mathematical result or an event adequately and in a satisfying way, one needs to have 
a global or overall understanding of many relevant mathematics topics and related 
social, cultural, political, and philosophical factors. On the other hand, one also 
needs to analyze some particular things in minute detail. This involves the dialectic 
pair of global studies versus local studies, and how their interaction can produce a 
fair and complete picture of the issue under discussion. Probably it is safe to say 
that very few historians will disagree with the above points. On the other hand, how 
many people including the leading mathematicians in the world can claim to have a 
good or perfect overall understanding of the whole of mathematics, and how many 
specialists can have absolute and very detailed command of their special subjects 
or even topics? The above dialectic perspective suggests that we do not need to go 
to such extremes. It also suggests that even if we cannot achieve either of them, it 
does not mean that we should not try as much as possible to move in the directions 
suggested by them (i.e., pursuing both breadth and depth) and to combine them 
in suitable ways (for example, how different topics or subjects interact with each

4 Maybe one meaningful comparison can be made to driving. A beginning driver needs to take 
some driving lessons in order to start and to learn some basic rules. But continuing driving is 
essential, and after a while, the driver will not even need to think about how one should drive 
anymore, since it has become a habit. 
5 I am also more convinced than before, when I wrote Ji (2022), that a beginning historian should 
spend some time to think about the basic and big issues about the historiography of mathematics, 
but probably not too much of it. Is it similar to our life? A moderate amount of religious and 
philosophical meditation will probably help one to live a more balanced and satisfying life. But the 
key to life is to live it, ideally an enlightened life. 
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other, and how some details in a proof of a theorem turn out to have a big impact on 
mathematics, while keeping in mind multiple famous lemmas in mathematics which 
outshone major works of their creators!) in order to understand better the problem 
under study. 

Since the dialectic perspective is crucial to this chapter, we will need to explain 
more precisely what we mean by it. It contains, but is more than, “the Golden Mean” 
of Aristotle, i.e., finding a balance between two extremes, which is equivalent to the 
Doctrine of the Mean (Zhong Yong Zhi Dao), one of the most basic principles of the 
ancient Chinese philosophy. One additional crucial aspect of the dialectics is the 
combination or synthesis of two extremes (the thesis and antithesis). This will also 
be seen in other examples of this chapter. 

Although I have very little experience in the study of history, I wish that some 
people, books or papers had given me the following pieces of advice when I first 
started to learn how to do research in the history of mathematics: 

1. Have some solid understanding of What is the history of mathematics. 
The history of mathematics is about the development of mathematics. Good 
research works in the history of mathematics can and should provide better 
understanding about this development. Yes, there are many important aspects 
in describing the development of mathematics: mathematical, social, cultural, 
political, and philosophical etc; and there are also many ways to increase our 
knowledge about this development. 
In spite of the relevance and importance of all other factors, mathematics itself 
should be one essential part. Mathematical discussions can be simplified and 
discussed tangentially, but what is provided should be correct, and hopefully 
clear and relatively easy to be understood too. Each historical research project 
and writing can focus on some aspects (mathematical, social, cultural, political, 
or philosophical), but in the total sum of works on the history of mathematics, 
mathematical discussions should have the leading role. Otherwise, it is probably 
not the proper history of mathematics, at least not the complete picture of it, or 
as my colleague Jamie Tappenden told me, the right English phrase to describe 
the situation would be: “Hamlet without the Prince”.6 

2. Think about Why one wants to do some research project in the history of 
mathematics. 
Every person has different motivations for doing each particular research project 
and for spending time and effort to write up their discoveries or results. But 
several obvious questions are still important and should be kept in mind all 
the time: How can it contribute to expanding our knowledge of the history 
of mathematics in some important ways, for example clarifying the evolution 
process of a particular theory or a subject? Or how does it fill in some gaps in 
our knowledge, especially crucial gaps, about the development of mathematics?

6 In a conversation with Chang Wang, I described the situation through a cake and its toppings: 
even though rich toppings greatly enhance a cake, the cake itself is still the most essential part 
which makes it a cake. 



3 Advice to a Young Mathematician Wishing to Enter the History of Mathematics 67

How does it give better explanation than existing ones of the historical event 
under discussion? Why do people want to read your papers or books? Or to a 
certain extent, why is it interesting for others to read them? More importantly, 
how can people benefit from reading them?, and so on and so forth. 
Of course, all these questions should be taken in a dialectic perspective. If a 
problem is really interesting or justifiable to yourself, the other factors and 
considerations7 probably do not matter too much, though they should not be 
completely ignored either. 

3. Take a Dialectic Perspective towards both the development of mathematics and 
various aspects of and approaches to the study of the history of mathematics. 
Indeed, the dialectic pairs such as discrete versus continuous, local versus global, 
provide illuminating guides to understand essential parts of the development of 
mathematics. For example, the evolution of calculus manifests well the dialectic 
interaction between the local (differentiation) and the global (integration), and 
their synthesis (the fundamental theorem of calculus). This dialectic pair of 
local and global also clarifies the structure or nature of a majority of works in 
the modern and contemporary global differential geometry: the local (curvature 
assumptions) and the global (topological invariants and global geometric prop-
erties), and the interaction between them (most significant results such as the 
Gauss-Bonnet theorem and the more recent Atiyah-Singer theorems). 
More globally, people often say that mathematics studies numbers and shapes, 
in particular it has two important aspects: quantitative and qualitative. Of course, 
each part is crucial to mathematics, but the interaction between them is probably 
the more interesting and essential driving force behind the rich development of 
mathematics through out its long history.8 

In the methodologies of the history of mathematics, there are also dialectic pairs 
of the internal history versus the external history,9 and of the view from the

7 See Ji (2022, Section 2) for many uses of the history of mathematics with concrete examples. 
8 The ubiquity and importance of dialectic processes can be seen through the most basic and 
important process in nature and in the world: the life reproduction. The synthesis of the male and 
female produces a new dialectic pair of the male and female, and this process repeats itself with 
possible improvement for their best chances of survival and reproduction. It is a bit surprising that 
such a fundamental dialectic process is not mentioned explicitly in many writings about dialectics, 
for example, in the famous book Dialectics of Nature by Frederich Engels (1940). 
9 There are many examples which show the influence of the interaction between the internal and 
external factors on the development of mathematics. As it is well-known, Riemann’s habilitation 
lecture On the hypothesis which lies at the bases of geometry initiated the subject of Riemannian 
geometry and had also a huge impact on Einstein’s general theory of relativity. But this was the 
third, or the last, topic which Riemann presented to the committee chair, Gauss, and Gauss picked 
the least expected one in the eyes of Riemann, or the least prepared topic by Riemann. One can 
analyze the cultural and social contexts for the custom of the requirement at that time that each 
candidate needed to provide three possible topics for the habilitation lecture. Though it might look 
like a fruitful accident, accidental causes are one important part of history (Carr 1961, Chap. IV). 
Of course, Gauss must have his own mathematical reasons for making this choice. In any case, all 
these considerations, both mathematical and non-mathematical, make the history of Riemannian 
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present versus the view from the past itself. They all need to be taken into 
consideration and combined in fruitful ways. Otherwise, bad consequences might 
arise. 

I hope that these obvious points can be relevant and interesting to others too. As 
in life, people often overlook the most basic and obvious things. We will make 
some of the above discussions more precise and describe a few more concrete 
points which might be considered as basic requirements in doing research on the 
history of mathematics. Whenever possible, relevant examples are provided. After 
summarizing comments by mathematicians and historians on various aspects of 
history in Sect. 3.2, we examine some historical studies on Galois’ testamentary 
letter to highlight the importance of using the primary sources in Sect. 3.3. Then in 
Sect. 3.4, we explain the key components of historical thinking. Finally we introduce 
the notion of spacetime of mathematics in Sect. 5 and illustrate its use to get new 
perspectives on works of Poincaré and Hilbert. 

3.2 Comments by Mathematicians and Historians 
on What, Why, How of History 

Given that the history of mathematics is a long one, it is expected that some major 
mathematicians and historians of mathematics have written about several basic 
issues in the study of the history of mathematics. It is not surprising that each has 
different perspectives and some of them have expressed their opinions strongly and 
sharply. It is not surprising either that mathematicians and historians of mathematics 
have vastly different or even seemingly conflicting opinions. Similarly, even for 
some historians of mathematics, there is a strong division between the so-called 
internal history and external history, though this division is not clearly defined. 
From the dialectic perspective emphasized in this chapter, we will try to present 
an overview of them by making long quotes from major representatives so that the 
readers can understand better the precise meaning of opinions of the people from 
whom we have quoted.10 

geometry richer and more interesting. More importantly, they can also explain why something 
happened in the ways it did.
10 It seems that the general advice given to young historians in books on the methodology of 
history is to quote sparingly or briefly by incorporating others’ opinions into the text through either 
summarizing or paraphrasing others’ writings. In this chapter, I am going against this instruction 
because short quotes and paraphrasing will often distort the original meanings and hence can 
cause misunderstanding, which can be seen in the discussions about Galois’ testamentary letter 
in Sect. 3.3 below. This is also consistent with the basic principle in the study of history of using 
the primary sources or the original writings as much as possible. I do not wish to express my 
opinions either on these quotes representing different perspectives about history, since it seems 
important that the readers need to understand all of them and then make up their own decisions 
about the basic issues in the history of mathematics and how to make use of the suggestions in the 
quotes. Of course, this is the dialectic view that we want to emphasize in this chapter. 
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Before quoting from writings of these major figures, it is helpful to give a 
definition, or rather a description, of the history of mathematics, which is more 
concrete and detailed than what we mentioned briefly in the introduction. Since 
I could not find a reasonable definition of the history of mathematics in books 
and papers which I have checked, I will quote a definition of the general history. 
Among all the books I have checked, it seems that the following from Encyclopedia 
Britannica in 1780 is probably still the most appropriate: concise and to the point, 
yet rich in content. Maybe this is why it was selected for inclusion in a recent well-
respected book The Modern Historiography Reader: Western Sources (Budd 2010, 
72): 

History, in general, signifies an account of some remarkable facts which have happened in 
the world, arranged in the true order in which they actually took place, together with the 
causes to which they were owing, and the different effects they have produced, as far as can 
be discovered. 

The reader can translate this into a suitable definition for the history of mathemat-
ics. Though different people will probably make different translations, their basic 
contents should be similar. It is also important to emphasize that such a definition 
can only serve as a general guide, providing some helpful directions and reminding 
people of what are important when working on problems in history. Hence one 
should take this definition dialectically in the sense explained in the introduction. 

Views of Mathematicians 
Among mathematicians with very keen interest in history, Andre Weil is one major 
representative. Some of his opinions are expressed in Weil (1980, 1975). In Weil 
(1980, 228–230), Weil wrote: 

as Moritz Cantor observed, one may, in dealing with mathematical history, regard it as 
an auxiliary discipline, meant for providing the true historian with reliable catalogues of 
mathematical facts, arranged according to times, countries, subject-matters and authors. It 
is then a portion, and not a very significant one, of the history of techniques and crafts, and 
it is fair to look upon it entirely from the outside.... 
From another point of view, mathematics may occasionally provide the cultural historian 
with a kind of “tracer” for investigating the interaction between various cultures. With this 
we come closer to matters of genuine interest to us mathematicians; but even here our 
attitudes differ widely from those of professional historians. To them a Roman coin, found 
somewhere in India, has a definite significance; hardly so a mathematical theory.... 
Now, leaving the views and wishes of laymen and of specialists of other disciplines, it is 
time to... consider the value of mathematical history, both intrinsically and from our own 
selfish viewpoint as mathematicians... we may say that its first use for us is to put or to 
keep before our eyes “illustrious examples” of first-rate mathematical work. Does that make 
historians necessary? Perhaps not.... 
The historian can help in still another way. We all know by experience how much is to be 
gained through personal acquaintance when we wish to study contemporary work... to us 
their biographies are of no small value in bringing alive the men and their environment as 
well as their writings.... 
Mathematical strategy is concerned with long-range objectives; it requires a deep under-
standing of broad trends and of the evolution of ideas over long periods. This is almost 
indistinguishable from what Gustav Eneström used to describe as the main object of 
mathematical history, viz., “the mathematical ideas, considered historically”, or, as Paul 
Tannery put it, “the filiation of ideas and the concatenation of discoveries”. There we have 
the core of the discipline we are discussing, and it is a fortunate fact that the aspect towards
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which, according to Eneström and Tannery, the mathematical historian has chiefly to direct 
his attention is also the one of greatest value for any mathematician who wants to look 
beyond the everyday practice of his craft. 

For Weil, the task of historians of mathematics is clear (Weil 1980, 231, 234): 

once we have agreed that mathematical ideas are the true object of mathematical history, 
some useful consequences can be drawn... the ability to recognize mathematical ideas in 
obscure or inchoate form, and to trace them under the many disguises which they are apt to 
assume before coming out in full daylight, is most likely to be coupled with a better than 
average mathematical talent.... 
One important task of the serious historian of mathematics, and sometimes one of the 
hardest, is precisely to sift such routine from what is truly new in the work of the great 
mathematicians of the past. 

Although Weil was a major mathematician in the twentieth century, he is often 
considered as a major historian of mathematics too, which can be testified by his 
writings on the history of mathematics. Then one question is: What is the opinions 
of some other major mathematicians on the history of mathematics? 

In an interview (Chong and Leong 1986, 12), Serre said: 

I am already interested [in the history of mathematics]. But it is not easy; I do not have the 
linguistic ability in Latin or Greek, for instance. And I can see that it takes more time to 
write a paper on the history of mathematics than in mathematics itself. Still, history is very 
interesting; it puts things in the proper perspective.11 

Perhaps this represents one view towards history of a definite percentage of 
working mathematicians: respect and appreciation for the history of mathematics. 

The following quote of Milnor from an interview Raussen and Skau (2012, 406) 
shows that he was fully aware of the bigger scope of history than the so-called Whig 
history: 

I certainly enjoy trying to track down just when and how the ideas that I work with 
originated. This is, of course, a very special kind of history, which may concentrate on 
obscure ideas which turned out to be important, while ignoring ideas which seemed much 
more important at the time. History to most scientists is the history of the ideas that worked. 
One tends to be rather bored by ideas that didn’t work. A more complete history would 
describe how ideas develop and would be interested in the false leads also. In this sense, the 
history I would write is very biased, trying to find out where the important ideas we have 
today came from, who first discovered them. I find that an interesting subject. 

In the preface to Atiyah’s collected works published in China, which was 
arranged by Shiing-Shen Chern for the sake of Chinese students and mathemati-
cians, Chern wrote: 

No matter how refined or improved a new account is, the original papers on a subject are 
usually more direct and to the point. When I was young, I was benefited by the advice 
to read Henri Poincaré, David Hilbert, Felix Klein, Adolf Hurwitz, etc. I did better with

11 The question from the interviewers is: “Do you think that you will ever be interested in the 
history of mathematics?”, which followed the earlier question and answer: “Q: You mentioned 
papers which have been forgotten. What percentage of the papers published do you think will 
survive? A: A non-zero percentage, I believe. After all, we still read with pleasure papers by 
Hurwitz, or Eisenstein, or even Gauss.” 
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Wihelm Blaschke, Elie Cartan and Heinz Hopf. This has also been in the Chinese tradition, 
when we were told to read Confucius, Han Yu in prose, and Tu Fu in poetry.12 

The reader might have noticed that in the above quotes we have tried to mix 
up on purpose two aspects of the history of mathematics: writings by past great 
mathematicians and historical studies about them. 

Since the history of mathematics is often compared with the history of science, in 
particular, the history of physics, it will be interesting to compare the above opinions 
of mathematicians with views of some major physicists on history. 

The distinguished physicist, Nobel Laureate, Steven Weinberg had a distinct 
view of the history of science (Weinberg 2004, 5), probably different from many 
scientists, but very close to that of many hisotrians: 

I have been asked to review the history of the formation of the Standard Model. It is natural 
to tell this story as a sequence of brilliant ideas and experiments, but here I will also talk 
about some of the misunderstandings and false starts that went along with this progress, and 
why some steps were not taken until long after they became possible. The study of what 
was not understood by scientists, or was understood wrongly, seems to me often the most 
interesting part of the history of science. Anyway, it is an aspect of the Standard Model 
with which I am very familiar, for as you will see in this talk, I shared in many of these 
misunderstandings. 

In an article titled “Keeping an Eye on the Present” (Weinberg 2018, 58), 
Weinberg wrote: 

The historian of science Bruce Hunt recalls that when he was in graduate school in the early 
1980s, “whiggish” was a common term of abuse in the history of science. To avoid that 
charge, people turned away from telling progress stories or giving “big picture” stories of 
any kind, and shifted to accounts of small episodes, tightly focused in time and space. 
Nevertheless, in teaching courses on the history of physics and astronomy, and then working 
up my lectures into a book, I have come to think that whatever one thinks of whiggery in 
other sorts of history, it has a rightful place in the history of science. 

This quote makes one wonder whether the “whiggish” history of more recent 
mathematics has “a rightful place” in the history of mathematics. 

On more general related issues, Einstein wrote in a letter (Einstein 1944): 

I fully agree with you about the significance and educational value of methodology as 
well as history and philosophy of science. So many people today–and even professional 
scientists–seem to me like somebody who has seen thousands of trees but has never 
seen a forest. A knowledge of the historic and philosophical background gives that 
kind of independence from prejudices of his generation from which most scientists are 
suffering. This independence created by philosophical insight is–in my opinion–the mark 
of distinction between a mere artisan or specialist and a real seeker after truth.

12 It is probably well-known that Confucius’ teachings collected in the Analects and his writings 
have greatly influenced the culture of China and nearby countries such as Japan and Korea. Han 
Yu is much less known in the West, but his writings have had a huge impact on the Chinese literary 
tradition, and he can be compared to Dante, Shakespeare or Goethe in the West. Tu Fu is often 
considered as one of the two greatest Chinese poets in history, the other being Li Bai. 
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This quote raises one question: Is there a similar “mark of distinction between a 
mere artisan or specialist and a real seeker after truth” in mathematics? 

Views of Historians 
Next, we take a look at opinions of known historians of mathematics on the history 
of mathematics. According to Hawkins (Hawkins 1987, 1642), 

The challenge to the historian is to depict the origins of a mathematical theory so as 
to capture the diverse ways in which the creation of that theory was a vital part of the 
mathematics and mathematical perceptions of the era which produced it. 

This quote describes clearly one main task of historians of mathematics. But 
several questions arise naturally. Which kind of “mathematical theory” should 
historians consider in terms of subject matters? Furthermore, a past one or one in the 
contemporary mathematics? Or both? This is an important question, since it is very 
relevant to the question of its usefulness to the current working mathematicians. 

Since “depict the origins of a mathematical theory” is going back in time, another 
question is whether we should go forward in time and consider impacts, both 
positive and negative, of “a mathematical theory”. Such a view is natural when we 
consider the whole mathematics across all the time, and also across subject matters. 

According to Grattan-Guinness, different choices can make a big difference. In 
the abstract of (Grattan-Guinness 2004a), Grattan-Guinness wrote: 

Mathematics shows much more durability in its attention to concepts and theories than do 
other sciences: for example, Galen may not be of much use to modern medicine, but one can 
still read and use Euclid. One might expect that this situation would make mathematicians 
sympathetic to history, but quite the opposite is the case. Their normal attention to history is 
concerned with heritage: that is, how did we get here? Old results are modernized in order 
to show their current place; but the historical context is ignored and thereby often distorted. 
By contrast, the historian is concerned with what happened in the past, whatever be the 
modern situation. Each approach is perfectly legitimate, but they are often confused. 

The earlier quotes of Serre and Milnor shows that not all mathematicians belong 
to the category described by Grattan-Guinness in the above quote. There are 
probably mathematicians similar to Weinberg too with regard to the “history” of 
their subjects. 

Grattan-Guinness explained his points in more details by introducing two key 
words: history and heritage (Grattan-Guinness 2004a, 164–165): 

By “history” I refer to the details of the development of N [which stands for “a theory (or 
definition, proof-method, technique, algorithm, notation(s), whole branch of mathematics, . 
. .)”]: its prehistory and concurrent developments; the chronology of progress, as far as it can 
be determined; and maybe also the impact in the immediately following years and decades. 
History addresses the question “what happened in the past?” and gives descriptions; maybe 
it also attempts explanations of some kinds, in order to answer the corresponding “why?” 
question... History should also address the dual questions “what did not happen in the past?” 
and “why not?”; false starts, missed opportunities..., sleepers, and repeats are noted and 
maybe explained. The (near-)absence of later notions from N is registered, as well as their 
eventual arrival; differences between N and seemingly similar more modern notions are 
likely to be emphasized. 
By “heritage” I refer to the impact of N upon later work, both at the time and afterward, 
especially the forms which it may take, or be embodied, in later contexts. Some modern
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form of N is usually the main focus, with attention paid to the course of its development. 
Here the mathematical relationships will be noted, but historical ones in the above sense 
will hold much less interest. Heritage addresses the question “how did we get here?,” and 
often the answer reads like “the royal road to me.” The modern notions are inserted into N 
when appropriate, and thereby N is unveiled (a nice word proposed to me by Henk Bos): 
similarities between N and its more modern notions are likely to be emphasized; the present 
is photocopied onto the past. 
Both kinds of activity are quite legitimate, and indeed important in their own right; in 
particular, mathematical research often seems to be conducted in a heritage-like way, 
whether the predecessors produced their work long ago or very recently. The confusion 
of the two kinds of activity is not legitimate, either taking heritage to be history (frequently 
the mathematicians’ view–and historians’ sometimes!) or taking history to be heritage (the 
occasional burst of excess enthusiasm by a historian); indeed, such conflations may well 
mess up both categories, especially the historical record. 
A philosophical difference is that inheritors tend to focus upon knowledge alone (theorems 
as such, and so on), while historians also seek motivations, causes, and understanding in 
a more general sense. The distinction sometimes made by historians of science between 
“internal” and “external” history forms part of this difference. 

It does not seem obvious what is the percentage of mathematicians who are 
“inheritors” tending “to focus upon knowledge alone (theorems as such, and so on)” 
when they think about the development of mathematics. 

It is perhaps helpful to note that there are also “motivations, causes, and 
understanding” inside the “internal” history of mathematics. This important point 
is consistent with what Wussing wrote in (Wussing 1991, 66): 

Without studying the history of problems and ideas, the picture of the history of mathemat-
ics would remain incomplete and basically incorrect. 

Hawkins, Grattan-Guinness and Wussing can be considered as major representa-
tives of recent historians of mathematics. It is perhaps helpful to quote from some 
earlier historians too. Many people will agree with the importance of knowing 
the mathematics topics involved in historical projects under study. But what Paul 
Tannery wrote in (Tannery 1930, 164) may sound somewhat too strong to some 
historians: 

The first unfavorable condition is that the history of a science can only be truly treated by 
a man really possessing this science as a whole, or, at the very least, able to go further 
by himself into all the scientific questions which he has to deal with during this history.... 
Moreover, a scientist can possess or acquire all the abilities necessary for the composition 
of an excellent history of science to which he has devoted himself, and furthermore, the 
more this scientist has talents, the more the value of his historical work will shine through 
to all eyes, this is a point that should not be doubted at all. 

Such an opinion was supported by Weil (1980, 231) to a certain extent, though it 
is important to take these opinions dialectically: 

How much mathematical knowledge should one possess in order to deal with mathematical 
history? According to some, little more is required than what was known to the authors 
one plans to write about; some go so far as to say that the less one knows, the better one 
is prepared to read those authors with an open mind and avoid anachronisms. Actually 
the opposite is true. An understanding in depth of the mathematics of any given period 
is hardly ever to be achieved without knowledge extending far beyond its ostensible
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subject-matter. More often than not, what makes it interesting is precisely the early 
occurrence of concepts and methods destined to emerge only later into the conscious 
mind of mathematicians; the historian’s task is to disengage them and trace their influence 
or lack of influence on subsequent developments. Anachronism consists in attributing to 
an author such conscious knowledge as he never possessed; there is a vast difference 
between recognizing Archimedes as a forerunner of integral and differential calculus, whose 
influence on the founders of the calculus can hardly be overestimated, and fancying to see 
in him, as has sometimes been done, an early practitioner of the calculus. 

Note also an interesting description, or rather an example, of “Anachronism” by 
Weil in the above quote. 

The importance of mathematics, hence also of mathematicians, was also 
explained by some historians of mathematics. For example, Grabiner wrote in 
(Grabiner 1975, 442, 443): 

We expect the historian to know the general history of a particular time as well as the 
mathematics of that time. He should have a sense of what it was like to be a person, not just 
a mathematician, at that time. Sometimes such knowledge has great explanatory value... 
Historians of mathematics should certainly know the mathematics whose history they 
are writing. But mathematicians are still needed – and not just because they know the 
mathematics better. Historians need the mathematician’s point of view about what is 
mathematically important. The mathematician’s work determines what it is that most 
needs a historical explanation. Only the mathematician can tell us which of a half-dozen 
contemporary concepts is really the crucial one, and which older concepts are worth looking 
into again – infinitesimals are one example... Furthermore, the mathematician has a better 
idea of the logical relationship between mathematical ideas, and can suggest connections to 
the historian which might not be apparent from the historical record alone. 

Some Views of External History 
The above discussions deals with some differences between mathematicians and 
historians. But even among historians of mathematics, there is often some difference 
between the so-called internal history and external history. Of course, this division 
is not accepted or liked by all historians. One concern is that there is probably no 
precise definition of internal or external histories. They need to be taken dialectically 
too, i.e., how the internal and external factors need to be both considered and how 
their interaction with each other needs to be taken into account, as we emphasized 
in this chapter. After all, some historical studies involve both aspects at the same 
time. 

The above quotes from historians represent some views of the internal history of 
mathematics. Some opinions of the external history are expressed by Stedall (Stedall 
2012, 110): 

Historians of mathematics have increasingly moved away from a purely ‘internalist’ view in 
which mathematical developments are seen to come about of their own accord, regardless of 
outside influences. As has now been shown over and over again in this book, mathematical 
activity has for centuries manifested itself in a variety of ways, all of them socially and 
culturally determined. We should not throw out the baby with the bathwater, however: 
mathematicians often devote themselves to a particular problem not because it might be 
useful or because anyone requires them to do so, but because the problem itself catches their 
imagination. This was precisely the case for Newton and Leibniz with the calculus, Bolyai 
and Lobachevskii with non-Euclidean geometry, or Wiles with Fermat’s Last Theorem. In
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such cases, progress depends first and foremost on deep and concentrated engagement with 
the mathematics, and in that sense mathematical creativity can be said to be an internal 
process. But the mathematical questions that are considered important at a particular time 
or place, the way they have come to be there, the way they are understood and interpreted, 
are all influenced by a multitude of factors outside the mathematics itself: social, political, 
economic, and cultural. Context has become as important to the historian as content. 
Another significant change in recent years has been the growing recognition that the 
mathematics done by a small number of famous mathematicians has not reflected (though it 
has built on) the diversity of mathematical activity and experience at other levels of society... 
Historians of mathematics, like scholars in many other disciplines, have also become much 
more sensitive to questions of gender and ethnicity... Consequently, the mathematics of the 
past is no longer regarded simply as a precursor to the mathematics of the present but as an 
integral part of its own contemporary culture. 

Some non-mathematical factors and their influence on mathematics are also 
described by Chemla in the abstract of Chemla (2018): 

This contribution argues that history of mathematics should take as its object not only 
knowledge, but also ways of doing mathematics that are collectively shared (what I call 
‘mathematical cultures’), and additionally the connections between the two. I provide 
evidence showing that there is a history of ways of doing mathematics, and this history 
suggests that mathematical knowledge takes shape at the same time as practices do. Indeed, 
ways of doing mathematics do not fall out of the sky. They are shaped and transformed 
by actors in the process of working out some problems and addressing some issues. They 
represent one of the outcomes of mathematical research. I further argue that attending to 
the mathematical culture in the context of which actors worked is essential for interpreting 
their writings. 

Dialectic Views of Doing History 
If we take a dialectic perspective towards these different views of history, we should 
say that they are all important and should be combined in suitable ways, and people 
from different groups should work together, or at least trying to understand and 
appreciate approaches different from their own favorite ones, instead of emphasizing 
their differences. This is exactly the point expressed by Weinberg in a recent book 
Third Thoughts Weinberg (2018, 58): 

Historians who have not themselves worked as scientists may feel that they cannot match 
the working scientist’s understanding of present science. On the other hand, it must be 
admitted that a scientist like myself cannot match the professional historian’s mastery of 
source material. So who should write the history of science, historians or scientists? The 
answer seems to me obvious: both. 

Actually such a point of view was advocated by several distinguished historians 
of mathematics a long time ago. For example, Grabiner wrote in Grabiner (1975, 
444): 

We have seen that the mathematician and the historian bring different skills and different 
perspectives to their common task of explaining the mathematical present by means of the 
past. Therefore, ... collaboration between mathematicians and historians can be fruitful. The 
value of such a collaboration will be enhanced if each collaborator understands the unique 
contributions which can be made by the other. The importance of the common task, I think, 
makes it well worth the collective efforts.
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In (May 1975, 453), May wrote: 

Clearly in historical work the danger in missing the mathematical point is matched by 
the symmetric hazard of overlooking a historical dimension. The mathematician is trained 
to think most about mathematical correctness without a time dimension, i.e., to think 
ahistorically. Of course it is interesting to know how a historical event appears when viewed 
by a twentieth century mathematician. But it is bad history to confuse this with what was 
meant at the time. The historian concentrates on significance in the historical context and on 
the historical relations between events. And this is equally interesting to the mathematician 
who wishes to understand how mathematics actually developed. 
One could continue indefinitely, but the essential point is that the best history requires 
sensitivity to both mathematical and historical issues, a respect for good practice of 
the crafts of both the historian and the mathematician. It may even be that the best 
mathematical research is aided by an appreciation of historical issues and results. I know 
of many instances and hope that the work of historians may contribute to increasing their 
frequency. 

Therefore, it is perhaps better not to contrast or differentiate historians 
and mathematicians too much. In an email on May 24, 2019, Joseph Dauben 
wrote: 

I think you will find that a consensus emerges that the best history of mathematics is 
probably produced by mathematicians and historians of mathematicians working together. 
This is what has happened in my own work. 

Conclusion The above discussions show that even though mathematicians and 
historians have different opinions about the history of mathematics, they are fully 
aware of the values of the other sides. On the other hand, they are convinced of 
the importance of their own approaches and perspectives, and often prefer to follow 
their own ways. The ideal solution is that they can be combined in fruitful ways 
which are beneficial to both parties. This suggestion was raised almost half-century 
ago by historians of mathematics. Hope that it can be more widely accepted by 
future generations of the people who are interested in the history of mathematics. 

3.3 Reexamination of Some Known Historical Studies 
of Galois’ Testamentary Letter 

In the previous section, we have seen different opinions of mathematicians and 
historians about the history of mathematics and how research on history should be 
done. We strongly believe that all these contrasting approaches should be balanced 
and combined, and descriptions of the development of mathematics itself should 
be an essential part. We also believe that philosophy plays an important role in the 
study of history, as expressed in the famous aphorism attributed to Imre Lakatos: 
“Philosophy of science without history of science is empty; history of science
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without philosophy of science is blind.”13 Otherwise, the outcome will very likely be 
incomplete, unfair or even misleading. To show the above points, we will reexamine 
some well-known historical studies of Galois’ testamentary letter written on the eve 
of his fatal duel. 

Before commenting in some detail on these studies, we need to think about and 
keep the following questions in mind: 

1. What are some really important historical questions about Galois’ testamentary 
letter? 

2. Why do we want to understand better Galois’ testamentary letter? 
3. How can we properly understand Galois’ testamentary letter? 

These are three basic philosophical questions. Given the importance of Galois’ 
contributions to mathematics, in particular the notion of groups and the Galois 
theory, his unusually short life and tragic death, it is not surprising that there 
have been many writings about him, for example, multiple books about his life. 
It is probably very fair to say that if Galois’ mathematical works did not have the 
impacts on the development of mathematics as we know it now, not many people 
(historians, mathematicians, or the public) would be interested in his life and stories 
about him, no matter how tragic and unusual his life was. These reasons explain 
why people want to understand Galois and his works better. They are related to 
Question (2) above, but the relation depends on what is contained in the letter and 
why Galois wrote this letter. We will make some comments on these issues, and also 
on Questions (1) and (3) near the end of this section. 

Among all the writings about Galois, probably the most famous and widely 
read is the story about him by Bell in the famous book Men of Mathematics (Bell

13 This sharp statement was quoted in a paper of Hanson (1963, 458). It is perhaps helpful to 
explain more concretely what is philosophy. If a person works very hard on something for a long 
time, say pulling a heavy cart through a forest or onto the top of a mountain in a hot day, it seems 
reasonable, important, or even necessary, that he/she should make some stops periodically, resting 
for a while, looking around himself (both in space and time), and also try to understand what he 
is pulling, think about why he is doing it, where he/she came from and where he/she is going etc. 
This is philosophy! 

There are two kinds of philosophies which are closely related to the history of mathematics: (1) 
the philosophy of mathematics, and (2) the philosophy of the history of mathematics. 

It seems that (1) is parallel to the history of mathematics and hence at the same level. When one 
writes about the history of mathematics, the philosophy of mathematics often comes in naturally, 
since it has influenced the thinking and working of some mathematicians, usually great or reflective 
mathematicians. Hence this philosophy is particularly important for histories dealing with such 
mathematicians. On the other hand, the philosophy of the history of mathematics is in some 
sense one level above the history of mathematics and provides some guidance to historians of 
mathematics, for example, what kinds of problems should be considered, what is important in the 
history of mathematics, and why something should be written. Of course, there is often overlap 
between the above two kinds of philosophies. 

The above comments help explain the first half of Lakatos’ aphorism. The second half can also 
be seen through how mathematics and its history have been used in a substantial way in the long 
development of philosophy. 
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1937). On the other hand, many historians of mathematics have criticized Bell 
for his story about Galois. It seems that the most authoritative, or well-regarded, 
critic is Tony Rothman, whose original writings appeared in Rothman (1982a) and 
Rothman (1982b), which were later expanded in Rothman (1989, 148–200). The 
paper (Rothman 1982b) was reviewed by the distinguished mathematician with 
strong interest in the history of mathematics, Dieudonné, in MathSciNet and highly 
praised by him: 

this excellent article, in presenting with admirable simplicity and conscientiousness every-
thing that is known about Galois’s life from the documents we possess... Without diminish-
ing the depth of Galois’s work, nor disguising in what ways it was ahead of its time, the 
author demonstrates to what extent an incredible succession of misfortunes and setbacks 
could have exacerbated Galois’s unyielding and touchy disposition, and shows that one has 
to soften a bit the summary judgment that his tragic fate is chiefly due to the fact that 
the scientific personalities of the era were persecuting a misunderstood genius. May this 
exemplary work give pause to amateurs of “novelistic” lives and incite them to exercise 
their critical faculties a little more frequently. 

The updated version in Rothman (1989, 148–200) is the basis for the biographic 
exposition about Galois in the recent book Barrow-Green et al. (2022, 554), where 
on page 567, the authors commented: “the one [essay] on Galois [by Rothman] ... is 
a fine antidote to the hyperbole that surrounds him.” In probably the most popular 
textbook on the history of mathematics (Katz 2009, 762) in the past few decades, 
Katz wrote: “The best recent article on the life of Galois is T. Rothman,” (Rothman 
1982b). This paper (Rothman 1982b) is also cited in Neumann (2011, 383) and 
seems to be endorsed there too. 

These works of Rothman and his conclusions are also used by other experts in 
history, for example by Kragh in (1987). As mentioned earlier, there are not many 
writings about the historiography of mathematics, i.e., the methodologies of the 
history of mathematics. In fact, there are not many books about the historiography 
of science either, and the book Kragh (1987) is the only systematic exposition about 
it, which seems to include the historiography of mathematics as one part of it. Its 
discussion of Galois’ testamentary letter is one of the few places in this book where 
it deals with the history of mathematics and appears in Chapter 15: The biographic 
approach (Kragh 1987, 168–170): 

Biographies of eminent, individual scientists are one of the oldest forms of history of 
science... Biographical works are still, however, an important part of history of science and 
they will remain so... As to romance, few cases in the history of science can equal the tale 
of the death of the French mathematician Évariste Galois... Even in the prison did Galois 
continue to develop his mathematical ideas, later known as group theory. 

Then Kragh quoted from Rothman (1982a, 136), where Rothman in turn quoted 
from Bell (1937, 375): 

The night before the duel Galois ‘spent the fleeting hours feverishly dashing off his scientific 
last will and testament... What he wrote down in those last desperate hours before the dawn 
will keep generations of mathematicians busy for hundreds of years’.
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After this, Kragh drew his conclusion (Kragh 1987, 170): 

Unfortunately for romantics, the story is largely a myth... Galois’s alleged ‘scientific last 
will and testament’ is a legend: the night before the duel Galois was indeed occupied 
with mathematics but actually of a rather trivial sort, viz. making editorial corrections on 
manuscripts. The destruction of the Galois myth yields a more authentic history without 
diminishing the scientific originality of Galois. If it makes his biography a little less 
exciting, this is a cost which should not be regretted. 

This seems to be influenced by what Rothman wrote in Rothman (1982a, 149): 

Galois’s mathematical writings the night before the duel were actually confined to making 
editorial corrections on two manuscripts and to summarizing the contents of these and one 
other paper in a long letter to Chevalier. The first paper was the one rejected by Poisson; the 
second was a fragmentary version of an article that had already been published in Ferussac’s 
Bulletin. The third has not been found and its content is known only from the summary in 
the letter; it apparently concerned integrals of general algebraic functions. 

Note the very certain, but harsh, judgement by Kragh: “the night before the duel 
Galois was indeed occupied with mathematics but actually of a rather trivial sort, 
viz. making editorial corrections on manuscripts.” We would like to argue that the 
violation of the basic standing principle in history of checking against the primary 
sources by both Rothman and Kragh caused more damage to the “authentic history” 
than other aspects of the myth caused by Bell and others, and is unfair to Galois to 
a serious degree, as far as the history of mathematical ideas is concerned. 

It is probably a pity that Kragh quoted too little from Rothman (1982a, 136), 
and Rothman also quoted not sufficiently from Bell (1937, 375) either. To compare 
them, let us see what Rothman quoted in Rothman (1982a, 136) and similarly in a 
related paper Rothman (1982b, 84): 

All night long he had spent the fleeting hours feverishly dashing off his scientific last will 
and testament, writing against time to glean a few of the great things in his teeming mind 
before the death which he saw could overtake him. Time after time he broke off to scribble 
in the margin “I have not time; I have not time,” and passed on to the next frantically 
scrawled outline. What he wrote in those last desperate hours before the dawn will keep 
generations of mathematicians busy for hundreds of years. He had found, once and for all, 
the true solution of a riddle which had tormented mathematicians for centuries: under what 
conditions can an equation be solved? 

Rothman chopped off the next crucial sentences in Bell (1937, 375–376): 

But this was only one thing of many. In this great work, Galois used the theory of groups 
(see chapter on Cauchy) with brilliant success. Galois was indeed one of the great pioneers 
in this abstract theory, today of fundamental importance in all mathematics. 

All these sentences are full of real meaning, for example, the sentence: “But 
this was only one thing of many” can make a big difference. A proper reading 
and understanding of these sentences will provide a strong rebuke to Kragh’s claim 
above: “Galois’s alleged ‘scientific last will and testament’ is a legend: the night 
before the duel Galois was indeed occupied with mathematics but actually of a rather 
trivial sort, viz. making editorial corrections on manuscripts.”
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To make things clearer, let us summarize the main points claimed by both sides: 

1. From the perspective of Rothman and Kragh, (1) Galois was only “occupied 
with mathematics ... of a rather trivial sort, viz. making editorial corrections on 
manuscripts.” (2) Consequently, what Galois wrote in his letter does not contain 
any new things. (3) Therefore, Galois’ letter is not so important except for adding 
some minor improvements to his memoirs already written, and “Galois’s alleged 
‘scientific last will and testament’ is a legend”, and Bell’s claim about the impact 
of Galois’ letter is just a myth created by Bell. 

2. According to Bell, (1) Galois “spent the fleeting hours feverishly dashing off his 
scientific last will and testament, writing against time to glean a few of the great 
things in his teeming mind before the death.” (2) Galois found “the true solution 
of a riddle: ... under what conditions can an equation be solved?”, but “this was 
only one thing of many.” (3) “What he wrote in those last desperate hours before 
the dawn will keep generations of mathematicians busy for hundreds of years.” 

From the above two lists, it seems clear that Bell, Rothman & Kragh were talking 
about different things: Bell was talking about the content of the whole letter of 
Galois, and its impacts on the later development of mathematics, while Rothman 
& Kragh focused on new mathematical results or ideas contained in the letter only, 
but not in the earlier memoirs, hence considering only the impact of new things 
contained the letter.14 Since Rothman & Kragh claimed that there was nothing

14 Bell’s sentence “writing against time to glean a few of the great things in his teeming mind before 
the death” and the more dramatic sentence “Time after time he broke off to scribble in the margin 
‘I have not time; I have not time,’ and passed on to the next frantically scrawled outline” could 
lead one to think that Galois was writing out new results which were only contained in his brain. 
On the other hand, it can also mean that Galois was summarizing results in papers which were 
not published yet. It can even mean that Galois was writing a summary of his main mathematical 
results up to that point since he was trying to preserve his scientific legacy. Or it can be combination 
of both. For the last point, one crucial but confusing word is “new” in the sentence “I have made 
some new discoveries in analysis”. Does it mean new things he did which were not written down 
before? Or what he did in analysis, whether he wrote it up already or not, was new. Therefore, there 
could be multiple different ways to read and understand these few words of Galois. But are such 
hair-splitting arguments important? For which purposes do they serve? 

Maybe it is helpful to quote what three distinguished historians of mathematics, Boyer, Cajori 
and Kline, wrote about this event in their famous books on the history of mathematics: “The night 
before the duel, with forebodings of death, Galois spent the hours jotting down, in a letter to a 
friend name Chevalier, notes for posterity concerning his discoveries” (Boyer 1989, 527), “The 
night before the duel he wrote his scientific testament in the form of a letter to Auguste Chevalier, 
containing a statement of the mathematical results he had reached and asking that the letter be 
published, that ‘Jacobi or Gauss pass judgement, not on their correctness, but on their importance’ ” 
(Cajori 1991, 351), “The night before his death Galois drew up a hastily written account of his 
researches which he entrusted to his friend Auguste Chevalier” (Kline 1990, 756). 

One can compare them with what Bell wrote in terms of content and style. It is also interesting 
to quote from Ehrhardt (2011, 14–15): “Commnly baptized ‘Testamentary Letter’, the letter 
addressed to his friend Auguste Chevalier, in which Galois summarized his research on the 
eve before the duel which had caused his death, is ... considered as one prophetic document, 
announcing the results which were only rediscovered many years later.” 
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new in the letter, they were talking about different things, and hence Rothman & 
Kragh could not really destroy the arguments and conclusions of Bell, or rather 
the “legend” created by Bell.15 We note that Rothman would agree with Bell if we 
consider the impacts of the whole letter of Galois, since Rothman wrote in Rothman 
(1982a, 147): “The theory of groups is one of the most fruitful areas of mathematical 
research; Bell is correct when he writes that it will keep mathematicians busy for 
hundreds of years.” 

To understand the whole situation better, we need to consider the following 
questions: 

1. What are contained in the earlier memoirs of Galois according to Rothman & 
Kragh? This is an important question since the memoirs determine the contents 
of the letter, according to them. 

2. What could Bell mean by “But this was only one thing of many”? The answer can 
show whether Rothman & Kragh’s assessment is correct and fair. This question 
reminds one of what Galois wrote near the end of his letter (see the quote below): 
“You know my dear Auguste that these subjects are not the only ones that I have 
explored.” 

3. Did Galois write down anything new beyond corrections on manuscripts? This is 
crucial to the whole issue under consideration. 

4. What are the main impacts of Galois’ works contained in the memoirs according 
to Rothman & Kragh? How about other results of Galois, in particular those that 
Galois wrote down only in his letter? Do they have impacts which have lasted 
hundreds of years? These questions are also important for the discussions here. 

In such a controversial case, the most natural thing, or  the only correct thing, 
to do is to read and check Galois’ letter carefully in order to have a reasonable 
knowledge about it. It does not mean that one needs to understand precisely and 
clearly the meanings of what Galois wrote in the letter, which is very difficult as we 
shall see. But it is probably not too much to demand that serious historical scholars 
need to read the entire letter carefully to get at least an idea of what is contained 
in the letter, for example, the scope of topics discussed, instead of just listening 
to standard stories about Galois’ mathematical contributions. This is especially 
important when Rothman set out to destroy myths about Galois, especially the 
“legend” created by Bell. One simply cannot destroy a standard myth by other 
standard stories. 

In the writings of Rothman and Kragh about Galois, we can observe the 
following: 

1. In the quote from Bell by Rothman (1982a, 136), Rothman (1982b, 84), the only 
sentence containing specific mathematical content is: “He [Galois] had found,

15 Viktor Blåsjö suggested to make explicit these differences. He also suggested to distinguish 
between (1) “direct causal influence of Galois’ writings”, and (2) “Galois being prescient about 
developments that would unfold independently”. 
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once and for all, the true solution of a riddle which had tormented mathematicians 
for centuries: under what conditions can an equation be solved?” 

2. Rothman emphasized that Galois wrote about or rather summarized the group 
theory and the Galois theory for algebraic equations in the testamentary letter. For 
example, Rothman wrote in Rothman (1982b, 89): “Bell also does not make it 
clear that the papers listed above [published papers: ‘An Analysis of a Memoir on 
the Algebraic Resolution of Equations’, ‘Notes on the Resolution of Numerical 
Equations’, ‘On the Theorem of Numbers’] (plus a later memoir), constitute 
what is now called Galois theory. If this point had been clarified, the claim that 
Galois had written the theory down on the eve of the duel would be difficult to 
substantiate or even to suggest.” We note that the last sentence implies that Bell 
claimed that Galois wrote down the Galois theory on the eve of the duel. 
Rothman wrote in Rothman (1982a, 140): “[Galois’] articles make it clear that 
in 1830 he had progressed beyond all others in the search for the conditions that 
determine the solvability of equations, although he did not yet have the complete 
answer in hand. By January, 1831, however, he had reached a conclusion, 
which he submitted to the Academy in a new memoir, written at the request 
of the mathematician Simeon Denis Poisson. The paper is the most important 
of Galois’s works, and its existence more than a year before the duel makes 
nonsense of the story that all Galois’s work on the theory of groups was written 
down in a single night.” The emphasized topic here is “the theory of groups”. 

3. He wrote in Rothman (1982b, 104): “After hearing of my investigation, physicists 
and mathematicians all open conversations with me with the same question: ‘Did 
Galois really invent group theory the night before he was killed?’ No, he didn’t.” 
The main topic in question is the group theory. 

4. In both Rothman (1982b, 84) and Rothman (1989, 149), Rothman wrote: “As 
with all legends the truth has become one of many threads in the embroidery. E.T. 
Bell has embroidered more than most, but he is not alone. James R. Newman, 
writing in The World of Mathematics, notes: “The term group was first used in a 
technical sense by the French mathematician Évariste Galois in 1830. He wrote 
his brilliant paper on the subject at the age of twenty, the night before he was 
killed in a stupid duel.” Note that only the notion of group is mentioned here in 
connection with the “legend” created by Bell. 

5. On the other hand, many mathematical results Galois tried to put down in the 
middle and the latter part of the letter were not mentioned by Rothman in any of 
his writings on Galois in Rothman (1982a), Rothman (1982b), Rothman (1989). 
Rothman’s discussion mainly dealt with the first part and the very end of this 
testamentary letter. For example, after quoting the very beginning of the letter, he 
wrote (Rothman 1982b, 102, 103): “Galois then goes on to describe and elucidate 
the contents of the memoir which was rejected by Poisson, as well as subsequent 
work. Galois had indeed created a field which would keep mathematicians busy 
for hundreds of years, but not ‘in those last desperate hours before the dawn.’ 
During the course of the night he annotated and made corrections on some of his 
papers. He comes across a note that Poisson had left in the margin of his rejected 
memoir ...” After describing Galois’ reaction to Poisson’s note, Rothman quoted
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the very end of the letter and concluded his description of this testamentary letter 
with: “And that was the end.” 

6. Rothman did note in Rothman (1982a, 149) that Galois mentioned three memoirs 
in his letter, and wrote that the third one “apparently concerned integrals of 
general algebraic functions.” This is essentially what Galois said at the beginning 
of his letter, and Rothman did not give any hint of the nature of Galois’ results on 
integrals, while he gave a reasonably accessible exposition of the group theory 
and the Galois theory of algebraic equations in Rothman (1982a, 142–148). We 
note that such a brief statement on the third memoir does not appear in his later 
papers Rothman (1982b), Rothman (1989). 

7. In Rothman (1989, 191), Rothman reprinted a New York Times editorial in 
1982, which states: “Now this [Galois] story [created by Bell] has been a trifle 
deflated by an article in Scientific American [i.e., Rothman’s article] which holds 
that Galois was not writing out new theories but merely redrafting an already 
written paper. The manuscript, an account of his celebrated theory of groups 
(invaluable for solving Rubik’s cube), had been returned to him for revision 
before publication. Historical accuracy is a fine thing, but what a niggling 
correction to so haunting a story.” Since this editorial was inserted by Rothman in 
his more complete and probably the final writing about Galois’ letter, it suggests 
that Rothman agreed with the points expressed here. 

8. Kragh probably drew all his conclusions about Galois’ letter and its mathematical 
contents from those of Rothman, as he wrote in Kragh (1987, 170): “Recent 
scholarship has argued that Galois’ alleged ‘scientific last will and testament’ is 
a legend... T. Rothman, who has contributed to the undermining of the Galois 
myth...”, and made several quotes in Kragh (1987, 170) from Rothman. 

To understand better our questions about Galois’ letter and related issues in 
dispute, we need to check what Galois wrote in his letter exactly. We will use 
the translation of it in the book Neumann (2011, 85–97) and quote only several 
paragraphs from it, since the letter contains many striking results, some of which 
are still mysterious, at least to me. 

Quotes from Galois’ Testamentary Letter 
I have done several new things in analysis. Some concern the theory of equations, others 
integral functions. 
In the theory of equations I have looked for the circumstances under which equations were 
soluble by radicals; this has given me occasion to deepen this theory and to describe all 
possible transformations on an equation even in case it is not soluble by radicals. 
Three memoirs could be made from all this. 
The first is written, and in spite of what Poisson has said about it I stand by it with the 
corrections that I have made in it. 
The second contains some pretty interesting applications of the theory of equations. Here is 
a summary of the most important things. (Neumann 2011, 85) 
.... 
The third memoir concerns integrals. 
It is known that a sum of terms of the same elliptic function always reduces to a single term 
plus algebraic or logarithmic quantities. 
There are no other functions for which this property holds.
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But absolutely analogous properties replace it in all integrals of algebraic functions. 
Let us treat at one and the same time all functions integrals of which the differential is a 
function of the variable and of an irrational function of the variable, whether this irrational is 
or is not a radical, whether or not it may be expressed by radicals. (Neumann 2011, 91–93) 
.... 
You know my dear Auguste that these subjects are not the only ones that I have explored. For 
some time my main thinking was directed towards the application to transcendental analysis 
of the theory of ambiguity. It was concerned with seeing a priori in relations between 
transcendental quantities or functions what exchanges one could make, what quantities one 
could substitute for the given quantities, without the relation ceasing to hold. (Neumann 
2011, 95) 
That makes immediately recognisable the impossibility of many expressions that one could 
look for. But I do not have the time, and my ideas are not yet well enough developed in this 
area, which is immense. 
But all that I have written here has been in my head for almost a year and it is not in my 
interest to make a mistake so that one could suspect me of having announced theorems of 
which I did not have the complete proof. 
You will publicly ask Jacobi or Gauss to give their opinion not on the truth but on the 
importance of the theorems. After that there will, I hope, be people who will find profit in 
deciphering all this mess. (Neumann 2011, 97) 

It should be emphasized that these quoted passages only describe a part of results 
which Galois stated in his letter. 

Now we compare them with what Rothman (1982a,b, 1989), Kragh (1987), and 
Bell (1937) have written, as quoted above. 

As explained above, it seems that Kragh only, and Rothman mainly, noticed the 
part on the Galois theory of algebraic equations, which are stated in the first part of 
Galois’ letter, which is concerned with the first memoir. To be fair with Rothman 
and to give him credit for his writings about Galois, Rothman spent so much time 
and energy to study and check all the writings about the life of Galois and Galois’ 
non-mathematical writings to make the record straight. Unfortunately, it seems that 
he did not check or read mathematical writings about Galois’ testamentary letter 
by some major mathematicians such as Klein and Picard (see below for references 
and some details). Given that mathematics itself is the issue under discussion, to  
say nothing that it is also the essential part which makes the Galois story so special 
and attractive, and Rothman and Kragh tried to correct what they believed to be 
seriously misleading claims of Bell about what Galois wrote in the letter, it seems 
mandatory that they should read the whole letter carefully in order to gain at least a 
rough idea of what is inside it. 

There is no question that the Galois theory and the related group theory is the 
best known part of Galois’ works, maybe also the most important part. In any case, 
this is also the most clearly described part in Galois’ letter. As explained above, the 
descriptions of Rothman and Kragh were exclusively devoted to it. But Rothman 
and Kragh seemed to overlook that Bell had another crucial sentence: “But this was 
only one thing of many”. For example, this was chopped out of their quotes.
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What are the many? 
Bell did not say or explain. Naturally, the only reliable way is to check the 

primary sources: the testamentary letter in this case! 
According to the above quotes from the letter, “the many” include at least some 

general results on abelian integrals, which is contained in the third memoir, and 
more importantly “the theory of ambiguity” mentioned near the end of the letter. 

How about Bell’s claim: “What he wrote in those last desperate hours before the 
dawn will keep generations of mathematicians busy for hundreds of years” ? 

Yes, Bell’s claim is true in several senses. First, the first part of Galois’ letter was 
devoted to the Galois theory and the group theory, and every mathematician will 
agree that they have kept mathematicians busy for hundreds of years. 

How about some other results mentioned by Galois, especially those which were 
only contained in the letter? We will show that the answer is also positive by 
explaining these two things of “the many” together with one result on modular 
equations. 

The general theory of abelian integrals which generalizes the theory of elliptic 
integrals, a substantial part of which was stated explicitly in Galois’ letter, was 
developed systematically a few decades later by Riemann, in particular in his 
famous paper Theory of abelian functions published in 1857, the most celebrated 
paper of Riemann in his lifetime, which has been influencing the development of 
mathematics up to now and into the foreseeable future. It is not entirely clear if 
Riemann’s work on abelian integrals was influenced by Galois’ work on them.16 

But whether or not Riemann was influenced by Galois’ work, there is no question 
that the mathematics Galois described kept generations of mathematicians busy. 

The Theory of Ambiguity 
The mysterious “theory of ambiguity” stated in Galois’ letter has fascinated many 
great mathematicians ever since Galois’ letter was published. The list includes Felix 
Klein, Sophus Lie (Lie 1895), Émile Picard, Jules Drach, Teiji Takagi, George 
Birkhoff, Alexander Grothendieck, Jean Dieudonné, Alan Connes, and Hiroshi 
Umemura who spent the major portion of his life to establish “the theory of 
ambiguity” (Ramis 2020; Okamoto and Ohyama 2020). We will briefly mention 
some of these people’s comments. More details will be explained on a future 
occasion (Ji 2023). It should be stressed that we cannot be certain of what exactly 
Galois meant by the theory of ambiguity. But the discussions below will show that 
this notion or idea suggested by him has inspired many good mathematicians in a 
period of more than 100 years to produce theories which can fit into the theory of 
ambiguity.

16 So far, people have not found definite records that Riemann had read Galois’ testamentary letter. 
On the other hand, this letter was published before Riemann went to University of Göttingen 
in 1846, and the other papers of Galois were also published by Liouville in 1846. Since some 
people in Göttingen such as Dirichlet and Dedekind were probably aware of Galois’ works, it 
is a natural guess that Riemann might have heard something about Galois’ works. See the paper 
Neuenschwander (2022). 
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One early comment was given by Picard in the preface to Galois’ writings (Picard 
1897, IX):  

We could almost guess what he [Galois] means by this [the application of the theory of 
ambiguity to transcendental analysis], and in this field, which, as he says, is immense, there 
still to this day remain discoveries to make.17 

Picard did not explain further what his guess was, but we can guess that it 
was related to the Picard-Vessiot theory for linear differential equations, i.e., the 
differential Galois theory. 

In his famous history book Klein (1979, 81), originally published in 1926, Klein 
speculated: 

Galois spoke of investigations into “ambiguity of functions”; it is possible that this referred 
to the idea of Riemann surfaces and multiple connectivity. 

Later on the same page, Klein wrote: 

Galois theory does answer important questions of the theory of equations in the most general 
way; but it also opens the door to a new, vast and still largely unknown region, whose 
full range of problems we cannot yet foresee. Following a tradition arising from personal 
communication with Gordan, I would like to call this field “hyper-galois”. 

The endorsement of Klein on ideas and results contained in Galois’ letter can 
also be clearly seen in Klein (1979, 83–84). For example, Klein wrote: “In claiming 
that he had left behind nothing false, Galois was right.” 

Another great mathematician, Teiji Takagi, also wrote a book on the history of 
mathematics and gave some stimulating comments.18 For the theory of ambiguity, 
he suggested the idea of monodromy.19 

Since we have used the translation of Galois’ testamentary letter in Neumann 
(2011), it will be interesting to mention some comments on the theory of ambiguity 
by Neumann himself (Neumann 2011, 386): 

The tantalising phrase théorie de l’ambiguité ... appears only [in] ... the Lettre testamentaire. 
There is nothing beyond the context (that of abelian integrals and functions) and the 
following sentence to tell us what Galois had in mind. And those tell us little. I have seen

17 This sentence was translated and included in the source book Smith (1959, 284). 
18 It was written in Japanese and became very popular. Later it was translated into Chinese, but 
there is no English translation of it. In one version of Chinese translation, Takagi claimed that 
Galois’ work on abelian integrals indeed influenced Riemann, but not in a newer translation. 
19 It may be that there are even deeper connections that Galois discerned, however vaguely, that 
we have still to explore. In an email on November 16, 2020, Pierre Deligne told me that he agreed 
with Takagi’s interpretation of the theory of ambiguity in terms of monodromy, and said that the 
application of the theory of ambiguity to “transcendental quantities” might be related to some 
Grothendieck’s conjectures on periods of motivic Galois groups, which is certainly consistent 
with what Galois wrote about abelian integrals, which give rise to periods. He also added that 
the transcendency of . π can be explained through this conjecture, since . π arises as a period, the 
length of a unit circle, and a combination of the period conjectures and the equality .log e = 1 can 
also help explain the transcendency of e. 



3 Advice to a Young Mathematician Wishing to Enter the History of Mathematics 87

speculation that Galois had in mind a theory like that of Riemann surfaces, but I find that 
doubtful; for me it does not chime with the sentence following the phrase in question. 

In defense of Rothman & Kragh, reading and understanding Galois’ letter in full 
detail is very difficult, if not impossible.20 This difficulty was recognized by many 
people a long time ago. For example, Hermann Weyl made the following comments 
on this letter in his famous book on symmetry (Weyl 1952, 138): 

Galois’ ideas, which for several decades remained a book with seven seals but later exerted 
a more and more profound influence upon the whole development of mathematics, are 
contained in a farewell letter written to a friend on the eve of his death, which he met 
in a silly duel at the age of twenty-one. This letter, if judged by the novelty and profundity 
of ideas it contains, is perhaps the most substantial piece of writing in the whole literature 
of mankind. 

The last sentence in this quote from Weyl is interesting and especially relevant to 
our discussion here. Weyl made it clear that Galois’ letter is not a legend as Kragh 
described in Kragh (1987, 170): “Galois’s alleged ‘scientific last will and testament’ 
is a legend”. 

On the other hand, if people who want to write about Galois letter have tried to 
read it, even casually, from the beginning to the end, they probably will not fail to 
notice that the well-known Galois theory of algebraic equations is only one part of 
the treasures in it, and Galois did try to put down many new ideas and results into his 
testamentary letter.21 If they compare what Galois wrote with later development of 
mathematics,22 they will probably also notice the tremendous scope and originality 
of Galois’s achievements and ideas, beyond the Galois theory, contained in the letter, 
and how unfinished some of Galois’ ideas were at that night before the duel.23

20 In an email on June 5, 2020, J.P. Serre told me that Galois was clearly aware of the problem of 
nth division points of the Jacobian variety of an algebraic curve, based on what was written in his 
letter. 
21 Another result of Galois concerning modular equations has also far-reaching consequences for 
the contemporary mathematics. Galois announced that the modular equation of degree 6 for the 
prime 5 can be reduced to an equation of degree 5. This reduction was proved and used by 
Hermite to solve the general quintic equation by elliptic functions and elliptic modular functions 
(Goldstein 2011, 230–236). This result of Hermite partially motivated Klein’s work in his famous 
book Klein (1884) on the icosahedron and the solution of equations of fifth degree (Brechenmacher 
2011, §3.2). Klein’s geometric approach leads to his work in the theory of modular functions and 
automorphic functions with respect to .SL(2,Z) and its subgroups, for example, his famous four 
extensive books on such topics written jointly with Robert Fricke, which in turn was developed 
or perfected by Hecke and generalized by Siegel, Selberg, Langlands and others to the elaborate 
and powerful theory of automorphic forms and automorphic representations for general Lie groups, 
which is the foundational part of the celebrated Langlands program, probably the greatest theory in 
mathematics in the 20th program and maybe also in the twenty-first century. See also Smith (1906, 
17) for some related comments on the modular equations and discrete transformation groups. 
22 This is consistent with the sound advice of Popper (1968, 16): “Among the many methods which 
he [a philosopher] may use–always depending, of course, on the problem in hand–one method 
seems to me worth mentioning. It is a variant of the (at present unfashionable) historical method. 
It consists, simply, in trying to find out what other people have thought and said about the problem 
in hand: why they had to face it: how they formulated it: how they tried to solve it.” 
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Probably it is also important to note another point. Bell made it clear that his 
writings in Bell (1937) were not history at all. In fact, in the first and second 
paragraphs of the introduction of the book Bell (1937, 3), Bell wrote: 

I should like to emphasize first that this book is not intended, in any sense, to be a history 
of mathematics, or any section of such a history. 

The lives of mathematicians presented here are addressed to the general reader and to 
others who may wish to see what sort of human beings the men were who created modern 
mathematics. Our object is to lead up to some of the dominating ideas governing vast tracts 
of mathematics as it exists today and to do this through the lives of the men responsible for 
those ideas. 

As we have seen above, Rothman and Kragh have harshly criticized Bell’s book 
as a history book. On the other hand, since they claim to have done historical 
research up to the highest standard and are writing scholarly papers about Galois, 
they should uphold the basic requirement of doing history: always check carefully 
and use the primary sources if they are available. Another basic principle for the 
history of mathematics is probably also relevant: when writing about mathematical 
issues in the history of mathematics, mathematics is a central part and should be 
handled with care. 

But Rothman and Kragh are not the only historians who have harshly criticized 
Bell’s book as a history book. To be honest, this is one curious, or bothersome, 
question to me.24 Since there are many such complaints, I will just quote from two 
prominent historians of mathematics and science. In Grattan-Guinness (1971, 350), 
Ivor Grattan-Guinness wrote: 

... the popular but unscholarly works of E.T. Bell ... especially his Men of Mathematics [is] 
perhaps the most widely read modern book on the history of mathematics. As it is also one 
of the worst, it can be said to have done a considerable disservice to the profession. 

Similarly, Truesdell wrote (Truesdell 1984, 423–424): 

The only course Bell taught was abstract algebra; while he did little to excite the students in 
that subject, he was admired for his science fiction and his Men of Mathematics. I was  
shocked when, just a few years later, Walter Pitts told me the latter was nothing but a 
string of Hollywood scenarios; my own subsequent study of the sources has shown me 
that Pitts was right, and I now find the contents of that still popular book to be little more 
than rehashes enlivened by nasty gossip and banal or indecent fancy. 

It seems both Grattan-Guinness and Truesdell treated Bell’s book as a scholarly 
history book and measured it against the ensuing strict, or high, standard for books 
in the history of mathematics. They probably also chose to ignore the mathematical 
contents in this book, which are one of the goals of Bell for the book as the above 
quote shows. 

23 It is perhaps fitting here to quote from the first paragraph of the preface of Neumann (2011, 
vii): “The Lettre testamentaire ... is an extraordinary summary of what he [Galois] had achieved 
and what he might have achieved had he lived to develop and expound more of his mathematical 
ideas.”
24 According to José Ferreirós, “The main reason is the impact Bell had on so many mathematicians 
and scientists, I think. They thought it was history.” 
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I wonder whether Bell was aware of the possibility of such misunderstanding 
by so many historians and hence put the disclaimer at the beginning of his 
book as quoted above, and whether the critics of Bell’s book have noticed the 
important disclaimer stated so explicitly and prominently by Bell and taken it into 
consideration when they made harsh judgements on him and his book. 

The above comments on the mathematical content of Galois’ letter give some 
supporting evidence to Bell’s claim about the “object” of his book: “lead up to some 
of the dominating ideas governing vast tracts of mathematics”, considering that this 
is a popular book for “the general reader” and “others who may wish to see what 
sort of human beings” mathematicians are. Maybe this explains why Bell did not 
explain the meaning of the somewhat mysterious sentence: “But this was only one 
thing of many” quoted above. 

What Are Some Really Important Historical Questions About Galois’ Letter? 
After spending so much time and space to understand better the differences between 
the understandings and writings by Bell, Rothman and Kragh about Galois’ letter, 
and merits of their works, it is probably a good place here to go back and address 
Questions (1) and (3) raised at the beginning of this section. 

Before that, let us ask a general question: What would a person on the death bed 
do if he were going to write the last letter about his scientific works in order to keep 
a legacy for him? A reasonable answer seems to be: He would try to summarize 
all his main contributions, whether they were written up already in some papers or 
not, and he wanted people to appreciate what he had done and benefit from them. 
In other words, he wanted people to read and understand his letter carefully and be 
inspired by them, even though he knew that this might not be an easy undertaking. 
That was what Galois wrote at the end of the letter: “ask Jacobi or Gauss to give 
their opinion not on the truth but on the importance of the theorems. After that there 
will, I hope, be people who will find profit in deciphering all this mess.” 

Based on this, it seems that the issue about the differences and merits of the 
writings of Bell, Rothman and Kragh is not important. Instead, the following 
perspectives and questions are really important: 

1. Try to understand Galois’ testamentary letter as a whole, in particular, try to 
understand how different parts or mathematical results in it are related. Though 
the Galois theory and the theory of groups are absolutely important, other parts 
should not be ignored. (One intriguing question to me is: How could such a young 
person do such original and foundational works with long lasting impacts in so 
many subjects in such a short time? Of course, Galois was a genius! But this is a 
simple answer, an easy way to avoid a difficult and important question.) 

2. Understand or interpret more precisely what Galois wrote down in the letter, 
including all theorems, claims, suggestions and speculations etc., and how 
they arose and influenced the development of mathematics: for example, their 
motivations and impacts, the status of the subjects discussed before his works, 
unfinished parts envisioned by him, applications and further developments of his 
theories etc.
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3. Understand Galois’ letter in different contexts: (1) in the context of all his 
writings, (2) in the context of mathematics of his time across different subjects 
since Galois’ letter indicated his broad scope already. For example, since he 
specifically asked for opinions of Gauss and Jacobi, it might be interesting to 
compare his works with those of Gauss and Jacobi, and naturally also with the 
works of Abel and Riemann. The total works of these five great mathematicians 
open one special window into the world of mathematics. 
Since Galois and his testamentary letter (or rather the mathematics contained in 
it) are so unique in the whole history of mathematics, we need to understand their 
uniqueness from various perspectives in mathematics. 

4. Understand Galois and his mathematics also in the broader social, cultural, 
and political contexts etc. Since Galois’ letter contains his most important 
contributions to mathematics, this question can also be considered as a question 
about his letter. 

As Leo Corry commented on an earlier version of this chapter, no historical 
study on Galois can neglect the existing major studies in Ehrhardt (2011, 2012), 
Brechenmacher (2011). It seems that Ehrhardt (2011, 2012), Brechenmacher (2011) 
are mainly concerned with Question (4), though including some parts of Questions 
(2) and (3). For example, the main mathematics topic in the books Ehrhardt (2011, 
2012) is the Galois theory, and the main writing of Galois is the first memoir, 
which deals with the Galois theory, while Galois’ testamentary letter is mentioned 
(Ehrhardt 2011, 14–15) but not discussed or emphasized. They do not mention the 
theory of ambiguity explicitly. The discussions in Ehrhardt (2012, 201–210) about 
applications of the Galois theory to differential equations mention some works of 
Picard, Vessiot, Drach, and they are related to our concern in this section about the 
theory of ambiguity. The focus of the paper Brechenmacher (2011) is to examine a 
collection of books and related writings which involve or refer to some parts of the 
works of Galois, in comparison with Jordan’s famous book Traité des substitutions 
et des équations algébriques, published in 1870. 

Conclusion 
Given the above long discussions about Rothman’s papers and Kragh’s book about 
Galois’ letter, it is worthwhile to draw some conclusions. There is no question that 
Rothman did a very careful and scholarly job about the social, political, cultural and 
biographic aspects of Galois’ life. Probably this is the reason why his papers were 
highly regarded and cited by multiple distinguished historians and mathematicians 
as mentioned at the beginning of this section. But he seems to ignore, or rather 
without paying enough attention to, the mathematical part of Galois’ life, even when 
the issue was about the mathematical content of his testamentary letter. In terms of 
the so-called internal and external histories of mathematics, Rothman’s papers were 
an excellent piece of work in the sense of the external history, but a poor, unfair 
and misleading writing in the sense of internal history of mathematics. Yes, his 
papers on Galois probably have mislead many people about what Galois wrote in 
the last scientific letter of his life. Yes, he was unfairly critical to Bell as far as
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mathematics is concerned. Probably more seriously, he was unfair to Galois, though 
unintentionally, if we recall what Galois wrote near the end of his letter. 

I wonder how would Galois react if he were to read what Rothman and Kragh had 
written about the mathematical content and purpose of his testamentary letter, his 
last contribution to mathematics, by misunderstanding and distorting his intention, 
in particular when he read the sentence in Kragh (1987, 170): “The destruction of 
the Galois myth yields a more authentic history without diminishing the scientific 
originality of Galois.” 

Therefore, one conclusion is that it is important to balance or rather to combine 
the external and internal histories in doing research in the history of mathematics, 
since both are important and needed. Otherwise, good intentions might do much 
harm! 

3.4 What Is Historical Thinking and Some Basic Points in 
the Methodology of History 

After the above lengthy discussion about Galois’ letter, we return to some general 
discussions on historiography. There are many books and writings about what, 
why and how of the general history, some of which seem helpful to the history 
of mathematics too. We will mention only a few points here. Many more detailed 
discussions with quotes from multiple sources are given (Ji 2022), which also 
contains a rather extensive list of books on the historiography of general subjects. 

If one wants to do research in history, one needs to think like a historian. Though 
history is a natural part of everyone’s life, the ability of thinking historically needs 
to be learned and cultivated. When I first started to read reviews or comments by 
historians about mathematicians’ works related to the history of mathematicians, I 
learnt immediately that one common sin committed by mathematicians is anachro-
nism, in particular the presentism. More generally, a basic conclusion, or a serious 
difficulty, is that many mathematicians do not, or cannot, think historically. 

But what does it mean to think historically? I have tried to search for it among 
writings about the history of mathematics rather extensively. Unfortunately I can not 
find a simple, clean and clear answer. Then I searched among books on the general 
historiography and found a satisfying answer in a successful textbook on history 
The Methods and Skills of History by Furay and Salevouris (2015, 28–30): 

A recent book on the subject is titled Historical Thinking and Other Unnatural Acts, 
dramatizing the unsettling truth that thinking historically is not something that comes 
naturally. Historical reality is complicated, and becoming historically “literate” can be 
a challenging enterprise. But it is well worth the effort. Let’s begin by looking at three 
essential components of effective historical thinking. 

1. Sensitivity to multiple causation. 
All too often our popular culture favors quick, simplistic answers to the challenges of 
the day... Historians, and students of history, however, know that it is a mistake to look



92 L. Ji

for a single cause. Every situation or event is the product of multiple “causes” or factors, 
some short-term and some long-term. To think like an historian you will need to consider 
the wide range of factors and conditions that have led to the events you are investigating. 

2. Sensitivity to context, or how other times and places differ from our own. 
How can twenty-first-century observers understand cultures from a strange and distant 
past?... historians must make a serious effort to bridge the cultural and temporal gap, 
even though they know it won’t be easy. 

3. Awareness of the interplay of continuity and change in human affairs. 
Every situation is an amalgam of the old (continuity) and the new (change). “The mixture 
is never the same; history does not repeat itself; the new is new. But the old persists 
alongside it and in time the new is grafted on to the old and continuity with the past– 
continuity, not identity–is not disrupted but restored.” The challenge for the historian is 
to figure out how this balance manifests itself at any particular point in the past.... 
There can be a “history” only when there is change. In essence, history is the story of 
change.... Most changes take place in the overall context of continuance of many of 
the old ways of doing things, and are often no more than patchwork alterations of the 
existing system. 

This definition of historical thinking should be taken dialectically too. It does not 
mean that every piece of historical writing needs to enjoy all three qualities, and 
every historian will and can do things in such ways at all times. But they can serve 
as helpful guides when one is involved in historical researches. This is especially 
important for young historians to pay attention to them and develop such habits so 
that they can think historically in a subconscious way. 

The above definition of historical thinking is consistent with some basic recom-
mendations or rather requirements from the methodology of the general history. We 
select three from Ji (2022), adapting them to mathematics and adding some brief 
comments and examples. 

3.4.1 Use Primary Sources Whenever They Are Available 

Probably no historians will disagree with the importance of using the primary 
sources, and one should always check and use properly the primary sources even 
when “excellent secondary sources” are available. It is the Golden Rule in doing 
history. 

But it is also very hard to follow this golden rule for several reasons: besides 
problems with languages, it is often difficult to understand the meaning of a piece 
of writing from a long time ago, since many things have changed and the reader 
really needs to be familiar with the appropriate contexts and have the required 
knowledge about the subject matter to read it and then understand it. (For example, 
definitions of mathematical concepts and notations change with time, and implicit 
standard assumptions and results may not be standard anymore and hence may 
become difficult to guess and identify. There are also cultural and social factors 
which change with time.) This is especially hard when secondary sources, which 
are assumed to be good and reliable, or having good reputations, are available. Then



3 Advice to a Young Mathematician Wishing to Enter the History of Mathematics 93

the temptation to skip the original writings and instead read others’ interpretations 
is great, often too great. Probably this is the reason why most mathematicians do not 
read classical writings in their subjects, even though they still have great impacts on 
the subjects, leaving it to historically oriented people or historians to do the work to 
interpret classical writings for them. This fits well the saying from the Bible: “the 
spirit is willing but the flesh is weak”. 

The example about Rothman and Kragh’s writings about Galois’ letter discussed 
in the previous section amply shows this phenomenon. When the problem is 
concerned with the mathematical content of this letter, the letter itself is without 
any question the most important primary source. It seems that those historians 
who criticized Bell’s book Men of Mathematics as a bad history book did not 
read (or rather discarded) Bell’s disclaimer at the beginning of the book and also 
ignored the primary sources. Therefore, one natural conclusion is that it is not 
only mathematicians who sometimes commit this sin in doing history, though for 
historians, it is probably more inexcusable. 

My first somewhat surprising experience with the violation of this golden rule 
occurred during working on the paper Ji and Wang (2020) on the motivations for 
Poincaré to systematically develop analysis situs (or topology). I first searched 
for all writings about this question by both historians and mathematicians (i.e., 
secondary sources). Due to the fame of Poincaré and his extensive and important 
works in topology, in particular the Poincaré conjecture and the publicity of or chaos 
around its recent solution by Perelman, there were quite a few of them. They usually 
give one or two reasons, which are rather consistent, as Poincaré’s motivations for 
working on topology. Later on, I checked the original writings of Poincaré and 
compared Poincaré’s stated motivations with what others have written. It was a 
big surprise, since Poincaré gave at least 7 explicitly stated reasons across many 
different subjects, which are consistent with Poincaré’s universal contributions to 
mathematics. Naturally, understanding clearly Poincaré’s stated motivations is a 
different story. More details are explained in Ji and Wang (2020). 

The uses of the primary and secondary sources provide a good example of a 
dialectic perspective. Naturally everyone’s work is built upon the works of the 
predecessors, and hence making use of the secondary sources about any research 
project in history is natural and important.25 They are definitely different from the 
primary sources, but can be used to help understand primary sources of the project 
under study. Conversely, the primary sources can also clarify, confirm or disprove 
secondary sources. This dialectic process can be repeated multiple times.26 

25 Reading secondary sources is also one effective way to find research problems in history, since 
they often expose gaps in the existing historical knowledge and expositions. 
26 Since we just quoted from the Bible, it may be illuminating to use reading the Bible as an 
example. Going to the church and listening to sermons, and reading commentaries and other books 
on the Bible goes hand to hand with reading the Bible itself. They are both important and needed, 
and this process can often last a long time.
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3.4.2 Study Problems in Appropriate Contexts 

Since the history of mathematics studies the development or evolution of mathe-
matics, no problem should be studied in isolation. Instead it should be viewed as a 
part of a process over time and in suitable contexts. As the Golden rule explained 
above, the importance of this requirement is also self-evident, since it is a part of 
the definition of history. But actually doing it and doing it well may not be so easy. 

In my very limited experience with the history of mathematics, it took a lot 
of effort and time for me to realize the importance to putting things into suitable 
historical contexts. At the beginning of a project on the history of Poincaré 
conjecture, I was surprised to read and learn that what some famous mathematicians 
have written about it was too simplified or incorrect versions of the history of the 
Poincaré conjecture, which one could easily check from the published papers of 
Poincaré on topology. When I told this to Jeremy Gray, he said that correcting 
mistakes of mathematicians, even famous ones, about history of mathematics is 
not so valuable from the perspective of historians. Later on, I found that some 
historians of mathematics also made similar incorrect statements about the Poincaré 
conjecture. This additional finding still did not convince me of the importance of 
writing a paper to correct such errors. I thought over this for a long time, and one 
day it suddenly occurred to me that I should view the history, or rather the evolution, 
of the Poincaré conjecture in bigger contexts: 

1. In the context of the total sum of Poincaré’s works in topology. This will allow 
us to see how Poincaré valued this conjecture, and what kind of role it plays 
in his relatively long and extensive period to establish (algebraic) topology as a 
separate subject. 

2. In the context of the development of topology, in particular, the problem of 
classification of manifolds in terms of algebraic invariants. This can serve several 
purposes: (1) the Poincaré conjecture is a special case, or maybe the simplest 
case, of the classification of general manifolds, and hence works on this case can 
contribute to the general case, (2) this can allow us to see the importance of the 
Poincaré conjecture to the general theories of topology. 

3. In another context of how various mathematicians viewed the classification 
problem, in particular the Poincaré conjecture, relative to other problems and 
results in topology, and how their views were reflected in the major books and 
papers on topology. 

In this way, a proper understanding of the history of the Poincaré conjecture 
is not limited to the conjecture itself. Instead it provides one way to understand 
the history of topology. Once I realized this, the rest was an extensive, though 
relatively standard, task in studying history. For example, found as many as possible 
books and papers related to the above issues, extracted useful information, drew 
various conclusions, and then organized everything into a historical narrative, which 
eventually appeared in Ji and Wang (2022). Looking back at this experience, it



3 Advice to a Young Mathematician Wishing to Enter the History of Mathematics 95

should have been obvious if I knew more about the proper methodology of working 
on the history of mathematics. 

As a continuation of this project, I wanted to understand better Poincaré’s works 
in topology in the context of all Poincaré’s scientific works. This looks like an 
interesting problem for me since in his self-analysis of scientific works (Poincaré 
1921, 100), Poincaré wrote: “As for me, all the various ways in which I have 
engaged successively led me to Analysis Situs.” It seems that this context is also 
natural, given that even though Poincaré is known and remembered for works in 
many different subjects, his pioneering work in algebraic topology is one of his 
most important contributions to mathematics, and definitely most known to general 
mathematicians and the educated public in the last decade. 

To carry out this project satisfactorily, it seems necessary to have a good 
understanding of all of Poincaré’s scientific works. To do this, it seems necessary 
to read the eleven volumes of the collected works of Poincaré, on top of many 
secondary writings about Poincaré’s works. It seems that even a superficial reading 
of them (for example, the beginning and ending of each paper and the statements 
of main results in each paper) is probably too much to ask for, and a good 
understanding of the overall works of Poincaré is probably beyond the capability of 
many people, at least me. So the requirement of putting a problem into the context 
and of following the golden rule of reading the primary sources seems almost 
impossible to be satisfied. On the other hand, one still needs to try, in particular 
in combination with or with the help of good secondary writings, since it is an 
interesting and important problem due to the fact that Poincaré did greatly influence 
the development of mathematics at least up to now. If we take a dialectic perspective, 
we can still do some researches in this direction without trying to finish the project 
fully or ideally: one can do what one can in the right direction.27 

There are also other problems and contexts to understand the works of Poincaré, 
for example, to understand the works of Poincaré in the context of the mathematics 
community of Paris, and the bigger context of the mathematics community of 
Europe. One can also study relations and interactions between his research works 
and his popular lectures and writings. 

There is another problem which probably fits well the perspective of external 
history. One could also try to understand better Poincaré’s works by analyzing and 
understanding what Klein wrote about Poincaré in Klein (1979, 356): 

Without doubt, a portion of this versatility [of Poincaré] was due to his thorough education 
by the firmly articulated French educational system, in which the traditional parts of all 
mathematics are grasped from all sides in early years–quite otherwise than in Germany, 
where the growing mathematician is quite glad to attach himself to a single master, which 
is good for a first, ad hoc production, but often goes no further.

27 According to José Ferreirós, there are multiple layers to be considered in doing research in 
history, and one does not need to be absolutely competent regarding every layer. Instead, one can 
combine detailed knowledge of some, good knowledge of other layers, with serious study of what 
happened in others (perhaps second-hand). One can get a good grasp of the general views of a 
scientist by judicious employment of some of his own writings, plus secondary literature. 
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Klein’s comments raised several questions to me. If what he said is true, one may 
wonder why there was not another contemporary French mathematician comparable 
to Poincaré, without belittling the great tradition of French mathematics? In terms 
of broad knowledge of mathematics across subjects, it seems that Klein surpassed 
Poincaré at the early stage of Poincaré career as shown in their correspondences (see 
for example de Saint-Gervais (2016, 385–414)). This is also confirmed by Hilbert’s 
speech on the 60th birthday event of Klein when he compared Klein with Poincaré 
in the presence of both of them (Rowe 1986, 76): 

If I should select, secondly, a special mathematical area, we only need to hear the names 
Poincaré and Klein together and what mathematician would not be reminded of the 
automorphic functions, whose main theory was founded by Poincaré, but whose rich design 
is due to you [Klein]. 

One concrete problem is to understand, maybe more objectively than Klein, the 
influence of the earlier education of Poincaré on his latter research works.28 

Each different context will shed different light on Poincaré and his works. Putting 
a historical study into an appropriate context is also important for another purpose, 
as explained by Arnold (2000, 8):  

In the late nineteenth and early twentieth centuries some historians did work in this way, 
collecting and translating interesting pieces of evidence they thought might appeal to a 
wider readership. Such books are useful treasure troves, and have led to detailed work by 
other historians. They can be a pleasure to read, infecting readers with their enthusiasm for 
the past. But for most modern historians, this is not enough. We need to interpret the past, 
not simply present it. Finding a larger context for the story is an attempt to say not just 
‘what happened’ but what it meant. 

The above discussion of various contexts shows how they can allow us to 
understand better Poincaré’s works. 

3.4.3 Understand Motivations and Impacts 

Description of the development of mathematics is certainly a central part of the 
history of mathematics. But it is not the only part. Motivations for and impacts of 
the results under discussion are also important. In other words, we need to interpret 
or explain what we have found and described. 

In the classic book What is History (Carr 1961, 112–113), Carr wrote: 

The historian, like any other scientist, is an animal who incessantly asks the question, Why? 
.... The study of history is a study of causes. The historian ... continuously asks the question, 
Why?; and, so long as he hopes for an answer, he cannot rest. The great historian – or 
perhaps I should say more broadly, the great thinker – is the man who asks the question, 
Why?

28 Some German mathematicians told me jokingly that if their educational system can produce 
mathematicians such as Gauss and Riemann, it is probably not too bad! 
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Naturally, the simple word “Why” is very complicated. For example, some 
causes are accidental or casual, while others are rational (Carr 1961, 140); and they 
are sometimes difficult to distinguish. One should not always believe in and try to 
find a unique, or “the definite”, cause. As explained above in §3.4 about historical 
thinking, one should always keep in mind the fact that there are usually multiple 
causes for every situation or happening. It should also be emphasized that though 
important, understanding causes is only one aspect, but not the whole, of the study 
of history. 

Similar opinions were expressed by Kuhn (1977, 8):  

[historians’] first concern was to discover what each one had thought, how he had come 
to think it, and what the consequences had been for him, his contemporaries, and its 
successors. 

Hawkins also wrote more directly about the history of mathematics in Hawkins 
(2000, vi):  

My experience is that the understanding of a theory is deepened by familiarity both with 
the considerations that motivated various developments and with the less formal, more 
intuitive manner in which they were initially conceived. Hence in addition to stressing the 
motivational, historical context of the mathematics, I have tried to expound the original 
mathematical conceptions and reasoning clearly and fairly extensively. 

All the above quotes confirm the importance to understand motivations and 
impacts in historical studies. As with the previous two basic requirements in doing 
history, analyzing correctly and clearly motivations and impacts is also much easier 
said that done. One reason is that this problem is closely related to the issue of 
choosing and understanding appropriate contexts. We will take a brief look at two 
examples. 

As it is known, there have been many writings about the so-called competition 
between Klein and Poincaré on automorphic functions, in particular the uniformiza-
tion theorem of Riemann surfaces. Given the importance of the mathematical 
theories and the fame of the two competitors, this is not surprising. Even Klein 
himself openly described it in reasonable details in the book (Klein 1979, 326): 
“[The subject of automorphic functions] is the subject in which I competed with 
Poincaré in 1881, 1882”. One important and interesting question concerns who 
did better at which points and who won this competition. It seems that the general 
consensus is that Poincaré won the competition while Klein surpassed Poincaré at 
one part of the proof of the uniformization theorem. This is one conclusion of the 
well-known paper by Freudenthal (1955, 218), and this conclusion has been cited 
by multiple important books such as Gray (2000a, 199), Hadamard (1999, 8), de  
Saint-Gervais (2016, 144). 

On the other hand, if we think of the uses and impact of the uniformization of 
Riemann surfaces as an equivalence between the following three categories:29 

29 Actually there are more categories of spaces and structures which can be identified with Riemann 
surfaces. But these three are probably the most notable ones.
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1. Compact Riemann surfaces of genus greater than 1, 
2. Plane algebraic curves of genus greater than 1, 
3. Fuchsian groups, or more precisely Fuchsian groups acting the upper half-plane 

whose quotients are compact Riemann surfaces of genus greater than 1, 

and realizing that it is algebraic curves which are important for arithmetic geometric 
problems and how difficult it is to write down algebraic equations for a given 
Fuchsian group, Freudenthal’s conclusion on Klein’s advantage in the proof of the 
uniformization theorem becomes not so conclusive or convincing anymore. More 
details will be given on future occasions. 

Another important concept in mathematics whose motivations, development and 
impacts are worthy of detailed analysis is the notion of moduli space of Riemann 
surfaces, or equivalently the moduli space of algebraic curves. 

Ever since the definition of, or rather the word, moduli was introduced by 
Riemann in his classic paper on Abelian functions in 1857, the moduli space of 
Riemann surfaces has been intensively and extensively studied by many math-
ematicians. It is still one of the most important spaces in algebraic geometry 
and is currently under active investigation by algebraic geometers, topologists 
and mathematical physicists. It will continue to be studied by generations of 
mathematicians in the foreseeable future. 

On the other hand, the original motivations, various approaches to understand 
it, whether successful or failed ones, new concepts emerging in the process (for 
example, the major concepts such as the Teichmüller theory and the mapping 
class group of surfaces), and many applications in different subjects all contribute 
to the rich history of moduli spaces, though a detailed historical exposition is 
still lacking. In some sense, one difficulty comes from its richness. For example, 
many mathematicians and historians know about Riemann’s famous count for the 
dimension of the moduli space of Riemann surfaces, but the Riemann’s original 
motivation for introducing the notion of equivalence classes of Riemann surfaces 
and the ensuing moduli space may not be so well-known. 

The history of moduli spaces also needs to be studied in the contexts of elliptical 
integrals, elliptical modular functions and more general modular and automorphic 
functions. For example, Riemann’s use of the word of moduli came from its use 
in the pamametrization, though not exactly the classification, of elliptical integrals, 
and transformations of elliptic integrals in connection with the moduli parameters 
led to elliptic modular functions and more general modular functions. Therefore, 
the study of moduli was intimately connected with modular functions right at the 
beginning. On the other hand, this aspect of automorphic functions seems to be 
lacking, or not sufficiently addressed, in the study of the moduli spaces of Riemann 
surfaces of genus greater than 1 in comparison of the moduli space of elliptic curves, 
i.e., Riemann surfaces of genus 1. Is it because of the intrinsic difficulties, the lack 
of direct applications of such functional theoretic studies, or the lack of historical 
knowledge or interest about the history of moduli and modular functions?



3 Advice to a Young Mathematician Wishing to Enter the History of Mathematics 99

3.5 One Common Framework Through the Spacetime 
of Mathematics 

In the previous sections, we discussed various perspectives on and approaches to 
the history of mathematics. In this section, we propose a common framework of the 
spacetime of mathematics which can allow us to unify these different approaches. 
More importantly, it can also provide a new perspective or platform to study the 
history of mathematics, for example how to think of and identify some important 
issues in the history of mathematics such as whether there are revolutions in 
mathematics as counterparts of Kuhn’s famous concept in the history of sciences 
(Kuhn 2012), how to judge the importance of problems and results in the study of 
the history of mathematics. Some of these points will be illustrated through two 
examples to understand better certain aspects of Poincaré’s and Hilbert’s works. 

Since the history of mathematics is concerned with the evolution of “objects” 
in the world of mathematics with respect to time and time is crucial in history 
(think of the issue of anachronism), it occurred to me one day to combine the time 
factor with the world of mathematics into the spacetime of mathematics so that both 
factors can be and have to be studied together. Then the study of the history of 
mathematics is reduced to the study of this spacetime of mathematics, and maybe 
can be carried out more effectively in this framework; or rather it provides one 
convenient way to view the history of mathematics. For example, in this way, the 
two different ways of studying the history of mathematics, “history” and “heritage” 
promoted by Grattan-Guinness (2004a,b), as we quoted extensively in Sect. 3.2, 
becomes obvious. One can also see that even the combination of “history” and 
“heritage” is rather limited, since they only represent two directions in the spacetime 
of mathematics. But there are so many other directions! For example, when view 
things in the spacetime of mathematics from the perspective of time, there are also 
large time scales and short times scales, both of which are important in historical 
descriptions. But the framework of spacetime suggests even more balanced ways to 
understand history. Just think of our daily life experiences: If one wants to take a 
3D-picture of an object, one needs to take pictures from the front, back, both sides, 
and also from the top and bottom. Therefore, a complete description of a historical 
event requires multiple perspectives. Note that both the time factor and the space 
factor are always, but only, parts of them.30 Another important point is that when 
we view a mathematical event or result as an embedded point in the spacetime of 
mathematics, this embedding itself suggests the importance of the whole for the 
purpose to understand each individual point.

30 The importance of multiple perspectives on the same historical event has been convincingly 
illustrated in a well-known history book History in Three Keys: The Boxers as Event, Experience, 
and Myth (Cohen 1997). In this book, the same event was viewed and examined from different 
vantage points. 
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A more academic motivation for the introduction of the spacetime of math-
ematics comes from the Minkowski spacetime in special relativity, which is 
the combination of the three-dimensional Euclidean space and time into a four-
dimensional manifold, and was a great contribution of Hermann Minkowski in 
1908. The introduction of the Minkowski spacetime revolutionized the theory of 
special relativity of Einstein by providing the right framework, and also provided a 
particularly important example of more general spacetimes in the theory of general 
relativity. Though the intermingled relation between space and time was known 
earlier to Einstein and others, for example, Poincaré, this simple formulation by 
Minkowski of combining two naturally separate factors of space and time into a 
common spacetime changed people’s perspectives and understanding of both the 
space and the time. 

There are several things we can learn from the theory of relativity in physics, 
for example, how the combination of the space and the time makes it easier to 
understand the interaction between and motion of objects in space, for example, 
the causal structure. Since understanding causes is one major issue in the history of 
mathematics, putting the study of the history of mathematics in the setting of the 
spacetime of mathematics can help. Another useful lesson from the spacetime is the 
important insight that the gravity can be interpreted in terms of the curvature of the 
spacetime. Therefore, an adequate understanding of the geometry of the spacetime 
of mathematics will allow people to understand the motion of objects in the 
spacetime, in particular their trajectories. This suggests that a sufficient knowledge 
of the spacetime of mathematics is important for the purpose to understand the 
evolution of single mathematical result or event. 

Another reason for the introduction of the spacetime of mathematics is related 
to mathematics itself. Since the history usually deals with “remarkable facts” 
according to the definition we cited at the beginning of Sect. 3.2 and often 
emphasizes views of events from the perspective of long time, though some detailed 
short time period and local studies are important and emphasized too, and topology 
in mathematics also studies large scale features of topological spaces, in particular 
manifolds, I wondered if some ideas of topology can also provide some guidance 
to the study of the history of mathematics. The particularly relevant mathematical 
theory is the Morse theory in differential topology which identifies special points of 
a given manifold, the so-called critical points, and shows how these critical points 
interact and determine the global shape of the space. In some sense, this gives one 
important concrete example illustrating the fruitfulness of the dialectic pair of local 
versus global. For example, the south pole and the north pole are the only two 
critical points of the sphere from a perspective of the Morse function given by the 
height function. Starting at these poles, one can gradually expand each of them into 
a disk which eventually becomes a hemisphere, and the two hemispheres meet at 
the equator, giving rise to the whole sphere. This example explains how the global 
properties of the sphere are explained by the local properties of the two poles.
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Once we have the notion of the spacetime of mathematics, then the Morse theory 
comes into play. Major historical results or events correspond to critical points of 
the spacetime of mathematics. As in the Morse theory, we need to understand the 
local structures of the spacetime around these points. Then there is also a question 
of how to put these local studies into a global understanding of the development of 
mathematics. They correspond to the micro and macro studies in the history. 

One important lesson from the Morse theory is that there are different types 
of critical points, as we have seen in the case of a torus in footnote.31 Therefore, 
the standard single model of a scientific revolution in Kuhn (2012) seems to be  
too simple minded. Instead, we should look for critical points in the spacetime of 
mathematics, and how they have affected the geometry, or rather the structure of 
the spacetime of mathematics, i.e., the development of mathematics. If one thinks 
globally about mathematics and its development, several examples of critical points 
would come to our mind: 

1. Gauss’ book Disquisitiones arithmeticae. One detailed study of the impacts of 
this book was done in Goldstein et al. (2007). 

2. Riemann’s works in complex analysis, in particular his paper on abelian func-
tions, and their influences in related subjects such as topology and algebraic 
geometry, besides the complex analysis itself. One comprehensive study was 
done in Bottazzini and Gray (2013). 

3. Hilbert’s list of 23 problems. One systematic overview was given in Gray 
(2000b). 

4. Probably to a lesser degree, Poincaré’s use of the hyperbolic geometry in his 
works on Fuchsian functions, which put hyperbolic geometry into the main 
stream of mathematics,32 before that the main interest was more philosophical, as 
Poincaré explained in his extensive self-analysis of his scientific works (Poincaré

31 For a more general manifold, the process is similar, though the result or its shape is more 
complicated. One good example is the torus, i.e., a donut. Make the donut stand up. Then one 
can imagine how to built it from four critical points: top, bottom, and two middle saddle points. 
Note that there are different types of critical points in this case. 
32 This use of the hyperbolic plane by Poincaré was a starting point of many great theories and 
major results in mathematics. For example, the hyperbolic plane is a special case of symmetric 
spaces introduced by E. Cartan, which are Riemannian manifolds whose curvature tensor has zero 
covariant derivative and include and are more general than Riemannian manifolds with constant 
curvature. One major insight of Cartan is that symmetric spaces are closely connected with Lie 
groups, and this connection between symmetric spaces and Lie groups has opened up a new 
frontier for differential geometry, the theory of Lie groups and harmonic analysis. For example, 
the theory of Fuchsian groups and Fuchsian functions have led to the current Langlands program 
through the extensive theory of automorphic functions; and the uniformization of Riemann surfaces 
through surfaces of constant curvature, in particular hyperbolic surfaces, has also led to Thurston’s 
geometrization program in geometry and topology, which was proved by Grigori Perelman in 
2002–2003. 
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1921, §II);33 and his works in topology which have changed the landscape of 
mathematics in the twentieth century. 

In some sense, the question whether each of the above is a revolution or not is 
not so important. What is important is to understand how they have influenced the 
development of mathematics. This brings up one point which we have emphasized 
at the beginning of this chapter. Even if the notion of spacetime of mathematics 
does provide a convenient and helpful framework to think about and understand the 
history of mathematics, the difficult and important thing is to do it. For any of the 
above four items, which of them will not take a huge amount of efforts in order to 
achieve a satisfactory comprehension? 

When we only talk about the spacetime of mathematics above, it might give the 
impression that it only represents the so-called internal history of mathematics. But 
the external history of mathematics is also important and crucial for the purpose to 
obtain a complete understanding of the history. In this case, some mathematical 
thinking can help too. We can either enlarge the scope of the spacetime of 
mathematics, since it is often difficult to separate mathematics from other subjects. 
Or we can introduce a bigger spacetime: the spacetime of everything, and embed the 
spacetime of mathematics into the spacetime of everything as a subspace. 

Now imagine a surface S such as the sphere . S2 embedded in the space . R3. There 
are two kinds of geometry of S. The extrinsic (or rather external ?) geometry of 
the surface S is concerned with the geometry and shape of S such as the bending 
or curvature with respect to the ambient space . R3, and has probably been studied 
since antiquity (think of conic sections in the Greek mathematics). It was Gauss 
who initiated the intrinsic geometry (or should we say “internal geometry”?) of 
the surface S. Then Riemann vastly generalized the intrinsic geometry to higher 
dimensional abstract manifolds in his famous lecture “On the hypotheses which lie 
at the foundations of geometry”. The rest is history, as people would like to say. 

Using this description of the external and internal geometries of surfaces, we can 
apply it to the embedding of the spacetime of mathematics in the spacetime of every-
thing, and understand this subspace both internally and externally. Consequently, for 
the history of a mathematical question, we also need to view it from the ambient 
space, the spacetime of everything including the culture, social, philosophical, 
political perspectives and more. Hence the external history of mathematics is an 
essential part of the history of mathematics. Naturally, the devil is in the details. 

How to Make Use of the Spacetime of Mathematics 
After reading the earlier version of this chapter, Xiaofei Wang suggested to illustrate 
the use of the framework of spacetime of mathematics through some concrete 
problems in the history of mathematics in order to see what kind of guides it can

33 Here we are mainly talking about the specific non-Euclidean geometry given by the hyperbolic 
geometry, but not the general non-Euclidean geometries. Otherwise, as José Ferreirós pointed 
out, it will be necessary to enter into extensive discussions related to philosophical issues and 
applications of non-Euclidean geometries in mathematical physics. 
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provide. We will discuss two examples: (1) Poincaré and his scientific works, (2) 
Comparison between the open problems proposed by Hilbert in 1900 and Poincaré 
in 1908. 

(1) A Framework to Understand Poincaré and His Scientific Works 
Given the importance and reputation of Poincaré scientific works, it is not surprising 
that there have been many books and papers about him and his works, in particular 
two recent outstanding biographies Gray (2013), Verhulst (2012). One question for 
us is whether the notion of the spacetime of mathematics can be used to find another 
framework or a perspective to understand Poincaré and his scientific works. 

When we look at the development of mathematics, or imagine a global view of 
the spacetime of mathematics, it is probably clear to many people that Poincaré’s 
works occupy a very distinguished subset, since they have had a big impact on 
mathematics up to now. The problem is to understand how this special Poincaré 
subspace has affected or fitted into the shape of the whole spacetime of mathematics 
and also the spacetime of everything. The study of history often considers and 
emphasizes the evolution of events, i.e., the time factor. One important suggestion 
from the spacetime of mathematics is that the view across different subjects and the 
unity between them are as important as the view through time. As an extension 
of this, it is also natural and important to consider any problem under study 
in the history of mathematics by taking into consideration many subjects and 
factors outside mathematics, since they are living together inside the spacetime of 
everything. 

We want to stare at this Poincaré subspace and nearby places and look for 
several kinds of things: global features or major themes running through them, and 
distinguished places or special spots in this Poincaré subspace, and how they are 
connected. Maybe it is helpful to compare it to how to look at a mountain both from 
afar and close by, and then summarize the impressions of what we have seen or 
experienced. 

After thinking for a while, it seems the following images and questions may arise, 
among other things: 

1. Poincaré contributed substantially to several fields including mathematics, 
celestial mechanics, mathematical physics, physics, philosophy of science, 
popular writings on science. But his most important contribution lies in 
mathematics, and the richness and unity of mathematics is well reflected in 
his works and other activities. 

2. In the overall picture of his mathematical contributions, several major themes 
appear right from the beginning of Poincaré’s research in mathematics: (a) 
Differential equations and (b) Number theory. 
These two trees have grown up in the soil of geometry, which is broadly 
interpreted and includes group actions or the theory of transformation groups, 
and topology (or analysis situs). They have branched out respectively in 
multiple directions. For the first, it includes both local and global studies of 
differential equations, striking applications to complex analysis, and differential 
equations arising in celestial mechanics and mathematical physics. For the
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second, it includes the geometry and reduction of quadratic forms, the analytic 
number theory and the arithmetic geometry. 
These trees or themes also interact at several places. For example, Fuchsian 
groups occur in both: more general Fuchsian groups arising from the mon-
odromy groups of linear differential equations with algebraic coefficients, and 
the arithmetic Fuchsian groups from the automorphism groups of indefinite 
ternary quadratic forms. 

3. Topology first appeared in the background of Poincaré works. Later it came to 
the front and emerged as one of his most important contributions, if not the 
most important, in mathematics. 

4. In the above two major themes, there are special spots. For the first, we can spot 
Poincaré theory of Fuchsian functions and its application to the uniformization 
of algebraic curves, the qualitative study of the three body problem, and 
eigenvalues and eigenfunctions of linear differential operators. For the second, 
we can spot his pioneering work on the group structure of rational points of 
elliptic curves. 

5. If we look more closely, there are many other special regions in the Poincaré 
subspace: complex analysis of both one and several variables, algebraic geom-
etry, the Lie theory etc. 

6. Outside the spacetime of mathematics, there are many lecture notes and papers 
on diverse topics in subjects including physics, mathematical physics, celestial 
mechanics and dynamics, and probability etc. There are also his popular 
lectures and writings on sciences and philosophy. 

7. If we look beyond Poincaré’s own works, we need to examine the works before 
him and works after him, the latter being huge. 

8. Now we need to figure out connections between all the above things. For 
example, among many other questions, here are several: (a) how the French 
educational system affected Poincaré’s formation as a mathematician, in partic-
ular the education at École Polytechnique. (b) How the teaching at universities 
influenced Poincaré’s research interests and the choice of topics. (c) Which 
culture and social factors determined the teaching systems at both the lower 
and higher levels. (d) How Poincaré’s status as the leading French scientist 
at his time impacted his works outside pure mathematics, and how they were 
reflected in Poincaré’s popular writings. (e) How to understand the impact and 
legacy of Poincaré both in short and long terms, in particular, in comparison 
with Hilbert. 

9. How did Poincaré’s philosophy and philosophical writings influence and reflect 
his works in mathematics and related subjects? 

10. We need to compare Poincaré’s works in mathematics with all the major 
topics in his time, i.e., compare the Poincaré subspace with the spacetime 
of mathematics, to either substantiate his fame of being “the last universalist 
in mathematics”, or point out some important gaps in his extensive works. 
For example, Weyl wrote in Weyl (1951, 531): the “most fascinating branch 
of mathematics [is] .. . . class field theory”, but Poincaré never worked on or 
contributed to this subject.
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11. Last but not the least, we need to understand the unity of the whole scientific 
works of Poincaré, and positive, and maybe also negative, impacts of the whole 
on each part, or one part on another.34 

We hope this outlook, or the map, based on the spacetime of mathematics can 
provide one way to organize questions and answers to understand better Poincaré 
and his works. Of course, the hard part is to do detailed work and understand the 
points and questions mentioned above. 

(2) A Framework to Understand and Compare Open Problems Posed by 
Hilbert and Poincaré 
If we think of lists of open problems in mathematics, the first list which comes 
to our mind is very likely Hilbert’s famous list of 23 problems given in Paris in 
1900 (Gray 2000b). Many individual or groups of mathematicians have tried to 
do similar projects. If we want to find another list and compare it with Hilbert’s 
list, the open problems proposed by Poincaré in 1908 in Rome might be a good 
choice. Comparison between them has indeed be emphasized and made in Davis 
and Mumford (2008) and Gray (2012). (A complete new English translation of 
Poincaré’s open problems is contained in Gray (2012).) 

We want to take another look at the choice of this comparison and some related 
questions through the framework of spacetime of mathematics. 

1. Both Hilbert and Poincaré left strong traces in the spacetime of mathematics. 
Though their open problems are not limited by their own works, they are certainly 
related. Hence this provides one concrete way to compare the mathematical 
works of Hilbert and Poincaré. Both lists of open problems cover broad ranges 
of topics in mathematics and show the unity of mathematics across different 
subjects, and a careful study of them provides a special way to understand the 
richness and some global features of mathematics. These are basic views in the 
framework of spacetime of mathematics. 

2. Both the contents and styles of the mathematical works of Hilbert and Poincaré 
are different. In some sense, they complement each other. Therefore, their 
combinations can cover more parts of the spacetime of mathematics. In some 
sense, they cover almost the whole spacetime of mathematics up to now. The 
separation and blending of these two extensive mountains in the spacetime 
of mathematics can convey and make us feel the dynamics in the history of 
mathematics, for example, the rise and fall of some subjects and problems, and 
high hopes in some problems before their solutions and disappointment after 
their solutions.

34 As Gray pointed out in Gray (2012, 15–16), one outcome of simplifying Poincaré’s more 
technical papers for his expository books and of the easy access and popularity of such writings 
might have “contributed to a misleading picture of Poincaré’s famous lecture” on the open 
problems under discussion here. 
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3. The spacetime of mathematics also suggests ways to understand them. For 
example, it is natural to understand each in connection with the whole spacetime. 
Specifically, the following questions and problems seem relevant: 

(a) Compare Hilbert’s problems with the mathematical works of Hilbert to 
understand better why Hilbert chose these problems. How do they reflect 
Hilbert’s view and understanding of mathematics? 

(b) Compare Hilbert’s problems with the bigger space of the total of all major 
works in mathematics around that time to learn how they reflected the status 
of mathematics at that time, and to identify possible major missing areas. 

(c) Usually attention is paid to each individual problem. But it is also important 
and fruitful to understand connections, especially the implicit ones, between 
seemingly different and unrelated problems. Unexpected connections which 
surfaced only later are particularly interesting. 

(d) Consider the history and motivations of each individual problem, or rather 
related problems and subjects, before Hilbert’s formulation of the problem. 
We can also consider the history of interactions between different problems. 

(e) Do the same things for Poincaré, and compare similarities and differences 
between Hilbert’s problems and Poincaré’s problems. For example, how the 
missing parts of one person are filled in by the other. 

(f) We can move forward in the spacetime and look at the development of these 
problems of Hilbert and Poincaré and related subjects, up to now, including 
their current status. This may not be a typical history problem, but certainly 
is important and interesting to many people. In any case, this will be one 
important part of a complete description of the traces of these special Hilbert 
and Poincaré sites in the spacetime of mathematics. 

The above represents different views in the spacetime of mathematics. 
4. It seems that Hilbert’s problems have been very influential, while Poincaré 

problems have been relatively unknown. There are explanations about this and 
various other issues in Gray (2012) and Davis and Mumford (2008). We can 
also try to understand their difference in terms of several aspects both inside 
and outside the spacetime of mathematics for this difference: (1) Is it because of 
the contents of the problems? This also raises the question of what is important 
in mathematics. (2) Is it because of the ways the problems were formulated and 
presented?35 (3) How much did institutional factors, academic networks, political 
and other factors contribute to this?

35 Comparison between the problems of Poincaré and Hilbert makes one wonder if they are similar 
to two kinds of books on the nature of history as we will mention in the last footnote: one gives 
higher level and general guidances or suggestions while the other gives more concrete and detailed 
descriptions. For example, Lie groups are discussed in both Poincaré’s Problem VII (or Part VII) 
(Gray 2012, 22) and Hilbert’s Fifth Problem (Gray 2000b, 254–257), and the above differences 
between them seem quite visible in this case. 
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As in the previous example about Poincaré and his works, this framework can 
only provide one way to raise and organize questions and answers about the open 
problems of Hilbert and Poincaré. Detailed understanding of the mathematics and 
other non-mathematical factors involved in their formulations and development will 
be the key to any historical project about these problems. 

Due to the length limit, we refer the reader to Ji (2022) for some other details and 
aspects about the use of the spacetime of mathematics in the study of the history of 
mathematics. 

3.6 Conclusion 

Given the assigned title of this chapter, I need to conclude this paper with several 
general remarks, or do a bit of philosophizing. 

Before doing history, one needs to know what is history, which is a proper and 
relevant philosophical question.36 While methodologies in history37 are needed and 
helpful, especially for beginners, one can learn them better in combination with 
doing it: the hands-on learning philosophy. 

The key point of doing history is to develop a habit of thinking historically 
by doing it: working on problems which can allow people to understand better 
the development of mathematics, i.e., understanding the structure of the spacetime 
of mathematics through its critical points and its embedding in the spacetime of 
everything. 

One central part of historical thinking is the multiplicity: There are multiple types 
of problems, approaches, and results. They are all important. The question is how 
to appreciate them and combine them. Some historians like to say: the house of 
history is big enough, and there is room for everyone. Probably this is also true with 
the history of mathematics. There is something to learn from others. 

Take a dialectic view towards everything. Walking in the right direction is 
probably more important than walking fast in order to reach the final destination. On 
the other hand, no amount of thinking about the history of mathematics will amount 
to much unless sound methodologies are put into practice and one is willing to look 
into details and to do hard work, for example, reading and trying to understand

36 According to Collingwood (1994, 348, 359), the “central question” of the philosophy of history 
is “what is history”. See also Ji (2022, §1) for some comments and various quotes on relations 
between philosophy and history. Socrates said famously: “The unexamined life is not worth living”. 
Can this be adapted to the history of mathematics? And how? 
37 It seems that there are two kinds of books which explain the nature of history. One kind is 
more philosophical and provides guidance at the higher level or the macro guidance. One example 
is the book Collingwood (1994). Another kind is more at the practical level or the micro level, 
giving concrete and detailed instructions on how to do history. One example is the book Furay and 
Salevouris (2015). Though different, both kinds of books are important and needed. They can be 
used in a dialectic way. 
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difficult primary sources, but one should not be buried in minute details without 
keeping a big picture in mind either. 

While doing history is probably enjoyable and rewarding to the researcher, it is 
also important to keep others in mind: Why your results and writings are interesting 
and beneficial to others. Of course, the ultimate test or judgement is given by history. 
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Chapter 4 
Why Historical Research Needs 
Mathematicians Now More Than Ever 

Viktor Blåsjö 

Abstract Using the history of the calculus as an example, I identify some trends 
in recent scholarship and argue that the time is ripe for a “new internalism” in 
the historiography of mathematics. The field has made steady progress in the past 
century: mathematicians have provided clear expositions of the technical content 
of past mathematics, and historians have produced meticulous editions of textual 
sources. These contributions have been invaluable, but we are reaching a point 
where the marginal utility of further works of these types is diminishing. It is time to 
shape a paradigm of historical scholarship that goes beyond the factual-descriptive 
phase of the past century. Comparative interpretative work is now feasible thanks 
to the gains of the past century. Cognitive questions about mathematical practice 
provide a fascinating and underexplored avenue of research that we now have the 
tools to tackle. Mathematically trained researchers are needed for this enterprise. 

4.1 Introduction 

Today is a golden moment to reunite historians and mathematicians. Their acri-
monious divorce some decades ago is proving increasingly detrimental to both. 
Mathematicians sit on technical expertise and are as interested as ever in history, 
but they are spinning their wheels with repetitive expository accounts, since no 
historiographical framework helps them mobilise their skills for historical research 
purposes. Historians have shut themselves off from mathematicians to avoid 
anachronism, but forget that, while this asceticism may once have been a sound 
cleanse, it is unsustainable as a permanent diet. 

The work that the two divorcees have done while apart is a perfect foundation 
for their reunion. Retreating to their individual comfort zones, scholars perfected 
the state of local scholarship in those domains. But we cannot keep tinkering in 
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fragmented niches forever. With the accumulation of detailed studies, we are now in 
a position to take up new lines of research based on synthesising and comparative 
perspectives. 

Let me take an area I have worked on—the early history of the calculus—as 
a case in point to highlight the fruitful circumstances that make a new internalist 
historiography more opportune than ever. 

4.1.1 Opportunity: Re-engage Mathematicians in History 
of Mathematics 

The history of the calculus remains highly relevant to the mathematician’s world-
view, as seen for instance in recent high-profile books where the history of calculus 
features prominently, such as Strogatz (2019)—a New York Times Bestseller—or 
Bressoud (2019)—an interweaving of historical and educational aspects of calculus 
by a former President of the Mathematical Association of America. But, regrettably, 
in terms of historical content, these books are less groundbreaking, relying in large 
part on a rather limited set of historical set-pieces that are often repeated in one 
popular work after another. The title of one very successful book of this type— 
“The Calculus Gallery” (Dunham 2005)—inadvertently hints at the limitations 
of this approach: historical mathematics is reduced to a canonised collection of 
iconic snapshots, briskly toured under fluorescent lights; seen only on their aloof 
pedestal rather than in the creator’s workshop. Left unanswered are questions about 
how the technical details of particular mathematical masterpieces were organically 
embedded and functioned in broader research practice. 

All of these authors are highly qualified mathematicians, yet their competence 
is wasted on repetitive re-exposition of known material because mathematically 
inclined authors lack—and do not find in recent historical scholarship—any sense of 
direction in which history of mathematics as a research field could evolve through 
the kind of analysis that a mathematician can provide. “The early history of the 
calculus of variations is a well-beaten track” (Giaquinta and Freguglia 2016, vii) 
another recent book apologetically admits, before beating the same track once 
again. There is a wealth of fascinating and unexplored historical questions that 
mathematicians could very fruitfully address, but mathematicians do not know how 
to do new and valuable scholarship by asking novel questions about the technical 
substance of past mathematical practice. We need a new historiography to provide 
this lacking impetus, and thus rejuvenate history as a mathematical research field.
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4.1.2 Opportunity: Recent Historical Scholarship Abundant in 
Details but Lacking in Global Vision 

Current scholarship in the history of calculus is lopsided toward specialised source 
studies. The Newton Project and Akademie-Ausgabe of the works of Leibniz are 
epicenters of expertise in the field. By providing comprehensive and meticulous 
editions of sources, these projects are invaluable. But their success inherently 
contain the germ of a fresh start in a different direction: the excellent state of 
specialised source work opens the way for synthesising perspectives. 

This is timely, as for the history of the calculus (as for many other historical top-
ics) no comprehensive and accessible survey that synthesises the insights of recent 
research and points the way to future research has been written for generations. 
Highly dated books such as Edwards (1979) are still in print and widely used; 
the antiquated Boyer (1959) is still Amazon’s top hit for “history of the calculus” 
and no up-to-date alternative is available. This is doubly unfortunate. For historical 
scholarship itself, it shows that increasing specialisation has left the field lacking 
in big-picture vision. Furthermore, for students and mathematicians, the lack of 
accessible overview is a gatekeeping barrier that makes it very difficult to keep up-
to-date with recent historiography and enter the field of historical research. This 
blocks mathematically talented people from contributing to the field, and hence the 
sense that modern historical scholarship is divorced from mathematics becomes a 
self-fulfilling prophecy. 

4.1.3 Opportunity: Join Forces with the “Practice Turn” 
in Recent Philosophy of Science and Mathematics 

Not only mathematicians can profitably be re-invited into historical scholarship, 
but also philosophers. Again the timing is just right. In the twentieth century, 
much philosophy of mathematics was fixated on logical rigour. In the case of 
the history of the calculus, this meant for example many papers on the relation 
between Robinson’s nonstandard analysis and classical infinitesimal calculus—an 
anachronistically motivated debate that is orthogonal to the concerns of historical 
mathematicians. But with the more recent “mathematical practice” movement in 
philosophy of mathematics, philosophers have turned to questions regarding the 
motivation, methodology, heuristics, and research choices of historical mathemati-
cians, as well as cognitive-historical questions such as for instance how visual and 
notational devices shape styles of thought. Hence the interests of the historian and 
the philosopher are more favourably aligned now than in the past century.
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4.1.4 Opportunity: Current Societal-Educational Questions 
Turn on Calculus 

A new historiography has the opportunity to be inclusive in another important 
direction as well. Again the history of the calculus provides a case in point. Calculus 
has an image problem, now more than ever. It was never a crowd-pleaser to begin 
with, but the old student refrain “when will I ever use this?” has lately been 
gaining considerable traction among senior academics as well. An October 2019 
Freakonomics episode joined a growing chorus that would be happy to see dusty old 
calculus yield space in the curriculum for more “twenty-first-century skills” such as 
“data fluency.” As books such as Strogatz (2019), Bressoud (2019), and Orlin (2019) 
indicate, history is one of the mathematician’s best tools for conveying the relevance 
and excitement of calculus amid such assaults. What Heilbron (1987, 559), says 
of science is true for mathematics as well: as “applications threaten to suffocate 
the traditional core of the subject”—a core “informed by the humanistic ideal”— 
“partnership with history may be the most promising course by which science may 
save itself from being crushed by its technological successes.” 

We historians must find a way to build on all of these opportunities constructively, 
rather than isolating ourselves to uphold a puritanical ideal of our subject. 

4.2 Example: Huygens’s Proto-Calculus 

Figure 4.1 outlines a mathematical argument from the works of Huygens that is quite 
typical of its time. The first thing that strikes a modern reader is the geometricity 
of the proof. Indeed, one may say that “Huygens actually thinks geometrically, he 
sees the relations in the figures, formulas are secondary to him,” as Bos (1980, 132), 
observed in a different context. But this is merely a descriptive observation. We 
want to dig deeper and consider the ramifications of this point of view for the 
mathematical practice of the time. Compared to calculus proper, what were the 
cognitive possibilities and limitations of this style of proto-calculus mathematics? 

Many aspects of Huygens’s argument can be matched with analogous notions 
within the calculus: geometrical properties of tangents play the role of derivatives; 
inferring “global” properties of the system from a characterisation of all its 
instantaneous local states plays the role of integrating a differential equation; using a 
circle as a reference figure plays the role of using trigonometric functions to express 
the quantities and relationships involved. To what extent were these proto-calculus 
analogs functionally equivalent to their calculus counterparts? In some respects they 
could do everything the calculus can do; in other respects not. What respects are 
these exactly?
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Fig. 4.1 Top: Definition of cycloid as the curve traced by a fixed point on a rolling circle, and the 
tangent of the cycloid expressed in terms of its generating circle in its middle position. Bottom: 
Huygens’s proof that the period of cycloidal motion is independent of amplitude. The particle 
P is descending under gravity along a cycloid, starting from rest at . P0. Consider the horizontal 
projection p of this point onto an associated circle as shown. From physics we know that . |vP | =√

2g(y0 − y). From the tangent result shown on the left we know how to decompose this into 
vertical and horizontal components. By definition, . vp has the same vertical component, and is 
tangent to the circle. This determines the magnitude .|vp|, which turns out to be constant throughout 
the descent and proportional to . y0. Hence the time of descent of P has been expressed in terms of 
the arc length of the circle. From there it immediately follows that the time of descent is the same 
for any . P0

In other words, what exactly did the calculus add that was new compared to these 
existing practices? For example:

• Did the calculus remove the need for the geometrical ingenuity exhibited by 
Huygens, and replace it with routine applications of symbolic-computational 
rules? Leibniz often stressed the value of his calculus in such terms, but he 
is a biased witness. Did arguments such as that of Huygens truly rely greatly 
on geometrical ingenuity and imagination, or is that merely how it appears to 
someone without a working knowledge of this style of mathematics?

• Does a calculus solution to a particular problem carry over more easily to a 
similar problem while Huygens-style geometrical proofs are sui generis? Euler 
(1736, 2), thought so. Can his opinion be validated by a comparison of pre-
calculus and calculus historical sources, or did Euler only feel this way because 
he was more familiar with calculus methods?

• Did the calculus provide the tools to state general theorems about, say, entire 
classes of functions, whereas Huygens-style methods are limited to specific, 
concrete cases? An argument against this hypothesis, perhaps, is for example 
Huygens’s completely general proof that the evolute of any algebraic curve is 
itself algebraic (Huygens 1673, III, Prop. XI).

• Is Huygens’s approach damagingly dependent on working with “global” proper-
ties of entire figures and systems, whereas the calculus can successfully operate 
in the dark with local (differential equation) information and only need to 
interpret the final solution globally at the end, if at all?
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• Did the calculus facilitate these kinds of problems primarily by brute-force power 
(“crunching the formulas”), or as a conceptual heuristic and a way of thinking 
about how to even formulate the problem in the first place? The latter point of 
view is perhaps what is captured by the paraphrase by Arnol’d (2012, vii), of a 
Newtonian maxim as “it is useful to solve differential equations.” 

4.2.1 Mathematical-Practice Historiography 

Questions like those above may be called cognitive, to distinguish them from what is 
purely textual or factual. Cognitive questions concern how certain ideas functioned 
in the minds of historical thinkers, and what overall role they played in their 
mathematical thought: What could these ideas do, and what not? What was the lay 
of the land of mathematical research as seen through the lens of these ideas? How 
did outlooks such as that of Huygens and that of Leibniz differ in how they drew the 
boundaries and the infrastructure connections between the well settled, the active 
frontiers, and the aspirational terra incognita on the research landscape map? 

Cognitive questions cut to the heart of what makes history relevant for many audi-
ences. Mathematicians are drawn to these questions because they concern recon-
structing past mathematics as it appeared through the eyes of active researchers. 
Mathematics teachers and students, because these questions point to a path of 
hands-on examples from which a mature view of the field gradually crystallises. 
Philosophers, because these questions trace the formation of fundamental concepts. 
Historians, because these questions target precisely what was idiosyncratic and 
uniquely situated about past ways of thinking. 

But cognitive questions are elusive, since they try to get at thought processes 
that are beneath the surface. They cannot be answered by a purely textual analysis 
of source documents (the expertise of historians), nor by a purely formal analysis 
of the mathematical content (the expertise of mathematicians). Tackling cognitive 
questions therefore requires new historiographical methods that go beyond estab-
lished practices of historians and mathematicians, but build on the strengths of both. 

4.3 Need to Move Beyond “Photorealism” Historiography 

The historiography of mathematics is stuck in a binary that for the past decades 
have pitted mathematicians and historians against each other in cartoonish terms. In 
what is by now a tired cliche, historians condemn the mathematicians’ practice of 
utilising modern mathematics to analyse and illuminate historical works. Portraying 
this as the root of all evil, historians prided themselves on banning mathematical 
paraphrase and restricting themselves entirely to literal scrutiny of textual sources. 
This was in some ways a corrective in the right direction at the time, but it should 
not be mistaken for the endpoint and perfection of historiographical method. The
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simplistic good-versus-evil self-fashioning of the present consensus has become 
such a dominant narrative that past generations of mathematically oriented historical 
scholarship is now routinely dismissed as “at best anachronistic” (Imhausen 2021, 
80). 

Ultimately this point of view is as sterile and one-dimensional as taking 
hyperrealistic still lives to be the endpoint and perfection of art. Breaking free from 
the stifling ideal of photorealism allowed artists to better see the organic soul of their 
scenes and capture their human significance with greater emotive force. The same 
will happen in the history of mathematics. Liberating ourselves from the moribund 
“still life” textualist historiography, we will bring out what is less tangible but more 
vividly alive. 

To be sure, reconstructing past mathematical thought is a tightrope walk that 
has long been difficult to get right. But Chang (2017) is right to subdivide 
internalist history of science into an “orthodox” and a “complementary” mode. 
“Orthodox” internalism is subservient to the current values of the field whose 
history is investigated, whereas “complementary” internalism is pursued precisely 
because it complements current orthodoxy in the field and regards it critically. 
Traditional internalist-mathematical approaches have been too often carelessly 
dismissed by historians based on arguments that in reality strike only against 
orthodox internalism. 

It is true that mathematicians can be too cavalier in projecting modern notions 
onto past mathematics, as when Arnol’d speaks of Huygens investigating “the man-
ifold of irregular orbits of the Coxeter group . H3” (Arnol’d 1990, 8). Of course, such 
approaches are likely to be insensitive to historical thought, and to bulldozer over 
its nuances with predetermined ideas and unwarranted extrapolations. (Examples 
of episodes from the history of the calculus that have been misunderstood for such 
reasons are discussed in Blåsjö (2015), Blåsjö (2017a), and Bell and Blåsjö (2018).) 
This is why it has become de rigueur among historians to insist—as for example 
the most prominent historical monograph on Huygens’s mathematics immediately 
does—that “historical accuracy and insight are lost when results are couched in 
modern terms” (Yoder 2004, 7). This may be called the photorealism axiom of 
modern historiography. 

The insistence on “photorealism”—or exact adherence to the surface form 
of the written text—has been a blessing and a curse for the historiography of 
mathematics. This ban on paraphrase has cleansed the field of many a naïve 
anachronism, as intended. But less widely recognised are its unintended knock-on 
effects. Photorealism effectively precludes comparative, synthesising studies, and 
hence forces a fragmentation of historical scholarship into narrowly specialised 
studies. This is an overreach of the photorealism axiom that goes beyond its 
originally intended scope and justification. New vistas for progress would open up if 
comparative and synthesising analyses could be rehabilitated as historical methods 
without reversing the gains made by the photorealism phase of the past decades.
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4.3.1 Consequence of “Photorealism” Historiography: 
Microscopic Focus on Minor Sources 

Photorealism historiography predictably steers the field into an arms race of 
hyperspecialisation. Comparative, synthesising perspectives necessarily go beyond 
the textual surface and are hence at odds with photorealism, whereas celebrating 
previously neglected textual specifics is the bread and butter of this historiography. 
Thus, predictably, the recent literature is heavily lopsided toward detailed studies 
of such things as the unpublished views on infinitesimals of a historical figure 
whose English Wikipedia page consists of two sentences (Domingues 2004), or 
how Leibniz once made a computational slip (using nine leading zeroes instead of 
eight in the decimal representation of a fraction) on a piece of scrap paper when 
he was trying to estimate e numerically from its power series (Probst and Raugh 
2019). Such an increasingly microscopic focus has greatly improved local precision 
and expertise in historical scholarship, but with an exclusive focus in this direction 
the field is left without purposeful vision on a more global scale. 

4.3.2 Alternative: Global Cognitive Contextualisation 

Let us take the example of Leibniz’s calculation of e and consider what new 
questions we would ask about this episode from a practice-oriented cognitive 
perspective. 

As Probst and Raugh (2019) observe, Leibniz’s manuscript appears to have 
been the first explicit occurrence of the numerical value of e. But what was 
the significance of this to the mathematical practice at the time? The natural 
logarithm and e eventually became fundamental in mathematics, but what did this 
enable mathematicians to do that they couldn’t do before? In the context of the 
calculus, .ln(x) is “natural” by virtue of being the logarithm function with the 
simplest derivative, but seventeenth-century calculus often reasoned in terms of 
proportionality and dimensional homogeneity, which arguably meant that there was 
no marked preference for .1/x over .a/x. Is the modern canonisation of .ln(x) and 
e merely cosmetic, or does it have cognitive import? If so, in what way, and did 
Leibniz see it that way? 

Leibniz used power series for his computation, but sophisticated computational 
techniques for logarithms had been around since before Leibniz was even born. 
Already in 1622, Speidell gave a table of genuine natural logarithms for all integers 
from 1 to 1000, agreeing with the modern .ln(x) to six decimal places, though the 
table omits the decimal point (Cajori 1991, 153; Speidell’s work is now available at 
Early English Books Online). How does the calculus-based power series paradigm 
compare with earlier computational practices such as those for logarithms? Did 
the new paradigm excel compared to earlier techniques by efficiency, extension, 
unification, or simplification? How easily could earlier mathematicians such as
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Speidell have repurposed their algorithms to compute e if they had wanted to? 
Since base-10 and base-e logarithm tables were available in print half a century 
before Leibniz, and since calculating .e = 10lg(2)/ ln(2) is readily reduced to such 
tables, the numerical value of e could in theory have been looked up in five minutes 
in a good library in Leibniz’s time. Would contemporaries of Leibniz well-versed 
in established logarithmic practices have regarded computing e (once defined) 
as routine? More generally, how were calculus innovations parsed in relation to 
established proto-calculus practices, and how does the significance of key calculus 
concepts differ from modern perceptions when read through such a lens? 

To answer such questions we must be attentive not only to specifics of individual 
documents such as Leibniz’s e manuscript; we must also understand the overall 
scope of the know-how of logarithmic functions established in the mathematical 
practice of the time. Only a synthesising, comparative perspective could ever answer 
to this purpose. 

The Leibniz e episode also raises intriguing questions about the relation between 
concrete calculations and curve plotting on the one hand and abstract theory on the 
other. As Probst and Raugh (2019) observe, Leibniz’s most immediate purpose with 
computing the numerical value of e was to plot the graph of the shape of a hanging 
chain, the catenary .y = (ex+e−x)/2. Was this a mere “after the fact” pragmatic way 
to draw a curve already found theoretically, or did visual and numerical checks play 
a role of verification that removed lingering doubts that the theoretical derivation 
may not have been correct? More generally, were these kinds of calculations and 
drawings used as an integral part of research itself, for verification or explorative 
purposes, rather like a modern mathematician may use a computer? 

Again, these are issues that cannot be answered by zooming in on the details 
of isolated cases but only by a comprehensive analysis of patterns of thought. 
Fortunately, philosophers have recently been very interested in issues such as 
diagrammatic reasoning (e.g. Giaquinto 2007; Hanna and Sidoli 2007), so we are 
better equipped than ever with conceptual tools to help us in such an analysis. 

4.3.3 Consequence of “Photorealism” Historiography: 
Overdependence on Novel Sources 

Two of the most high-profile interpretative innovations in the recent literature on 
the history of the calculus are the claim that previously unpublished manuscripts 
by Leibniz suggest “a complete transformation of the prevailing view on the 
position Leibniz held on the foundation of infinitesimal techniques” (Rabouin 
2020, 19), and the claim that when modern imaging techniques revealed some 
previously unreadable words on an ancient Archimedes manuscript, this was “a 
major discovery” that “made us see, for the first time, how close Archimedes was to 
modern concepts of infinity” (Netz and Noel 2007, 29).
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In both cases, revisionist interpretations are based on previously unpublished 
documentary sources. Indeed, it could hardly be otherwise, given the exclusively 
textual focus of photorealism historiography. This may seem right and proper: it 
simply shows that our field is evidence-driven. Yet if this is the only game in town 
then the consequences will be predictably detrimental. 

If publishing new sources is a precondition for publishing new interpretations, 
then the field closes itself off from the analytic insights of mathematicians and 
philosophers, who have unique expertise that they would not have been able to 
develop if they had devoted the bulk of their time to editing unknown texts. 
Meanwhile, historians who do excellent work on editions of sources automatically 
have their voice greatly amplified also on interpretative questions: a conflation of 
credibility in one domain with authority in another. 

Furthermore, an addiction to extracting ever more from the increasingly depleted 
potential of hitherto unpublished sources, and a lack of alternative ways of 
making scholarly progress, dooms us to keep mining the archives for novelty with 
diminishing returns. One may say that a historiography that refuses to go beyond 
the directly textual is bound to enter a “fracking” stage toward the end of its life 
cycle, as researchers are pushed to find ways of extracting new discoveries from 
documents that previous prospectors had treated as unpromising. 

4.3.4 Alternative: Rigorous Historiography for Evaluating 
Other Types of Interpretative Hypotheses 

Just as physics thrives on an interplay of theorists and empiricists, so historical 
scholarship would benefit from a wide range of interpretative thought rather than 
regarding as exclusively legitimate that of those who personally work on publishing 
ever more novel source material. For this, we need new standards of assessing 
hypotheses that go beyond direct one-to-one correspondence with textual evidence. 
We need to shift the focal point of historical research from the microtextual to a 
more overarching level of patterns of thought. 

4.3.5 Consequence of “Photorealism” Historiography: 
Overemphasis on Surface Form 

The axiom that fidelity to historical actors’ modes of expression is the same 
thing as fidelity to the conceptual essence of their underlying thought entails that 
differences between geometric and algebraic styles are ipso facto profound. Hence, 
predictably, modern historians have placed considerable emphasis on the work of 
the second generation of calculus practitioners, who opted for a more algebraic 
approach than the geometrical style of people like Huygens and Newton. This was
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“a monumental conceptual shift” (Shank 2018, 234), “a major step that cannot be 
overestimated” (Speiser 2008, 108), modern historians assert. But it is hard to escape 
the impression that these claims are driven more by historiographical commitments 
than by analyses of mathematical practice. For example, Shank (2018) opens with a 
long and detailed chapter on the historiography of mathematics but has no technical 
discussion of actual mathematics in the entire book. 

4.3.6 Alternative: Practice-Based Assessments of Importance 

We need a new approach that neither erases differences between geometrical and 
algebraic approaches through anachronistic translation into modern mathematical 
terms, nor assumes that such differences are necessarily conceptually profound. 
I suggest that to answer these kinds of questions is to build up a comprehensive 
picture of what for instance Huygens’s methods discussed above could and could 
not do. Only through such an overall sense of what it was like to wield these tools 
as research weapons can we understand the significance of the technical details of 
an argument such that by Huygens. And only through a detailed, comparative study 
of many specific examples can we build up such a general picture. 

4.3.7 Conclusion on “Photorealism” Versus Cognitive History 

All-out war on anachronistic paraphrase has not only eliminated the intended 
culprits but also inflicted additional casualties: comparative perspectives and mathe-
matically insightful commentaries face a hostile climate under the new regime, and 
mathematicians and philosophers are alienated from the field. Left are historians 
playing it safe in the wake of this ideological purge, limiting themselves to the most 
directly textual domains of scholarship: narrowly specialised studies and archival 
work on unpublished sources. The field is losing vigour, like a person who avoids 
food poisoning only at the cost of suffering severe malnutrition. 

Cognitive history shows how digging into mathematical practice in media res and 
asking new questions can be both mathematically and historiographically exciting. 
It reconstructs the living, bustling research scene of the time—the hopes and 
dreams and conundrums and technical obstacles that these historical mathematicians 
wrestled with in their daily practice. Consequently, instead of having to dig 
ever more deeply into the archives for fresh kicks, cognitive history shows that 
scholarship on canonical sources is far from “done” merely by mathematicians 
having given technically accurate, local descriptions of their content, and historians 
having traced their documentary network. The field is ready to graduate beyond this 
basic descriptive phase of scholarship and to dare to pursue new comparative and 
interpretative perspectives.
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4.4 Example: Newton’s Unusual Quadrature Manipulations 
to Describe Inverse-Cube Orbits 

Figure 4.2 shows how Newton described the orbits that result from an inverse-cube 
force law in his Principia (1687). As throughout the Principia, Newton’s style is 
classical and geometrical. However, because this is one of the more complicated 
technical problems of the Principia, Newton had relied on calculus “behind the 
scenes” to arrive at these solutions, using the steps outlined in Fig. 4.3. For this 
reason, this is an interesting case study for clarifying the boundary between classical 
and calculus methods. 

4.4.1 Historiographical Lessons of the Newton Example 

The existing literature on this episode is very typical. As far as excellent technical 
commentaries and explanations of the steps of Newton’s derivation are concerned, 
there is an abundance—or, one might almost say, oversaturation—of literature, 
including for instance Erlichson (1994), Brackenridge (2003), and Guicciardini 
(2016). The last of these declares itself “deeply indebted” (210) to the earlier 
ones, and indeed largely consists of re-exposition rather than novelty as far as 
technical analysis of mathematical content is concerned. With multiple articles 
showing so much overlap and rapidly converging to a consensus, one is bound to 
get the impression that this mathematical style of historical scholarship is effectively 
“done” and has little more to contribute. No wonder, then, that recent scholarship, 

“If with centre and principal vertex 
any conic is described, and 

from any point of it the tangent 
is drawn so as to meet the axis 
. . .  at  .  . .  ; and . . . there is drawn 
the straight line , which is equal 
to . . . and makes an angle 
proportional to the sector ; then, 
if a centripetal force inversely propor-
tional to the cube of the distance of 
places from the centre tends towards 
that centre , and the body leaves 
the place with the proper veloc-
ity along a line perpendicular to the 
straight line , the body will move 
forward in the trajectory which 
point continually traces out.” 

Fig. 4.2 Newton’s description of trajectories in an inverse-cube force field
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Fig. 4.3 Paraphrase of the steps Newton used to derive his description of trajectories in an inverse-
cube force field 

such as Guicciardini (2016), is instead turning its attention more to textual aspects, 
such as the context of this episode in Newton’s manuscripts and correspondence. 

But mathematically oriented historical scholarship has not stagnated because 
it has exhausted its potential or become obsolete. It is spinning its wheels at the 
moment, but by reorienting it in a new direction we will be able to harness its power 
in new ways. 

The mathematical commentaries on Newton’s orbit derivation are “done” only 
because they set themselves too limited a task. Very typical is the conclusion by 
Erlichson (1994) that “the ultimate key to the mystery . . . is  Newton’s  practice  of  
expressing abstract quadratures by concrete visualizations” (154). Note the word 
ultimate, as if there was nothing further to be explained! From a cognitive point of 
view, the postulation of a particular type of geometrical predilection in Newton’s
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style is not an “ultimate” brute fact but merely the beginning of what is to be 
explained. Why was this Newton’s practice? 

Cognitive questions pick up precisely where purely formal analyses left off. 
Erlichson stopped when he reduced the matter to a particular disposition in 
Newton’s style, because that’s where objective mathematics ends and subjective 
preferences begin. We need to break down this common barrier that isolates 
technical mathematical analyses from the less tangible but equally crucial cognitive 
considerations that drive mathematical research. Technical details of mathematical 
arguments on the one hand, and broader stylistic and philosophical attitudes on the 
other, co-evolved and were intimately intertwined. 

Today there is agreement on what “the answer” is to integrals such as those 
involved in the Newton example above (in that case the solutions can be expressed 
in terms of trigonometric and exponential functions). But, as that example shows, 
the situation was much more fluid at the time. It is indeed a non-trivial question 
(that the early practitioners of the calculus wrestled with extensively) to decide 
even what kind of thing “the” answer should be. What do we want the solution 
to a differential equation to do? Should it be numerically tractable, visualisable, 
or qualitatively illuminating? By what such standards is, for example, Newton’s 
reduction to convoluted conic measurements superior to other possibilities that were 
readily available to him, such as the quadratures of higher-degree curves obtained 
as intermediate steps in his own derivation, or power series methods? Indeed it 
is striking that in his final step Newton is able to express everything in terms of 
conics only by making the shapes of the area segments more complicated and 
even by completely dropping the geometrical representation of the proportionality 
constant from the visualisation altogether. So Newton opted for this particular type 
of geometrical interpretation even though it came at a notable cost. 

Newton’s choice was hardly mere conservatism, because comparable preferences 
for qualitative, geometrical characterisations of integrals are commonplace in the 
early calculus. This includes for instance the prominent seventeenth-century prac-
tice of “rectifying quadratures” (Blåsjö 2012), that is to say, expressing insoluble 
integrals as arc lengths, such as elliptic integrals in terms of the arc length of 
the lemniscate. Equally odd to modern eyes is the recurrent theme in this period 
of finding when a generally transcendental problem could be expressed without 
reference to transcendental quantities (such as trigonometric functions or . π ). For 
instance, Huygens, Leibniz, and Johann and Jakob Bernoulli all tried to find classes 
of segments of the cycloid whose area is “squarable” in this sense. The Bernoullis 
investigated this in depth and to this end were led to developing what is today known 
as Chebyshev polynomials (Henry and Wanner 2017). To name another example, 
Huygens’s solution to the catenary problem fell short precisely because it failed to 
fully reduce the necessary quadratures (Bos 1980, 142), showing that this was a 
complicated matter that stumped even the best minds. Similarly, Leibniz solved the 
brachistochrone problem but failed to recognise from his own solution formula that 
it was the well-known cycloid (Blåsjö 2017b, 185). 

Altogether, the varied ways in which seventeenth-century mathematicians chose 
to transform and “solve” integrals were based on deliberate choices and priorities
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that were mathematically and philosophically rich but are poorly understood today. 
The only way to illuminate such questions is through a comparative perspective. If 
we look at episodes like the Newton orbit example in isolation then we have little 
choice but to leave it at the weak non-explanation that Newton preferred to express 
the solution geometrically rather than by a formula. But by taking a comprehensive 
view and reconstructing the overall state of calculus research at the time, we will be 
in a much better position to situate his precise choices in a coherent context. 

For example, Guicciardini (2016) has shown what calculus manuscripts Newton 
relied on in his solution, so by studying the guiding motivation implicit in the 
structure of that treatise, and the uses Newton made of those ideas in other works, we 
will be able to say much more about what guided Newton’s choice of representation 
in the orbit example than we could have by looking at that episode alone. 

In the same way, comparing Newton’s approach with those of his contemporaries 
will also illuminate what he saw as the particular strengths of his chosen integration 
methods and means of representing curves. Guicciardini (2016) is right that “inter-
esting questions remain open” such as “in what sense do Newton’s methods differ 
from those deployed by Leibniz, Varignon, Johann Bernoulli, and Euler?” (234) It 
is no coincidence that these questions remain open, since the photorealism axiom 
penalises comparative research. A historiographical rethink is needed to make 
progress in these directions. A cognitive turn will redress precisely this problem and 
thereby revitalise the field and show how the expertise of mathematically trained 
researchers can be mobilised in new ways to reach new kinds of insights about 
history. 

4.5 Conclusion 

Let me summarise the invitation to mathematicians that I have proposed. In a 
historical text we find a mathematician using a particular technique. For example, 
Huygens finding the motion of a particle sliding down a cycloid by relating it to 
the geometry of an associated circle. Or Newton finding the orbit in an inverse cube 
force field by relating it to arcs and areas of conics. 

We want to know what the broader cognitive significance of this technique is. 
Typically, isolated cases are insufficient to say anything conclusive about this. So 
we form several interpretative hypotheses consistent with the case at hand. 

For example, we may hypothesise that Huygens’s use of circle geometry to solve 
a dynamical problem is effectively equivalent to using the calculus of trigonometric 
functions. Or in the Newton case we may hypothesise that Newton preferred his 
convoluted expression in terms of conics, rather than the obvious alternatives such 
as power series, because it better illuminates the qualitative properties of the orbit. 

Such hypotheses entail testable predictions. If the hypothesis correctly puts 
the finger on a key aspects of the mathematical thought of that author, then in 
comparable cases that author ought to act in accordance with that hypothesis. So 
to test our hypotheses we then turn to other works.
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For instance, among the various problems that Huygens solved geometrically that 
we today would solve using the calculus of trigonometric functions, which utilise 
a reference circle and its properties such as theorems about tangents to effectively 
go from the same premisses to the same conclusion as the modern calculus proof? 
Are there cases where Huygens’s approach has demonstrable drawbacks compared 
to an approach based on the calculus of trigonometric functions? Are there cases 
where Huygens failed to solve a problem that the next generation could solve by the 
calculus or trigonometric functions? 

In the Newton case, his reduction to conic areas and arcs is based on an 
unpublished catalogue of such reductions—effectively a “table of integrals.” What 
other uses did Newton make of this catalogue? Are those uses consistent with 
our hypothesis? Is the theoretical structure of the catalogue consistent with our 
hypothesis? 

These kinds of questions can only be answered by a mathematical analysis that 
goes beyond what is explicit in the texts, and by a comparative perspective that looks 
at the mathematical practice of the time comprehensively. Answering such questions 
requires understanding that only mathematicians are likely to posses. 

It is easier than ever for mathematicians to enter the field and do this kind of 
work. Recently published sources and specialised studies have made the field more 
accessible and easier to navigate, and it has made comparative and interpretative 
work drastically more feasible. The old hostility to mathematicians among profes-
sional historians of mathematics that had its brief heyday is nowadays sooner the 
subject of historical study itself (Schneider 2016) than a force in the present that 
anyone needs to fear. Mathematicians turning to history are likely to find a warmer 
reception today than in those “cold war” decades. 

Thus mathematicians can help historians, but there will be benefits in the opposite 
direction as well. A cognitively reorientation of historical scholarship will make 
it more mathematically exciting. Our questions about the thought and practice of 
Huygens and Newton, for example, are precisely the kind of history that is directly 
relevant to teaching and thoughtful understanding, not as decorative anecdotes but 
as insights deeply intertwined with content and substance. 
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Chapter 5 
Further Thoughts on Anachronism: A 
Presentist Reading of Newton’s Principia 

Niccolò Guicciardini 

Abstract This chapter is an exercise in anachronism. I read a hitherto unnoticed 
corollary in Newton’s Principia availing myself of concepts and results that 
were obviously unavailable to the author. I contend that even extreme forms of 
anachronism can be helpful in the historical interpretation of past mathematical 
texts. I also claim that such anachronistic readings must be followed by an attempt to 
capture the differences between past and present mathematics. The text I analyze is 
Proposition 41, Book 1, and its three corollaries (especially, the second one), which 
are part of a set of propositions where Newton deals with the motion of a body 
accelerated by a central force. 

5.1 Newton on Graphical Methods 

It is well known that Isaac Newton deployed graphical methods in order to construct 
orbits traced by a body accelerated by a central force. When Newton wrote the 
Philosophiae Naturalis Principia Mathematica (the Principia for short), in the years 
1684–1687, the methods of the calculus were still very rudimentary: mathematicians 
were not used to writing differential equations. In order to study the motion of 
bodies accelerated by central forces several methods for graphically approximating 
the orbits were devised. 

There is a vast literature dealing with Newton’s graphical methods. So far, 
scholars have studied Newton’s use of the parallelogram rule in order to construct 
orbits via vector composition of motions, according to Corollary 1 to the laws of 
motion. Attention has also been paid to the geometrical methods employed by 
Newton in Sections 2 and 3, Book 1, of the second edition of his Principia in 
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which he resorted to the radius of curvature1 (Nauenberg, 1994; Brackenridge, 
1995, pp. 79–85). Lately, Nauenberg (2018) and, more thoroughly, Chin have 
studied Prop. 1, Book 1, of Newton’s Principia as a “a geometric embodiment of 
a numerical algorithm, the first symplectic integrator devised 300 years before its 
time,” (Chin 2022, p. 13) where a symplectic integrator is a numerical integration 
scheme for Hamiltonian systems, “a canonical transformation which seeks to 
integrate Hamilton’s equation to obtain the system’s coordinate and momentum as 
a function of time.” (Chin 2022, p. 4).  

What I will do in this paper is show that in Corollary 2, Prop. 41, Section 8, 
Book 1 of the Principia (Corollary 2, for short), Newton devised a method—to 
allow ourselves the use of anachronistic language from the very beginning! — for 
associating a slope field to the differential equation of a mass-point accelerated in a 
central force field. Thus, Corollary 2 paves the way for a graphical construction of 
the orbit traced by the mass-point. Newton’s construction thus defines a concept, that 
of slope field, that is important for methods for the graphical solution of differential 
equations developed later, most notably by Leonhard Euler, Karl Heun, Carl Runge, 
and Wilhelm Kutta (Butcher and Wanner 1966). 

5.2 Propositions 39–41, Book 1 

These propositions have often been commented on and for very good reasons.2 They 
are a masterpiece of physical and mathematical insight. In their broad outlines, they 
are still taught in courses on classical mechanics, even though Newton’s language 
and conceptions are peculiar to his times and present many divergences from our 
own conceptions. They deal with the motion of a point mass in a spherically 
symmetric potential .V (r). The corresponding central force is 

.F = −dV

dr
r̂ (5.1) 

where . ̂r is the unit vector pointing away from the centre of force. Without loss of 
generality we can assume that the mass is .m = 1. Indeed, this is a one-body problem 
(a body attracted by a centre of force) and no use is made of the third law of motion. 

5.2.1 Proposition 39 

In Proposition 39 Newton considers a “body” moving in a straight line ADE under 
the action of a centripetal force (see Fig. 5.1). Thanks to a very simple reasoning, he

1 These methods are based on the fact that the normal component of force is proportional to the 
speed squared and inversely proportional to the radius of curvature. 
2 A crystal-clear treatment is Newton (1999, pp. 334–345). 
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Fig. 5.1 Diagram for 
Proposition 39, Book 1, of the 
third edition of the Principia 
(1726). Source: Newton 
(1726, p. 120). The curve V L  
in the first two editions 
(1687) and (1713) was 
wrongly drawn 

shows that the square of the speed is proportional to the area subtended under the 
curve that represents the variation of the force’s intensity as a function of distance. 
Let’s provide a translation into algebraic symbols of Newton’s text. 

In Fig. 5.1 a body is falling from rest in A towards the centre of force C. The  
curve BF represents the intensity of the centripetal force F .3 The force is directed 
towards C. I choose as a sign convention that for a centripetal force . F < 0. Newton  
writes that the ordinate DF is “proportional to the centripetal force in that place 
[at point D] tending towards the centre C” (Newton 1999, 525). Since in this paper 
I translate Newton’s proportions into equations, I need to make a proportionality 
constant explicit. I choose: 

.DF = 2F. (5.2) 

The curve V LM  represents the inverse of the speed v of the body, thus the speed 
of fall at D is proportional to .1/DL. Let’s put: 

.
1

DL
= v. (5.3)

3 It might well be that Newton chooses “F” to denote that point because it is the end-point of the 
ordinate “DF” measuring the intensity of force. 
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Newton proves that 

The speed of the body in any place D will be as the straight line whose square is equal to 
the curvilinear area ABFD (Newton 1999, p. 525).4 

Newton’s statement is framed in terms of the theory of proportions. I attempt a first 
translation 

.
1

DL
∝ √

ABFD (5.4) 

where ABFD is the area subtended to the curve BF , and I use . ∝ as an abbreviation 
for “is proportional to.” While Newton does not use the symbol . ∝, he is happy to 
use the square root symbol: he does write .

√
ABFD in Prop. 41. 

What Newton writes in the language of proportion theory in the Principia can 
easily be translated into our familiar equation: 

.v(r)2 = 2
∫ r

r0

Fdr, (5.5) 

where we set .CA = r0, .CD = r , where .r0 > r . According to the proposed algebraic 
translation, the speed squared is equal to the area of ABFD: or .v2 = ABFD. 

Of course, after this translation, the historian should pay great attention to 
Newton’s original language, whose “equivalence” with our calculus translation is 
a very subtle interpretative matter (see Sect. 5.5). Most notably, I have transformed 
a proportion into an equation, which means that I have made proportionality factors 
explicit. 

Further, even more anachronistically, once written as above, Newton’s proposi-
tion will immediately be read by a modern reader as stating the law of conservation 
of mechanical energy, whereby the sum of the potential energy and kinetic energy 
must remain constant during the time evolution of an isolated system. In a sense, 
it is legitimate to say that Newton stated, or maybe anticipated, the principle of 
conservation of mechanical energy. On the other hand, it is also true that Newton 
did not isolate the concept of energy, and even less those of kinetic and potential 
energy, and that our formulation is conceptually richer (we use the concepts of 
closed system, dissipative vs conservative force, and potential for example). 

5.2.2 Proposition 40 

In Proposition 40, Newton considers a body orbiting in a plane orbit under the action 
of a central and isotropic force after having been fired laterally (not towards the force

4 Lettering modified for consistency. For example, Newton uses ABGE rather than ABFD. 
The two expressions are equivalent, since DE is infinitesimal. Cohen and Whitman translate 
“velocitas” as velocity. 
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centre) from a given position with a given velocity.5 He proves that the speed is a 
function of the distance from the force centre only. Thus, in order to determine the 
speed of a body moving in an orbit in a central force field, one can apply the result 
of Proposition 39. 

5.2.3 Proposition 41: The Statement and Result 

The statement of Proposition 41 is: 

Supposing a centripetal force of any kind and granting the quadratures of curvilinear figures, 
it is required to find the orbits in which bodies will move and also the times of their motions 
in the orbits so found (Newton 1999, p. 529). 

This is a problem (in Newton’s times known as the “inverse problem of central 
forces”) that we still teach to our students in courses on Newtonian mechanics. 

5.2.3.1 An Anachronistic Rendering 

Today, we ask to determine the motion of a point mass in a central force field, given 
as initial conditions the position and velocity at time .t = 0. I remind the reader that 
I consider the mass unitary: .m = 1. 

We ask to reduce this problem to two differential equations, a choice of polar 
coordinates r and . θ being the best for reasons of symmetry. The equations that can 
be found in our treatises on Newtonian mechanics, such as De Lange and Pierrus 
(2010, 217–219), are 

.dt = ±dr√
v2

0 + 2
∫ r

r0
Fdr − h2/r2

, (5.6) 

and 

.h = r2 dθ

dt
(5.7) 

where h is the angular momentum, .r0 = r(0) is the initial position, and . v0 = v(0)

is the initial velocity. Inversion of 

.t (r) =
∫ r

r0

dr√
v2

0 + 2
∫ r

r0
Fdr − h2/r2

, (5.8)

5 The orbit is planar, as Newton proves in Propositions 1 and 2, Book 1. 
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Fig. 5.2 Diagram for Proposition 41, Book 1, of the Principia. Source: Newton (1726, p. 125). 
The diagram for the first and second editions was compromised by a few mistakes 

gives the radial position .r(t) in function of time.6 Substituting this in Eq. (5.7) 
allows to express the angular position in function of time as 

.θ(t) = h

∫ t

0

dt

r2(t)
+ θ0, (5.9) 

where .θ0 = θ(0). Equations (5.8) and (5.9) determine the time-dependent orbit. The 
geometric orbit is instead given by 

.θ(r) = h

∫ r

r0

dr

r2
√

v2
0 + 2

∫ r

r0
Fdr − h2/r2

+ θ(r0). (5.10) 

5.2.3.2 Newton’s Approach 

In a way, Newton’s procedure is similar to ours. Such an ‘equivalence’ is what— 
indeed—is discussed in this paper. 

Newton considers a “body” setting out from V with a given velocity under the 
action of a given centripetal force (see Fig. 5.2). The force’s centre is C. Note that 
V XYR  is circle with radius CV .

6 Note the sign ambiguity in Eq. (5.6). Here we choose the positive root. 
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The orbit, to be found, is V IKk. 
The point A is specified by the property that when a falling body reaches point 

V , falling vertically from rest at an initial position A, the magnitude of its velocity 
will be the same as the magnitude of the initial velocity of the body moving along 
the curved path V IKk.7 

As coordinates of the body’s position at a point I of the orbit Newton uses the 
distance from the force’s centre .CI = A and the area of the circle sector V CX. This  
is very nearly what we would do nowadays by using polar coordinates. 

As in Prop. 39, the curve BF represents the intensity of the force as a function of 
distance from the force’s centre.8 Thus, the area of the surface ABFD subtended to 
this curve measures what we would call mechanical work. For the conventions that 
I adopted in Sect. 5.2.1, ABFD is equal to the double of the work. 

It should be noted that Newton avails himself of two properties of central force 
motion that he proved in previous pages. 

In Newton’s terms, the first property is that the area law holds if and only if 
the force is central (Propositions 1 and 2, Book 1) (Newton 1999, p. 444). Thus the 
motion is planar and the areal velocity is constant. This first property allows Newton 
to geometrically represent time as the area of the surface swept by the radius vector. 
For example, the area V CI  is proportional to the time taken by the body to traverse 
the arc V I . Newton denotes the constant areal velocity as .Q/2 and sets .Z = Q/A.9 

Using our algebraic symbols .Z = h/r , where h is the angular momentum. 
The second property is proved, as we have just seen, in Propositions 39 and 

40 (see Sects. 5.2.1 and 5.2.2). This property implies that the square of the speed 
at point I is proportional to the area of the surface ABFD. Using our algebraic 
symbols .v2 = AFBD = v2

0 + 2
∫ r

r0
Fdr . 

In modern terms, we would understand these two properties as the law of 
conservation of angular momentum .h = Q and the law of conservation of 
mechanical energy E. 

Starting from these two properties, Newton obtains two curves abz and acx that 
must be “squared” in order to determine the dependence of time (measured by the 
area .V CI = (Q/2)t) and the dependence of angle (measured by the area of the 
circular sector .V CX = (CX2/2)θ ) from distance. “Squaring” a curvilinear surface 
meant calculating its area. 

Newton proves that the two curves have ordinates Db and Dc given by the 
following equations: 

.Db = Q

2
√

(ABFD − Q2/A2
= Q

2
√

ABFD − Z2
, (5.11)

7 I am here deeply indebted to Bernard Cohen’s translation into symbols of Prop. 41. See Newton 
(1999, p. 145). 
8 In Newton’s words “[the ordinate] DF is proportional to the centripetal force in that place [. CI =
CD = A] tending towards the centre C.” (Newton 1999, p. 525). 
9 Edmond Halley suggested this abbreviation to Newton. 
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Fig. 5.3 Diagram for Proposition 41, Book 1. The corrected version in the third edition. Source: 
Newton (1726, p. 125) 

and 

.Dc = Q × CX2

2A2
√

ABFD − Q2/A2
= Q × CX2

2A2
√

ABFD − Z2
. (5.12) 

5.2.4 Proposition 41: The Demonstration 

Let us now take a closer look at Proposition 41, for the purpose of familiarizing 
ourselves with Newton’s notation and demonstration. 

5.2.4.1 Newton’s Approach 

For the readers’s convenience, I will repeat the diagram for Proposition 41 (see 
Fig. 5.3), in which V Ik  is the sought orbit, and IK  is an infinitesimal arc traversed 
by the body during an infinitesimal interval of time.10 Further, KN is drawn 
perpendicularly to CI .

10 “Let the points I and K be very close indeed to each other.” (Newton 1999, p. 530). 
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Newton’s demonstration can be subdivided into three steps. We parse the crucial 
passage as follows: 

1. “the line-element IK , described in a given minimally small time, will be as the 
velocity 

2. and hence as the straight line whose square equals the area ABFD, 
3. and the triangle ICK  proportional to the time will be given; and therefore KN 

will be inversely as the height IC, that is, if some quantity Q is given and the 
height IC  be called . A, as .Q/A.” (Newton 1999, p. 530). 

This is a bit confusing for the modern reader, because Newton does not use 
the concept of function, as we would do, and employs the language of proportion 
theory. Thus, for example, he cannot say that the speed is equal to the infinitesimal 
arc divided by the infinitesimal time, since this would be a ratio between two 
inhomogeneous magnitudes. Rather, Newton employs geometrical diagrams, such 
as the curve BF , that represent the functional dependence of different continuously 
varying kinematic and dynamical magnitudes. 

Moreover, Newton subdivides time into an infinity of infinitesimal equal incre-
ments and states that the instantaneous speed is proportional to the infinitesimal arc 
IK . This is step 1 above. 

Because of propositions 39 and 40, IK  is proportional to .
√

ABFD, that is, IK  
is proportional to the square root of the area subtended under the curve BF . This is  
step 2. 

Since the area law holds for central force motion (as proved in Propositions 1 
and 2, Book 1), Newton can state that the infinitesimal increments ICK  (triangles 
since IK  is equated to a straight infinitesimal segment) of the surface swept by the 
radius vector in equal infinitesimal intervals of time have equal areas. This implies 
that KN is inversely proportional to .IC = A, or .KN × IC = KN ×A = Q. Thus, 
.KN = Q/A. This is step 3.  

Putting together the above three steps, one immediately obtains (bearing in mind 
that .Z = Q/A): 

.
IK

KN
∝

√
ABFD

Q/A
=

√
ABFD

Z
. (5.13) 

The formula (5.13) is the basic result that allowed Newton to tackle the inverse 
problem of central forces in Proposition 41. It is the formula that will be applied in 
Corollary 2. 

It is straightforward to deduce from Eq. (5.13) the curves (5.11) and (5.12), which 
must be squared in order to solve the inverse problem of central forces. 

5.2.4.2 An Anachronistic Rendering 

Instead of following Newton’s manipulation of symbols, such as IK  and KN , rep-
resenting infinitesimal segments, I will adopt an anachronistic mode of expression
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and translate the formula (5.13) in modern calculus symbols.11 As we shall see, 
Newton’s formula is ‘equivalent’ to a differential equation in polar coordinates. 

Let’s rewrite Eq. (5.13) as:  

.
ds

rdθ
=

r
√

v2
0 + 2

∫ r

r0
Fdr

h
, (5.14) 

Then: 

.
dr2 + r2dθ2

r2dθ2 =
r2

(
v2

0 + 2
∫ r

r0
Fdr

)

h2 (5.15) 

Rearranging, one gets: 

.
dr2

r2dθ2
=

r2
(
v2

0 + 2
∫ r

r0
Fdr

)
− h2

h2
(5.16) 

Thus: 

.
dθ

dr
= ±h

r2
√

v2
0 + 2

∫ r

r0
Fdr − h2/r2

(5.17) 

a differential equation (see (5.10)), which is familiar to our students of Newtonian 
mechanics. 

Proposition 41 has often been seen as the high point of Newton’s ability to apply 
his method of fluxions (more precisely, his quadrature techniques) to the science 
of motion and force (in this case, to central force motion). Yet, as we shall see in 
the next Sect. 5.3, an intuitive, non algebraic, graphical method for approximating 
orbits is at work in the group of propositions we are examining. This is spelled out 
in Corollaries 1 and 2, Proposition 41. 

5.2.4.3 Corollary 3: A Brief Look 

For the sake of completeness, I should note that in Corollary 3, Proposition 41, 
Newton squares the curves abz and acx in order to find the orbits traced in an 
inverse-cube force field (see Fig. 5.4). He limits his treatment to the case in which 
the initial velocity is orthogonal to the radius vector. Thus, Newton indeed solves the 
inverse problem of central forces in the inverse-cube case “granting the quadrature 
of curvilinear figures,” as he claims in the statement of Proposition 41. However,

11 For a discussion respectful of Newton’s original language, see Newton (1999, pp. 334–345). 
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Fig. 5.4 Cotesian spirals in an inverse-cube force field. Cases (a) and (c) are those obtained by 
Newton in Corollary 3, Prop. 41, Book 1. Case (b) is constructed in Fig. 5.6 : it was discovered  
by Roger Cotes. The equations in polar coordinates are as follows: .1/r = cos kθ , .1/r = sinh kθ , 
.1/r = cosh kθ . Other possible orbits are the logarithmic spiral (.log r = kθ ), identified by Newton 
in Proposition 9, Book 1, and the inverse Archimedean spiral (.1/r = kθ ), identified by Johann 
Bernoulli in 1710. Circular orbits are also possible, but they are unstable: a tiny radial impulse will 
cause the body to spiral either to the centre of force or to infinity (Guicciardini 2016) 

“for the sake of brevity,” he leaves the quadrature as an exercise to be done by his 
readers, and explains the details only to some of his correspondents.12 

It is unclear if Newton was able to square curves abz and acx for forces other 
than inverse-cube ones. Most notably, we have no evidence that he was able to solve 
the inverse problem for inverse-square forces by quadratures. This notable result was 
published in print for the first time in 1710 by Jacob Herman and Johann Bernoulli. 
As a matter of fact, as we would say today, for a central force .F = krnr̂, elementary 
integrations (in terms of trigonometric or hyperbolic functions) are possible only 
for .n = 1, .n = −2, and .n = −3. In Newton’s times the notion of function and 
integration were still in nuce. Newton thought in terms of “squaring of curves.” By 
“squaring” he meant calculating the area of the surface bounded by a curve. 

5.3 Corollaries 1 and 2, Proposition 41, Book 1 

5.3.1 Corollary 1 

Corollary 1 reads as follows: 

Corollary 1. Hence the greatest and least heights of bodies (that is the apsides of their orbits) 
can be found expeditiously. For the apsides are those points in which the straight line IC

12 On Corollary 3, see Guicciardini (2016) and the literature cited there. 
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Fig. 5.5 A case of bounded motion. The apsidal distances . r1 and . r2 are the radii of the inner and 
outer circles. The orbit displays a large apsidal precession. For a generic potential, in the case of 
bounded orbits there are two distinct periods: one is that of the oscillation of the radius; the second 
is that of revolution. The orbit closes if and only if the relationship between the periods is a rational 
number. If the relationship is irrational the orbit never closes: one speaks of quasi-periodic motion, 
in the sense that after a sufficiently long time the orbiting body will return arbitrarily close to the 
initial condition. In general, the ratio between the two periods is a function of energy and angular 
momentum (i.e., of the initial conditions), therefore with small variations of the two parameters 
one passes continuously from irrational to rational values, so that one gets a rosette-shaped orbit. 
The two cases of the harmonic and the Keplerian potential are singular because the relationship 
between the two periods is independent of both the energy and the angular momentum (that is, 
the initial conditions). In the harmonic case the period of oscillation of the radius is half of that of 
revolution, and the orbit is an ellipse with a centre in the centre of force. In the Keplerian case the 
two periods are equal, and the orbit (if bounded) is an ellipse with the centre of force in a focus 

drawn through the centre falls perpendicularly upon the orbit V IK , which happens when 
the straight lines IK  and KN are equal, and thus when the area ABFD is equal to . Z2

(Newton 1999, p. 531). 

In the first corollary Newton determines the possible existence of apsidal 
distances . r1 and . r2 (see Fig. 5.5). Such turning points occur for . ̇r = dr/dt = 0
or .dr/dθ = 0 (see our Eqs. (5.6) and (5.10)).13 

In Newton’s terms, the “apsides” occur at distances from the force’s centre C in 
which IK  and KN are equal (see Fig. 5.3).

13 I wish to thank George Smith for an enlightening discussion on this corollary. 
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If one considers Newton’s formula (5.13), the apsides occur for values of the 
distance .CI = A for which 

.ABFD − Z2 = ABFD − (Q/A)2 = 0, (5.18) 

or in modern terms 

.v2
0 + 2

∫ r

r0

Fdr − h2

r2 = 0. (5.19) 

Corollary 1, unlike Corollary 3, does not presuppose that the inverse problem of 
central forces has been solved by integration. The apsidal distances can be found 
without the squaring of curves (i.e., without integrations).14 

Of course, this is still taught in textbooks on rational mechanics. It is interesting, 
in the context of my exercise in anachronistic history, to remind the reader how 
we proceed today (De Lange and Pierrus 2010, 216–223). Below I will try to be 
as complete and exhaustive as possible: the reader will forgive me for my pedantic 
presentation. 

A caveat is in order. While above, I have simplified equations by setting the 
mass .= 1, here I will write m for the mass of the body. Since the problem we 
are considering is a one-body problem, the mass does not play any significant 
role.15 But now I want to obtain the formulas as they are taught nowadays. This 
shift in notation reminds us that Newton wrote proportions: thus, constants such 
as m just disappeared from his language. Today, we write equations: all constants 
are expressed, even though even today there is a habit to set constants such as the 
velocity of light, or the Planck constant, equal to 1. Further, the physical dimension 
of our symbols plays an importance that was not understood in Newton’s times. 
Thus, for example, a force F has the dimension of mass times distance divided 
the square of time. We begin to appreciate the difficulties we encounter when 
“translating” past mathematics into modern notation. In the case at hand, by such 
translations, we make the above conceptual differences evaporate. 

This said, Eqs. (5.8) and (5.10) are rewritten as: 

.t (r) =
∫ r

r0

√
m

2 [E − Ve(r)]
dr (5.20)

14 Note that in correspondence of apsidal distances the curves abz and acx have an asymptote. 
This is not a problem for Newton, who could, of course, square curves with asymptotes, such as 
the cissoid. 
15 Indeed, in a two-body problem the two-masses, .m1 and . m2, must be taken into consideration 
because of the third law of motion. Otherwise said, the ratio of the accelerations, . a1 and . a2, is the  
inverse of the ratio of the masses: .a1/a2 = m2/m1.
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where E is the energy, and 

.θ(r) = θ(r0) + h√
2m

∫ r

r0

1

r2
√

E − Ve(r)
dr, (5.21) 

where m is the mass, the initial position at .t = 0 is (. r0, .θ(r0)), and .V (r) is a 
spherically symmetric potential 

.V (r) = −
∫ r

r0

Fdr, (5.22) 

so that 

.F = −dV

dr
r̂, (5.23) 

and 

. V (r0) = 0.16 (5.24) 

The energy is 

.E = 1

2
mv2+V (r) = 1

2
mṙ2+ 1

2
mr2θ̇2+V (r) = 1

2
mṙ2+V (r)+ h2

2mr2
, (5.25) 

and for the chosen potential 

.E = 1

2
mv2

0 . (5.26) 

. Ve is the so-called ‘effective potential’ 

.Ve(r) = V (r) + h2

2mr2 . (5.27) 

We view the motion of the mass point in a non-inertial frame that rotates in such 
a way that the motion of the mass point is purely radial. In this frame there is an 
effective force 

.Fe = −dVe(r)

dr
r̂ = −dV (r)

dr
r̂ + h2

mr3 r̂, (5.28) 

which consists of a physical force, experienced in an inertial frame, plus a non-
inertial (centrifugal) force. If the motion is bounded, the mass point oscillates

16 Note the sign ambiguity in Eq. (5.6). Here we choose the positive root.
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between turning points . r1 and . r2 that are roots of the equation: 

.Ve(r) = E, (5.29) 

so that .ṙ = 0, since 

.
1

2
mṙ2 + Ve(r) = E. (5.30) 

This equation “is just the expression for the energy of a particle of mass m moving 
in one dimension (along . ̂r) in an ‘effective potential’ .Ve(r). Evidently, we are now 
viewing the motion from a frame that rotates in such a way that the angular position 
of the particle is fixed and the motion is purely radial. Such a frame is clearly non-
inertial” (De Lange and Pierrus 2010, p. 218). 

We rewrite (5.29) as:  

.V (r) + h2

2mr2 = −
∫ r

r0

Fdr + h2

2mr2 = 1

2
mv2

0, (5.31) 

which is Eq. (5.19). 
The familiar procedure I have reviewed above is the modern equivalent of 

Newton’s method in Corollary 1 for finding “expeditiously ” the “greatest and least 
heights of bodies (that is the apsides of their orbits).” The “rule” for finding the 
turning points we teach today to our students is the following: since the integrands 
in Eqs. (5.20) and (5.21) are singular at points in which .E − Ve(r) = 0, then the 
motion is possible only in the intervals in which .E ≥ Ve(r). As already noted, the 
turning points are found by calculating the roots of Eq. (5.29). 

It is interesting to compare our techniques to study the motion of the mass point 
to Newton’s. While we think geometrically in terms of the graph representing the 
variation of the effective potential . Ve in function of distance r , Newton’s attention is 
focused on the motion of the particle. From Newton’s perspective, the turning points 
occur “when the straight lines IK  and KN are equal.” Instead, we search for the 
intersection points between the graph of the effective potential and the horizontal 
line representing the constant energy. 

Notwithstanding this notable difference, when we fetch pen and paper in order 
to calculate the apsidal distances . r1 and . r2, we write very much the same equation 
as Newton. Before expressing skepticism at such anachronism, the reader is invited 
to apply Eq. (5.29) to, say, an inverse-square force. The result will be very much the 
same equation obtained by starting, in accordance with philological accuracy, from 
the text of the Principia, that is from equation .ABFD = Z2. Such a translation 
into calculus or into algebra, I should add, is not so easily achievable for every 
demonstrative step in the Principia.
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5.3.2 Corollary 2 

We now turn at last to Corollary 2, the main focus of this paper. It reads as follows 

Corollary 2. The angle KIN , in which the orbit anywhere cuts the line IC, is also  
expeditiously found from the given height of the body, namely, by taking its sine to the 
radius as KN to IK , that is, as Z to the square root of the area ABFD (Newton 1999, 
p. 531). 

Corollary 2, like Corollary 1, does not presuppose that the problem of central 
forces has been solved via quadratures. It implies, like Corollary 1, that at the apsidal 
distances the angle .� KIN = π/2, or .KN/IK = 1. 

The content of this corollary is richer though and extremely interesting. Newton 
shows how to determine the slope of the tangent to the sought orbit. 

Indeed, because of formula (5.13), the sine of .� KIN , that is .KN/IK , is given  
by .Z/

√
ABFD, or  

. sin � KIN = KN

IK
∝ Z√

ABFD
. (5.32) 

What Newton understands here can be expressed in anachronistic terms by 
saying that he associates a slope field with the ‘differential equation’ (5.13).17 The 
curves which are solutions of the equation must have a tangent at each point whose 
direction agrees with that of the slope field at that point. 

It is important to note that if . ̇r changes sign, the orbit can have intersection 
points in which there are two slopes: one with radial component . ̇r and orthogonal 
component . rθ̇ and another with radial component . −ṙ and orthogonal component . rθ̇
(see Fig. 5.5). Thus, and this should be stressed, Newton’s procedure does not define 
a slope field unambiguously, given the sign-ambiguity in Eq. (5.6). 

In the very special case illustrated in Fig. 5.6, for the chosen initial conditions 
(energy and angular momentum) the particle moves so that . ̇r does not change sign. 
Thus, if we draw a circle with centre C, we can unambiguously associate velocity 
vectors to points on the circumference. All these vectors have the same inclination 
to the radius given by the formula for the slope field (5.32), and a modulus that we 
can calculate via Props. 39 and 40 (because of energy conservation, the speed . |v| is 
the same at equal distances from the centre). 

It is interesting to note that Corollary 2 paves the way (modulo the above-
mentioned sign-ambiguity) to the geometrical construction of a slope field. This 
concept, in a completely different context, plays a role in the methods by Euler, 
Heun, and Runge-Kutta, who—it is almost certain—were unaware of the well-

17 I have translated Newton’s formula as a differential equation in Sect. 5.2.4.2. 
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Fig. 5.6 Velocity vector field calculated for an inverse-cube force. For the initial conditions 
chosen, no apsidal distances . r1 and . r2 exist, since . ̇r does not change sign. The spiral orbit is 
graphically constructed so that its tangent at each point has its inclination defined by (5.32). In this 
case the orbit is a spiral with equation .1/r = sinh kθ . As Newton shows in Corollary 3, Prop. 41, 
two bounded orbits are also possible (see Fig. 5.4, curves (a) and (c)) 

hidden Newtonian construction.18 However, it would be incorrect to suggest that 
the result stated in Corollary 2 is ‘equivalent’ to the Runge-Kutta methods.19 

18 These methods were first applied to the solution of first-order differential equations. In the case 
considered in Prop. 41, the problem is to solve the Newtonian equation of motion, a second-
order differential equation .F = ma, applied to one-body central force motion. Runge and Kutta 
reduced second-order differential equations, which often arise in dynamical problems, to first order 
systems. For E. J. Nyström’s extension of the Runge-Kutta methods to second-order differential 
equations, see Butcher and Wanner (1966, 120). 
19 As Prof. Siu A.Chin made me aware of (email dated May 23, 2022) one usually uses numerical 
algorithms to solve Eq. (5.1) directly in Cartesian coordinates. One does not solve equations in 
polar coordinates, such as equations (5.6) and (5.7), for a variety of reasons. The first is that 
time is then just a parameter, completely under control. The resulting trajectory is then a simple 
parametric set of coordinates in t . The second reason is that when solving (5.1) directly in 
Cartesian coordinates, it is easy to derive symplectic algorithms by sequential updates. One is
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Since the inverse problem of central forces is integrable in terms of the techniques 
of quadrature available to Newton and his contemporaries only for a few cases 
(corresponding to an elastic, an inverse-square, and an inverse-cube force), it is 
plausible that Newton conceived Corollary 2 as a way to tackle the problem not 
via quadratures (as in Corollary 3) but via a graphical approximation technique. 
The extant evidence suggests that Newton was able to solve via quadratures the 
inverse problem only for the inverse-cube case we reviewed above. Corollary 2 is 
cited in only one place in the third edition (1726) of the the Principia, namely in 
Proposition 56, Book 1.20 Proposition 56 offers a solution to the problem of finding 
the “curve” traced by a body under any gravity-like centripetal force constrained to 
a surface of revolution the axis of which extends to the force centre. Since in this 
case an exact quadrature was not available, Newton referred to Corollary 2, clearly 
gesturing to the fact that a graphical solution was possible by a construction. The 
reference to Corollary 2 in Prop. 56 as a way for determining the sought orbit (the 
“curve APp”) supports my reading of this corollary as providing a technique for the 
graphical construction of orbits.21 

5.4 Summing Up 

Let us briefly recapitulate the main achievements of the Propositions and Corollaries 
we have analyzed. 

In Propositions 39–41, Book 1, of the Principia, Newton reduced to quadratures 
the problem of determining the orbit of a body fired from a given position with a 
given velocity and accelerated by a given central and isotropic force. He stated the 
problem of central forces very clearly and for this fact alone these propositions are 
a notable achievement. 

In Corollary 1 Newton was able to evaluate the apsidal distances (when the 
motion is bounded). 

In Corollary 2 he determined the slope of the tangent of the orbit at any distance 
from the force’s centre, anticipating the concept of a slope field.This is a very fruitful 
concept that is still important today.22 

Finally, in Corollary 3, Newton squared curves abz and acx (equations (5.11) and 
(5.12)) for the case of an inverse-cube force and for an initial velocity orthogonal to 

then guaranteed the conservation of all Poincaré invariants, including that of phase space volume 
(Liouville Theorem). Phase volume is not conserved if only the above-mentioned polar coordinate 
equations are solved in sequence.
20 Newton (1726, pp. 159–160). In the first and the second edition, reference was made only to 
Proposition 41. I thank George Smith for his kind suggestion on this issue. 
21 Newton writes: “And accordingly (by consulting Prop. 41 with its corol. 2) the way of 
determining the curve APp is readily apparent (Newton 1999, 360). 
22 The introduction of the concept of phase space, of course, provided an even richer conceptual 
framework for representing the solutions of differential equations. 
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the radius vector, thus solving the problem of central force motion for this particular 
case. 

So far so good. Such a summary helps, at least mnemonically. But, from the 
historian’s point of view, the brief outline provided in this Section hides many 
interpretative problems, to which we now turn. 

5.5 On Presentism, or How to Deconstruct This Paper 

In this paper I have freely used concepts (such as slope field, differential equation, 
potential) and results (such as conservation of mechanical energy, conservation of 
angular momentum) unavailable to Newton. Basically, I have written an anachro-
nistic piece of work! I have been dabbling with the problem of anachronism for 
several years, very much helped by a number of friends, including the dedicatee of 
this volume (Guicciardini 2021). 

The reason why I have so freely used anachronisms in this paper is my playful 
intention to offer Jeremy a divertissement. But there is, perhaps, a more serious 
reason behind my little hazardous exercise: it is my conviction that anachronism in 
writing history of mathematics is not per se a sin that should be eschewed at all 
costs.23 

In a way, the use of concepts that belong to our present is unavoidable: we 
are twenty-first-century historians, inevitably situated in our present. To paraphrase 
Bruno Latour’s turn of phrase, we have never been early-moderns! (Latour 1991). In 
this paper I have pushed the use, and perhaps the abuse, of anachronism to a limit, 
through a practice that I propose to call ‘presentism’. Most notably, as the reader 
has certainly noticed, I have proposed modern renderings in the form of differential 
equations of Newton’s “quadratures.” 

These anachronistic renderings are enlightening and deceptive at the same time. 
They help us familiarize ourselves with the “curves” that must be “squared” in 
order to solve the inverse problem Newton refers to in Proposition 41. Thanks to 
these renderings, we can grasp what problem Newton was trying to solve. But 
they deceptively project our concepts of function and differential equation onto 
Newtonian mathematics. The presentist translations that I have proposed bestow 
a generality on Newton’s Proposition 41 and its Corollaries that is absent from 
Newton’s conceptual framework. Newton did not conceive his formula (5.13) 
as an instance of a first-order differential equation. The formula (5.13) was a  
geometric proportionality that Newton applied to the specific case of motion he was 
considering. And even less did he have a notion of vector field. On the other hand, 
there are certain features of Newton’s mathematical procedures in Props. 39-41 that 
are still part of our mathematical toolbox. In this paper I have highlighted some of 
them: when studying central force motion, we state the initial value problem in a

23 On anachronism as a ‘sin’, see Syrjämäki (2011). 
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way that is equivalent to Newton’s, when calculating the apsidal distances we make 
use of the very same equation, etc. 

In order to write an acceptable piece of history, the interpretative anachronistic 
move explored in this paper—and consisting in a process of assimilation—should 
be followed by an attempt to situate Newton’s text in its proper context. As 
historians, we have to grasp the distance of Newton’s text from our present. That 
said, one should appreciate that presentist interpretations are not pointless: they offer 
the historian a chance to appreciate the otherness of past mathematics. We learn 
something by ‘distancing’ our historical narrative from presentist interpretations. 
We can achieve such ‘distancing’ in three ways. 

First, we can set ourselves the task of underscoring the many reasons why 
Corollary 2 is not mathematically equivalent to the concepts and methods in use 
today, as I have already partly done above. By highlighting the mathematical 
differences between Newton’s graphical construction and the notion of slope field 
or the Runge-Kutta methods (see footnotes 18 and 19), we learn something about 
the mathematics of the Principia. 

Second, we can study how Newton himself translated Proposition 41 into the 
language of his methods of quadratures. Indeed, we are lucky to have manuscripts in 
Newton’s own hand dating from the early 1690s in which he explains via algebraic 
symbols how to “square” the curves leading to the solution of the inverse-problem 
for inverse-cube forces. This is what I have tried to do in Guicciardini (2016). 

Third, we can study the reception of Newton’s Propositions 39–41 in the works 
of competent contemporary readers. Indeed, the mathematical methods deployed 
by Newton in the Principia, and these propositions in particular, were the object 
of intense debate in the context of the Newton-Leibniz controversy. Newton’s 
detractors claimed that the methods of the Principia were old and geometrical, 
and therefore did not fare well when compared with Leibniz’s innovative and 
symbolical differential equations. Many in Britain, such as Nicolas Fatio de Duillier, 
David Gregory, and John Keill, disagreed. Studying this debate is a way of reading 
Newton’s text through the eyes of his contemporaries. Rather than siding with one 
faction, the historian leaves the historical actors to speak for themselves, so that the 
Principia may acquire different meanings via the different, sometimes diverging, 
interpretations of its readers. This is what I have tried to do in Guicciardini (1999). 

The first approach is ‘conceptualist’. It consists in a comparison of the concepts 
and methods deployed in different time periods (and cultures). The (problematic) 
assumption is that our own mathematical language can be used as a target language 
in which this comparison can be implemented. 

The second approach is ‘intentionalist’. It reads an author’s text through paratexts 
by the author himself, in an attempt to capture his intentions (or perhaps, less 
problematically, his ‘tasks and criteria of quality control’, as Henk Bos would put 
it) (Bos 2004). The merit of this approach is that it allows us to situate the text in 
the author’s conceptual framework. In the case at hand, we can grasp how Newton 
himself understood and performed the quadratures of Prop. 41. 

The third approach is ‘receptionist’. It reads an author’s text through the meaning 
attributed to it by its readers. The merit of this approach is that it allows us to follow



5 Further Thoughts on Anachronism 151

the line of development that emerged in the process of reception, interpretation, 
and transformation of the text.24 In the case at hand, we can understand how 
mathematicians such as Johann Bernoulli, Pierre Varignon, and Leonhard Euler 
rewrote Prop. 41 in terms of differential equations, a way of writing that presents 
certain similarities, but also differences, with respect to our presentist rendering. 
The receptionist approach is, in a way, a form of anachronism. Bernoulli’s version 
of Prop. 41 cannot be attributed to Newton. This attribution would project upon 
Newton a mathematical conception that was not his own.25 

It is interesting to distinguish ‘receptionism’ from ‘presentism’. With the recep-
tionist approach we identify aspects of the author’s text that have been received 
and transformed by its readers. We can document this process of reception by 
studying letters, exchanges of manuscripts, readers’ marginalia, explicit quotations, 
etc. Conversely, with the presentist approach we identify aspects of the author’s 
text that appear to anticipate discoveries which occurred in a much later period, 
in the absence of any provable continuity in terms of transmission. In the case at 
hand, we have identified Corollary 2 as an anticipation of the notion of a slope 
field associated to a differential equation. While with the receptionist approach 
we write a history of how the text was read, received, and transformed, with the 
presentist approach we employ the “dangerous” category of precursor, chastized by 
Helène Metzger (Chimisso and Jardine 2021). In presentist anachronistic history a 
documentable account of transmission is absent. In the case at hand, it is clear that 
those who developed the Runge-Kutta method had no direct contact with Newton’s 
text. In a way, while with the receptionist approach we are still probing the author’s 
intentions, with the presentist approach the author— his conceptual world (the 
author’s “other present”)—is lost. 

Yet, even a presentist approach has its merits. Reading a past mathematical 
text via the use of concepts and results that were not available to the author can 
sometimes shed light on its meaning, a meaning that appears to be significant for 
us today. Perhaps, the most valuable advantage of this approach is that it brings 
the text to life, making it meaningful for present-day mathematicians: it makes the 
text available for use in our culture. Mathematical texts display not only a high 
degree of stability, accounting for the many possibilities of meaningful anachronistic 
readings. They invite a performative reading. The authors of mathematical texts have 
an intended reader in mind who is invited to receive the text in a performative way. 
The reader is asked to appropriate the text by applying, and extending, the methods 
proposed by the author to new problems, thus producing new texts. This active, 
performative approach to the mathematical text is very much part of what reading, 
and appreciating, mathematics consists in Blåsjö and Hogendijk (2018)

24 On the notion of ‘filiation’ in Hélène Metzger’s work see Chimisso (2019). 
25 See the Chapter on Bernoulli in Guicciardini (1999, pp. 195–249). It is worth stressing that 
my presentation of Prop. 41 in that chapter is aimed at illustrating how Bernoulli read Newton’s 
treatment of central force in terms of the Leibnizian calculus. 
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Presentism, however, for many historians of mathematics cannot be a satisfactory 
aim. One might contend, in agreement with Paolo Rossi, that the historian’s ethos 
consists in capturing the distance between the past and the present. 

The authors are near and far. At one and the same time, they are paradoxically both near 
and far [...]. All that is needed is to choose aptly among well-known texts. In this case, it is 
not hard to find passages that present themselves as curiously modern, so that they could be 
easily integrated into ongoing debates. And then again, it is easy to set them alongside texts 
by the same authors that awaken the feeling of an unbridgeable distance or a nearness that 
is merely apparent.26 

Any anachronism, any ‘familiarization’ with the text, must be followed by ‘foreg-
nization’. If we write the history of mathematics for the purpose of assimilating 
past texts into our conceptual and linguistic present, we do not honour the task 
historians should always set themselves, namely: to capture the otherness of past 
cultures. Yet, as I have hinted above, even presentism, the most extreme form of 
anachronism, can be a useful hermeneutic move for the historian. In the case at 
hand, even our shamelessly anachronistic rendering of Corollary 2 in terms of slope 
fields graphically produced with the help of a computer can offer the historian a 
chance for re-locating the text into its proper context. How can we do so in this 
case? 

The answer is simple, but still interesting since it opens up a yet unexplored 
research field. Early-modern historians are aware that mathematical practitioners 
in Newton’s milieu were conversant with graphical methods, which they applied 
to the construction of ballistic trajectories, as well as to planetary and cometary 
orbits. An astronomer such as Jeremiah Horrocks constructed the orbit of the Moon 
via a deferent-plus-epicycle model that Newton adapted in his Theory of the Moon 
(1702). A polymath such as Robert Hooke resorted to a graphical construction in 
order to approximate the orbit traced by a body under the action of an elastic force. 
A writer on ballistics such as Robert Anderson used similar construction tools to 
trace on paper the shape of the path of a projectile fired by a cannon. All these 
methods were well-known to Newton.27 It would be extremely interesting to situate 
Newton’s graphical techniques for tracing orbits in the mathematical culture of 
the astronomers, writers on ballistics, and mechanicians who devised mechanical 
generations of curves. Thus, what we have here is another interpretative approach to 
Newton’s Props. 39–41, which I would call ‘contextual’. In this case, the meaning 
of the text is accessible after a study of the author’s cultural environment.

26 “Gli autori sono vicine e lontani. Contemporaneamente e paradossalmente vicini e lontani [. . . ]  
Basta scegliere bene entro testi ben conosciuti. Allora non è difficile trovare pagine che appaiono 
singolarmente moderne, tali da essere facilmente integrabili nel dibattito contemporaneo. Ed è poi 
facile contrapporre ad esse testi dello stesso autore che danno il senso di una irrimediabile distanza 
o di una vicinanza che era solo apparente.” (Rossi 1999, p. 28) 
27 The role of graphical solutions in Newton’s mathematical work has recently been underscored 
by Nauenberg in Nauenberg (2018) and, if I understand well, is presently researched by Jed Z. 
Buchwald. 
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The moral that we can draw from my little exercise in presentist interpretation 
is that anachronism, in its various forms, can be a step in a process of engagement 
with past texts, a process consisting of a series of, sometimes distinct, hermeneutic 
moves. Reading a text historically is an iterative process in which we start by 
assimilating the text to our linguistic space (familiarization). This first move 
(presentism) is followed by a process of distancing (foregnization), in which we 
resort to a palette of tools that include a technical comparison of present-day 
concepts and methods with those of the past (conceptualism), the attempt to re-
read the text in light of the author’s tasks (intentionalism), through the eyes of 
its contemporary readers (receptionisim), or by situating it in a broader cultural 
narrative (contextualism). It is possible to write the history of mathematics if we 
control these moves through an awareness of how they can both enlighten and 
deceive us. The example we must follow is that provided by Jeremy’s work. 
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Part II 
Practices of Mathematics



Chapter 6 
On Felix Klein’s Early Geometrical 
Works, 1869–1872 

David E. Rowe 

Abstract Felix Klein’s formative years constitute a famous chapter in the history of 
mathematics, especially familiar because Klein himself wrote about it often. Later 
writers have often highlighted his collaboration with Sophus Lie and the ideas that 
led to Klein’s “Erlangen Program.” Klein re-packaged his early work when he edited 
his collected works, a project that engaged his attention from 1919 to 1923. By 
unpacking its first volume, we can begin to appreciate that transformations groups 
formed a relatively small part of Klein’s early geometrical work, whereas a great 
deal of it was devoted to important new results in line geometry. 

6.1 Introduction 

The title of this paper refers to the earliest productive period in the long career of 
Felix Klein (1849–1925). Much of what I have to say here about that fertile period, 
however, concerns Klein’s personal reflections when he looked back on that time 
some fifty years later. His retrospective account of his early work is reflected in the 
first of the three volumes of his collected works (Klein 1921–1923), a project that 
engaged Klein’s attention from 1919 to 1923. Klein not only directed the editing 
of his collected works, he also adopted a novel structure for these three volumes in 
order to highlight the main themes and subjects of his scientific activity. Thus, for 
Volume I, he chose a collection of papers, presented chronologically, that dealt with 
his research in three fields: (1) line geometry, (2) foundations of geometry, and (3) 
works related to his “Erlangen Program” from 1872. That particular publication has 
long been the one most strongly associated with Klein’s name, but it also brings 
to mind the Norwegian Sophus Lie (1842–1899), his friend and collaborator from 
that period (Yaglom 1988). A major motivation behind what I have written here is 
to underscore how this famous relationship in the history of mathematics has been 

D. E. Rowe (�) 
Mathematics Institute, Mainz University, Mainz, Germany 
e-mail: rowe@mathematik.uni-mainz.de 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
K. Chemla et al. (eds.), The Richness of the History of Mathematics, 
Archimedes 66, https://doi.org/10.1007/978-3-031-40855-7_6

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40855-7protect T1	extunderscore 6&domain=pdf

 885 56845 a 885 56845 a
 
mailto:rowe@mathematik.uni-mainz.de
mailto:rowe@mathematik.uni-mainz.de
mailto:rowe@mathematik.uni-mainz.de
mailto:rowe@mathematik.uni-mainz.de
https://doi.org/10.1007/978-3-031-40855-7_6
https://doi.org/10.1007/978-3-031-40855-7_6
https://doi.org/10.1007/978-3-031-40855-7_6
https://doi.org/10.1007/978-3-031-40855-7_6
https://doi.org/10.1007/978-3-031-40855-7_6
https://doi.org/10.1007/978-3-031-40855-7_6
https://doi.org/10.1007/978-3-031-40855-7_6
https://doi.org/10.1007/978-3-031-40855-7_6
https://doi.org/10.1007/978-3-031-40855-7_6
https://doi.org/10.1007/978-3-031-40855-7_6
https://doi.org/10.1007/978-3-031-40855-7_6


158 D. E. Rowe

understood far too narrowly. Klein and Lie were both deeply influenced by Julius 
Plücker’s new theory of line geometry, and the account below is an attempt to show 
the central importance of that first topic in Klein’s collected works. By now there is 
a wealth of secondary literature on the third topic, which has also led to occasional 
debates, but my intention is not so much to engage with earlier studies as to offer a 
different perspective that suggests why other factors need to be considered in order 
to reach a better understanding of the relationship between Klein and Lie.1 

To begin very broadly, we should recognize that at the time they met Klein and 
Lie were already both extremely ambitious young men. Not only did they want to 
make a deep impression on their contemporaries, they also became increasingly 
concerned with their respective legacies within the history of mathematics as they 
grew older. A mathematician’s reputation can easily change over time, of course, 
and in Lie’s case it began to rise in the 1880s, by which time he was in his forties. 
By the 1890s, his ambition and pride were as great as ever, but his creative powers 
were receding. His theory of transformation groups was by then widely celebrated, 
particularly in France. Supported by Henri Poincaré, among others, Lie became a 
corresponding member of the French Academy in 1892 (Klein was elected five years 
later). 

When Klein left Leipzig in 1886 to assume his final professorship in Göttingen, 
he managed to have Lie appointed as his successor, a move rival mathematicians in 
Berlin rightly saw as part of Klein’s strategy of building alliances that undermined 
the influence of the Berlin network (Biermann 1988). Lie’s situation as a foreigner 
in Leipzig proved difficult from the beginning, however, and he gradually came to 
resent the way some in Klein’s circle treated him as an important figure in the latter’s 
entourage. Lie was more than six years older than Klein, whose support he had long 
enjoyed, but he never felt the slightest dependence on him intellectually. Indeed, 
he knew that Klein had never been able to catch up with his new ideas after 1872, 
when they essentially went their separate ways. Klein’s letters to Lie from these 
years make this abundantly clear, and if we keep in mind that Klein was only twenty 
years old when they met, it is easy to imagine why Lie thought of him then as a 
“bright kid.” 

Twenty years later, both men were well past their prime mathematically, though 
their ambitions were great as ever. The fact that Klein began pressing Lie to join 
him in writing a retrospective account of their work together, culminating with a 
republication of Klein’s “Erlangen Programm,” only made Lie suspicious and angry. 
When he learned that Klein had destroyed all of Lie’s early correspondence—he, 
in fact, had at some point in 1877 burned all the letters in his possession—the 
Norwegian cut off communication with his former friend, preparing the way for 
his public attack on Klein in 1893. In discussing some of these events from the 
early 1890s in section 2 below, I take up more or less where Lizhen Ji (Ji and 
Papadopoulos 2015, 1–58) and Jeremy Gray (Gray 2015) left off in their respective 
survey articles.

1 For those with an interest in connections between the ideas in the Erlangen Program and 
mathematical physics, see the essays in Ji and Papadopoulos (2015). 
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Klein’s name and fame had much to do with his talents as a teacher, editor, 
and organizer. After his alliance with Lie disintegrated, he developed a new one 
with David Hilbert, who became his junior colleague in Göttingen and eventually 
inherited his role as editor-in-chief of Mathematische Annalen. Meanwhile, in 
Leipzig, Lie continued to cultivate his ties with the younger generation of French 
mathematicians, but even more importantly he gained the support of the young 
geometer, Georg Scheffers, a talented writer. During the early 1890s, Scheffers 
wrote two textbooks based on lecture courses taught by Lie, Lie and Scheffers 
(1891, 1893). Especially important for understanding Lie’s early works, however, 
is their third book (Lie and Scheffers 1896), which Lie understood as elucidating 
his ideas from the period 1869–1872. Klein’s role in this account was reduced to a 
few special ideas and results, whereas Lie’s preface placed his achievements within a 
grandiose historical framework stretching from Archimedes to his own present days. 
Sophus Lie no doubt felt he had a deep understanding of the history of mathematics, 
but he lacked the kind of patience required to read the works of other mathematicians 
carefully. His impressive creative powers turned nearly everything he wrote about 
past achievements into a mirror reflecting his own singular accomplishments. In this 
respect, he probably had no peer as a mathematician who wrote in praise of his own 
work. 

In recent studies of famous figures in the annals of science, historians have 
taken note of extra-scientific factors that at times enhance a person’s visibility 
or fame. One of the more striking examples came about in November 1919, 
when the British scientific community announced new experimental evidence 
confirming Einstein’s general theory of relativity, an event that made him famous 
overnight (Rowe 2012). The fact that Great Britain and Germany had only recently 
signed the Versailles Treaty ending the First World War added greatly to the 
sensation this created. Recognizing this, Einstein paid due honor to Newton’s 
immortal theory of gravitation, while the liberal press expounded on how relativity 
provided a deeper understanding of the universe within a new and yet evolving 
European political order. Another example is Mario Biagioli’s influential study 
of Galileo’s career, which emphasized how in crossing disciplinary boundaries 
from mathematics to natural philosophy Galileo enhanced his own reputation 
through a process of “self-fashioning” (Biagioli 1993). Though he lacked any 
standing as a professional astronomer, his telescopic discoveries called fundamental 
assumptions of Arisotelian cosmology into question. Galileo’s controversial defense 
of Copernicanism ultimately brought him into conflict with the Catholic Church, a 
personal defeat that later redounded to his lasting fame. 

At this illustrates, fame and controversy are sometimes linked; they have often 
played a role in contested claims to intellectual rights as well. Competition can 
foster personal conflicts that occasionally lead to major priority disputes over a 
brilliant discovery or an ingenious theory.2 The most notorious such contest in the

2 In my view, historians should avoid the temptation to adjudicate past contests—such as the “race” 
between Einstein and Hilbert for generally covariant gravitational field equations that was taken 
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history of mathematics pitted Leibniz against Newton, a battle that led to a famous 
public dispute over who deserved credit for being the “first inventor” of the calculus. 
In his desire to deny Leibniz even the title of “second inventor,” Newton used his 
authority as president of the Royal Society to argue that his German rival had stolen 
the calculus from him (Hall 1980). Indeed, Newton amassed a mountain of evidence 
that (in his eyes) proved to the world that Leibniz had been given access to Newton’s 
early (long unpublished) manuscripts, which supposedly contained all he would 
have needed to pretend he had invented the “Leibnizian calculus.” Newton took 
the latter to be nothing more than a new notation for his own theory of fluxions. 
One could say about this, in summary, that Newton won this battle, but Leibniz 
won the war, since the Bernoullis and Euler developed Leibnizian methods much 
further, whereas the British mathematicians had no comparable legacy to build on. 
Newton’s Principia made him exceedingly famous, but the mathematical methods 
he used could hardly serve as a useful model for modern analysis.3 

It might seem far fetched to compare the famous controversy between Newton 
and Leibniz with the rift that developed between Klein and Lie. The former case, 
after all, was all action at a distance: Newton and Leibniz never even met one 
another personally. Still, in both cases, severe differences of opinion arose over 
the respective merits of what the two parties has achieved in their youth. As 
Niccolò Guicciardini has emphasized, Newton and Leibniz did not even share 
a common opinion about the methodological importance of the differential and 
integral calculus (Guicciardini 2009, 381–384). In Lie’s case, he was intent on 
warding off work he saw as encroaching on his own proper mathematical terrain, 
the theory of transformation groups. As time went on, he kept reiterating how he 
had staked out these ideas in the mid-1870s, if not earlier, and he adamantly claimed 
them as his own. 

His falling out with Klein was, in fact, only the last in a series of (mainly 
private) disputes that began much earlier. The most serious of these conflicts took 
place during the late 1880s when he informed Klein that Friedrich Engel, Lie’s 
assistant at the time, had acted unfaithfully in corresponding with Wilhelm Killing, 
who published a series of groundbreaking papers on Lie algebras in Mathematische 
Annalen. As editor-in-chief of the Annalen, Klein had accepted Killing’s new results 

up in the late 1990s—nor should they make lightly considered retrospective value judgments about 
the status of past work.
3 For an enlightening study of Newton’s mathematical views and methods, see Guicciardini (2009). 
Until well into the twentieth century, mathematicians and historians of mathematics often took 
sides in the Newton vs. Leibniz story, and much of this literature reflects strongly nationalistic 
inclinations toward hero worship. A more objective attitude gradually emerged after the Second 
World War, however, when a great deal of relevant source material came to light. Even so, the 
Newton scholar A.R. Hall expressed great dismay over some of the opinions expressed by Joseph 
Ehrenfried Hofmann in Hofmann (1974), the standard account of Leibniz’s intellectual journey 
leading to the calculus (Hall 1980, 65–67). Today, one can easily study Newton’s early works 
in D.T. Whiteside’s monumental editions of The Mathematical Papers of Isaac Newton in eight 
volumes (Whiteside 1967–1981), whereas the editors of the Leibniz edition in Hanover continue 
to turn out new volumes of his mathematical manuscripts. 
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with delight, especially because they highlighted important new developments in 
group theory (Hawkins 2000, 165). These events from 1887 onward preceded Lie’s 
breakdown in 1889, though Arild Stubhaug draws no connection between them in 
his biography of Lie (Stubhaug 2002).4 

A traditional problem with biographical studies of mathematicians is their 
tendency to engage in hagiography, often tinged with nationalist sentiments. 
Stubhaug’s book is a glaring example, but Renate Tobies’s far more scholarly 
biography of Felix Klein (Tobies 2021) cannot claim to be free from hero worship 
either. Her study covers a truly impressive array of topics and favorite causes in 
Klein’s incredibly active life, but without taking any note of the extent to which his 
“self-fashioning” played a role in this. Unlike Poincaré and Hilbert, the two younger 
mathematicians who overshadowed him during his lifetime, Klein went to great 
lengths to ensure that the mathematical world remembered his accomplishments. 
Throughout the war years, he offered a series of lectures on the mathematics of 
the preceding century, beginning with the work of Carl Friedrich Gauss. Soon 
after Einstein’s general theory of relativity caught Hilbert’s attention, though, Klein 
broke off these lectures. In 1917, he began a new series devoted to mathematical 
developments connected with relativity theory, giving special attention to group 
invariants as sketched in his “Erlangen Program.” Once the war ended, though, he 
dropped all his plans to publish these lectures in order to focus on preparing the 
three volumes of his collected works (Klein 1921–1923). 

Historians have cited Klein’s commentaries on numerous occasions, and they 
can only be grateful when famous mathematicians take the trouble to reflect on their 
past work and the circumstances that led to it. Mathematicians, on the other hand, 
rarely hope to find inspiration for their research by going through another’s collected 
works, unless of course they want to hunt down some particular paper that interests 
them. Probably most experts on Riemann’s hypothesis concerning the zeroes of the 
zeta-function, today one of the Clay Millennium Problems, have tried to read the 
original paper from 1859, which is only 9 pages long. 

A more typical example, though, would be the papers gathered in the seven 
volumes of Sophus Lie’s collected works, which appeared many years after his 
death in 1899. Even during his lifetime, relatively few mathematicians found Lie’s 
papers readable, and after his death the number who studied them must have been 
vanishingly small. When the first two volumes, Lie (1934, 1935), finally appeared, 
the modern theory of Lie groups and Lie algebras had begun to assume a central 
place in the corpus of mathematics. It would be hard to overstate the gulf separating 
Lie’s earliest geometrical ideas from modern Lie theory. These two volumes contain 
many of the papers that Lie wrote—or in some cases only drafted, leaving to Klein 
the task of preparing the final version—during the period from 1869 to 1872, when 
both worked together closely. Friedrich Engel, the leading expert on Lie’s mature

4 Without naming sources or dates, Stubhaug’s study cites passages from several letters from 
Lie to Klein, in which he vented his anger over Killing’s work and especially Engel’s role in 
corresponding with Killing; several of the letters cited can be found in Rowe (1988). 
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work and the editor of the five other volumes of Lie’s collected works, found these 
early papers so impenetrable that he asked the Danish geometer Poul Heegaard to 
help him edit them. 

Felix Klein’s formative years constitute an at once famous and familiar chapter 
in the history of mathematics. This has much to do with the fact that Klein himself 
wrote and talked about his early work on numerous occasions, most notably while 
preparing his collected works (Klein 1921–1923). That project began in 1919, just 
after the collapse of the German monarchy. As an admirer of Kaiser Wilhelm 
II, Klein was deeply disheartened by his nation’s military defeat and the ensuing 
political chaos. The opportunity to relive his creative exploits as a young man surely 
had a therapeutic effect, especially because it gave him the chance to hold special 
lectures on these topics. These were attended by a small coterie of auditors that 
included the young Ukrainian Alexander Ostrowski, who assisted Klein in editing 
works he had written a half-century earlier. 

For Volume I, Klein added autobiographical information to help contextualize 
the events and influences surrounding these works. Some of these papers had 
already been republished in the 1880s and 1890s, in which cases he had to add 
yet another layer of footnotes for his new retrospective remarks.5 This kind of 
direct engagement with the past, in which a mathematician carefully prepares his 
own collected works, was quite unparalleled. In Klein’s time, when the notion of a 
self-fashioning scientist had yet to be born, such a project had no precedent at all. 
Normally, a mathematician took no part in producing compendia of their past work; 
in most cases, in fact, they were long dead by the time others took this initiative.6 

As noted above, Klein adopted a tripartite structure for the first volume with: (1) 
line geometry, (2) foundations of geometry, and (3) works relating to the “Erlangen 
Program.” Since the latter two areas are far better known than the first, most of 
what follows will concentrate on line geometry, but in the following section I briefly 
discuss certain little known aspects concerning the last two topics. In discussing line 
geometry, it should be emphasized that Klein’s work in this field had a profound, 
though by now long since forgotten impact. When Ostrowski signed on as his 
assistant in 1919, he had no knowledge of line geometry at all, though he soon 
came to appreciate its beauty.7 

To a certain extent, my account supplements an older essay (Rowe 1989) and two 
more recent ones: Rowe (2016, 2019). Those studies all touch on Julius Plücker’s 
approach to line geometry, as set forth in (Plücker 1868) and its posthumously 
published sequel (Plücker 1869). In the final section, I conclude with some remarks 
about secondary literature that can serve as particularly useful guides to classical 
geometry in the spirit of the nineteenth century, including line geometry. Let

5 Klein signaled the new ones by writing them in square brackets. 
6 Hilbert was still alive and so had the opportunity to read the three volumes of his papers (Hilbert 
1932–1935), but he took no part in preparing that edition. 
7 As he told me in an interview conducted in Lugano in September 1984. 



6 On Felix Klein’s Early Geometrical Works, 1869–1872 163

me begin, though, with some brief remarks about the other two areas that Klein 
investigated during his youth. 

6.2 “Erlangen Programm” and Non-Euclidean Geometry 

When looking back on Felix Klein’s career, some writers have focused rather 
narrowly on his famous “Erlangen Programm” (Klein 1872/1893). This text has 
rightly been regarded as linked with Klein’s early collaboration with Sophus Lie. 
In fact, under other circumstances they might have even co-authored a work such 
as this one, just as they had done on other occasions. Had this occurred, it surely 
would have helped to alleviate some of the bitter feelings that finally ended their 
friendship in 1893. As it happened, though, Klein wrote the text as an obligatory 
Programmschrift for his inauguration as a full professor in Erlangen. This was a 
formal requirement, which thus implies that there were many such texts. Klein’s 
successor, Paul Gordan, also composed an “Erlangen Programm”, though obviously 
it was quickly forgotten, unlike Klein’s.8 

Moreover, we should not imagine that those who read Klein’s text suddenly saw 
the light; it took some twenty years before it became widely known (Hawkins 1984). 
Even when its reception took off in the 1890s, this was still a time when Lie’s theory 
of continuous groups had yet to emerge in its modern form. Back in 1872, the very 
notion of groups in geometry was largely intuitive, so what Klein had in mind were 
certain examples of closed families of transformations, most of them well known 
to contemporary geometers.9 In short, the informal name “Erlangen Program” 
reflected the occasion and should not be interpreted as a research program. To the 
extent the text suggested a new direction for future investigations, this had very 
little to do with finding or classifying new groups. On the contrary, Klein’s principal 
aim was to promote a broader conceptual understanding of recent geometrical 
research by highlighting several important traits and ideas. Certainly the notion of 
transformation groups—understood largely in a heuristic sense—was central to this 
vision. Although the “Erlangen Programm” became the most famous of all Klein’s 
works, its reputation had far more to do with its guiding ideas rather than the actual 
content of the text itself. For historians, on the other hand, it provides an interesting 
snapshot of trends in geometrical research in the early 1870s. 

Klein undertook two largely independent efforts to promote the “Erlangen 
Programm,” the first during the early 1890s, whereas the second phase took place in 
the years leading up to publication of Volume I of Klein (1921–1923). Throughout 
the 1880s, Klein almost never taught courses in geometry, which reflects the shift

8 See Konrad Jakobs and Heinrich Utz, Erlangen Programs, Mathematical Intelligencer 
6(1)(1984): 79. 
9 He had to add a footnote in 1893, when the text of Klein (1872/1893) was reprinted, pointing out 
that one needed to stipulate that the group contains its inverse transformations. 
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in his research interests toward complex analysis. After his health collapsed in 
the midst of a brief, but famous competition with Henri Poincaré, Klein began 
offering a cycle of courses on elliptic, hyperelliptic, and Abelian functions. This 
cycle mimicked the courses regularly offered by Karl Weierstrass in Berlin, except 
that his approach was based on Riemannian ideas or what was often called geometric 
function theory. By this time, the rivalry between Klein and the aging Berlin school 
was intense, culminating in 1886 when he left Leipzig for Göttingen and managed 
to arrange Lie’s appointment as his successor. Meanwhile, Klein continued to teach 
courses on complex function theory in Göttingen. Only toward the very end of 
the decade did that change, beginning in 1889/90 when he offered a two-semester 
lecture course on non-Euclidean geometry (Klein 1893). 

That course marks the beginning of a crucial four-year period during which Klein 
lectured extensively on his own early work as well as Lie’s. These were unhappy 
years for both men, and by 1893 the strains in their friendship had reached the 
breaking point. Klein’s situation in Göttingen was hardly what he had hoped, as 
he found himself constrained by his senior colleague, Hermann Amandus Schwarz. 
Klein’s rival was a disciple of Weierstrass, who was now 75 and in poor health. 
Adding to the tensions, both men were leading candidates to succeed the elderly 
analyst. Furthermore, both knew that Schwarz had earlier hoped to succeed Klein 
in Leipzig, yet another source of acrimony between them. Already concerned about 
upholding his legacy, Klein offered a year-long lecture course on Riemann surfaces 
and afterward taught a two-semester course on higher geometry during the academic 
year 1892/93. The latter course represents the climax of his efforts during this period 
to elaborate on the themes he had sketched twenty years earlier in his “Erlangen 
Programm” (Klein 1872/1893). 

The original German text of Klein (1872/1893) was barely accessible, so 
in 1891–1892 Klein began to make plans to republish it with commentary in 
Mathematische Annalen. He hoped to do this as a joint venture with Sophus Lie. 
Except for Lie (1872), his most important publication from that period, very few 
of Lie’s early papers were known either, since before his arrival in Leipzig in 
1886 he had published most of his work in Norway. Klein’s promotional plans 
included showcasing some of his own work alongside several overlooked papers 
by Lie, thereby putting their earlier collaboration back in the spotlight. Lie no doubt 
had mixed feelings about this from 1891 onward, but eventually these gave way 
to intense anger; his outbursts left Klein in a state of shock.10 In a letter from 2  
December 1892 to Adolf Mayer, Lie’s Leipzig colleague, Klein wrote: “The Lie 
who writes us and the Lie who presents himself to us personally are two different 
people” (Tobies/Rowe 1990, 206). 

By this time, Klein had lost out to Schwarz, who was called to Berlin along 
with the algebraist Georg Frobenius. This seemed to Klein an opportune time 
to restructure the editorial board of Mathematische Annalen, in particular by

10 For a brief account, see Stubhaug (2002, 386–389), which however fails to engage with many 
aspects of this conflict. 
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appointing Lie as an associate editor in order to solidify the Göttingen-Leipzig 
connection. This plan backfired, however, after Lie insisted on an appointment as 
one of the principal editors. Klein continued to hope that Lie would reconsider, but 
the Norwegian wanted to break away completely from what he saw as a web of 
intrigue within the German mathematical community. In late 1893, he vented his 
anger in a lengthy preface to the third volume of his monograph on transformation 
groups. There, he abruptly announced to the mathematical world that “[he] was not 
a pupil of Klein, . . . if anything, the  opposite was the case,” and later he wrote Mayer 
how Klein reminded him of “an actress who dazzled everyone in her youth, but who 
used more and more dubious means in order to attain success on three-rate stages” 
(Tobies/Rowe 1990, 20).11 Five years later, Lie returned to Norway, but shortly 
thereafter he died from pernicious anemia in 1899. 

After his official retirement in 1913, Klein made plans to begin a series of lectures 
on nineteenth-century mathematics. He delivered these talks during the first years 
of the Great War and planned to end them with an account of the work of Lie and 
Poincaré. Then came the sudden burst of interest in Einstein’s general theory of 
relativity, which took Hilbert and several other Göttingen mathematicians by storm. 
For Klein, who had already explored the mathematical underpinnings of Hermann 
Minkowski’s space-time geometry, these fast-breaking developments offered a wel-
come opportunity to work on the historical and mathematical background of general 
relativity. By 1919, when he began discussing plans for his collected works, he had 
found the perfect capstone for contextualizing his “Erlangen Programm,” namely 
his papers on the formal properties of conservation laws in general relativity, work 
he had taken up with the assistance of Emmy Noether and Hermann Vermeil (Rowe 
2022a). Thus, the third section of Volume I, entitled “Zum Erlanger Programm,” 
contains papers Klein wrote over a span of nearly fifty years. 

During the period from 1869–1872, though, Klein’s reputation had far more to 
do with his contributions to the second category of his research, which he called 
foundations of geometry. Here one can be far more precise: in 1871, he published 
a new approach to non-Euclidean geometry by adapting Arthur Cayley’s method 
for introducing a metric in projective geometry (Gray 2011). Although his original 
intention was largely technical rather than foundational, he soon became mired 
in problems that Karl Christian von Staudt had attempted to solve earlier by way 
of introducing purely projective coordinates in plane geometry.12 Klein is often 
credited with having been the first to realize that Staudt’s foundational approach 
depended on Desargues’ theorem, an elementary incidence theorem in 3-space that 
is difficult to prove in a plane geometry without appealing to an embedding in space 
(otherwise it could even be false, as Hilbert later showed).

11 Lie was reacting to Klein’s interest in launching the Encyklopädie der mathematischen Wis-
senschaften, but he likely also had in mind his recently published Evanston Colloquium Lectures. 
12 Detailed accounts of Staudt’s work as well as Klein’s part in the later developments can be found 
in two French studies, Nabonnand (2008) and Voelke (2008). 
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Since Klein, in his youth, had only a meager knowledge of the mathematical 
literature, he only later came to recognize that this was not an original insight. So 
in his commentary for the collected works, he indicated that Desargues had been 
aware of this fact and that Möbius had even emphasized the point (Klein 1921–1923, 
I:310). He also recalled that: 

[it was] from O. Stolz . . . [that] I first heard of non-Euclidean geometry, and I immediately 
understood that this would have to be quite closely related to Cayley’s general projective 
metric.  . . . I  lectured  on  the  Cayley  metric  in  Weierstrass’s  final  seminar  and  concluded  
outright with the question, whether there could be a connection here with non-Euclidean 
geometry. Weierstrass objected to this, declaring that geometry had to be based on the 
distance between two points, which meant the straight line needed to be defined as the 
shortest curve connecting these. (Klein 1921–1923, I:50–51) 

This passage has often been cited in the historical literature, but without any critical 
reflection with regard to the chronology or the bearing these circumstances had 
on Klein’s first publications on non-Euclidean geometry, i.e. Klein (1871b) and 
the more extensive account in Klein (1871c). Readers of these works, when they 
first appeared, included Klein’s friend Max Noether, with whom he exchanged 
several interesting letters I will discuss on another occasion. These exchanges and 
other correspondence from the period provide a vivid picture of Klein’s limited 
knowledge, but also the improvised character of his papers on projective non-
Euclidean geometry. As I will show in a subsequent study, a careful reappraisal 
of the events of that time can shed new light on this important period in the history 
of geometry. 

Noether probably understood the circumstances involved, especially since Klein 
spent several days with him in Heidelberg soon after August 1871, when he 
completed his first two papers. Other readers, however, surely gained a faulty 
impression from these texts, which contain a number of precise references to 
the literature. Many must have imagined that the author had studied these earlier 
works carefully, which was not at all the case. In an unpublished manuscript 
from November 1892 describing his and Lie’s work from the years 1870–1872, 
Klein admitted that his papers on non-Euclidean geometry were based on hearsay 
information and that this had led him to give incomplete or inaccurate citations 
of the relevant literature (Klein 1892). Paging through Klein’s published work, on 
the other hand, one finds no traces of any acknowledgment that Otto Stolz had 
played a decisive role. Even in his lecture course on non-Euclidean geometry from 
1889/1890, Klein made no mention of Stolz whatsoever (Klein 1893). This might 
seem all the more surprising considering that several lectures dealt with the history 
of the subject, including lengthy remarks on his own publications. 

Klein’s reticence ca. 1890 stands in sharp contrast to the tone and content of his 
wartime lectures, which were semi-autobiographical in character. There, he vividly 
described how Stolz helped him grasp the projective ideas developed by Karl von 
Staudt, but also to enter into the world of non-Euclidean geometry (Klein 1926, 133, 
152). He was even more explicit in his commentary to Volume I, where he wrote: 

I then received a substantial new impulse in the summer semester of 1871 when O. Stolz 
came to Göttingen. The ideas on the connection between non-Euclidean geometry and
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Cayley’s metric, which were already evolving since my time in Berlin, now entered the 
foreground, and I succeeded in convincing him not only that these were correct, but also 
that the entire theory could be set out independently by means of v. Staudt’s principles. 
Stolz served all the time not only as my strict critic, but also as my literary support. He had 
studied Lobachevsky, Joh. Bolyai and v. Staudt carefully, something I could never force 
myself to do, and he was able to answer all my questions. (Klein 1921–1923, I:51–52) 

The fact that Klein’s famous papers on non-Euclidean geometry were written 
without any direct knowledge of the works he cited by Lobachevsky and Bolyai 
might well have raised a few eyebrows, had this been known at the time. Even more 
striking, though, was Klein’s admission that he only knew about Karl von Staudt’s 
work from conversations with Otto Stolz, who had already left Göttingen by August 
1871 when Klein submitted his first note (Klein 1871b) and the longer paper (Klein 
1871c). The relevant background events, and in particular Klein’s letters to Noether, 
offer ample opportunity to read those texts anew, as their authoritative ring sounds 
much weaker when placed against the explanations he gave to his friends. 

Furthermore, in view of the intense interest in non-Euclidean geometry at 
that time,13 one should not overlook Klein’s eagerness to discuss the historical 
background. In particular, he highlighted the role of Carl Friedrich Gauss, whom he 
described as the first to realize that Euclid’s parallel postulate could not be proved. 
Why not? Precisely because Gauss recognized that one could erect a “non-Euclidean 
geometry” in which the sum of the angles in a triangle was less than two right 
angles (Klein 1921–1923, I:245). Considering how little was known in 1871 about 
Gauss’s work on non-Euclidean geometry, Klein’s remarks in this vein appear quite 
remarkable. Clearly, he had in mind to place his own work in the best possible light, 
but this also shows how eager Klein was to speak with authority on major topics 
in the historiography of nineteenth-century mathematics. Let me now turn to the 
central arena for Klein’s early research: line geometry. 

6.3 Plücker’s Neue Geometrie 

Klein was still a teenager when he learned about this new approach to the geometry 
of 3-space at the shoulder of Julius Plücker. In the months before his death in May 
1868, Plücker realized he would not be able to complete his monograph on line 
geometry. He provided Klein with drafts for some parts, entrusting Alfred Clebsch 
with the publication of Part I (Clebsch 1871). Klein was then charged with the 
task of completing Part II, which was published the next year in Plücker (1869). 
This circumstance led to Klein’s first contacts with Clebsch, who had only just 
arrived in Göttingen, having been appointed to Riemann’s long vacant chair. The 
following year, Clebsch and Leipzig’s Carl Neumann launched their new journal, 
Mathematische Annalen, which almost from its inception showcased some of the

13 On the early reception of non-Euclidean geometry in Germany, see Volkert (2013). 
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works of Klein and his Norwegian friend, Sophus Lie. Both had already established 
relationships with Clebsch before they met one another in Berlin in the fall of 
1869, and as their subsequent collaboration unfolded Klein continually spoke with 
Clebsch about Lie’s work as well as his own. In a word, both were leading protégés 
of Clebsch, though it was Klein who reaped the immediate benefits from this. 

Clebsch had studied under Otto Hesse in Königsberg, an experience that strongly 
shaped his approach to geometry. Although he was only a decade younger than 
Plücker, Hesse’s analytic style made use of powerful algebraic methods that made 
the works of earlier writers appear primitive by comparison. Clebsch’s reaction 
to Part I of Neue Geometrie des Raumes suggests how he likely felt about all of 
Plücker’s work. Writing to Wilhelm Fiedler on 20 August 1868, he praised the ideas 
but found the presentation more than wanting.14 

Although little appreciated in Germany, Julius Plücker enjoyed an excellent 
reputation in England, especially for his work as an experimental physicist.15 In 
1855 he became a corresponding member of the London Royal Society, which 
awarded him its Copley Medal in 1866. During the 1850s, Plücker undertook 
pioneering research on electrical discharges in rarefied gases. Much of the time he 
was assisted by technicians, including Heinrich Geissler, famous for his invention 
of the glass tubes that bear his name. This work was closely followed by Michael 
Faraday, another physicist who thought more in terms of pictures than mathematical 
formulas. 

By the mid-1860s, thus shortly before Klein arrived in Bonn, this phase in 
Plücker’s career was over. He returned to the study of geometry, having been 
“encouraged by the friendly interest expressed by English geometricians [presum-
ably Cayley, Hirst and Sylvester]” (quoted from Barrow-Green (2021, 44)). Still, 
there was an indirect connection between his geometrical and physical studies, as 
one can easily see from his paper “On a New Geometry of Space” (Plücker 1865), 
in which he pointed to the relevance of line geometry for optics and mechanics. In 
both of these fields, in fact, as well as in geometry, Plücker attempted to describe 
complex, never-before-seen spatial phenomena (Clebsch 1871). Felix Klein later 
recalled how his mentor told him Faraday was the one who urged him to build 
geometrical models (Klein 1921–1923, II:7). It seems quite unlikely, though, that 
this was in reference to so-called complex surfaces, which Plücker unveiled as the 
centerpiece of his new line geometry only a short time before Faraday’s death. 

As an old-fashioned analytic geometer, Plücker filled his publications with 
complicated calculations, but from these he extracted new geometrical insights that 
can be understood quite easily. Since the lines in 3-space form a 4-manifold, one 
needs at least four parameters to describe them. An elegant system for doing this 
uses Plückerian coordinates, which assigns six homogeneous coordinates to each 
line . 𝓁. One can obtain these either in the form . pij , by taking any two points on

14 “Haben Sie das Plückersche Werk gesehen, welches unter meinen Auspicien in die Welt 
gegangen ist? Schöne Gedanken, aber welche Darstellung!” (Confalonieri 2019, 73). 
15 On his family background and youth, see Wiescher (2016). 
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. 𝓁, or as . rij by choosing any two planes through . 𝓁. In the first case, two points 

.P = (x1, x2, x3, x4) and .Q = (y1, y2, y3, y4) on . 𝓁 lead to six determinants, which 
define .pij = xiyj − yixj . These homogeneous coordinates then satisfy the identity 
.P = p12p34 +p13p42 +p14p23 = 0, which accounts for why the .pij can be used to 
coordinatize the 4-manifold of lines in 3-space. In his dissertation, Klein introduced 
a new system of (Kleinian) coordinates .xi, i = 1, . . . , 6, for which the identity 
.P = 0 becomes .

∑
x2
i = 0. 

A good deal of the classical theory can be developed projectively, so for that 
purpose one can introduce general homogeneous line coordinates in . P 5. These 
then satisfy a quadratic equation, as for example .P = 0, so that the lines in space 
correspond to points on a 4-dimensional quadric hypersurface in projective 5-space. 
In analogy with projective algebraic geometry, one can then study objects given as 
the loci of lines that satisfy a homogeneous algebraic equation in line coordinates or 
various subfamilies of lines given by systems of algebraic equations. Thus, a single 
algebraic equation corresponds to a 3-parameter family of lines, a line complex, 
whereas two equations determine a congruence of lines. Such congruences had been 
studied earlier in geometrical optics as ray systems, which one can transform via 
reflection and refraction. Line congruences typically envelope surfaces, which in 
optics are so-called caustics. The standard objects in Plücker’s line geometry, on 
the other hand, were first- and second-degree line complexes, which can only be 
visualized locally, except for degenerate cases. 

A simple, yet instructive degenerate case of a quadratic complex .K2 is given 
by the lines tangent to a nonsingular quadric surface . F2, for example an ellipsoid. 
Here the local structure is immediately obvious: for a given point . P /∈ F2, the  
lines through P tangent to . F2 form a quadratic cone (real or imaginary). This 
cone, however, collapses to a (double) tangent plane whenever .P ∈ F2. Since this 
is a projective theory, we can also consider the dual situation in space by taking 
arbitrary planes rather than points. A typical plane . π cuts out a conic, .π ∩F2 = C2, 
which has tangents belonging to . K2. Moving the plane toward its surface, the conics 
shrink until they eventually collapse into a pencil of lines (counted twice) precisely 
when . π becomes a tangent plane .TP at a point .P ∈ F2. In the case of a general 
quadratic complex, the line conics degenerate into two pencils of lines in . π , but  
here these fall together at the point of tangency .P ∈ F2, viewed as the envelope of 
its tangent planes. This special complex . K2 depends, in fact, on only 9 parameters, 
whereas a general quadratic complex has 19, which suggests why viewing the lines 
in quadratic complexes can be very difficult. 

Let us now briefly consider the latter case of a general . K2. As noted, when the 
cone of lines passing through a point P collapses it forms two planar pencils of lines 
that intersect along a singular line. It can then be shown that these singular lines 
form a congruence of the fourth order and class16 that envelopes the singularity 
surface . S4 of the complex . K2. Thus, taking an arbitrary plane . π with a conic of

16 The notions of order and class refer here respectively to the number of singular lines passing 
through a generic point and the number that lie in a generic plane. 
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lines in . K2, four of these will be singular lines. Furthermore, an arbitrary line . 𝓁 will 
intersect . S4 in four points and four planes in the pencil passing through . 𝓁 will be 
tangents to the surface. In the special case just considered, the surface . S4 is simply 
the quadric . F2 counted twice. One finds mention of this example at the very end 
of Section 2 in Klein’s edition of Plücker’s Neue Geometrie. There he emphasizes 
that the theory of quadratic complexes represents a generalization of the theory of 
quadric surfaces in that the latter corresponds to the case where all the complex lines 
are singular (Plücker 1869, 336). 

Plücker laid out only part of the groundwork for this aspect of the theory, while 
noting that in the generic case . S4 is self-dual. Thus, one can view it either as 
the locus of singular points or as the envelope of singular planes of . K2. Plücker 
described . S4 as a surface of the fourth order and class with 16 double points and 
16 double planes (Plücker 1869, 307–321). It seems hard to believe that he was 
fully unaware of Ernst Eduard Kummer’s publications from the mid-1860s devoted 
to these now famous quartics (Kummer 1975, 418–439), but he made no mention 
of Kummer’s work. Klein wrote frankly about Plücker’s longstanding frictions with 
mathematicians and physicists in Berlin (Klein 1926, 120–121), but he apparently 
never commented about this curious circumstance. Yet, just a year after his mentor’s 
death, he wrote about Kummer surfaces by name in Klein (1870, 67), an indication 
that geometers had by then come to adopt this terminology. As we will discuss 
below, their properties were crucial for Klein’s radically new approach to quadratic 
complexes. We will also describe how Klein focused considerable attention on the 
properties of singular lines in a general quadratic line complex, a topic Plücker only 
touched on. 

Plücker was mainly interested in the various shapes of special types of quartics he 
called complex surfaces (Plücker 1869, 337–373). These exotic objects reflected the 
local structure of a quadratic complex . K2 in relation to a fixed line g (in general, . g /∈
K2). More precisely, Plücker considered the lines in .K2 ∩K1(g), where .K1(g) is the 
first-degree complex consisting of all lines that intersect g. The intersection of two 
algebraic line complexes yields a 2-parameter family of lines, or a line congruence. 
In this case the congruence is of the second order and class since two lines lie in an 
arbitrary plane and two pass through a generic point. 

Such systems were familiar from earlier work in ray optics, the background for 
Kummer’s work in the 1860s. Thus it was known that a congruence of lines will 
envelope a caustic surface (Brennfläche), and those studied by Kummer lead to 
surfaces of the fourth order and class but without a double line g. The double line 
on a complex surface contains four point singularities, which are pinch points where 
the leaves of the surface join. They also demarcate the boundaries between real and 
imaginary portions of the surface, as illustrated in Fig. 6.1. 

Plücker designed some 27 models showing different types of complex surfaces. 
These were originally built by one of his former students, Johannes Epkens; later the 
commercial firm of Eigel in Cologne built sets of these using a heavy metal, zinc 
or lead. Many of these models can still be seen in collections throughout Germany, 
such as the one shown in Fig. 6.2. A particularly well-preserved collection can be 
seen at Tübingen University (Seidl et al. 2018, 177–185).
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Fig. 6.1 A Plücker complex surface showing four pinch points on its double line. Graphic courtesy 
of Oliver Labs 

Fig. 6.2 A Plücker complex surface with two real and two imaginary components intersecting 
along its central axis. From the TU Munich; photo courtesy of Gerd Fischer 

Plücker taught exercises in his new line geometry during the summer semester 
of 1867, when Klein presumably first learned about this new approach to spatial 
geometry (Tobies 2021, 33). He probably had little or no involvement in designing 
these models, but he must have studied them carefully during his last semesters 
in Bonn. During 1919, when Ostrowski was helping him prepare the first volume 
of his collected works, Klein offered a seminar during which he went through the 
collection of Plücker models in Göttingen.17 

17 A student who attended wrote up a detailed report on these models in the Göttingen collection 
(see modellsammlung.uni-goettingen.de).
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Fig. 6.3 Plücker’s Model of 
a Complex Surface with 8 
Real Nodes. Courtesy of the 
London Mathematical 
Society 

In 1866, Plücker took some models with him to Nottingham, where he spoke 
about these complex surfaces at a conference. Arthur Cayley and other leading 
British mathematicians quickly took an interest in them, as they were certainly 
among the more exotic geometrical objects of their day (Cayley 1871). Plücker sent 
a smaller set of boxwood models to the London Mathematical Society, one of which 
is pictured in Fig. 6.3. For most of the models, Plücker chose the line .g ⊂ E∞, the  
plane at infinity. The family of planes .E(g) that contain the nodal line g are then 
parallel, and in this case he called the quartic . S4 enveloped by the lines in . K2∩K1(g)

an equatorial surface. Since .E(g)∩S4 is a family of quartic curves each containing 
g as a double line, these curves break up into a family of conics . C2 together with g 
(Rowe 2022b). 

Luigi Cremona also took much interest in Plücker’s works in geometry from the 
final years of the latter’s life (see their correspondence in Israel (1992, 154–157) and 
Israel (1994, 73–77)). On 30 December 1868, some seven months after Plücker’s 
death, Klein wrote to Cremona to send him a copy of his recently completely 
dissertation on the classification of second-degree line complexes. Klein mentioned 
that Plücker had spoken often of his trip to northern Italy in the fall of 1867 and had 
told Klein that Cremona was the only geometer who understood him completely.18 

Six months later, having completed the second-part of Plücker’s Neue Geometrie 
des Raumes, Klein wrote again to send Cremona a copy. His letter is highly 
suggestive for understanding what Klein himself found most interesting about this

18 Israel (1994, 54); Klein was also eager to learn Cremona’s opinion of his work, especially in 
view of the fact that he had shown that Battaglini’s recent study (Battaglini 1868) did not represent 
the general case of a quadratic line complex. 
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work, and his comments very likely reflect Plücker’s own views as well. He called 
attention to the final part, which presented a kind of appendix on complex surfaces: 

Apart from the theory of complexes, this section seems to me to be interesting in so 
far as it treats a manifold family of surfaces in such a way that the different forms that 
occur are made evident. It seems always to me, and this I take to be the sense of the 
method employed by Plücker, who had models made of the surfaces discussed here—that 
in the case of geometric problems, it is important not only to express the relationships 
between the structures treated by means of propositions, but also by an immediate intuition 
(Anschauung) of these structures (Israel 1994, 55). 

This was a typically Kleinian pronouncement, though one should not overlook that 
it was written by a novice, who still imagined himself on the way to becoming 
a physicist. Klein’s broader mathematical interests would gradually come to the 
surface in his “Erlangen Programm,” but what he expresses here reflects his keen 
interest in concrete geometrical relationships in 3-space. As I will emphasize below, 
this was one of the most striking features in Klein’s early work, an aspect far less 
apparent in Lie’s writings, which are notoriously difficult to read. 

In his preface to Plücker (1869, iii–iv), Klein pointed out that Plücker had 
already discussed complex surfaces in Plücker (1868, 177–225). Moreover, before 
his death he had also completed the manuscript for the final section of Plücker (1869, 
337–373), which deals with the construction and properties of so-called equatorial 
surfaces, where the double line g lies in the plane at infinity. Klein probably came 
to realize quickly that all the Plücker quartics are special cases of Kummer surfaces, 
an idea that led him to consider whether they could be obtained from the latter by 
a continuous deformation process. Before long, he and his friend Alfred Wenker 
began building models designed to illustrate the main types. In a more theoretical 
sense, Klein would continue to address the problem of constructing a quadratic 
complex, though he shifted the focus to its singularity surface, which in effect was 
the quartic that arises by dissolving g into two lines each of which joins a pair of 
singular points. 

The contrast between Plücker (1869), which Klein completed in May 1869, and 
Klein (1870), the paper he submitted just one month later, is truly astonishing. 
Only a year after Plücker’s death, Klein totally transformed the theory of quadratic 
complexes and in the process forged a deep connection with the theory of Kummer 
surfaces. Part of his motivation can be traced to the topic of his dissertation, as he 
explained in his later commentary (Klein 1921–1923, I:3). Here, Clebsch gave him 
a decisive hint by pointing to a recent study by Giuseppe Battaglini, who studied 
what later were called harmonic complexes (Battaglini 1868, 241).19 

In Plückerian coordinates, these take the form . Ω = ∑
ksp

2
ij = 0, i, j =

1, 2, 3, 4, but Battaglini apparently did not realize that such a harmonic complex . Ω
depends on 17 parameters rather than 19, the number in a general quadratic complex

19 In 1870, Ferdinando Aschieri showed that the Battaglini complex could be viewed geometrically 
as the family of lines that intersect two quadric surfaces harmonically, thus, in four points with 
cross ratio equal to . −1; see Rowe (2016, 246). 
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(see Hudson (1990, 94–97)). In his dissertation, Klein presented a canonical form 
for the general case (Klein 1921–1923, I:5–49), but he also showed that one could 
introduce new coordinates .xi, i = 1, . . . , 6 that made it possible to diagonalize 
both forms P and . Ω so that the two equations for a general complex could be written 
.
∑

kix
2
i = 0 and .

∑
x2
i = 0. 

The algebra behind the transition from Plückerian to Kleinian coordinates was 
straightforward enough, but the underlying geometry behind the latter was subtle 
and elegant. The six equations .xi = 0 represent six fundamental mutually apolar20 

linear complexes, in relation to which the lines in space fall into groups of 32 
lines. This follows immediately from the observation that any line . (x1, x2, . . . , x6)

must satisfy .
∑

x2
i = 0, which means that the same holds for these 32 lines 

.(±x1,±x2, . . . ,±x6). By introducing these coordinates, Klein could view the six 
fundamental complexes .xi = 0 as hyperplanes in . P 5. A general linear complex 
A was then given by .

∑
aixi = 0, which can be taken as a space element with 

coordinates .(a1, a2, a3, a4, a5, a6). The lines .(xi) ∈ A can thus be expressed by the 
equation .(xi) · (ai) = 0. A special case arises when the coordinates of A also satisfy 
.
∑

a2
i = 0, which means that A consists of the lines in space that meet a fixed line. 

The corresponding notion of a special quadratic complex arises when one takes the 
lines in space that meet a fixed conic, an idea Lie exploited when he began thinking 
about his line-to-sphere transformation (see below). 

As in the usual projective theory for quadratic surfaces, one can derive an 
equation for the linear tangent complexes to a given quadratic complex simply by 
calculating its polar form. In the present case, where .K2 is given by .

∑
kix

2
i = 0, 

this yields .
∑

kixi = 0. Now if .(xi) ∈ K2 happens to be a singular line, this 
tangent complex will be special, which means that .(kixi) are line coordinates and 
thus have to satisfy the condition .

∑
k2
i x

2
i = 0. Taking the two lines . (xi), (kixi)

together they determine a singular point and plane of . K2, but also a pencil of lines 
.ys = ksxs − μxs. Plugging into the equations for .(xs), we obtain 

. 
∑

(ks − μ)−1y2
s = 0,

∑
(ks − μ)−2y2

s = 0.

The lines .(ys) and .((ks − μ)−1ys) likewise determine a singular point and plane of 
. K2, which means that by varying the parameter . μ in the equation . 

∑
(ks −μ)−1y2

s =
0 Klein obtained a co-singular family of quadratic complexes .K2(μ), all of which 
have the same singular points and tangent planes as . K2. (The equation for . K2, 
.
∑

kix
2
i = 0, corresponds to .μ = ∞.) He showed further that the surface . S4 is 

a self-dual quartic, since for any line . 𝓁 the cross ratio of the four points .𝓁∩S4 equals 
the cross ratio of the four planes through . 𝓁 tangent to . S4. 

From these facts, Klein could deduce that . S4 had the same structure of singulari-
ties as a Kummer surface. These surfaces have 16 singular points (called nodes) and 
16 singular planes (tropes), which form a .(16, 6) incidence configuration (Hudson

20 Klein used the terminology of complexes that lie in involution with one another, but Hudson 
found this language awkward and I here follow Hudson (1990, 38). 
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1990, 7–14). This means that 6 tropes pass through each of the 16 nodes and 6 nodes 
lie in each of the 16 tropes. They lie in special position, since 6 co-planar nodes lie 
on a conic in the corresponding trope and a conic curve is determined by 5 points 
in general position. The tangent plane .TP at a generic point .P ∈ S4 contains just 
one singular line, though there are exceptional points. Since . S4 is of the fourth order 
and class, a generic line . 𝓁 intersects . S4 in four points .P1, P2, P3, P4 and four planes 
.π1, π2, π3, π4 passing through . 𝓁 are tangents to . S4. 

When . 𝓁 is a singular line, two points will coincide, say, .P1 = P2 = P . Then . 𝓁
will also lie in a singular plane, say .π1 = π2 = π , and two other tangent planes 
.π3, π4, which are spanned by the pencils .(P3, π3), (P4, π4). Moreover, . 𝓁 is the only 
line in the pencil .(P, π) that lies in . K2, unless either . P3 or . P4 happens to equal 
P , in which case . 𝓁 is an inflectional tangent to . S4 and then every line in the pencil 
.(P, π) lies in . K2. Klein proved that these exceptional points lie on a curve of 16th 
degree on . S4 (see below). He also considered the bitangents to . S4, which arise when 
pairs of points, e.g. .P1 = P2 = P and .P3 = P4 = Q, fall together. A plane 
section .S4 ∩ π = C4 will have 28 bitangents, 16 of which arise as intersection 
lines between . π and the 16 tropes. The remaining 12 form 6 pairs that fall into six 
different congruences, as was shown in 1866 by Kummer. 

As noted above, this is a projective theory,21 which can be seen by considering a 
pencil of planes . Λ𝓁 that pass through an arbitrary line .𝓁 ∈ K2, a quadratic complex. 
Each .λ ∈ Λ𝓁 contains a conic of lines . C2 tangent to . 𝓁 at a point . Pλ. As the planes in 
.Λ𝓁 turn they generate a projective correspondence between these . λ and the points 
. Pλ. This will be the case for all complex lines . 𝓁 except for those which are singular. 
In the latter case, the conics in each . λ are tangent to . 𝓁 at the singular point .P ∈ 𝓁. 
This entire theory dualizes, so . S4 is identical as a projective surface, whether viewed 
as a locus of points or an envelope of planes (Plücker 1869, 315). 

Klein’s system of coordinates took full advantage of these various symmetries, 
which were not at all evident following Plücker’s approach. Nevertheless, Klein’s 
mentor apparently found many striking properties of quadratic complexes, including 
their singularity surfaces, quite possibly without having read Kummer’s earlier 
work. Plücker described, for example, how singular lines arise in an arbitrary plane 
. π , which intersects the singular surface in a quartic curve, namely .C4 = S4 ∩ π . 
The conic . C2 of complex lines in . π then has four points of tangency with . C4, so  
counting these twice, .C2 ∩ C4 = 2 · 4 = 8 points, and their four tangent lines are 
the singular lines in . π . 

Klein only presented a counting argument for the degree of the curve of 
exceptional points .P ∈ S4, namely those where the tangent plane .TP = π has an 
inflectional tangent as singular line (the case discussed above). Taking an arbitrary 
plane . Λ that cuts . S4 in a quartic curve . C4, he reasoned as follows that this plane will 
contain 16 such points. As noted above, the quartic . C4 and the conic . C2 of complex 
lines in . Λ touch in four points that yield the four singular lines in the chosen plane.

21 Actually, Plücker freely mixed projective and metric concepts, whereas Klein belonged to a 
younger generation of geometers who paid careful attention to this distinction. 
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Klein then noted that there are 16 other lines in . Λ that are tangents to both curves 
at distinct points. This follows from the counterpart to Bezout’s theorem for class 
curves (those arising as envelopes of lines), which states that curves of class m and 
n will, in general, have .m · n common tangents, taking multiplicities into account. 
Now a curve of degree n in point coordinates will, in general, be of class .n(n − 1), 
which means that the conic and quartic are curves of class 2 and 12, respectively, 
so they have 24 tangents in common. Of these, 8 correspond to the four singular 
lines, whereas the other 16 are tangents at distinct points. Klein then claims that the 
16 points of tangency on . C4 are points where the tangent plane contains a singular 
inflection line. 

To see this, take any one of the 16 tangency points P on the curve .C4 ⊂ S4. 
Consider now what happens to the tangent line .𝓁P ⊂ Λ when P is held fixed and the 
plane . Λ gradually moves until it coincides with the tangent plane . TP . The line . 𝓁P ⊂
Λ constrains the movement of the planes to rotate about P , whereas throughout this 
process the complex conics in each plane continue to touch the corresponding lines 
starting from a point Q on . 𝓁P . In effect, the point Q on the conic slides along the 
transformed lines until it reaches the point P once the plane coincides with the 
tangent plane . TP . This straightforward continuity argument then shows how the 
line . 𝓁P passes over to another line in 3-fold contact with . S4 in the plane . TP , thereby 
becoming an inflexion (or asymptotic) tangent of the singularity surface. Since this 
argument holds for any of the 16 points in an arbitrary plane, this shows that the 
asymptotic singular tangents on a Kummer surface lie on a space curve of degree 
16. 

This was only one of several new results Klein found while working on Plücker 
(1869, 315) and then compiled in Klein (1870). Yet the significance of this particular 
finding did not dawn on him until later, as at the time he evidently gave no thought 
as to how this might be used to investigate the differential geometry of Kummer 
surfaces. Instead he apparently took this to be an isolated result concerning the 
singular lines of a quadratic line complex, even though he had come to realize by 
the summer of 1869 that the entire theory of such complexes could be developed in 
analogy with families of confocal quadrics (Klein 1870, 79). 

In fact, the geometrical ideas behind this approach already appeared in this first 
paper. There he showed that one could start with a Kummer surface . S4 and a single 
tangent line . 𝓁, designated as a singular line in a complex .K2 ∈ K(S4), the family 
of quadratic complexes with the singularity surface . S4. These data then suffice for 
constructing .K2 uniquely, whereas there will be four complexes in .K(S4) when . 𝓁
is not a tangent to . S4. These observations led Klein to conclude that .K(S4) forms a 
1-parameter system of co-singular quadratic complexes in analogy with the theory 
of confocal quadratic surfaces (Klein 1870, 73). Only after meeting Lie in Berlin did 
he begin to exploit this approach, however, by using elliptic coordinates as Jacobi 
had done in studying the differential geometry of confocal quadrics (see the section 
below). In fact, Klein’s motivation to do so came in good part from an independent 
breakthrough made by Lie during their sojourn in Paris: his recognition that the 
asymptotic curves on Kummer surfaces were algebraic of degree 16.
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Lie’s approach to line geometry was closely linked with his interest in differential 
equations in the tradition of Gaspard Monge, whereas Klein’s outlook was shaped 
by algebra and invariant theory. Klein tried to grapple with Lie’s ideas, but he often 
had difficulty understanding the brilliant Norwegian. Nevertheless, or perhaps even 
because of their differences in outlook and intellectual maturity, their collaboration 
proved highly fruitful, even though it lasted only three years. Klein had the 
opportunity to interact with Lie during the months when the latter’s line-to-sphere 
transformation—or some provisional version of it—was still in a nascent state. 
Lie only gradually came to recognize the general property that he later in 1871 
highlighted in the introduction to his dissertation (Lie 1934, 105–106). Before 
making this discovery, he spent several weeks groping in the dark. 

A glimpse of the various ideas then racing through Lie’s mind can be seen from 
a brief note he sent to the Scientific Society in Christiania on 5 July 1870 (Lie 1934, 
86–87). In it he announced seven new results, beginning with his line-to-sphere 
mapping .TLie for complex projective 3-space. As an important example of a contact 
transformation, .TLie maps intersecting lines to tangent spheres. Second, it induces 
a correspondence between surfaces—as envelopes of lines, resp. spheres—taking 
the asymptotic curves of the first to the lines of curvature of the second. Third, as a 
special case, Lie could show that the asymptotic curves of Kummer surfaces are of 
degree 16, which meant the same was true for Plücker’s complex surfaces and the 
Fresnel wave surface. Fourth, in the case of ruled surfaces he could determine their 
asymptotic surfaces by means of quadrature. Lie’s other three findings involved a 
new class of minimal surfaces, but he only began to publish on this theory in the late 
1870s (for the larger context behind all this work, see Lie and Scheffers (1896)). 

Klein was not simply an outside observer during this early breakthrough; in 
fact, he had already in the summer of 1869 identified these 16th-degree curves on 
Kummer surfaces (see above), but without realizing that they were the asymptotic 
curves (Klein 1870, 73–74). He was thus already deeply immersed in this realm 
of possibilities even before he first met Lie. As described in Rowe (2019), he had 
also undertaken a careful study of a correlative mapping between the lines in a 
linear complex (thus a 3-manifold) and the points in 3-space (Klein 1869). He 
learned about this mapping from Max Noether in 1869, when they were together 
in Göttingen (Klein 1921–1923, I:89), whereas Lie had already found essentially 
the same mapping on his own, only with a new twist. In Noether’s formulation, this 
.TNoe : K1 −→ P 3 has the property that for any . 𝓁 ∈ K1, TNoe(𝓁) = p ∈ P 3,

with one exceptional line . 𝓁∗ for which .TNoe(𝓁
∗) = C2, thus blowing up into a 

conic. Klein studied the images under .TNoe of “configurations” (ruled surfaces) 
contained within various congruences of lines in . K1, drawing on publications of 
Cayley, Cremona, and Schwarz. These are mapped to curves in . P 3, and if the 
configuration consists of lines that meet . 𝓁∗, the image curve will intersect the conic 
. C2. Klein hoped to gain insights into the types of 4th- and 5th-degree ruled surfaces 
that can arise in different cases, but this investigation only led to a large number of 
special results without any apparent general theorem uniting them. 

The simple twist that Lie had in mind was to view .TNoe as a mapping between 
two line complexes, .TLie : K1 −→ K2, where . K2 is the special quadratic complex
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consisting of all lines that meet . C2 (.= TNoe(𝓁
∗)). Thus, as before .TLie(𝓁) = p, but 

now p generates the cone of lines .(p, C2) ⊂ K2. As noted above, this was only 
one of many ideas swirling through Lie’s mind at the time, but in Paris he began 
thinking about the special case where . C2 was the imaginary sphere-circle at infinity 
that lies on all spheres in space. The cones .(p, C2) in this setting can be viewed 
as spheres of radius zero; they consist of the minimal lines passing through a point 
p, or “crazy lines” as Lie liked to call them. He eventually came to realize that by 
viewing an arbitrary sphere S as an envelope of minimal lines, the points . p ∈ S

will correspond to lines in a congruence .K(S) ⊂ K1. Such a congruence has two 
directrices, .g1, g2 ∈ K1, with the property that the lines .𝓁 ∈ K(S) intersect both 
directrices. Taking .a ∈ K(S) = {a|a ∩ g1 /= ∅, a ∩ g2 /= ∅}, the mapping . TLie

is a bijection between the lines in .K(S) and the points on the sphere S. Moreover, 
since the congruence .K(S) is completely determined by the directrices . g1, g2, we  
can view .TLie as a 2-1 mapping between lines and spheres in space. By July 1870, 
this became the principal case of interest for Sophus Lie, namely his line-to-sphere 
transformation. 

6.4 Klein and Lie on the Differential Geometry of Kummer 
Surfaces 

Klein later described a key breakthrough Lie made in early July 1870, when both 
were staying at the same hotel in Paris (Klein 1921–1923, 1: 97). Lie had spent a 
sleepless night thinking about an induced mapping between two types of quartic 
surfaces: Kummer surfaces, which arise naturally in line geometry, and quartics 
with a double conic curve. A special case of the latter had been studied by Gaston 
Darboux and Théodore Moutard in the context of sphere geometry. When the double 
conic is the imaginary sphere-circle that lies on all spheres, Darboux showed that 
the lines of curvature of this quartic are algebraic curves of the 8th degree. Using his 
mapping, Lie realized these curves must go over into asymptotic curves of degree 
16 on the corresponding Kummer surface. 

Fifty years later, Klein recalled what Lie had told him that morning. He left the 
hotel that day to take in the collection of models at the Conservatoire des arts et 
métiers, all the while thinking about Lie’s claim. Since Klein already knew that the 
singular lines with 3-fold contact on the singularity surface of a quadratic complex 
enveloped curves of degree 16 (as recounted above), he quickly realized that Lie 
must have found an important property of these same curves that had escaped him 
earlier.22 When he returned to their hotel that afternoon, he saw that Lie had in the 
meantime gone out, so he left him a message letting him know that he was able 
to confirm Lie’s finding. This unexpected result was surely a major topic in their

22 Asymptotic curves on surfaces are those along which the tangent plane and osculating plane 
coincide; see Struik (1961, 96). 
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Fig. 6.4 Klein’s sketch of 
asymptotic curves between 
two double points on a 
Kummer surface from his 
letter to Lie, 29 July 1870 
(National Library of Norway, 
Brevs. 289). CC BY-NCND 
4.0 (https://creativecommons. 
org/licenses/by-nc-nd/4.0/) 

discussions afterward, though their talks were abruptly cut off before they could 
settle various questions about the properties of these asymptotic curves. 

Little more than a week after Lie’s breakthrough in early July, Klein had to leave 
Paris abruptly after the French government declared war on Prussia.23 He headed 
back home to Düsseldorf, where he then stayed with his family until called to join 
an ambulance crew in Bonn. By early September, he and his fellow volunteers were 
helping care for the wounded at the battle sites near Metz and Sedan, though soon 
thereafter Klein fell ill and was released from further duty. While still at home, he 
tried to maintain contact with his Norwegian friend through letters. Unfortunately 
for Lie, he was carrying some of Klein’s letters when French police saw him 
wandering about near Fontainebleau. They were written, of course, in German, and 
one contained a drawing that looked suspiciously like lines for troop formations 
(see Fig. 6.4 and try to imagine knowing that German armies were about to invade 
France).

23 The incident that led to this declaration of war bears a striking resemblance to Putin’s demand 
that Ukraine shall never be allowed to join NATO. France insisted that the Catholic branch of the 
Hollenzollerns, which had declined an offer to assume the throne of Spain, should declare that this 
decision was valid for all time. Bismarck famously took full advantage of this diplomatic blunder. 
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The gendarmes studied the letters and noticed certain words kept popping up— 
Linienkomplex, Kugelkomplex, etc.—perhaps some kind of code language? Maybe 
“komplex” meant agent? Lie’s attempt to explain that these were mathematical 
terms only made them more suspicious. They concluded that either this fellow was 
crazy or he was really dangerous. Either way, they took no chances and locked him 
up on suspicion of being a German spy, and so Lie spent the next month in a jail 
cell. Darboux eventually learned of his fate and traveled to Fontainebleau, where 
he pleaded successfully for his release (Darboux 1899). Klein only learned about 
this later, as he and Lie were out of touch with one another until late October. Klein 
spent the months of October and November at home in Düsseldorf on the Rhine 
recovering from gastric fever. 

Lie left France for Italy and wrote to Klein from Turin. After finally reestab-
lishing contact, they began making plans for a meeting. On the final leg of his 
journey back to Norway in November 1870, Lie stopped to visit Klein at his family’s 
home. During his 10-day stay, Lie discussed future plans with Klein, who was 
then preparing to habilitate under Clebsch in Göttingen in January. Shortly before 
Lie left, he and Klein wrote a letter to Kummer, in which they described their 
various adventures over the last months, including their latest findings with regard 
to Kummer surfaces. 

Prior to his sudden departure from Paris the previous July, Klein had discussed 
various properties of the asymptotic curves on Kummer surfaces with Lie. As it 
turned out, however, Klein had been mistaken about some of these. A week or so 
later, back in Düsseldorf, Klein began to see why certain things he had claimed in 
Paris about the singularities of these curves were, in fact, wrong. His letter to Lie 
from 29 July was mainly written in order to alert his friend to these mistakes, which 
Klein now confidently felt he had corrected. What these mistakes were has little 
interest, but how Klein went about attacking this problem reveals a great deal about 
his visual approach to mathematical research. Evidently, he brought the models his 
friend Albert Wenker designed for him in Berlin back to his parent’s home. One of 
these was a Kummer surface with 16 real nodes, precisely the type of model Klein 
needed in order to follow the course of the asymptotic curves (see Fig. 6.5). What 
the gendarmes perhaps took to be a sketch of “troop movements” in his letter to Lie 
were, in fact, asymptotic lines bouncing back and forth between two nodes, as Klein 
briefly explained: 

I came across these things by means of Wenker’s model, on which I wanted to draw 
asymptotic curves. To give you a sort of intuitive idea of how such curves look, I enclose 
a sketch [Fig. 6.4]. The Kummer surface contains hyperboloid parts, like that drawn; these 
are bounded by two of the 16 conics (K1 and  K2) and extend from one double point (d1) 
to another (d2). Two of the curves are drawn more boldly; these are the two that not only 
belong to linear complexes but also are curves with four-point contact. They pass through 
d1 and d2 readily, whereas the remaining curves have cusps there. This is also evident from 
the model. At the same time, one sees how K1 and  K2 are true enveloping curves.24 

24 Klein to Lie, 29 July 1870, quoted from Rowe (2019, 190).
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Fig. 6.5 Copy of the Model of a Kummer Surface designed by Klein in 1871 (Göttingen 
Collection of Mathematical Models and Instruments, model 95). Mathematical Institute, Georg-
August-University, Göttingen 

Thus, the drawing in Klein’s letter shows some of the asymptotic curves that run 
between two nodes on a Kummer surface . S4. These are bounded by segments of 
two conics that pass through these nodes, which determine a hyperbolic region of 
. S4, one of 48 on the entire surface. Asymptotic curves are only visible in regions of 
negative curvature as they are otherwise imaginary curves. The two boldly drawn 
curves are of the 8th order and pass smoothly through the nodes, whereas the 16th-
degree curves have cusps at them. This episode has obvious significance in revealing 
Klein’s use of a model to discover or confirm properties of these asymptotic curves, 
but this was hardly the end of the story. 

Soon after Lie had departed, Klein received a friendly reply from Kummer, 
written on the 26th of November and addressed to both Klein and Lie (Lie 1934, 
667). Klein was elated to read Kummer’s invitation, offering to submit their new 
results on the asymptotic curves on Kummer surfaces for publication by the Berlin 
Academy. This would be the first and last time that Klein’s name would appear on 
a work published by that institution. He set to work right away, sketching a draft in 
seven points that he sent to Lie, who sent back some remarks that Klein worked into 
the final manuscript. He thus wrote up this paper for both of them (Klein 1921–1923,



182 D. E. Rowe

1: 90–97), though in a presentation that underplayed Lie’s original accomplishment, 
which first prompted Klein to study these curves.25 

Kummer submitted the jointly authored note (Klein and Lie 1870/1884) to the  
Berlin Academy at its meeting on on December 15 1870. Klein had to compose 
the final version in great haste the day before, counting on the swift German mail 
service, which delivered the manuscript to Kummer’s hand that morning, so a matter 
of hours before the academy convened. In a letter to Lie, written on 12 December, 
he noted that in the final section, which dealt with Lie’s original finding, he was 
able to shorten the argument by invoking a general theorem (Lie 1934, 667). This 
asserted that when two surfaces touched along a curve so that at each point they have 
a common asymptotic tangent, then this is an asymptotic curve for both surfaces. 
Klein mentioned to Lie that he had not found time to prove this, an ironic remark 
given the circumstances. For over sixty years, this paper was reprinted and cited, but 
apparently no one ever commented about this claim. Finally, Poul Heegaard, in his 
commentary on the paper for volume 1 of Lie’s collected works, described a simple 
counterexample that refuted Klein’s assertion in the form he had stated it (Lie 1934, 
672).26 

Soon afterward, Klein, who had yet to celebrate his 22nd birthday, began his 
teaching career as a private lecturer in Göttingen. Clebsch had assured him that 
he would not have to submit a second dissertation (Habilitationsschrift) in order 
to qualify, but merely deliver a lecture before a small group of professors in 
the philosophical faculty. Klein’s topic, interestingly enough, was a discussion of 
Plücker’s complex surface, which gave him the opportunity to discuss one of the 
models Wenker had made for him (Tobies 2021, 89). 

Only ten days later, Clebsch presented a new paper, Klein’s eighth publication, 
to the Göttingen Scientific Society (Klein 1871a). In this short note, he showed 
how one can employ Jacobi’s so-called elliptic coordinates to parameterize the 
lines in space relative to a Kummer surface . S4 and its corresponding cosingular 
family of quadratic complexes. The paper is a noteworthy example of how Klein 
combined Anschauung and heuristic techniques with sharp analytical methods. In 
spirit, this was much like Plücker’s style, but undertaken during an era when more 
sophisticated tools had become available. 

Klein wrote the equations for this family .K(σ) in the form 

. 
∑ x2

i

ki + σ
= 0,

∑
x2
i = 0, i = 1, . . . , 6.

Recall that a line .(xi) belongs to four complexes corresponding to the four values of 
. σ determined by these equations. Denoting them by .(x, y, z, t), Klein called these 
the elliptic coordinates of the line, which are distinct for a line in general position

25 This was duly noted by Engel and Heegaard in their notes on this paper; see Lie (1934, 674). 
26 The claim is correct if one assumes the common asymptotic tangents are also tangents to the 
curve along which the surfaces touch. 
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relative to . S4. A singular line, on the other hand, together with its associated . S4, 
determines the parameters uniquely. This then means that two of the coordinates will 
be equal, say .z = t ; .(x, y, z, z) are then tangents to . S4. If one fixes the coordinates 
.x, y, then varying z yields tangent lines through a point .P(x, y) ∈ S4. When three 
coordinates are equal, the lines are asymptotic tangents; when they are equal in 
pairs, then they will either lie in one of the 16 tropes or pass through one of the 16 
nodes. If all four are equal, then they are either tangents to one of the 16 conics in 
the tropes or are generators of one of the 16 cones with a node as vertex. 

Klein noted further that one can use the coordinates to parameterize the 
respective complexes and congruences. Thus, fixing a single coordinate, say t , in  
place of the parameter . σ yields a single complex. Fixing two coordinates, say . z, t , 
then produces a congruence, and if .z = t this will be a congruence of singular 
lines tangent to . S4. The six . ki in the equation play a special role in connection with 
the six fundamental complexes .xi = 0. Thus, .z = t = −ki yields one of the six 
congruences of double tangents to . S4, each of which lies in a .xi = 0. As noted, when 
.y = z = t the lines belong to three complexes, so they are generators of a quadric 
surface that determines an asymptotic curve on . S4. In case .y = z = t = −ki , the  
lines will have four-point contact with . S4, as Klein mentioned in his letter to Lie 
cited above. Fixing all four coordinates determines 32 associated lines that satisfy 
the condition .x2

i = 0. Recalling that each plane . Π contains four singular lines that 
are tangent to the quartic curve .Π ∩ S4, the 32 lines that arise when . x = y = z = t

are pairs of tangents to the 16 conics, which are double curves in the tropes of . S4. 
Klein then followed Jacobi’s analytical argument to derive the differential equation 
for the asymptotic curves on . S4. This calculation leads to a very simple result, 
namely if .y = z = t are taken as the parameter . σ , then the remaining coordinate x 
remains constant along the asymptotic curve. 

Klein had none of these elegant analytic tools at his disposal when he first began 
trying to visualize how these curves wound around a Kummer surface. The letter he 
wrote to Lie in July 1870 shows that he got remarkably far by means of qualitative 
arguments based on general geometrical principles and certainly a good deal of 
direct experience with models dating back to his student days with Plücker in Bonn. 
Klein later reproduced nearly the same Fig. 6.4 in the note that he sent Kummer 
for publication in the Monatsberichte of the Prussian Academy. Afterward, this 
picture became a standard part of the growing literature on Kummer surfaces; see the 
discussion in Hudson (1990, 118–121) and Klein’s text and commentary in Klein 
(1921–1923, I: 90–97). Klein had a special fondness for it, too. When five years 
later he married Anna Hegel, granddaughter of the famous philosopher, he ordered 
a wedding dress decorated with these arabesque curves (Tobies 2021, 84). 

The paper described above, Klein (1871a), was one of several shorter works 
that Klein decided not to include in the first volume of his collected works, since 
he published its results as part of a longer paper the next year (Klein 1872). 
That omission was perhaps unfortunate because of what he wrote at the very end, 
after deriving the equation .x = constant for the envelope of lines that determine 
the asymptotic curves. Klein’s brief remark hints at why he and Lie considered 
themselves geometers in the tradition of Plücker:
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My friend Lie and I derived this result [in Klein and Lie (1870/1884)] by geometric means. 
I must add that Lie was the first to recognize the integrability and algebraic nature of the 
asymptotic curves of Kummer surfaces by means of a method very different from the one 
set out here and only mentioned in passing in that paper. (Klein 1871a, 49) 

6.5 Recommended Reading for Classical Geometry 

The mathematical ideas set out in the last two sections fall within the general 
framework of classical geometry. Much of the vast primary literature from the 
nineteenth century devoted to that field was soon forgotten once more rigorous 
language and methods became standard. Another major obstacle for most readers 
today is that the geometers from that earlier era wrote mainly in German and 
Italian. The English language only took on prime importance over the course of the 
twentieth century. Yet, even a well-trained mathematician who can read these older 
papers in their original languages should not attempt to do so before first gaining a 
solid understanding of the basic conceptual tools and methods that mathematicians 
like Klein and Lie took for granted. Luckily, I can suggest some works (in English!) 
that make it possible to gain a general appreciation for this subject, but which can 
also suggest why a modern mathematician might be interested to know what line 
geometry was all about. 

A key to understanding nearly all of Felix Klein’s mathematics stems from 
what he and others called Anschauliche Geometrie. Although this approach was 
often attached to Klein’s name and legacy, it was also taught with great success 
by Hilbert in the 1920s. He later enlisted Stefan Cohn-Vossen to prepare the 
expanded edition of his lectures that they published together as (Hilbert and Cohn-
Vossen 1932). Probably at the prompting of Hilbert’s former student Max Dehn, 
who spent his last years at Black Mountain College in the mountains of North 
Carolina, Dehn’s student Peter Nemenyi (not his father Paul, as stated in Wikipedia) 
published the English translation under the title Geometry and the Imagination 
(Hilbert and Cohn-Vossen 1952/1999). The book is packed with over 300 diagrams, 
including images of several models, beginning with the simplest examples from 
line geometry, namely ruled quadric surfaces. Continuity and counting arguments, 
like those given above, abound, whereas formulas and calculations are held to a 
minimum. Although the informal presentation is meant to be accessible for those 
with little background in higher mathematics, its visual dimension has had great 
appeal for many mathematicians over the last ninety years. 

A particularly useful guide to several geometrical topics from the nineteenth 
century is Dirk Jan Struik’s Lectures on Classical Differential Geometry (Struik 
1961), which was written somewhat in imitation of the informal approach of that 
era. As Jeremy Gray has often emphasized, this was the century that “invented 
rigor,” especially in analysis. Classical differential geometry eventually became 
more rigorous, too, but mainly toward 1900, so Struik’s book not only imparts a 
good deal of older geometrical knowledge it does so in the spirit of its time. Line
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geometry in the tradition of Plücker and Klein does not appear in the book, but many 
related topics do, some directly relevant to the discussions above. 

An excellent way to gain an impression of Klein’s work in line geometry is to 
pick up a copy of Kummer’s Quartic Surface (Hudson 1990), which is still in print 
today. This monograph is more technically demanding than the other two books, but 
the topics it touches on provide an exceedingly clear idea of how a talented writer 
thought about geometry ca. 1900. The book was first published in 1905, one year 
after the death of the Cambridge geometer Ronald W.H.T. Hudson, who at age 28 
fell while mountaineering in Wales. Much of Hudson’s book was based on Klein 
(1870), Klein’s first major paper on line geometry. As described above, that densely 
written tour de force literally rewrote the subject exactly one month after Klein had 
completed his work on Plücker (1869). Hudson cited Kummer’s work, of course, 
and he noted further how to derive the special case of a Fresnel wave surface. These 
topics and much more are presented very elegantly in his book, which in some 
respects can be considered the last word on Kleinian line geometry. 

The algebraic geometer Wolf Barth first came upon this classic in 1972 and soon 
fell in love with it, so he was very pleased when Cambridge University Press decided 
to reprint it in paperback. Barth’s opinions about the book are scattered throughout 
his description of its contents, which he discusses chapter by chapter (Hudson 1990, 
xi–xxi). Part of what makes this Foreword so interesting is that Barth often writes as 
though the reader won’t believe his or her eyes. On the one hand, Barth was in awe of 
Hudson’s ability to explain complicated geometry but, on the other, shocked by his 
clumsy wordiness when it came to something as simple as a group action. The latter 
problem pops up in the very first chapter, where Hudson describes the configuration 
of singular points and planes of a Kummer surface (David Mumford dubbed this the 
Heisenberg group). In Chapter 4, Barth introduces the relevant concepts from line 
geometry, about which he writes: “the language is old-fashioned, but I have never 
seen a modern exposition of all this lovely geometry.” 

In Chapter 5, Hudson unveils the key discovery made by Klein, namely, that 
a Kummer surface is the common singularity surface for a 1-parameter family of 
quadratic line complexes. Then, in Chapter 6, he takes up the case of a Plücker 
complex surface (about which, see Section 6.3 above). In 1990, Barth wrote that he 
was convinced this book would be useful to many doing active research. Whether or 
not that actually proved to be the case, it can definitely be said that Hudson’s account 
provides many helpful insights for understanding Klein’s work on line geometry. 
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one another very nicely. More recently, Jeremy has made the case for the importance of Klein’s 
contributions to Galois geometry (Gray 2018, 171–188; Gray 2019). Alongside these works, he 
also dared to write an intellectual biography of Henri Poincaré (Gray 2013), thereby filling one of
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the yawning gaps in the literature. Having benefited from these works and many others over the 
course of my career, it gives me great pleasure to take part in this celebration of Jeremy’s 75th 
birthday. 
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Chapter 7 
Poincaré and Arithmetic Revisited 

Catherine Goldstein 

Abstract Henri Poincaré’s forays into number theory have often been reduced 
to his pioneering use of automorphic forms or his contribution to the arithmetic 
of elliptic curves. We examine here all of his arithmetical papers, in particular 
the earliest, those devoted to the study of forms. From this apparently marginal 
standpoint, we will be able to grasp several characteristic features of Poincaré’s 
work at large. We show in particular the coherence of Poincaré’s point of view 
and his mastery of the disciplinary issues of his day. We also come back to his 
knowledge of the contemporary mathematical literature and to his links with the 
program of Charles Hermite, in particular for a unity of mathematics built less on 
the reduction to concepts than on a circulation of methods, tools and inspiration in 
all fields of mathematics and for a theory of numbers revealed by the domains of the 
continuous. 

Henri Poincaré is not especially renowned as an arithmetician. According to André 
Weil who devoted an article to the issue, 

Poincaré’s writings that touch upon arithmetic occupy an entire volume (volume V) of his 
Complete Works. One could not deny that they are of unequal value. Some of them have 
hardly any other interest than to show us how carefully Poincaré studied all of Hermite’s 
work and how he assimilated his methods and results.[. . . ]  What  is  particularly  striking  in  
this volume is that in it Poincaré shows very little knowledge of German-language works.1 

1 Weil (1955, p. 207): “ Les écrits de Poincaré qui touchent à l’Arithmétique occupent un volume 
entier (tome V des Œuvres). On ne saurait nier qu’ils sont de valeur inégale. Certains n’ont guère 
d’autre intérêt que de nous faire voir combien attentivement Poincaré à ses débuts a étudié toute 
l’œuvre d’Hermite et comme il s’en est assimilé les méthodes et les résultats. [. . . ]  Ce  qui  frappe  
dans le volume de ses Œuvres dont il s’agit, c’est surtout qu’il s’y montre fort peu instruit des 
travaux en langue allemande.” 
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Nonetheless Weil singled out two major contributions, which may attest to 
Poincaré’s universal and long-lasting genius: Poincaré’s use of non-Euclidean 
geometry in the theory of ternary quadratic forms (Poincaré 1882b, 1886b, 1887), 
which Weil prefers presenting as the first example of an arithmetically-defined 
discontinuous group, and Poincaré’s celebrated paper on points with rational 
coordinates on elliptic curves defined over the field of rational numbers (the origin 
of Weil’s own 1928 thesis) (Poincaré 1901). To these two gems, which still survive 
in the living memory of mathematics, Nicolas Bergeron has more recently added an 
article on invariants (Poincaré 1905a), published by Poincaré on the occasion of the 
centenary of Peter Gustav Lejeune Dirichlet, and viewed from the perspective of the 
modern theory of automorphic forms (Bergeron 2018). 

Seen from such points of view which correspond to the disciplinary context of the 
second half of the twentieth century and beyond, Poincaré’s results appear as iso-
lated and scattered, of little significance in illuminating the global characteristics of 
his work. Here, on the contrary, I would like to restore the synchronic configuration 
in which these results are inscribed, that of the last third of the nineteenth century. 
My first and main objective is to show the coherence of Poincaré’s interventions 
in number theory, a coherence that testifies, in a domain that was a priori marginal 
for him, to several characteristics of his work, in particular his great mastery of the 
disciplinary issues of his time and his ability to reformulate them in an approach 
that was specific to him. Such a mastery is rooted in a knowledge of the state 
of the art in mathematics and thus of previous mathematical literature in one 
form or another. As Poincaré’s relation to his predecessors has often puzzled his 
commentators, two secondary objectives of the present paper are to assess more 
clearly Poincaré’s awareness of the international literature, in particular of the work 
of German mathematicians, and to discuss in more detail the components of his 
interactions with Charles Hermite and with Hermite’s mathematics.2 

7.1 Poincaré’s Corpus on Arithmetic 

To delineate precisely the corpus to be constructed for our purpose is not as 
obvious as it may seem. As is well-known, a complete numbered bibliography was 
provided by Poincaré himself in the classical exercise of his Notice sur les travaux 
scientifiques, preparatory to a candidacy for the French Academy of Sciences.3 

This bibliography was extended by him in 1901, at the request of Gösta Mittag-

2 In this respect, I am only completing for arithmetic, and confirming, the conclusions of the fine 
article that Frédéric Brechenmacher devoted to Poincaré’s algebraic practices (Brechenmacher 
2011). 
3 See in particular Poincaré (1886c). Poincaré was elected in 1887, after having been ranked 
increasingly higher on the lists of several previous elections, as was the tradition at the time (Gray 
2013, p. 162). 
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Leffler, then reproduced and completed after his death in a special issue of Acta 
mathematica4 and of course in Volume V of Poincaré’s Œuvres in 1950. 

The bibliography is organized by journal and not by theme. But in the structured 
presentation of his work that accompanies it, Poincaré gathered 16 articles under 
the heading “Arithmetic”, to which Albert Châtelet, the editor of the Volume V 
of Poincaré’s Œuvres in 1950, added several more, most of them published after 
1900.5 However, the Volume V of Poincaré’s Œuvres is explicitly devoted to both 
algebra and arithmetic. In the bibliography at the beginning of the volume, Châtelet 
thus indiscriminately gathered together articles that Poincaré himself had put under 
the headings “Algèbre” or “Algèbre de l’infini” (Algebra of the infinite) in 1901, 
as well as later texts belonging (according to Châtelet) to one of these headings 
(“Arithmétique”, “Algèbre”, “Algèbre de l’infini"). Then, the whole volume is 
organized in sixteen sections, the first five being on algebraic, the last eleven on 
arithmetical themes—this thematic distribution being itself only loosely based on 
Poincaré’s presentation for the earlier texts, without respecting a chronological 
order. It provides a list of 20 articles devoted to arithmetic (20 among the 491 items 
of the bibliography published in 1921). 

However, the classification of this small set of texts as “arithmetic” was not 
shared by all mathematicians in Poincaré’s era. In the Jahrbuch über die Fortschritte 
der Mathematik, 3 of these 20 articles were not reviewed at all (probably because 
their journal of publication was not included at the time among the titles taken 
into account in the Jahrbuch). Châtelet had included in his list the part devoted 
to arithmetic and algebra of a survey on the future of mathematics, presented in 
absentia at the fourth International Congress of Mathematicians, held in Rome, 
and reproduced several times in a variety of journals (Poincaré 1908a); it was 
classified as “Philosophy” by the Jahrbuch. Moreover, 4 articles among the 20 
were classified as algebra; for one of them, this classification is understandable, 
as the article is the second half of a two-part investigation, one on the algebraic, the 
other on the arithmetic, theory of forms, and the two parts were simply reviewed 
together. But, more surprisingly, and despite the word “arithmetic” in their titles, 
articles on the application of Fuchsian functions to arithmetic and on arithmetical 
invariants were also classified as algebra or function theory. As for the celebrated 
paper on the arithmetic of curves (Poincaré 1901), it was classified as analytic 
geometry!6 Another classification is that of the Répertoire bibliographique des

4 (Poincaré 1921). The number (38) of the volume appears to date it to the year 1915, but, according 
to Mittag-Leffler, it was finally printed only in 1921 because of the war. 
5 There are small discrepancies in the lists. For instance, the two earliest items, two notes to the 
Comptes rendus de l’Académie des sciences in 1879, are counted as either one or two, depending 
on the list. Note that there is also a misprint in Châtelet’s list, the article 122 should be instead 127 
cf. Poincaré (1921, p. 9) and Poincaré (1950, p. 16). 
6 Some of these papers have been reclassified as number theory in the recently-created online 
database integrating the Jahrbuch and zbMATH Open, using a modern classification of all articles. 
However, the 1901 paper totally escaped the attention of the reviewers, probably because of its 
original classification and did not receive any modern MSC-headings (September 2022). 
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Fig. 7.1 The distribution of Poincaré’s articles on arithmetic by year 

sciences mathématiques (launched by a committee headed by Poincaré himself!): 
only 2 articles—on the distribution of prime numbers, published in 1891—were 
indexed in the section on number theory (section I). The others were either in the 
section B (which includes linear substitutions, invariants and the algebraic theory 
of forms) or in the section D (general theory of functions). As for the Catalogue of 
Scientific Papers 1800–1900, issued by a committee of the Royal Society of London 
in 1908, it also classified most of the relevant part of Poincaré’s papers published 
before 1900 not in Number Theory (rubrics 2800–2920), but under the headings of 
“Non-Euclidean Geometry” (6410), “Automorphic Functions” (4440) or “General 
Theory of Quantics” (the English terminology for algebraic forms, 2040).7 

Such variations are indicative of the uncertain status of number theory circa 
1900. They may also hint at the role played by Poincaré in the extension and 
restructuration of the domain during the twentieth century. How then to select the 
texts on which to focus for our study? Confronted by the same problem for algebra, 
Frédéric Brechenmacher took a unique text as his point of departure, from which he 
unfolded an intricate web of conceptual and disciplinary settings (Brechenmacher 
2011). Here, the chronology provides us with a clue; the distribution of our 20 
potential candidates for the study of Poincaré’s arithmetic (see Fig.7.1) clearly 
displays an initial concentrated period, while Poincaré’s best known, later papers 
are rather chronologically isolated.

7 On the history of mathematical reviewing and the use of these classifications, see Siegmund-
Schultze (1993), Nabonnand and Rollet (2002), Goldstein (1999), Goldstein and Schappacher 
(2007b). 
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In his 1886 presentation, Poincaré explains that his research on arithmetic 
concerns exclusively the theory of forms.8 As explained above, my purpose is not to 
study Poincaré’s influence on the development of number theory, but the coherence 
of his arithmetical work and its sources. I shall thus first examine in some detail the 
15 articles published before 1890, then briefly, for reasons of space, discuss some 
of their relations to the later articles.9 

7.2 The Arithmetic Theory of Forms in the Nineteenth 
Century 

Although the work of German number theorists, such as Ernst-Eduard Kummer, 
Richard Dedekind or David Hilbert, is better known, hundreds of papers on number 
theory (even according, say, to the classification of the Jahrbuch) have been 
published by French authors and in French journals in the last decades of the 
nineteenth century, in particular in the Comptes rendus of the French Academy. 
They can be gathered roughly in three main clusters, which can be defined and 
distinguished by their references, their sources of inspiration, their methods and 
some of their practices of publication. One of these clusters blossomed in particular 
thanks to the French Association for the Avancement of Science (launched in 1872), 
which coordinated teachers, engineers, military and amateurs with a strong interest 
in mathematics. The two others were mostly restricted to academia and strongly 
relied on analytic methods as well as complex functions and numbers; the difference 
between them was mostly thematic and testified to their sources, Hermite and 
Kronecker’s works for one, Dirichlet’s and Riemann’s on the distribution of prime 
numbers for the other.10 Poincaré figured prominently in the second cluster, besides 
authors like Camille Jordan, Émile Picard, Léon Charve, Georges Humbert or, 
later, the editor of Volume V of Poincaré’s Œuvres himself, Albert Châtelet. Their 
main topic was the arithmetical study of algebraic forms, that is, of homogeneous 
polynomials in n variables . xi , with coefficients .aij in various sets of numbers 
(ordinary integers, real numbers, and sometimes algebraic integers, in particular). 

Two important aspects should be emphasized. First of all, this cluster was 
international; we may mention for instance the work of Henry Smith in England, 
of Eduard Selling or Paul Bachmann in Germany or of Luigi Bianchi in Italy. Then, 
it largely benefited from the legacy of a research field which blossomed in mid-
century and that Norbert Schappacher and myself have called “arithmetic algebraic

8 Poincaré (1886c, p. 61): “Mes recherches arithmétiques ont exclusivement porté sur la théorie 
des formes.” 
9 This part of Poincaré’s work is presented in the ninth chapter of Jeremy Gray’s biography of 
Poincaré (Gray 2013, pp. 466–488), to which my present text can be considered as a footnote. 
10 For the constitution of these clusters and details on each of them, see Goldstein (1994, 1999), 
Goldstein and Schappacher (2007b). 
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analysis” (Goldstein and Schappacher 2007a, 24–55); however, after 1870, several 
parts of this research field became proper disciplines—in the sense of an “object-
oriented system of scientific activities” (Guntau and Laitko 1987)—with its own 
subject matter, its key concepts, its main problems and soon its textbooks and theses. 
This is particularly the case for the (arithmetical) theory of forms, see for example 
Smith (1861–1865), Charve (1880), Bachmann (1898). 

If the study of sums of squares, in particular, began much earlier, a common 
source for the arithmetic theory of forms in the nineteenth century was the fifth 
section of Carl Friedrich Gauss’s Disquisitiones Arithmeticae, published in 1801. 
In this section, Gauss studied binary quadratic forms with integer coefficients, that 
is, expressions .f (x, y) = axx + 2bxy + cyy, with .a, b, c ∈ Z and two variables 
x, y (and launched the study of ternary quadratic forms, with three variables x, y, 
z). Two such forms f and g are said to be equivalent (or in the same class) if they 
are the same up to an invertible linear change of variables with integer coefficients: 
.g(x, y) = f (αx+βy, γ x+δy), where .α, β, γ, δ are integers and .αδ−βγ = ±1.11 

Gauss singled out the determinant .D = b2 −ac of the form f as a key quantity; any 
two equivalent forms have the same determinant, that is, D is invariant under the 
linear transformations considered above. Reciprocally, for a given determinant D, 
Gauss proved that there are only finitely many different classes of equivalent forms. 
He also defined what would be the two main problems of the theory of forms for the 
whole of the nineteenth century: 

I. Given any two forms having the same determinant, we want to know whether or not they 
are equivalent [. . . ] Finally we want to find all the transformations of one form into the other  
[. . . ].  
II. Given a form, we want to find whether a given number can be represented by it and to 
determine all the representations (Gauss 1801/1966, §158, p. 113). 

While the second problem, for particular forms such as sums of squares, had been 
in the spotlight previously, the first would take center stage during the remainder of 
the century. This is indeed the problem that Poincaré (who nonetheless devoted two 
articles to the second problem) emphasizes at the beginning of his first paper on 
quadratic forms: 

The main problems relating to quadratic forms can be reduced as one knows to a single one: 
Recognizing whether two given forms are equivalent, and by what means one can pass from 
one to the other.12 

This shift in interest went hand in hand with a view of classification as a central 
object of research in mathematics as well as in the natural sciences.13 “Science”, 
Poincaré would write in 1905, “is above all a classification, a manner of bringing

11 Gauss calls the two forms f and g properly equivalent if .αδ −βγ = 1. I shall not comment here 
on these different types of equivalences, see Goldstein and Schappacher (2007a, pp. 8–13). 
12 Poincaré (1879a, p. 344): “Les principaux problèmes relatifs aux formes quadratiques se 
ramènent comme on le sait à un seul : Reconnaître si deux formes données sont équivalentes, 
et par quel moyen on peut passer de l’une à l’autre.” 
13 On this issue, see Knight (1981), Tort (1989), Rey (1994), Lê and Paumier (2016). 



7 Poincaré and Arithmetic Revisited 195

together facts which appearances separate, although they are bound together by 
some natural and hidden kinship. Science, in other words, is a system of relations.”14 

Relations between forms, from the point of view described above, manifest 
themselves through linear transformations. Their study, including the study of those 
transforming a form into itself, became an important topic in the nineteenth century, 
as well as the search for quantities, such as the determinant, that are invariant under 
such transformations and can be used as characteristics in the classification. Gauss 
also completed what would be a model for the classifications of forms in the future: 
to find good, “simple” (in a sense to be explained) representatives of each class of 
forms (the so-called reduced forms), to study the possible equivalence among the 
reduced forms and to explain how to transform any form into a reduced form of its 
class. In the case of the binary quadratic forms with integer coefficients and with 
a strictly negative determinant (the case of definite forms), for instance, one can 
choose in each class an essentially unique reduced form such that 

. − a < 2b ≤ a < c or 0 ≤ 2b ≤ a = c. (7.1) 

There are a finite number of such reduced forms for a given D and every form is 
equivalent to a reduced form. It is notable that for a reduced form, the coefficient a is 

then less than .2

√−D

3
(a bound which only depends on D, but not on the particular 

class of the form); since .a = f (1, 0) is obviously a value of the reduced form at 
integer values of .(x, y), it is also a value at integers of all the forms in the same 
class, obtained by a linear change of variables from the reduced form. This remark 
gave rise to questions about the smallest non-zero value of the numbers represented 
by a form. For .D > 0, there is no longer a unique reduced form in each class, but 
Gauss organized equivalent reduced forms into finite “periods”. In this case, there 
are also infinitely many transformations of a form into itself, such transformations 
being associated to the solutions of the Pell-Fermat equation .T 2 − DU2 = 1. 

Equivalent forms obviously represent the same integers, but the reciprocal is not 
true. Again, in order to solve the second problem, Gauss refined his solution to 
the first problem—more precisely, to his classification of forms—with new criteria, 
leading him to the concepts of order and genus, two new characteristics attached to 
a form. Last, but not least, he defined a relation called the composition of forms: a 
form F is said to be a compound of the forms g and h if there exists linear functions 
X and Y of .xu, xv, yu, yv such that .F(X, Y ) = g(x, y)h(u, v) (with extra technical 
conditions). This construction is of course useful for the representation of integers 
by forms, as a form composed of two others of the same determinant can represent 
the product of two integers which are represented respectively by the two forms. But 
its importance is more subtle; this relation among forms is not a binary operation,

14 Poincaré (1905b, p. 172): “[Q]u’est-ce que la science? [. . . ]  c’est  avant  tout  une  classification,  
une façon de rapprocher des faits que les apparences séparaient, bien qu’ils fussent liés par quelque 
parenté naturelle et cachée. La science, en d’autres termes, est un système de relations.” 
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that is, it is not possible to define “the” compound of two forms. However, it 
behaves nicely with respect to equivalence and turns into such a binary operation 
on classes of forms—that is, Gauss could define “the” composition of two classes— 
a remarkable idea, as it displayed an operation on less than familiar objects, classes 
of forms, made of infinitely many algebraic expressions. As such it became a model 
for operation on sets of mathematical objects. In the Disquisitiones arithmeticae, 
however, composition of forms relied upon complicated and extensive algebraic 
computations; a conundrum for many readers of Gauss who would then try to 
simplify or redefine it. 

Among the numerous works inspired by Gauss, some were decisive in the 
construction of a discipline around algebraic forms. At the end of the 1830s, Peter 
Gustav Lejeune-Dirichlet introduced infinite series, built from inverses of quadratic 
forms with integer coefficients, in order to compute the number of classes of forms 
for a given determinant. Other analytic means, in particular elliptic functions, were 
also used by various authors to refine or generalize such computations. A decade 
later, Hermite began a series of articles devoted to forms; considering first quadratic 
forms with any number of variables and with real coefficients, he established 
through a close reading of Gauss’s Section V bounds for the values of such forms 
at integers, which depended only on the determinant and the number of variables 
(and not on the coefficients of the form). This result, closely linked to the theory 
of reduction as explained above, led him to a variety of applications, from the 
approximation of real numbers by rationals to the properties of algebraic numbers 
or even of complex periodic functions (Goldstein 2007). Hermite also introduced 
his method of “continuous reduction"; he associated to a given problem a family of 
positive definite quadratic forms, indexed by real parameters, and thus transferred 
to the initial situation the reduction procedures for this family (continuously, by 
changing the values of the real parameters, hence the name of the method), in 
particular through a study of the transformations leading to the reduction. 

For instance, if .f (x, y) = ax2 +2bxy +cy2 is an indefinite quadratic form, with 
a positive determinant .D = b2 − ac, one can write .f (x, y) = (x −αy)(x −βy) for 
two real numbers .α, β. Hermite thus associated to f the family of definite quadratic 
forms .fΔ(X, Y ) = (x − αy)2 + Δ(x − βy)2, with a real positive parameter . Δ. 
For each . Δ, there exists a linear transformation such that the transformed form 
.FΔ of .fΔ is reduced. Applying to f the transformation(s) reducing . fΔ, for each 
. Δ, Hermite showed that there are only a finite number of transformed forms, 
reproducing themselves periodically; they define the reduced forms associated to 
f . Remarkably, here, the focus shifted from the forms to the transformations and 
these transformations became the key elements in the reduction process. 

The mid-century witnessed a blossoming of the study of such linear transfor-
mations, and it was the nature of their coefficients that defined the domain of 
research: it was considered to be arithmetic when the coefficients were integers, 
algebra when they were real or complex general numbers (Brechenmacher 2016). 
The determinant, as explained, appeared as the simplest instance of invariants of 
forms—functions built from the coefficients of the forms which certain types of 
transformations leave unchanged (sometimes up to a well-controlled term). In turn,
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such invariants played a key role in the classification of forms and invariant theory 
was seen then as the new and fruitful direction for algebra at large (Fisher 1966; 
Crilly 1986; Parshall 1989, 2006, 2023). 

When Poincaré entered the scene at the end of the 1870s, a whole discipline 
attached to the arithmetic of forms had thus been established, one of the first in 
number theory (Goldstein and Schappacher 2007a, p. 54).15 Besides its subject 
matter, it included core concepts such as invariants and reduced objects, theorems 
about the two main problems (equivalence and the representation of integers by 
forms), a systematization based on the classification of forms, methods of proof 
based on the study and use of linear transformations such as that of continuous 
reduction. It constituted a separate subsection of the section on number theory in 
the recently founded Jahrbuch über die Fortschritte der Mathematik. As we will 
see, Poincaré’s memoirs took its place on this map in a quite natural way. 

7.3 Lattices as a Framework for Forms 

Poincaré’s first articles on forms were published at the beginning of his career as a 
mathematician, in 1879.16 The two first items on his list of works are these notes 
at the Academy of Sciences in August and November 1879, parts of a memoir for 
which Hermite, Joseph Bertrand and Victor Puiseux were designated as reviewers. 
A version of these results was then expanded into a longer article in Journal de 
l’Ecole polytechnique (Poincaré 1880c). This situation is standard and it is difficult 
to establish a strict chronology for the subtopics relative to forms that Poincaré 
handled between 1879 and 1889. Most often, he presented a memoir to the Academy 
for review, publishing one or two short notes to announce his results, sometimes 
withdrawing the larger memoir before any referee report and publishing a long ver-
sion of his results in another journal several years later. Roughly speaking, Poincaré 
discussed two main situations. First of all, that of quadratic forms, mostly binary and 
ternary, for which the main results were well-known; for them, Poincaré introduced 
in particular new geometrical viewpoints, based either on lattices (Poincaré 1879a,b, 
1880c) or on non-Euclidean geometry (Poincaré 1882b, 1886b, 1887) and new 
analytical invariants (Poincaré 1880c, 1882a). Then, that of cubic forms, mostly 
ternary and quaternary, as Hermite and others had already thoroughly explored 
the binary cubic case (Poincaré 1880a,b, 1881c, 1882c, 1886a); for these forms, 
Poincaré aimed at classifying them, establishing in particular relations between his 
classification and some already known classifications of algebraic curves. Moreover,

15 It is important to keep in mind that the so-called “algebraic number theory”, that is, in fact, 
the theory of algebraic number fields, has yet not reached that same stage at the time, despite the 
publication of Dedekind’s first papers, nor had analytic number theory. 
16 As a student, Poincaré also published a small contribution to the Nouvelles annales de 
mathématiques, in 1874, see Gray (2013, p. 157). 
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if some aspect of his research lent itself easily to generalization, for instance, to 
a greater number of variables, he would discuss this general situation (Poincaré 
1881b, 1885). For reasons of space, I will thus not strictly respect chronology, but 
will discuss each subtopic separately. 

The 1879 manuscript and notes on forms were apparently the occasion of a 
renewal of scientific links with Hermite, who had been his teacher at the Ecole 
polytechnique a few years earlier.17 At least until Poincaré’s 1887 entry into the 
Academy of Sciences, which Hermite had supported for several years in a row with 
laudatory reports and with the promotion of Poincaré among his colleagues, both 
maintained regular and close relations—and Poincaré would play a decisive role 
in the organization of Hermite’s Jubilee in 1892. Hermite’s judgment on Poincaré, 
entrusted in a letter to Gösta Mittag-Leffler in March 1882, is well-known: 

In confidence, with great fear of being overheard by Madame Hermite, I will tell you that 
of our three mathematical stars [Paul Appell, Emile Picard and Poincaré], Poincaré seems 
to me the brightest. And then, he is a charming young man, who, like me, is from Lorraine 
and who knows my family very well.18 

This statement is not an isolated one. Despite some opposition, on family as 
well as on institutional grounds, Hermite insisted that “Poincaré is unquestionably 
superior to Appell and Picard in terms of both the importance of his discoveries and 
the number of published works.”19 This on-going support is expressed in several 
ways: Hermite sent Poincaré’s thesis to Mittag-Leffler (Hermite and Mittag-Leffler 
1984, I, p. 118), asking him to recommend Poincaré’s work to Hugo Gyldén or Karl 
Weierstrass (Hermite and Mittag-Leffler 1984, I, p. 150); he provided explanations 
on Poincaré’s work to Georges Halphen (Poincaré 1986, p. 158). Reciprocally, he 
fed Poincaré with mathematical literature, commented on his results and, as we

17 Hermite and Mittag-Leffler (1984, vol. 5, p. 110) : “Je crois à ce jeune homme, qui a été mon 
élève à l’Ecole polytechnique en 1875, un véritable génie” (I believe that this young man, who 
was my student at the Polytechnique in 1875, has a true genius). Hermite wrote to Poincaré on 
November 22, 1879 that he had not yet seen the August manuscript, but would be delighted to read 
at the Academy the new note prepared by Poincaré (it would take place on November 24) (Poincaré 
1986, p. 164). Let us remind our readers that Poincaré also defended his thesis on differential 
equations and lacunary series, preceded by a short article on this topic, in August 1879; but Hermite 
was not a member of the defence committee, composed of Ossian Bonnet, Jean-Claude Bouquet 
and Gaston Darboux. 
18 Hermite and Mittag-Leffler (1984) : “Tout bas et en confidence, ayant grande crainte d’être 
entendu de Madame Hermite, je vous dirai que de nos trois étoiles mathématiques [Appell, Picard 
et Poincaré], Poincaré me semble la plus brillante. Et puis, c’est un charmant jeune homme, qui est 
lorrain comme moi et qui connaît parfaitement ma famille.” Also quoted in Gray (2013, p. 161). 
Appell was Hermite’s nephew by marriage and Picard his son-in-law, and they were thus both 
supported by Hermite’s family members. On the other hand, both had been students at the Ecole 
normale supérieure, which at that time, under the leadership of Louis Pasteur, was beginning to 
take over the training of scientific elites, against the influence of the Polytechnique. 
19 Hermite and Mittag-Leffler (1984, vol. 5, p. 214): “Poincaré est incontestablement supérieur à 
Appell et à Picard sous le double rapport de l’importance des découvertes et du nombre des travaux 
publiés.” 



7 Poincaré and Arithmetic Revisited 199

shall see, pushed him to rewrite, develop or explore more deeply and more precisely 
certain topics. 

In Poincaré’s first papers on forms, however, Hermite is not mentioned.20 

Poincaré acted here as he often would do in the future; he first re-read or re-
established in a specific framework results that were already known, at least 
partially. In our case, the basic results are those of Gauss’s Section V, but the 
framework is more surprising. In Poincaré’s terms: 

The link between Bravais’ theory of parallelogrammatic lattices and that of quadratic 
forms was noticed long ago, but was restricted until now to definite forms. The main 
objective of this Memoir is to show that nothing is easier than applying the same 
geometrical representation to indefinite forms. First I had to study the properties of these 
parallelogrammatic lattices and to sketch out, so to speak, their arithmetic. [. . . ]. The lattices  
enjoy properties which recall several of the properties of numbers.21 

The representation of positive forms by lattices had been indeed popularized 
much earlier among mathematicians through Gauss’s review of Ludwig August 
Seeber’s theory of reduction for ternary quadratic forms (Seeber 1824; Gauss 1831). 
Seeber worked on crystallography and his interest in quadratic forms was primarily 
linked to the modelization of crystal properties. In his review, Gauss explains that, 
if on a plane one chooses two coordinate axes making an angle of cosine . b√

ac
, the  

value at .x, y of a positive definite form, .ax2 + 2bxy + cy2, with .a, b, c integers, 
represents the square of the distance to the origin of the point with coordinates 
.(x

√
a, y

√
c) with respect to these axes. For .x, y integers, the form is thus associated 

to a discrete grid of points, situated at the intersection of two systems of lines 
which are parallel respectively to each of the two axes and evenly spaced (.

√
a for 

one system of lines, .
√

c for the other) (see Fig. 7.2); this double system of lines 
defines a lattice. The plane is thus cut into equal elementary parallelograms (such 
that no point of the lattice lies inside such a parallelogram); the area of each such 
parallelogram is .ac − b2 (that is, the absolute value of the determinant of the form). 
Different lattices can be associated to the same distribution of lattice points, for 
different choices of the systems of lines joining them; the forms associated with 
these different lattices are then equivalent. In this framework, reduction theory can

20 The link to Poincaré’s other early works, on differential equations, with the topic proposed in 
1879 for an Academy Prize has been noted by historians (Gray 2006, 2013, ch. 3). But I have not 
been able to find an explicit incentive for his work on forms. The theme of the decomposition of 
a number as a sum of squares was proposed only in 1881. We note that a topic on crystals was 
also proposed by the Academy for a mathematical prize in 1879 and, given Poincaré’s reference to 
Auguste Bravais’s work on crystallography, this might have played a role in his interest in lattices 
and forms, but I have not found any source to substantiate this. 
21 Poincaré (1880c, pp. 177–178): “Le lien qui existe entre la théorie des réseaux parallélogram-
matiques de Bravais et celle des formes quadratiques a été remarqué depuis longtemps, mais on 
s’est restreint jusqu’ici aux formes définies ; le but principal de ce Mémoire est de faire voir que 
rien n’est plus facile que d’appliquer la même représentation géométrique aux formes indéfinies. 
J’ai dû d’abord étudier les propriétés de ces réseaux parallélogrammatiques et en ébaucher pour 
ainsi dire l’arithmétique [. . . ]. Les réseaux jouissent de propriétés qui rappellent quelques-unes des  
propriétés des nombres.” 
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also be described in geometrical terms: among the various lattices associated to 
the same given regular discrete distribution of points, the lattice corresponding to a 
reduced form in Gauss’s sense is the only one for which the fundamental triangle, 
joining the chosen origin to the nearest points of the lattice, has acute angles; it is 
also the only one for which the elementary parallelograms have their sides smaller 
than their diagonals (Gauss 1831; Dirichlet 1850). This geometrical representation 
of the theory of forms can be extended in the same way to a three-dimensional space 
and ternary forms .ax2 +by2 +cz2 +2a'yz+2b'xz+2c'xy, with three variables, the 
triple system of lines defining a lattice with spacings of .

√
a,

√
b,

√
c, respectively 

and the cosine of the angle between two of the three axes being . a'√
bc

, b'√
ac

, c'√
ab

respectively. 
Poincaré, however, did not refer to Seeber or to Gauss’s review in his arithmetical 

work. Besides Gauss’s Disquisitiones arithmeticae and, for one specific result, 
Eisenstein, Poincaré mentions only Auguste Bravais in Poincaré (1880c). Bravais, 
also an engineer from the Polytechnique and a professor at this school (before 
Poincaré’s time) developed his own theory of lattices, first on the plane in a botanical 
context, then in a three-dimensional setting for crystallography.22 Bravais’s view-
point was neither arithmetical, nor centered on quadratic forms; it relied on the study 
of symmetries and of the effect on lattices of various transformations, in particular 
rotations. But it constituted a common reference among Polytechnicians: Henry 
Résal, the editor of the Journal de mathématiques pures et appliquées following 
Joseph Liouville, referred for instance to Bravais’s in a footnote added to an article 
by Eduard Selling on the reduction of quadratic forms which Hermite strongly 
recommended to all his students (Selling 1877).23 And Camille Jordan explicitly 
followed Bravais’s study of symmetries when he analysed the groups of space 
motions at the end of the 1860s (Jordan 1868–1869). Poincaré used Bravais not 
only as a mere designation of objects (the so-called “Bravais lattices”), but also for 
his proofs of several basic properties on lattices; he would also mention Bravais’s 
work elsewhere, in particular in his lectures on the theory of light (Poincaré 1889, 
p. 195). 

In Poincaré (1880c), Poincaré introduces several notations for plane lattices and 
their points. First of all, a plane lattice can be defined by four numbers .(a, b, c, d), 
the coordinates of the points of the lattice being given as 

.x = am + bn

y = cm + dn

22 Bravais (1850, 1851) and the posthumous collection Bravais (1866). Bravais calls a three-
dimensional lattice an “assemblage”. For a survey of Bravais’s approach in crystallography from 
a group theoretical point of view, see Scholz (1989); for a general presentation of Bravais’s work 
using lattices, see Boucard et al. (2024). 
23 But it is the German version of Selling’s paper, published in 1874, and not its French 1877 
translation, that Poincaré would mention in Poincaré (1882b). 



7 Poincaré and Arithmetic Revisited 201

with integers .m, n.24 Poincaré also designates this lattice .(a, b, c, d) by . 

[
a b

c d

]
. He  

calls the quantity .ad − bc the norm of the lattice (this is the area of an elementary 
parallelogram of the lattice). 

The first part of the 1880 memoir (Poincaré 1880c) is then explicitly devoted 
to the development of an arithmetic of lattices, for the case where .a, b, c, d are 
integers. The objective is to mimic standard concepts of the arithmetic of integers, 
such as multiples, divisors and primes. A multiple of a lattice, for instance, is simply 
a sublattice—that is, all its points are contained among the points of the original 
lattice. Two lattices are then said to be equivalent if each of them is a multiple of 
the other. It is always possible, up to equivalence, to assume that .d = 0; then, two 
lattices such as .(a, b, c, 0) and .(a', b', c', 0) are equivalent if and only if . c = c', b =
b', a ≡ a' (mod b).25 

Using Bravais’s results, Poincaré asserts that the norm of a lattice is the limit of 
the ratio of the area of a circle to the number of lattice points inside the circle when 
the radius increases indefinitely. This allows him to show that the norm of a lattice 
is divisible by the norms of its divisors and that the norms of two equivalent lattices 
are equal. Poincaré then characterizes the smallest common multiple and the largest 
common divisor of two lattices. He defines a “prime” lattice as a lattice the norm 
of which is a prime number, and a “second” lattice as one the norm of which is the 
power of a prime number.26 He concludes with the theorem that any lattice is the 
least common multiple of co-prime second lattices. 

Poincaré’s procedure, and his results, are thus very close to those of Richard 
Dedekind’s theory of ideals, which had been published in French only a few years 
earlier (Dedekind 1876, 1877). For instance, Dedekind defines a multiple of an ideal 
in the following way: the ideal . a is a multiple of the ideal . b when “all the numbers 
of the ideal . a are contained in . b” (Dedekind 1876, p. 287); he then also develops an 
arithmetic of ideals, in order to generalize and simplify Ernst Kummer’s preceding 
theory of ideal numbers. However, while Poincaré, as we shall see, alluded indeed 
to “ideal numbers” in his memoirs, he mentioned explicitly neither Kummer nor 
Dedekind, reinterpreting their theories in his lattice framework. 

Following Poincaré, let us then come back to quadratic forms. He represents now 
a (binary quadratic) form .am2 + 2bmn + cn2 (with .a > 0) by the lattice 

.

⎡
⎣

b√
a

√
a√

b2−ac
Da

0

⎤
⎦

24 The directions of the two systems of lines defining the lattice are then .

(
a

c

)
and .

(
b

d

)
. 

25 As pointed out by Châtelet in the comments of his edition of Poincaré’s works, a unique 
representative of each class of equivalence is obtained if one requires that .a, b, c are positive and 
.0 < a < b. 
26 In French, the word “premier” means both “prime” and “first”, which explains this somewhat 
strange terminology. We would now prefer “primary” instead of “second”. 
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or by 

. 

[
b a√

b2−ac
D

0

]

and its multiples.27 We recall that .D = b2 − ac, which makes it obvious that the 
entries in the last expression are integers when the form has integer coefficients. A 
key point of this expression is to underline its relation with the usual association 
between a quadratic form and a lattice that we have outlined above. In the usual 
representation, valid for definite binary quadratic forms (with .D < 0), the third 

term would have been .
√

ac−b2

a
. As Poincaré explains, his representation allows a 

similar treatment for definite and indefinite forms (those with .D > 0). For definite 
forms, he introduces it as a projection of the usual plane representation on another 
plane, which makes an angle with the first that depends on D. It means in particular 
that the plane hosting the lattices depends on the determinant D (or, from our 
modern perspective, that the representation is proper to one specific quadratic field 
.Q(

√
D)).28 The whole theory Poincaré then develops is associated to the forms of a 

given determinant D, up to the square of an integer (which amounts to normalizing 
the size of the elementary parallelograms). Again, on the plane, the same regular 
distribution of points may correspond to different lattices, and thus give rise to 
different quadratic forms, depending on the way the two systems of parallel lines 
joining these points are chosen. 

Let us now explain Poincaré’s geometrical definition of the theory of reduction 
for binary quadratic indefinite forms. Let .O,A,B be a fundamental triangle of the 
lattice associated to an indefinite form, that is, a triangle with three points of the 
lattice as vertices and such that no other point of the lattice lies inside the triangle. 
Poincaré then constructs an elementary parallelogram of the lattice OABC, OA 
and OB being sides of this parallelogram.29 Then OBC and OAC are two other 
fundamental triangles of the lattice, that Poincaré calls “derived” from the first one 
OAB. In the same way,  OAB is itself derived from two other fundamental triangles 
OAE and OBD (that Poincaré calls the “primitive” of OAB) (see Fig. 7.2).30 

27 There is here of course an abrupt change of notation, as .a, b, c do not mean the same thing 
as before! This type of change is frequent in Poincaré’s early papers. Darboux, for instance, 
complained of precisely this problem when he reviewed Poincaré’s thesis in 1878–1879. 
28 This apparent disadvantage could be seen in a positive way as changing the implicit Euclidean 
metric of the Gauss-Seeber representation into a Lorentzian one. 
29 In the original text, the drawings do not show the lattices, they only sketch the construction of 
the derived and primitive triangles. For convenience, our representation Fig. 7.2 is thus slightly 
different from the original, as well as its normalization. 
30 Again, Poincaré’s terminology is slightly confusing. The words “derived” and “primitive” (in 
Latin or German, in particular) appear in the theory of forms developed by Gauss and some of his 
successors. In their work, a “derived form” is also obtained by applying a certain transformation to 
the initial form. But “primitive” here describes an intrinsic property of the form, for instance that
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Fig. 7.2 A fundamental triangle OAB of a lattice, its derivatives OAC and OBC (left) and its 
primitives OEB and OAD (right) 

For instance, let .x2 − 2y2 be our initial form: its determinant is . D = 2, the  

associated lattice is .

[
0 1
1 0

]
. On the appropriate projection plane, the elementary 

parallelograms of the lattice are squares (the area being renormalized as 1 in the 
projection). The points of the lattice are those of coordinates .(x = n, y = m), 
with n and m integers; the corresponding points A and B are respectively .(0, 1) and 
.(1, 0), the point C being thus .(1, 1). The new elementary parallelogram associated 
to the derived triangle 0AC, for example, is thus .0, A,C', C, with .C' = (1, 2) (the 
other derived triangle .0BC gives rise to .0BCC" with .C" = (2, 1)). Reciprocally, 
0AB is one of the two primitive triangles of 0AC. The new lattice corresponding 

to the elementary parallelogram .0, A,C', C is thus given by .

[
1 1
1 0

]
, and the new 

quadratic form of determinant 2 associated to it is .x2 + 2xy + 2y2. 
The lines .X : √

Dx = y and .Y : √
Dx = −y are called the asymptotes. 

Poincaré calls “ambiguous” a fundamental triangle (such as OAB) such that the first 
asymptote cuts it and the second does not. Exactly one derivative and one primitive 
of an ambiguous triangle are also ambiguous (in our example, OAC is ambiguous 
and OBC is not). The procedure of derivation thus allows Poincaré to construct 
sequences of ambiguous triangles. Relying on a theorem of Bravais, Poincaré is then 
able to show that the binary quadratic forms associated with the successive triangles 
of such a sequence are periodically reproduced. As seen in our example Fig. 7.2, 

its coefficients .a, b, c are co-prime. In this perspective, unlike Poincaré, ‘primitive’ and ‘derived’ 
do not correspond to inverse transformations of each other. Poincaré’s terminology seems more 
akin to that coming from function theory.
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a triangle has a common side with its derivatives; thus, among the finite sequence 
of triangles in a period, subsequences of ambiguous triangles and their successive 
derivatives share a common side, before another side occurs as the common side of 
another subsequence. Poincaré shows that the last triangle (or the first) of such a 
finite subsequence is associated to a reduced binary quadratic form. 

Poincaré also displays the correlated geometrical interpretation of the develop-

ment into continued fractions of . a
√

D

1−b
√

D
: the successive reduced fractions provide 

the coordinates of a vertex of a triangle associated to a reduced form. This 
interpretation will be used by Poincaré in a later note to embody the rational 
approximation of a real number . α, by using the line .y = αx and the Bravais lattice 
of the points with integral coordinates (Poincaré 1884).31 

The following section of Poincaré (1880c) reinterprets in the language of lattices 
the difficult composition of forms introduced by Gauss in the Disquisitiones 
arithmeticae. For this, Poincaré introduces a new multiplication on lattices, which is 
different from the non-commutative general multiplication on which the arithmetic 
of lattices discussed above was based. Let .Am + Bn and .A1m1 + B1n1 be two 
lattices (with .A,B,A1, B1 complex quadratic numbers for the same D), the result 
of this new multiplication is the lattice .AA1μ1 + AB1μ2 + BA1μ3 + BB1μ4, with 
.m, n,m1, n1, μ1, μ2, μ3, μ4 integers.32 Poincaré proves that if a form is composed 
of two others, the corresponding lattice is the (new) product of the lattices associated 
to the two forms, that is, the composition on forms corresponds to a true operation 
on lattices, from which he can deduce Gauss’s results relative to composition. 

At the beginning of the last section of this memoir, Poincaré announces: 

The above considerations make it possible to present in a simple and concrete manner the 
theory of ideal complex numbers that correspond to quadratic forms of determinant D.33 

This reference to ideals is very rare in the French landscape at the time (Goldstein 
1999). Hermite had displayed an interest in Kummer’s work on ideal numbers early 
on (Hermite 1850), but his research aimed at offering alternative proposals to handle 
the arithmetic of algebraic numbers rather than promoting the reception of Kum-
mer’s (or later, Dedekind’s) conceptual enterprise.34 Poincaré situates himself in a 
Hermitian vein here, when he proposes (at least for the quadratic case) to substitute 
plane lattices—themselves embodied in tables of familiar “true” numbers—to an

31 In this note, he also generalizes this construction to the rational approximation of two real 
numbers, by using this time the three-dimensional version of Bravais lattices. We recalled earlier 
the link between the theory of reduction and bounds on the values of the form at integers. Hermite 
had already applied it, for suitable quadratic forms, to the rational approximation of several real 
numbers (Hermite 1850). 
32 The infelicitous notation, again, is Poincaré’s. 
33 Poincaré (1880c): “Les considérations qui précèdent permettent d’exposer d’une manière simple 
et concrète la théorie des nombres complexes idéaux qui correspondent aux formes quadratiques 
de déterminant D.” 
34 See Goldstein (2007) and on Hermite’s emphasis on a “clear” and “concrete” approach in 
mathematics, see Goldstein (2011), and below. 
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“ideal” family constructed by means of divisibility properties, as Kummer did, or 
with a set-theoretical perspective, as Dedekind did. 35 To a (quadratic) real complex 

number .λ + μ
√

D, Poincaré associates the lattice .

[
λ μ

√
D

μ λ

]
. The points of the 

lattice represent the multiple of this number and the (new) product of lattices, as 
defined for the composition of forms, corresponds to the product of two associated 
complex numbers.36 An ideal complex number is then defined by Poincaré as a 
lattice with some simple conditions (which are of course verified for the lattices 
associated to a “true” complex number). The main arithmetical properties of lattices 
are then transferred to these ideal numbers; a prime ideal number, for instance, is 
one for which the norm (of the defining lattice) is a prime and Poincaré proves in 
particular that every ideal number, in his sense, can be decomposed in a unique way 
into ideal prime factors.37 

Although Poincaré only addresses well-known cases in his first articles on forms, 
he clearly had hopes regarding the framework of lattices he has deployed, in 
particular for a generalization to any number of variables. The equivalence of two 
forms (under linear, invertible, transformations with integer coefficients) correspond 
to the equality of the two associated lattices, that is, (as in Bravais’s memoirs), the 
two lattices differ from each other only by a rotation around the fixed origin O, of  
an angle . θ . Poincaré computes the transformations of the forms in terms of their 
coefficients and the angle . θ and reciprocally. But an original and, for Poincaré, 
decisive step is the introduction of new types of invariants. As explained before, for 
a binary quadratic form .ax2 +2bxy +cy2, the quantity .b2 −ac is invariant under all 
linear transformations of the variables of determinant 1, whatever the nature of the 
coefficients of this transformation; this property had given rise to the search for other 
invariant algebraic expressions, associated to forms of various degrees and number 
of variables, during all of the nineteenth century; as the nature of the coefficients 
does not intervene, it was considered to be the algebraic part of the study of forms 
by most authors, in particular Hermite, Jordan or Poincaré himself (Brechenmacher 
2011, 2016). For binary quadratic forms, .b2 − ac was the only algebraic invariant. 
But, as noted by Poincaré, there exist (many) arithmetical invariants, that is, 
expressions which are unchanged under a linear, invertible, transformation with 
integer coefficients. For instance, the series .

∑∞
−∞ 1

(am2+2bmn+cn2)k
(where the sum 

is taken over all the integer couples .(m, n) /= (0, 0)) are such arithmetical invariants.

35 On Kummer’s construction of ideal numbers, see Edwards (1977). On the issues at stake with 
ideal numbers at the time and Dedekind’s approach, see Edwards (1980, 1992), Haubrich (1992). 
Once again, Poincaré seems close to the practical preferences expressed by Dedekind, even if their 
proposals to solve the problems differ (Ferreiros 2007; Haffner 2014, 2019). 
36 See Edwards (2007) on the link between the composition of forms and a theory of ideal numbers. 
37 As pointed out by Châtelet, Poincaré’s viewpoint amounts for complex numbers to the 
representation by a matrix of the multiplication by this number of the elements of a well-chosen 
basis of the quadratic field (Poincaré 1950, p. 174, footnote 2). This matrix point of view on ideal 
theory was adopted by several authors after Poincaré, including Châtelet himself. 
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Poincaré also considers .
∑∞

−∞ 1

(
√

am+ b+
√

ac−b2√
a

n)2k
, which a linear transformation 

with integer coefficients changes by a function of the angle of rotation . θ .38 

He then provides an effective (if not efficient) procedure to decide if two definite 
binary quadratic forms .ax2 + 2bxy + cy2 and .a'x2 + 2b'xy + c'y2 with the same 
determinant .D = ac − b2 = a'c' − b'2 are equivalent (Poincaré 1879b, 1882a). Let 
us consider the (convergent) series 

. φk(q) =
∑ 1

(qm + n)2k
,

the sum being taken over all integers .m, n, except .(0, 0). Assuming that the two 
forms are equivalent, Poincaré expresses the coefficients .α, β, γ, δ of a linear 
transformation between the forms as a function of the coefficients of the forms and 
the real and imaginary parts of 

. 

√√√√aφ1(
b'+i

√
D

a' )

a'φ1(
b+i

√
D

a
)
.

If one computes the values of . φ1 with a sufficient approximation, the values of 
.α, β, γ, δ can be known up to less than .1/2 and one thus gets exact values for these 
integers. It is then sufficient to check if this transformation indeed sends the form 
.ax2 + 2bxy + cy2 into the form .a'x2 + 2b'xy + c'y2. Other series are introduced 
for deciding on the equivalence of indefinite forms (Poincaré 1882a). In both cases, 
Poincaré also shows that the series can be represented by definite integrals (using in 
particular then recent results on elliptic functions by Appell). 

7.4 Representation of Numbers 

Poincaré’s foray into ideal theory did not go unnoticed. For instance, Arthur Cayley 
wrote to Poincaré on October 12, 1883: 

I have to thank you very much for the valuable series of memoirs which you have kindly 
sent me. I see that you have in one of them applied the theory of ideal numbers to the case 
of binary quadratic forms ; it had occurred to me that a very good illustration of the general 
theory would thus be obtained and I am very glad to find that the case has been worked out 
(Poincaré 1986, p. 116). 

Nor was this an isolated instance. As explained earlier, a classical question of 
the theory was the study of the values of forms at integers, and, in particular, the

38 Analogous series had appeared in Dirichlet’s work on the computation of class numbers of 
binary quadratic forms (as well as in his work on prime numbers in arithmetic progressions). 
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representation of integers by such values.39 After a short communication to the 
Academy of Sciences in 1881 (Poincaré 1881b), Poincaré handled this problem for 
general binary forms in a memoir in the Bulletin of the French Mathematical Society, 
of which he had been accepted as a member on April 21, 1882 (Poincaré 1885). 
In this article, he puts ideal theory center-stage, but this time he explicitly adopts 
Dedekind’s terminology, mentioning ideals instead of ideal numbers.40 Poincaré’s 
point of departure, however, is a type of form that Hermite had singled out in several 
memoirs (Goldstein 2007): 

. Ψ(x0, x1, · · · , xm−1) = (x0 + α1x1 + α2
1x2 + · · · + αm−1

1 xm−1)

(x0+α2x1+α2
2x2+· · ·+αm−1

2 xm−1) · · · (x0+αmx1+α2
mx2+· · ·+αm−1

m xm−1),

where .α1, · · · , αm are the roots of an algebraic equation. In other terms 
.Ψ(x0, x2, · · · , xm−1) is the norm of the complex integer . x0 + α1x1 + α2

1x2 +
· · · + αm−1

1 xm−1 (as well as of its conjugates). 
Such decomposable norm-forms were here used by Poincaré (as had been done 

earlier by Hermite) as a link between ideal theory and the representation of integers 
by binary forms. More precisely, let F be an arbitrary binary form 

. F(x, y) = Bmxm + Bm−1x
m−1y + · · · + B1xym−1 + B0y

m

with the . Bi integers. The question of the representation of an integer N by F is 
easily reduced to that of the representation of .Bm−1

m N by the form 

. (x + α1y)(x + α2y) · · · (x + αmy) = Ψ(x, y, 0, · · · , 0)

(where the . αi are now the roots of the algebraic equation obtained by dehomogeniz-
ing the form F ). Poincaré was thus led to study in general the representation of an 
integer, say . N ', by a form .Ψ(x0, x1, · · · , xm−1). To do this, he proceeds by studying 
all the ideals of norm . N ' in what we would call the ring generated by the . αi . The  
question is thus to decide if the ideals representing N are principal, that is, if they 
are composed of the multiples of one complex number, as required for the initial 
problem. 

Poincaré represents the elements of such an ideal (this concept being more or 
less understood in Dedekind’s sense as a module stable under multiplication by any 
complex number of the type .x0 + α1x1 + α2

1x2 + · · · + αm−1
1 xm−1)41 as .x(1)m1 +

39 Poincaré also made use of ideals in 1891 while extending to them some analytical results of 
Pafnuty Chebyshev on the distribution of prime numbers, but his application was limited to the 
ring .Z[i] of Gaussian integers, for which all ideals are principal (Poincaré 1891a,b). 
40 Besides Dedekind, this article includes references to Eisenstein and Kummer, and, as we shall 
see, to Hermite. 
41 By taking only integral coefficients, Poincaré does not obtain in all cases the principal ideal 
generated by an element in the complete ring of integers, and here, as elsewhere in his writings, 
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x(2) m2 +· · ·+x(n) mn, with integers . mi and .(x(i)) generators of the ideal. The norm 
of the elements of the ideal then defines a form of the same degree and the same 
number of variables as . Ψ, and it is possible to study its equivalence with the form 
. Ψ by using the Hermitian method of continuous reduction we mentioned earlier 
(Hermite 1851). 

To summarize, Poincaré’s procedure is to construct all ideals of norm N , then to 
examine if they are or are not principal by deciding on the equivalence of two forms. 
Hermite’s technique even provides theoretically the transformation that is needed to 
express N as the value at integers of the initial binary form. 

Most of Poincaré’s article is thus devoted to the determination of ideals with a 
given norm. The generators .(x(i)) of an ideal are represented as a function of the 
powers of the . αj by a table of coefficients.42 The first decisive step is to reduce this 
table to a triangular form which describes this possible ideal-solution—a step also 
arising from Hermite’s work (Hermite 1851). Then, Poincaré computes successively 
the conditions required such that a table represents an ideal (in his sense), then an 
ideal with a prime number as its norm, then an ideal with a power of a prime number 
as its norm, which finally allows him to exhibit ideals with a given norm N . 

To give a flavor of the computations involved, let us illustrate them by the first 

step, in the case of a reduced 3 by 3 table .

⎛
⎝a b c

0 d e

0 0 f

⎞
⎠.43 The three generators are thus 

here .a, b + dα1, c + eα1 + f α2
1, with .a, b, c, d, e, f integers. If a complex integer 

.x0 + x1α1 + x2α
2
1 is in this module, it should be a linear combination with integral 

coefficients of the generators, say .pa+q(b+dα1)+r(c+eα1 +f α2
1) (with . p, q, r

integers), thus the coefficient of the term in .α1
2 should be a multiple of f . Moreover, 

for this module to be an ideal, the multiplication by . α1 of the generators should 
again be in the module, that is, .aα1 = qdα1 (the term .rf α1

2 being 0, one should 
have here .r = 0), thus d divides a. In the same way, expressing that .bα1 + dα2

1 is 
in the module provides the fact that f divides d. A repetition of the same argument 
with .α1

2 provides the final conditions: 

. a ≡ d ≡ 0 mod f b ≡ e ≡ c ≡ 0 mod f a ≡ 0 mod d b ≡ 0 mod d.

several assumptions are missing. Châtelet completed them carefully in his comments to the Œuvres 
and I will not discuss them further.
42 We would now call this table a matrix, but F. Brechenmacher (2011) has convincingly discussed 
the conceptual nuances of the two terms. As for Poincaré, he spoke of “notation” and later of 
“tableaux” (tables, or charts). 
43 In his paper, Poincaré uses a representation with 3, 4 or 5 variables, while asserting the generality 
of his construction. Such a tension appears again in other papers of the same period and has also 
been analyzed (Brechenmacher 2011). 
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7.5 Cubic Ternary Forms: Another Geometrical Outlook 

As we have seen, the use of lattices could be extended to ternary (quadratic) forms. 
But Poincaré came back to the basics of the theory of forms when he turned to cubic 
forms (Poincaré 1881c, 1882c): 

The various problems connected with the theory of binary quadratic forms have long been 
solved by the notion of reduced forms [. . . ]. To generalize such a useful idea, to find forms  
playing in the general case the same role as reduced forms do in the case of quadratic forms, 
such is the problem which naturally arises and which M. Hermite has solved in the most 
elegant way. M. Hermite has confined himself to the study of definite or indefinite quadratic 
forms and of forms decomposable into linear factors; but his method can be extended 
without difficulty to the most general case. I believe that this generalization can lead to 
interesting results, and this is what determined me to undertake this work. [. . . ] The simplest  
of all forms, after the quadratic forms and the forms decomposable into linear factors, are 
the  ternary  cubic  forms.  [. . . ]  In  addition  to  [their]  simplicity,  other  considerations  have  
influenced my choice. These forms have indeed, from the algebraic point of view, been 
the object of very interesting and very complete works, and thanks to the close connection 
between Higher Algebra and Higher Arithmetic, these results have been of great help to 
me.44 

The “very interesting and very complete works” mentioned by Poincaré were, 
according to his references, those of Otto Hesse, Siegfried Aronhold, Jakob Steiner 
and Alfred Clebsch, which concern invariant theory. Though Poincaré describes 
them as “algebraic”, their relevancy here relies on a geometrical interpretation of 
the problem; for a ternary form .F(x1, x2, x3), the equation .F(x1, x2, x3) = 0 indeed 
gives rise to a (projective) plane curve. Following Hermite, Poincaré first studies and 
classifies the linear transformations reproducing the form (that is, leaving the form 
unchanged when the transformation is applied to its variables), by means of what 
we now call eigenvalues. Then, he transfers the results to the corresponding plane 
curves, linking their (algebraic) invariants and their geometrical characteristics to 
the various categories of transformations. For each associated family of forms,

44 Poincaré (1881c, pp. 190–191): “Les divers problèmes qui se rattachent à la théorie des 
formes quadratiques binaires ont été résolus depuis longtemps, grâce à la notion de réduite [. . . ].  
Généraliser une idée aussi utile, trouver des formes jouant dans le cas général, le même rôle 
que les réduites remplissent dans le cas des formes quadratiques, tel est le problème qui se pose 
naturellement  et  que  M.  Hermite  a  résolu  de  la  façon  la  plus  élégante  [. . . ].  M.  Hermite  s’est  
borné à l’étude des formes quadratiques définies ou indéfinies et des formes décomposables en 
facteurs linéaires ; mais sa méthode peut s’étendre sans difficulté au cas le plus général. Je crois 
que cette généralisation peut conduire à des résultats intéressants ; et c’est ce qui m’a déterminé à 
entreprendre ce travail. [. . . ] Les plus simples de toutes les formes, après les formes quadratiques  
et  les  formes  décomposables  en  facteurs  linéaires,  sont  les  formes  cubiques  ternaires.  [. . . ]  Outre  
[leur]  simplicité  [. . . ]  d’autres  considérations  ont  influé  sur  mon  choix.  Ces  formes  ont  été  en  
effet, au point de vue algébrique, l’objet de travaux très intéressants et très complets, et grâce au 
lien étroit qui rapproche l’Algèbre supérieure de l’Arithmétique supérieure, ces résultats m’ont été 
d’un grand secours.” 
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Poincaré also provides a canonical one, whose equation is considered as particularly 
simple, and he explicitly computes the invariants.45 

In the second part of his memoir, Poincaré addresses the properly arithmetical 
problems of the cubic ternary forms: their equivalence and classification, and 
the description of the transformations (this time with integer coefficients) which 
reproduce them (we now call them automorphisms and for sake of simplicity, we 
will use this terminology freely). To do this, Poincaré, following Hermite and other 
authors, in particular Selling, uses a (real) transformation sending the form into 
a canonical one (which is thus algebraically equivalent) and then transfers to the 
original form the reduction and the automorphisms of the canonical form. As for 
the quadratic case, there exist several possible definitions of the reduction of a 
form and/or of the canonical forms; the explicit description of the reduced forms 
depends on these choices, but their general properties, in particular the finiteness 
or unicity of the reduced forms in each class of algebraically equivalent forms, 
do not. For instance, the first family (in Poincaré’s terminology) of ternary cubic 
forms identified by him is made of forms algebraically equivalent to the form 
.6αxyz + β(x3 + y3 + z3), with .α /= 0,46 chosen as the canonical form. Poincaré 
computes its Hessian .Δ = 6(β3 + 2α3)xyz − 6α2β(x3 + y3 + z3) and the two 
Aronhold invariants .S = 4α(α3 − β3) and .T = 8α6 + 20α3β3 − β6. The  
distribution of the nine inflection points on the associated cubic curve shows that 
a real transformation reproducing the canonical form can only exchange the three 
lines .x = 0, .y = 0, .z = 0, i.e., that these transformations (except the identity, 
which is never mentioned by Poincaré) should be given by one of the following five 
“tables”: 

. 

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ ,

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ ,

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦ ,

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦ ,

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ .

Poincaré then proves that there is in general a unique reduced form arithmetically 
equivalent to a given form of this family and provides bounds on the coefficients of 
the reduced forms in terms of the invariants S and T . In the case of cubic ternary 
forms, this gives a new proof of a recent result of Camille Jordan, stating there are 
only finitely many classes of forms with integer coefficients algebraically equivalent 
to a given form (here the chosen canonical form).47 

A more subtle case arises when the cubic form can be decomposed into several 
factors. For instance, in the case where the form represents a conic and a line 
which are not tangent, the canonical forms can be chosen to be .6αxyz + z3 or 
.3αx2z + 3αy2z + z3, whether or not the line and the conic intersect each other.

45 On this algebraic work, and its relation to both Hermite and Jordan’s works, see Brechenmacher 
(2011). On the history of the classification of algebraic curves, see Lê (2023). 
46 This condition means that the equation is not reducible to a sum of three cubes. 
47 Jordan (1879). Jordan excludes the case of determinant 0. 
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The first canonical form is reproducible by the family of transformations with one 

parameter .

⎡
⎣λ 0 0

0 1 0
0 0 1

λ

⎤
⎦. When the double points of the associated curve are imaginary 

(in particular when the canonical form is .3αx2z + 3αy2z + z3), there are a finite 
number of reduced forms, thus a finite number of classes. But when the double 
points are real, several cases occur, whether or not the invariant 4S is a fourth-
power: there may be a finite number of classes or infinitely many classes, each of 
them containing a finite number of reduced forms. 

The preliminary notes presented to the Academy of Sciences, as well as the 
longer memoirs on ternary cubic forms, are, as we have seen, quite explicit, giving 
for each family the concrete equations of canonical forms, their automorphisms, 
and the possible distribution of the reduced forms in arithmetical classes (and also 
genus). However, this did not satisfy Hermite completely. 

Hermite, who presented Poincaré’s note (Poincaré 1880a) in June 1880 to the 
Academy, wrote to him a few days earlier to fix an appointment in order to discuss 
his memoir. He also suggested some further readings and concluded: 

Your search for the substitutions that reproduce a given form, and the distinction between 
the cases where these substitutions are entirely determined or depend on one or two variable 
parameters, seem to me to be entirely new, and I attach great importance to them. You have 
seen perfectly well that there is no arithmetical question in the search for the equivalence 
of cubic forms unless there are an infinite number of algebraic substitutions that change 
them into themselves. But then we leave the field of cubic forms and the question that you 
had the merit of posing—an entirely new question and one that I consider very beautiful 
and very fruitful —is that of the simultaneous reduction, that is to say, by the same linear 
substitutions, and with integer coefficients, of the system of a ternary quadratic form and of 
a linear function. [. . . ] But you must not be satisfied with having thus opened the way, you  
must, in reality and in fact, give the means of calculating these reduced forms, and produce 
numerical applications. Many things can be revealed in this way of which neither you nor 
anyone else has any idea, so hidden are the properties of numbers and so far beyond any 
prediction. It is with regard to them that observation plays an absolutely necessary role; you 
need elements of observation, and these elements you will be the first to have obtained and 
to have given.48 

48 Poincaré (1986, pp. 164–165): “Votre recherche des substitutions qui reproduisent une forme 
donnée, et la distinction des cas où ces substitutions sont entièrement déterminées ou bien 
dépendent d’un ou deux paramètres variables, me semblent entièrement nouvelles, et j’y attache 
une grande importance. Vous avez parfaitement vu qu’il n’y a de question arithmétique, dans la 
recherche de l’équivalence des formes cubiques qu’autant qu’il existe une infinité de substitutions 
algébriques qui les changent en elles-mêmes. Mais alors on quitte le champ des formes cubiques 
et la question que vous avez eu le mérite de poser, question entièrement neuve et que je juge très 
belle et très féconde, est celle de la réduction simultanée, c’est-à-dire par la même substitution 
linéaire, et à coefficients entiers, du système d’une forme quadratique ternaire et d’une fonction 
linéaire.  [. . . ]  Mais  il  ne  faut  point  vous  contenter  d’avoir  ainsi  ouvert  la  voie,  il  faut,  en  réalité 
et en fait, donner les moyens de calculer ces réduites, et faire des applications numériques. Bien 
des choses peuvent se révéler ainsi dont ni vous ni personne n’a eu l’idée, tant les propriétés des 
nombres sont cachées et en dehors de toute prévision. C’est à leur égard que l’observation joue un
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Hermite’s aphorism about observation is a recurrent one (Goldstein 2011), but 
Poincaré took the request seriously. “Following M. Hermite’s advice”, he wrote 
later, he investigated more deeply the simultaneous reduction of a quadratic and a 
linear form—which corresponds to one of the more complicated case alluded to 
above, in which the cubic form can be decomposed and which is more delicate 
to handle from an arithmetical point of view. Using both complex congruences 
and Pell-Fermat type equations, Poincaré exhibited for instance the reduced forms 
associated to the system .x + y + z, x2 + 4y2 − z2 + 2xy + 2xz + 2yz or 
the automorphisms of the system .14x + y + 2z, y2 − 6z2 as the powers of the 
transformation49 

. 

⎡
⎣1 5981360 14651280

0 46099201 112919520
0 18819920 46099201

⎤
⎦.

Hermite continued to encourage him to make new explicit calculations. 

Your result on the transformations of a system composed of a ternary [quadratic] form and 
a linear form is excellent, but I confess that I would have preferred that, at the cost of 
greater difficulty, you had been led to a new algorithm of calculation, instead of reducing 
the solution to the transformation into themselves of the simple binary forms. It is therefore 
necessary to persevere in the research which concerns only ternary forms.50 

He had in fact a model for this, as his student Léon Charve defended a thesis on 
November 1880, a few months after this letter, on the reduction of ternary quadratic 
forms with completely effective (and extremely laborious) computations (Charve 
1880). Hermite mentioned this thesis several times in his own correspondence in 
laudatory terms.51 However, when Poincaré returned to this quadratic case, it was 
not to have the effect that Hermite wished for. 

rôle absolument nécessaire : il faut donc des éléments d’observation, et ces éléments vous serez le 
premier à les avoir obtenus et donnés.”
49 Poincaré (1880b) and the developed article (Poincaré 1886a, pp. 135–142). 
50 Poincaré (1986, p. 168): “Votre résultat sur les transformations semblables d’une système 
composé d’une forme ternaire [quadratique] et d’une forme linéaire est excellent, mais je vous 
avoue que j’aurais préféré qu’au prix d’une difficulté plus grande vous eussiez été amené à un 
nouvel algorithme de calcul, au lieu de ramener la solution à la transformation en elles-mêmes des 
simples formes binaires. Il faut donc persévérer dans la recherche qui concerne les seules formes 
ternaires.” 
51 For instance, to Thomas Stieltjes (Hermite and Stieltjes 1905, II, p. 12): “La réduction n’est 
point un procédé facile ni commode et il n’a rien moins fallu que le talent et l’opiniâtreté de M. 
Charve pour en faire application dans quelques cas particuliers, et cependant il serait si utile et 
même absolument indispensable de pouvoir faire de nombreuses applications, pour s’éclairer et se 
diriger, j’ajouterai pour s’inspirer puisqu’il s’agit d’Arithmétique” [Reduction is neither an easy 
nor a convenient procedure and it took nothing less than the talent and obstinacy of Mr. Charve to 
apply it in a few specific cases, and yet it would be so useful and even absolutely indispensable to 
be able to make numerous applications, to enlighten and to direct, and since we are dealing with 
Arithmetic I will add, to inspire ourselves.]. 
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7.6 Back to Quadratic Forms: Fuchsian Functions 
and Non-Euclidean Geometry in Arithmetic 

Poincaré’s discovery of a link between Fuchsian functions and non-Euclidean 
geometry is well-known, as the mathematician used it to illustrate the art of 
invention in mathematics (Poincaré 1908b). It is the famous story of the omnibus: 

At the moment I set foot on the step, the idea came to me, without anything in my previous 
thoughts seeming to have prepared me for it, that the transformations I had used to define 
the Fuchsian functions are identical to those of non-Euclidean geometry.52 

The scene probably took place in June 1880,53 at a time when Poincaré was 
working on the classification of cubic ternary forms, and more specifically on 
the case when the form is composed of a linear and a quadratic factor, which 
led him again to ternary quadratic forms. As is well-known, he was involved 
simultaneously in the writing of a contribution to the 1880 prize in mathematics of 
the French Academy of Sciences, on differential equations, and in his own creation, 
description and classification of specific Fuchsian functions and of their associated 
transformations.54 

I would like to underline once more the close relations, at several levels, between 
these works and the way Poincaré transfers methods, intuitions and objets from one 
topic to another, as we have already seen for the invariants of quadratic forms or 
the classification of cubic ones. In his very first note on Fuchsian matters, Poincaré 
defines a Fuchsian function as a uniform function on the plane which is reproduced 
by a discontinuous subgroup of the homographic transformations on the unit disk. 
He then remarks that some of these subgroups are isomorphic to groups of linear 
transformations with integer coefficients that reproduce an indefinite ternary form 
with integer coefficients, concluding that this “highlights the intimate links between 
number theory and the analytical question in hand” (Poincaré 1881a, p. 335). Indeed 
the omnibus story continues on, displaying influences in both directions: 

On  my  return  to  Caen  [. . . ]  I  then  began  to  study  questions  of  Arithmetic  without much 
result and without suspecting that this could have the slightest connection with my previous 
research. Disgusted with my failure, I went to spend a few days at the seaside and thought 
of other things. One day, while walking on a cliff, the idea came to me, always with the 
same characteristics of brevity, suddenness and immediate certainty, that the arithmetic 
transformations of the ternary indefinite quadratic forms are identical to those of non-
Euclidean geometry. Back in Caen, I meditated on this result and drew the consequences:

52 Poincaré (1908b, p. 363): “Au moment où je mettais le pied sur le marche-pied, l’idée me vint, 
sans que rien de mes pensées antérieures parut m’y avoir préparé, que les transformations dont 
j’avais fait usage pour définir les fonctions fuchsiennes sont identiques à celles de la Géométrie 
non-euclidienne.” 
53 See Gray (2013, pp. 216–217). 
54 We will not restate the details of this episode, which has been thoroughly studied, in particular 
by Jeremy Gray (2000, 2013, ch. 3). 
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the example of quadratic forms showed me that there were Fuchsian groups which are 
different from those corresponding to the hypergeometric series.55 

Poincaré was here perfectly in line with several of his fellow mathematicians, 
in particular the contemporary research of Émile Picard on substitutions with 3 
variables on the hypersphere or Camille Jordan’s study of the groups of motions, 
which Jordan directly connected to Bravais’s works.56 While the appearance of non-
Euclidean geometry in the story is a more spectacular feature, a close reading of all 
these papers suggests that the explicit writing out of the various transformations 
used in these different situations was a driving element and a decisive factor in 
favoring the thematic rapprochements. 

As Poincaré explained at the Algiers meeting of the French Association for 
the Advancement of Science where he presented his new viewpoint in April 1881 
(Poincaré 1882b), his point of departure was Hermite’s method for ternary quadratic 
forms (Hermite 1854). In 1854, Hermite had studied the reduction of indefinite 
ternary quadratic forms—the forms algebraically equivalent to, say, .X2+Y 2−Z2— 
by a variant of his technique of continuous reduction. To such a form f , Hermite 
associated a family of definite ternary quadratic forms 

. φ(x, y, z) = f (x, y, z) + 2(λx + μy + νz)2,

.λ,μ, ν real numbers with some suitable conditions. Each . φ could be reduced by a 
suitable transformation, by the general theory of definite quadratic forms. Hermite 
then applied this transformation to the initial f and thus obtained, by varying 
. φ, a family of transformed forms, which he considered as the reduced forms of 
the initial form f . He showed that the coefficients of these reduced forms satisfy 
certain bounds; in particular, if the coefficients of the initial f are integers, it 
implies that there are a finite number of such reduced forms. Hermite also studied 
the automorphisms of the form, proving for instance that what we now call their 
characteristic equation has solutions of the type .±1, l, 1

l
.57 

Poincaré followed exactly the same path in 1881. He associated to the indefinite 
form . F(x, y, z) = (ax + by + cz)2 + (a'x + b'y + c'z)2 − (a''x + b''y + c''z)2 =
ξ2 + η2 − ζ 2 the definite forms .ξ2 + η2 − ζ 2 + 2(ξ1ξ + η1η − ζ1ζ )2, with .ξ1, η1, ζ1

55 Poincaré (1908b, p. 363): “De retour à Caen [. . . ]  je  me  mis  alors  à  étudier  des  questions  
d’Arithmétique sans grand résultat apparent et sans soupçonner que cela pût avoir le moindre 
rapport avec mes recherches antérieures. Dégoûté de mon insuccès, j’allai passer quelques jours 
au bord de la mer et je pensai à tout autre chose. Un jour, en me promenant sur une falaise, l’idée 
me vient, toujours avec les mêmes caractères de brièveté, de soudaineté et de certitude immédiate, 
que les transformations arithmétiques des formes quadratiques ternaires indéfinies sont identiques 
à celles de la Géométrie non-euclidienne. Étant revenu à Caen, je réfléchis sur ce résultat, et j’en 
tirai les conséquences ; l’exemple des formes quadratiques me montrait qu’il y a des groupes 
fuchsiens autres que ceux qui correspondent à la série hypergéométrique.” 
56 The analogies and differences with Jordan, in particular with respect to the concept of group, are 
discussed in Brechenmacher (2011). 
57 The description of the automorphisms was completed by several authors c. 1870, in particular 
by Georg Cantor in his Habilitationschrift, by Paul Bachmann, and by Hermite himself. 
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satisfying the condition (analogous to that of Hermite) .ξ2
1 + η2

1 − ζ 2
1 = −1. Again,  

he used the transformations reducing these definite forms, applying them in turn to 
F to get what he defined as the reduced (forms) for F . 

As he noted, however, since .ξ2
1 + η2

1 − ζ 2
1 = −1, the point with coordinates 

.
ξ1

ζ1+1 ,
η1

ζ1+1 is inside the unit disk. To each definite form of the family is then 
associated such a point, as well as a reduced form. When the parameters . ξ1, η1, ζ1
change, the point moves inside the disk. However, the reduced form remains the 
same so long as the point lies inside a certain region of the disk, then it changes. 
The transformations providing the reduction can be then studied geometrically, by 
looking at the corresponding regions delimited inside the disk.58 To do this, Poincaré 
used non-Euclidean geometry on the disk, more specifically, a non-Euclidean 
description of the tessellation of the disk in domains delimited by polygons. This 
approach, as might be expected, was not to the taste of Hermite who asked Poincaré 
several times to reformulate his results: 

In renewing my request to you to present your results on the classification of functions . az+b
cz+d

in order to obtain the elements of the formation of the Fuchsian functions, without resort 
to the use of non-Euclidean geometry, and after having presented them by the method by 
which you discovered them, I beg you, Sir, to receive the renewed assurance of my highest 
esteem for your work and of my most devoted sentiments.59 

The explicit, detailed, connection with the Fuchsian groups was presented only a 
few years later, Poincaré choosing at that time another expression of the canonical 
ternary quadratic form (Poincaré 1886b): 

An indefinite ternary quadratic form may always be written . . . in the following way:  

. F(x, y, z) = Y 2 − XZ,

where 

. X = ax + by + cz, Y = a'x + b'y + c'z, Z = a''x + b''y + c''z,

a, b, c being arbitrary real numbers. 

Let now .α, β, γ, δ be four real numbers such that .αδ − βγ = 1. Poincaré 
introduces the transformations: 

.X' =α2X +2αγY + γ 2Z

58 In other words, as Châtelet explains in a footnote, Poincaré studies the fundamental domain of 
the automorphisms, seen as homographic transformations. 
59 For instance, Poincaré (1986, p. 174): “En vous renouvelant la prière de présenter sans recourir à 
l’emploi de la géométrie non euclidienne, après les avoir exposés par la méthode qui vous les a fait 
découvrir, vos résultats sur la classification des fonctions . az+b

cz+d
afin de posséder les éléments de la 

formation des fonctions fuchsiennes, je vous prie, Monsieur de recevoir la nouvelle assurance ma 
plus haute estime pour vos travaux et de mes sentiments bien dévoués.” Hermite was not hostile to 
all geometrical arguments; he did not complain about Poincaré’s lattices or Hermann Minkowski’s 
geometry of numbers (also based on lattices). But for him, non-Euclidean geometry was not helpful 
in representing analytical facts, see Goldstein (2011). 
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Y ' =αβX +(αδ + βγ )Y + γ δZ  

Z' =β2X +2βδY + δ2Z 

If .X = ax' + by' + cz', Y = a'x' + b'y' + c'z', Z = a''x' + b''y' + c''z', 
it is then easy to check that the transformation changing .x, y, z into .x', y', z' leaves 
F invariant. If the coefficients of F and the .α, β, γ, δ are integers, these transforma-
tions form a discontinuous group and the associated substitutions .z → αz+β

γ z+δ
form a 

Fuchsian group. In a longer memoir, Poincaré emphasizes the particular properties 
of these arithmetically-defined Fuchsian groups, in particular the algebraic relations 
satisfied by the associated Fuchsian functions, analogous to those already known for 
elliptic and modular functions (Poincaré 1887). 

7.7 Classification Again 

In the wake of his research on the classification of forms, Poincaré also devoted two 
short notes to a generalization of the tools Gauss had introduced for his own refined 
classification of binary quadratic forms, “order” and “genus”, Poincaré (1882d).60 In 
the Disquisitiones arithmeticae, two classes of binary quadratic forms, represented 
for example by the forms .ax2 + 2bxy + cy2 and .a'x2 + 2b'xy + c'y2, are said to 
belong to the same order if the g.c.d. of .(a, b, c) is equal to the g.c.d. of . (a', b', c')
and the g.c.d. of .(a, 2b, c) is equal to the g.c.d. of .(a', 2b', c'). Following a proposal 
of Eisenstein for ternary forms, for forms of higher degree or with more variables, 
Poincaré imposes equality conditions not only on the coefficients of the forms, 
but also on those of some of their invariants and covariants. For instance, for the 
binary cubic form .f = ax3 + 3bx2y + 3cxy2 + dy3, the Hessian . 6(ac − b2)x2 +
6(ad − bc)xy + 6(bd − c2)y2 should be taken into account; the order is determined 
by four quantities, the g.c.d of .a, b, c, d, the g. c. d. of .a, 3b, 3c, d, the g.c.d. of 
.ac − b2, ad − bc, bd − c2 and the g.c.d. of .2(ac − b2), ad − bc, 2(bd − c2). 

As for the genus, its definition in the Disquisitiones arithmeticae relied on 
the following fact: for a binary quadratic form .ax2 + 2bxy + cy2, such that 
g.c.d.(.a, b, c)=1, and a prime factor p of its determinant .ac−b2, two integers which 
are represented by the form are both quadratic residues modulo p or both non-
quadratic residues. The various cases (“characters") for the various p then define 
the genus of the form (in fact, of its whole class). Poincaré defined the equivalence 
of two forms f and . f ' according to a modulus m when there exists a linear 
transformation T with integer coefficients and determinant .≡ 1 (mod m) such that 
.f ◦ T ≡ f ' (mod m). Two (algebraically equivalent) forms are then in the same

60 Several authors, in particular Eisenstein and Dirichlet, had contributed to simplifications, 
reformulations and partial extensions of these notions, which also appear in other domains of 
mathematics, see Lê (2023). 
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genus if they are equivalent according to all moduli. Again, in these notes, Poincaré 
gives only very general statements, without proofs, and illustrates his definitions 
with a few numerical examples. He computes in particular the distribution of binary 
cubic forms according to moduli 2, 3 and 5, but he does not seem to have gone 
further in the 1880s in this attempt of a classification of higher-degree forms. In 
particular, he does not appear to have then seen Eisenstein’s suggestion, developed 
in particular by Smith in the 1860s, and then much later by Minkowski, of defining 
the genus by means of transformations with rational coefficients (Smith 1861–1865; 
Dickson 1919). 

7.8 Poincaré’s Arithmetic Revisited 

We have tried to show that Poincaré’s arithmetical work is highly coherent as soon 
as one restores the collective program in which it is embedded, i.e. the disciplinary 
configuration of the theory of forms in the last third of the nineteenth century. With 
its own questions, concepts and resources, it largely guided Poincaré’s objectives, 
in the perspective of the classification of forms: to find well-chosen, preferably 
effective, invariants; to identify adequate representatives of classes (and of other 
levels of classification), such as the canonical forms of the algebraic classification 
and the reduced forms of the arithmetic one; to explain the operations allowing the 
transformation of each form into its representatives; and to study the automorphisms 
of a form. Conversely, we have seen that the recourse to ideal numbers did not 
indicate a change of discipline (for instance, as David Hilbert would define it in his 
own presentation of the theory of algebraic numbers), but an attempt to integrate (or 
even disintegrate . . . ) these  concepts (whose importance Poincaré clearly perceived) 
in the disciplinary framework of forms. 

We have seen this program at work in all his early research, including the famous 
papers linking quadratic forms, Fuchsian functions and non-Euclidean geometry. 
What shaped these papers was also reflected in his later, more famous, work. 
His 1905 article, on the centenary of Dirichlet’s birth, is thus in many respects, a 
microcosm of the larger mathematical world we have just presented. Its results, as 
their recent commentator Nicolas Bergeron describes them, may seem disparate, 
the only clear arithmetical application being a new proof of a well-known formula 
of Dirichlet on the number of classes of forms. But, as before, essential and varied 
analytical tools (in particular those linked to automorphic functions) were mobilized 
to search for invariants of linear and quadratic forms (Bergeron 2018). 

As for Poincaré’s celebrated memoir of 1901, today’s readers see it as one of 
the main origins of so-called Diophantine geometry and focus on the way Poincaré, 
with the help of the parametrization of cubic curves by elliptic functions, defined 
more or less adequately the rank of (the group of points with rational coordinates
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on) an elliptic curve.61 However, our study provides another context for this 
article. In 1880, Poincaré had employed a geometric interpretation of ternary forms, 
considering them as defining equations of plane (algebraic) projective curves. It 
allowed him to link the classifications of curves (by their invariants, singular points 
and other geometric characteristics) with those of forms (by linear transformations). 
In 1901, Poincaré proposed a new classification of algebraic curves directly inspired 
by the theory of forms, one based on birational transformations between curves. The 
link to the mode of classification of forms is explicit, Poincaré refers directly to the 
Disquisitiones arithmeticae as providing the principles to classify conics according 
to his own program, principles that he applies to higher-degree curves (Goldstein 
and Schappacher 2007b, pp. 95–96).62 And it is indeed not to the structure of points 
on a cubic, but to the study of birational transformations between curves defined by 
equations of different degrees that the major part of Poincaré’s memoir is devoted, 
as well as to the reduction of any algebraic curve to a curve defined by equations of 
the lowest possible degree—coherent with the guidelines of the theory of forms. 

In this respect, the presentation of arithmetic in Poincaré’s lecture on the future 
of mathematics is illuminating : 

Among the words which have had the happiest influence, I would mention “group” and 
“invariant”.  [. . . ]  Progress  in  arithmetic  has  been  slower  than  that  in  algebra  and  analysis  
and it is easy to understand the reasons. The feeling for continuity is a precious guide which 
the  arithmetician  lacks  [. . . ]  [He]  must  therefore  take  analogies  with  algebra  for  his  guide  
[. . . ]  The  theory  of  forms,  and  in  particular  that  of  quadratic  forms,  is  intimately  bound to 
the theory of ideals. One of the earliest to take form among arithmetic theories, it arose with 
the successful introduction of unity through the use of linear transformation groups. These 
transformations have allowed a classification with its consequent introduction of order.63 

This coherence also manifests itself on a more subterranean level, that of prac-
tices. As the word has been widely used recently in the philosophy of mathematics, 
let me specify that I use it here in a rather informal way, to designate a concrete 
way to carry on an activity (as opposed to official rules or principles, and to theory). 
They have to do with “real individuals, their actions and their material conditions

61 See Weil (1955), Gray (2013, pp. 486–488). The parametrization was already widely used, see 
Schappacher (1991), Lê (2018). Norbert Schappacher (1991) has discussed the problems raised by 
Poincaré’s definition of rank. On the geometrical viewpoint of Poincaré 1901 paper, see Schneider 
(2000). 
62 We do not know if Minkowski’s use of transformations with rational coefficients to define 
the genus of forms then played a role in Poincaré’s conception. Nor does Poincaré mention 
contemporary work on birational geometry, even that connecting it with Diophantine equations. 
63 Poincaré (1908a, p. 175, pp. 179–180): “Les progrès de l’Arithmétique ont été plus lents que 
ceux de l’Algèbre et de l’Analyse, et il est aisé de comprendre pourquoi. Le sentiment de la 
continuité  est  un  guide  précieux  qui  fait  défaut  à  l’arithméticien.  [. . . ]  L’arithméticien  doit  donc 
prendre pour guide les analogies avec l’Algèbre. [. . . ] La théorie des formes, et en particulier celle  
des formes quadratiques, est intimement liée à celle des idéaux. Si parmi les théories arithmétiques 
elle a été l’une des premières à prendre figure, c’est quand on est parvenu à y introduire l’unité 
par la considération des groupes de transformations linéaires. Ces transformations ont permis la 
classification et par conséquent l’introduction de l’ordre.” 
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of life”64 In mathematics, practices can thus be attached to the pervasive use of a 
certain tool or technique, or to a way of reading the articles of other mathematicians 
or of publishing one’s own work or of exchanging mathematical information. They 
can also be detected through an epistemic privilege attached to specific features, 
like effectivity or proofs, or a recurrent representational device, be it diagrams or 
lattices. 

Poincaré’s way of practising mathematics in his early arithmetical work displays 
a striking mixture of a particularly vague mode of writing and of an impressive 
mobilisation of ideas and techniques from several branches of mathematics. The 
second point has been obvious on several occasions here, with the recourse to 
several kinds of geometry or to a large variety of analytical tools. On the first 
point, let us note, for example, that necessary hypotheses are often missing—the 
examples include the irreducibility of an algebraic equation under scrutiny, the non-
vanishing of certain expressions like the determinant or the fact that some of his 
ideals are not defined over the ring of integers, but only over a subring. As seen in the 
section on quadratic forms and lattices, Poincaré may also use the same symbols to 
designate different things in the same article65 . Browsing through his articles gives 
the impression of flying over a vast textual landscape (in the vernacular) with the 
occasional example or calculation serving as anchor points. More than the precise 
statements and detailed proofs we are now used to, computations of examples are 
the warrants of the solidity of Poincaré’s whole construction.66 

It is also quite tricky to identify Poincaré’s sources of inspiration—he often 
quotes some predecessors in a general way at the beginning of his text, very rarely 
for a specific result inside the text (we have nonetheless seen some references 
to Bravais or Eisenstein). As those close to him sometimes explained after his 
death, Poincaré was particularly gifted for roughly grasping ideas or problems and

64 Marx and Engels (1846/1969, p. 20): “Es sind die wirklichen Individuen, ihre Aktion und ihre 
materiellen Lebensbedingungen.” Or, as Michel Foucault writes (Foucault 1982/2001, p. 1039): 
“L’on tient plus aux manières de voir, de dire, de faire et de penser qu’à ce qu’on voit, qu’à ce 
qu’on pense, qu’à ce qu’on dit” (“We care more about the ways of seeing, saying, doing and 
thinking than about what we see, what we think, what we say”). On this issue, see among many 
others, Bourdieu (1994), Lepetit (1995), Chateauraynaud and Cohen (2016).” 
65 As mentioned earlier, Gaston Darboux wrote to Poincaré in 1878 about his thesis: “I still believe 
that we will make a good thesis out of it, but it seems essential to me to recast the writing and to 
correct all the errors of calculation or the changes of notation which make it almost unreadable.” 
[“Je persiste à croire que nous en ferons une bonne thèse, mais il me parait indispensable de fondre 
la rédaction et de corriger toutes les erreurs de calcul ou les changements de notation qui la rendent 
presque illisible.”] (Poincaré 1986, p. 132). 
66 Poincaré is almost describing his own practice when, advising Mittag-Leffler on the translation 
of Georg Cantor’s memoirs on set theory, he writes (Hermite and Mittag-Leffler 1984, p. 278): “To 
make it accessible, it would be necessary to give a few specific examples after each definition and 
then put the definitions at the beginning instead of at the end” (“Il faudrait pour la rendre accessible 
donner quelques exemples précis à la suite de chaque définition et puis mettre les définitions au 
commencement au lieu de les mettre à la fin.”) 
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then integrating them into his own framework.67 Moreover, several correspondents 
pointed out to Poincaré that such and such a result had already appeared in one 
of the sources that he mentioned. However, he was also one of the rare authors 
(French or not) to mention Dedekind’s theory of ideals in the 1880s and he quoted 
and relied on numerous German authors; we have mentioned Gauss of course, but 
also Eisenstein, Dirichlet, Selling, Hesse, Steiner. . . . Weil’s assertion in this respect 
seems a little misleading—or perhaps a little anachronistic, in that he seems to be 
referring to Poincaré’s neglect of what will be considered in the interwar period only 
as “the royal road” to a structuralist point of view.68 

An obvious source, however, is Hermite, whose influence operates at several 
levels, in addition to the direct interactions we have already mentioned. Like 
Poincaré in 1880, Hermite had revisited the classical results of the classification of 
forms of the Disquisitiones arithmeticae, in the light of his procedure of continuous 
reduction (Hermite 1851). At another level, the emphasis on (linear) transformations 
is one of the characteristics of Hermite’s work during his whole career. His use 
of “tableaux” (our matrices) to work out transformations is pervasive, as it is in 
Poincaré’s work.69 . The reduction of transformations, in particulier, is carried out 
on these “tableaux”, playing a key role for both mathematicians. Poincaré also 
took from Hermite the idea that decomposable forms constitute a fruitful entry 
into the study of algebraic numbers. Some specific constructions were directly 
borrowed from Hermite’s articles: for example, Poincaré followed and generalized 
the approach Hermite had introduced to factorize into complex factors prime 
numbers congruent to 1 modulo 5 or 7 (Hermite 1850; Goldstein 2007). 

Two other instructive shared features deserve to be highlighted. First, the 
importance of reduced forms in their scheme of work. Reduced forms are particular 
representatives of classes (sets of forms connected by suitable linear transforma-
tions). The later, structural, viewpoint would privilege classes, which are intrinsic. 
Poincaré, like Hermite, was perfectly aware that several (rather arbitrary) choices 
were possible for the reduced forms; indeed, he modified his choice, for example, 
in the course of his research on ternary quadratic forms. This freedom of choice, 
however, like that of the “tableaux” (whose writing depends on a choice of 
generators), favors calculation. Hermite is quite explicit about his predilection 
(Goldstein 2011) and Poincaré-, who nevertheless built, as we have shown, an 
arithmetic of lattices, followed him on this point. This can be seen in particular 
in what Poincaré called a classification: his are not based on classes per se but

67 The contrast with Châtelet’s painstaking corrections and complements of Poincaré’s memoirs is 
in this respect quite striking. 
68 Despite Hermite’s protests, the rumor that Poincaré did not know or mention German sources 
spread through Mittag-Leffler, in particular among French students in Germany at the time of the 
rivalry between Poincaré and Klein around automorphic functions; see for instance (Hermite and 
Mittag-Leffler 1984, I, pp. 129, 251). 
69 This has already been underlined on the basis of algebraic works in the same period, in particular 
Poincaré’s 1884 paper on complex numbers (Brechenmacher 2011). 
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on the construction of specific, and in principle, calculable characteristics such as 
invariants. 

Another point that brought the two mathematicians together was their vision of a 
larger research field that would merge arithmetic, algebra and analysis, and exclude 
the disciplinary purity which was at the time defended by many mathematicians, 
such as Edouard Lucas or Leopold Kronecker. On the contrary, the use of continuous 
tools in arithmetic was favored and praised by Hermite as well as by Poincaré. We 
have emphasized this direction here, but, reciprocally, the search for automorphisms, 
for instance, was exported into the study of Fuchsian or Abelian functions, as well 
as differential equations.70 Poincaré’s famous sentence—“The only natural object 
of mathematical thought is the integer”—might thus lead to a misinterpretation if 
read in isolation. It is in fact a mere concession to the defenders of a pure number 
theory, stripped of its analytical tools, a concession immediately corrected into a 
promotion of a unified field of mathematics.71 

The only natural object of mathematical thought is the integer. [. . . We] have devoted almost  
all our time and energy to the study of the continuous. Who will regret it? Who will 
believe that this time and these efforts have been wasted? Analysis unfolds for us infinite 
perspectives that arithmetic does not suspect, it shows us at a glance a grandiose whole, the 
order of which is simple and symmetrical; on the contrary, in the theory of numbers, where 
the unforeseen reigns, the view is, so to speak, blocked at every turn. [. . . ] Let us be grateful  
to the continuum which, if everything comes out of the whole number, was alone capable 
of bringing out so much. Need I remind you, moreover, that M. Hermite drew a surprising 
advantage from the introduction of continuous variables into the theory of numbers? Thus, 
the proper domain of the whole number is itself invaded, and this invasion has restored order 
where disorder reigned.72 

In Poincaré, however, the continuous is not restricted to the theory of functions. 
It extends to geometric representations or even geometric techniques, themselves 
borrowed from several branches of mathematics, from Bravais’s theory of polyhedra

70 For other examples, see Brechenmacher (2008, 2011), de Saint-Gervais (2011). 
71 Hermite repeated on several occasions that the theory of numbers is only an anticipation of 
the theory of elliptic functions. For the importance he attached to the use of analytical tools, see 
Goldstein (2007, 2011). It should be noted that Hermite himself, a priori unaware of advances in 
geometry, sometimes used elementary geometric representations. 
72 Poincaré (1897): “Le seul objet naturel de la pensée mathématique, c’est le nombre entier. 
[. . . N]ous  avons  consacré  à  l’étude  du  continu  presque  tout  notre  temps  et  toutes  nos  forces.  
Qui le regrettera? Qui croira que ce temps et ces forces ont été perdus? L’analyse nous déroule 
des perspectives infinies que l’arithmétique ne soupçonne pas; elle nous montre d’un coup d’œil 
un ensemble grandiose, dont l’ordonnance est simple et symétrique; au contraire, dans la théorie 
des nombres, où règne l’imprévu, la vue est pour ainsi dire arrêtée à chaque pas. [. . . S]oyons 
reconnaissants au continu qui, si tout sort du nombre entier, était seul capable d’en faire tant sortir. 
Ai-je besoin, d’ailleurs, de rappeler que M. Hermite a tiré un parti surprenant de l’introduction des 
variables continues dans la théorie des nombres? Ainsi, le domaine propre du nombre entier est 
envahi lui-même, et cette invasion a rétabli l’ordre là où régnait le désordre.” 
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and lattices to that of projective curves or to non-Euclidean geometry.73 This 
justifies his well-known reputation as one of the last universalist mathematicians. 
But what is striking when reading his early work on arithmetic is his professionalism 
(all the more paradoxical for us who are now used to a very different writing style); 
his mastery of both the disciplinary issues and the tools available, his ability to 
intervene effectively in order to fill in all the gaps in a program, rarely explained 
in detail, but whose reconstruction allows us to see that Poincaré had identified its 
stakes and components perfectly.74 

The historian Gil Bartholeyns suggests that: 

The evolution of the object of history during the twentieth century can be described as the 
change from the extraordinary (the particular, the unique) to the ordinary (the collective, 
the structural, the trivial). In place of the exceptional individuals, the chefs-d’oeuvre, 
the memorable events, [the historians] have preferred the forgotten, the unpretentious 
documents, the repetitive and shared dimensions of existence.75 

As I have tried to show here, the forgotten and the repetitive may also draw a 
path to a better understanding of the exceptional. 
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Chapter 8 
Simplifying a Proof of Transcendence 
for e: A Letter Exchange Between Adolf 
Hurwitz, David Hilbert and Paul Gordan 

Nicola M. R. Oswald 

Abstract This article is inspired by a letter exchange between Adolf Hurwitz 
(1859–1919), David Hilbert (1862–1943) and Paul Gordan (1837–1912) concerning 
their proofs of the transcendence for Euler’s number e. This correspondence took 
place in the period from 1892 to 1894 and accompanies the process of developing 
mathematical conclusions. We analyze the evolution of the three proof variations, 
in particular with a focus on ideas of simplifying the lines of argumentation. This is 
contrasted by a look on the later reception of the proofs. 

8.1 A Brief Introduction 

A number is called algebraic if it is the root of a not identically vanishing polynomial 
with rational coefficients; otherwise the number is called transcendental. The first 
to prove the transcendence of some number was Joseph Liouville (1809–1882) in 
1844; his approach was constructive but does not apply to any given significant 
number.1 The first who proved that .e = exp(1) = ∑

m≥0 1/m! is transcendental 
was Charles Hermite (1822–1901) in 1873.2 In 1882, The not unrelated case of the 
transcendence of . π was solved by Ferdinand Lindemann (1852–1939); his result 
also gave a negative answer to the classical problem of squaring the circle by ruler 
and compass only. 

In a standard reference for number theory, one can read that the original proofs 
of Hermite and Lindemann “were afterwards modified and simplified by Hilbert, 
Hurwitz, and other writers” (see Hardy and Wright 1959, p. 177). In fact, David 
Hilbert (1862–1943), Adolf Hurwitz (1859–1919), and Paul Gordan (1837–1912) 

1 See Liouville (1844). 
2 See Hermite (1873). 
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published in 1893 successively proofs of transcendence for Euler’s number e. 
That these were directly inspired by each other is shown by an accompanying 
correspondence between the three mathematicians. We consider the proofs as well 
as the exchange of ideas in the following. 

Although there is certainly much to say about the influential mathematicians 
Hilbert and Gordan and their relationship to each other,3 the focus here is on their 
common correspondence partner Adolf Hurwitz. In this sense we begin with some 
introductory biographical notes about him, particularly with regard to his work on 
the transcendence of e. 

8.2 Historical Context 

Throughout his life, the mathematician Adolf Hurwitz maintained an active network 
of correspondence partners in contemporary mathematics. Both, his scientific estate 
and his remaining collection of correspondence with several hundred letters with 
about forty correspondents, testify his silent yet constant involvement in the math-
ematical community. There seem to have been several reasons for his continuous 
and extensive letter exchanges: From the very beginning of his higher education 
Adolf Hurwitz was fortunate that his mathematical talent was recognized by 
influential and excellent mathematicians. During his school years he received private 
lessons from Hermann Caesar Hannibal Schubert (1848–1911),4 later he became 
doctoral student of Felix Klein (1849–1925) in Munich and Leipzig, and was 
supported by the Berlin mathematicians Karl Weierstrass (1815–1897) and Leopold 
Kronecker (1823–1891). In particular, Weierstrass must have had a large influence 
on Hurwitz’s occupation with analytic issues and encouraged him finding further 
fields of research.5 By the age of 23, Adolf Hurwitz accomplished his habilitation 
in Göttingen where again he was promoted by influential mathematicians such as 
Hermann Amandus Schwarz (1843–1921) and Moritz Abraham Stern (1807–1894). 

Hurwitz’s early interest in transcendence is best reflected in his third mathemat-
ical diary (Hurwitz 1919, No. 3), which he started in January 1883 and where one 
can find a detailed reflection on the celebrated theorem of Lindemann–Weierstrass. 
In his resulting article (Hurwitz 1883), he investigated generalizations by studying 
arithmetical properties of transcendental functions satisfying a homogeneous linear

3 For example, both were presidents of the German Mathematical Society (from 1894 and 1900) 
and both worked and discussed on invariant theory, see a.o. Weyl (1944, p. 622). Gordan was 
“sometimes referred to as the King of invariant theory” (cf. Gray 2018, p. 265). For the story 
on Hilbert’s finite basis theorem (from 1888), his encounter with Gordan and the latter one’s 
assessment of it, we refer to Jeremy Gray (Gray 2018, Ch. 25). 
4 At age 17 Hurwitz published his first result (on Chasles’s theorem); it was a joint paper with 
Schubert. 
5 For more details about periods in Hurwitz’s professional and personal life we refer to Oswald and 
Steuding (2014). 
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differential equation. His later wife Ida Samuel-Hurwitz (1864–1951) mentioned in 
a biographical essay that his work on transcendence was at least one of the reasons 
why Lindemann became aware of Adolf Hurwitz and initiated the invitation of 
Hurwitz to an extraordinary professorship at the Albertus University at Königsberg 
in 1884.6 In the eastern province of Prussia his good luck to be surrounded 
by talented mathematicians unexpectedly continued. It is well known that his 
students David Hilbert and Hermann Minkowski (1864–1909) became successful 
mathematicians and the interaction of the three went on for all of their lives.7 

Hurwitz was indeed not only an interested and helpful mathematical colleague of 
both but also became a friend. This is revealed by the correspondence of the three 
and brought to the point in Hilbert’s obituary8 for his former teacher: 

Here [in Königsberg] I was, at that time still a student, soon asked for scientific exchange 
and had the luck by being together with Hurwitz to get to know in the easiest and most 
interesting way the directions of thinking of the at time opposite, however, each other 
excellently complementing schools, the geometrical school of Klein and the algebraic-
analytical school of Berlin. [...] On numerous, sometimes day by day undertaken walks 
at the time for eight years we have browsed through probably all corners of mathematical 
knowledge, and Hurwitz with his as well wide and multifaceted as also established and 
well-ordered knowledge was always our leader.9 (Hilbert 1921, p. 162)10 

David Rowe describes the relationship of Hilbert and Hurwitz in Königsberg with 
the following words: ”Adolf Hurwitz was at the height of his powers and he opened 
up whole new mathematical vistas to Hilbert who looked up to him with admiration 
mixed with a tinge of envy” (Rowe 2007, p. 25). Certainly it is difficult to assess 
Hilbert’s nature or degree of admiration, however, the subsequent letter exchange 
may provide further insights into their relationship. 

When Adolf Hurwitz moved to Switzerland in 1892 as full professor at the Poly-
technikum in Zurich (since 1911 named Eidgenössische Technische Hochschule, 
ETH) the exchange with his colleagues became more important. Only with Hilbert 
one can find around two hundred exchanged letters in about thirty years. From the

6 See Samuel-Hurwitz (1984). 
7 An approach on Hilbert and Hurwitz’s student-teacher-relationship developing to a collegial level 
can be found in Oswald (2014). The collected letters from Minkowski to Hilbert are published in 
Minkowski (1973). 
8 Taken from his commemorative speech ’Adolf Hurwitz’ published in Hilbert (1902). 
9 “Hier [in Königsberg] wurde ich, damals noch Student, bald von Hurwitz zu wissenschaftlichem 
Verkehr herangezogen und hatte das Glück, durch das Zusammensein mit ihm in der mühelosesten 
und interessantesten Art die Gedankenrichtungen der beiden sich damals gegenüberstehenden 
und doch einander so vortrefflich ergänzenden Schulen, der geometrischen Schule von Klein 
und der algebraisch-analytischen Berliner Schule kennenzulernen. [...] Auf zahllosen, zeitweise 
Tag für Tag unternommenen Spaziergängen haben wir damals während acht Jahren wohl alle 
Winkel mathematischen Wissens durchstöbert, und Hurwitz mit seinen ebenso ausgedehnten 
und vielseitigen wie festbegründeten und wohlgeordneten Kenntnissen war uns dabei immer der 
Führer.” 
10 Remark. Here and in the sequel all German and French texts were freely translated by the author 
to the best of her knowledge. 
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first two years in Zurich originates the subsequently discussed correspondence on 
simplifications of the proofs of transcendence for e. 

Throughout his life, Hurwitz remained an active mathematician in research and 
teaching. He stayed with his wife and their three children in Zurich until the end of 
his life in 1919. 

8.3 Three Variations of a Proof of Transcendence for e 

In this section we focus on the mathematical methods and ingredients of the different 
approaches taken by David Hilbert, Adolf Hurwitz and Paul Gordan. Therefore, 
we give and compare the three proofs in detail, starting with some notes on their 
mathematical and historical background. 

The first proof of transcendence for e was given by Hermite (1873). His 
pathbreaking approach relies on an analogy between classical diophantine approx-
imation (that is approximation of real numbers by rationals) and approximating 
analytic functions of one variable by rational functions. The central idea is to 
approximate the exponential function .exp(x) by a rational function in x. For his 
explicit solution of this problem by using what is now known as Padé approxi-
mants11 for the exponential function and a detailed discussion of his transcendence 
proof for e we refer to Mahler (1976) (in its appendix). In the proofs we are going 
to analyze below this approximation is realized by the function .F(x). 

In the late nineteenth century, several mathematicians tried to simplify Hermite’s 
original, rather lengthy and technical proof as well as the related one for . π , found by 
Lindemann (1882b,a). Besides Karl Weierstrass’ important contribution on gener-
alizations of their methods,12 there are Andrei Andreevich Markoff (1856–1922),13 

as well as Oswald Venske (1867–1939) and Thomas Jan Stieltjes (1856–1894)14 

to be mentioned. The latter two contributions are more relevant since they both 
focus on e and struggle for a simplification of Hermite’s reasoning. Besides those 
publications from 1890 there is another paper due to Victor Jamet15 from 1891 
which is very close to Stieltjes’ proof and contains the footnote “On pourra consulter 
aussi sur une simplification de la methode de M. Hermite une Note de M. Stieltjes 
(Comptes Rendus, 1890).” Then, in 1893, three simplifications were published, the 
first by David (Hilbert 1893), followed by Adolf (Hurwitz 1893a), and, finally, Paul 
(Gordan 1893d). Proofs of transcendence were definitely a hot topic at that time.

11 Named after Henri Padé (1863–1953) who received his doctorate under Hermite with a 
systematic study of these approximations in 1892. 
12 See Weierstrass (1885). 
13 See Markoff (1883). 
14 See Venske (1890) and Stieltjes (1890). 
15 See Jamet (1891). 



8 Simplifying a Proof of Transcendence for e: A Letter Exchange Between. . . 231

Stieltjes’ reasoning relies on an identity due to Hermite, resp. the following 
variation thereof 

.

∫ c

0
e−xyf (x) dx = F(0) − e−cyF (c), (8.1) 

where .F(x) = ∑
m≥0 f (m)(x)/ym+1 and, as usual, .f (m) denotes the mth derivative 

of .f = f (0) which is here a suitable polynomial. This simple case of Hermite’s 
identity can easily be proved by partial integration and induction. In fact, Hilbert’s 
later proof does not differ too much from Stieltjes’ proof. 

Therefore, we begin with a sketch of Hilbert’s proof and afterwards point out the 
little differences to Stieltjes’ proof. His reasoning is indirect (as well as all the other 
proofs), so we assume that e satisfies an algebraic equation,16 

.0 =
∑

0≤j≤n

aj e
j with aj ∈ Z, a0 /= 0; (8.2) 

in fact, if . a0 would vanish, we could divide the equation by e in order to get an 
algebraic equation for e of smaller degree. Next we define a polynomial 

. f (x) = xμ
∏

1≤c≤n

(x − c)μ+1,

where . μ is a positive integer to be chosen later, and multiply the corresponding 
integral .

∫ ∞
0 e−xf (x) dx with the algebraic equation for e. This leads to 

. 0 =
∑

0≤j≤n

aj e
j

{∫ j

0
+

∫ ∞

j

}

e−xf (x) dx;

we observe that Hermite’s integral (8.1) with parameter .y = 1 appears side by side 
with an infinite integral. We may rewrite the latter equation as 

. 0 = A + B,

where 

.A =
∑

1≤j≤n

aj e
j

∫ j

0
e−xf (x) dx

16 Please notice that we use abbreviatory notation including .
∑

,
∏

which was less common at the 
end of the nineteenth century. Moreover, we have adjusted the choice of letters in the different 
proofs to stress similarities. 
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and 

. B = a0

∫ ∞

0
e−xf (x) dx +

∑

1≤j≤n

aj e
j

∫ ∞

j

e−xf (x) dx;

here we have split the sum according to certain arithmetical properties we shall 
investigate now. For this purpose we use the elementary formula 

.

∫ ∞

0
xue−x dx = u! (8.3) 

which is derived by partial integration and induction (similar to Hermite’s identity 
(8.1) above). Hence, the expression .a0

∫ ∞
0 e−xf (x) dx, appearing in B, is an integer 

multiple of . μ! but not divisible by .μ+ 1 provided that . μ is chosen as a large integer 
multiple of .a0n!. More precisely, expanding the polynomial .

∏
1≤c≤n(x−c)μ+1, this  

integral equals 

. 

∫ ∞

0
e−xxμ

∏

1≤c≤n

(x − c)μ+1 dx

=
∫ ∞

0
e−xxμ dx ·

∏

1≤c≤n

(−c)μ+1 +
∑

k≥μ+1

bk

∫ ∞

0
e−xxk dx (8.4) 

with some integer coefficients . bk , the sum being finite. In order to show that also 
the other summands in B are integers we substitute .x = ω + j for .j = 1, 2, . . . , n, 
which yields 

. ej

∫ ∞

j

e−xf (x) dx =
∫ ∞

0
(ω + j)μ

∏

1≤c≤n

(ω + j − c)μ+1e−ω dω (8.5)

=
∫ ∞

0

∑

k≥μ+1

bkω
ke−ω dω

by the binomial theorem with another set of integer coefficients . bk . Again in view of 
(8.3) each of these expressions in B is an integer multiple of .(μ + 1)!, and therefore 
B is an integer divisible by . μ! such that 

. B/μ! ≡ ±a0(n!)μ+1 /≡ 0 mod (μ + 1),

as follows from (8.4).



8 Simplifying a Proof of Transcendence for e: A Letter Exchange Between. . . 233

Now denote by K the maximum of .x
∏

1≤c≤n |x − c| and by k the maximum of 
.e−x

∏
1≤c≤n |x − c|, both taken for values x from the closed interval .[0, n]. Then, 

. |A| ≤
∑

1≤j≤n

∣
∣
∣
∣aj e

j

∫ j

0
e−xf (x) dx

∣
∣
∣
∣ < κKμ,

where .κ = ∑
1≤j≤n |aj e

j |jk. Since .Kμ/μ! are the summands in the convergent 

exponential series for .exp(K), we may choose . μ in addition to satisfy .κ Kμ

μ! < 1. 
Then .B/μ! is an integer not divisible by .μ + 1, hence .B/μ! does not vanish. 
Furthermore, .|A/μ!| < 1, thus .A/μ! + B/μ! /= 0, giving the desired contradiction. 

Comparing Hilbert’s proof with the one by Stieltjes, one observes that Hermite’s 
identity appears in disguise: taking .y = 1 in (8.1), we find the corresponding terms 
.F(0) − e−cF (c) as the building blocks of B, and so the parameter y is superfluous 
in Hilbert’s proof. Moreover, Hilbert omitted a lengthy and technical discussion 
of a certain integral expression involving a piecewise constant function similar to 
.A + B by using . μ as a parameter and congruence calculus for his arithmetical 
argument. Another difference is within the polynomial f . Where Stieltjes assumes 
arbitrary integral roots, Hilbert specifies them to be the integers .c = 0, 1, 2, . . . , n. 
As a matter of fact, a closeness to Stieltjes’ reasoning is obvious though Hilbert’s 
presentation is a little shorter, definitely more elegant and more to the point. This is 
well documented by Hurwitz in his mathematical diary (see Figs. 8.1 and 8.2) and 
in his correspondence. 

Fig. 8.1 An excerpt from Hurwitz’s diary, notebook no. 10 (Hurwitz 1919, No. 10, p. 153), 
referring to a letter from Hilbert bearing the date 24 October 1892. After a brief outline of Stieltjes’ 
proof Hurwitz starts his sketch of Hilbert’s reasoning with the words “Hilbert presents [Stieltjes’] 
proof in a shorter way as follows.” (All diaries are published online on the e-manuscripta.ch 
platform)
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Fig. 8.2 Another excerpt from Hurwitz’s diary, notebook no. 10, on the next page (Hurwitz 1919, 
No. 10, p. 154). Hurwitz refers to another letter from Hilbert bearing the date 31 December 1892. 
He writes “Following up on this Hilbert has also given this proof” and continues with a brief 
sketch of Hilbert’s reasoning. This notebook also contains an early draft of Hurwitz’s proof of the 
transcendence of e, p. 175 

Although Hilbert went beyond Stieltjes in proving the transcendence of . π by 
almost similar means, it is noteworthy that he did not refer to Stieltjes in his article 
at all. Actually, Lindemann is the only mathematician that is mentioned in Hilbert’s 
article. David Rowe wrote:17 

From one of his letters to Hurwitz, we learn that Hilbert got the initial idea for this new 
proof by reading a paper on the transcendence of e published by Th.J. Stieltjes in 1890. 
Stieltjes’ paper was hardly longer than Hilbert’s, and had been published in the widely read 
Comptes Rendus of the French Academy. Remarkably, Hilbert made no mention of this in 
his publication; in fact, his notice contains no references to the literature on these problems 
whatsoever! Was this in the name of simplicity, or perhaps just a sign of supreme intellectual 
arrogance? 

One could take the ambitious Hilbert in shelter by stressing his age and experience 
as well as the standards of citation at that time (see also Fig. 8.3). Similarly, Stieltjes 
did not refer to Venske, Hurwitz mentioned only Hilbert and Gordan (although 
he wrote reviews for the Jahrbuch of both, Venske’s and Stieltjes’ article, namely 
for the Jahresberichte JFM 22.0435.03 and JFM 22.0437.01, the first one

17 Rowe (2007), p. 229. 
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Fig. 8.3 Illustration of the citations in publications 

containing several typos), and Gordan cited Hermite, Lindemann, Hurwitz, and 
Hilbert (see Fig. 8.3). However, as already pointed out by David (Rowe 2007), Felix 
Klein had the idea to publish the three different proofs of Hilbert, Hurwitz and 
Gordan in one volume of the well distributed and renowned Mathematische Annalen 
of which he was the managing editor. Different to the Göttinger Nachrichten18 , 
where Hilbert and Hurwitz had published their variations, a reader of the Annalen 
would expect proper references for a hot topic result as these transcendence proofs, 
however Hilbert and Hurwitz were not much interested in a further publication 
besides the Göttinger Nachrichten (see Rowe 2007, p. 230, for further details). 
Gordan’s proof appeared in slightly different form and in French, see Gordan 
(1893c).19 

We continue with a sketch of Hurwitz’s proof. For .F(x) = ∑
m≥0 f (m)(x), 

differentiation with respect to x shows 

.
d

dx

(
e−xF (x)

)
= −e−xf (x), (1’) 

which is the differential analogue of Stieltjes’ variant (8.1) of Hermite’s integral 
identity (and its proof relies on the product rule which is the counterpart of partial 
integration that has been used to derive (8.1)). Applying the mean-value theorem 
from differential calculus, implies the existence of a real number . ξ in between 0 and 
x such that 

.e−xF (x) − F(0) = x
(−e−ξ f (ξ)

)
.

18 Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen. 
19 Besides there were a few translations of these proofs, e.g., Hilbert’s article in Polish in the Polish 
journal Prace Matematyczno-Fizyczne. 
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Now, for .x = c ranging from 1 up to n, we write the intermediate value . ξ as . δc with 
some .δ ∈ (0, 1) (depending on c) and get 

.F(c) − ecF (0) = −cec(1−δ)f (δc) =: ϵc, (8.6) 

say. For a large prime number p, we consider the polynomial 

.f (x) = 1

(p − 1)!x
p−1

∏

1≤c≤n

(c − x)p, (8.7) 

which differs only slightly from Hilbert’s polynomial. Then, all the expressions . ϵc

get arbitrarily small with increasing p. Next we expand .f (x) around .x = c for 
.c = 1, 2, . . . , n into a power series by applying the binomial theorem, namely 

. f (c + h) = hp

(p − 1)!

⎛

⎝b0 +
∑

k≥1

bkh
k

⎞

⎠ ,

where the sum is finite and the . bk’s are integers depending on c. Comparing with 
the Taylor series expansion 

. f (c + h) =
∑

m≥0

f (m)(c)

m! hm,

it follows that .f (m)(c) vanishes for .m < p and 

. f (m)(c) = m!
(p − 1)!bm−p ≡ 0 mod p

for all .m ≥ p. For the root .x = 0 of f , however, the situation is slightly different: 
here we observe by the same reasoning that .f (m)(0) is vanishing for .m < p − 1, 
is equal to .(n!)p for .m = p − 1, and is an integer multiple of p whenever .m ≥ p. 
Thus, the numbers .F(c) for .c = 1, . . . , n are all integer multiples of p if .p > n, 
and .F(0) is an integer too but not divisible by p. 

Now, assuming an equation of the form (8.2) for  e, it follows that 

. a0F(0) +
∑

1≤c≤n

acF (c) =
∑

1≤c≤n

acϵc.

Since the left hand side is an integer, the right hand side is an integer too, however, 
it gets as small as we please by increasing p, so the quantity on the left vanishes. 
This vanishing contradicts that the integer .a0F(0)+∑

1≤c≤n acF (c) is not divisible 
by p when p is chosen to be sufficiently large. 

Both proofs so far rely essentially on the differential equation .exp' = exp for the 
exponential function (or, equivalently, the integral equation for . exp). This kind of
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reproduction property appears in the proof of Hermite’s identity (8.1) as well as in  
its differential counterpart (1’). The additional analytic ingredients can also not be 
called advanced. The estimate of the quantities . ϵc in Hurwitz’s proof seems formally 
easier than bounding the integrals in Hilbert’s reasoning, though it includes the 
mean-value theorem from differential calculus and the infinitude of prime numbers 
although Hurwitz (and we as well) did not explicitly mention the latter simple fact 
at all. 

Hurwitz (1893a) contains a footnote: 

By the way, Mr. Hilbert, as I learned from him recently, has already occasionally given hints 
in a lecture how one can avoid the integrals (and at the same time the differentiation) in his 
proof by replacing the integrals by limit values.20 

This idea had been realized by the following third proof published in 1893, found by 
Paul Gordan, professor in Erlangen and a former colleague of Felix Klein. Jeremy 
Gray characterizes Gordan as “a master at manipulating long algebraic expressions” 
(Gray 2018, p. 265). 

This ability together with his urge for explicitness can also be found in 
Gordan’s proof of transcendence. His reasoning relies only on the convergence of 
the exponential series, 

. ex =
∑

i≥0

xi

i! ,

and a subtle notation, namely denoting . r! as . hr , where r is any non-negative integer. 
This allows to write 

.hrex = r!
⎧
⎨

⎩

∑

0≤i≤r

+
∑

i>r

⎫
⎬

⎭

xi

i! = (x + h)r + xrur , (1”) 

where 

.

∑

0≤i≤r

r!
i! x

i =
∑

0≤i≤r

( r

i

)
xihr−i = (x + h)r , (8.8) 

(since .( r
i
)hr−i = r!

i!(r−i)!h
r−i = r!

i! and the last equality follows symbolically from 
the binomial theorem), and 

.ur :=
∑

i>r

r!
i! x

i−r =
∑

k≥1

xk

(r + 1) · . . . · (r + k)
.

20 “Herr Hilbert hat übrigens, wie ich von ihm neuerdings erfahre, auch schon gelegentlich eines 
Vortrages Andeutungen gegeben, wie man die Integrale (und zugleich das Differenziren) bei 
seinem Beweise vermeiden kann, indem man die Integrale durch Grenzwerthe ersetzt.” 
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In view of the convergence of the exponential series, for .x ≥ 0, 

. ur ≤
∑

k≥1

xk

k! < ex;

hence .ur = qre
x with some real number . qr from the unit interval. 

Now, for arbitrary numbers .b0, . . . , bd , we deduce from (1”) that 

. 
∑

0≤r≤d

brh
rex =

∑

0≤r≤d

br (x + h)r +
∑

0≤r≤d

brqre
xxr ,

resp. 

.exf (h) = f (x + h) + exg(x), (8.9) 

where 

. f (x) :=
∑

0≤r≤d

brx
r and g(x) :=

∑

0≤r≤d

brqrx
r .

Next we assume that e is algebraic, i.e. an equation of the form (8.2) holds. 
Then (8.9) with .x = j and .j = 0, 1, . . . , n implies 

. 0 =
∑

0≤j≤n

aj e
j · f (h)

=
∑

0≤j≤n

ajf (j + h) +
∑

0≤j≤n

ajg(j)ej = F + G,

say. 
Now we choose f the same way as Hurwitz did, that is (8.7). For .j = 1, 2, . . . , n, 

writing .p! = hp, we observe that 

.f (j + h) = (j + h)p−1

(p − 1)!
∏

1≤c≤n

(c − j − h)p

= −(j + h)p−1 hp

(p − 1)!
∏

1≤c≤n
c /=j

(c − j − h)p

= −p(j + h)p−1
∏

1≤c≤n
c /=j

(c − j − h)p.
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Since by (8.8) every factor is an integer, it follows that .f (j+h) is an integer divisble 
by p. For .j = 0, however, we find similarly 

. f (h) = hp−1

(p − 1)!
∏

1≤c≤n

(c − h)p =
∏

1≤c≤n

⎛

⎝−
∑

0≤i≤p

p!
i! (−c)i

⎞

⎠ ,

which is an integer not divisible by the prime p. Hence, F is a non-zero integer. 
Since with increasing p the coefficients . bk of f tend to zero (thanks to the factor 

.
1

(p−1)! ), it follows that G gets as small as we please, contradicting .F + G = 0. 
Probably, Gordan came to his symbolical proof by introducing formal differenti-

ation in Hurwitz’s reasoning. In fact, this can be seen in (8.8), namely, 

. f (x + h) =
∑

0≤r≤d

br (x + h)r =
∑

0≤r≤d

br

∑

0≤i≤r

r!
i! x

i

=
∑

0≤m≤d

∑

m≤r≤d

br

r!
(r − m)!x

r−m =
∑

m≥0

f (m)(x), (8.10) 

which is equal to .F(x) in other proofs. Later Heinrich Weber (1842–1913) 
reinvented in his important monograph (Weber 1899) derivatives without any 
comment; his intention might have been the counter-intuitive notation Gordan used 
for circumventing derivatives. Whereas Hilbert and Hurwitz use the differential 
equation for the exponential function, the convergence of the used exponential series 
is indeed the only property Gordan needed for his proof. 

8.4 Hessenberg’s Analysis 

Concerning Gordan’s symbolic proof, Gerhard Hessenberg (1874–1925)21 wrote: 

[. . . ] so it is no miracle that G o r d a n ’s symbolism raises commonly some gentle shudder, 
not least because the imposition to think of . hμ as . μ! collides with the habit not to think at 
all while calculating something.22 

In 1912, Hessenberg analyzed the various proofs of transcendence for e and 
. π in detail, in some places a little polemic. The only proofs he missed in his 
careful study are those by Venske and Stieltjes. The first one relies on a certain 
non-vanishing determinant and is therefore closer to Hermite’s original reasoning

21 Professor at Bonn, Breslau and Tübingen; Hessenberg is known for his work in geometry and 
set theory. 
22 "[. . . ] so nimmt es kein Wunder, daß die Gordansche Symbolik gemeinhin ein gelindes Gruseln 
zu erwecken pflegt, nicht zuletzt auch darum, weil die Zumutung, unter . hμ sich . μ! zu denken, mit 
der Gewohnheit kollidiert, beim Rechnen überhaupt nichts zu denken.” (Hessenberg 1912, p. 50) 
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Fig. 8.4 A diagram from Hessenberg (1912, p. 53) illustrating the proof essentials of Hilbert (left), 
Hurwitz (middle) and Gordan (right). For details Hessenberg refers to various paragraphs. We have 
adjusted our presentation of the three proofs in question with respect to Hessenberg’s analysis. Here 
the Gamma-function is mentioned in the upper left with respect to Formula (8.3) in Hilbert’s proof 
since . 𝚪(u + 1) = ∫ ∞

0 xue−x dx

whereas Stieltjes’ proof is quite similar to Hilbert’s reasoning (as already pointed 
out above). According to Hessenberg, the proofs can be dissected into three parts 
(see Fig. 8.4). 

First of all, there is an arithmetical part linking .f (x) = ∑
aν(x − c)ν with the 

values .F(c) = ∑
aνν!, where the coefficients are all integers. In all three proofs it 

is shown, by slightly different means, that the numbers .F(c) are integers satisfying 
certain divisibility properties with respect to the multiplicities of the roots of f . It  
might be worth to notice that Hermite’s line of argument for this purpose differs 
significantly by a rather lengthy calculation of a certain determinant. 

The middle part is the most interesting since this is essentially the only part where 
the proofs differ. Hilbert’s reasoning relies on integration (and is therefore building 
on Hermite’s original proof and his identity) by using (8.1) implicitly with .y = 1, 
resp. 

.F(c) = ec

∫ ∞

c

e−xf (x) dx,
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and explicit calculations (by partial integration, resp. the gamma-function; see (8.3), 
(8.4) and (8.5)). 

Hurwitz replaced integration by differentiation and the corresponding formula 

is indeed simpler. More precisely, he observed . d
dx

(
e−xF (x)

)
= −e−xf (x) and 

applied the mean value theorem in order to obtain (8.6), i.e., 

. F(c) − ecF (0) = −ce−δcf (δc)

for some intermediate value . δc from .[0, c]. Maybe this formula shows best that the 
polynomial F works as an approximation for the exponential function. The link to 
the arithmetical part follows from the Taylor expansion .F(c) = ∑

f (ν)(c). 
Finally, Gordan argued symbolically without using any integral or differential 

calculus; even formal differentiation is replaced by using the binomial theorem. 
Whereas Hilbert and Hurwitz worked with the differential equation for the exponen-
tial function in addition with some fundamental results from integral and differential 
calculus, respectively, the only ingredient needed for Gordan’s argument is the 
convergence of the exponential series linking both functions F and f . Hessenberg 
rewrote this shortly by the formulae 

. F(c) =
∑

pνEν(c), f (c) =
∑

pνc
ν/ν!;

for the sake of brevity we do not explain the numbers . pν and functions . Eν appearing 
here though the reader may guess by comparing these expressions with . F(c) =∑

m≥0 f (c) = f (c + h) according to (8.10). 
The final third part of Hessenberg’s dissection of the transcendence proofs is 

analytic and consists of an estimate of the quantities .ecF (0) − F(c). Also here 
differences appear according to the use of integration, differentiation or just the 
convergent exponential series. 

Hence, and here we follow Hessenberg’s judgement, Hilbert’s proof can be 
considered purely analytical, Hurwitz’s reasoning is mixed, and Gordan argues 
purely formal. Moreover, Hessenberg considered also further proofs (e.g. those by 
Weber, Mertens, Vahlen, and Schottky), however, those are too close to the above 
discussed ones to be interesting in our framework. 

8.5 Letter Exchanges 

In the following we turn to the letter exchange that accompanied the publication 
of the proofs. These letters give the opportunity to look over the shoulders of 
mathematicians in their research (although this can only be a brief look, quoting 
only excerpts of the correspondence). Correspondents were, of course, the three 
authors Hurwitz, Hilbert and Gordan, supplemented by references to Felix Klein 
and Charles Hermite. In particular, we consider six related letters from Hurwitz to
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Fig. 8.5 Illustration of the letters that were exchanged; the thickness of the arrows is related to the 
number of letters 

Hilbert as well as five letters from Hilbert to Hurwitz, furthermore, one letter from 
Gordan to Hilbert and two letters to Hurwitz, one letter from Hurwitz to Gordan. 
Besides we give quotes from two letters from Hermite to Hurwitz and one letter to 
Gordan (see Fig. 8.5). 

8.5.1 Hilbert and Hurwitz 

“I draw your attention to a very nice proof of the transcendence for e by Stieltjes 
(Comptes R. 1890).”23 (6.9.1892, Adolf Hurwitz to David Hilbert (Hurwitz 1893b, 
Br. 7)) 

As mentioned above, Adolf Hurwitz was reviewer of the article by Thomas 
(Stieltjes 1890) in the annual Jahresberichte. Hilbert’s answer to the brief reference 
to Stieltjes’ proof from October 24, 1892, can be regarded as the impetus of the three 
proof variations for the transcendence of e discussed above. Herein the Königsberg 
mathematician informed Hurwitz about a new discovery which he had investigated 
while preparing his lecture on integral calculus. Hilbert stated that “Stieltjes’ proof 
of the transcendence of e can be presented [...], avoiding Hermite’s integrals” 
(Hilbert 1894, Br. 240).

23 “Ich mache Sie auf einen sehr schönen Beweis für die Transzendenz von e von Stieltjes 
(Comptes R. 1890) aufmerksam.” 
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Although the diary entry quoted above (Fig. 8.1) proves that Hurwitz was 
interested in Hilbert’s idea, it took some weeks before he commented his proof on 4 
December 1892 with a short remark: 

Your simplification of Stieltjes’ proof is very nice; I directly wrote it down into my “book of 
numbers”. One should try to also simplify the proof of the transcendence of . π .24 (Hurwitz 
1893b, Br. 8)  

After a further simplification by Hilbert, communicated in a letter of 31 December 
1892, Hurwitz’s own activity was aroused. Here, Hilbert gave a proof avoiding 
even “Stieltjes’ point”25 (Hilbert 1894, Br. 243). He chose the function . F(z) =
zσ {(z − 1)(z − 2)...(z − n)}σ+1, an explicit simplification, and showed that for 
sufficiently large . σ the terms with improper integrals (see B in Section 2) contribute 
to an integer not equal to zero. 

You can see that altogether herewith the poof receives another proof line, in which the 
inequality to 0 is not shown by the sums of integrals [A] but by the integer number [B]. The 
use of this conclusion leads also to a simplification for the transcendence of . π , which does 
not seem to be irrelevant to me.26 (Hilbert 1894, Br. 243) 

One may assume that Hurwitz shared his opinion: already some days later, despite 
of New Year’s Day and holidays, he answered on 10 January 1893 with not only 
another new proof by his own, but, furthermore, with a certain idea: 

Your scientific note concerning the number e was, as you may imagine, very interesting 
for me. [...] I could not stay calm and discovered a further simplification [...] in a way that 
one can now give the proof in one of the first lessons of a lecture on differential calculus. 
(Hurwitz 1893b, Br. 9)  

As outlined in Sect. 8.3, Hurwitz’s proof is based on differential calculus and a 
combination of divisibility and estimates. In the further course of the letter, Hurwitz 
makes the following suggestion: 

Did you already edit your proof? If yes, please write me if you have already sent it to 
Klein. Then I would let the above mentioned further simplification be printed in a short note 
subsequent to your work. I would prefer if we would choose the Göttinger Nachrichten. [...] 
So please answer quickly, also if only with a postcard. It is clear that the punch line can also

24 “Ihre Vereinfachung des Stietjes’schen Beweises ist sehr schön; ich habe sie mir gleich in mein 
“Zahlenbuch” eingetragen. Man sollte doch versuchen auch den Beweis der Transcendenz von . π
ähnlich zu vereinfachen.” 
25 “Stieltjesche Pointe” 
26 “Sie sehen, dass hiermit der Beweis auch überhaupt eine andere Schlussfolgerung enthält, indem 
nicht von der Integralsumme II sondern von der ganzen Zahl I das Verschiedensein von 0 gezeigt 
wird. Die Benutzung dieses Schlusses gibt auch dem Beweise für die Transcendenz von . π eine 
Vereinfachung, welche mir nicht unerheblich erscheint.” 
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be applied to . π , however, I have not really thought through this yet.27 (Hurwitz 1893b, Br.  
9) 

But Hilbert did not agree with his former teacher Hurwitz. Within only three days, 
he answered: 

In fact, I have already worked out my proof for e and . π in Christmas holidays, therein -
in particular in the part concerning .π - some advantageous and simplifying points arouse, 
such that the whole thing will be on 4–5 printed pages and my presentation is not even 
short. Of course, in your proof the integral is avoided; however, if the representation of the 
proof becomes shorter and clearer, is not yet obvious to me. [In a further of my ideas] the 
opportunity is given to reduce all to a simple considering of limits and the summation of 
geometric series. Of course, this thing has to be carefully studied yet. [...] However, it is in 
my opinion, that the proof with the help of integrals will always be the clearest and most 
developable one. For p or in my notation .ρ + 1 I did not choose a prime number, since 
it is easier to define a number which is divisible by c than a prime number of the needed 
value. Furthermore, I have given how big . ρ is to be chosen and I also put a lot of care on the 
editing. Later on I please you to give me your opinion also concerning incidental parts. It is 
strange that I also have chosen the Göttinger Nachrichten; Klein wrote me directly, that he 
would present the note in this week. However, by no means this does affect your intention 
to show your proof in the next meeting [...] 28 (Hilbert 1894, Br. 244) 

This letter includes a number of interesting details. What had happened? In short 
time of ten days (including New Year’s Day) Hilbert had completed his proof line 
and he had sent his paper to Felix Klein, member of the Göttingen Academy of 
Sciences and therewith able to communicate articles for the Göttinger Nachrichten.

27 “Ihre wissenschaftliche Mittheilung die Zahl e betreffend hat mich, wie Sie sich denken 
können, sehr interessiert. [...] Mich hat die Sache nicht ruhen lassen und ich habe eine weitere 
Vereinfachung entdeckt, [so] daß man jetzt den Beweis in den ersten Stunden einer Vorlesung 
über Differentialrechnung bringen kann. [...] Haben Sie Ihren Beweis schon redigiert? Wenn ja so 
schreiben Sie mir bitte, ob Sie ihn schon an Klein geschickt haben. Ich würde dann die vorstehende 
weitere Vereinfachung in einer kurzen Mittheilung hinter Ihrer Arbeit abdrucken lassen. Am 
liebsten wäre es mir, wenn wir die Göttinger Nachrichten wählten. [...] Also antworten Sie mir 
bitte rasch, wenn auch nur per Karte. Daß sich Ihre Pointe auch auf . π anwenden lässt, ist klar; ich 
habe das aber noch nicht ganz durchdacht.” 
28 “Meinen Beweis für e und . π habe ich in der That bereits in den Weihnachtsferien ausgearbeitet, 
es hat sich dabei - zumal bei dem über . π handelnden Theile - noch mancherlei Vorteilhaftes 
und Vereinfachendes ergeben, so dass die ganze Sache jetzt auf 4–5 Druckseiten herausgehen 
wird und dabei ist meine Darstellung durchaus nicht knapp. Bei Ihrem Beweis wird freilich das 
Integral vermieden; ob aber die Darstellung des Beweises kürzer und übersichtlicher wird, ist 
mir doch noch nicht ganz einleuchtend. [Bei einer meiner weiteren Idee] ist die Möglichkeit 
gegeben alles auf eine einfache Grenzbetrachtungen und die Summation geometrischer Reihen 
zurückzuführen. Die Sache müsste natürlich noch genau durchgedacht werden [...]. Doch ist es 
meine Überzeugung, dass der Beweis mit Hilfe des Integrals immer der übersichtlichste und 
entwicklungsfähigste bleiben wird. Für p oder in meiner Bezeichnung für .ρ+1 habe ich absichtlich 
nicht eine Primzahl gewählt, weil es doch einfacher ist, eine durch c teilbare Zahl als eine Primzahl 
von der nötigen Grösse zu bestimmen. Auch habe ich angegeben wie gross . ρ zu wählen ist und 
auch auf die Redaktion recht viel Sorgfalt verwandt. Ich bitte nachher sehr um Ihr Urteil auch 
im Nebensächlichen. Kurios ist es, dass auch ich gerade die Göttinger Nachrichten gewählt habe; 
Klein schrieb mir umgehend, dass er die Note bereits in dieser Woche vorlegen würde. Aber dies 
schadet ja durchaus nicht Ihrer Absicht, Ihren Beweis in der folgenden Sitzung vorzulegen [...]” 
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Fig. 8.6 First two pages of the letter from Adolf Hurwitz to David Hilbert, from February 8 or 13, 
1893 (Hurwitz 1893b, Br. 10) 

Hilbert is not willing to supplement his publication with Hurwitz’s proof and his 
assessment that his approach will always “be the clearest and most developable” is 
quite explicit. 

When Hurwitz answered one month later (see Fig. 8.6), he is defending his proof: 

It’s been a long time since I wanted to answer your kind letter from 13/I, but - how it goes
- the answer was shifted from day to day. Today now your note on transcendence, which I 
have directly dipped into a coffee, appears as guiding hint. You have written the note with 
Gaussian classicity. I hope that you agree with the note (probably 2 printed pages) in which 
I wrote down the modification of your proof. Felix Klein showed it 4/II to the Göttingen 
Society. As advantage of my modification I consider that the proof shows that only the 
theorem of additivity and the differential equation for . ex (so in last instance only this) 
imply the transcendence of e, and that the proof relies on an approximate representation of 
the powers .e, e2, ...en by rational numbers with the same denominators. [...] I also had the 
idea of modifying your proof by replacing the integrals by limits. However it seems that 
there are some difficulties. [...] Perhaps one is lead to a proof which only uses the definition 

. ez = (1 + z

n
)n(n = ∞).

29 (Hurwitz 1893b, Br. 10)

29 “Lange schon wollte ich Ihren lieben Brief von 13/I beantworten, aber - wie das so geht
- die Antwort wurde von Tag zu Tag verschoben. Heute trifft nun als lenksamer Anstoß Ihre 
Transzendenz-Note ein, die ich sogleich in einen Café gestippt habe. Die Note haben Sie mit 
Gaußscher Classizität abgefasst. Ich hoffe, daß Sie mit der kurzen Note (2 Druckseiten voraus-
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Fig. 8.7 Letter from Paul 
Gordan to David Hilbert from 
February 24, 1893: “Your 
work has given me great 
pleasure; I congratulate you 
on it; your proof of the 
transcendence of e and . π is 
surprisingly elegantly 
conducted” 

Hurwitz thus insisted on the “advantage of his modification”. At the same time using 
terms like “dipping into coffee” and “Gaussian classicity” he expressed joviality 
towards his former student and successor at the Königsberg University. But when he 
wrote about his own accepted, shorter (only two pages) paper and finally mentioned 
that he had had similar ideas as Hilbert and, moreover, even ideas for further 
simplifications, Hurwitz nearly seems to hit the ball back. Astonishingly, it was 
taken up by Hilbert who declared in a letter from March 8, 1893: ‘Gordan wrote 
me a special acknowledgement for my proof of transcendence.”30 (Hilbert 1894, 
Br. 245) (which indeed had been done in a letter (Gordan 1893a) from 24 February 
1893, see Fig. 8.7). 

sichtlich) in der ich die Modifikation Ihres Beweises, [...] einverstanden sein werden. Felix Klein 
hat sie am 4/II der Göttinger Sozietät vorgelegt. Als Vorzug meiner Modifikation sehe ich an, daß 
klar bei dem Beweis zu Tage tritt, daß nur das Additionstheorem und die Differentialgleichung für 
. ex (also in letzter Instanz nur diese) die Transzendenz von e nach sich ziehen, und daß der Beweis 
auf einer angenäherte Darstellung der Potenzen .e, e2, ...en durch rationale Zahlen mit demselben 
Nenner beruht. [...] Der Gedanke, Ihren Beweis dadurch abzuändern, daß man die Integrale durch 
Grenzwerte ersetzt war mir auch gekommen. Es scheinen aber noch Schwierigkeiten vorzuliegen 
[...]. Vielleicht wird man auf einen Beweis geführt, der nur die Definition . ez = (1 + z

n
)n(n = ∞)

benutzt.”
30 “Gordan hat mir extra eine Anerkennung für meinen Transcendenzbeweis geschrieben.” 
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Some weeks later, the slightly elder informed the younger about a recognition of 
his proof from the initiator of the proofs of transcendence. In a letter from 8 April 
1893 he wrote in a surprisingly comparative manner: 

Hermite wrote me in his kind way a letter about my e-proof which is obviously much more 
convenient to him than yours. He asked me to be allowed to show it to the academy and so 
it will probably be printed in the next Comptes Rendus [...].31 (Hurwitz 1893b, Br. 11) 

Indeed, Hermite expressed that after Stieltjes and Hilbert, Adolf Hurwitz had 
probably said “le dernier mot”32 to the important question of transcendence of e.33 

Explicitly he mentioned: 

Studying the fine work of M. David Hilbert I was a bit embarrassed about the essential 
point at which he established that the integer number [...] is necessarily different to zero. 
But everything is of extreme clarity in your analysis and what seems to me the foremost 
remarkable and completely new is to be led to an impossibility regarding integer numbers, 
when before we encountered another type of contradiction, an integer equal to a quantity 
decreasing to an inferior.34 (Hermite 1893a, Br. 218) 

Although Hermite declared a certain preference for Hurwitz’s proof line, a second 
letter from 19 April 1893 shows that he considered Hilbert’s work to be mentioned 
as preparatory: 

I made it my duty to fulfill your intention to mention that [your result] was already published 
in the Nachrichten der Gesellschaften der Wissenschaften zu Göttingen and at the same time 
I cited the work of M. David Hilbert in the same collection.35 (Hermite 1893a, Br. 217) 

Hurwitz’s proof was published on not more than one and a half printed pages in 
number 116 of the Comptes Rendus36 which covered the period of January to June 
1893.37 

31 “Hermite hat mir in seiner liebenswürdigen Weise einen Brief über meinen e-Beweis 
geschrieben, der ihm offenbar viel bequemer liegt als der Ihrige. Er hat mich gebeten, denselben der 
Akademie vorlegen zu dürfen und so wird er voraussichtlich [...] in der nächten Comptes Rendus 
abgedruckt.” 
32 “the last word”. 
33 See (Hermite 1893a, Br. 218). 
34 “J’avais été un peu embarassé en étudiant le beau travail de M. David Hilbert sur ce point 
essentiel òu il établit que le nombre entier désigné par [...] est nécessairement différent de zéro. 
Mais tout est d’une extrême clarté dans votre analyse, et ce qui me semble on ne peut plus 
remarquable et entièrement nouveau, c’est d’être amené à une impossibilité relative à des nombres 
entiers, lorsque précédemment on aboutissait à cette autre nature de contradiction, à un entier égal 
à une quantité inférieurement décroissante.” 
35 “Je me suis fait un devoir de remplir votre intention en mentionnant qu’elle a été publiée 
précédemment dans les Nachrichten der Gesellschaften der Wissenschaften zu Göttingen, et j’ai 
cité pareillement le travail de M.David Hilbert, dans le même recueil.” 
36 Comptes rendus hebdomadaires des séances de l’Académie des sciences 
37 See Hurwitz (1893d).
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8.5.2 Gordan and Hurwitz 

The above briefly indicated involvement of Paul Gordan goes in fact much deeper. 
The Erlangen mathematician was not only curious about Hurwitz’s and Hilbert’s 
work, he had foremost his own ideas of simplifying the proof itself. Only a short 
time after his appreciative words to Hilbert, Gordan wrote a letter to Hurwitz on 25 
April 1893: 

I read your work on the transcendence of the number e with highest interest, however, I 
believe that some of your conclusions can still be simplified: [...] I beg for your opinion on 
this.38 (Gordan 1893b, Br. 176) 

What follows is the very elegant proof (see Sect. 8.3) based only on the exponential 
series concluded with the final remark: “Please tell me whether I am right!”. And 
Adolf Hurwitz approved, answering three days later, on 28 April, 

I have no doubt that your new method only relying on the series expansion of . ex for the 
proof of the vanishing of .F(k) − ekF (0) for .p = ∞ is completely in order [...] such that 
one now only has to operate with the simplest tools of analysis. Mister Hermite had asked 
me if he could show my proof to the French Academy (of course I agreed to this request 
with many thanks at that time.) At the same time he meant that now the last word about 
e had been spoken. I see now that Mister Hermite was in a gentle error at this point and I 
congratulate you that the last word was reserved to you.39 (Hurwitz 1893c, Br. 58) 

Indeed, Hermite agreed. In a letter from 6 May 1894 he answered to Gordan’s 
submission: “Your new proof which you honored me to communicate to me of the 
transcendence of the number e seems to me of foremost worth of interest and will 
arise the attention of all geometers.”40 (Hermite 1893b, Br. 71) 

Returning to the correspondence of Hurwitz and Hilbert, it seems that none of 
them could give up having “the last word”. In a letter from May 1, 1893, Hurwitz 
passed on the information to Hilbert about Gordan’s new proof only relying on the 
series expansion of . ex and refers directly to his remark: “The letter was written 
quite typically for Gordan. He closed with the words: “Please tell me whether I

38 “Ihre Arbeit über die Transzendenz der Zahl e habe ich mit großem Interesse gelesen, doch 
glaube ich, daß einige Ihrer Schlüße sich noch vereinfachen lassen. Ich bitte um Ihre Ansicht 
darüber: [...] Ich bitte mir zu schreiben, ob ich Recht habe!” 
39 “[...] so zweifle ich doch nicht daran, daß Ihre neue nur auf die Reihenentwicklung von . ex sich 
gründende Methode zum Beweis des Verschwindens von .F(k) − ekF (0) für .p = ∞ vollständig 
in Ordnung ist [...] insofern man nun nur mehr mit den einfachsten Hülfsmitteln der Analysis zu 
operieren braucht. Herr Hermite hatte mich gebeten, daß er meinen Beweis der franz. Akademie 
vorlegen dürfe (eine Aufforderung der ich natürlich damals mit herzlichem Danke entsprochen 
habe.) Zugleich meinte er, daß nun mehr über e das letzte Wort gesprochen sein. Ich sehen nun, 
daß Herr Hermite sich in diesem Punkte in einem liegenswürdigen Irrthume befunden hat und ich 
beglückwünsche Sie, daß Ihnen das letzte Wort vorbehalten blieb.” 
40 “La nouvelle démonstration que vous m’avez fait l’honneur de me communiquer de la 
transcendance du nombre e me semble on ne peut [plus] digne d’intérêt et méritera l’attention 
de tous les géomètres.” 
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am right!” ”41 Half a year later (and after a couple of letters without touching the 
subject of proofs of transcendence), on 6 January 1894, in a letter concerning his 
visit to Berlin the younger added: “I met Weierstrass in good health and he said that 
he read my e and .π -note with pleasure.”42 (Hilbert 1894, Br. 150) Hurwitz replied 
on January 30, 1894: 

Your reports from Berlin were of course very interesting to me. So Weierstrass is again 
completely mobile!43 (Hurwitz 1893b, Br. 17) 

8.6 Further Reception 

In view of the various proofs of the three and their ambitions, so explicitly marked 
in the correspondence, regarding simplicity and capacity for further development of 
the argumentation, we distinguish in the following their reception in teaching and 
research (until the 1970s). 

We have already mentioned Felix Klein and his role in publishing the three proofs 
on consecutive pages in an issue of the Mathematische Annalen. One may be curious 
about his judgement as to which of the given proofs is the most “simple”. In his 
famous lectures at the Evanston Colloquium , “delivered from Aug. 28 to Sept. 
9, 1893, before members of the Congress of Mathematics held in connection with 
the World’s Fair in Chicago” (a forerunner of the later International Congresses of 
Mathematicians), Klein chose (in Chapter VII) Hilbert’s “very simple proof”.44 In 
addition, he commented 

Immediately after Hurwitz published a proof for the transcendency of e based on still more 
elementary principles; and finally, Gordan gave a further simplification. [...] The problem 
has thus been reduced to such simple terms that the proofs for the transcendency of e and . π
should henceforth be introduced into university teaching everywhere. 

In the probably first textbook presenting proofs of transcendence for e and 
. π , namely the Lehrbuch der Algebra (Weber 1899, volume 2, §226) of Heinrich 
Weber, the author praised the proofs of Hilbert, Hurwitz and Gordan as conducted 
“with very elementary means and in the simplest way”45 (see page 829) and his 
proof relies mainly on Hurwitz’s reasoning. The later textbook of Edmund Landau 
(1877–1938) presented a similar proof although without mentioning the simplifiers 
explicitly but just the names of Hermite and Lindemann (see Landau 1927, pp.

41 “Der Brief war recht Gordan’sch abgefasst. Er schloß: “Ich bitte Sie mir zu schreiben, ob ich 
Recht habe! [...]” ” 
42 Weierstraß traf ich wohlauf und er sagte, dass er meine e und .π -Note mit Vergnügen gelesen 
habe.” 
43 “Ihre Berichte aus Berlin haben mich natrürlich sehr interessiert. Also Weierstraß ist wieder 
ganz mobil!” 
44 See Klein (1894). 
45 “mit ganz elementaren Mitteln und auf die einfachste Weise” 
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90–93). In his textbook, Oskar Perron (1880–1975) reproduced Hurwitz’s proof, 
however he writes (see Perron 1921, on page 174) 

The first proof of this theorem is by H e r m i t e. The proof has been significantly simplified 
later by several authors, namely by H i l b e r t and W e b e r, keeping H e r m i t e ’s basic 
idea, so that it can be made quite elementary today.46 

The standard reference for number theory for decades, written by Godfrey Hardy 
(1877–1947) and Edward Wright (1906–2005), gives as well Hurwitz’s proof; 
as already mentioned in the introduction, the authors remarked that the original 
proofs of Hermite and Lindemann “were afterwards modified and simplified by 
Hilbert, Hurwitz, and other writers”.47 In the North-American community, the 
booklet of Ivan Niven (1915–1999) was one of the first sources including proof of 
transcendences and there also Hurwitz’s proof is reproduced.48 The only exception 
in early sources with a broad readership is the textbook of Alexander Ostrowski 
(1893–1986) who gave the proof of his mentor Hilbert (see Ostrowski 1954, pp. 
85–88). 

If we take a look at specialized literature and research in particular, a somewhat 
different picture emerges. In his important book Transcendental Numbers,49 relying 
on notes from a lecture given at Princeton in 1946, Carl Ludwig Siegel (1896–1981) 
presents the transcendence results of Hermite, Lindemann, and the more general 
result of Weierstrass; his reasoning relies on Hermite’s original approach. Siegel 
wrote at the end of his proofs (on page 30): 

It should be mentioned that the preceding proofs of the transcendency of e and . π [...] 
are not the simplest to be found in literature. Our proofs are related to the original work 
of Hermite; however, our procedure in constructing the approximation forms is somewhat 
more algebraic, and this has been decisive for the generalization which we shall investigate 
in the next chapter. 

Siegel refers to his work on what is now called E-functions (from 1929; see 
also Shidlovskii (1989)) and later he discusses path-breaking results of his pupil 
Theodor Schneider (1911–1988), who proved Hilbert’s seventh problem on the 
transcendence of . αβ with algebraic .α, β (such that .α /= 0, 1 and . β is irrational) 
in 1934 independently to Aleksandar Gelfond (1906–1968); both reasonings rely 
on an analytic treatment of complex-valued functions. 

That a transcendence problem found its way into Hilbert’s famous list of 23 
problems for the twentieth century is, in retrospect, no wonder. But it is remarkable 
to realize at this point to what extent Hilbert developed in the short time from 
“Hurwitz’s pupil” in 1892 to one of the few universal mathematicians in 1900,

46 “Der erste Beweis dieses Satzes stammt von H e r m i t e. Der Beweis ist später unter 
Beibehaltung des H e r m i t eschen Grundgedankens von mehreren Autoren, namentlich von 
H i l b e r t und W e b e r, bedeutend vereinfacht worden, so daß er sich heute ganz elementar 
gestalten läßt.” 
47 See Hardy and Wright (1959). 
48 See Niven (1963). 
49 See Siegel (1949). 
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parallel to the “changing of the generations in the German mathematical world” 
(cf. Gray 2000, p. 33). It is an interesting side note that in the context of his seventh 
problem (Hilbert 1902) referred to Hurwitz (1883)50 indicating the latter one’s early 
interest in questions around transcendency. 

Besides the Gelfond-Schneider theorem another important transcendency result 
of that time was Schneider’s treatment of abelian functions (in 1937). What we 
observe here is indeed a return to the roots! In his monograph (Schneider 1957, p.  
47), Schneider makes his perspective pretty clear: 

The fact that after the above-mentioned proofs of HERMITE on the transcendence of e 
and of LINDEMANN on the transcendence of . π numerous further proofs on the same 
subject have been published, especially in the nineties of the last century, shows that these 
proofs, although perfect, appeared to be either unsatisfactory with respect to transparency 
or capable of improvement with respect to the means used. Special emphasis was put on the 
most possible elimination of analytical means and thus a situation arose which caused G. 
Hessenberg in 1911 to write his book on the “Transcendence of e and . π” in order to work 
out clearly the basic ideas of the proofs [...]. Just by elementarization these basic ideas were 
veiled and the resulting generalizable approaches of HERMITE and LINDEMANN were so 
narrowed and tailored to the exponential function and its inverse function, that also for this 
reason further results were not obtained.51 

Schneider’s book was published in the renowned Springer series Die Grundlagen 
der Mathematischen Wissenschaften in Einzeldarstellungen (as volume LXXXI) 
and became a standard reference for some period. Concerning the issue of sim-
plification, Baker wrote in (Baker 1975, p. 3) two decades later 

The work of Hermite and Lindemann was simplified by Weierstrass in 1885, and further 
simplified by Hilbert, Hurwitz and Gordan in 1893. We proceed now to demonstrate the 
transcendence of e and . π in a style suggested by these later writers. 

After giving the proofs, hoewever, he added (on page 8) 

The above proofs are simplified versions of original arguments of Hermite and Lindemann 
and their motivation may seem obscure; indeed there is no explanation a priori for the 
introduction of the functions I and f . A deeper insight can best be obtained by studying the 
basic memoir of Hermite where, in modified form, the functions first occured, but it may 
be said that they relate to generalizations, concerning simultaneous approximation, of the 
convergents in the continued fraction expansion of . ex .

50 The 1883 article had been accompanied by a second part in 1888. 
51 “Daß nach den genannten Beweisen von HERMITE zur Transzendenz von e und von LINDE-
MANN zur Transzendenz von . π zahlreiche weitere Beweise über den gleichen Gegenstand, vor 
allem in den neunziger Jahren des vorigen Jahrhunderts veröffentlich worden sind, zeigt, daß diese 
Beweise, obzwar einwandfrei, so doch entweder in bezug auf Durchsichtigkeit unbefriedigend oder 
in bezug auf die verwendeten Hilfsmittel verbesserungsfähig erschienen waren. Man legte gerade 
auf möglichste Ausschaltung analytischer Hilfsmittel ein besonderes Gewicht und es entstand so 
eine Situation, die G. HESSENBERG im Jahre 1911 veranlaßte, sein Buch zur “Transzendenz 
von e und . π” zu schreiben, um die Grundgedanken der Beweise deutlich herauszuarbeiten [...]. 
Gerade durch die Elementarisierung waren diese Grundgedanken verschleiert und die daraus 
verallgemeinerungsfähigen Ansätze von HERMITE und LINDEMANN so sehr eingeengt und 
auf die Exponentialfunktion und deren Umkehrfunktion zugeschnitten, daß auch deshalb weitere 
Ergbenisse nicht erzielt wurden.” 



252 N. M. R. Oswald

In his lecture notes, Kurt Mahler (1903–1988) discussed the various proofs arising 
in the 1890s in a final chapter in detail. He begun with the words (see Mahler 1976, 
p. 213) 

We shall here collect a number of such proofs by different mathematicians and explain their 
relations. Since Siegel’s fundamental paper of 1929 (Chapters 4–9), entirely new and very 
powerful methods have been introduced into the theory of transcendental numbers. This has 
the danger that the easier and often very ingenious classical proofs may be forgotten. 

Concerning the flexibilities, he later wrote (on page 243) 

A. Hurwitz (1893) satisfies the divisibility conditions in a seemingly simpler way by taking 
his parameter equal to a sufficiently large prime. This is a very convenient choice, but it 
imposes unnecessary restrictions on the parameter without actually simplifying the proof. 
The disadvantage of Hurwitz’s choice becomes particularly evident if one wants to derive a 
measure of transcendence, say for e. 

But of course, this was not the intention of Hurwitz and others who struggled for a 
simple proof; the measure of transcendence is a concept of the twentieth century. 

We conclude with a brief evaluation of this compilation of receptions. If the 
attribute simple or elementary is intended to mean that a certain argument can be 
accomplished with as few additional aids as possible, then, of course, Gordan’s 
proof is the simplest. Comparing the proofs of Hilbert and Hurwitz, Hurwitz’s 
reasoning has to be regarded more simple since Hilbert’s argumentation needs 
in addition to Hurwitz’s use of the differential equation .exp' = exp also the 
fundamental theorem of differentiation and integration as well as partial integration 
(or basic knowledge of the Gamma-function); on the contrary, Hurwitz applies the 
mean-value theorem and the infinitude of primes, two results that can be considered 
more fundamental. This ranking may as well explain the choices of Hurwitz’s 
proof for general textbooks. If the focus is on research (e.g., the generalization to 
E-functions), however, then simplification is not of major interest but issues like 
flexibility or options for generalizations are relevant. In this sense, the generalization 
by Weierstrass (1885) had proven to be the most fruitful for the advancement of the 
transcendency proofs of the nineteenth century. 
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Chapter 9 
Current and Classical Notions 
of Function in Real Analysis 

Colin McLarty 

Abstract Not only historians of mathematics but also working analysts know 
how seventeenth through nineteenth century mathematicians advanced from vaguer 
notions to the set theoretic idea of function. The celebrated Princeton Lectures in 
Analysis of Elias Stein and Rami Shakarchi are shaped around that history, and 
review it at some length in both volumes 3 and 4. Stein and Shakarchi take the set 
theoretic notion as their official definition of function, but the reason they review that 
history twice is explicitly to contrast it with the modern forms of two other classical 
notions of function that they use informally. Terence Tao studied with Stein in the 
1990s and emphasizes an even wider view of the function concept. All these authors 
show both how and why these generalizations of the set theoretic notion of function 
suit the purposes of classical and current analysis. 

This note on the notion of function is part of a project on intertwined classicism 
and innovation in analysis. This project benefitted early from Jeremy Gray’s advice 
on the Navier-Stokes equation and then from his book Change and Variations: A 
History of Differential Equations to 1900 (2021) which arrived at the start of the 
writing this note. His work and his advice have been decisive for my sense of 
historical method and my concrete historical projects. 

Not only historians of mathematics but also working analysts know how seven-
teenth through nineteenth century mathematicians advanced from vaguer notions to 
the set theoretic idea of function. Take Elias Stein and Rami Shakarchi’s celebrated 
Princeton Lectures in Analysis. Volume 3 on real analysis opens with the history of 
the set theoretic function concept (Stein and Shakarchi 2005, pp. xvff.). Volume 4 
on functional analysis goes over it again (Stein and Shakarchi 2011, pp. 98ff.). 

However, the purpose of the Princeton Lectures review of that history is to show 
how the set theoretic definition is not now and has never been the most general 
notion of function in analysis. Those lectures review the history twice expressly 
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in order to contrast it with the modern forms of two other classical notions of 
function that they will use. While they take the set theoretic definition as official, 
the real analysis volume contrasts the set theoretic idea with measurable functions. 
The lectures informally, but constantly, treat measurable functions as real-valued 
functions on the real vector spaces . Rd which violate the set theoretic definition of 
function by having no determinate value at any single point .x ∈ R

d (Stein and 
Shakarchi 2005, pp. 69, 157). See Sect. 9.3 below. The functional analysis volume 
contrasts the history with distributions which it treats as generalized functions 
notably including the Dirac delta function .δ(x). These often violate the set theoretic 
definition of function by allowing no possible value, finite or infinite, at crucial 
points, as Sect. 9.2.3 below explains in the case of .δ(x). Terence Tao studied with 
Elias Stein in the 1990s, and has emphasized an even wider view of the function 
concept as we will see in Sects. 9.2.2–9.2.4. 

There is no controversy here. This is not about foundations of mathematics. Nor 
is there active debate over calling measurable functions or distributions “functions.” 
Stein, Shakarchi, and Tao, like many analysts, often call them that and this does not 
change the mathematics at all. Exactly the same theorems are proved by analysts 
who take care to avoid such usage as by analysts who consider the usage informal, 
convenient, indispensable in practice, or actually correct. The topic is historically 
interesting, though, because the variant notions of function in analysis retain usages 
older than the set theoretic definition. 

9.1 The Modern Definition of Function Circa 1930 

Édouard Goursat’s influential Cours d’analyse mathématique looked back one 
hundred years to say: 

The modern definition of the word function is due to Cauchy and to Riemann. One says y 
is a function of x when to each value of x corresponds a value of y. One indicates this 
dependence by the equality .y = f (x). (Goursat 1933, p. 13) 

Numerous historical sources show the practical meaning of that definition was much 
more widely and clearly understood by Goursat’s time than in Cauchy’s or even 
Riemann’s. Notably, over that span of time, Cantor, Dedekind and others created set 
theory, and one major motivation was to clarify this definition of function. Working 
standards of explicit rigor are higher today than Goursat’s standards in 1930. Yet to 
this day the definition of function in analysis textbooks is little changed verbatim 
from what Goursat credits to Cauchy and Riemann. 

Take this example from Tao’s undergraduate textbook Analysis I: 

A function f : X→Y from one set X to another set Y is an operation which assigns to each 
element (or “input”) x in X, a single element (or “output”) .f (x) in Y. (Tao  2014, p. 49) 

To put it in a fuller context, though, Tao calls this the notion of function specific 
to set theory. Section 9.2.1 returns to this. He stresses that some central notions of
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function in other fields of mathematics, notably including advanced analysis, do not 
fit this definition. Section 9.2.2 goes into that. Most of Tao’s examples originated in 
the mid- to late-twentieth century, but his examples from analysis go back before 
Fourier in 1820. 

Real analysis is an unusually classicist branch of mathematics. A time-travel 
metaphor can explain my meaning: Leonhard Euler would meet striking new ideas 
if he could read Fefferman (2000) describing the Millennium Prize problem on the 
Navier-Stokes equations. But after a brief introduction to vector calculus notation, 
Euler could follow the outlines of the new ideas right there in Fefferman’s essay. 
Number theory for example is not like that. Euler would need substantial preparation 
in Galois theory and Riemann surfaces before getting any idea of the Frobenius 
endomorphisms and modularity in Bombieri (2000) describing the Millennium 
Prize for the Riemann Hypothesis. Euler’s ideas were formative for both problems, 
as Fefferman and Bombieri each describe. The other Millennium Prize problems 
in algebraic topology, algebraic geometry, computation theory, and mathematical 
physics are all farther from what Euler knew. 

Gray calls Euler prescient on the prospect for fluid dynamics, and quotes a 
passage of Euler illuminating the classicism of real analysis. After successful work 
on equilibrium in fluids, Euler wrote: 

I now propose to deal with the motion of fluids in the same way. . . .  a  much  more  difficult  
undertaking. . . .  Nevertheless  I  hope to arrive at an equally successful conclusion, so that, if 
difficulties  remain,  they  will  pertain  not  to  Mechanics  but  purely  to  Analysis. . . .  

Euler was confident his tools, including his idealizations such as perfect continuity 
and incompressibility of the fluid, were the right mathematics for fluid dynamics. 
He knew this mathematics would be extremely difficult to use. But he was sure this 
Analysis would give “the general principles on which the entire science of fluid 
motion is based” (Gray 2021, p. 44). 

History to date bears out Euler’s confidence. His own Euler equations are basic 
to the slightly later Navier-Stokes equations (Fefferman 2008). Both are obviously 
physically unrealistic in many ways, and famously difficult to use. Applications 
virtually always require very coarse simplification of the equations and often rely on 
ad hoc corrections. But these equations express basic fluid motion so well that today 
they are more securely central to theoretical and practical fluid dynamics than ever: 
“they are nowadays regarded as the universal foundation of fluid mechanics” (Galdi 
2011, p. 3). Pierre Gilles Lemarié-Rieusset’s book The Navier-Stokes Problem in 
the twenty-first century (2015) presents two centuries of deep technical innovations, 
and current wide open problems, focusing on the pure mathematics. That book 
would offer Euler many new methods (especially using topological vector spaces) 
and correspondingly many new theorems. But I urge, without attempting a rigorous 
argument, he would recognize the sense of it all as his own idea of analysis.
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9.2 Functions as a Theme 

Terence Tao, known among other things for his 2006 Fields Medal in analysis, and 
quality exposition at many levels of mathematics, discusses the notion of function in 
two contexts. In the research context he describes an array of function-like devices 
which are not set theoretically functions but have been used as functions in analysis 
since at least Joseph Fourier in the 1820s. New kinds are still being created today 
especially for use with non-linear differential equations. Tao urges thinking of these 
notions as forming a spectrum of smoother and rougher functions (Tao 2008a,b). 

In the teaching context, Tao’s undergraduate textbook Analysis I,II (Tao 2014, 
2016b) uses an original axiomatic set theory giving functions more independent 
reality than they have in Zermelo-Fraenkel set theory and less than in categorical 
set theory. These axioms are not presented as a rival to any other foundations 
of mathematics as a whole. Tao offers these as helping teach a unified grasp of 
analysis.1 

These topics are best approached in the opposite order to their publication. 

9.2.1 Set Theory in Analysis I, II 

Through several years teaching an honors class in real analysis, Tao produced his 
Analysis I,II. The topics and theorems are classical. The exposition conveys Tao’s 
distinct vision of the path through it all. For this, Tao gives his own axiomatic set 
theory. These axioms aim to do exactly what the preface says the whole book aims 
to do. That is, make logical rigor an aid rather than an obstacle to substantial insight 
for beginners in real analysis. 

Some students asked why they were spending time on apparent trivia, but: 

when [the students] did persevere and obtain a rigorous proof of an intuitive fact, it solidified 
the link in their minds between the abstract manipulations of formal mathematics and their 
informal intuition of mathematics (and of the real world), often in a very satisfying way. 
(Tao 2014, p. xv) 

Few analysis textbooks include an explicit axiomatic set theory. Fewer still 
include an original one. One famous example is John L. Kelley’s General Topol-
ogy (1955). The most influential aspect of Kelley’s book was the clear, concise 
organization of the definitions and theorems of point set topology. But Kelley also 
created a version of what is now called Morse–Kelley set theory, to accommodate 
large, proper-class sized, categories of topological spaces and maps. 

While sharing Kelley’s interest in rigor from the ground up, Tao has quite 
different concrete motives for his axioms than Kelley had. Tao offers the honors

1 Tao posted more foundational discussions on line, partly collected in Tao (2013). Here I discuss 
only the set theory in Tao (2014) and subsequent editions of that book. 
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analysis students a conceptual alternative to the formal reduction of functions to 
sets in Zermelo-Fraenkel set theory. In fact his 2014 edition merely said functions 
might not themselves be sets. But two years later he wrote: 

Strictly speaking, functions are not sets, and sets are not functions; it does not make sense 
to ask whether an object x is an element of a function f, and it does not make sense to apply 
a set  A to an input x to create an output .A(x). (Tao  2016a, p. 51) 

Rather, Tao defines functions in set theory as objects related to sets in the 
following way. For any property .P(x, y): 

Definition 3.3.1 (Functions).  . . . [if]  for  every .x ∈ X, there is exactly one .y ∈ Y for which 
.P(x, y) is  true. . . .  [then]  define  the  function  f : X →Y defined by P on the domain X and 
range Y to be the object which, given any input .x ∈ X, assigns an output .f (x) ∈ Y, defined  
to be the unique object .f (x) for which .P(x, f (x)) is true. (Tao 2014, p. 51) 

That same page defines equality of functions, .f = g as holding if and only if 
.f (x) = g(x) holds for all .x ∈ X. And so a function f is fully described by a certain 
set called its graph: 

. {〈x, f (x)〉 | x ∈ X} ⊂ X × Y.

But Tao is explicit the function is not a set. It is distinct from its graph. 
To emphasize the centrality of functions, Tao states his power set axiom in terms 

of function sets: 

Axiom 3.11 (Power set axiom). Let X and Y be sets. Then there exists a set, denoted . YX, 
which consists of all the functions from X to Y. (Tao  2014, p. 59) 

All this emphasis on functions suits how Tao wants the students in honors 
analysis to see set theory. And yet he notes other parts of mathematics use 
morphisms the way set theory uses functions, and indeed morphisms can be 
functions in the set theoretic sense, but are not always (Tao 2014, p. 49). 

9.2.2 The Best Ways of Describing Functions 

Tao (2008a) says in set theory the fundamental operation on a function f : X→Y is 
evaluation at an element x ∈ X to give a value f (x)  ∈ Y : 

However, there are some fields of mathematics where this may not be the best way of 
describing functions. In geometry, for instance, the fundamental property of a function is not 
necessarily how it acts on points, but rather how it pushes forward or pulls back objects that 
are  more  complicated  than  points. . . .  Similarly,  in  analysis,  a  function  need  not  necessarily 
be defined by how it acts on points, but may instead be defined by how it acts on other 
objects [Tao mentions sets, and test functions] the former leads to the notion of a measure, 
the latter to the notion of a distribution. (Tao  2008a, p. 184f.)
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Tao cites other sections of the Princeton Companion to Mathematics for geometric 
examples. These more or less arose around the 1930s and Tao describes the 
conception of them that became prominent in and after the 1950s (McLarty 2007). 
The examples he gives from analysis were also extensively re-organized through 
the mid- and late twentieth century, and Tao describes how they are still developing 
today, but these ideas arose much earlier. 

9.2.3 Analysis: Fourier and the Dirac Delta Function 

In 1822 Joseph Fourier’s Analytical Theory of Heat (2009) drew on a century of 
incisive work by Euler and other great mathematicians, to present utterly confident 
solutions to differential equations from physics, by calculating integrals that many 
of Fourier’s contemporaries found dubious or nonsensical. Fourier’s ideas had a 
compelling coherence and produced very valuable purported results, yet were too 
swift to entirely trust. In fact they cannot be justified in the sweeping generality 
that Fourier claimed. Efforts to clarify these methods became a major force driving 
the next century and more of rigorization of analysis. See numerous references to 
Fourier in the index of Kline (1972). Stein and Shakarchi (2003, p. 23) give a précis 
of this history, and shape the four volumes of their Princeton Lectures in Analysis 
largely around key steps in the long, rigourous development of Fourier’s ideas. 

Fourier’s boldest single calculation was his claim that “any function” g is 
expressible in the following form (Kline 1972, p. 680). We lightly adapt the notation: 

.g(y) = 1

2π

∫ ∞

−∞
g(x)

∫ ∞

−∞
cos q(x − y) dq dx. (9.1) 

Comparing Eq. (9.1) with Eq. (9.3) below shows that according to this calculation 
by Fourier, for .y = 0, the inside trigonometric integral defines the Dirac delta 
function: 

.δ(x) = 1

2π

∫ ∞

−∞
cos(q · x) dq. (9.2) 

Some mathematicians objected that this and related integrals are ill-defined and 
actually impossible. But Fourier did not care. He felt he knew how to calculate 
with them. See discussion by Lützen (1982, p. 113). 

Today the Dirac delta .δ(x) is usually defined by simply stipulating that, for all 
functions g : R→R, 

.

∫ ∞

−∞
g(x) · δ(x) dx = g(0). (9.3)
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It is widely described as a function from . R to . R with .δ(x) = 0 whenever .x /= 0, 
and .δ(0) so high that the area under the graph is 1. 

The inspired core calculus textbook (Strang 2015, p. 23) gives a concise practical 
account of .δ(x) in that way, and then chapters full of examples. Strang immediately 
notes a problem: no function in the set theoretic sense meets Eq. (9.3) for all 
g, or has any such graph. But a textbook on the essential ideas of differential 
equations, largely for engineering students, is not the place to worry about that. 
Strang uses .δ(x) throughout his book to teach correct intuitions and calculations 
with differential equations including Fourier and Laplace transforms. Strang warns 
the reader that .δ(x) is “by no means an ordinary function.” By the same token, 
Eq. (9.3) is no ordinary integral. 

Someone might try to make .δ(x) an ordinary function by adjoining infinities 
.−∞,∞ at each end of the real line . R. This extended real line is widely used in 
analysis. It works well for many purposes. But defining .δ(0) = ∞ will not work. 
Equation (9.3) requires that doubling .δ(x) gives a different function. Doubling . ∞ on 
the extended real line just gives back . ∞. Indeed, no kind of trick can make .δ(x) an 
ordinary function if the integral in Eq. (9.3) is to be much like either a Riemann 
integral or a Lebesgue integral. Famously, both the Riemann and the Lebesgue 
integrals keep the same value when the integrand is changed at any single point. 
Changing .δ(x) at the single point .x = 0 by setting .δ(0) = 0 would give the constant 
0 function, utterly violating Eq. (9.3). 

Set theory can formalize .δ(x) as a part of an operator .
∫
R

· δ(x) dx taking each 
suitable function .g(x) to the number .

∫ ∞
−∞ g(x)·δ(x) dx. Equation (9.3) does exactly 

that. Compare Stein and Shakarchi (2011, pp. 100f.). This equation defines .δ(x) by 
its action on test functions g, just as Tao meant in the quote above saying a function 
in the wider sense could be defined by how it acts on test functions. Set theory 
can also formalize .δ(x) in other ways we will not go into. The point for this essay 
is, none of these ways make .δ(x) itself a function in the set theoretic sense. None 
defines .δ(x) by its values at points .x ∈ R or even allows it to have a value at the 
decisive point .x = 0.2 

The whole point of the Dirac delta .δ(x) is its behavior at .x = 0. That behavior 
contradicts any possible value .δ(0).

2 Key steps in the history of distributions: Leray (1934) developed a version to solve the 3 
dimensional Navier-Stokes equation (Lemarié-Rieusset 2015, Ch. 12). And in 1944 Laurent 
Schwartz gave them a rigorous foundation using topological vector spaces. Barany (2018, p. 263) 
documents how early adopters of Schwartz’s distributions took them variously as “a banal trick 
for applied calculations, a difficult intervention in the recent theory of topological vector spaces, 
a profound realignment of established methods, a radical departure from familiar concepts, and 
many things in between.” Cartier (2021) gives a Bourbaki insider’s perspective: “this was the great 
talent of Schwartz: to give a simple idea that works.” 
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9.2.4 Smoother and Rougher Functions in Analysis 

In analysis, it is helpful to think of the various notions of a function as forming a spectrum, 
with very “smooth” classes of functions at one end and very “rough” ones at the other. (Tao 
2008a, p. 185) 

The exposition of function spaces and harmonic analysis in Tao (2008b,c) shows  
how concretely helpful this is. Tao not only shows the various notions of functions 
can be ordered as more-or-less a spectrum, but illustrates how his concept of 
roughness guides intuition about what can and cannot be done with functions at 
different points along the spectrum. Compare Sect. 9.3 below. 

Tao uses “smooth” itself for the functions traditionally called smooth: those 
which have derivatives of all finite orders. Smooth functions which furthermore 
are the limits of their Taylor series, Tao calls “very smooth.” Continuous functions 
which lack some derivatives are less smooth, and discontinuous are rougher 
yet. The rough end of Tao’s spectrum includes function-like things that are not 
set-theoretically functions: Tao names Borel measures, Distributions, and hyper-
functions. We will take the Dirac delta δ(x) as a paradigm of distributions. For 
the general definition of distributions see Tao (2008a), Stein and Shakarchi (2011, 
Ch. 3), and philosophic discussion in McLarty (2023). 

The smoother a function is, the more things you can be sure you can do with it. 
Smooth, or even just continuous, functions can be added to each other, or multiplied 
by each other. Distributions in general cannot by multiplied by each other, and 
cannot even be multiplied by arbitrary smooth functions. Smooth, or even just 
continuous, functions can be evaluated at every point of their domain, while δ(x) 
cannot be evaluated at 0. On the other hand, the rougher classes are more inclusive, 
and in that sense rougher functions may be easier to find. 

A sequence of smooth functions may converge to a rougher limit. Intuitively, a 
series of smooth curves with tighter and tighter bends in the middle of each may 
have a limit with a sharp kink there. A sequence of smooth approximate solutions to 
some differential equation may converge to a rough solution. By this means in the 
1930s Jean Leray proved the 3-dimensional Navier-Stokes equation has distribution 
solutions for all initial conditions—while a still-open Clay Millennium problem 
asks whether it has smooth solutions (Fefferman 2000). 

Distributions and hyperfunctions often serve as weak or generalized solutions to 
differential equations when solutions by set theoretic functions are impossible—or 
at least currently unknown. They are often lumped together as generalized functions 
because that is how analysts think about them. In the opening quote for this section 
Tao calls them “various notions of a function” and his cited articles show how well 
this viewpoint works for a number of topics.
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9.3 Measuring Size in Two Contrasting Examples 

These examples follow the organizing theme of Tao’s (2008b), namely that different 
measures of the “size” of a function will work for functions at different points along 
the smoothness spectrum. They illustrate why rougher functions may not have well-
defined values at single points. And the mathematics of continuous functions versus 
integrable functions on an interval .[−1, 1] goes back to Fourier’s representation of 
heat distribution along a bar (Gray 2021). 

First consider real-valued functions defined and continuous on the closed interval 
.[−1, 1] ⊂ R. The closed interval is compact so the absolute value of such a function 
actually achieves some finite maximum value .|f (x)|. So one useful measure of the 
size of these functions is their maximum absolute values. Call this the max-norm. 

. ‖f ‖max = Max {|f (x)| ∈ R | x ∈ [−1, 1]}.

A trivial fact is central to the use of this norm: 

.‖f ‖max = 0 if and only if f is the constant function 0. (9.4) 

Functional analysis makes great use of the normed vector space .C0([−1, 1]). 
That is an infinite dimensional vector space where the points are these functions. 
Addition of these vectors .f + g and scalar multiplication .c · f are defined in the 
natural way: 

. (f + g)(x) = f (x) + g(x) (c · f )(x) = c · (f (x)).

And .‖f ‖max is a well defined vector norm. Notably, the only function with 
.‖f ‖max = 0 is the constant function 0. 

A function f may have very small values, even value 0, across most of the 
interval .[−1, 1] and yet be “large” in the max-norm. It only needs to have a large 
value somewhere. 

Continuous functions sit towards the smooth end of Tao’s spectrum. Intuitively: 
the graph of a continuous function may have kinks but is unbroken. Analysts 
often need rougher functions, with graphs broken at many points, to say the least. 
Classical analysts, notably including Fourier, did this over 200 years ago. 

For the second, rougher example, take integrable real-valued functions on 
.[−1, 1]. That is, possibly discontinuous real-valued functions f which have a well-
defined integral over .[−1, 1].3 

3 For our purposes think of either the improper Riemann or the Lebesgue integral.
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Consider the discontinuous integrable function defined for all .x ∈ [−1, 1] by 

. f (x) =
{
0, if x=0;

|x| −1
2 , if x /= 0.

The value .f (x) rises towards infinity as x approaches 0 from either side though it 
leaps back to 0 at the single point .x = 0. The function attains no maximal value 
on the interval .[−1, 1]. Yet it is integrable because it rises and falls so narrowly just 
around 0 that the area under the graph is finite. Specifically that area is 4. 

So the max-norm is not defined for all integrable functions. But integration itself 
defines a norm, called the 1-norm: 

. ‖f ‖1 =
∫ 1

−1
|f (x)| dx.

The analogue for .‖f ‖1 of Eq. (9.4) on .‖f ‖max says: 

.‖f ‖1 = 0 if and only if f = 0 almost everywhere. (9.5) 

We will not define almost everywhere beyond this germane but vastly understated 
sufficient condition: Take a function g on .[−1, 1] and change its value at any one 
point in .[−1, 1]. Then the new function is equal to the original g almost everywhere. 

Every continuous function f is integrable on the interval .[−1, 1]. If  f has 
generally small values but is very large near just a few points, then it will be very 
large in the max-norm and small in terms of .‖f ‖1. Conversely if the value of f is 
not much larger at any point than at any other, then it may have .‖f ‖max < ‖f ‖1. 
There is just one necessary relation between the two size measures. Because the 
interval .[−1, 1] has length 2: 

. ‖f ‖1 ≤ 2‖f ‖max.

Stein and Shakarchi (2005, p. 69) use a well chosen parenthesis to say the size 
measure .‖f ‖1 “gives a (somewhat imprecise) definition” of the function space 
.L1([−1, 1]). Here .L1([−1, 1]) is a normed vector space of integrable functions just 
as .C0([−1, 1]) is a normed vector space of continuous functions. The imprecision is 
that a norm must take value 0 only for the 0 vector, and not also for many others near 
to it. The solution universally adopted by analysts is not to change the definition 
of the norm. It is to define the points of .L1([−1, 1]) as not actually set theoretic 
functions, but equivalence classes of set theoretic functions, where functions f and 
g are equivalent in .L1([−1, 1]) if .f (x) = g(x) almost everywhere in the interval 
.[−1, 1]. 

Analysts commonly refer to elements of .L1([−1, 1]) (and numerous related 
spaces) as functions. But a well known key fact is: a given .f ∈ L1([−1, 1]) has 
no definite value .f (x) at any point x. Changing the value of f just at one point x
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does not change the equivalence class of f , and so does not change f as an element 
of .L1([−1, 1]). Analysts never lose sight of that, even when they refer to elements 
of .L1([−1, 1]) as functions. 

The normed vector spaces .C0([−1, 1]) and .L1([−1, 1]) typify the very many 
different function spaces constitutive of functional analysis. 

9.4 Conclusion 

At present the concept of function is not as finally crystalized and undeniably established as 
it seemed to be at one time at the end of the 19th century. It is no exaggeration to say 
that at present the function concept is still evolving and that the controversy about the 
vibrating string continues,4 except for the obvious fact that the scientific circumstances, 
the personalities involved, and the terminology are different. (Shenitzer and Luzin 1998, 
p. 66) 

That quote is from a translation by Abe Shenitzer of an article by Nikolai Luzin 
in the 1930s. The evolution is still going on. But today it would be exaggerated to 
call the evolution “controversial.” New concepts are constantly being developed, and 
are often at least informally called “functions.” Few people if any oppose that usage. 
Nor does anyone object that set theorists have too narrow a definition of “function,” 
for the purposes of set theory. There is just a difference in practice over what can be 
called a function outside of set theory. 

To put this in our context, Stein and Shakarchi (2005, p. 69) on real analysis 
officially keeps the set theoretic definition of “function,” while making explicit the 
“practice we have already adopted not to distinguish two functions that agree almost 
everywhere.” They constantly use this practice through the cited volume and the next 
one on functional analysis (Stein and Shakarchi 2011). They are explicit enough to 
preserve rigor, but they normally say “function f ” where a set theorist would rather 
they say “class of functions equal to f almost everywhere.” This kind of equivalence 
is just so natural for the topics they cover. These volumes give a masterful, elegant 
introduction on how and why to study in detail what a function f : Rd → R does 
“almost everywhere” while never supposing it has any specific value f (x)  at any 
single point x ∈ R

d . 
Tao writes more explicitly about functions that are not set theoretically functions. 

He says: “Formally a function space is a NORMED SPACE X the elements of which 
are functions (with some fixed domain and range)” (2008b, p. 210). His examples 
C0[−1, 1] and C1[−1, 1] do use the set theoretic idea of function. The Lebesgue 
spaces Lp[−1, 1] and Sobolev spaces Wk,p[−1, 1] which he also describes go 
outside that set theoretic sense to follow his idea of the smoothness spectrum of 
notions of function. Tao also gets the set theory right. But he does it with an expertly 
light touch. By not treating the set theoretic notion of function as the only notion

4 For the history of the vibrating string see Gray (2021, Ch. 3) and many other references. 
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of function, set theory can aid rather than obscure the analytic insights that got 
measurable functions and generalized functions called “functions” in the first place. 

References 

Barany, M. 2018. Integration by Parts: Wordplay, Abuses of Language, and Modern Mathematical 
Theory on the Move. Historical Studies in the Natural Sciences 48: 259–299. 

Bombieri, E. 2000. The Riemann Hypothesis. Cambridge: Clay Mathematical Institute. 
Cartier, P. 2021. Il a tué l’analyse fonctionelle. In Lectures grothendieckiennes, ed. F. Jaëck, 27–46. 

Paris: Spartacus IDH, Societé Mathématique de France. English translation forthcoming from 
the same publisher. 

Fefferman, C. 2000. Existence and Smoothness of the Navier Stokes Equation. Cambridge: Clay 
Mathematical Institute. 

Fefferman, C. 2008. The Euler and Navier-Stokes Equations. In Princeton Companion to 
Mathematics, ed. T. Gowers, J. Barrow-Green, and I. Leader, 193–196. Princeton: Princeton 
University Press. 

Fourier, J. B. J. 2009. Théorie Analytique de la Chaleur. Cambridge Library Collection. 
Cambridge: Cambridge University Press. 

Galdi, G. 2011. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: 
Steady-State Problems, 2nd ed. New York: Springer-Verlag. 

Goursat, E. 1933. Cours d’analyse mathematique. Paris: Gauthier-Villars. 
Gray, J. 2021. Change and Variations: A History of Differential Equations to 1900. Berlin: 

Springer. 
Kelley, J. 1955. General Topology. New York: Van Nostrand. 
Kline, M. 1972. Mathematical Thought from Ancient to Modern Times. Oxford: Oxford University 

Press. 
Lemarié-Rieusset, P. 2015. The Navier-Stokes Problem in the 21st Century. Milton Park: Taylor 

& Francis.  
Leray, J. 1934. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Mathemat-

ica 63: 193–248. 
Lützen, J. 1982. Prehistory of the Theory of Distributions, vol. 7.  Studies in the History of 

Mathematics and the Physical Sciences. New York: Springer-Verlag. 
McLarty, C. 2007. The Rising Sea: Grothendieck on Simplicity and Generality I. In Episodes 

in the History of Recent Algebra, ed. J. Gray and K. Parshall, 301–26. Providence: American 
Mathematical Society. 

McLarty, C. 2023. Fluid Mechanics for Philosophers, or Which Solutions Do You Want for Navier-
Stokes? In Physical Laws and the Limits of Explanation – What the Equations Don’t Say, ed.  
L. Patton and E. Curiel. Berlin: Springer-Verlag. 

Shenitzer, A., and N. Luzin. 1998. Function: Part I. American Mathematical Monthly 105 (1): 
59–67. 

Stein, E., and R. Shakarchi. 2003. Fourier Analysis: An Introduction, vol. 1.  Princeton Lectures in 
Analysis. Princeton: Princeton University Press. 

Stein, E., and R. Shakarchi. 2005. Real Analysis: Measure Theory, Integration, and Hilbert Spaces, 
vol. 3. Princeton Lectures in Analysis. Princeton: Princeton University Press. 

Stein, E., and R. Shakarchi. 2011. Functional Analysis: Introduction to Further Topics in Analysis, 
vol. 4. Princeton Lectures in Analysis. Princeton: Princeton University Press. 

Strang, G. 2015. Differential Equations and Linear Algebra. Wellesley: Wellesley-Cambridge 
Press. 

Tao, T. 2008a. Distributions. In Princeton Companion to Mathematics, ed. T. Gowers, J. Barrow-
Green, and I. Leader, 184–187. Princeton: Princeton University Press.



9 Current and Classical Notions of Function in Real Analysis 267

Tao, T. 2008b. Function Spaces. In Princeton Companion to Mathematics, ed. T. Gowers, 
J. Barrow-Green, and I. Leader, 210–213. Princeton: Princeton University Press. 

Tao, T. 2008c. Harmonic Analysis. In Princeton Companion to Mathematics, ed. T. Gowers, 
J. Barrow-Green, and I. Leader, 448–455. Princeton: Princeton University Press. 

Tao, T. 2013. Compactness and Contradiction. Providence: American Mathematical Society. 
Tao, T. 2014. Analysis I. New Delhi: Hindustan Book Agency. 
Tao, T. 2016a. Analysis I. New Delhi: Hindustan Book Agency. 
Tao, T. 2016b. Analysis II. New Delhi: Hindustan Book Agency.



Chapter 10 
“No Mother Has Ever Produced an 
Intuitive Mathematician”: The Question 
of Mathematical Heritability at the End 
of the Nineteenth Century 

Jemma Lorenat 

Abstract In January 1893, Christine Ladd Franklin published an article on “Intu-
ition and Reason” in The Monist—a new philosophy of science periodical based in 
Chicago. On the question of heritability, Ladd Franklin was absolute: “No mother 
has ever produced an intuitive mathematician.” This contribution examines why 
Ladd Franklin wrote “Intuition and Reason” and how her expertise in psychology, 
mathematics, and logic informed her arguments. In particular, Ladd Franklin turned 
to the history of mathematics as a source for counterexamples against the “ancient 
opinion” that coupled women with intuition and men with reason. 

Is mathematical intuition heritable? 
In 1893 Felix Klein pondered a variation of this question in his Evanston 

Colloquium Lectures. Speaking “On the Mathematical Character of Space-Intuition, 
and the Relation of Pure Mathematics to the Applied Sciences” Klein infamously 
speculated: 

Finally, it must be said that the degree of exactness of the intuition of space may be 
different in different individuals, perhaps even in different races. It would seem as if a 
strong naïve space-intuition were an attribute pre-eminently of the Teutonic race, while 
the critical, purely logical sense is more fully developed in the Latin and Hebrew races. A 
full investigation of this subject, somewhat on the lines suggested by Francis Galton in his 
researches on heredity, might be interesting. (Klein 1894, 42) 

It is well-known how Klein’s suggestion wormed its way into the rhetoric of Nazis 
in Germany, serving as historical justification for racial types of mathematicians. In 
“ ‘Jewish Mathematics’ at Göttingen in the Era of Felix Klein,” David Rowe exam-
ines Klein’s suggestion and concludes that “men of integrity like Klein, Weierstrass, 
and Sommerfeld were incapable of freeing themselves from the conventional racial 
thinking of their day is certainly suggestive of how pervasive these prejudices must 
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have been” (Rowe 1986, 443).1 That is, Klein’s speculations on racial difference 
and heritable intuition in mathematics may not have seemed out of place to many of 
his German colleagues. 

In the United States, too, Klein’s talk was well-received. Through in-person 
attendance, transcripts published in 1894, and then republished by the American 
Mathematical Society in 1911, The Evanston Colloquium Lectures on Mathe-
matics achieved a widening circulation. Among the unregistered attendees at the 
Colloquium was Christine Ladd Franklin. In January that same year, she had 
published an article on “Intuition and Reason” in The Monist—a new philosophy 
of science periodical based in Chicago (Ladd Franklin 1893). On the question of 
heritability, Ladd Franklin was absolute: “No mother has ever produced an intuitive 
mathematician.” 

She was not engaged in a debate about racial abilities, but a similarly structured 
discourse on sex. These were separate, though overlapping, discussions. For 
instance, Klein’s suggestion of racial difference does not seem to have been matched 
by a belief in sex difference, as will be elaborated below. However, each of these 
stereotype-driven arguments extrapolated from underrepresentation to conclude that 
certain groups were biologically limited in their mathematical abilities. 

Speculations on “woman’s intuition” have a long and well-documented his-
tory.2 To explain the underrepresentation of women in the arts and sciences, 
late-nineteenth-century writers pointed at biologically-circumscribed intuition as 
inhibiting logical thinking, creative originality, and genius. Against these claims, 
the “European women’s movement of the 1880s–1920s” developed an encyclopedic 
“strategy of emphasizing the achievements of exceptional women” (Schiebinger 
1989, 4). The results were wielded by feminists and antifeminists alike. At a 
conference in France in 1908, mathematician Maurice d’Ocagne found that “among 
women in science, the majority were women mathematicians” and justified this 
finding, in part because “mathematics relied first on a form of divination, of intuition 
before the phases of rigorous reasoning.” Even so, d’Ocagne concluded that “most 
women were able to understand but not to invent mathematics” (Boucard 2020, 
208). More generally, for every woman with documented scientific success there 
were so many more men. The encyclopedic strategy withered under such strictly 
quantitative comparisons.

1 On Klein’s use of “intuition” as well as the relationship between mathematical intuition, 
modernism, politics, and culture see Mehrtens (1990) and Gray (2008). 
2 An overview on the intersections between history of science and research on gender can be found 
in Kohlstedt and Longino (1997). Of particular relevance to the application of scientific arguments 
to women’s social position and mental capacity see Fausto-Sterling (1985). On the “influence of 
evolutionary theory on the psychology of women” see Shields (1975). Note that here I write “sex” 
rather than “gender” to reflect the language of the late-nineteenth century. For the nineteenth-
century authors considered here, sex was understood as a binary category. 
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Nineteenth-century women in mathematics both challenged and succumbed to 
the conclusions drawn from historical precedent. In her book Femininity, Mathe-
matics and Science, 1880–1914, historian Claire G. Jones considers the gendered 
inheritance of mathematical genius at Cambridge and Göttingen University through 
the writings and experiences of mathematics student Grace Chisholm Young 
(Jones 2009). Jones demonstrates how Chisholm Young eventually internalized 
the perceived masculinity of mathematical research at both of these institutions. 
After her marriage to William Young, “surrounded by prescriptions that served 
to limit female ambition and opportunity, overwhelmed by romantic notions of 
genius, and practising a pure mathematics that privileged the male intellect, she 
decided to transfer her mathematical ambitions onto her husband” (65). Most of 
their subsequent mathematical research was published under his name alone. 

In the 1890s both Chisholm Young and Ladd Franklin contributed to the 
admission of foreign women to mathematics lectures and seminars at the Uni-
versity of Göttingen. However, while the former participated in the mathematical 
community as an exception, such was not the aim of Ladd Franklin. Rather, she 
uncovered underlying reasons for sex prejudice and exclusion. In what follows, 
I will examine why Ladd Franklin wrote “Intuition and Reason” and how her 
expertise in psychology, mathematics, and logic informed her arguments against 
the “ancient opinion” that coupled women with intuition and men with reason. 

One late nineteenth-century variant of this “ancient opinion” took shape in the 
writings of the novelist and biologist Grant Allen, the subject of Sect. 10.2. Allen’s 
theory pervaded his fiction and nonfiction, and his paper “Woman’s Intuition” served 
as a catalyst for Ladd Franklin. Allen showed little concern for positive evidence, 
still his work enjoyed popular acclaim.3 

Ladd Franklin endeavored to communicate with a similar audience. Her path 
to publication will be considered in Sect. 10.3. Beginning with “Intuition and 
Reason”—the subject of Sect. 10.4—her rhetorical strategy can be divided into two 
complementary parts: against intuition as an innate faculty and in favor of women 
who reason. First, Ladd Franklin pulled from recent experimental studies and her 
experience as a mathematics teacher to dismantle the belief in inherited intuition. 
To show that women could reason, she might have followed other late-nineteenth-
century feminists, who had emphasized “the achievements of exceptional women.” 
Indeed, as will be shown in Sect. 10.5, Ladd Franklin looked to the history of 
mathematics. But rather than exceptions that left the rules intact, she identified 
counterexamples that demanded a different logical conclusion.

3 Allen was part of a broader current. A biography on the Higher Education of Women compiled 
in 1905 by the Association of Collegiate Alumnae lists around eighty texts over three decades 
under the heading “II. Mental and Physical Status. Includes Questions of Curriculum and Physical 
Training” including Allen’s text, though not Ladd Franklin’s rebuttal (of the Association of 
Collegiate Alumnae 1905). 
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10.1 On the Difficulty of Talking About Intuition 

What Klein intended by “spatial intuition” is clearly not identical to Ladd Franklin’s 
juxtaposition of reason and intuition.4 

First, there was the problem of translation. Klein was German, but he delivered 
the Evanston lectures in English before an audience consisting mostly of American 
mathematicians. According to the editor’s introduction, Klein “carefully revised” 
the manuscript and proofs before publication (Klein 1894). Thus Klein can be 
credited with choosing “intuition.” But this was not the only possible translations 
of the German Anschauung. Notably, in Mellen Woodman Haskell’s English 
translation of Klein’s 1872 “Recent Researches in Geometry” published in the 
Bulletin of the New York Mathematical Society in 1893, he translated Anschauung 
and its derivatives as perception, interpretation, or view. Haskell’s one use of 
“intuitively” is a translation of “begrifflich.” Still Klein described this translation 
as “absolutely literal” and so seems to have accepted these alternates as appropriate 
(Klein 1893). Secondly, in his Evanston Colloquium Lectures, Klein engaged with 
multiple and somewhat contradictory meanings of intuition, initially distinguishing 
between naïve and refined intuition, and then clarifying that “the naïve intuition 
is not exact, while the refined intuition is not properly intuition at all, but arises 
through the logical development from axioms considered as perfectly exact” (Klein  
1894, 42). The same author could invoke “intuition” across multiple meanings and 
any single use of “intuition” was not guaranteed to be understood across languages, 
individuals, or texts.5 

Despite these inconsistent connotations, the concept of intuition persisted across 
debates on race, sex, and mathematical capacity. 

10.2 Grant Allen and ‘Woman’s Intuition’ 

Grant Allen was born in Canada and lived in England, but “Woman’s Intuition” 
appeared in the American monthly magazine, The Forum, published in New York

4 In her 2011 study of Charles Hermite, Catherine Goldstein she singled out how “the word 
Anschauung in Felix Klein’s entourage, [enjoyed] the role of a banner, rallying mathematicians, 
types of explanations, methods. Employed together or no, rather rarely in association with other 
terms (“simple and general”, a little more often “precise”), these words recurrently come to oppose 
the pair “rigorous” and “complicated”[...]” (Goldstein 1994, 145). 

[“[. . . ]  Elles  jouent,  tout  comments  dans  l’entourage  de  Felix  Klein  le  mot  Anschauung, le  
rôle d’une bannière, reliant des mathématiciens, des types d’explication, des méthodes. Employés 
ensemble ou non, assez rarement en association avec d’autres termes (“simple et général”, un peu 
plus souvent “précis”), ces mots viennent s’opposer de manière récurrente au couple “rigoureux” 
et “compliqué” [. . . ]”]  
5 In this volume, Nicolas Michel’s chapter “In Search of Absolute: On H. G. Zeuthen’s geometrical 
holism” defines Zeuthen’s intuition as “an ability to perceive at once a connected whole 
where symboblic cognition and rigid computational rules present one’s mind with disconnected 
particulars,” which Zeuthen in turn based on the work of French philosopher Henri Bergson. 
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(Allen 1890). The Forum covered a wide range of political topics and opinions. 
Allen’s article is preceded by a piece speculating on how to improve battleships and 
succeeded by a call for prohibition. 

Allen’s paper is at once a celebration of woman’s intuition and a warning that 
such intuition might be in peril. He attributed current differences between men and 
women to an evolutionary narrative beginning with a hypothetical past of hunting 
tribes. In this whole history, “man has specialized himself on logical intelligence 
and practical handicraft; woman has specialized herself upon the emotions and 
intuitions, the home and the family.”’ Accordingly, at present, while women had 
maintained “the common endowment of all animals possessing nervous systems at 
all” men had lost the gift “through the gradual evolution, training, and discipline of 
his logical faculties” (337). 

Despite this model of past growth and change over time, Allen was pessimistic 
that women could learn to reason effectively. Those who have tried only became 
“feeble, second-rate copies of men.” He lamented the “mannish women of our 
age” created by the “women’s cause” in the form of “lady lecturers and anti-
feminine old maids” (333). Not only did such women ruin themselves, they also 
diminished the capacity for human (male) genius. As Allen explained, “in all genius, 
however virile” there could be observed “a certain undercurrent of the best feminine 
characteristics.” A masculine woman was an aberration, but “the man of genius is 
comprehensively human.” Allen attributed this rare faculty in some men “to the 
imaginative faculty and to the intuitive faculty that they derive from their mothers.” 
He recognized this “oft-repeated fallacy” as grounded in truth and matching his own 
observations (340). 

These observations were both personal and historical. Allen recalled a con-
versation he had with “the greatest living mathematician” who remarked “that 
Laplace, in summarizing a mathematical argument, often wrote, ‘Hence it obviously 
follows that .x = f × ab2 + y,’ or whatever it might be; when he, the great 
living mathematician, could see the truth of the inference only after working out 
a page or two of elaborate calculations” (335). Allen speculated that “Laplace’s 
mind cleared at a bound the ‘obvious’ intervening steps” by employing “what we 
call intuition.” It was the same intuition “coupled of course with high masculine 
qualities—knowledge, application, logical power, hard work—that gives us the 
masterpieces of the world’s progress” including “steam engines and locomotives, 
telegraphs and telephones, Hamlets and Richard Feverls, Newton’s ‘Principia” and 
Spencer’s ‘First Principles.”’ So while most men possessed little intuition, those 
who inherited it from their “most purely womanly” mothers were among the great 
minds of the British and European past. 

Allen implored society to not “deliberately educate out the intuitive faculty in 
woman” and thereby impoverish humanity (340). He remained hopeful that the 
“celibate lady lecturer will die unrepresented” while “the woman with grace, tact, 
high emotional endowments, pure womanly gifts, will hand down her exquisite and 
charming qualities to other women, her likes, after her.”
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Allen’s tone is jocular and his peculiar theory of inheritance might be dismissed 
as hyperbolic if not for its pervasiveness in his other essays and fiction. In the 
latter, the reader can witness both the inexplicable ways of woman’s intuition 
and the harm caused to the sex by too much reasoning, such as in the case of 
a mathematical education. Allen was neighbors with Arthur Conan Doyle and 
successfully dabbled in detective fiction. But whereas Sherlock Holmes is the 
epitome of logical reasoning, Allen invented heroines who solved mysteries without 
being able to explain how. 

What’s Bred in the Bone was published serially between 1890 and 1891 and won 
a 1000-pound prize from the editor of “Tit-Bits” who then published the book in 
its entirety (Allen 1891). The book opens when Elma enters a train car and knows 
immediately that her companion is an artist. Allen offered an explanation to the 
presumably male reader: 

Now, you and I, to be sure, most proverbially courteous and intelligent reader, might never 
have guessed at first sight, from the young man’s outer aspect, the nature of his occupation. 
The gross and clumsy male intellect, which works in accordance with the stupid laws of 
inductive logic, has a queer habit of requiring something or other, in the way of definite 
evidence, before it commits itself offhand to the distinct conclusion. But Elma Clifford was 
a woman; and therefore she knew a more excellent way. Her habit was, rather to look once 
fairly and squarely in the face, and then, with the unerring intuition of her sex, to make up 
her mind about them firmly, at once and for ever. That’s one of the many glorious advantages 
of being born a woman. You don’t need to learn in order to know. You know instinctively. 
And yet our girls want to go to Girton, and train themselves up to be senior wranglers! 

Elma Clifford, however, had not been to Girton, so, as she stumbled into her place, she 
snatched one hurried look at Cyril Waring’s face, and knew at a glance he was a landscape 
painter. (2) 

As the story continues, one learns that Elma inherited her “most extraordinary 
intuition” from a long line of female descendants traced back to “some kind of 
Oriental gipsy” (117). In her formidable ability Elma is at once superior and inept. 
When asked for her reasons, Elma has none and shows “a true woman’s contempt 
for anything so unimportant as mere positive evidence” (357). Elma embodies 
the womanly gifts Allen so admires, and ends her adventures appropriately in 
matrimony. 

The mathematical training at Girton College reappears as a threat to intuition 
in Miss Cayley’s Adventures. The story begins shortly after the heroine “had taken 
high mathematical honors at Cambridge” (Allen 1899, 59).6 Miss Cayley somehow 
escaped the worst of her education, and is only criticized once for being “extremely 
Girtony,” that is, “unnaturally and unfemininely reasonable” (138). By contrast, her 
former classmate Elsie intends to teach higher mathematics in high school and is 
“lacking in feminine intuition.” Cayley reflects that she should “be sorry if I had

6 The name choice here is striking to a historian of mathematics, but without further evidence it may 
be only a coincidence that the Girtonite shared a surname with the recently deceased Sadleirian 
professor. 
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allowed the higher mathematics to kill out in me the most distinctively womanly 
faculty” (208). 

For a casual reader, Allen’s asides may pass unnoticed in the lively story and 
adorable characters. Once aware of his theory, however, they take on a dull pedantry. 
Allen described women as “mere passive transmitters of these male acquisitions”— 
in this case, his heroines operate as shells for his theory of biological intuition (Allen 
1888, 263). Yet it is only this fictional evidence along with vague references to his 
observations that support Allen’s claims. He touted his expertise “as a biologist” but 
did not engage in actual research on women and intuition. 

10.3 Ladd Franklin to 1892 

Allen’s “Woman’s Intuition” featured in the May, 1890 issue of The Forum. By  
this time, Ladd Franklin had already begun circulating her own findings on the 
relationship between women and intuition. Without any mention of her title or 
education, she plumbed her transdisciplinary professional training to gather precise 
and well-documented evidence. 

Ladd Franklin’s own biography contradicts Allen’s stereotypes. She grew up in 
the Northeastern United States and was among the first to take advantage of the 
college education made available with the founding of Vassar College in 1861. 
She learned of the college in 1863 and enrolled a few years later. Following her 
own biographical account, Ladd Franklin had initially been drawn to the study of 
physics and “would have devoted herself [to it] after graduation had it not been 
for the impossibility, in those days, in the case of women, of obtaining access 
to laboratory facilities. She therefore took up as the next best thing mathematics, 
which can be carried on without any apparatus.”7 She graduated in 1869 then taught 
mathematics at private schools while continuing her studies and offering solutions 
to posed mathematics problems in the Educational Times. 

Shortly after Johns Hopkins University opened in 1876, Ladd Franklin wrote 
to the head of the mathematics department, James Joseph Sylvester, inquiring 
“Will you kindly tell me whether the Johns Hopkins University will refuse to 
permit [listening to mathematical lectures] on account of my sex?”.8 Based on her 
publications in mathematics, she was admitted as an “invisible student”—able to 
attend lectures, but without any official record of enrollment. Even after winning the 
stipend of a fellowship for three successive years, “to avoid making a precedent, her 
name was carefully separated from the list of fellows” (Cameron 1928). Working 
with logician Charles Peirce, Ladd Franklin completed a dissertation on “The 
Algebra of Logic,” which was published in Studies in Logic by Members of the Johns

7 Ladd Franklin wrote her own biography, published in Cameron (1928). 
8 The letter is quoted in Parshall (2006, 255). 
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Hopkins University in 1883. But she was denied the degree from Johns Hopkins 
until 1926.9 

In 1882 Christine Ladd married mathematics lecturer Fabian Franklin. Ten years 
later, the Franklin family (including their eight-year-old daughter Margaret) traveled 
to Germany for Fabian’s sabbatical year. There Ladd Franklin met Klein, David 
Hilbert, and Adolf Horowitz, but turned her research to psychology, in particular the 
study of color-vision. She began in G. E. Müller’s lab in Göttingen and later spent 
time in Berlin with Arthur König. She first publicly communicated the findings from 
her experimental research at the International Congress of Psychology in London 
during that sabbatical year in Europe.10 

In this same period, Ladd Franklin served an integral role in the organization of 
the American Association of Collegiate Alumnae, which had been founded in 1882. 
For the next decade, Ladd Franklin advocated to create a European Fellowship that 
would allow women to pursue graduate research opportunities abroad. In particular, 
she hoped that this funding would further serve to open German Universities, like 
the University of Göttingen, where women had been excluded.11 

Thus Ladd Franklin engaged with the question of inherited intuition as an 
academic and as an activist. In writing “Intuition and Reason” she aimed for a 
broad, international audience. At the beginning of 1890, she sent the manuscript 
to G. Croom Robertson, then editor of Mind. Ladd Franklin had already contributed 
as a reviewer of technical texts in logic and Robertson replied encouragingly 
to her submission expressing “much interest” and thinking “the argument both 
sound and sensible.” However, he advised, “Mind seems hardly the right channel 
for it to public attention.” In particular, Robertson worried that “the Leipsic [sic] 
experiments” though “full of interest and instruction to “the general reader” would 
be less effective in Mind.” Robertson suggested offering the paper to “the worldlies” 
and promised to send it to The Nineteenth Century, a monthly review published in 
London (Robertson 1890a). That October, Robertson received a positive response 
from editor James Thomas Knowles, who “will be very glad to accept it” for The 
Nineteenth Century with the proviso that “Mrs Ladd Franklin [. . . ] leave the date of  
publication entirely in his discretion.” Robertson advised Ladd Franklin to accept 
with the hope that it would appear in December. He also suggested a “less severe

9 Her early mathematical studies are investigated in Green and LaDuke (2009), Fenster and Parshall 
(1994), and Parshall and Rowe (1994). In the history of logic, David W. Agler and Deniz Durmuş 
provide a philosophically-oriented approach to Ladd Franklin’s feminism and concern with the 
historical record (Agler and Durmuş 2013). 
10 In the history of psychology, Laurel Furumoto has situated Ladd Franklin’s contributions to 
color theory and lifelong efforts to secure credit, despite formidable obstacles, in Furumoto (1992, 
1994). 
11 The importance of the Association of Collegiate Alumnae for women in science can be 
seen in Rossiter (1982), particularly chapter 2. More recently, Scott Spillman has documented 
Ladd Franklin’s contributions and negotiations to create opportunities within the Association of 
Collegiate Alumnae in Spillman (2012). 
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title” something like “The Female Mind,” “The Mind of Woman,” or “The Male and 
Female Mind” (Robertson 1890b).12 

The paper sat unpublished until January 1892 when Knowles’ secretary wrote 
to Ladd Franklin explaining the former’s illness, repeating the conditions of 
acceptance, “but as he can see no chance of his being able to publish it for a 
considerable time,” ultimately returning the unpublished paper (Knowles 1892). 

With her manuscript in hand, Ladd Franklin sent it off again, writing to 
William James to see where he would recommend publication. James was an 
excellent resource for finding venues of popular psychology. He expressed delight 
in anticipation of the manuscript, initially suggesting Popular Science Monthly. 
Further, he approved of higher education for women, affirming that “of course we 
are going to have women at Harvard soon—Göttingen mustn’t be allowed to get 
ahead here.” He also complimented Ladd Franklin as among the “mathematically 
minded geniuses” thus confirming that women could achieve such an epithet (James 
1892). Yet, James may have agreed with Allen on certain points. His Principles of 
Psychology, which Ladd Franklin had read closely, suggests a more conventional 
expectation for women’s reasoning abilities (James 1890). 

In their correspondence, Ladd Franklin critiqued the last chapter of Principles of 
Psychology on “Necessary Truths and the Effects of Experience” that treated formal 
logic, mathematical propositions, arithmetic, and geometry. James had hoped for 
her “approval as a logician + mathematician” and attributed her response to “The 
unfathomable ways of woman!” (James 1892). Indeed, this exclamation betrayed 
a sex distinction between intuition and reason that also informed his chapter on 
“Reasoning.” 

As compared to the masculine brain, “the feminine method of direct intuition” 
performed “admirably and rapidly” within its limits but “can vainly hope to cope” 
with any “new and complex matter” (James 1890, 368). But here James was more 
descriptive than prescriptive. While James aligned with Allen in his assessment 
of women at present, James also recognized the importance of situation and 
environment. He criticized “the paucity of empirical evidence” in support of the 
hypothesis “that what was acquired habit in the ancestor may become congenital 
tendency in the offspring.” 

Such a stance was incompatible with Allen’s theory of how men had lost 
their intuition through evolution and training. James determined that the “technical 
differentia of reasoning” was the “ability to deal with NOVEL data.” Thus reasoning 
was antithetical to inheritance. And since mathematics was based on reasoning, 
mathematical ability would also seem to be beyond the bounds of congenital 
tendency.13 Even if James viewed Ladd Franklin as an exception, she clearly

12 G. Croom Robertson was also a committee member of the National Society for Women’s 
Suffrage in Britain and may have wanted a more substantial audience for Ladd Franklin’s work 
for political as well as literary reasons. 
13 In “Indebted to No One’: Grounding and Gendering the Self-Made Mathematician” Ellen 
Abrams describes how biographies of American mathematicians used evidence of “self-making” 
to demonstrate masculinity. The relative unimportance of inheritance in these narratives aligns with 
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recognized him as a reader who would entertain her argument and recognize its 
value to a broader audience. 

But Ladd Franklin’s paper was not published in Popular Science Monthly. James 
may have later recommended The Monist, where “Intuition and Reason” would 
eventually land. Suitably, The Monist included a wide range of discussions on 
psychology, logic, and heredity. Further, the mutual friend of James and Ladd 
Franklin, Charles Peirce, had already written two articles for the new periodical 
and was much admired by editor Paul Carus. 

While fittingly interdisciplinary, The Monist had a more modest audience 
than that of the other venues considered. After reading Ladd Franklin’s article 
several years later, Kate Holladay Claghorn—a fellow leader of the Association 
of Collegiate Alumnae—wrote on “how much I enjoyed your article” but regretted 
“that it was not published in the Nineteenth Century, because the results are so 
wholesome, and the matter put so clearly and interestingly that it would have done 
the ‘greater public’ a lot of good” (Claghorn 1899). Some public was better than 
no public. Ladd Franklin’s perseverance attests to her conviction in the wholesome 
results of “Intuition and Reason.” 

10.4 “Intuition and Reason” 

Ladd Franklin identified intuition as “a word of double meaning.” First, “it covers 
those actions which we go through with by instinct, or inherited experience 
ingrained from the beginning in our nervous structure, and those which we perform 
automatically” (Ladd Franklin 1893, 212).14 This inherited intuition concerned 
actions necessary for survival. As an example, Ladd Franklin asked her reader 
whether they “know that a certain feeling of strain in the muscles which move the 
eyes is a sign of a certain distance of an object looked at, and a different feeling 
of strain, a sign of different distance.” She explained that the “common man knows 
that one object is near and the other far” even though he was “not conscious even of 
the feeling of strain.” Further, though “the physiological psychologist” was aware of 
“the unconscious syllogism by which he must reach his conclusion.” He still could 
not “by any possibility, make it cease to be instinctive.” This automatic, instinctive 
intuition was present in all humans, regardless of sex. For this paper, Ladd Franklin 
focused her attention on the second meaning of intuition— covering actions that “by 
individual experience become so familiar that [intuition] can act as a guide without 

James’ theory to some extent, but also suggests a difference in the value of accomplished ancestors 
between the British and American contexts (Abrams 2020).
14 Though she did not provide these credentials in her article, Ladd Franklin was very familiar 
with biological theories of evolution and the necessary timescale for evolutionary processes. In 
the 1890s she was in the middle of research that would lead to her “idea of the evolution of a 
colour molecule”—that the sensation of red and green colors “constitute a real evolution out a 
more primitive yellow sense” (Ladd Franklin 1929, 183). 
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the aid of conscious reflection.” This is the intuition that had been positioned as in 
opposition to reason. 

On the question of the heritability of mathematical intuition, Ladd Franklin’s 
offered multiple grounds for opposition. She first turned to new results from psy-
chological experiments to demonstrate that intuition is acquired through experience. 
From these empirical findings, Ladd Franklin then attacked the dichotomy that 
positioned men as reasoning and women as intuitive. Instead of possessing different 
faculties, she explained that men and women have different life circumstances. So, 
contra Allen’s “apotheosis of the uneducated woman,” it was impossible that “moth-
ers should occasionally transmit their powers of intuition to favored sons” (215). 
Finally, she found his claim particularly preposterous with respect to mathematics. 
Ladd Franklin saw no role for intuition in the discipline. Balanced between scientific 
studies and personal experience, “Intuition and Reason” is redundant in its variety 
of evidence. 

Drawing on recent psychological studies, Ladd Franklin showed that the pur-
ported dichotomy between intuition and reason was illusory: “reason is merely 
intuition in its formative stage” (216). In particular, Wilhelm Wundt and the students 
in his Leipzig laboratory had performed tests in which subjects were instructed to 
press a button when a bell sounded. One group would purposely focus on the tap of 
the bell and then “decide consciously what to do in response,” for the other group 
“the process is unconscious.” In comparing reaction times, the “first is nearly twice 
as long as the second” suggesting a qualitative difference. Further, each subject 
could “teach himself to give either reaction time at his pleasure” by training his 
consciousness on the bell or not. Ladd Franklin praised this experiment as catching 
“automatism in the very act of formation.” In this simple matter, the unconscious 
observers relied on intuition to perform more efficiently. 

Ladd Franklin compared Wundt’s findings with other tests. Following a sug-
gestion by William James (and discussed briefly in their correspondence) she 
described “a good experiment that some one who has eyes that he is not afraid 
of injuring” could try at home (217). Despite this clear injunctive not to perform 
such an experiment, she then detailed how one could put a finger under their eyelid 
in order to push their eye ball for “several hours a day.” At first this process 
would produce the illusion of moving objects, but over time one might be able 
to “force conscious reason to do her work and to make him see that the objects 
are not moving.” Through this process, an effect that occurred intuitively could be 
gradually eliminated through purposeful effort. Together these experiments revealed 
that intuition could be learned and unlearned at will. This kind of intuition was 
consequently not inherent nor inheritable. 

Consequently there was no justification “that men’s minds and women’s minds 
have a different way of working.” Given the recent advances in “the psychology 
of the working of the human mind” Ladd Franklin characterized such a view as 
“old-fashioned” and “out-of-date.” Instead, Ladd Franklin looked to environmental 
factors and determined “that the circumstances of women’s lives have hitherto been 
such as to make their interests lie somewhat more exclusively in those regions in 
which conduct is intuitive than in those in which it is long thought out” (212).
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Not everything could be made intuitive. While Allen had posited that the genius 
of mathematics was grounded in intuition, Ladd Franklin asserted that no one “who 
knew anything about the higher mathematics for a moment” would “suppose that 
when a great mathematician leaves out intermediate steps in a printed book, he had 
jumped at his conclusions by instinct.” Rather “with his thorough knowledge of this 
particular subject, the intermediate steps have seemed to him too easy to set down.” 
Ladd Franklin thus explained why “the greatest living mathematician” (according to 
Allen) might have found some difficulty with Laplace: “If his book is hard to read, 
it is simply because he has assumed a greater amount of learning in his readers than 
they are in possession of.” What applied to the higher mathematics also applied 
to school mathematics. Consequently, geometry “is a branch of learning which is 
entirely built up out of abstract reason, pure and undefiled” and “no one, whether 
man or woman, can pass from one proposition in geometry to another by a process 
which is in any sense unconscious, though one person may be obliged to give a 
much more strained attention to what he is doing than another” (217).15 

Because mathematics was the epitome of reason, the mathematics classroom 
served as a perfect situation in which to judge such ability. With recent educational 
opportunities in the past few decades, women had done quite well. Ladd Franklin 
reported that in the United States geometry is studied in high schools by “three 
times as many girls as boys [. . . ] it  cannot be said, therefore, (as is said of girls who 
go to college) that the girls who go to the high school are a selected lot; they are 
the very bone and fibre of the women who make up the country.”16 Ladd Franklin 
hypothesized that “if women could not reason, we ought to hear a great hue and 
cry from the teachers of the geometry classes about the difficulty of teaching that 
subject to girls, and the girls ought to lament and moan over the impossibility of 
getting safely through with their demonstrations.” Yet, in her years of teaching she 
had “never met with a teacher of geometry who thought his boys did better than his 
girls,—I have met with several who thought the reverse.”17 Similarly, the students 
appeared unharmed in the process, as she observed with some sarcasm. “Day after 
day an army of girls goes smiling into the class-room and comes smiling out, utterly 
unaware that an unnatural wrench has been given to their delicate minds, and that 
they are rapidly transformed into monstrous products of over-reason” (218). Ladd

15 For an opposing viewpoint on the role of the unconscious in mathematics, also published in The 
Monist, see Poincaré (1910). Ladd Franklin’s use of “intuition” here is certainly narrower than that 
of Poincaré in what was translated as “Mathematical Creation.” 
16 Ladd Franklin repeated this statistic on several occasions. For instance, in an earlier book 
review she had applied the finding to prophecy that “if geometry is as good a specific against 
bad reasoning as is commonly supposed, logicalness will soon become a feminine instead of a 
masculine characteristic” (Ladd Franklin 1886). 
17 Compare Ladd Franklin’s classroom observations to the responses recorded by Florian Cajori 
in The Teaching and History of Mathematics in the United States (Cajori 1890). Participants from 
schools, colleges, and universities were asked which sex had greater aptitude for mathematics (pp. 
316–319). The responses are varied, but the majority favor males. 
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Franklin’s cheerful army of girls contrasted sharply with Allen’s lonely, feeble “lady 
lecturers.” 

Ladd Franklin corroborated these population statistics with her own data. She 
had “kept a record for many years of errors committed by boys and by girls, and 
I have not been able to detect any difference in their character” with the exception 
that boys have stronger “intuition about stretched strings and lines on balls.” She 
found no correlation between poor intuition and skilled reasoning. 

This lack of causation worked in both directions. If women had historically 
demonstrated greater intuition “in social matters” there was no danger these would 
be lost “because she has made herself familiar with the speculations of philosophers, 
and can turn to them for guidance in the intricate questions of conduct which the 
complexities of modern life give rise to” (219). Women could reason and all would 
benefit if they should be able to do so through access to higher education. 

This call to action drives at Ladd Franklin’s overarching programmatic aim to 
remove women’s barriers to educational and professional institutions. Embedded in 
this lifelong project, her precise claim that mathematical intuition is not heritable 
supports this practical end. There is no reason to preserve women’s intuition so 
that their sons might become mathematical geniuses. Instead, if the social goal is to 
nurture mathematical genius, then the solution lies in increased access to learning 
and practicing higher mathematics. Ladd Franklin had presented precisely this 
suggestion in an earlier anonymous review of George Bruce Halsted’s The Elements 
of Geometry, where she proposed organizing “some method for picking out the 
clever girls from among those who cannot afford to go to college” and providing 
them with scholarships (Ladd Franklin 1886). 

“Intuition and Reason” showed women had no biological impediment to mathe-
matical reasoning and exhibited national trends that girls were learning mathematics 
alongside boys and outnumbering them. It is also a very personal article. Who 
else but Ladd Franklin could report authoritatively on both cutting-edge German 
psychology and high school mathematics in the United States? But the paper is not 
about Ladd Franklin’s life story, nor did she invoke biographies of other women 
in mathematics. This latter absence is made more acute in comparison with her 
subsequent writings in the same vein. Ladd Franklin continued to push against 
restricting women to domestic intuition, but increasingly turned to history for 
evidence. 

10.5 History as Evidence 

By the 1890s, history was a common source of evidence for determining the role 
of inheritance. Francis Galton’s Hereditary Genius is based on research from “a 
large amount of carefully selected biographical data” including 65 scientific men 
“who have achieved an enduring reputation, or who are otherwise well known 
in the present generation” (Galton 1869, 193). Though Galton did not directly 
study women for this book, they entered his research as mothers. His treatment of
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“men of science” found “the maternal influence to be unusually strong” with “fully 
eight cases out of the forty-three” in which “the mother was the abler of the two 
parents.”18 Galton attributed this finding to early childhood education from an “able 
mother” at home: 

Happy are they whose mothers did not intensify their naturally slavish dispositions in 
childhood, by the frequent use of phrases such as, “Do not ask questions about this of 
that, for it is wrong to doubt;” but who showed them, by practice and teaching, that inquiry 
may be absolutely free without being irreverent, that reverence for truth is the parent of 
free inquiry, and that indifference or insincerity in the search after truth is one of the most 
degrading of sins. It is clear that a child brought up under the influences I have described 
is far more likely to succeed as a scientific man than one who was reared under the curb of 
dogmatic authority. (195) 

Ladd Franklin may have been aware of Galton’s work when she noted that “Hume 
and James Mill are two men who are supposed to owe much to their mothers” 
(Ladd Franklin 1893, 215). But while biographical studies could show that educated 
women might bear scientific sons, the same approach had potential to demonstrate 
that women themselves could be capable practitioners. 

Rather than amassing large numbers, Ladd Franklin positioned the few women 
in the history of mathematics as counterexamples. This rhetorical strategy is most 
explicit in her popular article on “Sophie Germain: an unknown mathematician” 
(Ladd Franklin 1894). After introducing Germain, Ladd Franklin explained the 
logical implications of Germain’s accomplishments. 

As proof that women may be pure mathematicians, Mrs. Somerville has had, outside of Italy 
and Russia, to stand alone. This is unfortunate, for the detractors of her sex have maintained 
that her work, though exceedingly profound, was not remarkable for originality. That 
charge cannot be brought against Sophie Germain. She showed great boldness in attacking 
a physical question which was at that time entirely outside the range of mathematical 
treatment, and the more complicated cases of which have not yet submitted themselves 
to analysis. (946) 

To prove existence, Germain alone sufficed—a recent woman in pure mathematics 
and one whose contributions had been judged by her contemporaries as original. 

Ladd Franklin extrapolated from Germain’s early biography to a “general law 
that women’s learning must be got by heroic measures, if at all” (947). Such 
heroism was exhibited in three cases. First, there was Germain “absorbed in her 
studies in a room so cold that the ink was frozen in the inkstand.” Meanwhile “Mrs. 
Somerville, at that very same time, in her little village in Scotland, was obliged 
to wrap herself up in blankets to pursue her studies before breakfast.” Finally,

18 Notably, his list of men of science is also much less English than his other samples, including 
Leibniz, Buffon, Condorcet, Cuvier, D’Alembert, Ampère, Arago, and Jussieu. Recalling Klein’s 
suggestion to conduct a study “on the lines suggested by Francis Galton in his researches on 
heredity” it is worth adding that Galton wrote that he “should have especially liked to investigate 
the biographies of Italians and Jews, both of whom appear to be rich in families of high intellectual 
breeds. Germany and America are also full of interest. It is a little less so with respect to France, 
where the Revolution and the guillotine made sad havoc among progeny of her abler races.” (4) 
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and most tragically, “Ellen Watson, the highly gifted young woman, Clifford’s 
pupil, who died at the Cape of Good Hope at an early age, did all her studying 
before breakfast, because she was required to spend the day-time in teaching her 
younger brothers and sisters.”19 By fitting these three women as manifestation of 
a general law, Ladd Franklin transcended anecdotal lists. Even if such invocations 
were only metaphorical, they elevated the discourse beyond armchair speculations 
and fictional narratives. 

Thus, Ladd Franklin was similarly impatient when another biologist, George 
Romanes, advanced the theory—without “confirmation by facts”—that “women of 
unusual mental powers” were always unhappy and “too exceedingly obnoxious” 
(Ladd Franklin 1896, 315).20 Ladd Franklin responded with “The Higher Edu-
cation of Women” published in Century. As Romanes offered no reasons for his 
conclusions, Ladd Franklin sardonically suggested that “the strong intuitive powers 
of his sex can perceive [it] to be true at a glance.” She corrected Romanes’ claim 
for all women by citing the “social success” of Mrs. Somerville; the “remarkable 
fascination” and charms of Mme. Kovalévsky; the “wide circle of friends, who 
all spoke with enthusiasm of the charm and grace” of Sophie Germain; and the 
“love and reverence” bestowed upon Maria Mitchell. They were not only women 
mathematicians, but feminine women mathematicians. 

In her commitment to sound reasoning and feminism, Ladd Franklin was 
accompanied by her husband, Fabian, who was working as a journalist and editor 
by the late 1890s. Just as Ladd Franklin’s training in logic can be identified in 
the language and structure of her articles, so too Fabian Franklin exhibited a 
mathematical framework in “The Intellectual Powers of Woman” (Franklin 1898). 
But while his mathematical research had been in algebra, analysis, and number 
theory, to situate the history of women in mathematics he invoked comparative 
statistics. 

Franklin’s article for The North American Review is a response to a “spirited 
discussion by Mrs. G. G. Buckler” that had appeared a few months before. Buckler 
had determined that women had not and could not attain “the highest rank in science, 
literature, or art” (40). After reminding his readers of “the hindrances to woman’s 
intellectual achievements,” Franklin showed “their bearing upon that matter of 
numbers, which, while it is the vital element of the whole question, is so strangely 
ignored by the supporters of the view maintained in the article under discussion.” 

Buckler had found “few individual instances of female achievement in science” 
and interpreted this small sample as demonstrating “the rule that women as 
discoverers are inferior to men.” However, Franklin recalled the difference in

19 According to her obituary in 1881 Ellen Watson “was a favourite pupil of the late Professor W. 
K. Clifford, at the University College, and earned off the highest scholarship for mathematics in a 
mixed class of men and women.” Watson qualified to continue her studies at London University, 
but had to delay on account of poor health (Anonymous 1881). 
20 Romanes found the biological inferiority of women “almost painfully obvious” resting on his 
belief that “in many department of intellectual work the field has been open, and equally open, to 
both sexes” without producing any women of note (Romanes 1887). 
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denominators. He reminded the reader “that the whole number of women who 
acquired the elements of the infinitesimal calculus, in the two centuries from its 
creation by Newton and Leibnitz, to the opening of Vassar College in 1865, was 
probably less than the number of mathematical honor men the single University of 
Cambridge turns out in a single year.” Over a hundred years “ten thousand men 
or so” had graduated, but only “two, or at most three, have achieved high rank as 
discoverers in pure mathematics” (47). If this proportion was accurate, then there 
was no reason to expect any women to earn such a level of rare attainment at present. 

For a more appropriate comparative population, Franklin turned to his national 
context. Even if no woman had “achieved the very highest distinction” the same 
could be said “with equal truth of Americans, and with vastly greater emphasis 
of the inhabitants of almost any of our great States, say Pennsylvania; yet no 
one thinks of inferring from this that Americans or Pennsylvanians are utterly 
barred by inherent defect from ever attaining the highest intellectual glory” (48). 
Such a conclusion held no “logical weight.” As women gradually gained access 
to mathematical studies, they had been judged by experts such as Professor Klein, 
who “assures us that the women who have attended the mathematical courses at 
Göttingen ‘have constantly shown themselves from every point as able as their 
male competitors.”’21 In particular, Franklin warned Americans to “not talk glibly 
of women’s power in scientific discovery being essentially inferior to men’s, until 
such time as some American mathematician receives as high recognition as that 
bestowed by the French Academy on the work of Sonia Kovalewski, the judgement 
being pronounced without knowledge of the writer’s sex” (53). For a nation that 
ranked itself according to European metrics of success, a statistical comparison of 
past greatness could be an effective weapon. 

There were very few women in mathematics during the 1890s, but a few was 
enough to demonstrate what was possible. In these review journals and magazines, 
Fabian and Christine Ladd Franklin endeavored to be part of a national conversation 
on women and education. Their arguments exhibit fluency in logical reasoning and 
a commitment to concrete evidence. Were they convincing? Allen, Romanes, and 
Buckler did not publish counterattacks, but they also did not alter their respective 
positions. The Franklins succeeded in dismantling their opponents posture of 
scientific rigor. What remained were prejudiced beliefs immune to logic. 

10.6 Conclusion 

If they could have clarified their disparate meanings of intuition, Ladd Franklin may 
have agreed with Klein’s suggestion at the Evanston Colloquium. Her remarkable 
advocacy for women should not be read as demanding equal opportunity for

21 Klein’s work in admitting foreign women to mathematics lectures at the University of Göttingen 
is elaborated in Parshall and Rowe (1994, pp. 240–244). On the significance of Klein and Göttingen 
for women studying mathematics, see Tobies (2020). 
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all people. First, Ladd Franklin clearly did not believe that mathematical talent 
was uniformly distributed. Instead, she proposed that for most children abstract 
reasoning was repulsive if not impossible. For the majority, it was not “worth 
while to expend the higher education.” Only a few should “dwell long among the 
geometrical concepts, should become throughly imbued with the bare and rigid form 
of reasoning, and should have the results as familiar as his mother-tongue” (Ladd 
Franklin 1886).22 Secondly, Ladd Franklin’s claims for “women” might be more 
narrowly read as for white women. At the beginning of “Intuition and Reason” she 
claimed that “we all—men, women, and negroes alike—act from intuition” (Ladd 
Franklin 1893). While included in “we” the addition of a distinct third category 
certainly suggests a view of racial difference. Ladd Franklin otherwise did not 
discuss race in “Intuition and Reason” nor am I aware of any of her other writings 
on racial issues. Still, the detail is worth noticing as a caution to not interpret her 
calls to end discrimination against some women as anything more inclusive. 

Even in this more limited scope, Ladd Franklin’s message and method in 
“Intuition and Reason” continue to resonate. Much has changed since 1893, but 
beliefs around biological intuition and gendered mathematical ability persist. To 
take one recent example, a 2014 statistical survey by Gerd Gigerenzer, Mirta Gaelic, 
and Rocio Garcia-Retamero on “Stereotypes about men’s and women’s intuitions” 
in Germany and Spain found that while “the majority of Spaniards believe that men 
and women have equally good intuitions for scientific discoveries, [. . . ]  only  one  
third of Germans think the same” which correlates with the percentage of female 
researchers in the natural sciences and engineering and technology between the 
two nations (Gigerenzer et al. 2014, 69).23 This finding exemplifies a potential 
vicious cycle. The researchers suggest that “negative self-perception among German 
females might decrease their interest in science—and thus contribute to the actual 
difference between professional scientists in the two countries.” 

More optimistically, the potential impact of Ladd Franklin’s argument in the 
context of the late-nineteenth century can be glimpsed in a letter among her papers— 
the kind of letter any teacher would hope to receive from a past student (Cary 
1896). Many years after attending Miss Randolph’s School, Pearl Buckner Cary 
recalled “that delightful geometry class where you taught us our first lessons in logic 
and where I first began to realize that I possessed that inestimable treasure called 
‘reason,’—from the cultivation of which I have since derived the purest intellectual 
delight.” Cary further expressed thanks “for that fine article in the last ‘Century’—it 
is so inspiring and so like you that I was carried back to the old school days and

22 Ladd Franklin’s elitism in this passage resonate with the political writings of Karl Pearson, a 
feminist and a eugenicist. On the relationship between these identities for Pearson, see MacKenzie 
(1981), especially pp. 84–87. 
23 In the higher education sector in 2006 the percent of female researchers in natural sciences was 
24% in Germany and 39% in Spain, and in engineering . & technology was 16% in Germany and 
35% in Spain. In the government sector the percent of female researchers in natural science was 
28% in Germany and 42% in Spain, and in engineering . & technology was 20% in Germany and 
39% in Spain (67). 
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seized with a great longing to tell you what a beautiful influence you have been in 
my life.” 

What Ladd Franklin had achieved for Cary in the classroom, she hoped to 
emulate for a wider audience in her popular articles. At a personal and professional 
level, Ladd Franklin chipped away at barriers for women. In her struggle for a better 
future, she showed that a single case could negate a false conclusion. 
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Chapter 11 
Learning from the Masters (and Some 
of Their Pupils) 

John Stillwell 

Abstract Historians are trained to read original sources, and mathematicians in 
general are also advised to “study the masters.” In practice, this is difficult to 
do, because some masters (and some languages) are easier to read than others. 
Nevertheless, it can fruitful to try, as I hope to show from my own experiences 
of reading and learning. 

11.1 Introduction 

I sometimes wonder, and maybe others do too, how I ended up among the historians 
of mathematics, where I am by no means a professional. Some people think I’m 
a logician, some think I’m a topologist, some think I’m a translator, and all these 
things are partly true. But today I am mainly an expositor with historical leanings, 
and I would like to explain how this came about. Books had a lot to do with it, 
and I like to think that books may nourish future mathematicians, and historians of 
mathematics, as much as they nourished me. 

We have all heard the story of Abel, who advised that “to make progress in 
mathematics one should study the masters and not the pupils,” and many of us have 
read the article Read the Masters! of Edwards (1981). And, of course, historians are 
always reading the masters, so we don’t need to be convinced that it is a good idea. 
My story is about reading the masters partly by accident, first to learn things that 
were not taught at the schools I attended, and later finding that it was a good way to 
learn. 

No doubt, other historians have had similar moments of revelation, but I hope that 
mine are of some interest because of their peculiar origins in Australia, with unex-
pected twists and turns through the work of Turing, Post, Dehn, Nielsen, Poincaré, 
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Dedekind, and Dirichlet, and chance encounters with influential mathematicians. It 
will be seen later that Jeremy Gray makes an appearance at a crucial moment. 

I give hearty thanks to David Rowe, whose reading of an early version of this 
article resulted in many improvements. I also benefited from comments by Chinese 
readers, and I hope that my experience reading the classics chimes with the Chinese 
cultural tradition, which has been based on the classics for millennia. 

11.2 From Melbourne High School to University 

When I started high school in 1956 I was not very interested in mathematics—nor in 
history, which was in fact my worst subject. This began to change in the final 2 years, 
when I chanced upon books on the history of mathematice in the school library, such 
as Florian Cajori’s A History of Mathematics (Cajori 1919). (And, yes, I also loved 
E. T. Bell’s Men of Mathematics, as did many of us before we knew better.) I was 
attracted by the mysterious formulas discovered by the early exponents of calculus, 
perhaps all the more so because I had no idea why they were true. Calculus was 
taught at school, but not the infinite series, infinite products, and continued fractions 
that fascinated me. 

Instead I turned to some books on mathematics that were popular at the time. 
The first mathematics books I bought for myself were the books by W. W. Sawyer: 
Mathematician’s Delight and Prelude to Mathematics (Sawyer 1943, 1955), which 
are still in print as Dover books. Others that I read in high school or in the first years 
at university were the Newman (1956) anthology The World of Mathematics, which 
includes digestible excerpts from many great mathematicians, and the slightly less 
digestible A Course of Pure Mathematics of Hardy (1958). Reading the latter book 
was undoubtedly my first experience of what could be classed as “learning from the 
masters, not their pupils.” I did not fully appreciate it at the time, but it gradually 
sank in, with the help of two Cambridge-educated professors at the University of 
Melbourne, T. M. Cherry and E. R. Love. 

Other important influences in my undergraduate years were two German-
speaking mathematicians, Felix Behrend and Karl Moppert. Behrend was a refugee 
mathematician who taught a rigorous analysis course in our first year, including 
Dedekind cuts. I found the cut concept extremely irritating, but in a good way. As a 
naive beginner I felt sure there must be a better way to approach the real numbers, 
so I tried very hard to find it—only to conclude, eventually, that Dedekind cuts were 
the best way. Karl Moppert, in contrast to Behrend, was intuitive in the extreme. He 
viewed himself as a descendent of Felix Klein because one of his teachers had been 
Ostrowski, who was a student of Klein. 

From both Behrend and Moppert I learned the importance of German mathemat-
ics, and they whet my appetite for later study of Dedekind and Klein. Klein came 
first, because he was more visual, and his very engaging Elementary Mathematics 
from an Advanced Standpoint was available in English as a cheap Dover paperback. 
I met Dedekind briefly through the English version of his little book on cuts
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(Dedekind 1872), but as an undergraduate I wasn’t ready for his works on algebraic 
integers and ideal theory. 

11.3 University of Melbourne: 1960–1965 

In the early 1960s, when I entered university, a lot of important mathematical 
literature was available only in German, French, and Russian. Hence part of the 
requirements for an advanced degree in science was a reading knowledge of at least 
two of these languages. For my master’s degree I opted for German, which I had 
studied in high school, and Russian. 

I discovered that translating from German was both enjoyable and enlightening, 
so much so that I went way beyond the requirements of the Science German course. 
Around 1963 I somehow found the time to translate most of Kamke’s Mengenlehre 
(Kamke 1947), which I found in a foreign-language bookstore in Melbourne. I did 
not know that the book had already been translated into English. Kamke was not 
a giant of set theory, like Cantor or Hausdorff, but it was his readable little book 
that sparked my interest in set theory—the first of several “off syllabus” subjects 
I studied on my own.1 Others were the related subjects of logic and computability 
theory. 

Here I read my first masters: Alan Turing and Emil Post. Turing’s paper 
on computable numbers (Turing 1936), was recommended to me by my honors 
superviser, Bruce Craven, who was kind enough to indulge my interest in logic, 
though it was not his field. I did not know at the time that Turing’s concept of 
computation was what convinced Gödel (and hence logicians in general) that the 
intuitive concept of computability could be formalized. Turing certainly convinced 
me; I actually tried simulating a Turing machine on an old typewriter belonging 
to my mother, and I quickly rediscovered some elementary theorems about Turing 
machines, such as their ability to compute using only two different symbols, and 
without erasing. 

Post’s paper on recursively enumerable sets (Post 1944), I discovered more or 
less by chance, after a long search for an account of Gödel’s incompleteness theorem 
that I could understand. Gödel’s own paper was impossible, I thought, and the 
popularization by Nagel and Newman (1958) didn’t help me much either. Quine 
(1951) was another washout, because it persisted in following Gödel’s approach 
through a “self-referential” sentence, which I did not like. After these false starts, 
Post’s idea of viewing incompleteness as a corollary of unsolvability, obtainable 
easily by a diagonal argument, was a revelation. It immediately struck me as the 
“right” approach to Gödel’s theorem. I have since been on a crusade to make

1 I have a habit of going off-syllabus, not only because syllabi have gaps but also because I prefer to 
learn at my own pace. I am generally not quick enough to grasp ideas in lectures or conversations, 
so learning from books has always been more important to me than to most mathematicians. 
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Post’s name better known, describing his work in various books and in the article 
(Stillwell 2004). Post and Turing both died in 1954, but their posthumous careers 
have followed very different paths—Turing receiving the recognition he deserves, 
but Post . . . I’m afraid not. 

Reading Post led to my master’s thesis on recursively enumerable sets, which 
proved to be my ticket to graduate school at MIT, in 1965. 

But this was not the only inspiration I received from Post. His 1947 paper 
on the word problem for semigroups also haunted me for the rest of my career. 
I was then very ignorant about algebra, and barely knew the difference between 
groups and semigroups. But semigroups were about to enjoy their day in the sun, 
with mid-1960s discoveries of connections between semigroups and automata. And 
Melbourne was about to become a hotspot for semigroup theory, with the foundation 
of Melbourne’s second university, Monash, in 1961, its mathematics department 
headed by one of the world’s leading semigroup theorists, Gordon Preston. 

Gordon attended some talks I gave on the word problem, and other topics in logic, 
in 1965. (I did not know at this time that Gordon had actually been a colleague of 
Turing, among the cryptographers at Bletchley Park during WWII.) He informally 
offered me a job at Monash whenever I should complete my Ph.D. at MIT, and that 
is precisely what happened. That was the hiring process in the 1960s! 

11.4 MIT: 1965–1970 

The Science Russian lessons from Melbourne University bore fruit when I met 
similar requirements in graduate school. In early summer 1966 my advisor, Hartley 
Rogers, handed me a copy of the Russian edition of Mal’cev’s Algorithms and 
Recursive Functions (Mal’cev 1970), as practice for MIT’s Science Russian exam. 
He was surprised when I came back with a complete translation at the end of 
summer, and immediately wrote a potential publisher on my behalf. It turned out 
(not for the last time) that someone already had a contract to translate the book; 
however my translation was used in a small way to polish up the English edition. 
This was a bonus for me, since I still viewed translation as a way to learn and had 
not expected to get any credit or see my name in print. I did, however, learn the 
lesson that it was not hard to get translations published. 

But other areas of mathematics, such as algebra and topology, remained a closed 
book to me. I received no training in these fields at Melbourne, where the emphasis 
was on classical analysis, but I thought I would like topology because knots and 
surfaces looked interesting. I had even given a lecture on intuitive topology when I 
was a freshman. So it was a terrible shock to run into the Foundations of Algebraic 
Topology of Eilenberg and Steenrod (1952), the assigned text in Daniel Kan’s 
algebraic topology course at MIT. Far from being about surfaces or knots, this book 
did not have a single picture, other than commutative diagrams. Knowing what I 
know now, I am sure it is utterly the wrong way for beginners to approach topology,
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but all I could do then was drop out of the course (on Kan’s advice) after a couple 
of weeks. 

That was the only course I ever dropped out of, and I felt guilty about it. Even 
though Eilenberg and Steenrod wasn’t my idea of topology, I thought that I ought 
to know something about . . . whatever  it  was  they  were  doing.  I  didn’t  realize  that,  
from a historical point of view, Eilenberg and Steenrod fits better into the history 
of category theory than the history of topology. I didn’t know that Kan was a major 
contributor to category theory, with his discovery of adjoint functors in Kan (1958), 
and that category theory was probably the hidden agenda of his algebraic topology 
course. How little we really know when we are graduate students! 

In contrast to the fog surrounding algebra and topology in my graduate education, 
logic, set theory, and computability theory seemed dramatically clear. Not only 
could I study from current masters in the subject, such as Hilary Putnam and Tony 
Martin, virtually all the big names visited MIT and gave seminar talks. For example, 
we heard Robert Solovay explain his model of set theory in which every set of reals 
is Lebesgue measurable, years before he got around to writing it up for the Annals. 
About the only no-show was Paul Cohen, who by that time had settled the big 
independence questions of set theory and was taking aim at something completely 
different: the Riemann Hypothesis. We did, however, use his book Cohen (1966) in  
the graduate set theory course. It was then hot off the press, and a rare example of a 
research monograph that makes a good textbook (possibly because Cohen was not 
a professional set theorist, but an outsider with remarkable insight). 

11.5 1970s: Group Theory and Topology 

My training in logic, computability, and set theory at MIT was of lasting value, but 
in the early 1970s these fields became discouragingly complex, and I started looking 
for a bridge to somewhere else in mathematics. I found it in the computational 
aspects of topology and group theory, where the immediate learning challenge was 
to understand the word problem for groups, rather than semigroups. Seeking the 
origin of this problem led me to one of the most inspiring papers I ever read: Max 
Dehn’s Ueber unendliche diskontinuierliche Gruppen (Dehn 1911). The richness of 
this paper—with its glorious blend of algebra, topology, and hyperbolic geometry— 
led to many things, including a collection of my translations of Dehn’s papers, in 
Dehn (1987). I spent much of the 1970s in a frenzy of translation, because I found 
it best suited my style of learning. 

The pace of translation, being slower than reading, gives just the right amount 
of time (for me) to absorb one idea before going on to the next. I found that the 
language didn’t matter much, as long as I knew the basic words and very basic 
grammar, because it didn’t take long to learn the vocabulary of a particular field 
of mathematics. So, I translated not only from German (where I was competent) 
but also from French (where I got by on the analogy with Spanish) and even Danish 
(where some simple words are weird and I didn’t see the difference between singular
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and plural for a while). The other criteria were that the subject had to be potentially 
understandable—so that I could guess a correct translation for mathematical reasons 
when my language knowledge failed—and well-written. 

Luckily for me, the authors I was most interested in wrote clearly and simply, 
so my pace of translation was equal to my pace of understanding. The authors in 
question were Dehn, Poincaré, and the duo Seifert and Threlfall.2 I came to Poincaré 
through the series of topology papers he wrote under the title Analysis Situs, which 
translations were later collected in Poincaré (2010). When revising the translations, 
30 years after I first made them, I was surprised to find that they no longer seemed 
quite so easy to follow. I think I was by then more sensitive to Poincaré’s sloppy 
arguments, gaps, and occasional mistakes. When I was a beginner, I didn’t notice 
them. The Zen concept of “beginner’s mind” perhaps applies here: Poincaré wrote, 
and I first read, as a beginner. 

In the 1970s I also translated Seifert and Threlfall’s Lehrbuch der Topologie 
(Seifert and Threlfall 1934). This was a wonderful learning experience for me, and 
it also greatly pleased Seifert when I wrote to him in 1977, suggesting publication. 
He replied (14 October 1977): 

Ich freue mich, dass zu der russischen, chinesischen und spanisch Übersetzungen nun auch 
eine englische erscheinung soll. [I am delighted that an English translation will now appear 
in addition to those in Russian, Chinese, and Spanish.] 

But, unbeknownst to either of us, another English translation had already been 
completed and accepted for publication (Seifert and Threlfall 1980). 

Partly out of exasperation at losing the translation both Seifert and I had hoped 
for, I wrote my own book, Classical Topology and Combinatorial Group Theory 
(Stillwell 1980), based on my knowledge of the history of these subjects. While 
writing, I sent some of the group theory chapters to Dehn’s eminent student, 
Wilhelm Magnus, who was very encouraging. It was also fortunate, I think, that I 
sent the finished manuscript to Paul Halmos at Springer, since it evidently struck 
a chord with him. Halmos was instrumental in getting the book published in 
Springer’s GTM series, and led to my publishing several subsequent books at 
Springer. 

The aim of the book was to revive the visual style of topology that prevailed from 
Dehn to Seifert-Threlfall, and I spent a month of a sabbatical at MIT just making 
the diagrams for the book. Not trusting the mail, I carried the diagrams personally 
(by Greyhound bus) to my publisher Springer in New York. While there, I had the 
pleasure of visiting Wilhelm Magnus at his home in New Rochelle. He encouraged 
me to continue translating Dehn’s work and gave me some copies of unpublished 
Dehn manuscripts. These finally saw the light of day in Dehn (1987). In Classical 
Topology I also took the opportunity to make a connection with computability 
theory, which was fully realized in the second edition of the book in 1993, with 
the first textbook proof of the result of Markov (1958) that the homeomorphism

2 Another translation I made around this time was of Reidemeister’s Kombinatorische Topologie. I  
LATEXed this a few years ago and posted it on the arXiv: arXiv:1402.3906. 
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problem for manifolds is unsolvable. (Reading Markov’s paper, incidentally, was 
the last time I used my knowledge of Russian.) 

The book also served, in a way, to exorcise the demons of algebraic topology 
that had haunted me since 1965. However, I didn’t stop translating topology and 
combinatorial group theory: in 1980 I also published translations of Zieschang’s 
Flächen und ebene diskontinuierliche Gruppen and (my first translation of a modern 
master) Serre’s Arbres, Amalgames, .SL2 (English title simply Trees). The latter 
book starts off very simply with an introduction to graph theory, then proceeds very 
briskly to free groups and amalgamated free products. I got a little lost in the last 
chapter of Trees, but Serre helped me out. His bare-bones style seemed a bit austere 
to me then but now I can’t fault it. 

11.6 1980s: Geometry 

My translations took a more geometric turn in the 1980s, foreshadowed by the 
hyperbolic geometry in Dehn’s 1911 paper. One of the unpublished Dehn papers 
given to me by Magnus contained an early version of what is now called the 
Dehn-Nielsen theorem, relating mappings of a surface to the automorphisms of 
its fundamental group. This led me to the full version of the theorem proved by 
Dehn’s student, Jakob Nielsen—like Wilhelm Magnus, a pupil who was himself 
a master3 —and I couldn’t stop there. Nielsen’s use of hyperbolic geometry in 
topology and group theory was so brilliant that I eventually translated almost all 
of his papers, some of them in Danish. These papers were later collected in a two-
volume edition of Nielsen’s works (Nielsen 1986a,b), thanks to the generous support 
of the Danish Mathematical Society. 

My fleeting competence in Danish had one more product: the English translation 
Topsøe (1990) of a book on the Poisson distribution. This book came at the request 
of the author who, while perfectly competent in English, wanted a native speaker to 
translate it. This experience taught me something I should have realized earlier: it 
is more important to be competent in English than in the language being translated. 
And, indeed, translating into English is good practice for writing in English. It is, in 
effect, “writing with trainer wheels,” because the ideas are already in the right order, 
and it remains only to express them well in English. 

In the early 1980s I became interested in classical algebraic geometry and 
complex function theory. In 1978 I had already translated Riemann (1851), the paper 
that introduces Riemann surfaces, but I was not satisfied with my work. Like many, 
I found Riemann’s writing hard to follow. The right approach for me turned out to

3 Another important Dehn student was Ruth Moufang, who made some spectacular discoveries on 
connections between the octonions and projective geometry. About 20 years ago I discovered some 
notes she wrote on this subject in the Frankfurt University mathematics library, and I later posted 
a translation of them on the arXiv: arXiv:2012.05809. 
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be the masterly Ebene algebraische Kurven of Brieskorn and Knörrer (1981). I was 
so excited by the long historical introduction in this book that I translated its whole 
900 pages—the longest book I ever translated. It taught me a lot about the history of 
algebraic geometry, and also gave me a new insight into topology, where Riemann 
surfaces arise from algebraic curves and knots arise from their singularities. 

Filling in more details in the history of topology and geometry, I came back to 
Poincaré, making a translation of his main papers on Fuchsian functions, including 
his approach to hyperbolic geometry in two and three dimensions (Poincaré 1985). 
These papers are foundational not only in non-Euclidean geometry, but also in the 
“geometrization” of topology, which was enjoying a revival at this time thanks to 
the work of Thurston. In the process, the work of Dehn and Nielsen also enjoyed 
a revival, when it was noticed that Thurston had actually rediscovered some of 
Nielsen’s results on the topology of surfaces. The confluence of Dehn, Nielsen, 
and Thurston took place around the time of a visit by Thurston to University of 
Melbourne in the late 1970s, so I was well aware of it, and it informed my writing 
of Classical Topology and Combinatorial Group Theory. Thurston’s geometrization 
was so influential that the latter part of my title was eventually rendered obsolete: 
“combinatorial group theory” is now “geometric group theory.” 

In the 1980s I had the opportunity to teach history of mathematics for the first 
time. I felt ready, because at this stage I had already learned geometry, topology, 
and a bit of algebra, from the masters. Also, in the mid-1980s there was growing 
anticipation of a proof of Fermat’s last theorem, thanks to results of Serre, Frey, and 
Ribet that reduced it to a problem about elliptic curves. The decisive moment, for 
me, occurred when I heard Ken Ribet give a talk on his contribution at Cambridge 
University in 1987. With Fermat in mind, I studied the number theory and geometry 
around elliptic functions and elliptic curves, and included its history in my course. 
This is where Jeremy Gray comes into my story. I sent him some of my lecture 
notes and, with his encouragement, I started writing Mathematics and Its History 
(Stillwell 1989). The first edition came out in 1989, and there have been two more 
editions since. It turned out to be my most popular book. (Of course, it was only 
in the second edition (2002) that I could report that Fermat’s last theorem had been 
proved.) 

11.7 1990s: Number Theory and Geometry 

In the 1990s I followed the number theory thread into the writings of my next 
master, Richard Dedekind, and to his master, Dirichlet. First I made the translation 
of Dedekind’s 1877 Theory of Algebraic Integers, which came out as Dedekind 
(1996). Strangely, the original version of Dedekind’s monograph seems to be lost, 
so I worked from the French translation (Dedekind 1877). Dedekind writes so well 
I suspect that could be part of the reason his approach (ideals versus divisors) is 
more popular than that of Kronecker. I found Kronecker’s writings impenetrable, 
with one exception—his paper Kronecker (1870) that gives the structure theorem
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for finite Abelian groups. I shoehorned Kronecker’s proof of this theorem into my 
Classical Topology and Combinatorial Group Theory. 

As for Dirichlet, I worked from the first version of the work that later became 
known as Dirichlet-Dedekind, consisting of Dirichlet’s lectures on number theory 
and Dedekind’s supplements. Most of the supplements remained the same after the 
first version (Lejeune-Dirichlet 1871), but the supplement on algebraic integers and 
ideal theory grew until it dominated the book in the final version (Lejeune-Dirichlet 
1894). I omitted this supplement because I felt that Dedekind (1996) was a more 
approachable treatment of the subject, though some number theorists have been 
disappointed by my decision. Dirichlet’s book was the last I translated by pen onto 
paper. I translated the last 34 pages of the book in a single day, which is my all-time 
record. I had the luxury of writing by hand then because my son Michael had the 
time to type it up in LATEX. After that, like most of us, I had to do my own LATEX, 
which is a lot slower but nevertheless satisfying. 

The important paper Dedekind and Weber (1882) on the arithmetic theory of 
algebraic functions that Dedekind co-authored with Weber was, for me, his most 
difficult. It took me a couple of attempts to translate it, finally getting it published 
in 2012. Maybe the reason is that Dedekind left most of the writing to Weber, who 
was perhaps a less gifted expositor; for whatever reason, their joint paper is not as 
readable as Dedekind’s other writings. 

Also in this decade I collected my translations of Beltrami, Klein, and Poincaré 
on hyperbolic geometry in Stillwell (1996), Sources of Hyperbolic Geometry, and 
wrote my own books Geometry of Surfaces, Elements of Algebra and Numbers and 
Geometry. By this time I was beginning to think it was time to do less translation, 
and to write up what I had learned. There is no shortage of topics that I think can be 
better explained with the help of some historical insight. 

11.8 2000s 

The books I wrote in the 1990s established a pattern I continued in the 2000s: books 
on undergraduate topics written from a historical perspective. I did revisit the history 
of topology in a survey article on Poincaré and the history of 3-manifolds (Stillwell 
2012), and I returned somewhat to my roots in logic and set theory with books on 
infinity, reverse mathematics, and the history of proof. 

The quotation from Abel that prompted the title of this article—“study the 
masters, not the pupils”—was of course intended to explain his productivity as a 
research mathematician, which I cannot claim to have achieved. But it is good advice 
for everyone and, as long as the masters do not have the time to write expository 
books, it seems to be up to us, their pupils, to do the job. Otherwise, few will know 
what the masters have done. 

* * * * * * * * * * * * *  
The motto of Monash University, where I spent more than half of my career, is 

“Ancora imparo,” meaning “I am still learning.” I very much agree with this saying.
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I have never written a book or article on how to learn, or teach, or read, or write, or 
translate mathematics, and I probably never will. That is because I still don’t know, 
exactly, how to do it. But I hope to improve. 
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Chapter 12 
Mathematical Practice: How 
an Astronomical Table Was Made in the 
Yuanjia li (443 AD) 

Anjing Qu 

Abstract Simply according to the analysis and mathematical modeling of the 
structure of constants, without the support of any written historical materials, the 
procedure by which an astronomical table of solar shadow in the Yuanjia li (443 AD) 
was made is reconstructed. The results of this paper show that the sources of some 
important basic constants in traditional Chinese calendars are quite unexpected, 
since they may not come from practical measurement, or simple adjustment of 
the measured data. The constant of length of solar shadow in the Yuanjia li was 
deduced from an indeterminate equation, which was artificially constructed from a 
mathematical model. This research is an example of the paradigm of recovery, and 
the paradigm is analogous to the focus on mathematical practice in history of exact 
science. 

12.1 Paradigm of Recovery and Mathematical Practice 

For the past few years, mathematical practice as a new focus of the history and 
philosophy of mathematics has become more and more popular in Europe and 
other places. One of the origins for practice comes from a renewal of the word 
pratique in French history and philosophy of science, in particular through the 
influence of Michel Foucault, in the 1970s and 1980s (Ritter 1989). As a phrase, 
mathematical practice appeared in the title of an article of the Journal of Symbolic 
Logic in the 1980s (Shapiro 1985). There were works on the history and philosophy 
of mathematics written with this paradigm in the 1990s (Fraser 1999; Bowers et  
al. 1999). Since the beginning of the new century, especially in the last decade, 
more and more historians and philosophers of mathematics have reported their 
results based on the topic of mathematical practice in various journals and academic 
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conferences on the history of mathematics (Mancosu 2008; Soler et al. 2014; 
Chemla 2013) .  

What is mathematical practice? Based on the Association for the philosophy 
of mathematical practice, we can see that “It includes the study of a wide variety 
of issues concerned with the way mathematics is done, evaluated, and applied, 
and in addition, or in connection therewith, with historical episodes or traditions, 
applications, educational problems, cognitive questions, etc.” 

Why is mathematical practice a new topic? Because the two international 
mainstreams, history of mathematical practice and philosophy of mathematical 
practice, are both trying to open up the field of historical and philosophical studies, 
avoiding what they perceive to be an overly narrow focus on written texts (Ferreirós 
2016). The latter is a traditional paradigm to study the history of mathematics and 
astronomy, characterized by discovery. 

What does discovery mean? Or equivalently, what’s the problem field of the 
paradigm of discovery? When we have full and concrete historical materials, the 
interpretation of these materials, and the explanation of the mathematical thoughts 
and methods understood by ancient mathematicians would go with the paradigm of 
discovery. 

However, this paradigm has its limitations. First of all, only explicit text 
information can be used in the research. Secondly, it’s not easy to find fresh or 
ignored historical materials. Against this backdrop, Wu Wen-Tsun put forward a 
new paradigm, gave a few principles to characterize it as recovery (Wu 1986). 
Historians of mathematics in China have been familiar with this kind of paradigm 
since the 1980s (Qu 2002). It must be mentioned that broken chains of evidence or 
circumstantial evidence are allowed in the paradigm of recovery. In this way, the 
original problem-field for the paradigm of discovery has been broken through. 

More explicitly, the traditional paradigm of the history of mathematics focuses 
on “what”, while the paradigm of recovery focuses on “how”. Moreover, the 
paradigm of recovery allows historians to analyze the data structures, investigate the 
illustration features, study the algorithm procedure, based on the limited documents, 
to dig out the underlying information, such as formulae, algorithms, figures and so 
on, in order to logically deduce the way in which the ancient mathematicians created 
knowledge. This research idea is similar to the history of mathematical practice. 

Therefore, due to the lack of direct support from the mathematical text one wants 
to study, the way in which the historian understands how knowledge was created 
through a particular mathematical practice is not discovery but recovery. It shows  
that the problem-field of recovery is different from that of the traditional paradigm 
of discovery. 

The shift of paradigm for the history of exact science expanded the problem-
field of traditional historiography. There will be a great quantity of new problems 
arising from this new paradigm. By means of expanding the problem-field, we aim 
to come up with more new problems to reinvigorate the study of the history of exact 
science, such as the history of mathematical astronomy, and the history of modern 
mathematics (Qu 2018).
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Of course, the problem raised and solved in this paper, focusing on mathematical 
practice by means of the paradigm of recovery, is very interesting. 

12.2 The Problem 

In Chinese, the li is a calendar-making system which contains astronomical 
constants and algorithms dealing with the movements of the sun, the moon, and 
five planets. The Yuanjia li (443 AD) is an important calendar-making system made 
by He Chengtian (370–447 AD) in the Liu Song Dynasty. In this paper, we take 
an astronomical table as an example, to discuss how He Chengtian obtained the 
constants of length of solar shadow in the Yuanjia li with the paradigm of recovery 
(The Compilation of Chapters of Astronomy, Music and Calendar in the Official 
History of China 6 歷代天文律曆等志匯編(六) 1976b). 

Normally, the length of solar shadow is measured by a gnomon with 8 chi height 
at noon.1 The solar shadow table at 24 solar terms in a year is the basic data of many 
astronomical calculations. So, it is very important. 

From the Eastern Han Dynasty to the Liu Song Dynasty (first to fifth century 
AD), we can find the tables of the solar shadow in 3 calendars, Sifen li, Jingchu li 
and Yuanjia li. To recover the construction process of the table in the Yuanjia li, we  
put the constants in these 3 calendars into Table 12.1 as a reference. The tables are 
the same in the  Sifen li (Quaternary li) (85 AD) (The Compilation of Chapters of 
Astronomy, Music and Calendar in the Official History of China 5 歷代天文律曆 
等志匯編(五) 1976a) and the Jingchu li (237 AD) (The Compilation of Chapters of 
Astronomy, Music and Calendar in the Official History of China 5 歷代天文律曆等 
志匯編(五) 1976a, 1632–1634). By symmetry, we just need to list the 13 constants 
from the Winter Solstice to the Summer Solstice. The unit of the constant in Table 
12.1 is fen, 1 foot (chi) = 100 fen. The Difference is the first order difference of two 
adjacent solar terms (Fig. 12.1). 

With the paradigm of discovery, we only need to check that the constants in Table 
12.1 are the lengths of the solar shadow at 24 solar terms in a year. In general, people 
don’t discuss how the astronomers obtained these constants without the support of 
original written materials. However, with the paradigm of recovery, the question 
“how to obtain this group of data?” is legitimate and worth discussing. 

In this paper, without any original written description, we analyze the structures 
and characteristics of the data to answer the question: how did He Chengtian obtain 
the constants of length of the solar shadow at 24 solar terms? 

This is the problem in this paper.

1 fen, as well as chi, is a unit of length. One chi approximately equals to one foot. 
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Table 12.1 The solar shadow tables in three calendarsa 

Sifen li/Jingchu li Yuanjia li 

Solar Term Solar Shadow Difference Solar Shadow Difference 

Winter solstice 1300 70 1300 52 
Minor cold 1230 130 1248 114 
Major cold 1100 140 1134 143 
Start of spring 960 165 991 169 
Rain water 795 145 822 150 
Awakening of insects 650 125 672 133 
Spring equinox 525 110 539 114 
Clear and bright 415 95 425 100 
Grain rain 320 68 325 75 
Start of summer 252 54 250 53 
Grain buds 198 30 197 28 
Grain in ear 168 18 169 19 
Summer solstice 150 150 
aThe Solar Shadow here means the constant of the length of solar shadow at the moment of each 
solar term. These are the original data quoted from the calendars 

Fig. 12.1 The Solar shadow table of the Yuanjia li. (Shen 1739) 

12.3 Characteristics of Solar Shadow Table in the Yuanjia li 

It’s easy to understand the creation process of algorithms, theorems, concepts and 
theories if there are sufficient written materials. The first one to explain it clearly 
would go with the paradigm of discovery. It’s one of the problems in the field of the 
traditional paradigm of historical research. 

However, when facing indirect or broken chains of evidence, we can only restore 
the construction process according to circumstantial evidence. This kind of research 
would deal with a problem in the paradigm of recovery. 

Recovering the construction process of the solar shadow table in the Yuanjia li is 
an example of the problems above, because there is no literature left to tell us He 
Chengtian’s construction process of the table in the Yuanjia li. 

Then, how did He Chengtian obtain these constants in his table? The simplest 
explanation, of course, is that all the data comes from practical measurement. In
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order to explore whether the data come from practical measurement or an algorithm, 
we need to find out the rules behind the data. 

Dividing the Difference of the solar shadow table in the Yuanjia li into two 
factors, we find that except for the last three numbers (53, 28, 19), one takes into 
account only the first nine digits, they can be divided into three groups with the same 
factor, namely 19, 13, 25 in each group: 

.114 = 6 × 19, 133 = 7 × 19, 114 = 6 × 19, (12.1) 

.52 = 4 × 13, 143 = 11 × 13, 169 = 13 × 13, (12.2) 

.150 = 6 × 25, 100 = 4 × 25, 75 = 3 × 25. (12.3) 

As shown in Table 12.2, if we add the three factors that are not in common in group 
(1), the sum will be 

. 6 + 7 + 6 = 19,

This number is the same as the Difference of Grain in Ear. If we add the three factors 
that are not in common in group (2), the sum will be 

. 4 + 11 + 13 = 28,

This number is the same as the Difference of Grain Buds. Therefore, the sum of the 
three numbers of group (2) is 28 × 13, while the sum of the numbers in group (3) 
is 13 × 25. From this, it can be seen from this that the sum of the six numbers of 
groups (2) and (3) is 

. 28 × 13 + 13 × 25 = 53 × 13,

in which the sum of the factors is 28 + 25 = 53, which is the Difference of Start of 
Summer. 

These perfectly matched data suggest that the solar shadow table in the Yuanjia 
li was calculated meticulously by He Chengtian. In this way, we find that these data 
were the results of an algorithm not practical measurements. 

How did He Chengtian calculate these constants? To solve this problem, we can 
build a mathematical model according to the analysis of structural characteristics 
above.
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12.4 Mathematical Model of the Solar Shadow Table in the 
Yuanjia li 

According to the structural analysis of the data, the twelve Difference constants 
in the Yuanjia li can be divided into two groups. We take x, y, z to express the 
Differences of Grain in Ear, Grain Buds, Start of Summer, respectively. See Table 
12.2. They are basic constants, playing an important role in constructing the model. 

The difference of the solar shadow lengths of Winter Solstice and Summer 
Solstice is 1300 – 150, which equals to the sum (1150) of all Differences from 
Winter Solstice to Grain in Ear. Thus, the sum of the nine Differences from Winter 
Solstice to Grain Rain should be 

. 1150 − (x + y + z) .

Therefore, if we can determine x + y + z, the next problem is to distribute the 
1150 − (x + y + z) into the nine Differences from Winter Solstice to Grain Rain. 

For the construction process of the model, please refer to Tables 12.2 and 12.3. 
According to the analysis in the previous section, we find that He Chengtian 

divided the nine Differences into three groups, in which the group (1) contains the 
factor x, and the sum of the three numbers can be expressed as 

. x · m1 + x · m2 + x · m3 = x · m.

Table 12.2 Structures of the solar shadow table in the Yuanjia li 

Solar Terms Solar Shadow Difference (1) (2) (3) 

Winter solstice 1300 52 4·13 
Minor cold 1248 114 19·6 
Major cold 1134 143 11·13 
Start of spring 991 169 13·13 
Rain water 822 150 25·6 
Awakening of insects 672 133 19·7 
Spring equinox 539 114 19·6 
Clear and bright 425 100 25·4 
Grain rain 325 75 25·3 
Start of summer 250 53 
Grain buds 197 28 
Grain in ear 169 19 
Summer solstice 150 

28·13 25·13 
1150-100 19·19 53·13 
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Table 12.3 The 
mathematical model of the 
solar shadow table in the 
Yuanjia li 

Difference (1) (2) (3) 

+ y1 · n 
+ x · m1 

+ y2 · n 
+ y3 · n 
+ (z − y) · n1 
+ x · m2 

+ x · m3 

+ (z − y) · n2 
+ (z − y) · n3 
z 

y 

x 

1150 − (x + y + z) x · m y · n (z − y) · n 
z · n 

The three numbers in group (2) all contain the same factor y. Dividing the Difference 
of Grain Buds properly, the sum of these three data can be expressed as 

. y1 · n + y2 · n + y3 · n = y · n.

The three numbers in group (3) all contain the factor z − y, so the  sum is  

. (z − y) · n1 + (z − y) · n2 + (z − y) · n3 = (z − y) · n.

Thus, the sum of the six numbers in groups (2) and (3) is 

. y · n + (z − y) · n = z · n.

Therefore, the main matter is reduced to an indeterminate equation: 

.1150 − (x + y + z) = x · m + z · n. (12.4) 

Once the Differences of Grain in Ear, Grain Buds and Start of Summer, namely x, y, 
z, are selected, the indeterminate Eq. 12.4 is established. Then, solving the Eq. 12.4, 
we obtain m, n, and distribute them properly into 

. 
m1 + m2 + m3 = m;
n1 + n2 + n3 = n.

In this way, the Differences of solar shadow from Winter Solstice to Grain in Ear 
are obtained, and the solar shadow table in the Yuanjia li is constructed.
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12.5 Recovery of the Procedure of the Solar Shadow Table 
in the Yuanjia li 

Now we can recover He Chengtian’s construction process of the solar shadow table 
in the Yuanjia li. According to the previous discussion, the whole matter is reduced 
to the indeterminate Eq. 12.4. Before determining the coefficients and final results 
of the Eq. 12.4, a hypothesis needs to be made clear: 

He Chengtian was a mathematical astrologer (Chen 2003). In terms of mathemat-
ics, he invented an algorithm named tiao rifa which means a method of denominator 
selection. The essence of this algorithm is to select an appropriate rational number 
to approximate the constant of the synodic month. He Chengtian reduced this 
problem to solving an equation similar to Eq. 12.4 (Li 2007). The construction of 
this equation contains the pursuit of some beautiful numbers, which include some 
special prime factors. This is the inheritance of the digital mysticism from the Qin 
and Han Dynasties (from second century BC on) (Chen 1984). What’s more, in 
the era of He Chengtian, the Chinese Remainder Theorem had already been used 
to solve linear congruences or indeterminate equations. This background laid the 
necessary mathematical foundation for solving the Eq. 12.4. 

As we have seen, He Chengtian’s first step was to transform the Eq. 12.4 into 
an indeterminate or congruence equation with m and n as unknown quantities, by 
determining the Differences x, y, z of Grain in Ear, Grain Buds and Start of Summer, 
respectively. 

Referring to the data in the Sifen li (Quaternary li) and Jingchu li, the  Differences 
of Grain in Ear and Start of Summer, namely x, z, are 18 and 54, respectively. In 
order to make a perfect Eq. 12.4, it’s better to choose the nearest prime numbers 
as x, z, which were taken for granted by digital mysticism at that time. The nearest 
prime numbers to 54 and 18 are z = 53, and x = 17 or 19. 

If we choose the results found in the Yuanjia li, x = 19, z = 53, and 
x + y + z = 100, then according to the Eq. 12.4, there is an indeterminate equation: 

.1050 = 19m + 53n. (12.5) 

We can easily obtain the general solution of this equation by means of the Chinese 
Remainder Theorem: 

. 
m = 19 + 53k;
n = 13 − 19k.

in which k is an arbitrary integer. It can be seen that there is only one set of positive 
integer solutions of the Eq. 12.5: 

. m = 19, n = 13.

This is exactly the result that He Chengtian used in the Yuanjia li.
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Table 12.4 The possible options of the solar shadow table in the Yuanjia li 

x z x + y + z m n 

19 53 100 19 13 OK 
19 53 101 5 18 Non prime number, mis too small 
19 53 102 44 4 Non prime number, n is too small 
19 53 103 30 9 Non prime number, n is too small 
19 53 104 16 14 Non prime number 
17 53 100 15 15 Non prime number 
17 53 101 43 6 Non prime number, n is too small 
17 53 102 18 14 Non prime number 
17 53 103 46 5 Non prime number, n is too small 
17 53 104 21 13 Non prime number 

In fact, we have found out that x + y + z = 102 in the Sifen li (Quaternary li) and 
the Jingchu li, as shown in Table 12.1. Then, we limit the value range of x + y + z 
to 102 ± 2, so, no matter whether x = 19 or 17, the indeterminate Eq. 12.4 has only 
one set of positive integer solutions. Limiting m, n to be prime numbers, the solution 
used in the Yuanjia li is the unique suitable result. The possible options are shown 
in Table 12.4. 

In other words, according to the mathematical model made by He Chengtian, 
the solar shadow table in the Yuanjia li is obtained by solving the indeterminate Eq. 
12.4. In this equation, if we limit the coefficients x, y, the solutions m, n are all prime 
numbers, then the data in the Yuanjia li give the only proper option in a very wide 
range of possible options. 

This is the procedure of construction of the solar shadow table in He Chengtian’s 
Yuanjia li. 

12.6 Why Does He’s Method Matter? 

We have recovered He Chengtian’s method for selecting the constants of the length 
of the solar shadow by the paradigm of recovery. He Chengtian transformed the 
simple astronomical problem into a linear indeterminate Eq. 12.4 by a mathematical 
model. 

This is unexpected! 
Did He Chengtian use this method on purpose? Or just as a special case? Why 

does He’s method matter? 
In fact, the method He Chengtian used here is not a unique case. As mentioned 

before, as an astrologer, He Chengtian’s most famous invention in the history of 
mathematics is tiao rifa, i.e., a method of denominator selection. In traditional 
Chinese calendars, there are many fractions selected properly as the astronomical 
constants used in calendars, rifa is the denominator of the constant of the synodic
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month.2 Tiao rifa is actually a method for determining the constant of the synodic 
month used in calendars. 

From the literature of the Song Dynasty (eleventh to thirteenth century), there 
are three historical records about He Chengtian’s method of denominator selection 
(tiao rifa). The earliest record was given by Zhou Cong, the author of the Mingtian li 
(1064 AD). In the first article of The Commentary of Mingtian li, Zhou Cong wrote: 

調日法 
造曆之法, 必先立元, 元正然後定日法, 法定然後度周天分以定分、至, 三者有 

程, 則曆可成矣。(The Compilation of Chapters of Astronomy, Music and Calendar in the 
Official History of China 8 歷代天文律曆等志匯編(八) 1976c) 

The method of denominator selection 
For making a calendar, must determine the epoch first. Then select a proper denominator 

of the constant of the synodic month. Next, determine the constant of the tropical year and 
then to determine the 24 solar terms. Once these three steps above are finished, the calendar 
is ready to compile. 

This statement tells us the three steps of compiling a calendar: determine the epoch, 
select the denominator of the constant of the synodic month, and determine the 
constant of the tropical year. But how to select a proper denominator? Zhou Cong 
continued that: 

宋世何承天更以四十九分之二十六為強率, 十七分之九為弱率, 于強弱之際以求日 
法。承天日法七百五十二, 得一十五強, 一弱。自後治曆者, 莫不因承天法 . . .  . . .  He 
Chengtian, in the Liu Song Dynasty, took 26/49 as the bigger ratio, 9/17 as the smaller ratio, 
and selected the rifa (denominator) between the bigger and smaller ratios. Chengtian’s rifa 
was 752, and he obtained the number of bigger ratios (hereinafter called “bigger number”) 
is n = 15, the number of smaller ratios (hereinafter called “smaller number”) is m = 1. 
Later calendar makers all followed He Chengtian’s approach . . .  

This is the earliest expression we know for the method of denominator selection in 
history. This paragraph states in effect that if we suppose the fractional part of the 
constant of the synodic month is B/A, A is the denominator (rifa), B is the numerator 
(shuoyu). He Chengtian knew that: 

. 
9

17
<

B

A
<

26

49
,

in which 26/49 is the bigger ratio, 9/17 is the smaller ratio. Therefore, find the 
positive integers m, n that satisfy 

.
B

A
= 9m + 26n

17m + 49n
, (12.6)

2 The calendars after the Sui Dynasty (from the seventh century on) cancelled the intercalary circle, 
so the rifa was also selected as the denominator of the constant of the tropical year. About the 
method of tiao rifa, one may find a discussion in the book of Jean Claude Martzloff: Astronomy 
and Calendars – The Other Chinese Mathematics, 104 BC-AD1644. Springer. 
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in which n is the bigger number, m is the smaller number. The method of 
denominator selection is: select a proper denominator A to solve the indeterminate 
equation 

.A = 17m + 49n. (12.7) 

Obtain the bigger number n and smaller number m to determine B/A. 
For example, as Zhou Cong said, given the denominator is A= 752 in the Yuanjia 

li, we can obtain that the bigger number is n = 15 and smaller number is m = 1. 
Therefore, the fractional part of the constant of the synodic month in the Yuanjia li 
is 

. 
B

A
= 9 + 26 × 15

17 + 49 × 15
= 399

752
.

This process was demonstrated in detail in the algorithm for deducing the epoch in 
Qin Jiushao’s Mathematical Treatise in Nine Chapters (1247 AD). At the beginning 
of the algorithm for deducing the epoch, Qin Jiushao (1208–1268) wrote: 

以曆法求之, 大衍入之。調日法, 如何承天術。用強弱母子互乘, 得數, 並之, 為朔 
余。(Chen 1984, 263) 

To determine it (the epoch), apply the algorithm related to the Chinese Remainder 
Theorem. The method of denominator selection applied here is just like He Chengtian’s 
method. Multiply the bigger number n of rifa and the numerator of the bigger ratio, multiply 
the smaller number m of rifa and the numerator of the smaller ratio, add these two products 
together, the sum is the numerator (shuoyu) (of the fractional part of the synodic month). 

Qin’s algorithm is a method to determine the superior epoch3 by solving a set of 
linear congruence equations. However, how to operate the method of denominator 
selection is an unsolved problem. According to the expression of the algorithm 
by Qin Jiushao (Chen 1984, 470–474), the above algorithm operates roughly as 
follows: 

According to He Chengtian’s algorithm, select a proper denominator (rifa) A 
and obtain the indeterminate Eq. 12.7. Solve it, obtain the smaller number m and 
bigger number n, multiply the smaller ratio 9 and bigger ratio 26 in the Eq. 12.6, 
respectively, and add them together to obtain the numerator of the fractional part of 
the constant of the synodic month: 

. B = 9m + 26n.

Thus, it can be seen that He Chengtian’s method of denominator selection is to 
transform the selection of the constant of the synodic month B/A into the solution of 
the indeterminate Eq. 12.7. This method is completely consistent with the selection

3 The Superior Epoch is an ideal epoch which is a special moment when the sun passes through 
the point of winter solstice, and five planets gather in the same longitude line with the sun. It is at 
a mid-night. 
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of the length of the solar shadow at 24 solar terms in the Yuanjia li, which is reduced 
to solving the indeterminate Eq. 12.5. 

Transforming the selection of astronomical constants into the solution of an 
indeterminate equation is also the transformation of an astronomical problem into a 
simple mathematical problem by mathematical modeling. 

That’s what He Chengtian did! 
It’s generally accepted that Chinese astrologers in old time were all pragmatists 

who put precision first, lacking the construction of theoretical models and the 
application of mathematical means. In reality, He Chengtian’s case shows how 
to determine the astronomical constants by establishing the mathematical model, 
by constructing and solving a linear indeterminate equation. This kind of process 
reveals the sanctity and mystery of calendar-making. 

If we did not study the method behind the astronomical constants by focusing 
on mathematical practice, by the means of the paradigm of recovery, we would 
not know Chinese mathematicians’ special requirements for the analysis of linear 
indeterminate problems. Furthermore, it’s impossible to understand why some 
achievements like the Chinese Remainder Theorem first appeared in China. 

This is the significance of constructing of the solar shadow table in the Yuanjia li 
by the paradigm of recovery. In this way, we not only come up with new questions, 
but also come to understand the ancients’ mode and process of knowledge creation 
more deeply. 

12.7 Conclusion 

In this paper, we reconstruct He Chengtian’s algorithm to calculate the constants 
in the table of solar shadow in the Yuanjia li, and obtain his creation process of 
this table, by the paradigm of recovery, in the case that only the table is recorded 
without any description of the construction process. The result in this paper shows 
that, some basic data in a traditional Chinese calendar may surprisingly not come 
from practical measurement or simple adjustment of measured data, but derive from 
some interesting mathematical method and artificial model. 

He Chengtian’s era inherited the digital mysticism from the Qin and Han 
Dynasties (from the second century BC onwards). In some sense, it shows the 
pursuit of the integers contains prime factors. The recovery of the construction 
process of the solar shadow table in the Yuanjia li further confirms this opinion. 
This is very significant. 

With the paradigm of recovery, the model construction and mathematical 
derivation are very interesting. In fact, the solution of this kind of problem is not 
only based on limited written records, such as the table of solar shadow in the 
Yuanjia li, but also on He Chengtian’s other mathematical works, his social status 
and so on. So, it’s different from the traditional research paradigm characterized by 
discovery. In other words, with the paradigm of discovery, we focus on “what” are 
the numbers in the table of solar shadow in the Yuanjia li, while with the paradigm
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of recovery, we focus on “how” to obtain the constants in the table. This deepens 
our understanding of the ancients’ knowledge-creation process. 

If we don’t accept the paradigm of recovery, it’s hard to come up with this 
sort of problems. In this way, accepting the paradigm of recovery will help us 
to update and enlarge the problem field of history of mathematics. At the same 
time, the paradigm of recovery is consistent with the international trend of study 
of mathematical practice on the history of exact science. Therefore, introducing 
recovery and the method of studying mathematical practice into research of the 
history of exact science is in line with the international mainstream. 
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Chapter 13 
On “Space” and “Geometry” in the 
Nineteenth Century 

Jesper Lützen 

Abstract What did mathematicians mean by the words “space” and “geometry” 
in the nineteenth century? This chapter will try to answer this question, starting 
with an analysis of Hertz’s, Lipschitz’ and Darboux’s geometrization of mechanics 
and continuing with a discussion of the use of the words by mathematicians 
who are usually credited as the principal inventors of non-Euclidean and higher 
dimensional geometries. The conclusion is that most mathematicians prior to 1880 
used the words to denote (intuited) physical space and the geometry describing that 
space. This is the background against which one should evaluate the sometimes 
confusing nineteenth century discussions about the existence of geometries other 
than Euclid’s geometry. The question was radically changed with the advent of 
modernist structuralist mathematics, as described in (Gray, Plato’s Ghost: the 
modernist transformation of mathematics. Princeton University Press, Princeton, 
1994). 

13.1 Introduction 

During the nineteenth century, geometry underwent revolutionary changes. The 
developments leading to these changes have been described and analyzed by 
Jeremy Gray in many well-written, informative and thoughtful books and papers. 
While Ideas of Space (Gray 1989) deal with the emergence of non-Euclidean or 
hyperbolic geometry, Worlds Out of Nothing also deals with the development of 
projective geometry. The two novel geometries were considered rather differently 
from a philosophical point of view. Projective geometry was considered as an 
extension of classical Euclidean geometry, while non-Euclidean geometry as well 
as geometry of 4- and higher dimensional spaces were considered as alternatives 
to 2- and 3-dimensional Euclidean geometry. In some of my earlier publications 
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I have discussed the “application” of high-dimensional Riemannian differential 
geometry to mechanics by nineteenth century authors such as Rudolf Lipschitz, 
Gaston Darboux and Heinrich Hertz. For example, I wrote about (Darboux 1888): 

With this approach Darboux had made dynamics an integral part of n-dimensional 
Riemannian geometry, at least insofar as only trajectories with the same constant energy 
are concerned. (Lützen 1995, 47) 

I still think this is an accurate mathematical description of Darboux’s approach 
to mechanics, as well as that of Lipschitz and Hertz. However, in this paper I want to 
point out that the actors themselves considered the relation between geometry and 
mechanics in a different way. For them the formalism they developed for dealing 
with mechanics was not an application of high dimensional geometry. Rather they 
considered their treatment of mechanics to be analogous to the new geometric 
methods of high-dimensional non-Euclidean geometry. The use of the concept of 
analogy rather than the concept of application circumvented the problem that these 
authors considered geometry as a science of space, and considered space to be 
physical space. Configurations of a mechanical system, on the other hand dealt with 
something different. The ontology of the two domains was different and thus the 
one could not be an application of the other. 

This illustrates that in order to understand the nineteenth century ideas about 
the connections between geometry and mechanics it is important to keep in mind 
that the nineteenth century understanding of the words “space” and “geometry” 
was different from our modern very broad meaning attributed to these terms. 
Today we speak of all sorts of spaces: vector spaces, Hilbert spaces, topological 
spaces etc. and many different kinds of geometry such as hyperbolic and elliptic 
geometry, n-dimensional geometry, algebraic geometry, non-commutative geometry 
etc. Nineteenth century mathematicians had a much more limited idea of what 
“space” and “geometry” meant. 

In this paper, I shall begin by discussing the above-mentioned connections 
between geometry and mechanics in order to investigate what they can teach us 
about the meaning of the words “space” and “geometry” in the nineteenth century. 
After that I shall turn to some of the mathematicians who are famous for their 
introduction of alternative geometries and investigate what they meant by these 
words. I shall conclude that most of them also reserved these words to refer to 
physical space although they had differing views on the necessary, a priori, empiric 
or conventional nature of our knowledge of this space. At the end I shall discuss 
how David Hilbert’s axiomatic formalistic approach to mathematics, distinguished 
between the problem of the nature of physical space and the admissibility of a 
geometry from a mathematical point of view.
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13.2 Heinrich Hertz’s Geometry of Systems of Points 

When I wrote my book (Lützen 2005) on Heinrich Hertz’s Principles of Mechanics 
(Hertz 1894), I was struck by Hertz’s ambivalent view of the recent developments 
of geometry. On the one hand, he described the motion of a mechanical system 
of a finite number of mass points in terms of what he called a “geometry of 
systems of points”. Today we use the term configuration space. We consider it as 
a high dimensional space described by a non-Euclidean Riemannian metric. In this 
geometry, the trajectory of a mechanical system is a geodesic on a particular sub-
manifold, at least if all connections in the system are holonomic. Indeed, physicists 
have learned to appreciate this geometric approach to mechanics from Hertz’s book, 
or rather from the simplified version of it published by Hendrik Antoon Lorentz 
8 years later (Lorentz 1902). On the other hand, in the same book, Hertz described 
such high dimensional spaces as perplexing, unnatural and supra-sensible. 

In 1877 when he was still a student Hertz wrote to his parents: 

The entire new mathematics (from about 1830 on) is, I think, of no great value to the 
physicist, however beautiful it may be intrinsically, for I find it so abstract, at least in 
parts, that it no longer has anything in common with reality; for instance, the non-Euclidean 
geometry, which is based on the assumption that the sum of the angles in a triangle need not 
be always equal to 2 right angles, or the geometry dealing with space of four, five, or more 
dimensions etc. Even the elliptical functions are, I think, of no practical value. But perhaps 
I am mistaken. (Hertz 1977, 71–72) 

It is not surprising that the young Hertz found no application for the new 
mathematical ideas. What is surprising is that he continued his negative evaluation 
of the new geometries even after he had used them in his Principles of Mechanics. 
In order to understand that, we need to consider how Hertz in the introduction to his 
book, defended that he had cast his mechanics in a geometric form: 

. . .  the geometry of systems of points. The development of this geometry has a peculiar 
mathematical attraction; but we only pursue it as far as is required for the immediate purpose 
of applying it to physics. A system of n points presents a 3n-manifold of motion . . . . Hence, 
there arise many analogies with the geometry of space of many dimensions; and these 
in part extend so far that the same propositions and notations can apply to both. But we 
must note that these analogies are only formal, and that, although they occasionally have 
an unusual appearance, our considerations refer without exception to concrete images of 
space as perceived by our senses. Hence all our statements represent possible experiences; 
if necessary they could be confirmed by direct experiments . . . . Thus we need not fear the 
objection that in building up a science dependent upon experience, we have gone outside 
the world of experience. (Hertz 1894, 36/30) 

Concerning the Hamilton-Jacobi formalism Hertz wrote: 

It has long since been remarked by mathematicians that Hamilton’s method contains purely 
geometrical truths, and that a peculiar mode of expression, suitable to it, is required in 
order to express these clearly. But this fact has only come to light in a somewhat perplexing 
(verwirrender) form, namely in the analogies between ordinary mechanics and the geometry 
of space of many dimensions, which have been discovered by following out Hamilton’s 
thoughts. Our mode of expression gives a simple and intelligible explanation of these 
analogies. It allows us to take advantage of them, and at the same time it avoids the unnatural 
admixture of supra-sensible abstractions with a branch of physics. (Hertz 1894, 39/32–33)
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So apparently, the reason why Hertz objected to the new geometries of the 
mathematicians was that they were supra-sensible in the sense that they lay outside 
the world of experience. Indeed, according to Hertz’s introduction of “geometry” in 
his Principles of Mechanics, “space” is Euclidean and 3-dimensional. He introduced 
the notion of space and geometry in two steps. The first one can be found in 
the beginning of the first book (the Principles of Mechanics is divided into two 
“books”): 

The subject-matter of the first book is completely independent of experience. All the 
assertions made are a priori in Kant’s sense. They are based upon the laws of the internal 
intuition of, and upon the logical forms followed by, the person who makes the assertions; 
with his external experience they have no other connection than these intuitions and forms 
may have. (Hertz 1894, §1) 

In particular Hertz wrote about space: 

The space of the first book is space as we conceive it (der Raum unserer Vorstellung). It 
is therefore the space of Euclid’s geometry, with all the properties which this geometry 
ascribes to it. (Hertz 1894, §2) 

Here Hertz followed Immanuel Kant who in the Critique of Pure Reason had 
argued, that one could not sense space. On the contrary, we order all our sensations 
in space. Thus, space must necessarily come before any sensation (it is a priori). 
According to Kant, our a-priori knowledge of space is constructed in our intuition.1 

To exemplify this, Kant argued that we do not have to make any measurement in 
order to know that the angle sum of a triangle is equal to two right angles. Indeed, by 
following Euclid’s arguments and constructions, not on paper, but in our intuition, 
we can establish this theorem a-priori (see Friedman 1985). 

Such a Kantian view of space was not uncommon in 1894 but it is surprising 
to find it expressed by Hertz after he had worked for 3 years in Hermann von 
Helmholtz’s laboratory in Berlin. Indeed, Helmholtz was famous for his successful 
popularization of non-Euclidean and Riemannian geometry. In most of his writings 
on the question, Helmholtz argued that the nature of space was an empirical 
question. In a few places, he expressed ideas that were closer to Henri Poincaré’s 
later conventionalism, but in any case, he clearly rejected that the nature of space 
could be determined a priori, as Kant had claimed. 

Hertz’s discussion of the nature of space in the second book of his Principles of 
Mechanics is more in tune with the empiricist views of his mentor: 

In this second book we shall understand times, spaces and masses to be symbols of objects 
of external experience; . . .  Our statements concerning the relations between times, spaces 
and masses must therefore also be in accordance with possible, and in particular, future

1 Kant described our intuition of space as an external intuition whereas time according to him is 
an internal intuition. As we can see in the above quote, Hertz did not make such fine distinctions. 
In general when I refer to Kantian views, I refer to the more or less simplified Kant-like ideas 
that were around in the nineteenth century according to which geometry is a priori, synthetic and 
constructed in our intuition. 
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experiences. These statements are based, therefore, not only on the laws of our intuition 
and thought, but in addition on experience. (Hertz 1894, §296) 

Hertz claimed that if we measure lengths according to the methods of practical 
geometry by way of a scale, we know by experience that Euclidean geometry 
always gives the correct results (Hertz 1894, §299). I shall not go into the 
difficult discussion of the mixture of Kantian and empiricist ideas in these quotes 
(See Lützen 2005, 127–133). What is important here is that for Hertz, “space” 
meant physical space and this space is according to Hertz described accurately by 
Euclidean geometry. Therefore, for Hertz any talk about a high dimensional non-
Euclidean space is a perplexing, unnatural and supra-sensible phantasy that is not 
in accordance with the true nature of space. 

However, according to Hertz that is not a problem, because his own geometry of 
system of points is in accordance with experience. It does not deal with points in 
a high dimensional space but with configurations of a system of points in ordinary 
Euclidean space. In other words, the ontology of the objects in his geometry is 
entirely different from those of the objectionable objects in a high dimensional 
geometry. To be sure, Hertz developed a geometric vocabulary for mechanical 
systems and their trajectories such that the same propositions apply both to his 
geometry of systems of points and to the high dimensional phantasies of the 
mathematicians. But that does not make his geometry of systems of points an 
application or a special case of the high dimensional spaces of the mathematicians. 

Instead, as can be seen in the quotes above, Hertz considered the relation between 
the two geometries as an analogy. Here Hertz seem to use the word analogy in the 
same way it was used by William Thomson (Lord Kelvin) and other mathematical 
physicists at the time: Two theories about entirely different things are analogous if 
they can be described by the same mathematical analytical formalism. For example, 
Thomson (and Michel Chasles before him) noticed that potentials and stationary 
heat conduction were both described by the same differential equation, the Laplace 
equation (See Knudsen 1985). This allowed him to transfer theorems, such as the 
maximum principle from one domain (heat conduction) where they were physically 
obvious to the other domain (potential theory) where they were less obvious. 

Hertz was in a similar situation. His analytical formalism of differential forms 
could describe both his physically real systems of points as well as the mathematical 
phantasy of non-Euclidean spaces of many dimensions. And if we generalize 
our intuitions about 3-dimensional space to higher dimensions, we can obtain a 
geometric intuition about the motion of mechanical systems. In particular, it allows 
us to see that the Hamilton-Jacobi formalism is analogous to the geometric methods 
used by Carl Friedrich Gauss when he studied geodesics on surfaces.
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13.3 Darboux’s Geometrization of Mechanics 

One might think that this ambivalent view of the status of high dimensional and 
curved spaces was peculiar to Hertz. After all, he was not a mathematician but a 
physicist.2 So let us now turn to the views expressed explicitly or implicitly by 
nineteenth century mathematicians and let us begin with mathematicians who also 
geometrized mechanics. In particular, let us begin with Lipschitz and Darboux, to 
whom Hertz referred explicitly in the preface to his book. According to his own 
testimony (which is corroborated by his early drafts of his book), Hertz did not 
know of the works of these two mathematicians when he began working on his 
geometry of systems of points, But he later found them “very suggestive” (Hertz 
1894, Preface). 

From a physical point of view, there is a great difference between Hertz’s 
approach to mechanics and the approach of his two predecessors. In Hertz’s image 
of mechanics, force and potential energy were just epiphenomena resulting from 
rigid connections (constraints) between the visible system and a hidden system of 
masses performing adiabatic cyclic motions. In this way, Hertz got rid of the notion 
of force as a fundamental concept, a concept that he considered physically and 
logically problematic. This elimination of forces is the main physical message of 
Hertz’s book. His geometric theory of systems of points changed the mathematical 
form of the presentation, but was logically independent of his new explanation of 
interactions in the system. 

For Lipschitz and Darboux, on the other hand, the main objective of their 
geometrizations of mechanics was to show how one can include the forces (or 
the potential) into the geometry, in such a way that the motion of the mechanical 
system can be described as a geodesic motion along a shortest path in the new 
geometry. Thus, the geometrization carried a more fundamental burden than it did 
in Hertz’s image. However, where Hertz emphasized the physical importance of his 
new explanation of forces, Darboux and Lipschitz only considered their geometrical 
presentation of mechanics as a mathematical trick that could enhance our intuition 
about the formalism. In the preface to the second volume of his Lectures on the 
General Theory of Surfaces Darboux wrote: 

In particular, I have stressed the connection one can find here between the methods 
employed by Gauss in the study of geodesics and those that Jacobi later applied to the 
problems of analytical mechanics. In this way, I have been able to show the great interest of 
Jacobi’s beautiful discoveries when those are considered from a geometrical point of view. 
(Darboux 1888, Preface) 

Darboux’s and Lipschitz’s geometrization of mechanics is based on the principle 
of least action which in Jacobi’s formulation says: Given a conservative mechanical 
system with total energy h, whose configuration can be described by n independent

2 In a letter to his parents Hertz called his study of the principles of mechanics “this mathematical 
work”. 
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generalized coordinates qi in terms of which the kinetic energy T of the system can 
be expressed by the quadratic form 

. T = 1

2

∑

i,j

ai,j q̇i q̇j .

Moreover let U denote the potential energy as a function of the generalized 
coordinates and consider the quadratic differential form 

.ds2 = (h − U)
∑

i,j

aij dqidqj . (13.1) 

Then the trajectory followed by the mechanical system between two configurations 
A and B will at least locally minimize the action integral 

.

B∫

A

ds (13.2) 

among all “curves” between A and B. 
Formulated in a modern way the system will follow a geodesic in the n-

dimensional Riemannian manifold defined by the Riemannian metric (13.1). Dar-
boux formulated this insight differently: 

The general problem of mechanics is nothing but the generalization to an arbitrary number 
of variables of the problem of the study of geodesics. (Darboux 1888, 500) 

We notice, that he did not speak of an n-dimensional geometry or space, 
but of “an arbitrary number of variables”. Indeed, he never introduced general 
n-dimensional Riemannian geometry in his great four volume lectures. This is 
surprising. Indeed, he knew of Bernhard Riemann’s Habilitationsvortrag as well as 
Beltrami’s development of the analytical formalism for Riemannian manifolds. One 
would think that it would be natural for Darboux to generalize his investigations 
of 2- and 3-dimensional differential geometry to higher dimensional Riemannian 
spaces, and then apply this formalism to mechanics. However, as it were, Darboux 
only introduced a concrete theory of the n free coordinates of a mechanical system. 
In this way he circumvented the problem of the existence of an n-dimensional space 
and the nature of objects in it. In this sense, his approach was similar to Hertz’s 
later approach. And like Hertz, Darboux saw the connection between geometry and 
mechanics as an analogy. 

This analogy was presented in a very pedagogical way in three consecutive 
chapters of his book. The first one (Chapter VI) was entitled: “Analogy between 
dynamics of motions in a plane and the theory of geodesic lines”. In this chapter, 
the mechanical system had only two degrees of freedom, and thus he could without 
problem interpret formula (13.1) in two variables as a line element on a surface. 
The subject of the next chapter was entitled: “Application of the previous methods
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to the study of motions in space”. Here the configurations were three dimensional 
and thus they could be described in ordinary geometric terms. However, Darboux 
consciously did not interpret the three dimensional quadratic form (13.1) as the line 
element in a (non-Euclidean) space of three dimensions. But the analytic formalism 
carried over from the two-dimensional case. 

Finally, in chapter VIII, Darboux turned to “The general problem of dynamics”. 
Here he dealt with a general conservative system of an arbitrary number of points. 
First, he generalized the analytic formalism developed in the previous chapter. 
However, having derived the general principle of least action in the form presented 
above, and having emphasized that the problem of general dynamics is therefore 
a generalization of the problem of geodesics, to an arbitrary number of variables 
(see quote above) he began introducing some geometric notions in this general 
setting. He defined the angle between two directions given by two infinitesimal 
displacements of the system, a notion of a line (curve) and a (hyper) surface, and he 
attributed the name “geodesic” to a curve that minimizes the integral (13.2) where 
ds is given by formula (13.1). In this way, he could formulate the Jacobi theory in a 
beautiful geometric form that showed the analogy with Gauss’s theory of geodesics 
on a surface. 

We notice, that in this way, Darboux avoided any consideration of the ontology 
of general curved spaces and spaces with more than three dimensions. As in Hertz’s 
later mechanics, the ontology in his presentation was unproblematic. The theory 
dealt with mechanical systems of any number of points not with points in a high 
dimensional curved space. It should also be emphasized, that Darboux did not use 
the word “point” for a configuration of a mechanical system with more than one 
mass point. He used words like “system of values” or “elements” or “positions”. 

13.4 Lipschitz’s Geometrization of Mechanics 

Darboux’s treatment of the analogy between Gauss’s theory of surfaces and 
the Hamilton-Jacobi formalism of mechanics was a simplified and pedagogically 
improved version of a treatment of the same subject by Lipschitz (1872) to whom 
Darboux referred. Like Darboux, Lipschitz in general used the word “space” (Raum) 
to refer to physical space. However, unlike Darboux, he explicitly expressed the 
possibility that space could a priori have any number of dimensions and could be 
equipped with a non-Euclidean metric: 

The new speculations about the nature of space have shown that it is not necessary to assume 
that the element of a line from a given point is representable by the square root of the sum of 
the squares of the differentials of suitable coordinates of the point. If one disregards certain 
conditions that are in fact (thatsächlich) satisfied in real space, it is permissible to assume 
the line element to be the square root of an arbitrary essentially positive quadratic form, or 
more generally the p’th root of an essentially positive form of degree p in the differentials 
of arbitrary coordinates of the point. This more general hypothesis about the nature of space 
can be adjusted to the concepts of mechanics. (Lipschitz 1872, 116–117)
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Lipschitz’s remark about the actual nature of real space shows that he was still 
convinced that physical space was empirically known to be 3-dimensional and 
Euclidean, but he was willing to explore a more general assumption. His more 
general assumption about physical space made his treatment of mechanics more 
general but also more complicated than Darboux’s later treatment. However, like 
Darboux, Lipschitz did not use the word “space” for the configuration space of a 
mechanical system. In most of the paper, Lipschitz only used analytic vocabulary 
when writing about mechanical systems. Only at the very end, he introduced a few 
geometric notions, in particular a concept of orthogonality in configuration space 
that allowed him to formulate the main theorems of the Hamilton-Jacobi formalism 
in a way that is entirely analogous to Gauss’s theorems concerning geodesics on a 
surface. 

Only once in his paper did Lipschitz refer to an n-dimensional “space”, namely 
when he referred to a paper by Eugenio Beltrami “The general theory of differential 
parameters” (1869), from which he borrowed some of the analytic formalism. 
Having summarized the main ideas of Gauss’s study of geodesics, Lipschitz 
wrote: “This intuition has been extended by Mr. Beltrami to a space (Raum) of n 
dimensions” (Lipschitz 1872, 119). Beltrami’s paper did not deal with mechanics 
but with the transformation of quadratic forms. But like Lipschitz and Darboux after 
him, Beltrami used some geometric vocabulary. But he felt obliged to defend this 
use of geometric language also in cases where the number of variables exceeds 3. 
He did so by referring to a casual remark by Gauss to which we shall return below. 

As I have pointed out in previous publications (Lützen 1990, 679–686; 1995, 28– 
34), Liouville anticipated several aspects of Lipschitz’s and Darboux’s geometric 
approach to mechanics by several decades. However, Liouville only used geometric 
language when dealing with situations, that could be described in terms of 3-
dimensional Euclidean space and 2-dimensional surfaces embedded in such a space. 
In the case of mechanical systems with a higher number of degrees of freedom, he 
only generalized the analytic formalism but did not use any geometric vocabulary. 
That is not surprising, considering that he conducted his research before Riemann. 

Having considered analogies between mechanics and geometry, let us now turn to 
those authors who are usually regarded as the inventors or propagators of geometries 
other than two and three dimensional Euclidean geometry. 

13.5 Non-Euclidean Geometry 

Sometimes the history of non-Euclidean geometry is told as a purely mathematical 
story of how it was discovered that a particular axiom, the parallel postulate, is 
independent of the other axioms in the axiom system of geometry. However, as it 
clearly transpires from Jeremy Gray’s Ideas of Space the early pioneers, Gauss, 
Nikolai Ivanovich Lobachevsky and János Bolyai, considered the question of the 
parallel postulate as a problem about the nature of the physical space we inhabit. 
They did not buy Kant’s argument that we construct geometry a priori in our
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intuition but believed that they could intuit a geometry in which the negation of 
the parallel postulate holds. They came to the conviction that the truth or falsity of 
the parallel postulate was an empirical problem. As Gauss formulated it in a letter 
to Bessel from 1830: 

According to my deepest conviction, the theory of space has a completely different position 
in our a-priori knowledge from that of the theory of pure quantity; to our knowledge of the 
latter belongs that complete conviction of its necessity (therefore also of its absolute truth) 
which is peculiar to the latter; we must humbly admit that if the number is merely a product 
of our minds, space also has a reality outside of our minds, to which we cannot completely 
prescribe its laws a priori. (Gauss 1900, 201) 

Gauss occasionally in jest expressed the wish that Euclid’s geometry “were not 
true” (Gauss 1900, 169, 187). Thus for Gauss, there is only one space, namely 
physical space and only one true geometry, namely the geometry of space. However, 
since the properties of this space and its geometry is not a-priori according to Gauss 
and since no empirical observation has revealed whether the parallel postulate is 
true or false, Gauss was willing to consider several a-priori possible geometries. 

Lobachevsky went even further in an empirical direction giving new “material” 
definitions of the elementary objects of geometry like plane, line and point. More-
over, he tested the empirical exactitude of the parallel postulate by astronomical 
observations establishing that “in triangles whose sides are attainable for our 
measurement, the sum of the three angles is not indeed different from two right 
angles by the hundredth part of a second”. (Lobachevsky 1840, 45). 

A generalization of such ideas can be found in Riemann’s famous Habilita-
tionsvortrag. However, before we turn to that very deep analysis of space, we shall 
have a look at the question of high dimensional space. 

13.6 Spaces of More Than 3 Dimensions 

The idea of a manifold or a space of more than three dimensions has been the 
subject of philosophical and mathematical discussion since Aristotle.3 However, 
it only became the subject of real mathematical investigation during the nineteenth 
century. During the second half of that century it even enjoyed some popularity 
among amateur mathematicians and lay people. The fascinating story of geometry 
of 4- and higher dimension has been the subject of several recent books (e.g. 
Volkert 2018; Throesch 2017)4 . One of the first introductions and investigations 
of linear n-dimensional manifolds was Die Lineale Ausdehnungslehre (the linear 
theory of extension) published by Hermann Grassmann in 1844. In the introduction 
to that book, Grassmann explained the historical development of his ideas: Having

3 For a brief introduction to the subject see (Cajori 1926). 
4 Also Richards (1988) deals with this subject in the English setting where it enjoyed special 
popularity. 
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initially introduced certain algebraic ideas about geometry, he became acquainted 
with August Ferdinand Möbius’ Barycentric calculus. Möbius had contemplated 
the reason why in space there are symmetrical figures that cannot be brought 
into coincidence. He had concluded that “The reason may be looked for in this, 
that beyond the solid space of three dimensions there is no other, none of four 
dimensions” (Möbius 1827, quoted from Smith 1959, 526). 

Grassmann then began to systematize his ideas and then 

it turned out that the analysis I had found did not, as I had believed at first, deal exclusively 
with the field of geometry; rather, I soon realized that I had entered a new science of which 
geometry itself was only a special application. In fact I had for some time been aware that 
contrary to arithmetic and combinatorics, geometry could by no means be considered as a 
branch of mathematics since it already refers to something given in nature (namely space), 
and that there must therefore be a branch of mathematics, that in a purely abstract way 
produce laws similar to those that in geometry appear to be bound to space. (Grassmann 
1844, Vorrede) 

Thus, Grassmann also considered the science of space and geometry to be a 
natural science. His new theory of extension, on the other hand, was a purely 
analytical mathematical theory that was not hampered by the limitations of space. 
In particular, the limitations to three dimensions disappeared in his linear theory of 
extension. 

The second extensive treatment of n-dimensional geometry was written by 
Ludwig Schläfli in 1850–1852. However, his so-called theory of multiple continuity 
remained unpublished until 1901. When he presented his long manuscript to the 
Imperial Academy in Vienna in 1852 he characterized it as a 

new branch of analysis . . .  which is also an analytic geometry of n dimensions that includes 
the plane and space as special cases for n = 2, 3. (Schläfli 1852, 171) 

In the rest of the book, the word “space” is reserved for 3-dimensional Euclidean 
space. In the general case for arbitrary n, he used phrases like “continuum with 
dimension number n”. In the introduction, Schläfli reminded the reader of the 
benefits that can be gained when one considers a problem with two independent 
variables both from a geometric and from a purely analytical point of view. 
However, he pointed out, when the number of variables exceed three, the useful 
geometric intuition and expressions are no longer available. His new theory of 
multiple continuity was intended to supply an analytic theory that would still 
provide an intuition and a geometrical vocabulary in the event of more than three 
variables. 

In the main part of the book Schläfli worked in an entirely analytic way, but by 
introducing geometric names that in dimension 2 and 3 corresponded with the usual 
names in 3-space, he was able to express many analytic theorems in a geometric 
way. In particular, he described all regular polytopes in 4-space. He published a few 
of the results from his book in separate papers, but since the results were expressed 
in purely analytic ways, the reader might easily have missed the novel geometric 
aspect.
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13.7 Bernhard Riemann 

Riemannian geometry. This is the modern designation for a general type of 
geometry on a space of n dimensions where distances are determined by a metric 
expressed as a quadratic differential form. Such spaces were introduced by Bernhard 
Riemann in his visionary Habilitation lecture in 1853. However, Riemann himself 
reserved the words geometry and space for physical space. As the title of his 
manuscript indicates, its aim was to investigate the “Hypotheses which lie at the 
Foundation of Geometry”. According to Riemann, this question had been left in the 
dark despite many attempts by philosopher and mathematicians to settle it. 

The reason of this lies perhaps in the fact that the general concept of multiple extended 
magnitudes, in which spacial magnitudes are comprehended, has not been elaborated at all. 
Accordingly I have proposed to myself at first the problem of constructing the concept of 
a multiply extended magnitude out of general notions of quantity. From this it will result 
that a multiply extended magnitude is susceptible of various metric relations and that space 
accordingly constitutes only a particular case pf a triply extended magnitude. A necessary 
sequel of this is that the propositions of geometry are not derivable from general concepts 
of quantity, but that those properties by which space is distinguished from other conceivable 
triply connected magnitudes can be gathered only from experience. There arises from this 
the problem of searching out the simplest facts by which the metric relations of space can 
be determined, a problem which in nature of things is not quite definite; for several systems 
of simple facts can be stated which would suffice for determining the metric relations of 
space; the most important for present purposes is that laid down for foundations by Euclid. 
These facts are like all facts not necessary but of a merely empirical certainty; they are 
hypotheses; one may therefore inquire into their probability, which is truly very great within 
the bounds of observation, and thereafter decide concerning the admissibility of protracting 
them outside the limits of observation, not only toward the immeasurably large, but also 
toward the immeasurably small. (Riemann 1854, quoted from Smith 1959, 411–412) 

Thus, as for Gauss and Lobachevsky, “space” for Riemann means physical 
space and geometry describes the metric relations of this space. And like Gauss 
and Lobachevsky, Riemann was willing to entertain the possibility that Euclidean 
geometry does not give the best description of physical space. Indeed, compared 
to Gauss and Lobachevsky, Riemann extended the a priori possible manifolds to 
manifolds with other dimensions than three and to manifolds that are described by 
a Riemannian metric that has varying curvature. 

He argued that the hypotheses concerning relations of extension (topological 
properties) such as the number of dimensions and the unlimitedness of space could 
be decided with a greater certainty than the metric properties of space such as its 
curvature and its infinite extent. Since Gauss and Lobachevsky assumed the validity 
of the Euclidean theorems (implicit axioms) of congruence, (in Riemannian terms 
the constant curvature of space) their empirical tests of the nature of space involved 
astronomically large figures. Riemann, on the other hand was more interested in 
the immeasurably small. His general Riemannian manifolds could have a curvature 
that varied over immeasurably small distances in such a way that the curvature of 
a measurable portion of space would average out to zero within the accuracy of 
measurement.
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Now however the empirical notions on which spatial measurements are based appear to 
lose their validity, when applied to the indefinitely small, namely the concept of a fixed 
body and that of a light-ray; accordingly it is entirely conceivable that in the indefinitely 
small the spatial relations of size are not in accord with the postulates of geometry, and one 
would indeed be forced to this assumption as soon as it would permit a simpler explanation 
of the phenomena. (Riemann 1854, 424) 

In the above quote, “postulates of geometry” seem to refer to Euclid’s postulates. 
Otherwise Riemann used the words “geometry” and “space” to refer to physical 
space and the geometry (Euclidean or otherwise) that best describe it. In the 
Habilitationsvortrag, Riemann never used the words space and geometry to denote 
general n-dimensional Riemannian manifolds. They are called multiply extended 
magnitudes or n-fold extended magnitudes or Manifolds (Manigfaltigkeiten) of n 
dimensions. 

Only in his prize essay on heat conduction (Riemann 1861) written 7 years later, 
Riemann in one place wrote about a “general space of n dimensions” (Riemann 
1861, 403). He introduced this concept in order to give a “geometric interpretation” 
of his analytical formulas. Although this geometric interpretation according to 
Riemann transcends our intuition and is based on unusual concepts, he found it 
useful to point it out in passing. As far as I know, this is the only occurrence in 
Riemann’s works where the words space and geometry represent something other 
than physical space and its geometry. He may have taken the liberty of using the 
words in a more generalized sense in his prize essay because the paper does not deal 
with the nature of physical space and therefore does not create confusion about the 
meaning of the word. 

13.8 Beltrami’s Real Substrate 

Beltrami is often given the honor of having proved the consistency of non-Euclidean 
geometry and thus the impossibility of proving the parallel postulate. This is true in 
the following sense: On the basis of Gauss’ intrinsic theory of surfaces, Beltrami 
showed in 1868 that the geometry on a surface with constant negative Gauss 
curvature is the same as Lobachevskian non-Euclidean geometry. More specifically, 
he showed that if we measure lengths on the surface with the metric that the surface 
inherits from the ambient 3-dimensional Euclidean space and if we let geodesics 
play the role of straight lines, then all of Lobachevsky’s theorems of non-Euclidean 
geometry hold true. In modern terms: A surface with constant negative curvature is 
a model of non-Euclidean geometry. 

From Beltrami’s observation one can argue as follows: If there were a contra-
diction in non-Euclidean geometry, this would turn up as a contradiction about 
the geometry of the surface, i.e. as a contradiction in Euclidean geometry. So if 
Euclidean geometry is consistent, non-Euclidean geometry must be consistent as 
well. In other words, non-Euclidean geometry is consistent relative to Euclidean 
geometry. Since the consistency of Euclidean geometry was evident to Beltrami
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and his contemporaries, this proved that non-Euclidean geometry is consistent. In 
particular, it is impossible to prove the parallel postulate from the remaining axioms 
common to both Euclidean and non-Euclidean geometry, because it contradicts the 
negation of that postulate which is assumed as an axiom in non-Euclidean geometry. 

With this argument in mind, it is surprising to read what Beltrami wrote to 
Genocchi 1 year after having published his two famous papers on non-Euclidean 
geometry: 

Nevertheless, I want to declare that I am not even yet persuaded about the impossibility 
of proving the Euclidean geometry and I hope that no passage in my writings have been 
formulated in a way that leads one to suppose the opposite. (Voelke, 2005) 

Indeed in his two papers he did not discuss the question of consistency of non-
Euclidean geometry or the improvability of the parallel postulate. What then was 
the aim of Beltrami’s paper? He explained it as follows: 

We have thought, to the extent of our ability, to convince ourselves of the results of 
Lobachevsky’s doctrine; then following the tradition of scientific research, we have tried 
to find a real substrate for this doctrine, rather than admit the necessity for a new order 
of entities and concepts. We believe we have attained this goal for the planar part of the 
doctrine, but we believe that it is impossible to proceed further. (Beltrami 1868a, 7)  

Thus, the problem addressed by Beltrami was not a problem of consistency or 
provability, but an ontological question about finding a real substrate, i.e. real things 
that are correctly described by the theorems of non-Euclidean geometry. But what 
did he mean by “real”? This becomes clear in the second of his papers on non-
Euclidean geometry, where he described a model of 3- or even n-dimensional non-
Euclidean geometry, in the spirit of Riemann, whose Habilitationsvortrag he had 
now been acquainted with. In this case he did not claim that his model was a real 
substrate: 

Thus, all the non-Euclidean concepts find a perfect correspondent in the geometry of 
space of constant negative curvature. One only has to observe, that where the concepts 
of planimetry receives a true and proper interpretation because they are constructible on 
a real surface, those that embrace three dimensions are only susceptible of an analytic 
representation, because the space in which such a representation can be realized is different 
from the one we usually call space. (Beltrami  1868b) 

Thus, for Beltrami a model is only real, if it is realized in what we usually call 
space. By that he clearly meant physical space that he seemingly assumed to be 
Euclidean. This view of the ontology of non-Euclidean geometry is very different 
from that of Gauss, Lobachevsky and Riemann. For the latter, the problem of a real 
substrate did not arise, or rather it was trivial. They thought that the usual points, 
lines planes etc. of physical space might satisfy the axioms or hypotheses of non-
Euclidean geometry. These objects were considered real in themselves and so it was 
not necessary to “admit the necessity for a new order of entities and concepts” as 
Beltrami expressed it. 

Beltrami, on the other hand, seems to have believed that physical space was 
Euclidean. On the other hand he believed that non-Euclidean geometry was a 
valuable new “doctrine” and apparently he also believed that such a doctrine should
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deal with something real. This real substrate he found in the geometry of a real 
surface of constant negative curvature. Non-Euclidean 3-space on the contrary, 
could be described by a Riemannian manifold, but that was not a real substrate, 
because it could not be imbedded in physical (i.e. Euclidean) 3-space. 

As shown by Voelke (2005), it was Jules Houël who convinced Beltrami that his 
model in fact demonstrated the impossibility of proving the parallel postulate and 
thus that non-Euclidean geometry was consistent. The argument was subsequently 
popularized by Poincaré who discovered another model of non-Euclidean geometry 
about a decade after Beltrami. 

13.9 Discussions About the Existence of Hyperspace 

During the last three decades of the nineteenth century, high-dimensional and non-
Euclidean geometries became rather popular among mathematicians, both first 
rate mathematicians like Poincaré, Camille Jordan, Arthur Cayley, James Joseph 
Sylvester and Felix Klein as well as a great number of minor figures. Four- and 
higher-dimensional spaces and geometric notions in such spaces were introduced 
analytically. The use of geometric vocabulary was mostly defended as a suggestive 
intuitive tool. For example Jordan (1872, 1875) illustrated the procedures of linear 
algebra in terms of n-dimensional geometry considering “a point as defined in the 
space of n dimensions by the values of n coordinates”. (Jordan 1872, 50). Other less 
famous mathematicians studied 4- dimensional geometry and in particular polytopes 
in such spaces. But alongside such no-nonsense use of higher dimensional geometry 
there arose a more popular and more speculative literature about the existence of n-
dimensional hyperspaces including curved (non-Euclidean) spaces. 

These discussions were marred by a lack of agreement about what it means for 
such a space to exist. Many actors ascribed to the empirical point of view, others 
revived Kant’s ideas: a space and a geometry exists if it can be intuited. Yet others 
began to defend the position that one could legitimately study such spaces, if they 
were only logically consistent. In the twentieth century the latter point of view 
won the day. However, in order to understand the rather chaotic discussions in the 
mathematical and in the popular literature at the end of the nineteenth century, it 
is important to keep these different criteria of existence in mind. It also added to 
the confusion that all three ideas of existence were unclear: It was clear to most 
empiricists that empirical space was 3 dimensional and close to Euclidean, but one 
could speculate about the possibility of new physical phenomena describable by 
some sort of hyperspace. The Kantian stance begged the question: what can be 
intuited? Many claimed that only 3-dimensional geometry could be intuited, but 
other authors claimed (following Helmholtz and Sylvester) that one could train 
one’s mind to intuit higher- dimensional curved spaces. Moreover, the question of 
consistency was difficult because until the popularization of Beltrami’s method of 
models, one had no certain way to argue that a mathematical theory did not contain 
contradictions.
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Finally, several actors ascribed to various mixtures of the notion of existence of a 
space or a geometry. For example we have seen that Gauss expressed very outspoken 
empiricist ideas about the validity of the parallel postulate. On the other hand he 
mentioned an “extension to a geometry of more than 3 dimensions for which we 
human beings have no intuition (Anschauung) but which abstractly considered is 
not contradictory and consequently could belong to higher beings” (Gauss 1900, 
241–242). This is an interesting combination of the consistency criterion and a 
Kantian view that 3-dimensionality may be a precondition of our way of perceiving 
phenomena, but that real world might be higher dimensional. Similarly Helmholtz 
and Riemann expressed both empiricist and conventionalist points of view. 

I shall not go into details with the fascinating story of the gradual acceptance 
of non-Euclidean and higher dimensional geometries. Interested readers can be 
referred to the very interesting treatment in Volkert (2013, 2018), Throesch (2017), 
Voelke (2005) and Richards (1988). I only want to mention two scandals that made 
hyperspace a dangerous subject for “sober thinkers” as Simon Newcomb put it (see 
below). The first scandal was caused by the German astrophysicist Karl Friedrich 
Zöllner in 1878. He had attended a séance with the spiritualist medium Henry Slade 
who could perform various tricks, that could be explained by assuming that he had 
access to a fourth dimension. For example he could untie an irreducible trefoil knot. 
Based on these experiments, Zöllner believed that he had demonstrated that space is 
four dimensional, a claim he had earlier made on astronomical grounds. This gave 
rise to a long and bitter debate that disgraced the problem of higher spaces. 

The other scandal was created by the British mathematician Charles Howard Hin-
ton who popularized the fourth dimension in his Scientific Romances. The scandal 
arose when he was convicted of bigamy and his ideas about the fourth dimension 
were connected to his loose morals and his father’s notorious lawbreaking free-love 
philosophy (Throesch 2017, 32). 

It is on this background we should see Hertz’s and Darboux’s careful way of 
dealing with hyperspace. 

13.10 Newcomb’s Address 1897 

As an example of the view of higher dimensional and possibly curved spaces at 
Hertz’s time I shall briefly analyze the American mathematician Simon Newcomb’s 
Address The Philosophy of Hyperspace given in 1897. It was addressed primarily 
to philosophers and laymen. Newcomb emphasized that 

The question whether a fourth dimension may possibly exist, and whether it can be 
legitimately employed for any mathematical purpose, is one on which ideas are not 
universal. (Newcomb 1897, 187) 

Calling attention to the way a student can generalize plane geometry to geometry 
of 3 dimensions he asked:
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Why should he stop there? You reply, perhaps, because there are only three dimensions in 
actual space. But in making hypotheses we need not limit ourselves to actualities; we can 
improve our methods of research, and gain clearer conceptions of the actual by passing 
outside and considering the possible. (Newcomb 1897, 188) 

Recall that in the defense of his geometry of systems of points Hertz had 
emphasized that “we need not fear the objection that in building up a science 
dependent upon experience, we have gone outside the world of experience” (Hertz 
1894, 36/30). This assurance sounds as a direct response to Newcomb’s argument 
had it not been for the fact that Hertz’s book was published 4 years before 
Newcomb’s address. Hertz clearly did not like the idea of using the merely possible 
to enlighten the actual. And he assured his readers that this was not what happened 
in his geometry of system of points. 

Newcomb then mentioned a favorite argument5 for introducing a fourth dimen-
sion. 

Euclid proves by superposition that the two triangles in a plane having two angles and the 
included side equal are equal to each other. In the demonstration it is assumed that the 
triangles can be made congruent by simply placing one upon the other without taking it out 
of the plane. From this the conclusion is drawn that the same conclusion holds true if one of 
the triangles be obversed. But in this case they cannot be brought into congruence without 
taking one of them out of the plane and turning it over. The third dimension is thus assumed 
in geometry involving only two dimensions. 

Now consider the analogous case in space. Two pyramids upon congruent bases may be 
proved equal by bringing them into congruence with each other. But suppose they differ only 
in that one is the obverse of the other, so that they could be brought into congruence only by 
looking at one of them in a mirror and then placing the other into congruence with the image 
of the first as seen in the mirror. Would we detract from the rigor of the demonstration by 
assuming the possibility of such an obversion without changing the volume of the pyramid? 
With a fourth dimension we should have no detraction from rigor. We would simply obvert 
the pyramid as we would turn over the triangle. (Newcomb 1897, 189–190) 

Newcomb then continued to distinguish between the empirical and the Kantian 
view of existence of four dimensional space: 

The question of the fourth dimension as a reality may be considered from two points 
of view, its conceivability and its possible objective reality. If by conceivability we 
mean the power of being imagined in the mind it must be admitted that it is absolutely 
inconceivable. . . .  This (our inability to conceive four lines orthogonal to each other) 
clearly transcends all possibility even of imagination. The fourth dimension in this sense 
is certainly inconceivable. (Newcomb 1897, 190) 

The rejection of the possibility of conceiving the fourth dimension was widely 
accepted, but as mentioned above it was contested by many for example by G.F. 
Rodwell: 

Space of four dimensions is transcendental space: It is beyond the limit of our experience, 
but not beyond the limit of our imagination. (G.F. Rodwell 1873 quoted from Volkert 2018, 
27, 37)

5 As we mentioned above, Möbius and Grassmann also referred to this argument. For a more 
comprehensive history of it see (Volkert 2018, 1–37). 
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As far as the objective reality was concerned, Newcomb was less assertive. 

Those who speculate on the possible have taken great pleasure in imagining another 
universe alongside of our own and yet distinct from it. The mathematician has shown that 
there is nothing absurd or contradictory in such a supposition. But when we come to the 
question of physical fact we must admit that there appears to be no evidence of such a 
universe. If it exists, none of its agencies intrude into our own universe, at least in the 
opinion of sober thinkers. The intrusion of spirits from without into our world is a favorite 
idea among primitive men, but tends to die out with enlightenment and civilization. Yet 
there is nothing self-contradictory or illogical in the supposition. (Newcomb 1897, 190) 

Newcomb’s allusion to primitive ideas concerning other worlds is phrased 
in a general way, but he probably also had the Zöllner-Slade and the Hinton 
scandals in mind. Toward the end of his address, Newcomb mentioned that recent 
physical phenomena in the molecular range might turn out to be explainable by 
the assumption of a fourth dimension. Other mathematicians like William Kingdon 
Clifford had also speculated about the possibility of explaining new physical 
phenomena by way of curved spaces. Newcomb thus concluded: 

We have no experience of the motion of molecules; therefore we have no right to say that 
those motions are necessarily confined to three dimensions. Perhaps the phenomena of 
radiation and electricity might yet be explained by vibrations in a fourth dimension . . .  .. 
We must leave it to our posterity to determine whether, in either way, the hypothesis of 
hyperspace can be used as an explanation of observed phenomena. (Newcomb 1897, 195) 

Although Newcomb ended on an empirical note, we can notice that in the quote 
above from page 190, he twice mentioned that there is nothing contradictory in the 
supposition of a four dimensional space and even claimed that mathematicians had 
proved this consistency. Here he may refer to the usual analytic “models” of n-
dimensional linear spaces, as for example described by Jordan, or to Beltrami’s 
model of n-dimensional space with constant negative curvature. However, it is 
interesting to notice that the question of consistency only comes up here as a 
necessary property of the possible objective reality of space. The idea seems to be 
that inconsistent theories of space are not possible. He also vaguely alluded to the 
idea that consistency implied mathematical existence: 

Our conclusion is that space of four dimensions, with its resulting possibility of an infinite 
number of universes alongside our own, is a perfectly legitimate mathematical hypothesis. 
(Newcomb 1897, 191) 

13.11 The Axiomatization of Geometry 

Newcomb’s address illustrates that even during the 1890s there was no clear answer 
to the question: what does it mean for a geometry to be true. Empirical arguments 
about the nature of physical space were mixed with philosophical, psychological and 
even physiological considerations concerning our ability to conceive or intuit space. 
Logical arguments concerning consistency were also put forward and gradually they 
became more pronounced. Indeed, as Volkert has pointed out (Volkert 2018, 166),
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the late nineteenth century debates concerning the nature of space and geometry 
prepared the ground for a purely axiomatic view of mathematics that we usually 
associate with Hilbert. 

With Hilbert the mathematical idea of geometry became in principle entirely sep-
arated from the empirical questions of the nature of physical space and our intuition 
of it. This clarification and emancipation went hand in hand with Hilbert’s view 
of the objects of geometry and mathematics in general. Before Hilbert, a system of 
axioms had been considered as a system of truths about some clearly defined objects 
(points, lines, planes etc.). However, in his Grundlagen der Geometrie Hilbert made 
a point out of not giving explicit definitions of the basic objects and relations of 
geometry avoiding thereby any reference to a physical space or anything else outside 
of the mathematical axiom system itself. The basic notions of geometry were only 
defined implicitly by the requirement that they satisfy the axioms. Since there is no 
predetermined subject matter about which the axioms are true, the question of the 
consistency of the axiom system became pertinent. And with Hilbert, consistency 
of an axiom system was not only considered a necessary condition for the truth of 
the mathematical theory it described, it also became a sufficient condition for the 
mathematical existence of the objects the theory deal with. Indeed, for Hilbert and 
the formalists following his lead in the twentieth century, an axiomatically defined 
system exists from a mathematical point of view if and only if it is consistent.6 

Beltrami’s method of models provided Hilbert with the method to prove the 
consistency of his axiom system of geometry relative to arithmetic of the real 
numbers, as well as a method of proving the independence of crucial axioms like 
the parallel postulate and the continuity axioms. It is ironic that Beltrami’s idea of 
a model that he developed as a means to supply a real substrate to non-Euclidean 
geometry, ended up as a crucial method to prove consistency in Hilbert’s axiomatic 
approach that explicitly avoided any real substrate at all. 

I began this paper by wondering about some apparently odd utterances by 
nineteenth century mathematicians concerning geometry and space. One of the 
reasons why they appear weird to a modern reader is that we are so steeped in 
the modern structural axiomatic thinking. However, as pointed out by Volkert, we

6 Blanchette (2018) gives a fine analysis of the discussion between Hilbert and Gottlob Frege. 
This discussion shows how fundamentally Hilbert’s new foundation of mathematics broke with the 
older nineteenth century (and older) approach to the foundation of mathematics defended by Frege. 
However, as pointed out by Rowe, Gray (2007, 254) and others, Hilbert’s axiomatization build on 
earlier works by Hermann Wiener, Friedrich Schur, Moritz Pasch, Giuseppe Peano and Giuseppe 
Veronese. In particular Gray points out that “The point (that the objects of geometry should be 
purged of their intuitive geometrical meanings) was not original with Hilbert, but he grasped its 
significance more profoundly” (Gray 2007, 254). Moreover, Corry (2004) has warned us not to 
consider Hilbert a full-fledged formalist. Hilbert emphasized that the fruitful axiomatic systems 
studied by mathematicians have come about by axiomatizing informal intuitive mathematical 
theories that we use to describe the real world. For example in geometry, Hilbert had historic and 
practical reasons for choosing the axioms the way he did. In that sense the axioms are not arbitrary. 
They and the objects of the theory correspond to our intuitive idea of space. But the mathematical 
arguments within the theory should be independent of the historic or intuitive origin of the axioms. 
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should be careful not to project our modern concepts back into the nineteenth 
century: 

The distinction between an abstract-axiomatic geometry and an interpreting geometry – as 
for example the geometry of light rays – does not seem to have found general attention . . . . 
until the 20th century. This distinction depended on an appropriate development concerning 
axiomatization of geometry as well as a clear idea of what a model is. It is dangerous to 
interpret these ideas back into the discussions of the 19th century. (Volkert 2018, 35) 

13.12 Conclusion 

In this paper I have tried to argue that when 19th century mathematicians wrote 
about “space” and “geometry” they meant physical space and the geometry that 
correctly describe this space. The objects of geometry were points, lines, planes 
etc. that were mostly considered as well-understood concepts that need no special 
introduction. Most mathematicians believed that this geometry was 3-dimensional 
and Euclidean, but after 1870 non-Euclidean geometries and higher dimensions 
were gradually considered as possible descriptions of physical space. 

Non-Euclidean geometry was from the start developed explicitly as a possible 
description of physical space. N-dimensional geometries (as we call them), on 
the other hand, were first developed as a way to deal with analysis of more than 
three variables in a way that would allow the reader to use his geometric intuition 
to clarify the situation (see e.g. Schläfli 1852, 175). Still the early inventors of 
such “geometries” were careful to use the word “space” and “geometry” only 
about three dimensional physical space. For their more general concepts they used 
words as “multiple continuity” (Schläfli), “linear theory of extension” (Grassmann) 
and “multiply connected manifold” (Riemann). However after 1870 the phrase 
higher space or n-dimensional geometry slowly prevailed and some mathematicians 
like Clifford, Ball, Newcomb and others began contemplating if some recently 
discovered physical phenomena could perhaps be explained by the hypothesis of a 
fourth dimension. Still, when some mathematicians and in particular philosophers, 
amateurs and charlatans began to entertain the idea that spiritual phenomena 
took place in the fourth dimension, more sober mathematicians became careful 
to formulate themselves in ways that would not associate them with disreputable 
“primitive men”. 

There were two methods to argue about the nature of space: In the beginning of 
the century an empirical view of geometry gradually prevailed but toward the end of 
the century there was a resurgence of neo Kantian views. According to the latter, a 
geometry exist if it can be intuited. However, since there was no general agreement 
as to what can be intuited, the Kantian view of what is a true and useful geometry 
was particularly slippery. On the one hand many used the argument to exclude 
higher dimensions as well as non-Euclidean geometries. On the other hand, even 
those who stuck to the traditional idea of space being a priori 3-dimensional and
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Euclidean could argue for the introduction of analytical spaces of higher dimension, 
on the ground that they enhanced the intuitive understanding of the situation. 

Consistency was considered as a necessary condition for the possibility of the 
new geometries. However, in general, consistency was not accepted as a sufficient 
condition for their truth or existence. Moreover, before 1870, no one seems to have 
contemplated the possibility of proving consistency of a mathematical theory. And 
when Beltrami discovered the model-method, he considered it as a method of giving 
non-Euclidean geometry a real substrate. Only with Houël, Poincaré and finally 
Hilbert the method was shown to provide the key to proofs of relative consistency. 

Thus when mathematicians such as Lipschitz and Darboux and physicists like 
Hertz described mechanics in a geometric form, they emphasized the intuitive 
understanding gained by the geometrical form. However they did not present their 
new approach as an application of an n-dimensional geometry of curved space. 
Rather they saw their new formalism for mechanics as analogous to n-dimensional 
geometry. For them the two theories were different because they deal with different 
objects. Mechanics deals with mechanical systems of a collection of points (in 
space), geometry, on the other hand, deals with single points in space. Both Hertz 
and Darboux were probably aware that the idea of an n-dimensional geometry of a 
curved space was by many considered a “wild flight of an unbridled imagination” 
(Newcomb 1897, 187). In particular after the Zöllner affair, it was therefore 
important to signal, that their geometric formalism for mechanical systems was not 
subject to the objections raised against the imaginary spaces of the mathematicians. 
Hertz explicitly declared that “we need not fear the objection that in building up a 
science dependent upon experience, we have gone outside the world of experience”. 
Darboux was less explicit, but the structure of his presentation strongly suggests that 
he had a similar agenda. 

The development of higher-dimensional and curved “spaces” were instrumental 
in the development of the modern axiomatic, structural and formalistic view of 
mathematics. Both its lack of external reference for its objects, the free choice 
of axioms, the identification of consistency and existence, and the model-method 
for establishing relative consistency have their roots in the disputes about the 
new geometries. Conversely, this paper has highlighted the fact that one cannot 
understand the development of geometry in the nineteenth century without leaving 
the modern philosophy of mathematics aside. In particular it is important to keep in 
mind that in the nineteenth century the objects of geometry were objects in space 
either in physical space out there or in our imagination of physical space.
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Chapter 14 
Gauging Potentials: Maxwell, Lorenz, 
Lorentz and Others on Linking 
the Electric Scalar and Vector Potentials 

Jed Z. Buchwald 

Abstract The development of tractable relationships for calculating the radiation 
produced by electric oscillators relied on a particular connection between the 
scalar potential, whose gradient is determined by charge density, and the vector 
potential, whose curl determines magnetic induction. Other such connections are 
permissible in electrodynamic field theory, including one used by Maxwell, but 
only one among them leads easily to radiation. Forms of electrodynamics other than 
Maxwell’s, including those by Kirchhoff, Helmholtz, Riemann and others, were not 
free to choose among such relationships, though none among these theories, with 
the limiting exception of Helmholtz’s, led to wavelike equations of propagation 
without assuming propagation a priori. One theory besides Maxwell’s that did 
was developed by the Danish physicist Lorenz. Although Lorenz derived the link 
between potentials later deployed for radiation in classical electrodynamics, his 
theory allowed no other choice. Three decades after Lorenz, the Dutch physicist 
Lorentz produced the first general understanding that the connection between the 
potentials can take various forms. Such a link was subsequently denominated a 
“gauge”, governed by the understanding that a particular choice, called a “gauge 
transformation”, must leave the measurable quantities of the theory unaltered. What 
follows traces the ways in which connections between the potentials were deployed 
in the nineteenth and early twentieth centuries. 

By the end of the twentieth century’s first decade texts on electrodynamics generally 
presented substantially equivalent forms of field theory supplemented by what 
became known as the Lorentz force on moving, charged particles. The measurable 
quantities of the theory comprised the electric and magnetic fields together with 
charge and current. Two auxiliary variables were generally used, both of which had 
roots dating to the early to mid 1800s: the scalar and vector potentials, associated 
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respectively with charge and current. The fundamental equations of the theory 
placed constraints on the relationship between these two variables, but within 
these limitations different expressions for them could be adapted while maintaining 
unaltered the measurable variables of the theory. Later in the twentieth century a 
particular choice of such auxiliaries came to be called a gauge. Two such gauges 
were, and to this day remain, central: one in which the sum of the vector potential’s 
divergence with the time derivative of the scalar potential vanishes, while, in the 
other, the divergence vanishes. Both gauges require an associated scalar function to 
satisfy specific conditions. 

Prior to the early twentieth century, theories for electrodynamics based on 
the interactions between charged particles did deploy a connection between the 
potentials, but we will see that none of them was free to choose any other than a 
particular one because of the model used for the electric current. Maxwell’s theory, 
in which charges are an epiphenomenon of field processes, was free to choose, 
but we will also see that he did not recognize the full scope of that freedom.1 

Compactly to represent the difference between theories that must assume a certain 
relation and other theories that may, but need not, do so, what follows introduces 
the distinction between a condition and a relation. If a given theory cannot avoid 
a specific connection between the potentials, then we will call such a connection a 
condition. If it is not required by theory, we will call it a relation. Only  relations are 
gauges because conditions lock the connection down. 

When, one might ask, did conditions become relations? That recognition was for 
many years attributed to H. A. Lorentz’s (1853–1928) exposition of electrodynamics 
in 1903.2 However, in 2001 J. D. Jackson and L. B. Okun argued that the first proper 
use should instead be attributed to the Danish physicist Ludvig Lorenz (1829–1891) 
since he had employed the equation previously associated with Lorentz in an 1867 
theory based on retarded interactions.3 In the years since, physics articles and texts 
have generally adopted their suggestion. In what follows we’ll explore the ways in 
which several theories deployed such connections in order to tease out which among 
them truly recognized the relational character of the connection. 

14.1 Invariance in “Classical” Electrodynamics 

In order properly to grasp the difference between historical conceptions of the links 
between the scalar and vector potentials, we need to begin with the manner in 
which a gauge transformation – one that leaves unaltered the theory’s measurable

1 On Maxwell’s field understanding of charge see (Buchwald 1985, 23–34). 
2 (Lorentz 1903b, 157). In earlier work Lorentz had instead imposed zero-divergence on the vector 
potential without discussion (Lorentz 1892, 14). 
3 (Jackson and Okun 2001). See (Zangwill 2013) and (Thorne and Blandford 2017) for contempo-
rary presentations of electrodynamics. 
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variables – is construed in what is conventionally referred to as “classical” electro-
dynamics. We begin with the four basic “Maxwell” equations in what is known as 
their “Hertz-Heaviside” form: 

.∇ · εE = 4πρ (14.1) 

.∇ · B = 0 (14.2) 

.∇ × E + 1

c

∂B

∂t
= 0“Faraday" (14.3) 

.∇ × (B/μ) = 4π

c
C + 1

c

∂εE

∂t
“Ampere" (14.4) 

Here E, B are respectively electric and magnetic fields, while ρ is the volume density 
of electric charge and C the current area density. Taking the divergence of 14.4 
and then applying 14.1 produces the “equation of continuity” between charge and 
electric current: 

.∇ · C + ∂ρ

∂t
= 0 Equation of Continuity (14.5) 

These equations accordingly involve four fundamental quantities: the fields E, B 
and the material densities ρ, C, with the continuity equation being an implication 
of the field equations and not a distinct requirement. These four are the only 
observable quantities; any additional variables that may be introduced must leave 
them unaltered. 

The requirement on the divergence of the B field 14.2 permits the latter’s 
expression as the curl of such an auxiliary quantity, namely the vector potential 
A. Introducing that vector yields a link between its time derivative and the electric 
field, leading to a second auxiliary function, the scalar potential ϕ: 

Introduction of the vector potential: B = ∇ ×  A. 

The Faraday Law 14.3 then becomes: . ∇ ×
(
E + 1

c
∂A
∂t

)
= 0

which allows 

.E + 1

c

∂A

∂t
= −∇ϕ Faraday Law in terms of A, ϕ (14.6) 

Inserting these results into 14.1 and 14.4 produces two coupled, time-dependent 
equations involving the auxiliary potentials and the measurable quantities repre-
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senting charge and current: 

.∇2ϕ = −4πρ − 1

c

∂ (∇ · A)

∂t
(14.7) 

.∇2A − 1

c2

∂2A

∂t2
= ∇

(
∇ · A + 1

c

∂ϕ

∂t

)
− 4π

c
C (14.8) 

The fact that A is parasitic upon the B field, while ϕ depends on E and A, opens 
a path to uncoupling these equations. In a first step, the freedom entailed by the 
introduction of A allows the addition to the latter of the gradient of an otherwise 
arbitrary scalar function Λ without affecting the value of the magnetic field. To 
maintain the Faraday Law in form 14.6, the scalar ϕ must be correspondingly 
altered: 

Adding the gradient of the scalar function Λ to the vector potential 

.AHH ≡ A + ∇Λ (14.9) 

requires changing the scalar potential to 

.ϕHH ≡ ϕ − 1

c

∂Λ

∂t
(14.10) 

to maintain the Faraday Law 

Such a change depends directly upon the function Λ. Alternatives to field theory 
in which the potentials are specified directly do not have the freedom to effect a 
relation of this kind. Different equations linking the potentials can be obtained, with 
the function Λ then satisfying a specific equation. A given choice came to be called 
a “gauge transformation” with the understanding that the measurable variables of 
the theory (E, B, ρ, C) always remain unaltered 

We will label the relation that came to be most widely chosen for field theory in 
its Hertz-Heaviside form RHH for the moment to avoid a particular attribution. By 
means of it 14.7 can be uncoupled from 14.8 provided that the scalar Λ satisfies 
a restriction, thereby yielding wave equations for the modified potentials with the 
charge and current densities as sources: 

Relation RHH: . ∇ · AHH + 1
c

∂ϕHH

∂t
= 0

the definitions of AHH , ϕHH then require 

.∇2Λ − 1

c2

∂2Λ

∂t2 = −
(

∇ · A + 1

c

∂ϕ

∂t

)
(14.11)
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thereby uncoupling 14.7 and 14.8 to become 

.∇2ϕHH − 1

c2

∂2ϕHH

∂t2
= −4πρ (14.12) 

.∇2AHH − 1

c2

∂2AHH

∂t2
= −4π

c
C (14.13) 

The function Λ correspondingly satisfies an inhomogeneous wave equation whose 
source is .∇ · A + 1

c
∂ϕ
∂t

. If, from the set of untransformed potentials, only those are 
chosen that themselves satisfy an RHH relation, then Λ will satisfy a homogeneous 
wave equation. Given RHH, the propagation Eqs. 14.12, 14.13 taken together 
satisfy the equation of continuity 14.5, as of course must be the case since they 
devolve from the fundamental field equations. The RHH gauge is thereby tied to the 
satisfaction of wave equations by the scalar and vector potentials. Provided that Λ

is chosen to satisfy either the homogeneous or inhomogeneous wave equation, then 
14.14 for the electric field E follows from the Faraday Law in the form 14.6: 

. ∇ · AHH + 1

c

∂ϕHH

∂t
= 0

with 

. E = −1

c

∂AHH

∂t
− ∇ϕHH

eliminates the transformed scalar potential to yield 

.E = −1

c

∂AHH

∂t
+ c∇

(
∇ ·

∫
AHH dt

)
(14.14) 

Note that the E field can now be expressed entirely in terms of the vector potential 
because the RHH relation replaces the term in the scalar potential with a time 
integral over the vector potential’s divergence. Equation 14.14 can be applied 
directly to problems involving radiation since the vector potential satisfies the 
d’Alembertian 14.13 with current C as source, i.e.given RHH, the vector potential is 

.
1

4π

∫ C

(
r ',t−|r−r'|

a

)

|r−r '| d3r '. This provides a direct route for solving the radiation fields 
emitted by an electric oscillator by working directly with a vector potential. 

Relation RHH is not uniquely required given the freedom provided by the 
ability to add any gradient to the vector potential. One alternative sets the latter’s 
divergence to zero. After the early 1900s this alternative was termed the “Coulomb 
gauge” because under it the scalar potential satisfies the time-independent Poisson
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equation, while its time derivative couples to the current to act as sources in a 
d’Alembertian (14.16) for the vector potential: 

The “Coulomb” relation in Hertz-Heaviside 

. Rcoul : ∇ · Acoul = 0

the definitions of A, ϕ then require 

. ∇2Λ − 1

c2

∂2Λ

∂t2 = −1

c

∂ϕcoul

∂t

thereby uncoupling 14.7 from 14.8 to become 

.∇2ϕcoul = −4πρ (14.15) 

.∇2Acoul − 1

c2

∂2Acoul

∂t2 = −4π

c
C + 1

c
∇

(
∂ϕcoul

∂t

)
(14.16) 

In this gauge the d’Alembertian for Λ has only the time derivative of the scalar 
potential as source since the divergence of the vector potential is zero (cf 14.11). To 
understand the physical consequences of 14.16 requires introducing the Helmholtz 
decomposition theorem to uncouple the potentials. According to the latter, which 
Hermann Helmholtz (1821–1894) developed in his path-breaking 1858 paper on 
vortices (not, of course, in vector form),4 a directed function can be fully specified 
by the difference between the gradient of the divergence of its potential throughout 
space and the curl of the curl of the same integral provided that the field vanishes at 
infinity: 

Helmholtz decomposition 

. F (r) ≡ − 1

4π

∫
C

(
r ')

∣∣∣r − r’
∣∣∣
d3r ' so C = ∇ (∇ · F ) − ∇ × (∇ × F )

After simple manipulation it follows that the first term in this expression for the 
current C is canceled by the scalar potential term in 14.16 by means of 14.15 and 
the continuity Eq. 14.5, leaving only the second term, − ∇ × (∇ × F), as source. C 
is then known for obvious reasons as the “transverse current,” while the expression 
for the vector potential now contains −∇ × (∇ ×  F) instead of simply C. In this

4 (Helmholtz 1858). 
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gauge the E field retains the term in the gradient of the scalar potential, whereas 
that potential disappears from E in the RHH alternative. This poses the apparent 
problem for radiation calculations that the scalar potential does not propagate. 
However, neither potential is directly measurable in classical electrodynamics, with 
the electric and magnetic fields depending in the end on retarded expressions for 
charge and current.5 Maxwell and, for a time, such deployers of his theory as George 
Francis FitzGerald (1851–1901) and Joseph John Thomson (1856–1940) presumed 
the form Rcoul. 

14.2 Potentials Before Maxwell, in His Treatise, 
and in Helmholtz’s Alternative 

The first appearance of a link between current and charge potentials arose years 
before Maxwell’s electrodynamics in an 1857 article by Gustav Robert Kirch-
hoff (1824–1887) on conduction, where it occurs as a condition. To capture the 
ponderomotive and electromotive forces due to currents that Wilhelm Weber (1804– 
1891) had developed, Kirchhoff modified the function that Franz Ernst Neumann 
(1798–1895) had introduced in 1845 and 1847 to express both sorts of forces, 
ponderomotive through space and electromotive through time derivatives. To do 
so he, like Weber, presumed a specific hypothesis concerning the electric current 
that had been developed by Gustav Theodor Fechner (1801–1887), namely that it 
consists of equal and oppositely-charged particles flowing with equal but opposite 
velocities through conductors. This entails a continuity equation containing a factor 
of 1/2. A fixed link Rk between the vector and scalar potentials resulted.6 

None of our subjects, excepting Lorentz and (in part) Maxwell, worked with 
vectors. Nevertheless, all were well-versed in the transformations that directed 
quantities may undergo and easily represented their results in component form. In 
what follows we will employ vector notation in order to bring out the central points 
at issue. In one case, however, we will see that a particular expression may have 
been missed in part at least because the complexity of transformations done through 
components can be misleading.

5 For a demonstration that causality holds in the Coulomb gauge see (Heras 2011) and (Jackson 
2002). Both demonstrate that an unretarded term which appears in the Coulomb gauge expression 
for the vector potential exactly cancels the one in the scalar potential. 
6 (Kirchhoff 1882a, 139) and (Kirchhoff 1882b, 159). On Weber see (Archibald 1989b). A modern 
account is (Assis 1994). See (Jackson and Okun 2001, 9–10) on Kirchhoff et al. Note that the 
difference in form between the Neumann and Kirchhoff potential functions vanishes for the 
interaction between closed circuits. The difference also vanishes if the divergence of the potential 
is zero. 
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Kirchhoff’s Potentials and Continuity Equation 

.

Ak (r) = ∫ (r−r ')(J(r ')·(r−r '))
|r−r '|3 d3r '

[
the Neumann f orm is AN (r) = ∫ J(r ')

|r−r '|d
3r '

] (14.17) 

.∇2ϕ = −4πρ (14.18) 

.∇ · J + 1

2

∂ρ

∂t
= 0 [continuity given the Fechner current model] (14.19) 

Kirchhoff’s 14.17, 14.18 and 14.19 Link the Vector and Scalar Potentials 

. Rk : ∇ · Ak = 1

2

∂ϕ

∂t

Rk is clearly a condition since it is entailed jointly by a Poisson Eq. (14.18) and 
continuity (14.19), with the one-half constant reflecting the Fechner model.7 

Kirchhoff then used the potentials as follows to formulate Ohm’s law, in which 
σ stands for conductivity: 

Kirchhoff’s version of Ohm’s Law 

.Ck = −2σ

(
∇ϕk + 4

c2

∂Ak

∂t

)
(14.20) 

Finally, through a series of approximations, he generated a differential equation for 
current i in a thin, straight, cylindrical wire of length l and radius a that may be 
written in the following way:8 

. Ck = 1

2
∇2i − 1

c2

∂2i

∂t2
− 1

4σπa2

∂i

∂t
= 0

In wires of very high conductivity (and small radius, since the latter was assumed in 
the deduction), the current propagates as a wave with speed . c√

2
.9 

7 Rk results either from Kirchhoff’s form Ak of the vector potential or from the Neumann form AN 
given the same continuity equation. These two potentials have the same curl. 
8 (Kirchhoff 1882a, 140–41). 
9 In 1856 Weber and Rudolf Kohlrausch (1809-1858) found the constant c to have the value 
4.39 ∗ 108m/s, which implied that the current propagates in such wires at speed 3.1042 ∗ 108m/s, 
which was close to the extant value for the speed of light.
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Turn next to Maxwell. We begin with the fundamental equations for the theory 
as presented in his 1873 Treatise:10 

Here we see that the vector (A) and scalar (ψ) potentials appear in the Treatise’s 
final set of equations as fundamental elements. Note also that Maxwell’s J includes 
the conduction and displacement currents. Both are to be incorporated in a derived 
expression for A, though Maxwell did not provide one in his basic set. The vector 
potential had appeared from the outset in his ‘dynamical’ theory of the electro-
magnetic field because the theory’s equations were constructed on the basis of 
Lagrange’s (or Hamilton’s) equations, with A functioning dynamically as the field’s 
“electrokinetic momentum.”11 This is why no separate equation directly expresses 
the absence of the divergence of B: that follows from the latter’s expression as the 
curl of the momentum. It remained necessary to deduce a computable expression 
for A. 

Maxwell offered two arguments for abolishing the potential’s divergence in order 
to do so. His first argument introduced auxiliary variables A

'
and χ in the equation 

for A that results from the combination of the Ampere law in terms of the total 
current with his basic expression for B as ∇ ×  A:

10 (Maxwell 1873), vol. 2, chap. 9. 
11 (Maxwell 1873, sectns. 585-591). Maxwell’s electrokinetic momentum per unit area is ∇ ×  A, 
derived from his expression for the circuit’s contribution to the field momentum as

∮
A · dl, 

where A is introduced directly as such. He then asserted that ∇ ×  A represents “what we are 
already acquainted with as the magnetic induction” because the variation of this momentum density 
through the area surrounded by a circuit results in a force, and on “Faraday’s theory, the phenomena 
of electromagnetic force and induction in a circuit depends on the variation of the number of lines 
of magnetic induction which pass through the circuit” (sectn. 592). 
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Maxwell’s J is the total current . C + ∂D
∂t

. 

{
B = ∇ × A

4πJ = ∇ × H

}
=⇒ 4πμJ = ∇ (∇ · A) − ∇2A

which Maxwell solves as 

. 

A (r) = μ
∫ J(r')

|r−r'|d
3r ' − 1

4π
∇r

∫ ∇r' ·A(r')
|r−r'| d3r '

≡ A' − ∇χ

⇒ ∇2χ = −∇ · A and so

Rmax : ∇ · A' = 0

Since − ∇  ·  A is the source for a Poisson equation inχ , it follows that  ∇ ·  A'

vanishes by taking the divergence of both sides of Maxwell’s vector potential. Note 
that ∇χ is not an arbitrary addition to the vector potential justified solely by the link 
of its curl to the B field. Not at all: Maxwell’s ∇χ is just one of the two terms in his 
solution to the current equation using ∇ × A for the magnetic force H. The other 
term contains the total current J. This is entirely different from the later procedure, 
which allows for any gradient to be added to the vector potential on the grounds that 
the latter is merely an auxiliary quantity that derives ultimately from the B field’s 
absence of divergence. 

The “quantity χ disappears” from the expression for B, Maxwell however noted, 
and “is not related to any physical phenomenon.” Were it a question solely of 
the links between J, A, and B then χ would simply be irrelevant, and Maxwell’s 
statement concerning its absence from “any physical phenomenon” unnecessary. 
He likely had more in mind because his basic expression for the electric field then 
includes the time derivatives of both A

'
and the gradient of χ . The latter might have 

a detectable result were it allowed to stand. Since no evidence for such an addition 
had ever been found, the simplest procedure would be to discard χ altogether. 

Two useful results then follow: first, the divergence of A, like that of A', will “also 
be zero everywhere,” in which case A can be expressed by just the first term – and 
that expression (ignoring magnetic permeability and any constant factor) was well-
known because it is formally similar to those in the works of Weber and Kirchhoff – 
with one critical exception: Maxwell’s inclusion of the displacement current in J. 
Nevertheless, a difficulty plagued this route to zero divergence. As Maxwell pointed 
out in the next section, his solution requires A to vanish at infinity. This could not 
hold for unlimited waves. To treat these, he attempted to deduce the condition in a 
different manner.12 

12 As noted by (Yaghjian 2014, 240).
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Maxwell’s second route to zero-divergence relied upon the propagation that 
results from his basic field equations:13 

Maxwell’s “general equations for electromagnetic disturbances” 

. μ

(
4πC + K

∂

∂t

) (
∂A

∂t
+ ∇ψ

)
− ∇2A + ∇ (∇ · A) = 0

of which Maxwell took the divergence to obtain 

. μ

(
4πC + K

∂

∂t

) (
∂∇ · A

∂t
+ ∇2ψ

)
= 0

Limiting his analysis to a “non-conductor”, Maxwell set C (the conductivity) to 
zero, in which case, he asserted, the Laplacian of ψ must be “independent of t.” 
Why so? Because according to him the Laplacian is proportional to what Maxwell 
termed “the volume-density of free electricity” (his e, which is the divergence of 
the displacement vector D, or what would later be termed conduction charge). 
Consequently, this must vanish in a non-conducting medium such as free ether. In 
that case the divergence of the vector potential “must be a linear function of t, or a 
constant, or zero, and we may therefore leave [its divergence] and ψ out of account 
in considering periodic disturbances.”14 

This second argument is problematic as it stands because Maxwell seems to 
have regarded the zero-divergence of the vector potential as a condition necessitated 
by the absence of any evidence for ∇χ. The difficulty is readily seen. Since his 
fundamental equations have E as .− ∂A

∂t
− ∇ψ with ∇ ·  E proportional to the density 

of “free electricity,” the sum . ∂∇·A
∂t

+ ∇2ψ is also proportional to it. Consequently, 
the presumptive constancy of ρ entails that the time derivative of this sum, and not 
just that of the Laplacian of ψ , must be zero. Although the defect can be remedied, 
doing so requires Maxwell to have thoroughly appreciated the relational character 
of any such modification, which he apparently never did.15 

13 (Maxwell 1873, secs. 783–784). Note that in the Treatise Maxwell’s expression for ∇2 has the 
opposite sign to the modern one “in order to make our expressions consistent with those in which 
Quaternions are employed” (sec. 616). I follow modern conventions. 
14 (Maxwell 1873 sec. 783). 
15 (Yaghjian 2014, 244) points out that since the addition of the gradient of any function of r,t to 

A leaves B unaltered, it’s possible to add to ψ the term .
∂−∫

ψ(r,t ')dt '+t
∫
(ρ/|r−r'|)d3r '

∂t
. The time 

derivative of the redefined function’s Laplacian then vanishes identically, leaving . ∂
2∇·A
∂t2

= 0, and  
so the time derivative of ∇ ·  A must be independent of time. Consequently, either A itself is 
independent of time, or else its divergence vanishes. To see the difference between the result that 
Maxwell drew from zero divergence in comparison to the one later drawn for the Coulomb gauge, 
it suffices to compare their respective expressions for the vector potential. Maxwell’s reduces to 
the first term in J, including the displacement current. The Coulomb gauge expression eschews the
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The propagation equation for the vector potential accordingly becomes just 

.μK ∂2A
∂t2 −∇2A = 0. This implies that the ether’s equations of motion are “similar to 

those of the motion of an incompressible elastic solid” capable of sustaining finitely 
propagating transverse oscillations.16 His ψ thereby became analogous to pressure 
in an incompressible fluid and had to propagate infinitely rapidly. For some of his 
followers the implication may not have been troublesome since it was common 
among British ether theorists including non-Maxwellians like William Thomson, 
Lord Kelvin (1824–1907) to think the ether incompressible. 

Both J. J. Thomson and FitzGerald for example deployed the zero divergence 
condition in analyzing the electrodynamics of a moving, charged sphere, where 
it raised immediate difficulties. In particular, FitzGerald in 1881 calculated the 
resulting displacement currents in the surrounding field due to charge convection, 
only to discover on requiring the vector potential’s divergence to vanish that the 
displacement currents disappear from the result, paradoxically leaving only the 
product of charge by velocity to constitute the effective current.17 In trying to grasp 
Maxwell’s scheme through a model of the field 4 years later, FitzGerald however 
could find “no instantaneous propagation of anything.”18 

Turn next to the most widely recognized alternative to Maxwell’s system that 
also yielded propagation. In 1870 Helmholtz generalized Kirchhoff’s form of the 
vector potential to include an undetermined constant k and built a novel system 
that implied propagation without adopting Maxwellian fields. To do so Helmholtz 
postulated an ether consisting of electrically and magnetically polarizable elements 
that interacted instantaneously with one another. These elements were not to 
be assimilated to moving electric particles in the Weber-Fechner fashion (which 
Helmholtz regarded as both physically and even morally objectionable):19 they 
stood as unreduced, fundamental physical structures. Propagation arose out of the 
pattern of instantaneous interactions among the distributed polarizable elements that 
constitute the medium. Both longitudinal and transverse waves result by treating 
the electric polarization’s time-derivative as a current to be included in J and by 
incorporating the corresponding polarization charge in the continuity equation. 

Because Helmholtz’s system was based on potentials that do not in themselves 
propagate, his link between them differed from Kirchhoff’s in only one respect, 
namely in allowing a more general form to the vector potential, restricted only by 

displacement current but involves the curl of an integral that depends upon the retarded current, 
itself integrated through the time it takes emission to reach the observation point: see (Jackson 
2002), 3.17.
16 Maxwell demonstrates transversality for the vector potential independently of the value of its 
divergence by combining his equations for E and B in terms of A (Maxwell 1873, vols. 2, sectn. 
790). 
17 See (Buchwald 1985, 269–76). Oliver Heaviside avoided the use of either the scalar or vector 
potentials, but he never analyzed the origin of radiation. 
18 (Hunt 1991, 117–18). 
19 (Buchwald 1993). 
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the requirement that it produce the proper result for closed currents. In the following 
expression, the additive term in 1−k integrates out for closed currents:20 

Helmholtz’s Generalized Vector Potential 

. Ah (r) = A2

(∫
J

(
r')

|r − r '|d3r' + 1

2
(1 − k)∇r

∫
J

(
r') · ∇r'

∣∣r − r '∣∣ d3r'
)

. ∇2ϕ = −4πρ

. ∇ · J + ∂ρ

∂t
= 0

which lead directly to 

. Rh : ∇ · Ah = −k
∂ϕ

∂t

Helmholtz’s Rh is accordingly a condition and not a relation since it can have no 
other form in the original formulation of his theory. Insofar as interactions between 
closed currents are concerned, the constant k can have any non-infinite value. If 
it were to be zero then Helmholtz’s potential would lack divergence, as Maxwell 
had required in his scheme, while setting it to one produces the Neumann form. 
Helmholtz and others thought that if Maxwell’s system held true then k had to vanish 
and the polarizability of the ether had to be effectively infinite. Poincaré later argued 
that only the latter condition was necessary, but this was not understood for some 
time.21 

To summarize, we have seen that both Kirchhoff and Helmholtz have R 
conditions that result ineluctably from the combination of their definitions of the 
vector potential with the Poisson equation for the scalar potential and current-charge 
continuity. Maxwell, working with fields, certainly did recognize that the vector 
potential could have a gradient added to it without affecting his basic equations, 
but he did not follow through to examine the allowable scalar functions and instead 
required the zero divergence of his potential.

20 For a derivation of the Helmholtz condition Rh see (Buchwald 1985, 314). 
21 For a succinct demonstration that the Helmholtz system produces the same equations as 
Maxwell’s if the polarization is infinite see (Darrigol 2000, 417–19). In the limit of infinite 
polarizability the constant k drops out of consideration. 
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14.3 Ludvig Lorenz’s Link Between Potentials 

In 1867, three years before Helmholtz published his system, the Danish physicist 
Lorenz developed a novel theory that argued for the existence of propagating 
“currents” in free space as well as in wires under the assumption that the effect 
of charge and current at a given point is delayed by a time equal to the distance 
to the point divided by a constant a that represents, in effect, the speed at which 
the disturbance travels.22 Lorenz wrote before the publication of Maxwell’s 1873 
Treatise, and though he was likely to have been at least familiar with the mechanical 
model for the field that Maxwell had generated in 1861–2, he disliked such 
hypotheses, aiming instead to work without any physical hypothesis concerning 
the character of the current. Maxwell’s further development of his theory, absent 
a model for the ether, had been published in 1864 but Lorenz did not mention it. 

The expressions for the vector and scalar potentials with which Lorenz began 
were the same as Kirchhoff’s 14.17, 14.18, 14.19, and he also took over Kirchhoff’s 
version of Ohm’s Law (14.20). The factor of ½ in his continuity Eq. (14.19) implies 
that Lorenz tacitly presumed Fechner’s double-flow model for current. In a critical 
step, he assumed that the scalar potential generated at some point by a given charge 
takes time to reach the point. To that end he introduced a “new function” for the 
potential in which retarded replaces unretarded charge:23 

. ϕlnz (t, r) ≡
∫

ρ
(
r', t − ∣∣r − r '∣∣ /a)

|r − r '| d3r '

Here r specifies the point at which the potential is required while r
'

locates the 
originating charge density; a is “a constant”.24 

Lorenz then expanded the retarded charge in a series about the emission time 
|r − r

' |/a, inserted the series into ϕlnz and took the gradient of the result with respect 
to the observation point r, obtaining: 

. ρ
(
r', t − ∣∣r − r '∣∣ /a) = ρ

(
r', t

) −
∣∣r − r '∣∣

a

∂ρ
(
r', t

)

∂t
+

∣∣r − r '∣∣2

2a2

∂2ρ
(
r', t

)

∂t2 − . . .

.∇ϕlnz = ∇ϕk + 1

2a2

∂2

∂t2

∫ (
r − r ') ρ

(
r', t

)

|r − r '| d3r ' − . . .

22 On Lorenz see (Kragh 2018). 
23 (Lorenz 1867b), translated as (Lorenz 1867a). On Lorenz see (Kragh 2018). 
24 Lorenz used just r to denote |r − r' | while integrating over dx

'
dy

'
dz

'
. 
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Note that the charge density on the right-hand in the expansion for ∇ϕlnz is to be 
evaluated at time t and not at the retarded time t-|r − r' |/a. 

Lorenz’s next step was crucial. He used Kirchhoff’s (unretarded) continuity Eq. 
(14.19) to replace ∂ρ/∂t in his expansion for ∇ϕlnz with −2 ∇ ·  C and performed a 
partial integration to obtain: 

. ∇ϕlnz = ∇ϕk − 1

a2

∂

∂t

∫
C

(
r', t

)

|r − r '| d
3r ' + 1

a2

∂Ak (r, t)
∂t

. . .

Here all terms on the right-hand side are functions of present, not retarded, time 
because the charge and current densities obtain at time t. Nevertheless, Lorenz 
simply moved the term in C to the left-hand side and without comment replaced 
what should be C(r

'
, t) with C(r

'
, t − |r − r

' |/a), the current at the retarded time to 
write: 

. ∇ϕlnz + 1

a2

∂

∂t

∫
C

(
r', t − ∣∣r − r '∣∣ /a)

|r − r '| d3r ' = ∇ϕk + 1

a2

∂Ak (r, t)
∂t

. . .

This had the noteworthy advantage of setting the sum of two retarded functions on 
the left equal to an infinite series in unretarded ones on the right. That allowed the 
introduction of a new, retarded function, Alnz, for the vector potential such that: 

.Alnz (t, r) ≡
∫ C

(
r ', t − |r−r '|

a

)

|r − r '| d3r ' (14.21) 

.∇ϕlnz + 1

a2

∂Alnz

∂t
= ∇ϕk + 1

a2

∂Ak

∂t
− . . . (14.22) 

If the constant a is very large then the terms in the time derivatives of Ak in 
the unretarded right-hand series would be negligible, in which case contemporary 
experiments allowed replacing Kirchhoff’s potentials in Ohm’s law with Lorenz’s 
retarded functions: 

Lorenz’s Retarded Version of Ohm’s Law 

.C (r, t) = −2σ

(
∇ϕlnz + 4

c2

∂Alnz

∂t

)
(14.23) 

Lorenz’s route to 14.23 is hardly unproblematic because it depends on the recon-
figuration that produced 14.22 in which an unretarded integral in the current C is 
unjustifiably reinterpreted as a retarded one.
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Through his earlier work on the theory of light Lorenz knew that the integral over 
distance of a retarded function satisfies 14.24: 

Lorenz’s Equation for an Arbitrary Retarded Function 

.

(
∇2 − 1

a2

∂2

∂t2

) ∫
Fret

|r − r '|d
3r ' = −4πFunret (r, t) (14.24) 

Expression 14.24 can be applied directly to both ϕlnz and Alnz. Lorenz thereby 
transformed 14.23 into 14.25 on dropping the integrals over d3r

'
: 

. 

(
∇2 − 1

a2

∂2

∂t2

) ∫
C

(
r ', t − ∣∣r − r '∣∣ /a)

|r − r '| d3r ' = −4πC (r, t)

= 8πσ

(
∇ϕlnz + 4

c2

∂Alnz

∂t

)

.

(
∇2 − 1

a2

∂2

∂t2

)
C = 8πσ

(
∇ρ + 4

c2

∂C

∂t

)
(14.25) 

With 14.25 Lorenz had an apparent transverse wave equation for current, albeit 
one with a source in the gradient of the charge density and a term that produces 
absorption. In his words, “periodical electrical currents are possible, . . .  such ones 
travel like a wave-motion . . .  and like light, make vibrations which are at right 
angles to the direction of propagation.”25 Longitudinal waves have been avoided, 
which presumably means that the divergence of the current must be zero, in which 
case the charge density and so its gradient are independent of time given continuity. 
That perhaps suggested a way to eliminate the source term in ∇ρ in order to reach 
equations with the same form as the ones he had previously generated for light. 

To reach his goal, Lorenz first created a linking function Rlnz by interpreting 
charge and current in the continuity Eq. 14.19 as retarded quantities. For simplicity 
we use square brackets to denote retardation: 

. ∇r ' · [J ] + 1

2

∂ [ρ]

∂t
= 0 [retarded continuity]

from which he obtained “by partial integration” 

.Rlnz : ∂ϕlnz

∂t
+ 2 (∇r · Alnz) = 0

25 (Lorenz 1867a, 293). Lorenz did not complicate matters by allowing the charge or current 
sources to move, so that the distances r − r

'
are not themselves dependent on time. 
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Lorenz properly noted that the divergence in the continuity equation should be 
taken at the current loci, r'. However, we shall see that in performing the “partial 
integration” he in the end used the observation point r in calculating the divergence 
of Alnz.26 Next apply the general formula (14.24) for retarded functions to the 
definition (14.21) of  Alnz to generate 14.26. Combine that result with Rlnz and 
Lorenz’s retarded Ohm law (14.23) to produce the requisite propagation Eq. 14.27 
for waves of electric “current” without charge appearing as a source: 

.
1

a2

∂2Alnz

∂t2 = ∇2Alnz + 4πC (14.26) 

Lorenz’s Propagation Equation for Currents 

.∇ × (∇ × C) = 1

a2

∂2C

∂t2 + 16πσ

a2

∂C

∂t
(14.27) 

If the conductivity is at least very small, as it would have to be in otherwise empty 
space, then setting a to .c/

√
2 transforms the equations formally into the very ones 

that Lorenz had “already found for the components of light.”27 For transversality to 
hold, the current must again lack divergence. 

Lorenz’s Rlnz is clearly not a relation because it follows directly from the 
application of continuity to retarded charge and current. It is a condition. In principle 
this is hardly surprising. We saw above that the typical modern route proceeds by 
using the permissible constraint RHH to uncouple a pair of equations generated by 
the basic ones for the classical fields, yielding d’Alembertians for the potentials with 
charge and current as sources. If we start with these potentials and continuity in the 
unretarded form 14.19 then RHH certainly does follow. Lorenz however reached Rlnz 

without directly employing the associated d’Alembertians. 
Lorenz did not provide full details, remarking only that he obtained Rlnz by 

applying “partial integration” to the retarded continuity equation. Working in that 
manner poses a problem due to what seems to have been an incorrect transformation 
of divergence under retardation. A correct application is as follows:

26 Lorenz’s coordinates for the observation point are x,y,z and for the current locus x’,y’,z’, while  
his expression for the divergence in Rlnz is taken with respect to x,y,z. 
27 The speed of propagation would then be 3.1 ∗ 108m/s given Weber’s and Kohlrausch’s value 
for c. Lorenz remained uncommitted about just what occupied space in order to have “currents”, 
remarking that “there is scarcely any reason for adhering to the hypothesis of an aether; for it 
may well be assumed that in the so-called vacuum there is sufficient matter to form an adequate 
substratum for motion” (Lorenz 1867a, 301). 
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Retarded continuity equation for sources at r
'

. [∇r' · C] + 1

2

[
∂ρ

∂t

]
= [∇r' · C] + 1

2

∂ [ρ]

∂t
= 0

Then deploy the correctly-retarded divergence expression28 

. [∇r' · C] = ∇r' · [C] + ∇r · [C] ⇒ ∇r ' · [C] + ∇r · [C] = −1

2

∂ [ρ]

∂t

Next take the retarded time derivative of the scalar potential 

. 

[
∂ϕ

∂t

]
= ∂ [ϕ]

∂t
=

∫ [
∂ρ
∂t

]

|r − r '|d
3r ' =

∫ ∂[ρ]
∂t

|r − r '|d
3r '

and so 

. Rcorrect
lnz = ∂ [ϕ]

∂t
+ 2

∫ ∇r' · [C] + ∇r · [C]
|r − r '| d3r ' = 0

To obtain Rlnz requires discarding ∇r’ · [C]. Doing so breaks the character of his 
system and, as a result, the possibility of establishing a formal, if retrospective, con-
nection between his scheme and classical electrodynamics.29 That Lorenz missed 
the form .Rcorrect

lnz is hardly surprising. The question of how to take retardation into 
account, for example, prompted an exchange between Carl Neumann (1832–1925) 
and Rudolf Clausius (1822–1888) in 1868, for Neumann had essayed retardation 
that year, albeit without going further in Lorenz’s fashion.30 In the end, Lorenz’s 
propagation Eq. (14.27) for current depends on two problematic steps: first, the

28 (Heras 2007, 656) provides the correct expression for the divergence under retardation. He notes 
that operating on functions of r

'
, t

'
can be misleading because they depend explicitly on source 

coordinates through r
'

and implicitly through t
' = t − |r − r' |/a. 

29 (Heras 2007) demonstrates that starting from a continuity equation (absent the factor ½) between 
otherwise-unspecified functions ρfml,Cfml, it is possible to define retarded scalar and vector fields 
that satisfy equations formally similar to the Maxwell four of classical electrodynamics provided 
that the requisite care is taken in developing identities with retarded functions. 
30 Neumann followed Bernhard Riemann (1826-1866), who had “[in a posthumous publication] 
presented a (faulty) derivation of the Weber law by assuming a conservative electrodynamics force, 
and by positing that the potential associated with this force was propagated with constant velocity” 
(Archibald 1989a, 787). Neumann’s calculation took the distance to be used in computing the 
potential when it is received at a given point as the distance at that time between the point and 



14 Gauging Potentials: Maxwell, Lorenz, Lorentz and Others on Linking. . . 359

feasibility of replacing Ak with Alnz in Ohm’s law, which follows from his refiguring 
of a term as a retarded variable in order to obtain Eq. 14.22, and second, an 
apparently incorrect deployment of the continuity equation under retardation. 

Lorenz’s paper was known shortly after its publication, not least by Maxwell, 
whose developed account of the electromagnetic field had appeared 4 years earlier.31 

In an addendum to a paper on electric units, he briefly argued that Lorenz’s (or 
any other) theory based on the retarded propagation of potentials would necessarily 
violate action and reaction.32 Lack of familiarity with the conditions that obtain 
under retardation vitiates Maxwell’s argument – as, for different reasons, it had 
Lorenz’s own derivations. Years later Heinrich Hertz (1857–1894) also referred to 
theories that presuppose the propagation of potentials.33 

14.4 The Emergence of Gauge 

In 1900 Emil Wiechert (1861–1928) published an article on the elementary laws 
of electrodynamics that broached the gauge freedom permitted in field theory.34 

He began with a set of initially uninterpreted equations designed to capture the 
propagation of transverse waves in free space. Only later in the article did Wiechert 
draw a connection to electrodynamics. Nevertheless, for clarity the following 
express his equations using electric and magnetic field vectors. 

.
∂2E

∂t2
= c2∇2E (14.28) 

.∇ · E = 0 (14.29) 

.
∂H

∂t
= −c ∇ × E (14.30) 

.∇ · H = 0 (14.31) 

a moving emitter, rather than the distance traveled between the two from emission to reception, 
which was the essence of Clausius’ critique (ibid., 789).
31 (Maxwell 1890a). 
32 (Maxwell 1890b, 137–38). 
33 (Hertz 1884). 
34 (Wiechert 1900). 
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Wiechert remarked that his 14.28 and 14.29 allow the introduction of 14.32 as an 
“analog” to 14.30, and thence 14.33 (given 14.30 and 14.31): 

.
∂E

∂t
= c ∇ × H (14.32) 

.
∂2H

∂t2
= c2∇2H (14.33) 

He then introduced the vector potential A (as usual given 14.31): 

.H = ∇ × A (14.34) 

Equation 14.30 then links A to E via 14.35: 

.c∇ × E = −∂∇ × A/∂t (14.35) 

At this point Wiechert asserted (presumably on the basis of 14.35) that “the entire 
system shows that cE can only differ from the vector −∂A/∂t by a vector part that 
has a scalar potential,” in which case E satisfies 14.36, the Faraday Law in the form 
14.6 used today: 

.E = −∇ϕ − ∂A/∂t (14.36) 

Putting all of this together, he obtained the following propagation equation for the 
vector potential: 

.
∂2A

∂t2
= c2∇2A − c∇

(
∂ϕ

∂t
+ c ∇ · A

)
(14.37) 

Finally, Wiechert claimed that the “indeterminacy” in A permits dropping the sec-
ond term on the right in 14.37, thereby yielding homogeneous propagation equations 
for both A and ϕ. Later in the paper he extended the result to include charge and 
current, whereby the d’Alembertians for the potentials become inhomogeneous (viz 
14.12 and 14.13).35 

Wiechert had certainly shown that propagating potentials follow on the basis of 
equations that encompass electrodynamics provided that the expression . 

∂ϕ
∂t

+ c∇ ·A
vanishes. However, to do so he merely asserted that “indeterminacy” permits that 
sum to vanish. Which would be permissible provided that Eq. 14.36 for E had itself

35 (Wiechert 1900, 557–59). 
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been justified by appropriate modifications of the two potentials. But Wiechert had 
not done so and had therefore not developed a scheme that fully deploys the system’s 
inherent gauge freedom. What’s missing is the introduction of a scalar function 
equivalent to Λ in the modern expressions 14.9 and 14.10 which generalizes the 
potentials in a manner that retains the form 36 of the Faraday law. Absent such an 
addition, the system’s gauge freedom remains obscure since it has not been shown 
that 14.36 remains tenable under the requirement that . ∂ϕ

∂t
+c∇·A vanishes. Wiechert 

had instead assumed 14.36 as reasonably justified by 14.35 without investigating 
what that generally requires of the potentials and had then moved directly from it to 
14.37. A crucial step is missing. 

Three years later, Lorentz published a detailed pair of articles developing 
electrodynamic field theory. The first of the two presented the essentials of the 
theory, while the second extended it to the case of moving, charged particles 
governed by what came to be known as the Lorentz force.36 Lorentz had read 
Wiechert’s 1900 piece, which he referred to, and in the second article he developed 
in full the general condition that gauge freedom permits through the introduction 
of a function (his χ ) equivalent to Λ. Here we find for the first time a complete 
recognition that the scalar and vector potentials are both purely auxiliary quantities 
that can be introduced on the bases of the zero divergence of the magnetic field and 
the proportionality of its time derivative to the curl of the electric field. Imposing the 
RHH relation then produces a d’Alembertian for χ , maintaining thereby the Faraday 
Law in the form 14.36 and generating propagation equations for the modified 
potentials (Fig. 14.1). Both articles appeared in the widely-read Encyclopädie der 
Mathematischen Wissenschaften. 

We remarked above that for many years the RHH relation was (correctly) 
attributed to Lorentz. Jackson and Okun surveyed prior appearances of similar 
equations and concluded that what is “universally called the “Lorentz condition,” 
is seen to originate with Lorenz more than 25 years before Lorentz.”37 Yet two 
aspects of Lorenz’s work militate against such an attribution. First, Lorenz’s route 
to a central element of his theory, namely Ohm’s law in terms of retarded functions, 
was itself problematic. But second, Lorenz derived his version Rlnz as a condition 
that arises directly out of the continuity equation under the assumption that charge 
and current are retarded functions. In doing so complexities that arise in taking 
divergences under retardation raised issues. That result was critical for his theory, 
because with it he was able to obtain equations of the same form that he had 
previously generated for light. 

Although a non-retarded equation of continuity combined with d’Alembertians 
for the scalar and vector potentials does entail RHH , Lorenz’s route to an equation 
(Rlnz) formally similar to the latter is problematic. Even were it not, the resulting 
expression is not a gauge transformation because it cannot be otherwise since the 
theory is grounded on retarded potentials. Lorenz had therefore neither introduced

36 (Lorentz 1903a, b). 
37 (Jackson and Okun 2001). 
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Fig. 14.1 Lorentz’s introduction of gauge freedom. (Lorentz 1903b, 157) 

gauge as a relation nor was his analysis free from internal difficulties. The virtue 
of his condition, setting aside the problematic route to it, consists in Lorenz having 
connected it to a system that could yield the same form of wave equation that he 
had earlier produced for light. Wiechert reached further relying on electrodynamics, 
but his introduction of a gauge relation remained incomplete since it lacked the 
necessary scalar and its resulting d’Alembertian. Only H. A. Lorentz achieved full 
generality, with propagation for the scalar and vector potentials emerging naturally 
and easily. As questions concerning radiation became technologically significant 
following Guglielmo Marconi’s (1874–1937) and John Ambrose Fleming’s (1849– 
1945) efforts, engineer-physicists adopted what was widely known as the relation 
developed by Lorentz in order to generate malleable equations for the field generated
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by arrays of antennas.38 Lorentz’s is the first theory to have recognized the full 
generality allowed by the link between scalar and vector potentials, and so it seems 
appropriate that RHH ought to return to its previous characterization as RLNTZ , 
the “Lorentz gauge.” The development of gauge as a general property of physical 
theories evolved into a profound mathematical property connected to conservation 
principles in the hands of Emmy Noether (1882–1935).39 

Nevertheless, if we separate Lorenz’s system altogether from electrodynamic 
field theory, there is a reasonable sense in which he was the first to attempt 
development of a scheme based directly on presumptive retarded interactions 
between charged particles, though his was flawed in several significant ways. Field 
theory can be developed on such a basis – with a major caveat: namely, that the 
introduction of a measure for what is otherwise field energy enters as a separate 
structure for purposes of practical application. A pure theory dispenses altogether 
with field ontology and presumes only point charges and both retarded and advanced 
interactions along the lines argued for by John Wheeler (1911–2008) and Richard 
Feynman (1918–1988).40 
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Chapter 15 
Ronald Ross and Hilda Hudson: 
A Collaboration on the Mathematical 
Theory of Epidemics 

June Barrow-Green 

15.1 Introduction 

In 1916 Ronald Ross published the first of three Royal Society papers on the 
mathematical study of epidemiology or, as he called it, ‘pathometry’. The second 
and third of these papers appeared the following year co-authored with the 
mathematician Hilda Hudson. At the time Hudson, who had ranked equivalent to the 
seventh wrangler in the 1903 Cambridge Mathematical Tripos,1 was known for her 
work on Cremona Transformations. So how and why did Hudson, a geometer, end 
up collaborating with Ross, a medical man, on the theory of epidemics? And what 
role did she play in the collaboration? In this chapter, I discuss the nature and extent 
of their collaboration, setting it into the broader context of Ross’s mathematical 
aspirations. 

1 Wranglers were students who were in the first class of the Mathematical Tripos with their results 
being listed in order of merit. From 1881 women had had the right to sit the Mathematical Tripos 
but it was not until 1948, when they were admitted as full members of the University, that they 
could be awarded degrees and ranked with the men. 
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Fig. 15.1 Ronald Ross 
(1857–1932) 

15.2 Ronald Ross Discovers Mathematics 

Ronald Ross (Fig. 15.1) is well-known in medical circles for his discovery of the role 
of mosquitoes in malaria transmission. Trained as a doctor, he had joined the Indian 
Medical Service in 1881 and it was while he was in India in 1897 that he made 
the break-through discovery for which he received the Nobel Prize for medicine in 
1902.2 Less well known is the fact that earlier, but also while in India, he discovered 
an enthusiasm for mathematics. As he recalled: 

One day [in 1882] I commenced to read an old prize book which I had won at Springhill 
School for mathematics in 1871, called The Orbs of Heaven, by O. M. Mitchell,  which  
eloquently described the great mathematical triumphs of the astronomers; and I was so 
fired by the theme that I determined then and there to study mathematics. I bought nearly

2 The mosquito-malaria theory, which had been originally developed by the Scottish physician 
Patrick Manson in 1894, was experimentally proved by Ross in 1897. In his acceptance speech for 
the Nobel Prize, Ross did not acknowledge Manson’s role in the discovery, an omission which led 
to a notorious falling out between the two men, see Chernin (1988b). Manson, and the French 
physician Charles Laveran, were also nominated for the 1902 Nobel Prize for their work on 
malaria. 
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all Todhunter’s series3 and, literally, went through them in a few weeks, up to the end of the 
Calculus of Variations, though I had not advanced beyond Quadratic Equations at school. 
... I can scarcely describe my enthusiasm. It was an aesthetic as well as an intellectual 
enthusiasm. (Ross 1923, 49) 

Ross went on to say that it was then that he first began thinking of the “possible 
application [of mathematics] for explaining why epidemics of disease exist” (Ross 
1923, 50). Shortly afterwards, while in Madras, he acquired a copy of Kelland and 
Tait’s Introduction to Quaternions (1873) which inspired him to develop his own 
system of what he called ‘vector-geometry’. In 1891, having become friends with 
Tait’s eldest son, who was in the Mysore Education Department, he felt sufficiently 
emboldened to send his work to Tait for an opinion. Tait, who had by then given 
up on the study of quaternions, was, according to Ross in his Memoirs, “most  
discouraging”, and Ross put the work to one side (Ross 1923, 94). In fact, Tait 
had told Ross that he had shown the paper to “one of the very greatest authorities on 
such subjects” who had said that in view of the number of similar geometries, Ross 
first needed to provide “examples of [the method’s] power in attacking well-known 
problems, or of its fertility in producing new theorems”.4 

Ross returned to England in 1899 to take up a lectureship at the Liverpool 
School of Tropical Medicine where he continued to work on malaria. He sought 
help on mathematics from Frank Carey, the professor of mathematics at Liverpool 
University College (later Liverpool University).5 Carey directed him to Whitehead’s 
Universal Algebra (1898), from which Ross discovered that he had been pre-empted 
by Grassmann.6 Undaunted, he revised his work on vector geometry—he described 
it as a combination of “Grassmann’s system with Hamilton’s quaternions” (Ross 
1923, 415)—before reading it in front of the Liverpool Mathematical Society and 
publishing it at his own expense (Ross 1901).7 

15.3 Ross Begins Work on Mathematical Epidemiology 

In 1904 Ross was invited to speak at the International Congress of Arts and Sciences 
in St. Louis. The Congress, which was part of the World’s Fair, attracted many

3 Isaac Todhunter was the leading nineteenth century British writer of mathematics textbooks, see 
Barrow-Green (2001). 
4 Letter from Tait to Ross, 27 January 1892, LSHTM Ross/163/14/04. 
5 Carey, who had graduated as third wrangler in the Cambridge Mathematical Tripos in 1883, had 
been appointed to the professorship in 1886. 
6 A note penned by Ross on the envelope containing the reply from Tait concludes: “After I returned 
to England in 1899, I read the Universal Algebra of A.N. Whitehead F.R.S. and found the whole 
of my method set forth in it under the name of Grassmann’s work. But of course I cannot prove, 
& do not even suggest, that Whitehead was the expert to whom Tait sent my paper.” LSHTM 
Ross/163/14/13. 
7 Even though the paper attracted little interest at the Society, Ross persisted with the topic and in 
1918 published a new, albeit unfinished, version (Ross 1918), which was reprinted in 1930. 
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Fig. 15.2 Diagram from Ross (1905a, 1025) 

distinguished scientists and mathematicians from Europe,8 and Ross, who was 
speaking in the Section of Preventative Medicine on the topic of mosquito reduction, 
drew a large audience. But those who were expecting a medical talk were in for a 
surprise. For by now Ross had become convinced that mosquito reduction could not 
be tackled scientifically without mathematical analysis (Ross 1905a, 1028–1029). 
His talk was primarily mathematical with the result that there were “hundreds of 
disappointed doctors who did not understand a word” (Ross 1923, 491). 

In his talk, Ross discussed the following problem: 

Suppose a box containing a million gnats were to be opened in the centre of a large plain, 
and that the insects were allowed to wander freely in all directions, how many of them 
would be found after death at a given distance from the place where the box was opened? 
(Ross 1905a, 1026). 

Considering the problem to be one in probability, he tentatively proposed that the 
number of gnats would be greatest near the box and that this number would reduce 
as a function of the distance away from the box (Fig. 15.2), a principle he named 
the “law of random migration” (Ross 1905a, 1027). 

Although his solution was not in line with current thinking,9 his results did 
agree with those of a talented young mathematician in Liverpool, Ronald Hudson

8 As Gray has described, Henri Poincaré was one of the stars of the Congress. It was there that 
Poincaré “came as close as he ever would to producing a theory of electrodynamics that would 
have rivalled Einstein’s a year later.” (Gray 2008, 173–174). See also Gray (2013, 104–107). 
9 It was generally believed that if mosquitoes were cleared from one spot, then other mosquitoes 
would rush in from outside to fill the vacuum. 
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Fig. 15.3 Ronald Hudson 
(1875–1904). The Daily 
Graphic, 23 September 1904 

(Fig. 15.3), who, at Ross’s request, had been working on a similar analysis (Ross 
1905b, 151).10 Hudson died in September 1904 and Ross, recognising that he 
himself did not have the mathematical knowledge required for a complete solution, 
turned to Karl Pearson for help. Pearson, with the assistance of one of his students, 
was eventually able to oblige (Pearson and Blakeman 1906).11 

But it was in 1908, in a Report on the Prevention of Malaria in Mauritius, 
that Ross first began to use mathematics in the study of infectious disease, and, 
as the epidemiologist Paul Fine wrote, it is “In this document, we find the first 
clear formulation of Ross’s great contribution to epidemiological methodology” 
(Fine 1975, 2). And it is here that Ross introduced the term ‘pathometry’ (Ross 
1908, 30). By pathometry he meant epidemiology in the case of a priori studies

10 Letter from Ronald Hudson to Frank Carey, 8 July 1904, LSHTM Ross 163/01/02. Ronald 
Hudson was Hilda Hudson’s brother and will be mentioned again in Sect. 15.5. 
11 Initially Pearson too found the problem beyond him. He told Ross that it would require “a strong 
mathematical analyst” to solve it, but that to find such a person he [Pearson] would have to “restate 
it as a chessboard problem or something of that sort in order to get mathematicians to work at 
it!” He told Ross that he would contact him again after he had “seen what a letter to Nature will 
do on the general problem.” Letter from Pearson to Ross, 21 July 1905, LSHTM Ross 163/01/12. 
Pearson based his estimates of mosquito densities on the value of certain constants which had been 
assumed by Ross on a basis of general probability (as opposed to being determined). It was in 
the letter to Nature that Pearson, prompted by Ross’s principle of ‘random migration’, introduced 
the term ‘random walk’ into mathematics (Pearson 1905a,b). Thus, in a broad sense, Ross can be 
considered an originator of the term. 
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although, as he would later write, “like most [of his] other suggestions” the term 
never caught on.12 Ross, by attacking the problem using a priori methods—that 
is assuming a knowledge of the causes, constructing the equations, and testing 
the calculated results with observed statistics—was striking new ground. Previous 
studies had begun with the statistics, and worked backwards to the underlying 
causes. Importantly, by using mathematics Ross had been able to show that malaria 
transmission could be prevented if the mosquito population could be reduced 
to below a certain threshold (Ross 1908, 30–37). However, he had an upward 
struggle to convince medical and public health professionals of this. Fighting shy 
of mathematics, they believed it was necessary to eradicate the entire mosquito 
population for malaria to die out. 

The mathematical analysis in the Report, which was only brief, led Ross to a 
simple algebraic equation for defining the number of new infections of malaria in a 
month (Ross 1908, 31–33).13 The real development came 3 years later in the second 
edition of his book The Prevention of Malaria in a lengthy mathematical addendum 
entitled ‘Theory of Happenings’ and which formed a new Section 66 of the book 
Ross (1911a, 651–686). In Section 28 of the first edition, published the year before, 
he had used results from the Report to deduce an elementary difference equation 
(Ross 1910, 156–164). Now he elaborated his mathematical theory applying his 
reasoning to infectious diseases in general (as opposed to malaria in particular). 
Convinced of the importance of mathematics for epidemiology, he introduced 
Section 66 as follows: 

The mathematical treatment adopted in Section 28 has been met with some questioning by 
critics. Some have approved of it, but others think that it is scarcely feasible owing to the 
large number of variables which must be considered. As a matter of fact all epidemiology, 
concerned as it is with the variation of disease from time to time or from place to place, 
must be considered mathematically, however many variables are implicated, if it is to be 
considered  scientifically  at  all.  . . . And  the  mathematical  method  of  treatment  is  really  
nothing  but  the  application  of  careful  reasoning  to  the  problems  at  issue.  . . . I  am  convinced  
that many readers will be able to follow the work without difficulty. (Ross 1911a, 651) 

Given an epidemic, he constructed a model to determine the numbers of 
unaffected and affected individuals after a certain period of time, allowing for the 
natural fluctuations of a population (birth and death, immigration and emigration), 
and for the variance of those fluctuations as a consequence of the epidemic. Taking 
the case where a particular event, such as an act of infection, insect-bite, etc., occurs

12 Unpublished manuscript (p. 3), 31 October 1931, RCPSG 9/M/9/1/48. In the same manuscript 
Ross expressed his preference for keeping the term ‘epidemiology’ for a posteriori studies. In 1928 
he wrote that “by pathometry I mean the quantitative study of disease” (Ross 1928, 154). Thus it 
seems that for Ross the use of mathematics represented something ‘quantitative’ connected to 
causality in epidemics whilst the use of statistics represented something ‘qualitative’ in the sense 
that it did not describe the actual mechanism of causing infection. 
13 For a development of the mathematical ideas in Ross (1908), see Waite (1910), although 
correspondence between Ross and Pearson shows Ross was not satisfied with Waite’s paper 
(LSHTM Ross 163/07/03, 163/07/10). 
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to a constant proportion of a population in a unit of time, the goal was to ascertain 
the number of affected individuals on a given date, how many had been affected 
twice, three times, etc. Ross called this “The Problem of Happenings”, where the 
“happenings may be some kind of accident or disease, birth, death, marriage or 
anything else we can think of—vaccination, receipt of bequests, conversion to some 
creed, etc.” (Ross 1911a, 655). His model also allowed for the calculation of the 
frequency of reinfections, something which had not been done before. Extending 
his earlier method, he arrived at a system of difference equations from which he 
could calculate the number of affected individuals in successive time intervals, such 
as a minute or a day. Finally, to remove the dependence on a particular time interval, 
he made the interval of time infinitesimally small, reformulating the model as a pair 
of coupled first order differential equations.14 

Shortly after the publication of the addendum he was asked to provide an account 
of it for Nature. Although initially Ross had been convinced of the clarity of the 
mathematics in the addendum, in this account he is frank about his mathematical 
limitations, acknowledging that his work required “verification and completion 
by better mathematicians” (Ross 1911b, 466).15 And once again he took the 
opportunity to have a dig at the medical profession: 

These studies require to be developed much further; but they will already be useful if 
they help to suggest a more precise and quantitative consideration of the numerous factors 
concerned in epidemics. At present medical ideas regarding these factors are generally so 
nebulous that almost any statements about them pass muster, and often retard or misdirect 
important preventative measures for years. (Ross 1911b, 467) 

Many years later, when revisiting the addendum, he admitted in the British 
Medical Journal (BMJ) that it “contained many misprints and omissions” and 
that even he had “considerable difficulty in understanding parts of it” (Ross 1929, 
674).16 

15.4 Study of A Priori Pathometry: Part I 

In March 1915, a short article appeared in the BMJ in which Ross announced that 
he had been able to extend his theory to the case where the population varies, and 
had been able to simplify the equations to the extent that they now gave “an elegant

14 For a more detailed discussion of Ross (1911a), see Smith et al. (2012). 
15 One result of the Nature article was a response from the mathematician/mathematical demog-
rapher Alfred Lotka who proposed a closed-form solution to the system of differential equations 
obtained by Ross (Lotka 1912). Lotka further developed his analysis of Ross’s equations in Lotka 
(1923). 
16 Ross was even more critical of his addendum in an unpublished manuscript, written in the same 
year as the BMJ article: “The Addendum was written in a great hurry . . . the  whole  article  was  very  
confusedly written and was almost meaningless to readers and even to myself.”, (Ross, Preface to 
‘Two-Party Aggregates’). Typescript dated 20 May 1929, RCPSG 9/M/17/1/5. 
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(though tentative) mathematical theory of both epidemic and endemic communica-
ble diseases” (Ross 1915, 546). Having little confidence in the mathematical abilities 
of the medical profession, he gave only an outline of the mathematics, telling his 
readers that the full version was more suitable for a mathematical journal. The 
article caught the eye of the physician and statistician John Brownlee who had been 
working on epidemiology from an a posteriori perspective, and who, in a positive 
response, outlined his own most recent conclusions (Brownlee 1915).17 

The full version of Ross’s article was the first of the three Royal Society papers.18 

It began: 

It is somewhat surprising that so little mathematical work should have been done on the 
subject of epidemics, and, indeed, on the distribution of diseases in general. Not only is 
the theme of immediate importance to humanity, but it is one which is fundamentally 
connected with numbers, while vast masses of statistics have long been awaiting proper 
examination. But, more than this, many and indeed the principal problems of epidemiology 
on which preventative measures largely depend, such as the rate of infection, the frequency 
of outbreaks, and the loss of immunity, can scarcely ever be resolved by any other methods 
than those of analysis. (Ross 1916, 204–205) 

He could hardly have made his position clearer. Extending his earlier ideas and 
clothing them in the language of the calculus, he now presented a more general 
development of his method, which he called “Theory of Happenings”, framing the 
problem as follows: 

Suppose that we have a population of living things numbering P individuals, of whom a 
number Z are affected by something (such as a disease), and the remainder A are not 
so affected; suppose that a proportion .h.dt of the non-affected become affected in every 
element of time dt , and that, conversely, a proportion .r.dt of the affected become unaffected, 
that is, revert in every element of time to the non-affected group; and, lastly, suppose that 
both the groups, the affected and non-affected, are subject also to possibly different birth-
rates, death-rates, and immigration and emigration rates in an element of time; then what 
will be the number of affected individuals, of new cases, and of the total population living 
at any time t? (Ross  1916, 208) 

From this he was led to a system of three first order differential equations, the 
solution of which, under certain conditions, yield asymmetric bell-shaped curves 
rising more steeply than they fall, similar in shape to the curves that describe the 
spread of an epidemic. 

There seems to have been little immediate reaction to Ross’s paper. Ross did 
not expect the medical profession to take notice of it but almost no-one else did 
either. The trouble was that, from a mathematical point of view, it was not the 
mathematics itself that was interesting but the novel application of it. And the fact 
that the paper appeared in the middle of the War cannot have helped. The one

17 In 1914 Brownlee had become the founding director of the statistics department of the UK 
Medical Research Council, having formerly been the physician-superintendent of the Glasgow 
Fever Hospital. 
18 Although papers submitted to the Royal Society were refereed and referee reports were usually 
archived, no report exists for this paper, possibly due to disruption caused by the War. 
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exception was the medical statistician Major Greenwood who drew attention to it in 
an article in Nature in which he discussed the general application of mathematics 
to epidemiology (Greenwood 1916). Greenwood, who was already familiar with 
Ross’s earlier work, outlined Ross’s method, praising “its simplicity and elegance” 
and highlighting the advantages of its generality, urging that further attention should 
be paid to the subject: 

No sensible man doubts the importance of investigations such as these; it is high time 
that epidemiology was extricated from its present humiliating position as the plaything 
of bacteriologists and public health officials, or as, at the best, a field for the display of 
antiquarian  research.  The  work  of  Sir  Ronald  Ross  . . . and  of  a  few  others  should at least 
elevate epidemiology to the rank of a distinct science.” (Greenwood 1916, 244). 

At the end of the preface to his Royal Society paper, Ross gave the section 
headings for the next part of the paper even though he had not yet finished it: 
Hypothetical Epidemics; Hypometric Happening; Parameter Analysis; Variable 
Happening.19 But, some 15 months later in October 1916, when he submitted the 
next part to the Royal Society, it did not look exactly as he had predicted. Not only 
was there an additional section, but it was co-authored with the mathematician Hilda 
Hudson. What had happened to induce these changes and who was Hilda Hudson? 

15.5 Hilda Hudson 

Hilda Hudson (Fig. 15.4) was born in Cambridge in 1881 into a family of 
mathematical talent. Her mother, Mary Hudson (née Turnbull) (1843–1882) had, 
at the age of 30, attended the ‘Lectures for Women in Cambridge’ at the fledgling 
Newnham College where she was taught mathematics by her future husband, 
William Henry Hoar Hudson (1838–1915), then a mathematics lecturer at St John’s 
College.20 Her parents married in 1875, and in 1882, the year after Hilda was 
born and the year in which her mother died, her father was appointed professor 
of mathematics at King’s College, London.

19 Ross added the section headings in the proofs which indicates that he did the work between 
submitting the paper in July 1915 and correcting the proofs in October 1915. RCPSG 9/M/8/2/2. 
20 The Lectures for Women in Cambridge, which began in 1871, were organised by the Asso-
ciation for Promoting the Higher Education of Women in Cambridge, one of the two founding 
organisations of Newnham College. Thus Hilda’s mother can be considered one of Newnham’s 
earliest students. Hilda’s father, who was on the General Committee of Management for Newnham, 
lectured on arithmetic and algebra at Newnham during the 1873/1874 session. I am grateful to 
Frieda Midgley, the archivist at Newnham College, who supplied me with information about 
Hilda’s father. 
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Fig. 15.4 Hilda Hudson in 
1918 

Hudson’s brother Ronald (mentioned above) was senior wrangler in 1898 and 
was considered the most gifted geometer of his generation in Cambridge,21 and her 
elder sister, Winifred, was ranked equivalent to the eighth wrangler 2 years later. In 
1903 Hudson herself went one better than her sister being ranked equivalent to the 
seventh wrangler. 

In 1904, having passed Part II of the Tripos in the First Class—the only woman 
of her year to sit Part II—Hudson, encouraged by Arthur Berry (1862–1929), 
went to Berlin where she attended the lectures of Schwarz, Schottky and Landau. 
Since at the time it was quite unusual for British men, let alone women, to travel 
abroad for postgraduate mathematical study,22 it is indicative of her talent that it 
was considered appropriate for her to do so. It seems likely that it was while she 
was in Berlin that she developed her deep interest in conformal transformations, a 
subject first introduced to her when she was at Cambridge and which in due course 
would become her main area of research, culminating with her treatise Cremona 
Transformations in Plane and Space for which she is now principally remembered

21 The senior wrangler was the top student of the year in the Cambridge Mathematical Tripos. 1898 
was a particularly strong year—James Jeans came second and G.H. Hardy fourth, both Jeans and 
Hardy having studied for only 2 years rather than the usual three. Ronald Hudson was killed in 
a climbing accident on Snowdon in 1904. For a discussion of his fine book Kummer’s Quadric 
Surface (1905), see Barrow-Green and Gray (2006, 324–325). 
22 In the early 1890s Grace Chisholm had blazed a trail when she went from Cambridge to 
Göttingen to study for a doctorate with Felix Klein. Although she was successful, being awarded 
her doctorate in mathematics in 1895 and being the first English woman to accomplish such a feat, 
it was a trail few had followed. 
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(Hudson 1927).23 Her obituarist, J.G. Semple, described her as having “a powerful, 
almost uncanny, geometrical intuition” (Semple 1969, 358). 

After her return from Berlin, Hudson held appointments at Newnham, first as a 
lecturer and then as an Associate Research Fellow, spending the year 1912–1913 
at Bryn Mawr (USA) in the department headed by the British geometer Charlotte 
Scott.24 In 1912, just prior to her visit to the USA, Hudson gave a talk at the 
International Congress of Mathematicians (ICM) at Cambridge, becoming the first 
woman to give a talk  at  an  ICM.25 The following year, 1913, she was awarded an 
ScD degree from Trinity College, Dublin,26 and 1913 was also the year in which 
she left Cambridge for London to take up a position as mathematics lecturer at 
the West Ham Technical Institute.27 She remained at West Ham until 1917 when 
she responded to a call from the Admiralty to work in the Technical Section of 
the Air Department.28 Meanwhile she was also active in the London Mathematical 
Society (LMS), collecting another first when, in 1917, she became the first woman 
to be elected to the LMS Council. After the war she worked for a short time in the 
aircraft industry before retiring from salaried employment and devoting herself to

23 The treatise was well-received, being considered “a well-proportioned and carefully elaborated 
treatise on the whole subject” (Snyder 1927, 488) and “an indispensable authority and a source of 
inspiration to all workers in the field” (White 1928, 149). In the preface, Hudson mentions that it 
was Arthur Berry (1862–1929) who first introduced her to the subject. 
24 In 1880 Charlotte Scott was the first woman to be ranked equivalent to a wrangler when she 
achieved marks equal to that of the eighth wrangler. For details of Scott’s work, see Lorenat (2020). 
25 Hudson was not the first woman to be invited to give a talk at an ICM. That honour goes to the 
Italian Laura Pisati who was invited to give a talk at the Rome ICM of 1908 but who died shortly 
before the Congress opened so that her paper was read by a male colleague. 
26 The ScD (Doctor of Science) was based on submitted papers, and one of her examiners was the 
group theorist William Burnside. There was a standard fee of £25 but £15 was waived on account of 
her assistance with re-editing Volume 2 of the fifth edition of George Salmon’s Analytic Geometry 
in Three Dimensions (1915) to which she contributed new sections on Cremona Transformations. 
Trinity College Dublin Archives, TCD MUN/V/5/20 pp. 294–295, 326, 328. I am very grateful to 
Aisling Lockhart, the archivist at Trinity College Dublin, for supplying me with this information. 

The ScD was not Hudson’s first degree from Dublin. In 1906, she was one of the so-called 
‘Steamboat Ladies’ who travelled by steamboat to Dublin to be awarded an ad eundem University 
of Dublin degree at Trinity College Dublin. These degrees were open to women from Oxford and 
Cambridge to enable them to prove their degree status. For further information on the Steamboat 
Ladies, see Parkes (2007). 
27 Located in East London, the West Ham Technical Institute (later West Ham College of 
Technology) was one of three colleges that merged in 1970 to form the North East London 
Polytechnic (later Polytechnic of East London) and which in 1992 became the University of East 
London. 
28 Hudson was honoured for her wartime aeronautical work by being appointed Officer of the Order 
of the British Empire (OBE). For details of this work, see Royle (2017, 351–357). 
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geometrical research, and later channelling her energies into social work29 and the 
Student Christian Movement (Creese 2004).30 

Hudson’s main collaboration with Ross took place during two periods: the first 
in 1916–1917 and the second in 1928–1931, although the two kept in touch in 
between.31 

15.6 The Ross-Hudson Collaboration 1916–1917 

Shortly after sending the first part of the paper to the Royal Society in July 1915, 
Ross left for the Dardanelles to investigate an outbreak of dysentry among the 
troops, putting the epidemiological work on hold.32 He returned to it the following 
spring but finding himself short of time he applied to the Royal Society for “a grant 
in aid of the payment of a lady mathematical worker for assistance in finishing the 
second part of his paper”.33 In early April he learnt that his application had been 
successful. That he specifically asked for a “lady” mathematician is no surprise 
given the War and the recent imposition of conscription.34 The grant was to be paid 
from the Government Grant Urgency Fund, indicating that the work was considered 
essential within the context of the War. 

Whether Ross had any ideas about whom he would like to assist him or whether 
he simply circulated the relevant information to likely parties is not known.35 But

29 Letter from Hudson to Ross, 21 July 1928, RCPSG 9/M/9/1/6. 
30 Hudson also had political interests. In May 1929 she spent 2 weeks in Birmingham canvassing 
on behalf of the social economist Louis Anderson Fenn who was standing as a Labour candidate 
in the General Election, the first General Election in which women aged 21–29 were allowed to 
vote. Letter from Hudson to Ross, [May 1929], RCPSG 9/M/17/1/30. 
31 See, for example, the letter from Ross to Hudson of 26 July 1924, in which Ross expresses his 
pleasure at hearing from Hudson, RCPSG 9/M/9/1/4. 
32 Ross made an important contribution to the war effort with his research and treatment of soldiers 
suffering from malaria and dysentry, tropical diseases being a far greater killer than the enemy in 
many places beyond Europe. See Cranna (2018). 
33 Minutes of Meetings of the Council of the Royal Society, Volume 25 (20 May 1915–4 July 
1918), p. 141, RSA CMO/25. Letter from RWF Harrison (Assistant Secretary of the Royal 
Society) to Ross, 8 April 1916, RSA NLB/53/90. Ross’s application for funding was supported 
by the Government Grant Mathematics Board; the payment was made from the Government Grant 
Urgency Fund. 
34 In January 1916 the Military Service Act introduced conscription for single men between the 
ages of 18 and 41. 
35 At the end of 1915, the Federation of University Women compiled a register of graduates 
together with their qualifications and training. It is therefore possible Ross found Hudson through 
this register. The existence of the register was publicised in The Times on 28 October 1915 (p. 5), 
under the headline ‘The demand for qualified women’. 
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at all events word must have got out quickly because on 15 April 1916 Hudson 
responded, writing to Ross:36 

I understand that Miss Thomas37 has mentioned me to you in connection with mathematical 
work of importance during the war and I should be very glad to know about it. 

Hudson then summarised her mathematical history and personal circumstances, 
from which it is evident that the two had not met before. 

Ross promptly responded, writing on 19 April 1916:38 

[I] am very glad that you may be available for the work—especially as your brother, who 
was unfortunately killed in Wales ten years ago, was a friend of mine and helped me 
considerably with some old mathematical work which I had been doing. 

The work with which I now require assistance consists of the a priori mathematical 
study of epidemics. This work was commenced by Daniel Bernoulli two hundred years 
ago.39 Recently the Royal Society published the First Part of a paper of mine (which I send 
you herewith). This paper attempts to find out what of curves of epidemics should be on 
the supposition that we know exactly how such epidemics are caused—as you will see by 
the paper itself. I have integrated all the equations and have written most of the academical 
portion of the Second Part. But the Second Part will require the application of my curves 
to actual epidemics, of which we have many records. For this latter study, I do not have 
sufficient time available and I therefore asked the Royal Society for a Government Grant to 
pay for a lady Mathematician to assist me for one year. The Society has immediately been 
kind enough to give me £150 for this purpose for one year. Of this sum I am to keep about 
£30 for possible expenses. There will therefore be a remainder of £10 a calendar month for 
salary to my assistant. I cannot say whether the grant will be continued, but think that this 
will be likely if the work proves to be of value. 

The researches will be carried out officially in this laboratory [Marcus Beck Laboratory, 
Royal Society of Medicine, London] and in connection with the researches which we are 
conducting in measles and dysentry; and the large medical library downstairs contains much 
literature on epidemics. At present the work will lie principally in examining the figures of 
epidemics statistically and enquiring whether or not they fit my a priori curves; but I should 
also like my assistant to help as regards the curves of epidemics, especially measles, in 
general. Under these circumstances part-time work will be quite sufficient, and much of it 
can be done at home—though I should like to see my assistant most days of the week in 
order to consider details with her and to show her what to do. . . . 

I do not know whether you have followed recent literature on statistical methods, but, 
if not, I dare say you would be willing to spend a little time on the subject. I dare say that 
Professor Karl Pearson would help us a little in this direction with his advice. . . . 

Ross also made a point of telling Hudson that any resulting publications would be 
in joint names. At the time joint publications involving women were unusual which

36 Letter from Hudson to Ross, 15 April 1916, RCPSG 9/M/8/5/31. 
37 So far Miss Thomas has remained elusive, but she may have been employed at the West Ham 
Technical Institute (where Hudson was working at the time of her letter). Ross referred to her as 
‘Dr’ rather than ‘Miss’ Thomas in his letter to Hudson of 19 April 1916, RCPSG 9/M/8/5/32. 
38 Letter from Ross to Hudson, 19 April 1916, RCPSG 9/M/8/5/32. 
39 Ross is here referring to Bernoulli’s famous paper on smallpox which was published in 1766. 
Much later, he stated that he had never actually seen Bernoulli’s paper. See, Ross, ‘A Priori 
Epidemiology’, unpublished manuscript, 31 October–16 November 1931, RCPSG 9/M/9/1/48. For 
a discussion of Bernoulli’s paper, see Dietz and Heesterbeek (2002). 
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is presumably why Ross felt the need to spell it out.40 The fact that he did so could 
indicate an awareness of Hudson’s academic standing. Or perhaps he was simply 
conscious of the amount of work he needed her to do. Even though he did not know 
her personally, the family connection may also have played a part in this respect. 
Certainly, as this letter indicates, Ross’s friendship with Hudson’s brother helped 
the collaboration to get off to a good start. 

Hudson wrote back to Ross on the 21 April accepting the job and agreeing a start 
date of 1 May 1916.41 She thought the subject matter appeared “most interesting, 
and just as important as if had been the ‘war job’ that [she] had supposed it to 
be”. She also alerted Ross to the fact that she had never worked on statistics. 
Her appointment was announced in the BMJ on 27 May 1916 under the heading 
‘Pathometry’ (Anon 1916). 

Although it is evident from Ross’s initial letter to Hudson that he wanted help 
with applying the statistics of epidemics to his theory, that was not what she ended 
up doing. The joint paper continued the theoretical development begun in Part I, 
with the application of statistics promised for the future (Ross and Hudson 1917, 
213). 

By the time Hudson was on board, Ross, as indicated in the introduction to Part 
I of his paper, had already prepared an incomplete draft of the second part.42 This 
draft relates mostly to Part II of the published version, and provided the starting 
point for Hudson’s contribution. Although the structure in the final version remained 
as Ross had laid out, it would seem from Hudson’s drafts that she reworked much 
of the material, adding, deleting, and bringing general clarity to the arguments. 
However, since, as evidenced by the correspondence, the collaboration involved 
regular meetings in person, it is not possible to know the exact circumstances in 
which Hudson’s drafts were composed.43 

The content of Part II centres on two groups of individuals—the number of 
new cases and the number of non-affected cases as proportions of a population— 
each taken as a function of time. It is shown how the two groups vary as the four 
“variation elements” in each group—births, deaths, immigration, emigration—are 
given different values. The effect of different rates of infection is investigated, 
beginning with the assumption that each affected individual daily infects one other 
individual and then looking at what happens as the infection rate is reduced. In the

40 One of the few men who did co-author papers with women was Karl Pearson, although his 
situation was rather particular since he ran laboratories in which he employed several women to 
work as assistants. 
41 Letter from Hudson to Ross, 21 April 1916, RCPSG 9/M/8/5/33. 
42 ‘Studies on A Priori Pathometry. Part II’. RCPSG 9/M/8/3/1. The draft is dated 12 July 1915. 
There is a note on the bottom of the first page which states: ‘Omitted from Part II. October 
1916. The following pages belonged to the original draft, and have been replaced by m.s. in the 
preceding’. 
43 For an example of Hudson’s drafts, see the mathematical manuscript RCPSG 9/M/8/1/3. 
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case when the infection rate is high and the reversion rate is low,44 the model leads 
to a nearly symmetrical bell-shaped epidemic curve (Ross and Hudson 1917, 219). 
This was an “important result” because, as the authors point out, the curve is similar 
in shape to those found by Brownlee (1907). 

Part III of the published version was rather different to Part II in its genesis since 
none of it, bar the section headings, was prepared before Hudson’s arrival. Indeed, 
Ross made a point of mentioning that he was particularly obliged to Hudson for 
help with Part III (Ross and Hudson 1917, 213). While keeping to Ross’s structure, 
it seems that Hudson generated most of the content for this part, instructing Ross 
on mathematical techniques in the process. Having continued with the exploration 
of changes in the infection rate, taking into account seasonal variation, sudden 
change and continuous variation, graphical methods are employed to ascertain the 
variation over time of the two groups. Modifications are then made to Ross’s original 
equations to allow for the assumption that the number of deaths from disease is 
proportional to the number of new cases. Significantly, the theory is extended to 
allow for affected individuals to recover into an immune state, i.e., there are now 
three groups to be considered rather than two. This leads to an early version of what 
is now known as the SIR model (Ross and Hudson 1917, 236–238).45 

In their conclusion, Ross and Hudson were careful to spell out the limitations 
of their results. What they had produced was “an apparatus which can be used in a 
variety of special cases” (Ross and Hudson 1917, 238). The theory involved a large 
number of dependent variables, a fluctuation in any one of which could be accounted 
for in many different ways by supposing a suitably adjusted variation in almost any 
of the parameters. Nevertheless, the shape of the curves obtained from the different 
cases they examined gave them enough confidence to be able to state that “the rise 
and fall of epidemics as far as we see at present can be explained by the general laws 
of happenings, as studied in this paper” (Ross and Hudson 1917, 239), although with 
some caveats regarding the different assumptions they had had to make (such as, for 
example, regarding case-mortality and infectivity as constants). 

In October 1916, Ross submitted their work as a single paper to the Proceedings 
of the Royal Society. Rather curiously, but maybe because it was wartime, the paper 
was refereed by Arthur Eddington.46 He described it as “a guide in interpreting the 
significance of epidemic statistics” and recommended publication in full without 
modification, although he found the theory “rather dull” and the mathematics

44 The reversion rate is the proportion of affected individuals who revert to being unaffected in a 
given element of time. 
45 The SIR model, where S is the number of susceptible individuals, I the number of infectious 
individuals and R the number of removed (recovered/immune or deceased) individuals, can be 
used to determine the critical number of susceptible individuals necessary for the disease to take 
hold in a given population. The SIR model was developed further in Kermack and McKendrick 
(1927) which is discussed in Sect. 15.7 of this paper. 
46 Eddington, who was the Cambridge Plumian Professor of Astronomy and Experimental Philos-
ophy, and Director of the Cambridge Observatory, was principally working as an astrophysicist. 
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“elementary”.47 The paper appeared in May the following year although, because of 
its length, it was published in two consecutive parts with the second part following 
seamlessly on from the first, Ross having advised on the positioning of the split 
between the two parts (Ross and Hudson 1917).48 As with the first part of the 
paper, its publication produced almost no reaction, from either the medical or 
the mathematical communities. There was a brief notice by George Pólya in the 
Jahrbuch über die Fortschritte der Mathematik but, unsurprisingly, Pólya found it 
unnecessary to reproduce the details because the emphasis was not mathematical 
(Pólya 1917). 

At the beginning of Part II, Ross had announced that “records of epidemics are 
now being examined in order to find out how far the theoretical results which we 
have reached may be applied to them; but these studies must be reserved entirely for 
future discussion.” (Ross and Hudson 1917, 213).49 This was the work for which 
Hudson had originally been employed, and for which a knowledge of statistics was 
required. But although they had started to discuss it, it never materialised.50 

In the middle of December, Hudson wrote to Ross to let him know that the 
Admiralty had offered her a post of temporary Technical Assistant in the Aircraft 
Construction Department, and in view of the “national importance and urgency of 
this work”, she felt obliged to accept it and resign from her research work with 
him.51 It was clear she had enjoyed their collaboration, and Ross in return was sorry 
to lose her, considering her services “invaluable”, and hoped she would return to the 
work at a later date.52 

Immediately after receiving Hudson’s letter, Ross asked Major Greenwood if he 
could spare some time to continue the work. With the theoretical part completed, 
he was anxious to see if it could be fitted to actual epidemics, particularly since 
he had already begun to discuss this in a preliminary way with Hudson. But as he 
told Greenwood, for this he needed a “trained epidemiological statistician”.53 But 
nothing came of it, Greenwood presumably being too busy with the war effort or 
not feeling fit for the statistics. Ross tried to tempt Hudson back in 1917 but to no

47 Referee’s report by Arthur Stanley Eddington, November 1916, RSA RR/23/84. 
48 Letter from Ross to Secretary of the Royal Society, 17 October 1916, RCPSG 9/M/8/5/66. 
49 See also the letter from Hudson to Ross, 3 October 1916, RCPSG 9/M/8/5/52. 
50 In their correspondence Ross and Hudson discuss information about “cases” sent to them from 
“Dr Hay” and the need to ask him for further analysis according to “date of attack” but with no other 
details, see the correspondence from Ross to Hudson 16 September 1926, RCPSG 9/M/8/5/49, and 
Hudson to Ross, 15 September, 19 September and 3 October 1916, RCPSG 9/M/8/5/48, 9/M/8/5/50 
and 9/M/8/5/52 respectively. It is possible that this correspondence refers to data from a 1904 study 
of “Two hundred cases of acute lobar pneumonia” by John Hay of Liverpool Medical Institution 
(Hay 1904). 
51 Letter from Hudson to Ross, 18 December 1916, RCPSG 9/M/8/5/57. 
52 Letter from Ross to Hudson, 19 December 1916, RCPSG 9/M/8/5/58. 
53 Letter from Ross to Greenwood, 19 December 1916, LSHTM Ross/163/11/01. For Greenwood’s 
biography, see Farewell and Johnson (2016). 



15 Ronald Ross and Hilda Hudson: A Collaboration on the Mathematical. . . 381

avail.54 However, they kept in contact. In the spring of 1918, Ross asked Hudson for 
her opinion on whether a paper by Lotka was suitable for publication by the Royal 
Society. She was pithy in her assessment:55 

He [Lotka] has taken some of our equations, specialised them by drastic assumptions, 
borrowed some analysis from a German [Hertz], and got out an approximate result—not 
I think of any practical importance. 

However, since Lotka claimed priority over some ideas, she cautioned Ross about 
holding the paper back in case his actions could be misinterpreted. In the event, the 
paper was published in the Journal of the Washington Academy of Sciences (Lotka 
1919). 

After the War, Hudson decided to return to geometry, and in early 1919 informed 
Ross of her plans. Once she had finished with the aeronautical work, she would go to 
Cambridge, where she had access to the library, to complete her book on Cremona 
transformations (which would appear in 1927).56 She admitted to Ross that she was 
“sad to rule out the epidemic work” but she was clear in her ambition. To soften 
the blow, she suggested to him that he employ one of her female assistants at the 
Admiralty who were soon to be demobbed. A couple of days later she sent him a 
formal application from Annie Trout, a London university graduate with a first-class 
degree in mathematics. However, despite Hudson’s recommendation and Trout’s 
suitability, Ross told Trout that he was unable to employ a mathematical assistant 
for epidemiological work.57 Although Ross was keen to continue the work—he 
had asked Hudson for the names and qualifications of suitable women—it seems 
he wasn’t prepared to go on the stump for funds to support it. Had Hudson been 
available it might well have been a different story. 

15.7 The Ross-Hudson Collaboration 1928–1931 

There was then a hiatus for over a decade during which time Ross did no further 
work on the theory of epidemics. As he explained in his Memoirs: 

For years I had been toiling at the attempt to fix mathematics on the general theory of 
epidemics, and in 1918 [sic] the Royal Society published my paper and gave me the capable

54 Letter from Ross to Hudson, 4 June 1917, RCPSG 9/M/8/5/61. 
55 Letter from Hudson to Ross, 30 March 1918, RCPSG 9/M/8/5/38. Hudson may have been irked 
by the fact that in his paper Lotka mentions Ross several times, including with reference to the 
Ross and Hudson paper, but her name is completely absent. In the summer of 1931 Ross invited 
her to lunch to meet Lotka but she declined being “too much of an invalid” due to her rheumatism. 
Letter from Hudson to Miss Lafford (Ross’s secretary), 17 June 1931, RCPSG 9/M/9/1/26. 
56 Letter from Hudson to Ross, 12 February 1919, LSHTM Ross/173/20/42. 
57 Letter from Hudson to Ross, 14 February 1919, LSHTM Ross/173/20/43. Letter from Ross to 
Trout, 24 February 1919, LSHTM Ross/173/20/46. For more information on Trout, see Barrow-
Green and Royle (2022, 554–555). 
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assistance of Miss Hilda P Hudson. After a second paper, the war interrupted our studies; 
but so little interest was taken in them by the “health authorities”, that I have thought it 
useless to continue them since then. (Ross 1923, 515). 

But then something happened that reignited his interest. And that something was 
the publication in 1927 of the first of a (now famous) series of papers by William 
Kermack and Anderson McKendrick (Kermack and McKendrick 1927). By taking 
the work of Ross and Hudson as their starting point and generalising, Kermack and 
McKendrick had formulated a deterministic model for the spread of an infectious 
disease in a closed population, in terms of both its magnitude and its termination, 
and this is the model which is the basis for today’s SIR model.58 Contrary to 
what had been previously believed, their results showed that the termination of an 
epidemic was determined by the relationship between the population density and 
the rates of infectivity, recovery and death.59 Although Kermack and McKendrick 
were working with a slightly different set of assumptions and simplifications to that 
of Ross and Hudson, their results were very similar. Both accounted for the usual 
course of an epidemic by the decrease in the number of those susceptible without 
having to assume any change in infectivity, and both led to functions with bell-
shaped graphs in which the number of cases rises more quickly than it falls. 

Ross had known McKendrick from time spent together in Sierra Leone in 1901 
(Ross 1923, 439–449), (Heesterbeek 2005, 93–95), and it was Ross who had 
“impressed on the young physician lieutenant, not yet trained in mathematics, the 
tremendous power of mathematical methods in medical research” (Hirsch 2004). 
Ross and McKendrick had remained in touch over the years, so it is little surprise, 
even though Ross was now past the age of 70 and not in good health, that the 
paper galvanised him into action.60 In July 1928, he got in touch with Hudson, and 
she agreed to spend one day a week working for him—indeed she found it “very 
gratifying” that he should still think of her in connection with this work.61 

To start, Ross set Hudson the task of familiarising herself with his ‘Theory of 
Happenings’, the mathematical addendum in Ross (1911a). Although it had formed 
the basis for Part I of the Royal Society papers, she did not find it easy to read due to 
the muddled form of the algebra—too many related symbols, too many versions 
of each relation, inconsistent notation—and the number of errors and misprints

58 For a discussion of Kermack and McKendrick (1927), see Anderson (1991). 
59 It was commonly thought that epidemics terminated either because the supply of those 
susceptible had been exhausted or because the virulence of the cause of the epidemic had waned. 
60 In 1911 McKendrick told Ross that he thought The Prevention of Malaria was a “capital book”, 
and that he was “trying to reach the same conclusions from differential equations, but it is a very 
elusive business, and I am having to extend mathematics in new directions. I doubt whether I shall 
get what I want, but ‘a man’s reach must extend his grasp”’. Letter from McKendrick to Ross, 6 
August 1911, LSHTM Ross/106/28/112. Quoted in Kucharski (2020, 21–22). 
61 Letter from Ross to Hudson, 13 July 1928, RCPSG M 9/1/5; letter from Hudson to Ross, 21 July 
1928, RCPSG 9/M/9/1/6; letter from Hudson to Ross, 28 December 1928, RCPSG 9/M/17/1/8. 

Hudson did not wish to receive any payment for the work beyond out-of-pocket expenses. 
Letter from Ross to the Secretaries of the Royal Society, 6 November 1929, RCPSG 9/M/9/1/25. 
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(she noted 33).62 It is little wonder then that it did not make much of an impact 
when it was published. Ross’s plan was for them to write a new paper, ‘Dependent 
Happenings’, based on this material and including material from the Royal Society 
papers that he thought could be understood by the medical profession, with the aim 
of it being a preliminary to practical application, i.e., returning to the work they had 
just begun before Hudson was called away by the Admiralty. 

At the same time, Ross was seeking funds from the Royal Society to get the 
three papers reprinted and published together in book form. Buoyed by the Kermack 
and McKendrick paper, he was more than ever convinced of the importance of 
the work, telling Hudson that he felt it should be read by “all doctors and health 
officers”.63 Hudson supported the republishing but felt that they should improve 
on the papers first. In particular, she felt the work would be incomplete without a 
numerical comparison using statistics from an actual epidemic, i.e., she wanted to 
do the work she had originally been employed to do. If this could be done, she said, 
they should then be able to deduce better values for the constants in their formula 
(Ross and Hudson 1917, 203), and may even be able to improve on Kermack and 
McKendrick’s estimate for the threshold density (Kermack and McKendrick 1927, 
715).64 But, as she acknowledged, it would take some effort to obtain suitable 
statistics since those they needed would have to run to several thousands of cases. 

Meanwhile Hudson herself had been busy writing a review of the Kermack and 
McKendrick paper for Science Progress, the review journal of which Ross was the 
editor.65 It appeared the following year with the rather enticing title ‘Contagion and 
calculus’ which was probably due to Ross (Hudson 1929). Hudson thought well of 
the paper, noting that the results it contained accorded well with those obtained by 
her and Ross, although she did have a “few captious criticisms of details” (Hudson 
1929, 522). With her mathematician’s eye, she noted the lack of discussion about 
the relative order of quantities assumed to be small, and she found the use of .

√−q

62 Letter from Hudson to Ross, 6 March 1929, RCPSG 9/M/17/1/19; letter from Ross to Hudson 19 
March 1929, RCPSG 9/M/17/1/21. Hudson was not the only one to have been confused by Ross’s 
notation. In 1916 Percy MacMahon, who was a supporter of Ross as a mathematician—he felt they 
shared common ground as “amateurs [not holding[ mathematical chairs”—told Ross that he found 
his notation “somewhat difficult to get accustomed to” and that he hoped Ross would express any 
new mathematical results “in a language and notation that can be understood by the mathematical 
multitude.” LSHTM Ross/163/34/15. 
63 Letter from Ross to Hudson, 11 November 1930, RCPSG 9/M/9/1/17. 
64 Letter from Hudson to Ross, 8 December 1928, RCPSG 9/M/17/1/7. The threshold density of a 
population is the population density above which an epidemic can be sustained. 
65 It was not Hudson’s first review for Science Progress. In 1917, at Ross’s request, she reviewed 
H.S. Carslaw’s text on non-Euclidean geometry (Hudson 1917). 



384 J. Barrow-Green

for a real constant (where q is negative), “a minor exasperation”. It was a detailed 
review and Ross was happy with her efforts:66 

You have sent me an excellent review on the book [sic] by Kermack and McKendrick, and 
I  am  glad  that  you  like  the  paper.  . . . You  are  now  quite  beyond me for the reasons which I 
mentioned that I have got no brain at all. 

Their work together continued but by January 1929 Hudson was having doubts, 
telling Ross she felt “somewhat averse to publishing a new Royal Society paper 
unless it contains some distinctly new idea,” although she was happy about a reprint 
of the original papers.67 But Ross was not to be deterred, and by April 1929 he 
felt sufficiently confident to announce to readers of the BMJ the resumption of the 
collaboration, having outlined its earlier history: 

We are now beginning to consolidate and summarize our previous studies and to develop 
them by means of the finite calculus, the infinitesimal calculus, and by the use of integral 
equations. (Ross 1929, 674). 

Notably, he made no mention of statistics. It seems that he had given up on the idea 
of seeing how well the theory worked in practice. 

Within a couple of months, Ross had redrafted ‘The Theory of Happenings’ into 
the first part of a new article which he entitled ‘Two-Party Aggregates’—a two-party 
aggregate being a set of individuals that can be divided into two groups depending 
on whether the individuals possess (or receive) a particular quality. Initially only his 
name was on the draft but after it had been typed, Hudson’s name was added by 
hand.68 But by September he had got distracted by other mathematical interests and 
put the article on hold never to return to it, despite telling Hudson that he would.69 

Since the article was essentially the contents of the 1911 mathematical addendum 
augmented by Hudson’s clarifications and corrections, Hudson herself would have 
seen no value in pushing for publication, especially given Ross’s poor health. 

Ross did, however, persist with the reprinting of the Royal Society papers in 
book form, although with no new material apart from a short introduction which he 
alone authored (Ross and Hudson 1928). The book was eventually published in early 
1931, Hudson having helped Ross with the proofs. Also in 1931, believing fallacious 
experimental demonstrations of the possibility or impossibility of mosquito-control 
were being presented by people ignorant of his early work, he republished his paper 
from the St. Louis Congress (Ross 1905a) in the  Journal of Tropical Medicine and 
Hygiene under the title ‘A Mathematical Justification of Mosquito-Control’.70 

Although Ross did no more epidemiological research, he did produce a further 
manuscript. Entitled ‘A priori epidemiology’, it was written between 31 October 
and 16 November 1931, less than a year before he died, and was never published.

66 Letter from Ross to Hudson, 30 October 1928, RCPSG 9/M/9/1/13. 
67 Letter from Hudson to Ross, 26 January 1929, RCPSG 9/M/17/1/15. 
68 Two-Party Aggregates, manuscript, 20 May 1929–5 June 1929, RCPSG 9/M/17/1/2-3. Letter 
from Ross to Hudson, 7 June 1929, RCPSG 9/M/17/1/25. 
69 Letter from Ross to Hudson, 29 September 1929, RCPSG 9/M/18/1/2. 
70 See A.B. Hill, Journal of Tropical Medicine and Hygiene 34 (1931), p.177. 
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Over the course of four pages, he recounted the history of his own work, and that of 
others, explaining the significance of working a priori, eventually reducing it to “a 
method of trial and error”. Just how much the epidemiological work meant to him 
is clear from the opening paragraph:71 

My name has long been recognised even among the general British public as that of the man 
who largely verified Manson’s mosquito theory of malaria and who endeavoured to have it 
employed for saving human life on a large scale in most tropical countries; but in my own 
opinion my principal work has been to establish the general laws of epidemics. 

Even allowing for when it was written, it is remarkable to see that he valued 
the epidemiological work more highly than anything else he had achieved. Later in 
the manuscript, in the context of the Royal Society papers, he described Hudson 
as “an accomplished mathematician.” It is an apt description even though Ross’s 
mathematical interaction with Hudson had been nowhere near her true capability. 
Over the several years of their collaboration, Hudson had more than proved her 
worth to him, both as a mathematician and as a trusted colleague. As well as 
writing reviews for Science Progress, she also advised him on the suitability of 
mathematical articles submitted to the journal.72 On a more personal level, in May 
1916, he had asked her for advice on one of his papers, ‘The iteration of certain 
functions’, which, with her approval, he submitted to the Royal Society although 
it was ultimately rejected.73 And the following year, when she was working in the 
Air Department, he asked her if she could assist the Cambridge biologist, G.F.H. 
Nuttall, who needed help with calculating the reproductive power of body lice.74 

On all occasions she willingly obliged. 

15.8 Conclusion 

Although the mathematical approach pioneered by Ross would prove very influ-
ential,75 the actual mathematics required to complete Ross’s Royal Society paper 
of 1916 was neither deep nor novel, as pointed out by both Eddington and 
Pólya. The fact that Ross, despite his enthusiasm for mathematics, required the 
assistance of Hudson points sharply to his lack of mathematical training and

71 Ross, ‘A Priori Epidemiology’, unpublished manuscript, 31 October-16 November 1931, 
RCPSG 9/M/9/1/48. 
72 Ross to Hudson, 1 September 1916, RCPSG 9/M/8/15/46. 
73 The referees for Ross’s paper were William Burnside (reject), Andrew Russell Forsyth (accept 
with modifications), Percy MacMahon (accept). For the referee reports, see RSA RR/23/81-83. 
74 Nuttall had originally asked Ross for help with the calculation. Ross was unable to do it, so 
he passed it on to Hudson, and Hudson, although very busy with War work, managed it while on 
a train. LSHTM Ross/173/27/16. One rather alarming result from her calculations was that the 
offspring of the daughters of one female louse would number 112,778 (Nuttall 1923, 163)! 
75 For remarks on the influence of Ross’s approach, see the introduction to Heesterbeek and Roberts 
(2015) and to Dietz and Schenzle (2022). 
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general mathematical knowledge, and one might even be tempted to say lack of 
mathematical discipline. This lack showed in his earlier work too as, for example, 
in the jumble of algebra in Ross (1911a). The fact that Hudson, a Cambridge-trained 
mathematician but one who now specialised in geometry, not only had no difficulty 
in dealing with the mathematics he presented to her but also endeavoured to instruct 
him, serves to underscore the point. 

Ross clearly felt at ease working with Hudson, and it was an ease that was 
quickly established. Although there is formality in the openings and closings of their 
correspondence, the body is often humorous and Ross often pokes fun at himself, 
as for example in this letter to Hudson of 28 January 1929:76 

I have also been rereading that dreadful paper by Ross & Hudson, and have almost 
understood my first paper, and have greatly admired the concluding part III by Hudson. 
It is very well done, and some of the figures which you produced ought to have shown 
[Clifford Allchin] Gill who wrote his medical work on the Genesis of Epidemics, that we 
have already included his curious lucubrations in our conjoint paper — but of course doctors 
seldom know a word of mathematics, so that they can write any rubbish they please. 

Ross was not always the easiest person to get along with—he was involved in 
several notable polemics77 —but he hit it off with Hudson. He clearly respected her 
mathematical ability and she in turn seemed able to get the best out of him, not 
losing patience when at times his responses (or lack of them) must surely have left 
her exasperated. As the relationship developed, the tone in his letters becomes more 
familiar, and the terms he uses to describe her in his publications and manuscripts 
become increasingly complimentary. Having begun as his assistant, by 1928 she 
had become a “very expert mathematician” (Ross 1928, 158). The two met often 
to discuss their work, and, in the later years of their collaboration, when Ross had 
become wheelchair bound, Hudson would stay over at Ross’s house.78 

That at the end of 1916 Hudson gave up working with Ross in favour of working 
for the Aircraft Construction Department is no surprise. While she could see the 
benefit of their collaboration, the War brought a different set of priorities, and the 
work was not optimizing her mathematically. Similarly, after the War, it was an 
obvious choice for her to return to geometry, the subject in which she excelled. But 
once her book was published in 1927, she had time to spare, and it is an indication of 
the pleasure she had previously found in working with Ross that she did not hesitate 
to pick up the reins with him again. However, by this time, he was beginning to 
suffer from ill health and, as time marched on, it became clear that little further 
progress would be made, the main outcome being the republication of the Royal 
Society papers, but with no new material, and that not until 1931. A year later Ross 
would be dead.

76 Ross to Hudson, 28 January 1929, RCPSG 9/M/7/1/16. 
77 As well as falling out with Manson (Footnote 1), Ross was involved in a bitter priority dispute 
with Giovanni Grassi over the discovery of malarial transmission, see Capanna (2006). See also 
Chernin (1988a) which describes Ross’s attack on Paul De Kruif’s Microbe Hunters (1926). 
78 Letter from Hudson to Miss Lafford (Ross’s secretary), 20 July 1929, RCPSG 9/M/9/1/4. 
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As well as pointing to Hudson’s versatility as a mathematician, the epidemio-
logical work shows her as an excellent collaborator, both of which characteristics 
would be important in her work for the Air Construction Department. That she 
was employed at all by Ross was a consequence of the War, and she accepted the 
position because she thought it was war-work, albeit of a different kind. It is hard 
to imagine any other circumstances under which Ross would have specified to the 
Royal Society that he required funds to employ “a lady mathematical worker”. That 
Hudson applied for the post could hardly have been more fortunate for Ross. Not 
only was Hudson one of the best English women mathematicians of the day, but she 
was also a confident, careful worker with an instinct for successful collaboration, 
and with a family connection that put Ross at ease from the start. 
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Chapter 16 
How Useful Is the Term ‘Modernism’ for 
Understanding the History of Early 
Twentieth-Century Mathematics? 

Leo Corry 

Abstract The present article is intended as a critical assessment of some basic 
assumptions underlying the analysis of modernism in mathematics in its relationship 
with the broader aspects of cultural modernism, especially in the period 1890– 
1930. It discusses the potential historiographical gains of approaching the history 
of mathematics in the periods under such a perspective and suggests that a fruitful 
analysis of the phenomenon of modernism in mathematics must focus not on the 
common features of mathematics and other contemporary cultural trends, but rather 
on the common historical processes that led to the dominant approaches in all fields. 

16.1 Introduction 

It is widely acknowledged that the period roughly delimited by 1890 and 1930 
was marked by deep change in mathematics. It was also a time of thoroughgoing 
transformations that impacted the visual arts, music, architecture, and literature. 
The latter has often been explained in terms of artistic responses to the sweeping 
processes of modernization affecting Western societies. The term “modernism” has 
typically been used to refer to such trends and the ways in which they implied 
highly innovative—sometimes avant-garde—aesthetic conceptions characterized 
by unprecedented radical breaks with long-standing traditions in each area of 
cultural expression. A question naturally arising in these circumstances is whether 
the development of mathematics during said period can be seen as part of the 
phenomenon of “modernism” considered in its broader context, and whether 
adopting such a perspective leads to important historical insights. 

Herbert Mehrtens’ pioneering study, Moderne-Sprache-Mathematik (Mehrtens 
1990), opened the way to serious discussions on this issue. Following on his 
footsteps, Jeremy Gray published his well-known book, Plato’s Ghost. The Mod-
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ernist Transformation of Mathematics in 2018.1 The present article is intended as a 
critical assessment of some basic assumptions underlying the possible discussions 
of modernism in mathematics and the potential historiographical gains of pursuing 
such discussions. 

The processes of modernization that affected the content of mathematics during 
the said period concern the development of new methodologies, the rise of newly 
investigated mathematical entities and of new sub-disciplines, as well as the reshap-
ing of the internal organization of mathematical knowledge, the transformation 
relationships between mathematics and its neighboring disciplines, the demise 
or total abandonment of activity in areas of research that were very important 
in the previous century, and the adoption of either implicit or formulated new 
philosophical attitudes. At the institutional level, the meteoric rise of the Göttingen 
school came to epitomize the substantial changes undergone by the discipline in 
this period, as other centers, both in the German-speaking world (such as Berlin, 
Munich, Vienna, Hamburg) and outside (Paris, Cambridge), also underwent a 
significant transformation. In terms of scientific leadership, the achievements of 
David Hilbert and his circle embodied, both symbolically and contents-wise, the 
personal dimension of the spirit of the period, alongside other prominent names, 
such as Emmy Noether, Giuseppe Peano, and Felix Hausdorff. 

The suggestive idea of possible parallel developments and similar sources 
underlying both the broader cultural manifestations and mathematics arises in a 
comparable way when examining the dramatic changes that affected the neighboring 
discipline of physics. The classical theories of mechanics and electromagnetism 
had reached a climax towards the end of the nineteenth century yet now, its 
foundational assumptions had been put into question, and thoroughly new directions 
were leading the physicists’ understanding of phenomena at both the microscopic 
and the astronomic level. In his classical 1971 study on the rise of the new 
quantum mechanics, Paul Forman postulated an organic association between the 
contemporary adoption of non-deterministic types of causality in physics and some 
leading cultural motifs which he associated with the modernist spirit of Weimar 
Germany such as irrationality, anti-scientism, and acausality (Forman 1971). In the 
epigraph of the article, Forman cited the German physicist Gustav Mie who, in his 
1925 inaugural lecture in Freiburg, very explicitly expressed the kind of attitude 
that attracted Forman’s curiosity, as he indicated that even physics, “a discipline 
rigorously bound to the results of experiment,” evolves in ways that parallel those 
of the intellectual movements in other areas of modern life. 

Forman’s article has been widely read and cited, sometimes severely criticized, 
and also intriguingly reappraised by (Forman 2007; Carson et al.  2011). To the 
extent that one wants to either accept or reject the thrust of Forman’s argumen-
tation, what kind of lesson does it teach us about the issue of “mathematics and 
modernism”, if at all? A similar question can be asked of works dealing with the 
development of other fields of knowledge and culture at the time, including areas

1 Some of the main ideas were sketched earlier in (Gray 2004, 2006). 
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distant from mathematics. The present article suggests ways of addressing those 
questions and indicates some possible, specific directions in which this analysis 
might be profitably undertaken. The main pitfall against which I want to call 
attention is that of shooting the arrow and then tracing a bull’s eye around it. Indeed, 
one of the main difficulties affecting discussions of “modernism” in general (not just 
concerning the history of mathematics) is that of finding the proper definition of the 
concept, to begin with. One might easily start by finding a general definition that 
can then be made to fit the developments of mathematics in the relevant period just 
to be able to put together all that we have learnt from historical research and thus 
affirm that, yes, “modernism” characterizes mathematics as it characterizes other 
contemporary cultural manifestations. Although this approach has some interest, it 
does not seem to be very illuminating, and indeed it runs the risk of being misleading 
since, by its very nature, it may force us to be unnecessarily “flexible” in our 
approach to making historical facts fit the desired definition. 

The article opens with an overview of some prominent ways in which the term 
“modernism” has been used in the historiography of the arts, and calls attention 
to certain debates surrounding its relevance in that context. This is followed by 
a discussion of three concrete examples of works that investigate the relationship 
between modernism in general and the modern exact sciences: on the one hand, an 
investigation of the influence of scientific ideas on modern visual arts (in the writ-
ings of Linda Henderson), and, on the other hand, two books (by Herbert Mehrtens 
and Jeremy Gray) that explore the connections of modern mathematics with more 
general, modernist cultural trends. In the following two sections, I consider two 
examples of authors who discuss the roots and developments of modernist ideas 
in specific contexts (modernist painting in the writings of Clement Greenberg and 
Viennese modernism by Allan Janik and Stephen Toulmin) and examine the possible 
convenience of using their perspective in discussing modernism and mathematics. 

Besides the critical examination of existing debates, on the positive side, a main 
claim raised discussed in this article is that a fruitful analysis of the phenomenon of 
modernism in mathematics must focus not on the common features of mathematics 
and other contemporary cultural trends (including other scientific disciplines – 
mainly physics), but rather on the common historical processes that led to the 
dominant approaches in all fields in the period of time we are investigating. To 
the extent that the existence of what is described as common, modernist features 
in the sciences and in the arts has been explained in the existing literature, this has 
been typically done in terms of a mysterious “Zeitgeist” or even “common cultural 
values” (as suggested, e.g., in (Miller 2000, 480; Yourgrau 2005, 3)). Though useful 
at first sight, such an approach is, in my view, far from satisfactory because the 
“Zeitgeist”, if it indeed exists, is what needs to be explained. In contrast, a clearer 
understanding of the processes that led to the rise of modernism in other intellectual 
fields, may help us look for similar historical processes in mathematics. 

It is pertinent to mention that Mehrtens pointed to this direction, as he stressed 
the difference between “Moderne”, referring to the intellectual trend itself, and 
“Modernisierung”, which refers to the historical processes leading to changes in the 
discipline of mathematics, within its broader social and cultural context. However,
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there seems to be much room for further exploration in this direction, which could 
lead to additional insights thus far overlooked by historians. If properly pursued, 
this might amount, I suggest, to a significant contribution to the historiography of 
the discipline. Likewise, and no less interestingly, a clearer understanding of the 
historical processes that led to putative modernist mathematics could shed new light 
on the essence and origins of modernism in general. 

16.2 Modernism: A Useful Historiographical Category? 

Despite its ubiquity, the fruitfulness of the concept of “modernism” as an analytic 
category in the context of general cultural history is far from being self-evident 
or settled. Indeed, its very meaning and the time span that it covers remains 
the subject of debate. Ranging from the seminal anthology edited by Malcolm 
Bradbury and James McFarlane (1976), and the more recent, two-volume collection 
edited by Astradur Eysteinsson and Vivian Liska (2007), to the volumes of the 
journal Modernism/modernity, by the Modernist Studies Association, the body of 
research literature is enormous. From this abundance of sources, I want to focus 
here on Ulrich Weisstein’s article, “How Useful is the Term ‘Modernism’ for the 
Interdisciplinary Study of Twentieth-Century Art?” (1995), (whose title I have 
obviously appropriated). Based on the assumption that the idea of “Modernism” has 
indeed been used in fruitful ways in his own field of research, comparative literature, 
Weisstein wondered about its possible usefulness in researching other domains, 
including the visual arts and music. In doing so, he characterized the various kinds 
of modernist aesthetics in terms of their emphasis on the formal, as opposed to 
concrete subject matters and intentions, together with a consistent inclination to 
undertake radical breaks with the accepted norms of the field, by way of rites of 
passage and inspirational manifestos meant to embody avant-garde attitudes. 

To be sure, Weisstein’s characterization has both merits and drawbacks as an 
adequate prism from which to approach modernism in general. Yet the same can be 
said of many such checklists proposed by other authors pursuing the same task, 
most partially overlapping with and differing from Weisstein’s, as well as from 
each other.2 Thus, assessing the extent to which modern mathematics is properly 
defined as a modernist phenomenon by reference to any specific proposal of this 
kind—by checking whether or not, and to what extent, the suggested features are 
manifested—may end up being an unilluminating historiographical exercise. It runs 
the risk of providing a Procrustean bed into which the historical facts are forced, 
while shedding little new light on our understanding of the historical processes. 
“Modernism” may only become a truly useful historiographical category for our 
topic if it helps interpreting the known historical evidence in innovative ways, or if it

2 See, e.g., (Calinescu 1987; Childs  2000; Eysteinsson 1990, 2021; Gay  2007). 
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would lead us to consider new kinds of materials thus far ignored, or underestimated, 
as part of historical research on the development of mathematics. 

The question whether “modernism” can be used as a useful category to study the 
history of mathematics, moreover, is best understood when seen as part of a broader 
trend noticeable over the last 30 years, that involved attempts to take advantage and 
inspiration of historiographic conceptions, originating in neighboring fields, mainly 
in the historiography of other scientific disciplines (Barany 2020; Remmert et al. 
2016). The trend arose, in the first place, in relation with the Kuhnian concepts 
of “revolution” and “paradigm” (Gillies 1992), Lakatos’ “scientific research pro-
grams” (Hallett 1979a, b), and with ideas taken from the sociology of knowledge 
(MacKenzie 1993), which in an extreme version led to David Bloor’s “strong 
program” (Bloor 1991). More recently, it has comprised reliance on ideas such as 
“research schools” (Parshall 2004), “traditions” (Rowe 2004), “images of science” 
(Corry 1989; Bottazzini and Dahan-Dalmédico 2001), “epistemic configurations” 
(Epple 2004), “material culture of science” (Galison 2003),3 quantitative analyses 
(Goldstein 1999; Wagner-Döbler and Berg 1993), and various others. 

When discussing mathematics in association with literature, art, or music, on 
the other hand, it is important to stress the obvious, namely, that in fields like art, 
literature and music, considerations of objectivity, universality, testability, and the 
like, if appearing at all as part of the aims of the artists or of the audiences, emerge 
in ways that differ sensibly from those of science (see, e.g., Corry 2007a, b, c; 
Engelhardt and Tubbs 2021). No less important is to keep in mind the different 
relationship each of these domains entertain with its own past and history. Many 
definitions of modernism put at their focus the idea of a “radical break with the 
past”, and such definitions will necessarily apply in sensibly different ways to either 
the arts or to mathematics. Being guided, above all, by the need to solve problems 
and to develop mathematical theories, the kinds, and breadth of choices available to 
a mathematician (and, in particular, choices that may lead to “breaks with the past”) 
are much more reduced and clearly constrained than those available to the artist. In 
shaping their artistic self-identity and in defining their creative agenda, modernist 
artists can choose to ignore, and even oppose any aspect of traditional aesthetics and 
craftsmanship. This implies taking professional risks, of course, especially when it 
comes to artists at the beginning of their careers, but it can certainly be done and, in 
fact, has been successfully achieved by prominent modernists. 

The choices open before aspiring mathematicians intent on making “a radical 
break with the past” while remaining part of the mathematical community are much 
more reduced. Artists might decide to develop their work and career by innovating 
within the field to the extent that cuts all connection with the contemporary 
mainstream in the relevant community. The aspiring mathematicians, in contrast, 
must fully assume the central values of the professional ethos to become part of 
the guild. They will abide by the rules of classical logic and gain complete control

3 Although more naturally seen as dealing with the history of physics, Galison’s book devotes 
considerable attention to Poincaré’s mathematics as well. 
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of the accepted “mathematical craftsmanship” in their field of choice. They must 
publish in the mainstream mathematical journals and will typically strive to do so 
in those broadly considered to be the leading ones. Moreover, in very few cases will 
an already established mathematician come up with radical proposals for changes 
in the standards of the field.4 

The kind of radical changes that have affected mathematics, especially modern 
mathematics, touch upon the images of knowledge, and particular to innovative 
ways of organizing knowledge into sub-disciplines (as in the case of “Modern 
Algebra” (Corry 2007b)) or developing new methodologies over older ones (as in 
the case of computer-assisted number theory (Corry 2007c)). 

When it comes to the relationship between mathematics and other scientific 
disciplines, particularly physics, however, there are important points to stress. 
Thus, given their radical new approach to the basic concepts of physics—time, 
space, matter, causality—it seems natural that historians undertaking the question 
of modernism in science and the arts, turned to the theory of relativity and quantum 
mechanics as a fundamental bridge across domains during the period in question. 
The aforementioned work of Forman is a foremost example of this trend. Indeed, 
Forman stressed, while focusing his account specifically on the impact of Oswald 
Spengler’s ideas, that attempts at drawing such bridges were at the very heart of 
Weimar culture. Spengler’s account of Western culture draws fundamental parallels 
between art, mathematics, science, culture, and society, and the main contribution 
of Forman’s analysis is found in the detailed description of the strong impression 
this perspective on history caused both on scientists and mathematicians. 

Additionally, there are more or less successful attempts at understanding these 
bridges that could be mentioned here (Miller 2000; Vargish and Mook 1999).5 And 
yet, in spite of the disciplinary closeness between physics and mathematics, there are 
some important differences that affect our discussion here, particularly concerning

4 The most prominent example that would come to mind is that of Luitzen J.E. Brouwer, whose 
doctoral advisor urged him to delete the more philosophical and controversial parts of the 
dissertation and to focus on the more mainstream aspects of mathematics that it contained. It 
was only somewhat later, as he became a respected practitioner of a mainstream mathematical 
domain, that he started publishing and promoting his philosophical ideas, and to devote his time and 
energies to developing new kinds of radical, intuitionistic mathematics. Brouwer promoted a kind 
of logic, later called “intuitionistic logic”, deviating from the mainstream but not implying a call 
to abandon classical logic, but rather to revert logic to a previous stage in its evolution, where no 
considerations of the actual infinite had (wrongfully and dangerously, from his perspective) made 
deep headway into mainstream mathematics. See (van Dalen 1999, 89–99). Another interesting 
case is that of Doron Zeilberger’s call, after a distinguished carrer in classical disciplines, for an 
abandonment of “Human-Supremacist”, “human-generated, and human-centrist ‘conceptual’ pure 
math mathematics” in favor of computer-generated, “experimental mathematics”. 
5 In an illuminating article about the use of the terms “classical” and “modern” by physicists in 
the early twentieth century, Staley (2005) addresses this difference from an interesting perspective. 
In his opinion, whereas in physics discussions about “classical” theories and their status were 
more significant for the consolidation and propagation of new theories and approaches than any 
invocation of “modernity”, in mathematics, different views about “modernity” were central to 
many debates within the mathematical community. 
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what I have elsewhere called the “reflexive character of mathematical knowledge,” 
on which I want to comment briefly as part of this preliminary discussion. 

Mathematics is in a unique position among the sciences to allow an investigation 
of aspects of the discipline with tools offered by mathematics itself (Corry 1989). 
Entire mathematical disciplines that arose in the early twentieth century are devoted 
to this quest: proof theory, complexity theory, category theory, etc. These analyze 
specific aspects of mathematical practice and mathematical theories, and do so with 
the help of tools provided by the discipline and with the same degree of precision 
and clarity that is typical, and indeed unique, to mathematics. Gödel’s theorems, for 
instance, involve results about the limitations of deduction mathematical theories 
defined by systems of axioms. The way that new methods were explicitly introduced 
to prove them does not differ from the way this is done in other mathematical 
situations. Biology, for example, cannot self-analyze the discipline with tools taken 
from the discipline itself, as biological theories are not biological entities. 

On the other hand, literature can become the subject matter of a literary piece; 
painting can become the subject matter of painting, and so on, for other artistic 
endeavors. But whatever these domains can express about themselves, they will 
do so differently from what mathematics can say about itself. This unique feature 
of mathematics is not remarkable in itself and is also specifically relevant to the 
discussion of modernism, given the dual fact that (1) the reflexive study of the 
language and methods of specific cultural fields has very often been taken to be 
a hallmark of modernism in the arts, as I will stress below, and that (2) this 
reflexive character of mathematics became so prominently developed in the period 
that interests us here. 

The differences and tensions arising in this complex, triangular relationship 
between mathematics, the natural sciences and the arts must be considered and 
stressed explicitly in any serious analysis of mathematics and modernism. This 
relationship, moreover, is subject to ongoing changes and conditioned by historical 
circumstances. Hence, a proper examination of the historical processes under which 
the three realms evolved in the period that interests us here, and their possible 
interactions, is necessary for such an analysis and to shed new light on the history 
of modern mathematics. Whatever one may want to say about modernism in 
mathematics and its relationship with modernism in other fields, one must remember 
that the changing relationship among the fields must be taken to be part of this 
historical phenomenon.6 

6 An even broader and more comprehensive such analysis should also pay attention to philosophy 
and the social sciences with their own specificities, but for reasons of space I will leave them 
outside the scope of the present discussion. See, e.g., (Ross 1994; Vrahimis 2012).
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16.3 Modern Mathematics and Modernist Art 

I move now on to examine some existing works explicitly addressing the connec-
tions between mathematics and the arts in the period between1890–1930 and to 
comment on them against the background of the ideas discussed in the previous 
section. First, I focus on an analysis of the possible influences of mathematics and 
the sciences on the arts. Then, I move to consider the opposite direction, which 
includes the important contribution of Jeremy Gray. 

An outstanding example of analysis of the influence of physics and mathematics 
on modern art in the early twentieth century appears in the work of Linda 
Henderson (Henderson 1983, 2004, 2005, 2007). Henderson explored the ways 
in which certain scientific ideas dominating the public imagination at the turn 
of the century, provided “the armature of the cultural matrix that stimulated the 
imaginations of modern artists and writers” (Henderson 2004, 458). Artists who felt 
the inadequacy of current artistic language to express the complexity of new realities 
newly uncovered by science (or increasingly perceived by public imagination) were 
pushed into pursuing new directions of expression, and hence contributing to the 
creation of a new artistic language; the modernist language of art. But in showing 
this, Henderson also studiously undermined the all-too-easy, and often repeated 
image of a putative convergence of modern art and modern science at the turn 
of twentieth century in the emblematic personae and personalities of Picasso and 
Einstein.7 Contrary to a conception first broadly and famously promoted in Sigfried 
Giedion’s Space, Time and Architecture (Giedion 1941), Einstein’s early ideas on 
relativity were not at all known to Picasso at the time of consolidating his new 
cubist conceptions. More generally, it was not before 1919, when in the wake of 
the famous Eddington eclipse expedition, Einstein was catapulted to world fame, 
as the popularizations of relativity theory captured public and artistic imagination 
(Levenson 2003, 218–37). It was only then that ideas of space and time related to 
relativity did offer new metaphors and opened new avenues of expression that some 
prominent artists undertook to follow. As Henderson’s work illustrates, it was not 
relativity but central ideas stemming from classical physics in the late nineteenth 
century that underlie the ways in which science contributed to creating new artistic 
directions in the early modernist period. These ideas were related above all with the 
ether, but also with other concepts and theories that stressed the existence of supra-
sensible, invisible physical phenomena. These “invisible phenomena” comprised 
the discovery of X-rays, radioactivity, the discourse around the fourth dimension 
(especially as popularized through the works of the British hyperspace philosopher 
Howard Hinton (1853–1907)), and the idea of the cosmic consciousness introduced 
by the Russian esoteric philosopher Pyotr Demianovich Ouspenskii (1878–1947). 

Henderson offers a superb example of how, by looking into the development of 
science, we can gain new insights into the issue of modernism in art. The main

7 A typical version of which appears in (Miller 2002). 
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thread of her account emerges from within the internal development in the arts and 
focuses on some crucial historical crossroads where substantial questions about the 
most fundamental assumptions of art and of its language arose at the turn of the 
twentieth century. Faced with these pressing questions, certain artists sought to come 
to terms with these by looking for new ideas and directions of thought. Henderson 
then separately focuses on contemporary developments in science, developments 
that, in themselves, had nothing to do with modernism or with modernist Zeitgeist, 
and shows how these developments afforded new concepts, a new imagery, and new 
perspectives that the artists could take as starting point for the new ways they were 
attempting to develop in their own artistic quest. Thus, in Henderson’s narrative 
there is no assumption of common ideas or common trends simultaneously arising 
in both realms for some unknown reason. In fact, whether the main scientific ideas 
were properly understood by the artists in question is not a truly relevant point in 
her account. She shows, in this way, how public perception of scientific ideas—not 
necessarily the truly important or more revolutionary ones at the time—played a 
central role in the consolidation of major trends and personal styles in modernist 
art (Cubism, Futurism, Duchamp, Boccioni, Kupka, etc.). Science appears here as 
offering a broadened world of ideas, metaphors, and images from which the artists 
could pick according to their needs, tastes, and inclinations.8 

Henderson’s work thus offers a remarkable example of an approach that, the 
direction of the impact were to be turned around, has the potential to lead to a truly 
illuminating attempt at making sense of modern mathematics as part of the broader 
cultural phenomena of modernism. Such an approach would ideally involve two 
steps: 

1. The historian should first take a fresh look at the overall developments in the 
discipline of mathematics—its results, its language, its foundational conceptions, 
its relationships with neighboring disciplines, its institutions and values—to trace 
those places where the discipline and its practitioners face in this period of 
time an inadequacy to address, in terms of the existing disciplinary tools, the 
complexity of a new reality. This inadequacy may well manifest itself in terms 
of a deep crisis or anxiety systematically surfacing in the disciplinary discourse, 
that historians should identify and articulate. 

2. In a second crucial step, the historian should provide an account of the ways 
in which this inadequacy was addressed by mathematicians following new 
paths. In this account, external inputs from the arts, music, architecture or 
philosophy would become instrumental in helping shape the course of events 
that transformed the discipline at the turn of the twentieth century. 

Whether or not such an approach may successfully be applied to understanding in 
new ways specific situations in the development of modern mathematics is yet to 
be seen. At this point, I would like to take a brief look at two seminal books that

8 Similar in this respect, with an emphasis on mathematics, are the account presented in (Gamwell 
2015). 
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undertook the most thoroughgoing analysis to date of modern mathematics as part 
of the more general cultural phenomenon of modernism and to analyze, relying on 
the scheme suggested above, the scope and impact of their undertaking. One of them 
is, as already stated, Jeremy Gray’s Plato’s Ghost, but I start with Herbert Mehrtens’ 
Moderne-Sprache-Mathematik (Mehrtens 1990), which pioneered the trend. 

Mehrtens explicitly connected some of the basic features commonly associated 
with modern mathematics to modernization processes and their manifestations in 
various fields of culture and society. He examined the impact of the rise of new types 
of industries and professions (e.g., in the insurance area), and of trends in higher 
education. In his analysis, he incorporated—among other things—semiotic concepts 
and philosophical insights drawn from authors like Foucault or Lacan. He accorded 
prime importance to an examination of mathematical language while stressing a 
three-fold distinction between different aspects of the latter: (1) mathematics as 
a language (Sprache Mathematik), (2) the language used in mathematical texts 
(comprising systems of terms and symbols that are combined according to formal 
rules stipulated in advance), and (3) the language of mathematicians (Sprechen 
der Mathematiker), which comprises a combination of language used in fully 
formalized mathematical texts and texts written in natural language. 

In these terms, Mehrtens discussed modernism in mathematics by referring to the 
main kinds of reactions elicited by the development of mathematics by the end of the 
nineteenth century, notably as they manifested themselves through debates about the 
source of its meaning in mathematics and about the autonomy of the discipline and 
its discourse. These reactions comprised a break with more traditional disciplines 
and a search for disciplinary autonomy of a kind and degree theretofore unknown 
in the field. In these terms, he identified two groups of mathematicians espousing 
diverging views. On the one hand, there was a “modern” camp represented by the 
likes of Georg Cantor (1845–1914), David Hilbert (1862–1943), Felix Hausdorff 
(1868–1942) and Ernst Zermelo (1871–1953). An increasing estrangement from 
the classical conception of mathematics was characteristic of their attitude as an 
attempt to explore some naturally or transcendentally given mathematical entities 
(such as numbers, geometrical spaces, or functions). They conceived the essence 
of mathematics to be the analysis of a man-made symbolic language, and the 
exploration of the logical possibilities spanned by the application of the rules that 
control this language. Mathematics, in this view, was a free, creative enterprise 
constrained only by fruitfulness and internal coherence. Hilbert was, in Mehrtens 
account, leading figure of this camp. 

Concurrently, a second camp developed, denominated by Mehrtens as “counter-
modern”, led by mathematicians such as Felix Klein (1849–1925), Henri Poincaré 
(1854–1912), and Luitzen J. E. Brouwer (1881–1966). For them, the investigation 
of spatial and arithmetic intuition (in the classical sense of Anschauung) continued 
to be the primary thrust of mathematics. He also included mathematicians in 
this camp who lay their stress on real-world applications in physics, technology, 
economics, etc. The rhetoric of “freedom” of ideas as the basis of mathematics, 
initiated by Richard Dedekind (1831–1916) and enthusiastically followed by the 
modernist mathematicians (Corry 2017), was rejected, in Mehrtens’ account,
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by the mathematicians of the counter-modernist camp, who priced above all 
finiteness, Anschauung and “construction.” Brouwer appears here as the arch-
counter-modernist. His idiosyncratic positions in both mathematical and political 
matters (as well as the affinities between Brouwer and the national-socialist Berlin 
mathematician (1886–1982)) allowed Mehrtens to identify what he saw as the 
common, counter-modernist traits underlying both levels (Mehrtens 1996). 

An important and original point underlying Mehrtens’ analysis is the emphasis 
on the simultaneous existence of these two camps and the focus on the ongoing 
critical dialogue between them, as the main feature of the history of early twentieth-
century mathematics. This critical dialogue was, inter alia, at the root of a crisis of 
meaning that affected the discipline in the 1920s (the so-called “foundational crisis” 
(pp. 289–330)) and led to a redefinition of its self-identity. Moreover, by contrasting 
the attitudes of the two camps, Mehrtens implicitly presented the modernist attitude 
in mathematics as a matter of choice rather than one of necessity. 

Mehrtens’ book has been consistently praised for its pioneering status in the 
debate on modernism in mathematics and for the original approach, it has put 
forward. However, its limitations have also been consistently pointed out. Mehrtens’ 
analysis focuses mainly on the programmatic declarations of those mathematicians 
he discusses and on their institutional activities. These are matters of real interest 
as sources of historical analysis, and it is worth stressing that the contents of math-
ematics are influenced by ideological considerations and institutional constraints. 
But as Moritz Epple remarks, in the final account, “Mehrtens does not attempt to 
analyze some of the more advanced productions of modernist or counter-modernist 
mathematicians, and makes, in fact, no claims about the internal construction of 
modern mathematics” (Epple 1997, 191).9 

Thus, Mehrtens left many fundamental questions unanswered, and his argu-
mentation was somewhat misleading. For one thing, the critical debate among 
“moderns” and “countermoderns” would appear to be, in Mehrtens’ account, one 
that referred only to the external or meta-mathematical aspects, while being alien 
to questions of actual research programs, newly emerging mathematical results, 
techniques, or disciplines. In addition, the classification of mathematicians into 
these two camps, and the criteria of belonging to either of them, seems too coarse to 
stand the test of close historical scrutiny, and in the final account was too strongly 
circumscribed to the Göttingen mathematical culture. In this sense, Mehrtens’ 
book, for all its virtues, falls short of giving a satisfactory account of “modern 
mathematics” as a “modernist” undertaking. 

Having said that, I think that two fundamental elements of Mehrtens’ analysis 
are highly relevant to any prospective, insightful analysis of modernism in math-
ematics. First is the possible, simultaneous existence of alternative approaches to 
mathematics that are open to choose, according to considerations that do not strictly 
derive from the body of mathematics itself. Some of the elements that Mehrtens 
identifies in distinguishing between moderns and counter-moderns seem to me

9 See also (Epple 1996). 
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highly relevant, but I think they could be more fruitfully used by historians if 
approached in a less schematic way, namely, by realizing that in the work of one 
of the same mathematician (or, alternatively, in the works of several mathematicians 
associated with one and the same school or tradition) we can find elements of both 
the modern and the counter-modern trend. These various elements may interact and 
continuously change their relative weight along the historical process. 

The second point refers to the historical processes that Mehrtens indicated as 
leading to the rise of modernist approaches in mathematics, namely the rapid growth 
of the discipline (together with other branches of sciences) by the late nineteenth 
century, and the enormous diversity and heterogeneity that suddenly appeared at 
various levels of mathematical activity (technical, language-related, philosophical, 
institutional). In this sense, Mehrtens follows the lead of those accounts of the rise 
of modernism in the arts that have presented it as a reaction to certain sociological 
and historical processes (such as urbanization, industrialization, or mechanization), 
and that in my view, if identified within the history of mathematics, may lead to new 
insights about the development of the discipline. 

The second book to be mentioned here is Jeremy Gray’s more recent Plato’s 
Ghost. The Modernist Transformation of Mathematics. Gray’s book provides a 
thoroughgoing account of the main transformations mathematics underwent in the 
period of our discussion, while comparing the main traits of these developments 
with the conceptions that previously dominated the discipline and that he schemati-
cally summarizes as “the consensus in 1880”. Gray claims that the developments so 
described are best understood as a “modernist transformation”. This concerns not 
just the changes that affected the contents of the leading mathematical branches but 
also additional aspects related to the discipline, such as its foundational conceptions, 
its language, its disciplinary relationship with physics, or even the ways in which the 
history of mathematics was now written or in which mathematics was popularized. 
Thus, for instance, Gray provides an illuminating survey of works written at the 
turn of the century, many of them by leading mathematicians, aimed at educated 
audiences of teachers, philosophers, psychologists, lawyers, and members of the 
Church. Such audiences, Gray suggests, reflected a new kind of growing interest 
of audiences that were ambiguous about science but wanted to hear about current 
developments (Gray 2008, 346–65). On the other hand, Gray remains less sure 
about the connection between modernist trends and the renewed interest in historical 
writing about mathematics (Gray 2008, 365–372). 

Naturally, Gray is well-aware that “if the idea of mathematical modernism is to be 
worth entertaining, it must be clear, it must be useful, and it must merit the analogy 
it implies with contemporary cultural modernism.” In addition, “there should be 
mathematical developments that do not fit at the very least those from earlier 
periods, and one might presume some contemporary ones as well.” Accordingly, 
Gray’s book opens with a characterization of modernism meant to provide the 
underlying thread of his analysis. In his own words: 

Here modernism is defined as an autonomous body of ideas, having little or no outward 
reference, placing considerable emphasis on formal aspects of the work and maintaining a 
complicated – indeed anxious – rather than a naïve relationship with the day-to-day world,
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which is the de facto view of a coherent group of people, such as a professional or discipline-
based group that has a high sense of the seriousness and value of what it is trying to achieve. 
(Gray 2008, 1)  

Gray intends this definition, not as a straitjacket determined by a strict party 
line but rather as an idea of a broad cultural field providing a perspective that 
may help historians integrate issues traditionally treated separately (including both 
technical aspects of certain sub-disciplines and prevailing philosophical conceptions 
about mathematics), or stressing new historical insights on previously unnoticed 
developments. Thus, for instance, the interactions with ideas of artificial languages, 
the importance of certain philosophers hitherto marginalized in the history of 
mathematics, the role of popularization, or the interest in the history of mathematics 
which had a resurgence in the said period. 

One issue of particular interest raised by Gray in this context is that of “anxiety” 
(pp. 266–277). The development of mathematics in the nineteenth century is usually 
presented as a great success story, which certainly it is, and Gray does not dispute it. 
But at the same time, a growing sense of anxiety of a new kind, about the reliability 
of mathematics, the nature of proof, or the pervasiveness of error, was a recurrent 
theme in many discussions about mathematics, and this is an aspect that has received 
much less attention. Gray raises the point in direct connection with the anxiety that is 
often associated with modernism as a general cultural trait of the turn of the century. 
As an example of this anxiety, he calls attention to certain texts with such a manifest 
concern that historians previously overlooked or just regarded as isolated texts. Gray 
makes a clear and explicit connection between these texts with one another and with 
the broader topics of modernism. 

Gray’s book complements Mehrtens’ in presenting a much broader and nuanced 
characterization of the discipline of mathematics in the period 1890–1930. On the 
other hand, in comparison with Mehrtens, Gray devotes much more attention to 
describing these characteristic features than to explaining the motivations and causes 
of the processes that ultimately led mathematics to become the kind of discipline 
that he aptly describes.10 

Mehrtens’ and Gray’s books are, then, two significant attempts to approach 
the history of modern mathematics while relying on the idea of modernism as a 
historiographical category with significant explanatory added value. Against the 
background of my brief account and the many additional reviews of the books cited 
above, I return to my claim that for such attempts to be successful, it is necessary 
to focus more compellingly on showing (if possible) that the external processes 
that led to modernism in general and modern mathematics are similar and have 
common cultural roots.11 One should not rule out the possibility that such kinds of 
external processes indeed took place and were meaningful in shaping the history

10 For additional discussions on Gray’s book, see (Feferman 2009; Rowe 2013; Schappacher 2012; 
Scholz 2010). 
11 An alternative, but not very convincing, way to connect mathematics with the general phe-
nomenon of modernism appears in (Everdell 1997), where Cantor and Dedekind are presented 
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of mathematics. But in terms of existing research, little evidence of anything of the 
sort has been put forward by historians in rigorous detail thus far. The question, 
therefore, arises whether it is possible and illuminating to do so. 

16.4 Greenberg’s Modernist Painting and Modernist 
Mathematics 

I proceed to discuss in this and in the next section two specific kinds of analysis 
of modernism that, while being completely unrelated to mathematics, do suggest 
directions that might be followed to turn the type of general directives delineated 
in the previous sections into concrete historical research. First, I discuss some 
ideas found in the writings of the celebrated and highly controversial art critic 
Clement Greenberg (1909–1994). For some historians of art, I should stress at the 
outset, Greenberg is total anathema and the foremost example of how the history of 
modern art should not be written and understood. Art historian Caroline A. Jones, 
for instance, described his views on modernism as “extraordinarily narrow” and 
as not proving “capacious enough for much painting of the modern period (even 
much “great painting”, pace Greenberg)” (Jones 2000, 494). Jones published the 
most comprehensive account to date of Greenberg’s writings and influence (Jones 
2005). The reader willing to take the challenge of her ambitious book will get the 
direct taste of the kind of passionate opposition (and attraction) that the “Greenberg 
effect” has aroused among its critics. 

Still, I find it pertinent to call attention to some of Greenberg’s texts for their 
high suggestivity for the main aim of this article. Being an outsider to the world 
of art criticism, I can bypass the question of whether Greenberg’s characterization 
of modernism in art is comprehensive enough. Likewise, I can certainly ignore the 
ways in which he allegedly turned his view from descriptive to normative, i.e., that 
he did not limit himself to providing a historical explanation of the process that led 
to the creation and predominance of certain styles in twentieth century art, but he 
also wanted to determine, along the same train of ideas, what good art is and should 
be.12 Greenberg was certainly not just a detached commentator but a main figure, 
strongly involved in the art scene in New York who had the power and the tools 
to build and destroy at will the careers of many an artist. His support of Jackson 
Pollock is a well-known chapter of his achievements in this regard, and so is his 
very negative attitude towards Marcel Duchamp and Ad Reinhardt. 

as the true (unaware) initiators of modernism because the way in which they treated the continuum 
in their mathematical work. See also (Pollack-Milgate 2021).
12 One can find in Greenberg’s own texts support for such a view, but in other places he 
emphatically denied that his analysis was ever intended as anything beyond pure description. See, 
e.g., (Greenberg 1983): “I wrote a piece called ‘Modernist Painting’ that got taken as a program 
when it was only a description.” 



16 How Useful Is the Term ‘Modernism’ for Understanding the History. . . 407

Good examples of Greenberg’s insights that I deem valuable for the present 
discussion are found in a famous article of 1960, “Modernist Painting”, where he 
characterized the essence of modernism in terms that, if unaware of the context, one 
could easily take to be a description of modern mathematics. He thus wrote: 

The essence of Modernism lies, as I see it, in the use of characteristic methods of a discipline 
to criticize the discipline itself, not in order to subvert it but in order to entrench it more 
firmly in its area of competence. . . .  The self-criticism of Modernism grows out of, but 
is not the same thing as, the criticism of the Enlightenment. The Enlightenment criticized 
from the outside, the way criticism in its accepted sense does; Modernism criticizes from 
the inside, through the procedures themselves of that which is being criticized. (Greenberg 
1995, 85) 

Indeed, the reflexive character of mathematics (discussed above) reached a dis-
tinctive peak at the turn of the twentieth century and became the main tool for 
discussing and indeed criticizing the discipline. Think of the foundational works 
of Frege, Russell, Hilbert, Brouwer, Weyl or Gödel. As in Greenberg’s description, 
this “criticism” worked from within, using the tools of the discipline, meant not to 
subvert it, but rather to entrench its status.13 

For Greenberg, the source of this new kind of criticism coming from within could 
be traced back to Kant. It would seem natural that, given the essentially critical 
nature of the discipline, philosophy would engage in this kind to self-criticism, and 
Kant took it to new heights in his critical philosophy exploring the conditions of 
production of philosophy itself. However, Greenberg raised an interesting historical 
point here, relevant to our account. As the eighteenth century wore on, more rational 
justifications started to emerge in other disciplines as well, eventually reaching the 
arts. The latter, according to Greenberg, had been denied by the Enlightenment 
a serious task and the arts were thus gradually reduced to “pure and simple” 
entertainment. A type of Kantian self-criticism that would explore the conditions 
of production of art from within art itself (and here he meant mainly the visual arts) 
appeared as a possible way to redefine the kind of experience that would stress what 
is valuable in art in its own right and, particularly, what could not be obtained from 
any other kind of activity. Herein lies Greenberg’s explanation of the origin, the 
essence, and indeed the justification of modernist art: 

Each art had to determine, through its own operations and works, the effects exclusive to 
itself. . . .  It quickly emerged that the unique and proper area of competence of each art 
coincided with all that was unique in the nature of its medium. (Greenberg 1995, 86) 

And in the case of painting this led Greenberg to characterize modernism in terms 
of a preoccupation with two main dimensions of this artistic activity, namely, (1)

13 It is worth stressing, however, that the issue of self-criticism and the ability of an individual (or 
a collective for that matter) to effectively distance himself from the normative framework in which 
he functions in order to be self-critical and innovative is a truly complex one, when considered 
from a broader philosophical point of view. For a through discussion that examines the views 
of philosophers like Brandom, Friedman, Davidson, Habermas, Rorty, and others, see (Fisch and 
Benbaji 2011). 
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the intrinsic fact of painting’s flatness and the inherent physical delimitation of this 
flatness and (2) the gradual tendency of painting (recognizable since the last third 
of the nineteenth century) to estrange itself from the classical task of representation 
while occupying itself increasingly with questions of its nature. Thus, these two 
main characteristic features—painting’s preoccupation with the question of flatness 
and its limitations—appear here as a direct consequence of the self-critical processes 
that Greenberg described above: 

It was the stressing of the ineluctable flatness of the surface that remained, however, more 
fundamental than anything else to the processes by which pictorial art criticized and defined 
itself under Modernism. For flatness alone was unique and exclusive to pictorial art. The 
enclosing shape of the picture was a limiting condition, or norm, that was shared with the 
art of the theater; color was a norm and a means shared not only with the theater, but also 
with sculpture. Because flatness was the only condition painting shared with no other art, 
Modernist painting oriented itself to flatness as it did to nothing else. (Greenberg 1995, 86) 

Greenberg’s focus exclusively on the question of flatness as the defining feature of 
modernist art has been one of the main points of criticism directed against him. We 
need not enter a debate about that here. What I do learn from Greenberg’s analysis, 
however, is a possible underlying explanation of the historical conditions for the rise 
to pre-eminence of what Greenberg sees as Kantian-like self-criticism (art analyzing 
art with the tools of art alone) and which appears as a primary characteristic trait 
of modernist art. Since as already indicated, this kind of critical approach is also 
strongly distinctive of modern mathematics (and especially of the foundational 
quests typical of the turn of the twentieth century: mathematics analyzing the 
foundations and the limitations of mathematics with the tools of mathematics alone, 
and without the help of external, philosophical and metaphysical arguments) we are 
led to wonder about a possible new focal point of analysis airising from Greenberg’s 
approach to the question: was the rise of a new kind of modern mathematics related 
to a search for what was unique and exclusive to mathematics and the peculiar nature 
of its medium? And if so: why did mathematicians engage in this search? What 
happened in, say, the last part of the nineteenth century, and not before that, that 
prompted at that time this kind of search, and what were the consequences of it? 

We may then ask these questions for mathematics in general and not just for those 
places that are typically associated with modernist trends, namely the new kind of 
foundational research that appeared in the works of Frege, Russell, Hilbert, and 
others at the turn of the twentieth century. I will return briefly to these questions 
in the concluding section. At this point, I want to stress that an analogy with 
Greenberg’s analysis might, in principle, help us understand the origins and causes 
of the processes (social, institutional, disciplinary, philosophical, internal, etc.) 
behind the rise of modern mathematics and not just to check against a checklist 
of features characteristic of modernism in art. 

It is enlightening to consider some additional points raised by Greenberg, which 
are relevant to our discussion. Thus, for instance, strongly connected with the 
previous issue, Greenberg stressed the centrality of the quest for the autonomy 
of art. The impact of the process of self-criticism was translated, in Greenberg’s 
analysis, to a focused search for “purity” in art as the guarantee for the preservation



16 How Useful Is the Term ‘Modernism’ for Understanding the History. . . 409

of the necessary standards,14 and consequently, the status of the medium of art was 
transformed. In Greenberg’s words: 

Realistic, naturalistic art had dissembled the medium, using art to conceal art; Modernism 
used art to call attention to art. The limitations that constitute the medium of painting – 
the flat surface, the shape of the support, the properties of the pigment – were treated 
by the Old Masters as negative factors that could be acknowledged only implicitly or 
indirectly. Under Modernism these same limitations came to be regarded as positive factors 
and were acknowledged openly. Manet’s became the first Modernist pictures by virtue of 
the frankness with which they declared the flat surfaces on which they were painted. The 
Impressionists, in Manet’s wake, abjured underpainting and glazes, to leave the eye under 
no doubt as to the fact that the colors they used were made of paint that came from tubes or 
pots. Cézanne sacrificed verisimilitude, or correctness, in order to fit his drawing and design 
more explicitly to the rectangular shape of the canvas. (Greenberg 1995, 86) 

Again, the analogy with mathematics seems to me highly suggestive, but we need 
to analyze its validity very carefully. The search for autonomy, and eventually even 
segregation, is an acknowledged characteristic of at least certain essential parts of 
modern mathematics. In this sense, the analogy with modern art is evident and has 
often been mentioned. But what were the reasons for this? We are well aware of 
important internal, purely mathematical dynamics of ideas leading to the rise of 
a new kind of approach and practice that stressed the need for the autonomy of 
mathematical discourse and mathematical methods. Here perhaps with the help of 
a perspective similar to that suggested by Greenberg for art, we may look for some 
other, more external kinds of causes in the case of mathematics. The increased 
search for purity in mathematics can be related to a specific attempt to “guarantee 
its standards of quality”. But what about “limitations that constitute the medium” 
of mathematics, that were treated by the Old Masters as negative factors that could 
be acknowledged only implicitly or indirectly”, and that in modern mathematics 
could come “to be regarded as positive factors” and to be “acknowledged openly”? 
This appears as a remarkable, and far from self-evident characterization of modern 
art that Greenberg’s analysis brings to the fore. But given the already mentioned, 
essentially inevitable, need to rely on historical continuity in mathematics (as 
opposed to the arts), a transposition of this kind of argumentation to mathematics is 
far from straightforward and requires additional care. 

In further exploring this point, however, one might try to bring to bear ideas 
from sociologists of science such as Rudolf Stichweh, who has highlighted the 
systemic, interrelated character of discipline formation by the end of nineteenth 
century. Stichweh’s analysis meant to show how the emergence and consolidation 
of an autonomous self-understanding of the various academic disciplines depended 
always on similar processes taking place in the neighboring disciplines at the same 
time (Stichweh 1984). Stichweh’s perspective might open interesting avenues of 
research also for our topic, but at this point, I leave this as an open thread calling for 
further thought concerning the question of modernism in mathematics.

14 A discussion of “purity” and its centrality in modernism, from a different perspective appears in 
(Cheetham 1991). 
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In referring to the “necessity of formalism” as the “essential, defining side” of 
modernism (at least in the case of painting and sculpture), Greenberg added another 
interesting explanation that seems very suggestive for mathematics as well: 

Modernism defines itself in the long run not as a “movement”, much less a program, but 
rather as a kind of bias or tropism: towards aesthetic value, aesthetic value as such and 
as an ultimate. . . .  This more conscious, this almost exacerbated concern with aesthetic 
value emerges in the mid-nineteenth century in response to an emergency. The emergency 
is perceived in a growing relaxation of aesthetic standards at the top of Western society, and 
in the threat this offers to serious practice of art and literature. (Greenberg 1971, 171) 

Keeping in mind that terms such as “formal”, “abstract” or “aesthetic” have 
significantly different meanings and elicit different contexts in mathematics and 
in the arts, one can still ask whether the idea of associating the entrenchment of 
formalist approaches as part of the consolidation of modern mathematics with a 
reaction to an emergency, as described here by Greenberg for the arts, may bring 
with it new insights. Moreover, we can also ask if the “emergency” in question 
was not only similar but perhaps even the same one in both cases. I already 
mentioned the issue of “anxiety” discussed by Gray concerning the development 
of mathematics at the turn of the nineteenth century, which he related to what 
some mathematicians conceived as a relaxation of standards. There is no doubt 
that formalism in mathematics can be associated with a possible reaction to such 
a relaxation. Thus, formalism may appear here not just as a common trait perceived 
in mathematics and art but also as motivated by similar concerns in both cases. More 
on this I will say in the next section. 

Finally, I would like to mention yet another suggestion of Greenberg that may be 
relevant for historians of mathematics in their field, as it touches upon the supposed 
radical break with the past that appears in so many characterizations of modernism. 
In an article entitled “Modern and Postmodern,” Greenberg wrote: 

Contrary to the common notion, Modernism or the avant-garde didn’t make its entrance 
by breaking with the past. Far from it. Nor did it have such a thing as a program, nor has 
it really ever had one. It’s been in the nature, rather, of an attitude and an orientation: an 
attitude and orientation to standards and levels: standards and levels of aesthetic quality in 
the first and also the last place. . . .  

And where did the Modernists get their standards and levels from? From the past, that is, 
the best of the past. But not so much from particular models in the past – though from these 
too – as from a generalized feeling and apprehending, a kind of distilling and extracting of 
aesthetic quality as shown by the best of the past. (Greenberg 1980) 

I find it remarkable that Greenberg would stress this point in opposition to what so 
many considered an unavoidable trait of modernism. As I said above, truly radical 
breaks with the past seem rather unlikely in mathematics. As Greenberg stresses 
here, modernism may arise not from a radical break but from a conscious process 
of distilling and extracting quality from what proved to be the best practice in the 
past. I think that in laying the central elements of modern mathematics, some of 
the most influential mathematicians of the turn of the century acted precisely in this 
way. This was undoubtedly the case, as I have discussed in detail elsewhere, with
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Dedekind’s early introduction of structuralist concerns in the algebra (Corry 2017) 
and with Hilbert’s introduction of the modern axiomatic approach (Corry 2004). 

As already stated, however, there are also good reasons to react to Greenberg’s 
views with great care. It is not only that they are very much debated among art 
historians, but also that Greenberg did not write systematic, scholarly texts with all 
due footnotes and references. Most of his writings appeared as scattered articles, 
conferences, etc., and they sometimes follow a somewhat associative style. Thus, 
one must not be surprised to find deep changes and possibly conflicting views in 
them throughout the years. 

And yet, even if the criticism directed at him is well taken, especially when one 
tries to apply his view to analyzing in detail the works of specific individual artists, 
this does not mean that the essential structure of the processes he describes cannot 
be reconstructed for the purposes I am pursuing here, and then followed in a more 
scholarly solid fashion. If one were able to develop explanations of these kinds for 
mathematics, then it may turn out that it is not only justified and valuable to use 
the term modernism in the context of the history of mathematics but also that it is 
not just a coincidence that modernism appears in mathematics as well as in the arts 
nearly contemporarily, and that this coincidence can be made sense of in more or 
less tangible terms.15 

16.5 Wittgenstein’s Vienna and Modernist Mathematics 

The second source I want to refer to in the search for ideas relevant to a 
possible fruitful discussion of modernism in mathematics is the book Wittgenstein’s 
Vienna by Allan Janik and Stephen Toulmin. The main topic of this book is an 
interpretation of the roots and meaning of Wittgenstein’s Tractatus. Contrary to 
accepted views––according to which the fundamental questions underlying the 
treatise were epistemology, philosophy of science, and logic taken for their own 
sake––the authors aimed at presenting Wittgenstein as a thinker deeply rooted 
in the intellectual life of Vienna at the turn of the twentieth century, for whom 
the question of language and its limitations was mainly an ethical concern and 
not merely a linguistic-analytic one. These ethical concerns, they contended, can

15 Greenberg, of course, is not the only one to discuss modernism in terms of the processes that 
led to its rise, rather than by just providing a checklist of characteristic features. Also worthy of 
mention here is the work of Dan Albright (Albright 1997, 2000), who stresses the crisis of values 
in art that led to modernism. In his view, if in previous centuries, artists, writers, and musicians 
could be inherently confident about the validity of the delight and edification they provided to their 
audiences, during the twentieth century art found itself in a new and odd situation, plagued with 
insecurity. Faced with the crisis, radical claims about the locus of value in art were advanced in 
various realms at nearly the same time. The various radical modernist manifestoes thus produced 
reflect the need of the artist not only to create, as was always the case in the past, but also to 
promote new standards of value and to provide some new kind of justification to the very existence 
of art. 
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only be fully understood against the background of Viennese modernism in its 
manifold manifestations. Like in the case of Greenberg, I do not intend to come 
up here with an appraisal of Janik and Toulmin’s analysis as a contribution to the 
Wittgenstein scholarship, but rather to focus on ideas potentially relevant to the topic 
of mathematics and modernism. 

The basic question that Janik and Toulmin pursued thorough the book appears 
right at the beginning, phrased in the following terms: 

Was it an absolute coincidence that the beginnings of twelve-tone music, ‘modern’ 
architecture, legal and logical positivism, nonrepresentational painting and psychoanalysis – 
not to mention the revival of interest in Schopenhauer and Kierkegaard – were all taking 
place simultaneously and were largely concentrated in Vienna? (Janik and Toulmin 1973, 
18) 

The central hypothesis of the book is that “to be a fin-de-siècle Viennese artist or 
intellectual conscious of the social realities of Kakania [a term coined by Robert 
Musil to describe Austro-Hungarian society disparagingly (L.C.)] one had to face 
the problem of the nature and limits of language, expression, and communication. 
(p. 117)” Accordingly, they offered an account of the deep changes that affected art, 
philosophy, and other aspects of cultural life around 1900 in Vienna, as interrelated 
attempts to meet the challenges posed by questions of communication (language), 
authenticity, and symbolic expression. These challenges, in turn, derived from the 
deep social changes that affected the capital city of the Habsburgs: a medley of 
interacting tongues, the tension between the central imperial rule and the local 
and national aspirations, liberalization alongside decentralization of the traditional 
centers of power, changes in the production processes and social structures. And 
in this context, the most crucial instance of the philosophical side of this sweeping 
cultural phenomenon arose in the person whose writings, in their view, embodied 
the crucial influence on Wittgenstein, Fritz Mauthner (1849–1923), who developed 
a unique doctrine of “Critique of Language” (Sprachkritik) in several interesting 
books and is one of the few persons mentioned by name in the Tractatus. 

In the received interpretation of Wittgenstein, the importance of this reference 
to Mauthner is often downplayed, but Janik and Toulmin made it the centerpiece 
of their analysis. Their alternative (and, as I see it, enlightening) approach to 
Wittgenstein affords a useful perspective for our discussion since the authors did not 
limit themselves to indicating general analogies between various fields of activity or 
a common, putative underlying ethereal Zeitgeist but instead emphasized concrete 
historical processes that were motivated by similar concerns stemming from the 
specific historical circumstances of turn-of-the-century Vienna. 

Incidentally, an important focus of attention for Janik and Toulmin is found in 
contemporary science, and in the works of Ernst Mach (1838–1916), Heinrich Hertz 
(1857–1894), and Ludwig Boltzmann (1844–1906). For these three scientists, as it 
is well known, metaphysics had no place in science, and they devoted conscious 
and systematic efforts at finding those places where metaphysics had subtly but 
mistakenly been incorporated. This task, however, was not pursued in the same way 
by the three of them. Janik and Toulmin describe them as representing significantly
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different stages in a continuous process. Mach represents a first stage where the 
limits of physics were set “externally”, as it were, employing a more philosophical 
analysis. Hertz and Boltzmann, on the contrary, by following an approach that can 
retrospectively be described as “axiomatic”, pursued the same task “from within.” 
Hertz and Boltzmann sought to set the correct limits of physical science through 
an introspective analysis using the tools of science (and here, of course, we find 
a remarkable similarity with Greenberg’s stress on “criticism from within,” as 
explained above). 

The interesting point in their analysis, however, is that they embedded this 
two-stage process in the more general, broad historical processes that underlie 
all other manifestations of Viennese modernism. First and foremost, among these 
manifestations were, for them, the processes leading from Mauthner to Wittgenstein. 
The philosophical critique of language undertaken by Mauthner as a response to 
the need mentioned above to establish the “limits of language, expression, and 
communication” starts from a point that is similar to that of Mach’s attempt in 
physics. And very much like Hertz and Boltzmann had further pursued Mach’s 
quest, but by way of an alternative, more internally focused path, so did Wittgenstein 
in relation to Mauthner. Hertz and Boltzmann, according to Janik and Toulmin, 
“had shown how the logical articulation and empirical application of systematic 
theories in physical science give one a direct bildliche Darstellung of the world, 
namely, a mathematical model which, when suitably applied, can yield true and 
certain knowledge of the world. And they had done so, furthermore, in a way that 
satisfied Kant’s fundamentally antimetaphysical demands – namely, by mapping 
the limits of the language of physical theory entirely “from within” (p.166). In 
similar terms, Janik and Toulmin presented the philosophical work of Wittgenstein 
as a continuation of Mauthner’s, in which the limits of language, in general, were 
mapped from within. They also examined and laid all the necessary stress on 
the ethical outlook, which in their interpretation, was so central to Wittgenstein’s 
undertaking and arose from the writings of Kierkegaard and Tolstoy. (Of course, 
this main element played no role in the story about Mach, Hertz and Boltzmann.) 

The sociocultural elements underlying both aspects of the story, as described 
above, are expanded subtly to cover other fields of activity along the same lines: 
music, architecture, journalism, law, painting, and literature. And in all these fields 
Janik and Toulmin also added a third stage that was produced along the lines of 
commonly characterized historical processes. Thus, for instance, the three stages 
in music are represented by Gustav Mahler, then Arnold Schönberg, then Paul 
Hindemith. In the case of architecture, it is Otto Wagner, then Adolf Loos, and then 
Bauhaus.16 And in the case of philosophy, the stage after Wittgenstein (who came

16 (Galison 1990) presents an analysis that complements this view and locates the Bauhaus 
movement in relation with logical positivism, as part of Viennese modernism. 
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after Mauthner) is that of logical positivism.17 The process which is common to all 
these threads can be briefly described as follows: 

In architecture as in music, then, the technical innovations worked out before 1914 by 
the ‘critical’ generation of Schönberg and Loos were formalized in the 1920s and 1930s, 
so becoming the basis for a compulsory antidecorative style which eventually became as 
conventional as the overdecorative style which it displaced. And we might pursue these 
parallels still further if we pleased – into poetry and literature, painting and sculpture, and 
even into physics and pure mathematics. In each case, novel techniques of axiomatization 
or prung rhythm, operationalism or nonrepresentational art, were first introduced in order 
to deal with artistic or intellectual problems left over from the late nineteenth century – so 
having the status of interesting and legitimate new means – only to acquire after a few years 
the status of ends, through becoming the stock in trade of a newly professionalized school 
of modern poets, abstract artists or philosophical analysts. (p. 254) 

Not Zeitgeist-like arguments or superficial analogies, then, as part of the explana-
tion, but a common ground to all these processes, namely, “a consistent attempt to 
evade the social and political problems of Austria by the debasement of language.” 

Can the insights of Janik and Toulmin be imported into the historiography 
of mathematics fruitfully? It is curious that the passage quoted mentioned pure 
mathematics as having been affected by the same circumstances as other cultural 
manifestations. They do not give details about what they may have had in mind 
when saying this. Indeed, at a different place, they did state that “in a very few self-
contained theoretical disciplines—for example, the purest parts of mathematics— 
one can perhaps detach concepts and arguments from the historic-cultural milieus in 
which they were introduced and used and consider their merits or defects in isolation 
from that milieu” (p. 27). But my point is not what was done in the book in relation 
to mathematics, but what could be done by analyzing Viennese mathematics at the 
turn of the century from the perspective afforded by the book. 

I briefly indicate here specific parameters that might be considered in an 
attempted answer. In the relevant period, Vienna did have an interesting, original, 
and very productive mathematical community. Its more prominent names included 
Wilhelm Wirtinger (1865–1945), Philipp Furtwängler (1869–1940), Eduard Helly 
(1884–1943), Kurt Gödel (1906–1978), Kurt Reidemeister (1893–1971), Witold 
Hurewicz (1904–1956), Walther Mayer (1887–1948), Johann Radon (1887–1946), 
Alfred Tauber (1866–1942), Olga Taussky (1906–1995), Heinrich Tietze (1880– 
1964) and Leopold Vietoris (1891–2002). Each of these mathematicians arrived 
in Vienna from different places at different times, bringing their baggage drawn 
from the mathematical traditions from which they stemmed. Of course, even before 
we start to consider the question that occupies us here, one should be able to 
come forward with a more articulate understanding of the Vienna mathematical 
community than we now have what the main mathematical fields were pursued, 
what kinds of interactions existed with the local scientific communities and 
with neighboring mathematical institutions, what were the internal mechanisms

17 (Janik 2001, 147–69) discusses the somewhat different relation between Hertz’s famous 
Introduction and the late Wittgenstein. 
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of production, training, and transmission of mathematical knowledge, etc. Such 
questions have been pursued, sometimes in detail, for Göttingen and Berlin, for 
the various USA centers of mathematics, and some British and Italian contexts, but, 
unfortunately, much less so for Vienna. 

One existing work of relevant historical research does indicate, however, that 
there might be some room for pursuing this question along the broader conception 
of modernism, as suggested above. Moritz Epple has investigated the mathematical 
contributions of Kurt Reidemeister on Knot Theory in the 1920s while comparing 
it with work conducted simultaneously in the same field at Yale, on the one hand, 
and at Princeton, on the other hand. Epple discussed the intellectual atmosphere 
of the city as part of the relevant intellectual background to Reidemeister, and 
his discussion on the rise of modern topology is framed in the broader context of 
modernism in mathematics (Epple 1999, 299–322; 2004). 

As part of his account, Epple stressed the existence of different paths into moder-
nity that led to other varieties of mathematical modernism, even within the same 
institutional context, i.e., that of mathematics at Vienna, where Reidemeister worked 
alongside Wilhelm Wirtinger, producing different brands of modern mathematics 
(Epple 1999, 236–26). Reidemeister had strong intellectual interactions with Hans 
Hahn, Otto Neurath, Otto Schreier, and Karl Menger, all of them engaged in the 
activities of the Vienna Circle, which is of obvious relevance for any discussion on 
modernism. In addition, the most prominent members of the literary milieu in the 
city at the time had formal training in mathematics and strong connections with the 
local mathematicians. The three most famous examples of this are Robert Musil 
(1880–1942), Herman Broch (1886–1951) and Leo Perutz (1882–1957). The latter 
continued to be actively involved in mathematics throughout his life (Sigmund 1999; 
Engelhardt 2018, 2021). 

What kinds of mathematics were done at the time in Vienna? To what extent can 
such kinds of mathematics be properly called modernist? Is this somehow connected 
with the work and the person of their Viennese neighbor Boltzmann? Inspired 
by Mehrtens’ kind of analysis, Mitchell Ash has recently discussed the linkages 
between “modern ways of thinking about science” and the radical development of 
the visual arts in Vienna at the time. In his view, the significance of technological 
modernism “presupposes a concept of knowledge-based less on self-referential 
abstraction than on what can be done with, or to, nature as well as other human 
beings” (Ash 2018, 27). In an attempt to bring out basic features that link science and 
the arts in that specific cultural context, he illustrated the plurality of modernisms 
manifest in the sciences and culture of ‘Vienna 1900′ by discussing the work of 
Ernst Mach and Ludwig Boltzmann, on the one hand, and the music of Arnold 
Schoenberg, on the other. For all the merits of Ash’s analysis, the question remains 
open, whether the kind of mathematics practiced in Vienna was peculiar and 
different to what preceded it, and, more importantly, if the processes leading to 
the changes that brought about this possibly new conception are similar or similarly 
motivated as all the other complex processes described in Janik and Toulmin’s book 
concerning Viennese culture in general.
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It is relevant to stress that Epple’s methodological proposals include reliance on 
Weber’s idea of “patterns of rationality” as a way to contextualize the mathematical 
practice of a specific culture. But at the same time, his comparative analysis is 
based on the idea of an “epistemic thing”, originally introduced by historians of 
experimental sciences (Rheinberger 1997). Epple uses this concept to explain in 
what senses Reidemeister’s topological research differed from other, contemporary 
ones. In so doing, he suggested the plausibility that the specificity of Reidemeister’s 
work was tied to Viennese intellectual modernism, even though, the nature of 
the tie remains to be explained.18 In an ideal study of the mutual relationship 
between modernism and mathematics one might also be led to go the opposite 
direction, namely by understanding the specifics of Reidemeister’s (and Hahn’s 
and Menger’s), and uncover new historical mechanisms behind the development 
of Viennese modernism. 

A different, and perhaps highly relevant direction in which the analysis of 
Janik and Toulmin can provide illuminating hints to historians of mathematics has 
to do with the development of the modern axiomatic approach. I have devoted 
considerable attention in my research to the work of David Hilbert, to the centrality 
of the axiomatic approach for his work, and to the significant impact that this aspect 
of his work had on mathematics and physics in the early twentieth century, precisely 
at the time under discussion here. In my analysis, I have shown how the work of 
Hertz and Boltzmann had a direct influence on Hilbert and on the consolidation of 
the axiomatic approach and its application to both geometry and physics. I have also 
stressed the pervasive presence of Mach’s ideas and his empiricist-oriented criticism 
in the background of Hilbert’s work (Corry 2004, Chps. 2–3). Considering this, it 
is remarkable that in the three-stage model of Janik and Toulmin, precisely this 
thread, leading from Mach to Hertz and Boltzmann, which the authors single out as 
highly important, is not completed with its third stage. My suggestion here is that 
one might look at the process leading to, and at the consolidation of, Hilbert’s new 
axiomatic approach precisely as that third stage. A historical analysis of the kind 
provided for Hilbert may plausibly be complemented with an eye on the types of 
processes described by Janik and Toulmin. In this way, the mathematics embodied 
in and promoted by Hilbert’s approach could be seen as an aspect of mathematical 
modernism, not just because of a series of characteristic features associated with 
it, but rather because it might be seen as the outcome of a process with specific 
historical-cultural roots that gave rise to modernism in so many fields of culture at 
the time.

18 Epple’s description of the intellectual background to fin-de-siècle Vienna also strongly relies on 
the classical study (Schorske 1980). 
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16.6 Prospective Remarks 

An emphasis on the formal, as opposed to thematic values; a rite of passage through 
avant-garde; a radical break with tradition (or even a “desire to offend tradition”); 
the wish to explore subjective experience as opposed to representing “outward 
experience”; a high degree of self-consciousness; a criticism of the basic principles 
of the discipline and its limits using the tools of the discipline. These are some 
characteristic features typically associated with modernism in its various cultural 
manifestations at the turn of the twentieth century. Some of them are mentioned and 
analyzed by the authors referred to above, and I take them to be an illustrative rather 
than an exhaustive sample of scholarly discussions on the topic of modernism. We 
may find such basic attitudes also in the mathematics of the period in question. 
Historians of modern mathematics might debate the degree to which such traits 
are central and pervasive and hence the extent to which it may be appropriate 
to describe, based on our current historical knowledge, modern mathematics as a 
modernist endeavor. My tentative proposal in this survey is, in contrast, that rather 
than exploring the topic in this straightforward way, we should ask ourselves if the 
perspective of modernism may lead us to look for new insights into making sense 
of the history of modern mathematics. 

Considering, for instance, Jeremy Gray’s emphasis on the sense of anxiety that 
arose at the end of the nineteenth century side-by-side with the enormous successes 
of the discipline. Talk about this success is standard in any historical account 
concerning this period, but the concomitant anxiety indicated by Gray has been 
much less discussed (if at all). By situating it in a modernist context, Gray draws 
our attention to the possibility that this is a more significant issue than we have 
realized thus far. He gives the example of an inaugural lecture delivered in 1910 
at Tübingen by Oskar Perron (1880–1975). Perron was a proficient mathematician 
with acknowledged contributions to various fields, but his prominence was far from 
the high profile of a Hilbert or a Noether. Thus, one will not find his name often 
mentioned in discussions about mathematical modernism. But as Gray indicates, it 
is essential to hear what a mathematician like him had to share about his discipline 
at the turn of the twentieth century. In his lecture, Perron addressed mainly questions 
related to the gap between the public perception of mathematics and the actual 
practices in the discipline, particularly concerning the question of the certainty 
and exactness of its methods (Perron 1911). One should then ask whether this is 
an isolated phenomenon or a manifestation of a more generalized concern of the 
practitioners of mathematics at the time and whether, by looking at the kind of 
considerations discussed in the preceding sections, we can gain some innovative 
historical types of insights on this question. 

Well, if we follow the lead opened by Gray, we do find instances that give us 
further food for thought. Thus, for instance, an interesting text by Alfred Pringsheim 
(1850–1941), who, like Perron, was a well-known mathematician and not one whose 
work is typically discussed in relation to modernism. In addition to his mathematical 
activities, Pringsheim was deeply immersed in the broad cultural trends of his time,



418 L. Corry

and that to an unusual degree. He came from a wealthy Jewish family in Berlin who 
used his wealth to support art, and Alfred became a well-known art collector. He had 
a strong, well-cultivated musical background and became one of the earliest Wagner 
supporters. His daughter Katia, one of the first active women university students at 
Munich, married Thomas Mann. The family house in Berlin and his one in Munich 
(both known as “Palais Pringsheim”) were prominent architectural icons (though 
they were far from any clue of modernist taste) (Perron 1952).19 In 1904, on the 
occasion of the 145th anniversary of the Munich Academy of Sciences, Pringsheim 
gave a lecture entitled “On the Value and Alleged Lack of Value of Mathematics” 
(Pringsheim 1904). Without going into the details of the talk, I will say that it reflects 
the kinds of concerns addressed by Perron very closely. Incidentally, Pringsheim had 
been one of Perron’s most influential teachers in Munich (Frank 1982). 

One may mention additional texts that go in the same direction (von Mises 
1922), and, more importantly, one is motivated now to look for more. Still, the 
question remains open whether we can find not just additional texts that serve as 
evidence for these kinds of concerns (which is quite likely), but rather if we can 
understand their roots and the processes leading to their rise and consolidation. And 
more specifically: whether these roots may be found to be directly connected, or at 
least closely related, to those found at the basis of modernism as a broad cultural 
phenomenon (and this, I think, is less likely, though still plausible). 

Think, for instance, of Greenberg’s explanation of the rise of modern painting in 
terms of the need existing in each art by the late nineteenth century to determine— 
purely with the help of its means—what was unique and exclusive to itself, 
according to the nature of its medium. The intense foundational activity, one 
of the acknowledged characteristic features of mathematics at the turn of the 
twentieth century, can be easily seen as a similar manifestation—purely from 
within the discipline—of the phenomenon indicated by Greenberg in the case of 
painting. Indeed, this is a point typically stressed in the debates about modernism 
in mathematics. But can we, in addition, explain the timing and the main thrusts 
of this foundational activity on the same grounds that Greenberg adduced for the 
arts? For Greenberg, in the wake of the Enlightenment, the arts were gradually 
assimilated into entertainment, pure and simple. This was a primary trigger that led 
to the kind of internally pursued self-criticism laying at the basis of modernism. Can 
we come up with a similar explanation in the case of mathematics? Dan Albright, 
to take another example, sees the roots of modernism as related to the new and 
odd situation for art, plagued with insecurity, as opposed to the confidence in the 
validity of the delight and edification it had provided to their audiences in previous 
times (Albright 2000). Perhaps this could be a fruitful lead to follow in connection 
with the topic of anxiety just mentioned above. Can we trace a direct relationship

19 In this context it is natural to stress that also Wittgenstein was born to a privileged and immensely 
wealthy Viennese family, who generously supported the likes of Gustav Klimt and Alfred Loos as 
well as the poets Georg Trakl and Rainer Maria Rilke. The circle of friends of the Wittgenstein 
family included many distinguished figures of the Viennese musical milieu, such as Johannes 
Brahms (Monk 1991). 
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between the changes of status in the arts, with related changes of position in 
mathematics, with questions about certainty and the unity of mathematics, and with 
the increasing trend of foundational research at the turn of the twentieth century? 
Can the explanations of Janik and Toulmin about the centrality of the problem of 
language in the modernist culture of Vienna, and its social and ideological roots, be 
of any help in consolidating such an explanation? 

Answering these questions would require, I believe, additional historical research 
taking into consideration that modernism is a historical phenomenon with an 
internal evolution and geographical specificities that are often overlooked. Thus, 
with the Great War in Europe precisely in the middle of the period that frames 
our discussion (1890–1930) and its profound social and cultural impact it is 
obvious that a single idea of “modernism” is too coarse to account for all the 
developments typically related with the term without further historicizing it. What 
is less obvious, but no less significant, are the differences among modernist cultures 
across the continent and in the USA. As mathematics is the quintessential universal 
endeavor, these geographical differences would seem irrelevant for the discussion. 
Still, I suggest that they are not and that the right way to consider modernism in 
mathematics would be, if at all, at the local level: modernist Paris mathematics, 
modernist Viennese mathematics, etc. Moreover, this approach would inherently 
emphasize the need to analyze not just the pronouncements of the Hilberts and the 
Weyls but also the pronouncements and the mathematical deeds of the Pringsheims 
the Perrons, and the Reidemeisters. 

How useful is, then, the term ‘modernism’ for understanding the history of early 
twentieth-century mathematics? I hope to have shown that while the answer to 
this question may potentially be positive, there is a long way to go before this 
potentiality can be translated into reality. In particular, a plain characterization via 
checklists of putatively defining features of what modernism is (which is a much-
debated question anyway) will not suffice. What may be of use for gaining new 
insights into the history of mathematics from the perspective of this question is a 
deeper understanding of the historical processes leading to modernism in its various 
cultural manifestations. 
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Chapter 17 
What Is the Right Way to Be Modern? 
Examples from Integration Theory in the 
Twentieth Century 

Tom Archibald 

Abstract In this paper we attempt to identify some features of modernist agendas 
in twentieth-century integration theory. This entails looking at ways in which 
abstraction is used as a strategy, both in defining mathematical objects and in 
axiomatizing the theories involved. Choosing examples from 1910 to 1950, we 
consider also explicit or implicit remarks about such matters as a virtue and 
function of these modern tools. Work of H. Lebesgue, C. Carathéodory, F. Riesz, 
O. Nikodym, and N. Bourbaki are considered. 

17.1 The Historiography of Modernity 

Jeremy Gray’s book Plato’s Ghost presents the rich results of a long reflection on 
what is modern about modern mathematics, as well as an account of the history of 
that subject. “Modern” is a term that eludes strict definition, as so many different 
writers use it with no fixed meaning. Indeed, it is in part a label that emerged to 
describe a period, the features of which vary from time to time and place to place, 
and which are taken up differentially by different writers as characteristic. In this 
way it resembles the Enlightenment and the Romantic period. But while the label 
is elusive, it doesn’t mean it is useless. Nonetheless, what we mean by it needs to 
be thought about and specified to some degree. The associated term “modernism” 
likewise needs to be explicated somewhat, both in a general cultural context, to some 
degree, and with in mathematics. 
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One way to handle this is to look at a well-established locus or body of work 
that studies modernism. Consider Yale’s Modernism Lab (https://campuspress.yale. 
edu/modernismlab/). Yale University, long a leading centre for studies of literature, 
can’t provide an authoritative view, but it provides the scholar of mathematics 
with examples of how the identification of modernist features can be achieved. 
Here we note that the approach begins with a periodization, with early (literary) 
modernism being put between 1914 and 1926, though in fact the site proposes no 
strict definitions and reaches from 1890 (with work of the dramatist Ibsen seen as 
a precursor and major influence on uncontestedly modern figures) and stopping in 
1940, around the deaths of the writers James Joyce and Virginia Woolf. A casual 
glance through these pages reveals some features of the literary work studied that 
are broadly shared. These include a concern with sex and sexuality, with Freud, 
Proust, and Woolf as examples. This is probably not so useful for looking at modern 
mathematics. On the other hand, there is a group of ideas about going beyond the 
conventions of earlier periods, for example by diminishing the role of plot, shedding 
ideas about how to expose a character in a realistic way, being strongly innovative 
in the use of language, and making the reader work hard to understand. These can 
be summed up in the credo of the poet and critic Ezra Pound: “Make it new.” 
While Pound’s view of modernism is certainly not entirely shared among many 
writers and artists who are customarily grouped under that label, the abandonment 
of conventional representation and of naturalism, and even the creation of works 
that do not claim to represent anything outside the artist’s interior creative nexus, are 
largely common both to cultural modernism and to “the modern”. There are limits 
here: buildings can be modern, but they need to function as buildings. Paintings and 
poems also need to function in some ways, so that they can be hung on the wall 
or spoken or printed, so not everything old is abandoned. The idea of taking good 
features and problems from older work and remaking it with a “modern” eye is one 
way to achieve this, as Picasso did with Velasquez, or Pound with Sextus Propertius. 

A key feature of this kind of programmatic innovation is to understand various 
structural aspects of work in the preceding period and innovate by playing with 
them. That is, in literature, plot and character, but also the forms of narrative and 
description, the very ways of writing things down (for example in chapters and 
paragraphs), the conventions of vocabulary and dialogue, the dramatic or narrative 
arc, and the position of the author with respect to the characters and the reader. In 
Joyce’s Ulysses, for example, we find an entire chapter written in the form of tabloid 
newspaper articles, complete with headlines. We also have the detailed depiction of 
the thought processes of characters as though these are accessible to the author, true 
also of Woolf. How these changes to tradition work, and exactly what they consist 
of, varies with the author. This is the subject of much of the critical writing about the 
period, raising questions for example about how the intent of the author is related to 
the reader’s experience. This contrasts with modern mathematics, which—however 
it may resemble these literary approaches—still seeks the premodern aim of more 
or less univocal understanding of the meaning of mathematical objects and results. 
On the other hand, mathematical modernism shares many features with the work 
of moderns in other areas of cultural production. By transforming the treatment

https://campuspress.yale.edu/modernismlab/
https://campuspress.yale.edu/modernismlab/
https://campuspress.yale.edu/modernismlab/
https://campuspress.yale.edu/modernismlab/
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of older areas using new tools, mathematics likewise engages in an esthetically-
motivated renewal of its procedures. One feature of this is abstraction, a frequent if 
not necessary accompaniment to much modern mathematics. 

Another arena for the investigation of modernism lies in its institutions. To focus 
on painting, we choose two different types of institution to investigate what is 
modernism: the Museum of Modern Art (MoMA) in New York, and H. Arnason’s 
History of Modern Art, widely and long used as the basic survey in courses 
introducing modern art to US undergraduates. MoMA was founded in 1929, itself 
thus a demarcation point for a kind of ascendancy of the modern in the visual arts 
in New York. The location, in the heart of cultural Manhattan, provided access to a 
collection of modern art that was soon to become central in the West, not least due to 
WW2. The first director of this museum was Alfred H. Barr, a Picasso specialist and 
enthusiast, and the work of Picasso and Matisse are central, augmented by the more 
strictly abstract work such as that of the Russian W. Kandinsky. The museum not 
only serves to define what should be included as modern; it also comments on what 
is major, by virtue of its collections policy, which feeds back with the community 
of collectors and the value of their work. This is strikingly different from what 
happens in either literature or mathematics. Indeed, Arnason’s book largely encodes 
and extends the MoMA canon of artists, globalizing it to artistic collections around 
the world. 

In both MoMA’s collections and Arnason’s selections we find a picture of 
modernism that is broadly consistent with what happens in literature. The emphasis 
is still on “making it new”, again by playing with identifiable features of older 
work. Here the distinction is made between “representational” work, that is, work 
in which there are recognizable objects or even a scene, and “non-representational” 
in which nothing in particular can be identified. Picasso and Matisse usually have 
figures: figures and scenes of interiors, where shapes and colours are abstracted 
from actual likeness but heads and legs, tables and flowers are easy to see. More 
“purely” abstract work may not represent anything at all: just blotches with colour, 
or even black on white or white on white. Again, there is a heritage here pushing 
back into the nineteenth century, in this case going back somewhat further than 
in the literary case; and the end of the period is vague, but doubtless should at 
least be placed to include the Abstract Expressionist work of the 1950s. The label 
“Abstract Expressionist” reminds us that in this period, let us say going from about 
1900 to at least 1960, there is a tendency to label groups of artists and works 
according to artistic approach: cubism, expressionism, surrealism, futurism, and 
so on were often accompanied by manifestos. The identifying aspects of these are 
sometimes expressed by protagonists or critics, and sometimes are merely inferred 
by shared features. And again, the function of these innovations may mean one 
thing for the artists, another thing for critics and audience. Again, this contrasts 
with mathematics. 

In mathematics, “making it new” remains a feature of modernism. However, 
there are both similarities and differences between the use of the term in the 
broader cultural world and that in mathematics. In the mathematical context, there 
is certainly an emphasis on the analysis of underlying structures, the removal of
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certain features and the retention of others, to create new mathematical objects that 
abstract from the older ones. And indeed there are also broad similarities in what 
the mathematician is seeking to achieve and what the artist is trying for. The simple 
idea is that by the action of abstraction, one gives a new look at old structures that 
both addresses old problems and creates new ones. In mathematics, however, it is 
often the case that the new structure supplies a solution to an old problem that is 
completely recognizable as a solution in the older context. It also can be the case 
that it is demonstrated that no solution is possible: this is not a solution that would 
seem to be possible to articulate in the artistic context. And of course, the entire 
meaning of the phrase “solution of a problem” is completely different in these 
contexts. Solving the problem of depicting the interior mental processes of a woman 
conflicted by her adultery, or of expressing the visual essence of a bowl of fruit, is 
not so easily comparable to showing that the characteristic function of the rationals 
has a Lebesgue integral. 

Modernism in mathematics has many features. In what follows, we will consider 
mostly the role of abstraction in making certain aspects of mathematics modern. The 
extent to which this can be regarded as programmatically intended to encapsulate 
something called “modernism” I will not address. Instead, I’ll think of abstraction as 
a not-unusual feature of a modern approach that is often undertaken self-consciously 
and has ultimately the aim of formulating and solving mathematical problems. 
It is clearly not the only feature of modern mathematics worth considering: 
foundationalism, often pursued through rather abstract aims, is another related 
feature, for example. 

This leads us to consider what problem or problems abstraction is intended 
to solve, and then look at how it does so. In the case of mathematics, there are 
several purposes that can be identified with hindsight. Abstraction seeks to elucidate 
classical or traditional problems—think of Galois theory, or ideal numbers. It seeks 
to clarify by the clear identification of assumptions, and the investigation of what 
happens without them: non-Euclidean geometry is an example here. It also has the 
salutary feature of renewing the field of problems, or changing from one set of 
problems to another, one which concerns the abstract objects themselves. But if 
we talk of its function in the transition to modern mathematics, one key aspect is 
precisely to give the mathematician alternative strategies to those of brute force 
computation. 

One master of this older form was C. G. J. Jacobi: 

Mathematics clearly has the property that one can come to a discovery by calculation, quite 
in opposition to Goethe’s verse: 

Das ist eine von den alten Sünden, 
Sie meinen: Rechnen, das sei Erfinden. 

For when we strike out initially on an incorrect path, calculation at once amplifies the error. 
Since we calculate with literal expressions, that is, with expressions which carry the nature 
of their origins within them, the result always gives the shortest path that we should take. 
However this method of discovery by calculation now is definitely no longer applicable in 
connection with the Abelian transcendents, since if we go off the correct path by the smallest 
amount, we get no result at all due to the huge complications of the calculation. Thus it
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seems that the conduct of this research would lift mathematics up to a higher viewpoint. C. 
G. J. Jacobi, Winter 1840.1 

The remarks above by Jacobi clearly indicate that, for him at around 1840, the 
limitations of the calculational method as a source of discovery were becoming 
apparent. His own work on elliptic functions, and their expression in terms of 
theta functions, had been extremely formula-heavy, and the Fundamenta Nova 
is essentially a collection of derivations of formulas. His early discoveries about 
modular functions provide a nice example of the kind of thing that is very difficult 
to extend, since the calculations simply get out of hand. His comment appears to 
mean that such research is in his view unsustainable, and that he sees Abelian 
functions as an area where a “higher level” of mathematics needs to be applied. 
Reading with hindsight, the remarks seem prophetic, since his student Riemann was 
to revolutionize this field and many others by inventing and introducing topological 
notions into complex analysis. The notion of a Riemann surface had a complicated 
reception and development, but it would seem reasonable to describe this as a move 
to a more “modern”, conceptual viewpoint in which new structures or devices are 
introduced into mathematics in order to make progress. This shift has been described 
by several writers, notably Kragh Sørensen and Laugwitz, in terms of a move from 
a formula-based to a concept-based mathematics. 

However, there is more than one kind of formula, and formulas have a variety 
of purposes. Different formulas for the same thing may, for example, give dif-
ferent representations of the same object. Closed form versus series expressions 
for functions give an obvious example here. Formulas may be used to classify 
objects, as in Legendre’s classification of elliptic integrals, through the production 
of canonical forms. Formulas also sometimes serve the function of representing 
generic objects—here one may think of Gauss’ hypergeometric series, for example, 
used to write large classes of functions, or Weierstrass’s later product representation 
for entire functions. 

Jacobi’s comment above raises the prospect of a kind of “Jacobi limit” for 
the possibility of working with mathematical formulas directly in order to draw 
general conclusions. Jacobi’s concern, expressed in the context of elliptic functions, 
was slow to be realized, if indeed it ever has fully been realized. We need only 
think of the multi-page expansions of late nineteenth-century perturbation theory, 
for example, or the arcane estimation procedures involved in Bernstein’s work on 
Hilbert’s twentieth problem, to see that some mathematicians in some contexts have 
continued to find concrete formulas extremely valuable and have retained them both 
as tools and as objects of study. 

In some domains, however, we see specific cases where more abstract tools were 
brought to bear in ways that sought exactly to get around a variety of problems. 
The effectiveness of this approach came to be coupled with axiomatics, notably by 
Hilbert and his school, to give a mathematics that can be described as modern. This

1 Transcription by C. Borchhardt quoted by Königsberger, p. 261. 
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brings us to our case, in which we look at some aspects of the question of how to 
make an abstract integration theory. 

17.2 Integration and Abstraction 

That the twentieth century is a period in which mathematics became increasingly 
abstract, and in which the generality of mathematical results came to be highly 
prized, goes without saying. Historical studies (Corry 2004, for example) have 
discussed the ways in which various abstract structures have taken centre stage 
in mathematical research, and the related value of generality in mathematics is 
examined in several chapters of the recent collective volume by Chemla et al. 
(2016). 

But how and why is value assigned or attributed to abstract entities? When does 
an abstraction have the kind of explanatory power that inspires mathematicians to 
adopt it or emulate it? How do users of various abstract methods and entities justify 
those uses? We explore this question in the context of the theory of integration in the 
twentieth century. The centrality of the integral to mathematics since its invention 
was cemented in the nineteenth century, and the attempts to render it theoretically 
solid have been led by Cauchy and Weierstrass, in both the real and the complex 
domains. Gray has written extensively about this classical period, as has Umberto 
Bottazzini. 

Many theories of the integral, with differing foundations and roles, were 
developed in the first half of the twentieth century, and this paper is not an attempt 
to survey them. What we will instead examine is the way in which, in a particular 
subset of cases, arguments were presented in favour of one approach or another. 
Such arguments turn, on the one hand, on the convenience, suitability, or intuitive 
character of one approach over another, for example with respect to its applications; 
and on the other hand, on the question of key properties or results being retained 
and extended in the newly-constructed, more abstract setting. The precise range 
of application is naturally implicated, and the question of generality enters here 
as a matter of course. Actual direct discussions about these meta-questions, if 
that is the correct term, occur only infrequently, and usually not in the papers 
where the innovations and results are presented. However, both specific and implicit 
statements show that these questions are not uncontested, and the accompanying 
dynamic provides a thread for understanding important features of the mathematics 
of the first half of the twentieth century. 

In what follows, we proceed as follows. First, we look at Lebesgue’s introduction 
of measure and his description of two approaches, where the axiomatic one was 
unrealized. In the immediate reception of Lebesgue’s work Vitali’s formulation of 
the notion of absolute continuity later led Lebesgue to his decomposition theorem 
and the discussion of singularities, which was to be a fruitful field for testing the 
virtues of various approaches to integration. Meanwhile, work of Carathéodory 
provided an incipient axiomatic approach, one that was to remain durable. At about
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the same time (during WWI), a more abstract version of measure and integration 
on more general sets was provided, among others by Fréchet and Daniell. We 
then proceed with a discussion of the virtues of abstraction as they were seen 
in the 1920s and 1930, focussing on the examples of F. Riesz and O. Nikodym, 
important both for Riesz’s work in integration theory and for Nikodym’s work on 
Lebesgue decomposition. The elaboration of Riesz’s work eventually encompassed 
a functional approach involving a weak version of lattice theory. This sets the stage 
for a brief discussion of Bourbaki’s version of the functional approach, notably due 
to Dieudonné. We conclude with a discussion of differing views about measure 
theory versus the functional approach in the 1950s. The whole would be capable of 
a much more thorough treatment, and we have left out many important issues, not 
least the question of existence of measures. 

17.2.1 Lebesgue, Measure, and Axioms 

Henri Lebesgue introduced his generalization of the Riemann integral in 1901, 
incorporating this and the associated theory of measurable subsets of . R and real-
valued functions of a real variable (Hawkins 1970). The work became his thesis 
and was published in 1902 in the Annali. This built on earlier ideas, notably of 
Borel, including the notion of outer content. To develop the notion and properties of 
the integral, Lebesgue defined what we now call Lebesgue measure. The resulting 
integral possessed the following properties, derived from this idea of measure. 

(1) For any [real numbers] . a, b, h, we have . 
∫ b

a
f (x)dx = ∫ b+h

a+h
f (x − h)dx

(2) For any .a, b, c, we have .
∫ b

a
f (x)dx + ∫ c

b
f (x)dx + ∫ a

c
f (x)dx = 0  

(3) . 
∫ b

a
[f (x) + φ(x)]dx = ∫ b

a
f (x)dx + ∫ b

a
φ(x)dx

(4) If .f ≥ 0 et .b > a, then .
∫ b

a
f (x)dx ≥ 0. 

(5) .
∫ 1

0 1 × dx = 1. 
(6) If .fn(x) increases to .f (x), the integral of .fn(x) has that of .f (x) as a limit. 

In fact Lebesgue, having given these six conditions, makes a methodological 
comment. 

By stating the six conditions of the problem of integration we define the integral. This 
definition belongs to the class of definitions that we may call descriptive. In such definitions 
we state the characteristic properties of the entity we wish to define. in constructive 
definitions we state what operations we need to carry out in order to obtain the entity 
we want to define. Constructive definitions are the ones that are mostly used in analysis. 
However, we sometimes use descriptive definitions . . . (Lebesgue  1903, 106–107) 

A footnote here is particularly illuminating. “The use of descriptive definitions is 
indispensable for the first terms [les premiers termes] of a science when we wish 
to construct this science on a purely logical and abstract basis,” he says referring 
both to the 1898 thesis of Jules Drach and to Hilbert’s memoir on the foundations 
of geometry that appeared in the Annales of the ENS in 1900. He continues,
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The definition is thus called axiomatic because it lists the necessary axioms. It is therefore 
self-contained and forms a complete whole. (Lebesgue 1903, 107). 

The simultaneous citation of the notoriously faulty thesis of Drach and the funda-
mental work of Hilbert is somewhat surprising. It is Hilbert who seems to be the 
main influence, as the later discussion of consistency proofs underlines. 

Lebesgue’s work quickly reached a certain public, partly through his published 
lectures given at the Collège de France (Lebesgue 1903) and partly through a 
subsequent work on infinite series that used his integral. As one would expect, 
besides simply defining the integral Lebesgue dealt with many other issues, 
including indefinite integration. 

17.2.2 Absolute Continuity and Decomposition 

Lebesgue’s 1910 result that one can write any function of bounded variation as the 
sum of an absolutely continuous function and a “function of singularities” was made 
possible by intervening work due largely to his Italian reader, Guiseppe Vitali, who 
introduced the idea of absolute continuity. This notion was identified by several 
authors independently. The first of these was Vitali, in 1905 (Borgato 2012). Vitali 
was closely associated with Dini, Arzelà, and Fubini among others, and at the time 
of this research was a high school teacher. Vitali had worked for several years on an 
approach similar to Lebesgue’s for defining integrals of measurable functions (in his 
own sense), apparently learning of Lebesgue’s work in 1904 from Pincherle. Vitali 
is thus one of the earliest to have seen the interest of Lebesgue’s work, along with 
F. Riesz. 

Lebesgue had shown that an indefinite integral of a Lebesgue-integrable function 
(he uses the term sommable) may be differentiated to obtain this function, except 
on a set of measure zero. Vitali sharpened this by introducing the notion of 
absolute continuity (Vitali 1904–1905, 1021), defined below. Vitali showed that this 
property was necessary and sufficient for a function to be the indefinite integral 
of a summable (i.e. Lebesgue integrable) function, explicitly citing Lebesgue 
(1903). Vitali’s discussion includes the relationship between absolute continuity of a 
function and boundedness of its variation, noting in detail that absolutely continuous 
functions are of bounded variation (evidently) but that the converse need not be so. 
In the 1905 paper he describes such a function in a generic way using the Cantor 
set; the standard “devil’s staircase” example that makes this concrete was to come 
later. 

This definition of absolute continuity was easily generalized and remained useful. 
The notion of absolute continuity, and the fact that absolutely continuous functions 
are antiderivatives and vice-versa, was key to Lebesgue’s 1910 decomposition 
theorem.



17 What Is the Right Way to Be Modern? Examples from Integration Theory. . . 433

17.2.2.1 Lebesgue’s Decomposition Theorem, 1910/1927 

To get an idea of the purpose and effects of the several layers of generalization that 
took place, we look at a succession of versions of a result due to Lebesgue, usually 
known as the Lebesgue-Nikodym theorem. 

In Chapter VIII of his Leçons, Lebesgue took on the subject of indefinite 
integrals. The chapter starts with some basic results: the indefinite integrals of 
summable functions are continuous, and of bounded variation. We can think of the 
indefinite integral of a function f in a variety of ways. Defining it to begin with as 

. F(x) =
∫ x

α

f (x)dx + C

where . α is fixed and C is a constant, Lebesgue points out that in fact we can also 
think of 

. Ф(α, β) =
∫ β

α

f (x)dx

as indefinite when the bounds are not fixed, but rather define some interval of 
integration. In the same vein, we can extend this concept to measurable sets E and 
consider the indefinite integral as a set function 

. Ф(E) =
∫

E

f (x)dx.

Throughout Lebesgue thinks of f itself as continuous on some interval. 
Such functions .Ф(E) have all their important properties, and their relation to 

the more usual indefinite integral, determined by two features: countable additivity 
(“complete” additivity in Lebesgue’s usage) and absolute continuity. This is worked 
out by Lebesgue in 1910, but stated more clearly in the 1927 version, where set 
functions are employed. By 1927, . Ф is a linear functional on E. The result in 
question then states that the integral of a summable function .f (x) over a set E 
tends to 0 as .m(E) approaches zero. This is a nice way to grasp the idea of absolute 
continuity, in fact. 

Definition A set function .Ф(E) is absolutely continuous if, for all .ε > 0, there 
exists . η such that . m(E) ≤ η =⇒ |Ф(E)| ≤ ε.

(Here m is the measure.) Lebesgue shows that this is true for indefinite integrals, 
seen as set functions. 

If the set function is not absolutely continuous, Lebesgue shows that one can 
write any function of bounded variation as the sum of an absolutely continuous 
function and a “function of singularities”, which he defines in detail. 

For clarity, not so evident in Lebesgue’s version, I cite this in later language, due 
to Dieudonné:
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Theorem If E is the set of all continuous real-valued functions .x(t) on .[0, 1], every 
linear functional on E may be written uniquely as 

. L(x) =
∫ 1

0
y(t)x(t)dt + S(x)

where y is measurable, positive, and well-defined on .[0, 1] except on a set of 
measure 0, and .S(x) is a positive singular linear functional. 

This result of Lebesgue sets the stage for an elaboration of the functional 
approach, at first due to F. Riesz. It is also the launching ground for a more abstract 
version of the decomposition theorem due to Fréchet and published first in 1916. But 
we are getting slightly ahead of ourselves. Let us return to the teens of the twentieth 
century and consider another aspect of the reception of Lebesgue. 

17.2.3 Carathéodory and Formal Measure Theory 

The response to Lebesgue’s work was initially rather mixed, but soon the theory 
attracted wide interest. In addition to Lebesgue’s own exposition of 1903, accounts 
of the theory appeared in the widely-used textbook of De la Vallée Poussin from the 
the second edition of volume 2 in 1912 and the third edition of volume 1 (1914). It 
may be here that it was encountered by Constantine Carathéodory, whose first paper 
on the subject appeared in 1914 (Carathéodory 1914). 

Carathéodory (1873–1950) had recently succeeded Klein in Göttingen, joining 
Hilbert and Landau as Ordinarius. He had also joined the editorial board of 
Mathematische Annalen, at the invitation of Klein (Georgiadou 2004, 90–95). As 
Georgiadou argues, in his career of about 10 years, he had been much influenced 
by Hilbert (in the calculus of variations especially) and by members of the Hilbert 
school (notably Erhard Schmidt and Ernst Zermelo). In this context his decision to 
enter the field of measure theory by creating an abstract, that is to say axiomatic, 
approach, is unsurprising. 

Carathéodory begins his paper, then, with what he terms a “Formal Theory 
of Measure” (Carathéodory 1914, 405). Noting that outer measure . μ∗ is the key 
concept, he uses three of its properties as formal axioms: 

I. To any set of points A in an q-dimensional space . Rq is assigned a unique number . μ(A)

which can be zero, positive, or .+∞, called the outer measure of A. 
II. If B is a subset of A then 

. μ∗B ≤ μ∗A.

III. If A is the union of a sequence of finite or countably infinite point sets . A1, A2, . . . ,

then 

.μ∗A ≤ μ∗A1 + μ∗A1 + . . . .
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(Carathéodory 1914, 405) 

These axioms were immediately joined by the definition of measurable set: 

A point set A is called measurable, if for any arbitrary point set W of finite outer measure 
the following relation holds: 

. μ∗W = μ∗AW + μ∗(W − AW);

the measure .μA will then be defined by the equation 

. μA = μ∗A.

(Carathéodory 1914, 406) 

(Note that he uses AW to mean .A ∩ W .) This then leads to a chain of theorems 
about measurability, for example of intersections and unions of measurable sets. 
Two further axioms are then adduced. 

IV. If . A1 and . A2 are two point sets, whose distance .δ /= 0 then 

. μ∗(A1 + A2) = μ∗A1 + μ∗A2

V. The outer measure .μ∗A is the lower bound of the measures .μB of all measurable sets 
that contain A as a subset. 

The fourth one allows us to prove, for example, that intervals are measurable. The 
fifth permits a definition of inner measure, and allows us to recover the basic notion 
that a point set with finite outer measure is measurable if and only if its outer and 
inner measures coincide. 

The advantage of this axiomatic approach is that anything that satisfies these 
five axioms can be used to create a theory of measure that functions analogously 
to Lebesgue’s. The second part of the paper consists of developing exactly such a 
theory of so-called linear measures. 

Carathéodory lectured on this material in the summer semester of 1914. By 
December 1917 he had completed a book that originated in these lectures, Vor-
lesungen über reelle Funktionen, a scholarly and comprehensive treatise that was to 
serve as a basic reference in the field of real analysis for many years (Carathéodory 
1918). This book had a second edition in 1927, little altered, and was reissued by the 
Chelsea Publishing Company in New York in 1948, its copyright having been vested 
in the U. S. Alien Property Custodian as of 1946. It remains in print, dedicated to 
Schmidt and Zermelo as the author’s friends. The Chelsea edition enjoyed very wide 
circulation in the expanding postwar mathematical universe in the US, which likely 
accounts in part for the continued interest in this older work. 

The approach of Carathédory rests on an axiomatic formulation of the properties 
of outer measure, specifying which sets with outer measure are measurable. Other 
axiomatic formulations that were to follow dispensed with this approach, instead 
axiomatizing the concepts of content and measure as such. At mid-century, at least 
some writers regarded the Carathédory approach as the “usual” one, Mayrhofer 
being one example (Mayrhofer 1952, III). In his case, he derived the properties
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of these usual outer measures. The nature of the algebraic assumptions on the 
collection of subsets of the space—set of sets, ring, field, Boolean ring, Boolean 
lattice—also is a locus of variability with implications for how the definitions get 
made and how the material is ordered. 

17.2.4 An Aside: Hausdorff and Measurability 

General problems associated with the existence of measures for certain kind of sets 
began to appear quite soon after Lebesgue’s work began to be taken seriously. 
The questions tie very closely to set-theoretic issues (such as Zermelo’s Axiom 
of Choice) and to point-set topology. Already in 1914, Felix Hausdorff, in his 
Grundzüge der Mengenlehre (469–472) posed the problem of measure “au sens 
large”. Banach, in his 1923 paper “Sur le problème de la mesure” stated Hausdorff’s 
problem this way: 

In his book “Grundzüge der Mengenlehre” (Leipzig 1914) Monsieur Hausdorff treats the 
following problem: Can we attach to each bounded set E of an m-dimensional space a 
number .m(E) satisfying the following conditions: 

(1) .m(E) ≥ 0, 
(2) .m(E0) = 1 for a set . E0 in the given space, 
(3) .m(E1 + E2) = m(E1) + m(E2), if .E1E2 = 0, 
(4) .m(E1) = m(E2) if the sets . E1 et . E2 may be superposed. 

He proves that this problem is impossible for spaces of three dimensions or more. (Banach 
1923) 

In fact Banach’s quotation is a little misleading. Hausdorff sees the Lebesgue idea 
in continuity with the older work of Hankel, Cantor, Jordan, and Peano. These older 
theories considered “measures” that were additive over pairwise disjoint sets, while 
the work of Borel and Lebesgue extended this to countable additivity. This may 
seem small, but for Hausdorff “the passage from the finite to the countable in the 
newer content and integral theory may be designated as one of the greatest advances 
of mathematics (Hausdorff 1914, 400).” Retaining the Lebesgue description in terms 
of constructive versus descriptive definition, Hausdorff pointed out that Lebesgue 
had wished to provide an axiomatic treatment, but that he had not been successful. 

17.3 Virtues of Abstraction: Riesz and Nikodym 

If abstraction can have various forms, it can also be possessed of various mathemat-
ical virtues: clarity, elementariness, economy, simplicity, and so on. These terms 
are used almost always without much precision, the intent being that the reader 
will understand from the outcome that the suggested virtue is present. These terms 
function quite a lot as do the various critical terms in art and literature. They can
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suggest formal characteristics of the work, or emphasize the response of the reader. 
Sometimes these virtues are relative, and the advantages of one theory over another 
may be stated explicitly or left implicit. The examples that follow are not intended 
as exhaustive. 

17.3.1 Riesz and the Functional Approach, 1912 

We have already mentioned that Frigyes Riesz was an early user of Lebesgue, 
something on which Riesz prided himself later. According to a reminiscence of 
1949, it was the 1906 book on trigonometric series that first drew his attention to 
the Lebesgue integral, but then he turned to the thesis and the book on integration. 
Indeed, this was the immediate background to Riesz’s first major triumph, now 
known as the Riesz-Fischer theorem, the idea for which was sparked (again 
according to Riesz himself) by the reading of Fatou’s thesis. Not so modestly, Riesz 
noted of his theorem, “it is possibly the first application of the Lebesgue theory.” 
(Riesz 1949, 30). 

Riesz was soon led to consider whether a more general approach to the Lebesgue 
theory would be possible. By 1912, he proposed an approach that he terms 
“élémentaire”, in the sense that it does not require a detailed study of measurable 
sets first, making it easier to learn (Riesz 1912, 1–2). Apparently he had been 
considering this for several years at that point, but was spurred to it by remarks 
of Borel, who proposed to do something similar, though Riesz’s approach was his 
own. The paper was programmatic rather than detailed, and, in the 3-page format 
required by the Comptes rendus, it was not possible to include proofs. 

Riesz discussed the idea of “elementariness” in a justificatory passage: 

What we want is an elementary theory. It would be difficult to define what we mean by 
elementary, but one point of comparison is provided by the speed with which theories 
become familiar. Now, if the theory of M. Lebesgue is not yet familiar to all those who 
work on Analysis, it’s because it is preceded by an in-depth study of measurable sets. 
Can we get rid of this general notion? (Riesz 1912). 

The programme was one that is familiar today in its broad outlines. First, Riesz 
defined “simple functions” as those taking on constant values on subintervals of 
a given interval, except at a finite number of discontinuities. Restricting himself 
to bounded functions, the only notion used from measure theory was that of a set 
of measure 0 (one with an arbitrarily small countable or finite cover). Taking the 
integrals of simple functions as obvious in the Riemannian sense, general integrals 
are defined as the limits of integrals of simple functions . fn, where .fn → f for all 
x in the interval of integration, except at a set of measure zero. With this, he states, 
one can recover as integrable the same set of bounded functions as in the case of 
Lebesgue; and one can even go ahead and define (Lebesgue) measure of sets by 
considering the characteristic functions of the sets.
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Hence, in the Riesz approach, one can define the integral without the niceties of 
measure theory, except for the rather simple notion of a set of measure zero. Notions 
about measurable sets and measurable functions can then be recovered. The key 
virtue cited here is one of simplicity, long thought of as a virtue of a theory, even if 
the meaning is imprecise. 

Spurred by discussions with Mittag-Leffler in 1916, Riesz wrote out the details 
of this approach in 1917, and the result appeared in Acta Mathematica in 1920. In 
the time interval between the programmatic statement and the publication, several 
key mathematical developments occurred that were to spur Riesz to further activity 
concerning integration theory. We turn to a quick discussion of a few of these in 
order to provide continuity to our account. 

While the Riesz-Fischer theorem made use of the Lebesgue theory, the 1909 
representation theorem for linear operators required the use of a Stieltjes integral. 
The problem of retooling Stieltjes integration in a manner compatible with the 
Lebesgue approach was taken on by Johann Radon in Vienna, and his 1913 
Habilitationsschrift presented the theory of what is sometimes called the Radon 
Integral, sometimes the Lebesgue-Stieltjes integral, for subsets of Euclidean space. 
This required a generalized notion of measure. The details are nicely discussed in 
Hawkins (1970). Fréchet, in 1916, reacted to the Radon paper by noting that the 
method employed by Radon could be extended beyond .Rn to arbitrary abstract 
spaces. This does not seem to have had a rapid reception. Fréchet also presented 
a version of the decomposition theorem for such situations. 

17.3.2 Otton Nikodym 

The move away from a naturalistic view of mathematics is gradual, tentative on the 
part of some, and partial both in individual practice and across the communities of 
mathematicians. But as the view that mathematics is a human contrivance gained 
momentum, various ways of presenting mathematical results also developed in 
which “naturalness” took on a different meaning. Indeed, there is a broadening 
and diversification of what constitute “mathematical reasons” for presenting a set 
of results in a certain way, a way involving the choice of definitions, the precise 
setting, the basic concepts, the axioms. These are largely familiar to us, since we 
hear mathematicians use them all the time: this method is “efficient”, that one is 
“natural”, this one allows us to see clearly the “essential” relationships between 
different objects or results, and so on. 

But these ways of speaking and presenting, even proving results obviously did 
develop over time. Different choices here reflect values and influences. 

Radon had already developed a discussion of the situation under which a function 
is an antiderivative in his more general setting, building directly on the work of 
Lebesgue. Carrying this to a more abstract setting was the work of Otton Nikodym, 
leading to the well-known “Radon-Nikodym” theorem. In what follows I’ll try to 
look at the presentation of Nikodym embedded in the literature to which it was
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responding, with particular attention to what we might term his “mathematical 
reasons” for doing things as he did. By examining these we will get some image 
of one approach to the way in which research mathematics is to be presented, in 
the view of one practitioner, but one whose approach was derived from influences 
that ranged across the practitioners of the nascent theories of measure, functional 
analysis, and topology. 

Nikodym was Galician, born in 1887 in what was then Austria-Hungary. With 
high school qualifications in both mathematics and classics, he went to the university 
in Lviv; at the time the principal language of instruction was his native Polish. 
He completed his studies in mathematics there in 1911; Sierpiński had joined the 
faculty there in 1908, was his teacher, and remained a mentor. From 1911 to 1924 
Nikodym taught in a high school in Kraków, and he was one of the founding 
members, in 1919, of the Polish Mathematical Society. In 1924, apparently at the 
urging of Sierpiński, he obtained a doctorate, after which he joined the faculty of the 
Jagellonian University in Kraków. From 1930 to 1945 he was in Warsaw, though the 
university was closed after the German invasion in 1939. After the war he moved to 
the US, where he had a long career. 

Here we concentrate on (Nikodym 1930). By examining Nikodym’s strategy 
in that paper, we can get some idea about what he wants from a “theoretical 
configuration.” Nikodym’s explicit aim is to generalize the work of Radon to 
arbitrary sets (not simply collections of subsets of euclidean space). As he knew 
he had been preceded by Fréchet, but here he uses a different approach. His reasons 
for doing so have to do with generality, economy/parsimony, and efficiency. 

Indeed, Nikodym contrasts his approach with that of Fréchet, who had general-
ized Radon’s integral using a family of sets that is assumed closed under countable 
union and set difference (so-called “additive families”), with an arbitrary real-valued 
set function as measure. Nikodym prefers a different foundation, namely the corps 
d’ensembles (a field of sets: closed under countable union and complement in a 
specified “universe” or variété) and a restriction to non-negative measures. Now  
every corps is an additive family, but not conversely. Nonetheless (his first stated 
reason for this choice) the more restricted collection of sets provides a notion of 
integral that is no less general. 

One general remark (justified in the text of the paper) is that his point of view 
“provides more methods of proof”. For example, the restriction to non-negative 
measures permits an extension of the absolute continuity of the Lebesgue integral 
to this more general context (that is, the retention of the Vitali property). As he puts 
it,“if my .En → 0, we have .limn→∞

∫
En

f = 0.” This fact combined with countable 
additivity for the integral expresses a property that renders the theory of Lebesgue 
“so harmonious and important.” 

Further, absolute continuity can be shown by using the non-negative measure 
on the field to define a distance function which renders the field a complete metric 
space. This, then, furnishes the additional means for proof to which he refers: he 
has the whole arsenal of metric space theory, by then well-developed. Finally, in 
this context, which functions are measurable does not depend on the measure. (The 
integrability, or sommabilité does of course.)
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Nikodym also draws to our attention that his definitions are different from those 
of Lebesgue, “in order to arrive more quickly at more interesting theorems.” An 
itemized list of the differences is not so interesting, but it is true that there is a real 
economy of presentation in this context compared to Lebesgue and Radon. Finally 
in the introduction he gives a theorem that is “a little more interesting:” 

The necessary and sufficient condition that a function .F (E) be perfectly additive and .μ-
continuous is that there exists a .μ-summable function .f (x) such that .F (E) = ∫

E
f dμ for 

each . E ∈ K .

Thus countably additive set functions may be generally represented as integrals 
with respect to non-negative measures. This is the “abstract” version of the Radon-
Nikodym theorem. As we shall see below, this work facilitated a revised view of 
the decomposition theorem, which was later to be termed the Lebesgue-Nikodym 
theorem. 

We have a certain amount of additional information about the importance that 
Nikodym attached to abstract approaches. For example, Nikodym gave a series 
of radio talks, published in 1946 as “Spojrzmy w głębiny myśli: cykl wykładów 
popularnych z dziedziny nauk ścisłych” (Let’s look deep into ideas: a series of 
popular lectures from the field of scientific research). Here the role of logic, and 
mathematics as a kind of avatar of logic in scientific research, is compared to the 
role of intuition. Nikodym stresses, using a variety of examples from mathematics 
and theoretical physics, that logically-based mathematics has both a formalizing role 
with respect to intuition, where it serves as a corrective; and a creative, innovative 
role where good formulations may lead to the development of guiding intuition. 

Abstract thought grew in deep minds, in silence and concentration; although it does not 
make a fuss, it weighs heavily on the fate of entire nations, guiding the progress of culture, 
imperceptibly but reliably. 

17.4 Riesz’s 1928 Program and Its 1936/40 Realization 

In 1928, the year before Nikodym’s work, F. Riesz spoke at the Bologna ICM on 
some aspects of his recent work. Here he recalled his 1909 representation theorem, 
which showed that any continuous linear functional can be represented as a Stieltjes 
integral with respect to a function of bounded variation; because of this, he noted 
in 1928, the study of functions of bounded variation becomes a study of linear 
operations (as he then phrased it). Thus, for example, the result of Jordan that a 
function of bounded variation can be written as the difference of two monotone 
functions translates into the fact that such a continuous linear functional can be 
decomposed into two linear non-negative operators of which it is the difference. 
This raised, for Riesz, general questions about decomposition of functions and 
functionals, which he was to explore intermittently over the next decade and more. 
Here he was particularly interested in the relationship between indefinite integration
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and the existence of derivatives, a location where the relation between measure and 
integration becomes particularly tricky. 

Riesz in particular called attention to a result of Fréchet, coming from work of 
Lebesgue, De la Vallée Poussin, and Beppo Levi, which stated that a function of 
bounded variation . α could be written as a sum 

. α(x) = α1(x) + α2(x) + α3(x)

where .α1(x) is an antiderivative for .α'(x), and is absolutely continuous; . α2(x), the  
“singularities function” is continuous, of bounded variation, with derivative zero 
almost everywhere; and .α3(x), the rest, is the “jump function”. These results were 
extracted from the analytic representation of the function. Riesz now sought to turn 
the tables and approach the same material, as he put it, synthetically. The aim is 
to investigate such questions with linear operations (as he then termed operators) 
directly, and in particular operations on functions defined on abstract sets, explicitly 
following the lead of Percy Daniell’s integration studies from around 1920 (we omit 
discussion of Daniell’s work here). 

In order to do this, Riesz introduced a notion of majorant and minorant 
operators; because there is a greatest minorizing operator, for example, these operate 
analogously to the sup and inf of sets of real numbers. Operators are called disjoint 
if .min(A,B)=0, that is, if the only (non-negative) operator that minorizes both is 
the one that is identically 0. 

If I is then the Lebesgue integral over an interval, an operator (opération positive) 
is defined as singular if it is disjoint from I . It is  regular if it is disjoint from all 
singular operators; a singular operator is continuous if it is disjoint from all operators 
of the form .Af = f (x0) (evaluation at a single point), and purely discontinuous if 
disjoint from all operators that are continuous. These three categories of operators 
furnish the decomposition corresponding to that of Fréchet’s version of Lebesgue 
decomposition: 

. . . to  decompose  a  non-negative operation A into  three  parts  . . . we  have  only  to  use  a  
procedure that is almost automatic. Consider all the elements of the respective class that 
minorize A . . . and take the least majorizer. Proceeding thus for each of the three classes we 
get three operations [i.e. operators]. These are precisely the same that Fréchet arrived at in 
decomposing the function of bounded variation that figures in the expression of A. (Riesz  
1930). 

Riesz then turns to a clarifying discussion of the relationship of these ideas 
with Lebesgue integration. This provides much of the intuitive content of the work, 
particularly the 1940 detailed version that was to prove influential. What Riesz terms 
a regular operator in this context is one that can be written as the Stieltjes integral (he 
is restricting himself here to continuous real-valued functions f ) of some Lebesgue-
integrable function . φ: 

.A(f ) =
∫ b

a

φ(x)f (x)dx.
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If for the moment we consider positive functions . φ, the ordering of the operators 
is then straightforward, and the integral .I = ∫ b

a
f (x)dx is a kind of “unit.”. Since 

the . φ is determined (up to a set of measure 0), there is a one-to-one correspondence 
between regular operators and positive Lebesgue-integrable functions. That is, the 
Lebesgue theory of integration can be built as a theory of linear operators. 

The discussion in this paper is largely programmatic: there are not many 
theorems. But this paper (Riesz 1930) prefigures much of his work over the next 
years in this area, and feeds directly into the work of Dieudonné, among others. 

As for the question of justification, Riesz wrote later about this paper that by 
restricting himself to linear operators on continuous functions, the parts of the 
decomposition could be obtained without recourse to the explicit expression as a 
Stieltjes integral: 

Such a method has the advantage of being completely general, so that it can be used 
for linear operators of functions defined on abstract sets, as M. Daniell has studied in 
generalizing the notion of integral. (Riesz 1940, 174) 

Thus the power of the Daniell integral is called upon to validate the level of 
generality: linear operations on functions defined on abstract sets. 

Riesz was keenly aware of the technical problems that this generalization 
presented, and he investigated this question in front of the Bologna audience. He 
noted that, in this case, the regular operators are just those that can be written as 

. A(f ) =
∫ b

a

φ(x)f (x)dx

with respect to some non-negative summable function . φ. In other words, up to sets 
of measure zero, there is a one-to-one correspondence between regular operators 
and summable functions. Thus, as he put it, starting with linear operators on 
continuous functions, without leaving “the sacred wood of classical analysis”, one 
gets Lebesgue summability. Riesz clearly saw that by altering the classes of objects 
to which this applies and generalizing to arbitrary elements, he could unify the 
treatment of a broad class of theories of integral. On the whole, it’s interesting that 
Riesz chose to present this work-in-progress to the ICM. Of course, he could be 
sure that it would be of broad interest to those working in analysis, and he could 
draw on a recognized achievement—his 1909 paper, explicitly cited—to pique the 
audience’s interest. But, in fact, he may also have thought that this was one of the 
really interesting things he was working on. His 1940 paper, a very substantial piece 
of work, brought this to fruition, and also to the attention of Dieudonné, for whom 
it was a point of departure for recasting integration theory in a way consistent with 
the Bourbaki priorities.
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17.4.1 The Riesz Generalization of 1936/1940 

The paper (Riesz 1940) which elaborates on the statements at the ICM of 1928, 
restates results that Riesz published in Hungarian in 1936. We can hardly improve, 
for a brief account of the content and to illustrate the level of generality, on what von 
Neumann had to say about this paper in the first volume of the new Mathematical 
Reviews. After noting that the 1928 paper had inspired work by Freudenthal, Garrett 
Birkhoff, Kantorovich and others, von Neumann continued: 

The investigation deals with partially ordered linear spaces . . . All other authors postulated  
further the lattice property, that is, the existence of a least upper bound and of a greatest 
lower bound for any two elements .f, g. The author requires instead: Given any four 
elements .f1, f2, g1, g2 ≥ 0 with .f1 + f2 = g1 + g2, there exist four elements 
.h11, h12, h21, h22 ≥ 0 with .h11+h12 = f1, h21+h22 = f2, h11+h21 = g1, h12+h22 = g2. 
This remarkable decomposition condition is weaker than the lattice postulate. The author 
then investigates those linear functions .L(f ) in such a space, for which .L(f ) is a real 
number not less than 0 when .f ≥ 0. They and their differences form together a space 
satisfying the same conditions, the dual of the former. These dual spaces are shown to 
be lattices, and even to possess the stronger property of lattice completeness. The author 
establishes this, as well as a detailed spectral theory of the dual spaces, by very elegant 
direct methods and discusses numerous applications. These include various integrals of 
Stieltjes, Hellinger and Daniell. 

This review emphasizes the importance to von Neumann, and doubtless other 
readers, of the level of generality. This plays out in the use of algebraic structures 
(Boolean algebras and lattices, abelian groups) to generalize the algebra of sets of 
real numbers. Dieudonné later made the observation that such spaces—and even the 
more general case of topological vector spaces—are not markedly different from 
sets of functions, as far as integration and its relation to differentiation are concerned 
(Dieudonné 1948). 

This, then, was about linear functionals (by the Riesz representation theorem, 
then, integrals) on abstract sets. But in the 1940 paper the level of generality is 
greater. And as Riesz noted, his weaker hypothesis here leads to a lattice structure 
for the dual space. This permitted Riesz the use of this formal tool to grasp the 
relations between the different results, as he put it. But besides this, the abstraction 
itself is presented as an achievement: 

Let us observe what is obvious anyhow, that in the following consideration one could have 
replaced numerical operations by others with values in any complete linear lattice. (Riesz 
1940, 175) 

To grasp what is going on here, and the usefulness of the generality, it’s 
illuminating to look at the example of non-negative harmonic functions, defined 
in some open region in the plane or space. These may be decomposed as stated, but 
we can’t use simply the min or the max of a pair of functions, since this need not be 
harmonic. However, we can define .inf(f1, g1) = φ where . φ is the greatest harmonic 
function bounded above by both . f1 and . g1. The sup may be defined analogously. 
(Riesz observed that these may be constructed by balayage). But this method is 
general: one uses for the inf the greatest element below a given pair.
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In the Riesz approach, the decomposition of operators into the sum of disjoint 
operators turns into a fundamental tool that permits, say, the definition of integrals 
or measure of sets in a given “fundamental domain” or base set . Ω. The fact that 
the set of positive linear functionals becomes a complete lattice, and yields the 
smallest such complete lattice, provides the structure that allows the extension of 
the basic model for continuous functions, sketched in 1928, to sets of abstract 
elements. 

The generalization works as follows. Given a “unit” positive operator E on a 
base set . Ω and another operator in the same family A, we find the smallest complete 
family containing E by looking at the set . E' of all operators disjoint from E, and 
then taking .[E] to be the set of all operators disjoint from all members of . E'. This is  
a complete lattice, that is, it contains all infs and all existing sups of the original set. 
It’s useful to keep in mind the 1928 example, in which E corresponds to . 

∫ b

a
f (x)dx

and A would then have a representation .
∫ b

a
φ(x)f (x)dx. 

We then simultaneously decompose E and A. Define 

. Pλ = positive part of (λE − A), λ ∈ R,

with a corresponding negative part. The meaning here is that for any . λ and f , . Pλf

is the upper envelope of the positive part of all functions .λEg − Ag, g ≤ f . This is  
convex, hence has a right derivative, and for any . λ we can decompose E into disjoint 
operators . Eλ and .E − Eλ, with 

. Eλ = P '
λ,

yielding 

. Aλ = λP '
λ − Pλ.

This in turn permits the definition of an operator which corresponds to an integral 
with respect to . Eλ, and Riesz concludes the paper with theorems laying the 
foundation for analysis in this context. 

Riesz’s account is clear and economical, and it’s hard to abbreviate it with clarity. 
Let’s look at an example, provided by Riesz himself, to get the import of the greater 
generality. Recall that when f is continuous, for any operator A we can write 

. Af =
∫ b

a

f (x)dα(x)

and we may think of A as generated by .α(x), a function of bounded variation, non-
decreasing if A is positive. In fact if E is a positive operator generated by .ϵ(x), and 
if A is also positive and bounded with respect to .E(0 ≤ a ≤ cE), it is already a
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theorem of Lebesgue that 

. Af =
∫ b

a

a(x)f (x)dϵ(x)

where .a(x) is the derivative of . α with respect to . ϵ and this integral is a Lebesgue-
Stieltjes integral. The more general approach in this case permits treatment of the 
case where A is not restricted to being positive or bounded, using the parametriza-
tion and the fact that the positive part of .A = limλ→∞ Aλ, among other things. 

While features of this work interested many writers in the period, we will restrict 
ourselves in what follows to Bourbaki, and mostly Dieudonné. 

17.5 The Decomposition Theorem as a Test of Good 
Abstraction: Bourbaki and Dieudonné 

As is well-known, the Bourbaki group formed in 1934 for the specific purpose of 
writing a textbook, initially termed a Traité d’analyse, that would serve as a modern 
and unified treatment of the basics in all areas of mathematics. The name, Nicolas 
Bourbaki, was that of a French officer in the Franco-Prussian war. The original 
members were René Possel, André Weil, Jean Delsarte, Jean Dieudonné, and Claude 
Chevalley. Within a few weeks they were joined by others including Jean Leray and 
Szolem Mandelbrojt. In initial discussions they decided that their integration theory 
would be based on the Lebesgue integral. 

However the interests in research of Weil and Dieudonné, as well as contem-
porary developments, soon dictated that the version of integration would be more 
modern than that of Lebesgue, and indeed the minutes don’t imply that this was not 
always clear. In fact, Bourbaki is famous for the textbooks, but he also published a 
small number of research papers, the first of which appeared in the Comptes rendus 
of 1935 and concerns measure. 

In the interval between this work and the 1940 work of Riesz, Bourbaki mathe-
maticians undertook various projects related to integration. One rather singular piece 
on this emerged from the pen of André Weil. Weil’s article “Calcul des probabilités” 
(Weil 1940) appeared in the Revue Rose, one of a pair of journals that brought 
developments in the scholarly world to the attention of a broad educated public. 
Weil used the article not only to explain the correspondence between ideas in the 
theory of measure and those in probability, due to Kolmogorov. He also used it to 
advance a particular view of mathematical activity, and to propose that measure 
should be a derived concept, with integration being treated as more fundamental. 
This called for a reform of the Lebesgue theory: 

But M. Lebesgue having given the leading role in his theory to measure . . . all his successors 
have thought it important to imitate him in this decisive point. We believe that the moment 
has come, via a tighter analysis, to decompose his discoveries into their constitutive 
elements, to distinguish what is essential to the treatment of an integral from things that
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have to do with the particular properties of the sets on which we are usually operating. Such 
an analysis is in fact possible (1), . . . and here is a sketch of the first results to which it leads.  
(Weil 1940, 206) 

The footnote (1) refers us to the fact that the theory of integration will be taken 
up in a a forthcoming volume of Bourbaki, “a number that will also contain the first 
principles of the probability calculus” (Weil 1940, ibid). This promise to deal with 
probability turned out not to be kept. 

We note that this statement seems to establish that Weil certainly did not know 
at that point of the earlier efforts by Riesz, dating back to 1912. The discussion that 
begins the paper explains the idea of a formal theory to the reader of the Revue Rose, 
in a way that basically outlines the Hilbertian formalist point of view. 

17.5.1 Dieudonné and the Lebesgue-Nikodym Theorem 

As mentioned earlier, Bourbaki prepared work on integration in this period, that 
remained unpublished. However, the contents are to be gleaned at least partially 
from use made of them by Jean Dieudonné. In a sequence of related articles titled 
“Sur le théorème de Lebesgue-Nikodym” I-V, published between 1941 and 1951, 
Dieudonné explored the Lebesgue decomposition result as generalized by Nikodym, 
first in the context of Riesz spaces (that is, ordered vector spaces), then in the context 
of topological vector spaces, the focus of much of his activity over this period. It’s 
interesting that these papers were published in global dispersion: the US and France, 
but also India, Canada, and related work in Brazil. 

We note in passing that the Lebesgue-Nikodym decomposition also was exam-
ined by von Neumann at about the same time. In his 1940 paper “On Rings of 
Operators III” (v. Neumann 1940, 126–130), he formulates this theorem in the 
context of rings of operators on Banach spaces. It functions as a tool, for example 
in results about the commutativity of functionals with functions in the base space, 
and the results rest on square-integrability. 

Dieudonné’s paper of 1941 builds directly on the insight of Riesz that the 
decomposition theorem holds equally well, not only for function spaces, but for 
“Riesz spaces”, as Dieudonné was to baptize them in 1944: sets whose elements 
are ordered and possess an abelian group structure (Dieudonné 1941). The theorem 
Dieudonné sought to generalize is stated as follows: 

Theorem If E is the set of all continuous real-valued functions .x(t) on .[0, 1], every 
linear functional on E may be written uniquely as 

. L(x) =
∫ 1

0
y(t)x(t)dt + S(x)

where y is measurable, positive, and well-defined on .[0, 1] except on a set of 
measure 0, and .S(x) is a positive singular linear functional.
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Dieudonné observes that this result has been generalized to the Radon-Stieltjes 
integral by Nikodym, as we have discussed, and indeed terms it the Lebesgue-
Nikodym decomposition. His assessment here of the achievement of Riesz follows 
the account of Riesz himself, and emphasizes the fact that the decomposition 
theorem is retained in the more abstract setting (Dieudonné 1941, 567–568). 

Dieudonné immediately noticed one desideratum following Riesz’s paper: 

However, the theory of F. Riesz does not permit us to give a sufficiently precise form to 
the “absolutely continuous” part of the decomposition as in the formula. This is primarily 
because the product of two elements of E [which can be any set] need not be defined. 
(Dieudonné 1941, 548) 

To supply this lack, Dieudonné called upon the recent introduction of limits in 
a “filtering set” by Bourbaki. By this means, Bourbaki had shown how to define a 
locally convex topology on an appropriately restricted set of linear functionals on 
E (they need to be relatively bounded). This in turn permits a new definition of 
the “smallest complete family” containing the given U (which corresponds to the 
integral in the decomposition) in the sense of Riesz. From this standpoint, it was 
possible for Bourbaki to give specific form to the functional corresponding to the 
absolutely continous portion of the decomposition, and hence to obtain what he 
termed “a perfect generalization of the Lebesgue-Nikodym theorem.” (Dieudonné 
1941, 549) 

Dieudonné notes that the idea of Bourbaki he discusses is from an unpublished 
1939 “premier projet” of the portion of the treatise dedicated to the theory of 
integration. Who in Bourbaki authored this is unclear, though Weil was probably 
the first to publish about the Bourbaki integration theory. 

The introduction of a topological approach to this set of questions might be 
termed a return to such an approach. While the setup is somewhat technical, 
I’ll describe it here succinctly, since without it it is not easy to understand the 
relationship between the work of Riesz and that of Dieudonné. A filter . F on 
a set  E (a set of functions for Bourbaki) is a collection of subsets that is non-
empty, does not contain the empty set, and is closed under intersection and “upward 
inclusion”: every set containing an element of . F is also in . F . The idea is due 
to another Bourbaki member, Henri Cartan, who had introduced it in 1937 to 
generalize the notion of limit of a sequence (Cartan 1937). Instead of the ordering 
by decomposition that Riesz had defined, Bourbaki used the idea of limits with 
respect to a filtering set. The latter is achieved by considering, on the one hand, 
finite partitions of a function, where if .x ∈ E is a function a partition . P is a set of 
functions . xi such that .x = ∑

xi . The partitions are ordered in the obvious way, so 
that . P is a filter, or filtering set. 

If we then seek a limit of a set of linear functionals .I1, . . . , In this is done with 
respect to a Lipschitz, positively homogeneous function . φ on . Rn: 

.φ(I1, . . . , In) = lim
P

∑

i

φ(I1(xi), . . . , In(xi)). (17.1)
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As Dieudonné noted. “F. Riesz also defines these “functions of linear functions” but 
in an entirely different, and more convoluted [détournée] way,” (Dieudonné 1941, 
548) a value judgement that would seem to privilege the resemblance of his own 
viewpoint to that of “ordinary” integration, and its topological content. For this 
provides the possibility of defining a locally convex topology on a suitably restricted 
space of functions E, those that can be expressed as the difference of positive 
functions (a property harking back to Jordan). This further permits a redefinition 
of the “smallest complete family” via a completion operation, but in this case, the 
object corresponding to the absolutely continuous part of a operator can be explicitly 
represented. We omit the details, as does Dieudonné. 

Despite Dieudonné’s preference for this topological approach, he notes that 
Riesz’s method made it possible to avoid the assumption that the members of E 
were functions: 

This last part of the work of N. Bourbaki (of which the capital point is the proof of the 
identity of the part of F defined by the topological route, and the corresponding “smallest 
complete family”) assumes as an essential point that the elements of E are functions. It 
remained to examine the possibility of arriving at analogous results while staying on the 
path followed by Riesz, that is, without supposing the functional character of the elements 
of the set E. 

This is exactly what Dieudonné does in the following pages. Without the 
assumption on the elements, he proposed a lattice structure on E, which also needs a 
product, that is, it should be a commutative ring. This permits the use of filters, since 
the formula 17.1 does not require the arguments of the operators to be functions. 
This allows the definition of the topological structure, in a way that will not be 
elaborated here. We note that the ring and lattice structure brings us closer also to 
von Neumann. The delicate part rests on actually reproducing the theory of Riesz. 
As Dieudonné noted, the method consists of lifting an idea of von Neumann—one 
used in his proof of the Lebesgue-Nikodym theorem. 

In fact, as Dieudonné doubtless suspected early on, it’s possible to characterize 
exactly where the Lebesgue-Nikodym decomposition holds. In Dieudonné (1944), 
he gave a necessary and sufficient condition for the abstract result of 1941 to hold, 
and further showed that the only “Riesz rings” for which the theorem holds are 
isomorphic to rings of functions integrable (summable) with respect to a completely 
additive measure on a ground set (functions may differ on a set of measure zero). In 
other words, the abstract study of the L-N result will not in itself lead to applications 
beyond the classical ones. In the words of Riesz, we never leave the “sacred wood 
of classical analysis.” Further investigation led him to the result, in fact, that even 
when the theorem fails, the corresponding Riesz space will be isomorphic to a space 
of integrable functions under fairly broad hypotheses. 

In fact, this premonition, in Dieudonné’s view, underlay also the work of Riesz 
himself, as well as other work of Kakutani, Freudenthal and others. In other words, 
when one considers an abstract linear space with order that is a lattice—a Riesz 
space, when some conditions are added—our intuitions that come from spaces for 
which the points are functions are reliable.



17 What Is the Right Way to Be Modern? Examples from Integration Theory. . . 449

17.6 Concluding Remarks 

17.6.1 Abstract Integration: Two Views from the Fifties 

In 1953, The Bulletin of the AMS published reviews of two works that suggest 
a significant divergence of opinion about the correct way to present the theory 
of measure and integration. The two works in question here were Bourbaki’s 
Intégration, reviewed by Paul Halmos, and K. Mayrhofer’s Inhalt und Mass, 
reviewed by Jean Dieudonné. Each reviewer had sharp criticisms of the book he 
had been given. In Dieudonné’s review of Mayrhofer, for example, he advances 
specific criticisms about content, and in general he feels that the work is out of date: 

Finally, the reviewer wants to take exception to the author’s statement that measure theory 
(as understood in this book) is the foundation of the theory of integration. This was 
undoubtedly true some years ago, but is fortunately no longer so, as more and more 
mathematicians are shifting to the “functional approach” to integration. It is always rash 
to make predictions, but the reviewer cannot help thinking that, despite its intrinsic merits, 
this book, as well as its brethren of the same tendency, will in a few years have joined 
many an other obsolete theory on the shelves of the Old Curiosity Shop of mathematics. 
(Dieudonné 1953) 

Dieudonné remained true to the iconoclastic role associated with his member-
ship in the Bourbaki group, and his lack of appreciation of Mayrhofer’s stately 
march through the recent, already classical theory originating with Carathéodory’s 
“abstract” measures of 1914 is unsurprising given intervening developments. These 
included his own role as a member of the Bourbaki team that had produced the 
first four chapters of the Intégration volumes, in a sense a competing textbook, that 
had appeared in the previous year. It also reflects research work of his own, work 
immediately following on interests of Riesz and of the Bourbaki group. 

The Bourbaki volume was also reviewed in the Bulletin—by another author of a 
textbook on measure theory, Paul Halmos, whose book on the subject had appeared 
in 1950. Halmos in turn was unappreciative of several important aspects of the 
Bourbaki approach: 

Putting ourselves in the place of a student, we must ask: “Is the subject important, is the 
book clearly written, and is the material well organized?” Putting ourselves in the place 
of the supervisor of a Ph.D. thesis in one of the applications of integration (e.g., ergodic 
theory, probability theory, length and area, Boolean algebra, or integral geometry), we must 
ask: “Is this the point of view that will help a student to understand and to extend his field 
of interest ?” I say that the answer to the student’s question is yes and the answer to the 
professor’s question is no (Halmos 1953). 

Halmos’s objections centre on the fact that the version of measure theory employed 
by Bourbaki is not well-adapted for use in areas he considers central, most notably 
probability and ergodic theory.
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But this is not the only problem: 

Owing, no doubt, to the authors’ predilection for using as definiens what for most 
mathematicians is the definiendum, there are many spots at which the treatment appears 
artificial. (Halmos 1953). 

This statement is supported by several telling examples. These illustrate not only a 
presentation strategy for a complex collection of related theoretical results, but a set 
of values about what it is important to do in the mathematics of the period. 

The differences between the two points of view signal different ways in which 
abstraction is justified and what the approach provides. These revolve to some 
degree around both subjects and methodology, both in regard to the role of 
axiomatization, and in the way in which definitions are made and employed. These 
are fundamental aspects of theory construction, and lie at the heart of the very 
abstract world of pure analysis in the first half of the twentieth century. 

Halmos felt the approach in which measure is a derived notion was artificial, 
and ill-suited to the applications he thought most important: probability and ergodic 
theory. We have already seen that Weil came to a different conclusion, though of 
course Weil’s programmatic statement did not contain a completely worked out 
version of probability theory. 

The appeal of the measure-free approach to Bourbaki was surely the hope of a 
unified approach to integration in a large variety of contexts. The Riesz program 
immediately provided this hope, since the space of elements on which the operators 
acted was so general, and Riesz himself extracted the Lebesgue integral and the 
Daniell integral. Work of Dieudonné and others on integration of vector-valued 
functions also illustrates this hope. This was a era in which hopes of very general, 
very powerful approaches carried a lot of weight in directing research programs: we 
can think of category theory, and of the theory of topological vector spaces. Indeed, 
the latter theory, which Dieudonné worked hard to promote, is a place where one 
required the locally convex topology worked out in the 1941 paper. 

The purpose of representation and decomposition theorems may be seen to be 
somewhat different in the papers of these different writers. Nevertheless, Riesz’s 
1909 insight that every linear operator was somehow an integral, and Dieudonné’s 
hard-won account of every Riesz space being a function space, show a shared idea 
about what abstraction should be doing. The resistance to the functional approach 
to integration, which we have not taken up here, shows that not all agreed. 

Despite the fact that the power of the generality was less universally agreed upon 
than some had hoped, the value of the functional approach was more than validated. 
The direct approach via measure theory likewise continued to be taught and used. 
The rather friendly contest between the two has no ultimate resolution, and the 
process shows that mathematicians resist discarding good approaches for the sake 
of unification of approach.
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17.6.2 Abstraction as a Modernist Strategy 

At the beginning of this paper we proposed a brief reflection on aspects of 
abstraction in modern art and literature, with the end in mind of comparing the 
way in which abstraction functioned there to the ways in which it functions in 
mathematics. We have illustrated its use in the work of various writers on analysis, 
largely confining ourselves to one related set of results in order to show both 
variations and commonalities between different authors. 

In all the fields, previous problems are treated, not only by new methods, but 
by taking certain features out of the picture while retaining others. Of course, that 
is just to say that the word abstraction can be applied meaningfully in these cases. 
More than that, though, in mathematics as in the arts we see a movement away 
from naturalistic representation to a standpoint in which the work is determined by 
the maker, as well as by the “rules of the game,” which however do not remain 
fixed and are to some degree up to the players. Riesz raised the bar and created a 
decomposition theorem for operators on arbitrary sets; Dieudonné “ improves” it by 
naturalizing its methods via topology, but then sought to recover the more general 
viewpoint. The “sacred wood” of the classical remains a reference point. Likewise 
one does not “abstract off” the notion of correct proof. By contrast, literature and 
painting may seem more free. Perhaps there is nothing in mathematics that is 
equivalent to lying a canvas on the ground and pouring paint on it directly out of a 
bucket. But even there, the retention of recognizable elements of achievement need 
at least to be argued, sometimes by the artist, sometimes by critics—sometimes by 
collectors and dealers, as perhaps contemporary art shows. If the NFT can work 
for Jeff Koons and Emily Ratajkowski, perhaps it has a future in the mathematical 
world. 
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Chapter 18 
On Set Theories and Modernism 

José Ferreirós 

Abstract “Classical” set theory in the style of Cantor, Dedekind and Zermelo 
enjoyed dominance during the early twentieth century, playing a prominent role in 
many of the “modern” mathematical developments, in analysis, algebra, topology, 
and so on. Yet the theory was polemical, and one finds a characteristic pattern of 
second thoughts about set theory, after an initial enthusiasm; examples we briefly 
discuss are Borel, Weyl, and Rey Pastor, which contrast with Hilbert’s optimism. 
As a result, one can speak of a proliferation of set theories – in the plural – during 
the period 1910–1950. Classic examples are the (more or less coherent) predicative 
proposals of Russell and Weyl, the “intuitionistic set theory” developed by Brouwer, 
and several other systems which we cannot discuss here. We consider in this paper 
whether such criticism of set theory was a symptom of traditionalism, which leads 
to an analysis of the notion of modernism, paying especial attention to the case of 
L.E.J. Brouwer. I shall argue that modernism is a somewhat ambiguous notion, and 
that Brouwer (like Weyl) can indeed be regarded as prototypically “modern” in a 
sense that was characteristic of the Inter War period 1918–1939. 

The rise of “modern mathematics” in the first half of the twentieth century featured 
axiomatics and the idea of structures as key elements, both of them sustained by set-
theoretic concepts. In 1910, David Hilbert wrote that set theory “occupies today an 
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outstanding role in our science, and radiates [ausströmt] its powerful influence into 
all branches of mathematics”.1 Already in 1900, his choice of the first two among his 
celebrated ‘Mathematical Problems’ was signalling that set theory would be central 
in the future.2 Also in 1910, his disciple Hermann Weyl stated that “set theory 
seems to us today the proper foundation, in the logical sense, of the mathematical 
sciences” (Weyl 1910, 302 and 304). On the basis of ε (the membership relation) 
and those relations that can be based upon it, one can establish mathematical 
definitions and axioms, the result being a structuralist conception of the discipline, 
with “completely isomorphic systems” playing a central role (Weyl 1910, 300–301). 

Set theory articulated a new conception of mathematical ontology, deeply at vari-
ance with the traditional views of the seventeenth and eighteenth centuries focused 
on magnitude; set-theoretical methods not only supplemented more traditional ones, 
but they became central to a new form of axiomatics and to the mathematical study 
of “structures.”3 To remain in the “belle époque” 1890–1914, one can mention the 
influence of set theory on: 

– the “modern theory of [algebraic] numbers” developed by Dedekind and 
Hilbert;4 

– algebra and algebraic geometry (the paradigmatic expression “modern algebra” 
is found in a later book);5 

– modern analysis, theory of integration, measure theory (linked with the names of 
French mathematicians Borel and Lebesgue); 

– general topology (through contributions due to Cantor, Hausdorff, Brouwer and 
others); 

– new researches on geometry due to Hilbert, the Italian school of Peano, Pieri, etc. 

The mathematicians involved in these developments, around 1900, were mainly 
centred in Göttingen, Torino and Paris, but it was especially the Germans (seconded 
by the Italians) who forcefully promoted the new viewpoint. The influential group 
of Göttingen mathematicians around Hilbert became the main promoters of this new 
mathematics, which they paradigmatically identified with set-theoretic methods. 

Yet, the rise of set-theoretic “modern” mathematics was polemical. Many 
relevant authors had second thoughts about set theory: after an initial period of 
enthusiasm with the new concepts about the infinite, they evolved into milder or

1 Hilbert 1932, 466, from the obituary of his also famous friend Minkowski, originally published 
in 1910. Zermelo said that it was only “the influence of D. Hilbert” which made him realise the 
importance and deep significance of the fundamental problems of set theory. 
2 First Cantor’s continuum problem, second the consistency of the set-theoretic definition of the 
real numbers. 
3 For a masterful exposition of these novelties, insisting on matters of ontology, epistemology and 
methodology, the reader is referred to (Gray 2008). The paradigmatic definition of a structure 
around 1950 was as a kind of set-theoretic construct (Bourbaki), but more recently a lively debate 
has been developing about other possible approaches, notably the one based on category theory. 
4 The expression is literal from (Hilbert 1897, iii) and it became a ready-made phrase later on. 
5 B. L. Van der Waedern, Moderne Algebra (Berlin: Julius Springer, 1930). See (Corry 1996). 
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stronger critique. Weyl himself was a prominent example. He explained that, as 
a student in Göttingen, he had been raised in the set-theoretic tradition and even 
“confined” into “that complex of notions which today enjoys absolute domination 
in mathematics,” connected above all with the names Dedekind and Cantor, but he 
was able to find his “own way out of this circle” of ideas (Weyl 1918, 35–36). In 
his opinion, set theory and classical analysis involved a vicious circle and had to be 
abandoned: 

I started initially with an examination of Zermelo’s axioms for set theory, which constitute 
an exact and complete formulation of the foundations of the Dedekind-Cantor theory. My 
intention was to fix more precisely the concept of ‘definite set-theoretic property’, which 
Zermelo employs in the crucial Axiom III of ‘Subsets’, since his explanation appeared 
unsatisfactory to me. And so I was led to the principles of definition of § 2. My attempt to 
formulate these principles as axioms of set formation and to express the requirement that 
there exist no more sets than those formed by finitely many applications of the principles 
of construction embodied in the axioms – and indeed, to do this without presupposing 
the concept of the natural numbers – drove me to a vast and ever more complicated 
formulation, but unfortunately not to any satisfactory result. Only in connection with certain 
general philosophical insights, which I could only find by renouncing conventionalism, 
did I realise clearly that I was wrestling with a scholastic pseudo-problem. And I became 
firmly convinced (in agreement with Poincaré, however little I share his other philosophical 
ideas) that the conception of iteration, of the sequence of natural numbers, is an ultimate 
foundation of mathematical thought (despite Dedekind’s ‘theory of chains’, which seeks to 
give [it] a logical foundation . . . ).” (Weyl 1918, 36-37) 

Weyl’s case was by no means an exception. Already in 1910, Paris was the main 
center of criticism of set theory, especially as a result of the rejection of the Axiom 
of Choice by such influential mathematicians as Borel, Baire and Lebesgue. Their 
“five letters” discussing the matter in 1905 became well known, and Borel gave 
them publicity from 1914, when he included them as appendixes to his treatise on 
the theory of functions. The vicious circle principle was formulated by Poincaré 
and Russell, leading them (and Weyl) to the rejection of impredicative forms of 
definition that can be found in analysis and set theory. 

Was such criticism of set theory a symptom of traditionalism? A lack of sight, 
a methodological blindness linked with anti-modernism? What is modernism, after 
all, and to what extent did it determine the new form of mathematics? These are 
the questions I would like to consider in this chapter, paying especial attention to 
the case of L.E.J. Brouwer. I will argue that modernism is a somewhat ambiguous 
notion, and that Brouwer (like Weyl) can indeed be regarded as prototypically 
“modern” in a sense that was characteristic of the Inter War period 1918–1939. 

18.1 Introductory Remarks on Modernism 

Jeremy Gray (2008) has offered a remarkable exposition of the twentieth-century 
transformation of mathematics into so-called modern mathematics, presented for 
a broad audience interested in history of science and history of mathematics. In an
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effort to make clear and graspable the links to cultural modernism, Gray emphasized 
traits such as the following four: the new vision of mathematics as an autonomous 
body of ideas; the view that it has little or no outward reference; renewed and 
“considerable” emphasis on formal aspects of the work; and the “complicated – 
indeed anxious – . . .  relationship with the day-to-day world”.6 This new self-
conception was increasingly shared by a coherent community of professionals, with 
a high sense of the seriousness and value of their discipline (Gray 2008, 1).  

The topic of modernism and its connection with the “foundational crisis” was 
also studied in a pioneering work, Moderne – Sprache – Mathematik (1990), by 
Herbert Mehrtens. This book was written in an interesting postmodernist spirit, its 
analysis taking inspiration from cultural history and semiotics. It was Mehrtens’ 
thesis that one can better understand the early twentieth-century foundational crisis, 
not as having to do with problems of rigor and foundations alone, but as an 
expression of social readjustements within the discipline, of conflicting cultural 
definitions of the figure of the mathematician herself. Whence his subtitle, “a history 
of the fight for the foundations of the discipline and the subject of formal systems.” 
According to him, different attitudes expressed in the famous “foundational crisis” 
of the 1920s correlate with the modernism or counter-modernism of the personalities 
involved. 

Mehrtens presented Hilbert as the prototypical modernist, the “managing direc-
tor” of the new business,7 while his opponents are (almost automatically) counter-
moderns, being critics of the modern methods. The catchwords for the new attitudes 
of the modern mathematicians, according to Mehrtens (1990, chap. 2), were 
freedom, productivity, fruitfulness, and it was also frequent to talk about abstraction 
and about formal language. The counter-moderns (op. cit., chap. 3) expressed 
concerns about the integrity of mathematics, and favoured instead the concrete, the  
given, or intuition; they explicitly promoted restrictions on the way mathematics 
was to be conducted, having to do with meaning and truth. “Both sides are into 
formulating the limits of disciplinary discourse, and thus concerned with the «I» 
and the «us» of mathematicians. Here lies the dilemma of modernism, not merely 
mathematical, in the Self that is «ineffable» (Ernst Mach) and «no longer master in 
his own house» (Sigmund Freud).”8 As a matter of fact, Mehrtens employs not

6 Of course there are parallelisms in art history; an intriguing example of parallel traits in a very 
different domain is given e.g. by Gray’s discussion of “Catholic modernism” (2008, 141–142). See 
also (Ferreirós & Gray 2006). 
7 Mehrtens (1990), 108. The colourful expression was employed by Hilbert’s friend and colleague 
Hermann Minkowski in a letter commenting on Hilbert’s celebrated lecture of 1900 on ‘Mathe-
matical problems.’ 
8 Mehrtens 1990, 9–10. A not very careful reader of Mehrtens will thus extract the idea that there 
were merely two opposite sides – the modernists or progressives, and the conservatives calling for 
reactionary reform. Such a simplistic scheme would be untenable, but Mehrtens is more sophis-
ticated and faithful to the events. His essay is about “the emergence of mathematical modernism 
around the turn of the century and about its nemesis [Abwehr], the «countermodernism,» that set 
itself as an opposition, as a shadow that would not lose it despite all the successes” (Mehrtens 
1990, 7). He intimates that there is an internal link between both, so that the modernists could not 
exist without their shadow – some kind of inner dialectics. 
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only the two main categories of modernism (Moderne) and counter-modernism 
(Gegenmoderne), but on occasion also speaks of anti-modernism (Antimoderne). 
Only the anti-moderns are depicted as reactionary traditionalists.9 

This is in line with what historian Herf wrote in his book Reactionary Modernism 
(1984, 12), i.e., that modernism was not a movement exclusively of the political 
Left or Right; we may add that it was not simply a movement of cultural optimism 
or pessimism, nor a movement of technological enthusiasm or aversion. Even in the 
characteristically optimistic belle époque we find some modernists who are cultural 
pessimists and reject the technological “modern world.” This is well known with 
respect to writers and artists (consider the contrasting attitudes toward technology 
and the new industrial world in H. Broch and R. Musil), but the same tensions find 
natural expression inside the mathematics community (e.g., Brouwer and Hilbert, in 
that same order; see below). 

Europe witnessed in the late nineteenth century the full impact of two great 
Revolutions of the previous century: industrialisation and democratisation – or reac-
tions thereto, as in Germany. Indeed, a second industrial revolution was under way, 
related to technological, science-based industries exemplified by the electrical and 
chemical companies; and it might not be inappropriate to say that a second socio-
political revolution was also happening: extension of voting to all of society, the 
rights of women, emergence of the welfare state. The most obvious understanding of 
modernism is that it consisted in different forms of explicit and high-strung cultural 
reaction to those historical experiences. Implicit in this perspective is the idea that 
we must differentiate between modernity and modernism – a central point in my 
attempt to rethink the issue.10 Obviously, there is a broad gamut of possible cultural 
reactions to modernity – an intensive transformation of life and society – ranging 
from fully optimistic embracement to an equally extreme and pessimistic rejection. 
What is most characteristic of the modernists is their emphasis on “the new,” but 
this can be coloured in different ways. 

The first four decades of the twentieth century was a time when many were 
expecting full arrival of the new, if not fighting to promote the revolution. It could 
be a “new world” of technological marvels, but also new social ways, new kinds of 
human relations; or a “new art” in music, literature, painting, or a “new science” 
in radical break with the past; or else – most important – it could be a “new man” 
(or woman) having the traits expected by the Marxists, or those proposed by the 
Fascists, or by other groups. 

Gray (2008) acknowledges explicitly that cultural modernism was a broad 
movement with strong tensions between diverging tendencies and interpretations, 
and this has as a consequence that the links between cultural and mathematical

9 In fact this category seems to be reserved for those who developed political orientations akin to 
National-socialism (Mehrtens 1990, 14–15, 308ff ). 
10 Judging from the reactions of some colleagues and referees, I come to think that perhaps there 
is a cultural element in this perspective of mine: perhaps there is a reflection of my cultural 
background in Spain and its complex cultural and political history in the fact that, from the 
beginning, it seemed obvious to me that modernism and modernity are to be distinguished. 
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modernism become rather elusive.11 In fact, Gray chooses to downplay the issue 
(2008, 14), focusing instead on the “independent” modernist transformation of 
mathematics understood as a phenomenon internal to the discipline (op. cit., 37). 
In this contribution it will be my aim to insist on the plurality of modernisms and 
the ensuing difficulty of employing the category in such a way that mathematical 
modernism and “modern mathematics” are simply identified. 

Thus, in what follows my principal aim is to emphasize the complexity of the 
picture, warning against simplistic interpretations of the period. Generally speaking, 
cultural movements are never homogeneous and monovalent, rather they are marked 
by tensions. This should be a truism for historians, but historians of science (and 
here I think e.g. of recent debates concerning the Scientific Revolution) often tend to 
the monovalent picture. Of course, that complicates any attempt to relate scientific 
developments with the culture that made them possible. We find partisans of the 
modern methods in mathematics that show clear signs of cultural traditionalism, 
and opponents of the “new maths” that may be counted among the best examples 
of modernist mathematicians. Perhaps my most important argument will be a 
vindication of the figure of L.E.J. Brouwer as a modernist – so that, in my view, 
the identification of modernism with so-called “modern mathematics” becomes 
dubious. 

18.2 Hilbert’s Optimism 

David Hilbert became in the 1900s one of the most reputed mathematicians in 
the whole world. He was a leader within the institution that led international 
mathematics at the time, the University of Göttingen, contributing significantly to 
the modernisation of the mathematicians’ work. Work at Göttingen became much 
more collective and oral than was usual in the past, when mathematicians laboured 
in isolation on the basis of books and journals. There was a great number of students 
around, and the weekly meetings of the Göttingen Mathematical Society played a 
decisive role, with many visitors coming by.12 Even more important, the puristic 
values of German mathematics were tempered thanks to the efforts of Felix Klein, 
leading to the forging of new links with engineering and the natural sciences. It 
is worth noticing that Hilbert continued with all his energies this tendency, which 
took the discipline mathematics away from the more extreme trend toward full 
autonomy.13 

11 The point is acknowledged both by Mehrtens (1990, chap. 7) and Gray (2008, chap. 1). 
12 For a thorough discussion of this topic, see Rowe (1989) and (2004). 
13 On this topic see Corry (2004). With R. Courant, Hilbert authored a key book for mathematical 
physics, Methoden der Mathematischen Physik (Berlin: Julius Springer, 1931), in the tradition of 
Riemann and Klein.
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With his 1900 talk on mathematical problems, and especially with the choice 
of the first two,14 Hilbert made – I surmise – a conscious attempt to influence the 
direction of mathematics. It was his bet for the future dominance of the set-theoretic 
orientation, in contrast to the severe criticisms voiced by powerful members of the 
older generation in Germany. Indeed, he was willing to invest all of the influence 
and respect he had accumulated over the years, in the attempt to preserve the new 
set-theoretic methods. This is what Hilbert did during the famous foundational crisis 
of the 1920s, and in this way he became a scientific icon, the name most directly 
associated to “the modern” in mathematics. Another reason why Hilbert became an 
icon of modern mathematics was the strong link established between his name and 
the “mathematics of axioms”.15 

In the 1920s, already more than 60 years old, Hilbert was still inventing methods 
based on axiomatisation for grounding mathematics anew, namely proof theory and 
metamathematics. But he was also using highly charged rhetoric: he depicted Cantor 
as the prophet of the new mathematical paradise, Hilbert himself as his vindicator; 
the intuitionist Brouwer was presented as a leader of the reactionary party, a follower 
to that villain figure of Leopold Kronecker (leading mathematician at Berlin from 
the 1860s to the 1890s, and ardent critic of the modern infinitary methods).16 The 
following sentence is well known, but deserves to be quoted again: 

We shall carefully investigate those ways of forming notions and those modes of inference 
that are fruitful; we shall nurse them, support them, and make them usable, whenever there 
is the slightest promise of success. No one shall be able to drive us from the paradise that 
Cantor created for us. (Hilbert 1926, 375–76) 

Hilbert’s rhetoric aligned Brouwer with Kronecker, yet it should be clarified that 
Brouwer accepted infinitary methods, unlike Kronecker. A few years before, when 
Hilbert’s disciple Weyl saluted Brouwer as “the Revolution” (Weyl 1921), Hilbert 
answered that he was not a revolution at all, but rather an attempted Putsch repeating 
the failed attempt of Kronecker. Clearly it was a fight between Progress and 
Reaction; one could even say, without abandoning the biblical language that Hilbert 
liked to employ, between Good and Evil. 

Both the Promethean connotations of such rhetoric, and the abstractness of the 
axiomatic and set-theoretic mathematical style, suggest the possibility of finding 
links between the “new maths” and cultural modernism. Set theory helped to 
establish the new mathematical developments on foundations that not only seemed 
to guarantee methodological rigor, but especially a freedom of thought that was

14 Even though his public presentation was limited to 10 of the 23 problems in his list, those two 
were among the chosen ones. On this topic, see Ferreirós (2007), chap. IX. 
15 In the present context it is important to notice that his understanding of axiomatics was 
profoundly linked with set-theoretic methods. On this topic, see Kanamori and Dreben (1997), 
Gray (2000), Ferreirós (2009). 
16 In the 1920s, Arthur Schoenflies did historical work that established Kronecker’s reputation as a 
malevolent enemy of Cantor, and even a major cause of his mental illness. Much earlier, Hilbert had 
obtained an impression of Kronecker’s ways of promoting his enmity to the “new mathematics” 
from his friends Minkowski and Hurwitz, who knew well the Berlin master. 
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strongly emphasized by Cantor, Dedekind and Hilbert. Cantor went as far as saying 
that “freedom” is “the essence” of mathematics, while Dedekind liked to repeat that 
numbers are “free creations of the human mind.” Such is the ultimate referent for 
Hilbert’s defiant cry of 1926, the portrait of himself as a rebellious Adam fighting 
to remain in the Garden. 

According to Herf (1984, 12), the “central legend” of modernism “was the free 
creative spirit . . .  who refuses to accept any limits and who advocates what Daniel 
Bell has called the «megalomania of self-infinitization».” In this central inspiration 
a romantic motif lingers on. Both Cantor and Dedekind seem to have received 
the cultural impact of romanticism early in their lives, but of course ideas and 
trends associate rather freely in different minds: flexibility is the rule. Dedekind 
preserved an emphasis on the “free creative spirit” and on the absence of limits 
for mathematical “creation” (concept formation, introduction of structures), but in a 
classicist reading that reinforced more and more the idea of the logical laws at play. 
Cantor, by contrast, remained closer to Herf’s description, much more of a romantic 
throughout his life, and even combated explicitly the customary depiction of the 
human mind as finite.17 

All of this was part and parcel of a clear move towards the autonomy and 
self-containment of mathematics. Hilbert’s talks (especially his famous conference 
of 1900 on ‘Mathematical problems’) are examples of belle époque optimism, 
transmitting the message that the future is ours, full of freedom, and the received 
concepts and methods are basically all right, perhaps requiring minor corrections. 
Hilbert’s later proof theory was self-containment at its utmost, as he tried to certify 
the foundations of mathematics by purely mathematical means (and it is tempting 
to see its failure as one of the many failures of extreme modernist tendencies shortly 
before the Second World War). 

There is little doubt that Hilbert can be dubbed a “modern man,” to pause for 
a moment on this aspect of the question.18 He was far from the old habits of 
German University mandarins, to the point of being criticised for his careless way of 
meddling with students. There are clear signs of his progressive stance in matters of 
culture and society, like his promotion of social democrat philosopher L. Nelson or 
his way of defending that Emmy Noether should be appointed a University lecturer 
(“Meine Herren, the faculty is certainly not a public bath”, see Reid 1972, 143). 
He had the attitudes of an enterprising man of science, his life fully devoted to his 
specialised business, which he conceived as an autonomous enterprise. In fact, one 
of Hilbert’s contributions in connection with set theory and foundational studies

17 Interestingly, Brouwer thought that mental proofs are, in general, infinite objects (see his 
Collected Works, vol. 1, p. 394); I thank van Atten for referring me to this passage. 
18 This is an aspect of the figures under review that we shall take into account. Considering modern 
as an actor’s category, we avoid any need to define it more properly, but it might be worthwhile to 
ask whether there is a prototypic “modern persona” (in the sense of scientific personae, see Daston  
and Sibum 2003). 
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was to free their discussion from the philosophical and metaphysical elements that 
figured prominently in Cantor and other members of the older generation.19 

But perhaps one should ask for more when talking about modernism. I have 
mentioned the need to distinguish between modernism and modernity. The mere fact 
that the institutional conditions of mathematical work were significantly modernised 
in Göttingen does not imply that the relevant actors were modernists. Indeed, 
historical evidence pointing to the distinction is very close at hand. Felix Klein was 
as important as Hilbert for the modernisation of the enterprise of mathematics at 
Göttingen, but the ambivalence of Klein’s attitudes makes it difficult to classify him 
(Mehrtens counts him among the counter-moderns, see 1990, 206ff ). Historically 
Klein was a central figure in the promotion of the modern methods, associated with 
the names of Riemann, Jordan, Cantor, Lie, Hilbert, through his original work (e.g. 
the Erlangen Programme), his editorial activities in Mathematische Annalen, his  
activity as leader of a mathematical school, and not least his promotion of the rising 
young star Hilbert during the 1890s.20 Now, if we have to differentiate between 
modernism and modernity in the case of Klein, the same must apply to Hilbert and 
others. 

Of course, applying such criteria strictly, not many names will be left. The best 
examples of culturally modernist mathematicians that I know are Felix Hausdorff 
(b. 1868), L.E.J. Brouwer (b. 1881), Hermann Weyl (b. 1885), and Alfred Tarski 
(b. 1902).21 But of those four names, two are strongly linked with the critique of 
modern mathematics and the proposal of alternative methodologies: Brouwer and 
Weyl were “counter-moderns,” to use Mehrtens’ rather unsatisfactory label.22 I shall 
only discuss in detail one of those names. 

18.3 Disenchantment 

Authors who were as optimistic as Hilbert, concerning set theory, did not abound: 
one might mention Hausdorff, Fraenkel, von Neumann, Mahlo or Tarski as exam-
ples. Many others were exploring the pros and cons of set theory in an (apparently)

19 A detailed analysis of his foundational views would show this in full clarity. But here it may 
suffice to indicate a simple symptom: in the 1910 quotation given above, first page, Hilbert wrote 
Mengentheorie – and not Mengenlehre. In doing so he was avoiding the traditionalistic overtones 
so frequent in Cantor’s work. 
20 See (Rowe 1989) on the “intellectual alliance” between Klein and Hilbert. 
21 Perhaps Betrand Russell and Alfred N. Whitehead might be other good candidates. See on 
Hausdorff (Mehrtens 1990) or (Epple 2006), on Brouwer see van Dalen’s biography (1999) and  
(van Stigt 1990) (1996), on Weyl the book edited by E. Scholz (2001) and (Scholz 2006), and about 
Tarski (Feferman and Feferman 2004). 
22 Although Weyl’s allegiance to Brouwer’s ideas only lasted for 4–5 years, from his 1918 book 
Das Kontinuum to the end of his career he remained a critic of set theory and preferred alternative 
restricted methods; it has been said that, throughout his career, he consciously avoided employing 
the most significant and polemical axiom of set theory, the Axiom of Choice (Ferreirós 2007, 339, 
quoting Dieudonné). 
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noncommittal way: this is the case of such important experts as Sierpiński and 
Luzin, and probably A. Church too.23 This fits the ‘atmosphere of insecurity’ that, as 
I have argued (Ferreirós 2007, chap. X), reigned during the 1920s and 30s. But one 
can also find many relevant mathematicians who entertained serious doubts about 
set theory: Poincaré, Borel and Skolem of course, but also Lebesgue, Baire, Weyl, 
van der Waerden, . . .  And the list continues even to this day.24 

A key figure in this respect was Émile Borel, highly influential in the period 
1910–1940. His Leçons sur la théorie des fonctions (Borel 1898) were not only 
a pioneering work introducing set theory to the French community, but also –in 
subsequent editions – a work promoting skepticism towards Cantorian ideas. The 
second edition appeared in 1914, the third in 1928,25 and he kept adding new 
appendixes. Borel comments that he was a “dangerous revolutionary” when the 
first edition came out, but later became a “reactionary” in the eyes of his students, 
because of his attitude towards AC and his requirements about “definitions” (Borel 
1950, x). He recognizes the “freedom” of mathematicians to introduce concepts 
and axioms, modulo consistency, but he also remarks that “some branches of this 
science, having had their hour of fame, have been abandoned” due to sterility (1950, 
xi). 

Especially important was Note IV (2nd edn 1914, p. 135) entitled “Les 
polémiques sur le transfini”. This included the well-known five letters exchanged in 
1905 between Borel, Lebesgue, Baire and Hadamard (pp. 150–158). By publicizing 
widely these letters, Borel contributed to promoting critical stances. Let me quote 
in particular an interesting passage due to René Baire in 1905: 

The expression given a set is employed all the time, but does it have a sense? Not always, 
in my view. Once we speak about the infinite (even countable, and here I am tempted to 
be more radical than Borel), the assimilation, conscious or unconscious, with a bag of balls 
that one passes from hand to hand, must disappear completely – we are, in my view, in the 
virtual, which is to say that we establish conventions which allow us later, once an object is 
defined by a new convention, to affirm certain properties of this object. But to believe that 
one has gone farther than this, that does not seem legitimate. In particular, from a set being 
given (we may be in agreement to say, for instance, that we give ourselves the set of [all] 
sequences of positive integers), it is false – I think – to consider the parts of this set as given 
[i.e., the powerset]. A fortiori I refuse to attach a sense to the fact of conceiving a choice 
within each part of a set [as Zermelo does, JF].

23 In papers such as ‘Auswahlaxiom und Kontinuumshypothese’ (1938), Sierpiński offered a most 
competent exposition of the uses of and paradoxical consequences of the axiom of choice (AC) 
and the continuum hypothesis (CH) in mathematics, but he declared himself to be neither for nor 
against AC. 
24 Fields medal W. P. Thurston e.g. calls the axioms of set theory ‘polite fictions’ (Thurston 1994). 
Many first-rate mathematicians would opt for minimalism as regards set theory and the higher 
infinite: the Bourbaki themselves, Quine or Wang proposed restrictions on set theory around 1950; 
but also much later we find influential examples such as Martin-Löf or Feferman from the 1970s, 
Voevodsky in the 2000s. 
25 The fourth in 1950. First edn was a mere 134 pages, the fourth featured 150 more of appendixes. 
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Also noteworthy is Borel’s talk given at the Rome ICM 1908 (p. 159ff ), where 
he asserts that the concept of uncountable set is “purely negative”. The idea of a 
countable infinity of choices is quite dubious, but the idea of an uncountable infinity 
of choices is “entirely devoid of sense” (Borel 1950, 160). In another paper of 1912 
(quoted by Lusin 1929, 22), he is forcefully against admission of the full second 
number class: 

wherever all of the transfinite numbers of the second number class must effectively take 
part (and not merely those that are less than one of them, fixed in advance), it seems to me 
that we are abandoning the domain of Mathematics. 

Thus the notion of ℵ1 is illusory. 
Let me provide another example, the leading mathematician in Spain and 

Argentina at the time, Julio Rey Pastor (1888–1962). His book La matemática 
superior is interesting for several reasons, among them the contrast between the 
first edition (1916, written under the influence of his stay at Göttingen in 1913) and 
the second in 1951. Rey Pastor speaks of his “youthful enthusiasm” for set theory, 
later abandoned. Early on, he explained that mathematics would be defined in the 
future as “the Science of Sets”. But in the later edition he changed the first chapter 
of the book, and wrote: 

At the beginning of the 20th century, ephemeral golden age of Cantorism, one considered 
the transfinite Arithmetic and Geometry of Cantor as the indispensable basis of Analysis; 
the new treatises devoted a long initial chapter to them. The successes of the French school 
(Borel, Baire, Lebesgue, Fréchet) confirmed this prestige, while the criticism of Borel and 
Poincaré moderated the excessive enthusiasm, making clear that the whole of classical 
Analysis can be rigorously built without the actual infinite but with some Cantorian concepts 
that are indispensable to promote the theory of real functions . . .  (accumulation points, 
neighborhoods, . . . ). The rise of the unexpected paradoxes, early in the century, cooled 
down the enthusiasm of which this author was infected, giving the transfinite an undue 
prominence in these conferences. (Rey Pastor 1951, 20–21) 

According to him, mathematics in the nineteenth century, while going from the 
concrete to the abstract, had never lost sight of reality and the natural sciences. 
Meanwhile, it is “the characteristic of our times: arbitrary abstract constructions, 
arbitrary postulates and arbitrary functions; a sum of arbitrariness that horrified 
Poincaré” (Rey Pastor 1951, 7).  

As a result of such criticisms, different mathematicians proposed different 
approaches to set theory (and related systems), some of them very wide and 
Cantorian (e.g. von Neumann’s), some much more restrictive. The restrictions were 
sometimes proposed in naïve or informal terms, as happened with Borel, Lebesgue, 
Baire or Luzin, sometimes they were duly formalized – an example being simple 
type theory, which may be regarded as a variant of set theory (Ferreirós 2007, 348– 
356). And one could even find an “intuitionistic theory of sets” proposed by Brouwer 
(1919) right after the War. The complexity of this confusing situation in the Inter-
War period was even greater, due to the unclarity and divergences concerning the 
scope and limits of logic (see Ferreirós 2007, 345–348, 357ff ).
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18.4 Brouwer: An “Entirely Modern Man” 

Luitzen Egbertus Jan Brouwer (1881–1966) belonged to a generation which falls 
squarely within the high time of modernism: he was 19 years younger than Hilbert. 
One of the very best mathematicians in his generation, regarded as a key founder of 
topology, he is remembered above all for his deviant ideas about the foundations and 
methods of mathematics. But that was not the only major theme in Brouwer’s life: 
he had very strong philosophical interests and an eccentric lifestyle; 2 years before 
his dissertation in 1907, he published a monograph entitled Life, Art, and Mysticism. 
During the next few years, however, he devoted his efforts to purely mathematical 
questions of high contemporary relevance, which established his great reputation 
and won him a professorship in 1913.26 

His high achievements in the field of topology made him internationally famous, 
as he introduced new methods, rigorising the field, and proved central results 
like the fixed point theorems and the invariance of dimension under bicontinuous 
mappings. This is perhaps his most important result of the period. Cantor had 
established in 1878, to everyone’s astonishment, that two spaces with different 
number of dimensions (e.g., a simple line and all of three-dimensional space) can 
be bijected, so that to every point in space there is one corresponding point on 
the line! Dedekind conjectured that such bijections must be highly discontinuous, 
and that dimension can be proven invariant if the one-to-one correspondence is 
supposed to be bicontinuous. The result was only proven rigorously by Brouwer in 
1912, establishing the topological nature of the concept of dimension (interestingly, 
Cantor’s attempted proof of 1879 was the only major error in his publications). 

Brouwer’s reputation brought him offers of chairs at Berlin and Göttingen 
in 1919 (remember that Göttingen was the world centre for mathematics). The 
Berlin professors, on that occasion, stressed that Brouwer had provided “the firm 
foundation” for topology, “long sought in vain,” and they opined that he “is equalled 
in the originality of his methods by none of the mathematicians of the younger 
generation” (Van Dalen 1999, 300). Hilbert too seems to have regarded Brouwer 
as the most brilliant among his generation, but the young Dutch was by this time 
fully absorbed into developing his unorthodox views on mathematics. This led to 
the “foundational crisis” in the 1920s, a time when some perceived the danger of 
a “schism” within the mathematical community, which also led to estrangement of 
the once cordial relations between both leaders. 

There was an enormous difference in scientific and personal outlook between 
Hilbert and Brouwer, evident already in the 1900s. Hilbert was full of optimism, 
while the young Brouwer’s philosophical works are pessimistic, and his dissertation 
of 1907 is a call for deep rethinking and reform of mathematics. In 1908 he 
published in Dutch severe criticism of one of the ideas presented by Hilbert in

26 The main biography of Brouwer is (Van Dalen 1999); a solid briefer presentation is (Van Atten 
2003). See also the introduction to an English edition of Life, Art, and Mysticism, (Van Stigt  1996); 
for the reception of intuitionistic mathematics, and more, see (Hesseling 2003). 
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1900 (the view that all mathematical problems are solvable) under the title ‘The 
unreliability of the logical principles’. The principle of excluded middle, basic 
for traditional mathematical proofs by reductio ad absurdum, is characteristically 
rejected in intuitionistic logic and mathematics. 

Initially the relation between the two was cordial, and young Brouwer clearly 
admired Hilbert: he even compared him to “a prophet.”27 Yet the fight between 
both in the 1920s has stamped their differences so much, that it seems almost 
impossible for most mathematicians to regard Brouwer as a “modern.” After all, 
while concentration on foundational issues died out in the midst of the deep 
fog brought about by Gödel’s incompleteness results, a stream of mathematical 
results continued to flow nonetheless, and mathematicians remained faithful to the 
mathematical style that Hilbert had defended – i.e., the set-theoretic principles and 
methods; axiomatic, structural mathematics. 

Meanwhile, in his Cambridge Lectures after World War II, Brouwer says things 
such as “in modern or intuitionistic mathematics” (1981, 92), or speaks of “the 
modern theorems” of intuitionism (1981, 94). 

18.4.1 Foundations 

Apart from mysticism, topology and intuitionism, a fourth great theme throughout 
Brouwer’s intellectual life was the philosophy of language (Van Dalen 1999). The 
philosophical themes were densely connected to the intuitionistic mathematics he 
came to propose. The question of language is particularly relevant, for Brouwer 
would continue to emphasize that mathematics does not depend on language 
or logic, being prior to language and logic (Brouwer 1928). The point for the 
intuitionist is that mathematics is a mental construction erected freely by the mind: 
“Mathematics is inner architecture” (Brouwer 1948, 96), it is “an introvert science, 
directed at beauty” (Brouwer 1981, 90). 

Language is merely an instrument of social domination, and it makes impossible 
a real knowledge: it is “absolutely a function of the social activity of humanity,” 
a medium for the “transmission of the will in the cultural community” (Brouwer 
1928, 179). It lacks exactness or certainty, and so “for pure mathematics there exists 
no certain language” (1928, 180). The efforts of the formalist school are therefore 
based on a false belief, of almost magical character (i.e., that the formalisation of 
language can bring certainty to mathematics); mathematical knowledge can only 
be based on mental constructions, on live thinking. The mistake springs from a 
much older and more consequential error, “namely, the reckless trust in classical

27 Van Atten calls my attention to a 1909 letter to Van Scheltema: “This summer the first 
mathematician of the world was in Scheveningen; I was already in contact with him through my 
work, but now I have repeatedly made walks with him, and talked as a young apostle with a prophet. 
He was 46 years old, but with a young soul and body; he swam vigorously and climbed walls and 
barbed wired gates with pleasure. It was a beautiful new ray of light through my life.” 
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logic” (1928, 181). Already in 1908, this line of thought derived into denouncement 
of axiomatic systems, which from his standpoint cannot be the real foundation of 
mathematics, and very especially of the principle of excluded middle when applied 
to infinite collections. 

The mental constructions of mathematics start from the basic experience of 
temporal succession, which engenders the idea of two-ity when a life-moment falls 
apart into two different things (something new comes up, while memory retains the 
previous thing). There is change but also retention, there is unity in multitude: 

Mathematics is a free creation, independent of experience; it is developed from a single a 
priori ur-intuition, which can both be called constancy in change and unity in multitude. 
(summary of the 1908 Dissertation, van Dalen 1999, 117) 

By abstraction and iteration, this “originary” intuition unfolds the notions of 
finiteness, and “the infinite as a conceptual reality” – the totality of natural numbers, 
the intuitionistic continuum, “and finally the whole of pure mathematics” (Brouwer 
1928, 177). And the whole process is completely autonomous, independent of 
natural science or any other sphere of human activity: 

the mathematical state of mind is usually indifferent with respect to natural science and 
definitely unfavourably inclined towards the promotion of the exploitation of nature and 
towards technique (1948 report to Curators, in van Dalen 1999, vol. 2, 828). 

Brouwer came to regard the ideas of his early period as the “first act” of intuitionism, 
with a “second act” after the Great War, when he devoted himself fully to a deep 
reform of pure mathematics (see Brouwer 1981). The outcome is, in my opinion 
at least, a monument to the stature of Brouwer as a thinker and mathematician28 : 
he was able to erect a whole new building of mathematics, including very subtle 
theories of the continuum and of analysis, on the basis of principles and methods 
solidly based on his methodological assumptions, but deeply at deviance with 
regular mathematics (which caused the enterprise to be extremely difficult and 
original). 

In 1919, precisely the year when he received calls to the Universities of Berlin 
and Göttingen, he published in the Jahresbericht of the German Association of 
Mathematicians (DMV) a paper entitled ‘Intuitionistische Mengenlehre’. The year 
before he had started a series of papers on this same topic (in German, published 
in the transactions of the Dutch Academy of Sciences), with the goal of revising 
set theory thoroughly and developing it “independently of the logical principle of 
excluded middle.” This was not a minor reform, it was actually a crucial trait of 
intuitionism, that makes it strongly deviant from “classical” mathematics. In his 
paper for the DMV Brouwer stressed that he had been elaborating these ideas since 
1907, before his involvement with topology. He emphasized that the foundations

28 Readers who may want to disagree will certainly be able to find good company: see e.g. the 
amusing remarks on Brouwer offered by Grattan-Guinness (2000, 480 ff ). More insightful analyses 
can be found in Mehrtens (1990, 257–287) and Gray (2008, 413 ff ) and van Atten (2003). 
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for set theory provided by Zermelo was to be rejected, and that a new form of 
“constructive set theory” was required (Brouwer 1919, 203–204).29 

His proposals were the most radical in this age of radicalism: the set theory of 
Cantor and Dedekind was to be completely overturned, classical ideas about the real 
numbers had to be abandoned, and with them classical analysis, replaced by a very 
novel intuitionistic analysis. A technical point that is relatively easy to grasp is the 
following: the basic theorem that an infinite, bounded set of real numbers always 
has a least upper bound, has to be abandoned.30 The world of mathematics was to 
be constructed anew, from scratch, in such a way that the meaningless features of 
traditional approaches would be erased, and a new pure edifice would be erected, 
full of sense. Applause came from unexpected sides, especially when Hilbert’s most 
brilliant student, a fully mature mathematician among the very best in their time, 
saluted him with the words: “Brouwer – that is the Revolution” (Weyl 1921). 

In his dissertation of 1907, Brouwer had actually explained how he could accept 
some of Cantor’s ideas, including the transfinite numbers ω, ω + 1, . . .  up to a 
certain point – as long as they are denumerable and in a certain sense constructible – 
but not the further concept of a “totality of all” such denumerable numbers. We have 
seen Borel defending a similar standpoint. Cantor introduced this totality in the 
1883 Grundlagen, and called it the “second number class;” thesis 13 of Brouwer’s 
dissertation states: “The second number class of Cantor does not exist” (van Dalen 
1999, 113). It was not the set-theoretic paradoxes that caused his reaction; as he 
remarked in 1923, 

an incorrect theory, even if it cannot be checked by any contradiction that would refute it, 
is none the less incorrect, just as a criminal policy is none the less criminal even if it cannot 
be checked by any court that would curb it. (quoted in Hesseling 2003, 62) 

It is simply an illusion to conceive of mathematics as dealing with independently 
existing objects, with an objective reality somehow external to the mind. But this 
is what ‘modern’ mathematics does: the objects of its theories are imagined to be 
elements of an actually given totality, a domain independent of the thinking subject. 
This feature is deeply embedded in the methods employed in mathematics, and 
following Bernays (a key collaborator of Hilbert) it is often called the “Platonism” of 
modern mathematics (Bernays 1935).31 Meanwhile, the constructivists’ treatment 
of mathematics – exemplified by intuitionism – is based on careful consideration of 
the processes by which numbers, functions, etc., are defined or constructed. Each 
and every thing that a mathematician can legitimately talk about must have been 
explicitly constructed in a mental activity.

29 This is not the place for a detailed presentation of intuitionistic mathematics. Brouwer made an 
effort to be clear and readable in his lectures (1981), see also Heyting (1956). 
30 This is a feature not only of intuitionism, but more generally of constructivism; the development 
of analysis is severely affected by having to circumvent that simplifying principle. 
31 See also Ferreirós (2008). The point is discussed in any good textbook on philosophy of 
mathematics. 
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As time went by, Brouwer realized that it was better to avoid talking of “sets” 
at all, and he introduced new terminology (“species” and “spreads”). But the core 
of his intuitionism, the novel ideas that he was developing and making public 
among other places in the Mathematische Annalen (edited by Hilbert), are a direct 
continuation of the views on “intuitionistic set theory” proposed in 1919. On their 
basis, Brouwer submitted mathematical analysis to deep revision. This explains why 
von Neumann could write: “Today there exists no single general set theory – but 
a naive, an intuitionistic, as well as several formalistic-axiomatic systems” (von 
Neumann 1928, in his  Collected Works, vol. 1, 321). 

As Brouwer’s reconstruction of mathematics developed in the 1920s, it became 
more and more clear that intuitionistic analysis was extremely subtle, complicated 
and foreign. Brouwer was not worried: “the spheres of truth are less transparent than 
those of illusion,” as he would remark in 1933. But Hermann Weyl, even though 
he welcomed Brouwer’s “Revolution” in 1921 and was convinced that he had 
delineated the domain of mathematical intuition in a completely satisfactory way, 
remarked: “the mathematician watches with pain the largest part of his towering 
theories dissolve into mist before his eyes” (Weyl 1925, 534). Soon Weyl abandoned 
intuitionism, although he remained a constructivist (see Mancosu 1998). 

18.4.2 The Man 

As for Brouwer the man, Hesseling (2003, 86) mentions two characteristic traits 
upon which both friends and foes would agree: that he was an outstanding 
mathematician, and also an impressive personality. A close friend of his youth, the 
Dutch poet and socialist thinker Adama van Scheltema, regarded Brouwer as “in 
all respects the paradigm of a man of exceptional genius – for being a genius he 
lacks the connection between his own mind and the world around him” (van Dalen 
1999, 26).32 That seems to have been said with the romantic, nineteenth-century 
idea of a genius in mind: a stormy personality, a soul capable of rising to heaven 
and reaching the depths of misery. Van Atten summarizes that Brouwer seems to 
have been an independent and brilliant man of high moral standards, but with an 
exaggerated sense of justice, often making him pugnacious. As a consequence, in his 
life he energetically fought many battles: “It still strikes me as curious that a person 
can get involved in so many disputes,” writes van Dalen (1999, ix). To Mannoury’s 
daughter, Brouwer once said: “Indeed, your father is one of the few people with

32 That’s something Scheltema sought to remedy in their student years, endeavouring “tirelessly 
. . .  to make him come closer to the material world.” 
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whom I have never had a quarrel. But he brought out the good in people, and I the 
bad.”33 

After visiting Amsterdam in 1928, Edmund Husserl reported to Heidegger in a 
letter of May 5, 1928: 

Among the most interesting things in Amsterdam were the long conversations with 
Brouwer, who made a great impression upon me, that of a wholly original, radically sincere, 
genuine, entirely modern man.34 

That same year, another great philosopher, Wittgenstein, was impacted by listening 
to a talk that Brouwer gave in Vienna; the topic was ‘Mathematics, science, and 
language’ (Brouwer 1928), and the experience is said to have marked Wittgenstein’s 
return to creative thinking (see Monk 1990). 

Brouwer was deeply individualistic and felt deeply distrustful of established 
social views, bourgeois life and the like. These ideas were expressed in his 1905 
monograph Life, Art and Mysticism. In the early days, he had strong qualms about 
becoming a mathematician, as he was deeply engaged with philosophy and mystical 
ideas. The thought of becoming an “expert” seemed to him a temptation of the will, 
a way of falling into attitudes that would separate him from the true perspective on 
life. During the 1900s he was strongly critical of science, technology, and modern 
civilisation; and much of this was retained throughout his life. Causal thinking, 
language, and technology were viewed as negative forces. An admirer regarded his 
1905 monograph as the most formidable accusation against “our ‘civilisation’.” 

Brouwer could be a high-nosed man, extremely demanding with himself and 
others, scornful towards most of his fellows in humankind, imbued of an elitist 
conception. In his youth he thought of himself as a “king,” one of the best and 
noblest, who worked for the redemption of things and of their fellow men (van Dalen 
1999, 37–38), i.e., to “put somewhat in the right position” the “grand totality” (op. 
cit., 34). Unsurprisingly, he soon abandoned the socialist convictions of Scheltema: 
“I rarely think about politics, but my political sympathies are in the liberal, anti-
democratic direction,” he wrote in 1909 (van Dalen 1999, 35). 

Our ‘genius’ was a high-strung and nervous person, described as uncompromis-
ing, and indeed he could act as a “justice fanatic” (in the words of Bieberbach). 
His 1905 monograph displays chapter titles as expressive as ‘The sad world’ and 
‘Man’s downfall caused by the intellect.’ He criticized severely the intellect (related 
with means-end rationality) for being the source of evil, and also social activities;

33 I take these sentences verbatim from M. van Atten, “Luitzen Egbertus Jan Brouwer”, The 
Stanford Encyclopedia of Philosophy (Summer 2011 Edition), Edward N. Zalta (ed.), URL = http:// 
plato.stanford.edu/archives/sum2011/entries/brouwer/. Gerrit Mannoury, a polymath who among 
other things published mathematics and philosophy, was one of Brouwer’s most important and 
influential teachers. 
34 I thank Mark van Atten for calling this passage to my attention, and also for the translation. 
From E. Husserl’s Briefwechsel Vol. IV, (1994), p. 156. 

http://plato.stanford.edu/archives/sum2011/entries/brouwer/
http://plato.stanford.edu/archives/sum2011/entries/brouwer/
http://plato.stanford.edu/archives/sum2011/entries/brouwer/
http://plato.stanford.edu/archives/sum2011/entries/brouwer/
http://plato.stanford.edu/archives/sum2011/entries/brouwer/
http://plato.stanford.edu/archives/sum2011/entries/brouwer/
http://plato.stanford.edu/archives/sum2011/entries/brouwer/
http://plato.stanford.edu/archives/sum2011/entries/brouwer/
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he called for a return to nature and for placing confidence in the self and its will.35 

The book ends with a Schopenhauerian exaltation of nihilism.36 

Recall that, according to Daniel Bell, modernist spirits had a definite tendency 
to the “megalomania of self-infinitization;” one may read from this viewpoint the 
words “you feel almighty,” that Brouwer wrote in his 1905 booklet. Consequently 
with this worldview, he believed in a God and devoted himself to the tasks imposed 
by God – precisely the “utter powerlessness” experienced by the ego at times, 
reveals all around him the presence of a “higher power.” But he also managed to 
find ways to reconcile his deep beliefs with the ways of life. 

A life that was unconventional, far from the established manners of the bourgeois. 
It was centred on a hut in Blaricum, a village not too far from Amsterdam, from 
which Brouwer could pay regular, but scarce visits to the University. There he 
enjoyed life among the artists, the vegetarians, and the health seekers.37 He led a 
most Spartan lifestyle, with peculiar diets and habits (van Dalen 1999, 62ff ), and 
became notorious for his sexual freedom, never hidden from his wife. Surprising 
facts in the life of someone who was convinced – at least in his passionate youth – 
that “the illusion of woman” burdens your soul’s karma, and that the ultimate goal 
should be to sacrifice everything, neglect everything, in order to reach the highest 
perfection: “the world of freedom, of painless contemplation, of – nothing.”38 

Brouwer could also be extremely perceptive, e.g. in his denunciation of the 
“human cancer” with its will for power and domination, and its way of turning 
the beautiful world into barren land (van Dalen 1999, 68). This happened at a time 
when it was not easy to figure out the destructive power of mankind, although it 
happened in the Netherlands, a man-made land. Science and technology were to 
him clear expressions of such a will, and so is mathematics most often. But the pure 
cultivation of mathematics can become independent from all that, it can be a pure 
activity worthy of the human mind. It was in this way that he reconciled himself 
with the idea of exploiting his great mathematical talents. 

Brouwer’s reconciliation with mathematics as a pure activity worthy of the 
human mind depended on the proviso that it be kept apart from its “applications,” 
even those in pure science. The tendency to purification was already strong in

35 Hesseling 2003, 30–34. Van Stigt 1996. Intuitive introspection and mystical views were given 
preference, with the names of Meister Eckehart, Jakob Böhme and the Bhagavad Gîta emerging as 
important references. 
36 Nihilism was a natural consequence of the philosophical solipsism of young Brouwer. As early 
as 1898, being only a boy of 17, he wrote: “the only truth is my own ego of this moment, surrounded 
by a wealth of representations in which the ego believes, and that makes it live” (van Dalen 1999, 
18). 
37 As he described it himself around the turn of the century: people of both sexes in vest with bare 
black feet and blue nails, the sunbathing of bare backs, the gnawing of raw turnips and carrots (see 
van Dalen 1999, 28). 
38 As regards his wife, Life, Art and Mysticism makes clear the expectations of submission that 
Brouwer had at the time of choosing her (see van Dalen 1999, 73). 
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the nineteenth century, although not exactly for Brouwer’s reasons.39 It started in 
northern Germany, and with the great success of the German mathematicians it 
spread out all over Europe and into the United States, leaving its mark well into 
the twentieth century. Brouwer was not the only modernist who was interested in 
mathematics precisely because of its purity and autonomy from worldly concerns. 
An interesting example is the writer Robert Musil, who had been an engineer and 
admired mathematics greatly: 

It is understandable that an engineer is preoccupied by his specialty instead of coming into 
the freedom and space of the world of ideas, even if his machines are delivered to the 
furthest corners of the world; . . .  About mathematics one cannot say this; it is the new 
method itself, the spirit itself, in it lay the sources of time and the origin of an immense 
transformation. (Der Mann ohne Eigenschaften, 1930) 

By contrast, an important part of the modernisation brought about by Klein and 
Hilbert in Göttingen consisted precisely in moderating the purist tendencies of 
German mathematicians, countering them with the creation of strong ties between 
mathematicians, physicists, and engineers.40 Little wonder, then, that in 1919 
Brouwer manifested a preference for Berlin instead of the leading center, Göttingen: 
his worldview was antagonistic to the Göttingen ways, much more in line with the 
purism and idealism represented by Berlin. 

18.5 The Ambivalence of Modernism 

All of those are, of course, reasons why people who identify modernism with 
modernity have no doubts: Brouwer can only be classified as a conservative, an 
inheritor of nineteenth century idealism, a man who turned against the modern 
world, perhaps even anti-modern. Thus, for instance, van Dalen writes that he “was 
basically a conservative” (1999, 72) and finds it hard to understand why others think 
of him as a revolutionary innovator. But this may be an ill-informed judgement, 
ignoring as it does how strongly modernism was linked with the late romantic 
legacy, how clearly represented are all of Brouwer’s cultural themes among the more 
pessimistic and revolutionary modernists. Mehrtens is subtler and has catalogued 
Brouwer as the prototypical “counter-modern” (Mehrtens 1990, 188). 

Let me suggest again that we better make a distinction, since otherwise – to speak 
now about people in the arts – we would have to reclassify many of the modernists,

39 See e.g. Goldstein et al. (1996), Bottazzini and Dalmedico (2001). 
40 Proofs abound: the Göttingen Association for the Promotion of Applied Physics (1898), created 
by Klein in association with industrialists; his efforts to hire Ludwig Prandtl, who became head 
of the Institute for Technical Physics in 1905 and did pioneering work on aerodynamics; the 
professorship of applied mathematics created in 1904 for Carl Runge; the important contributions 
that Hilbert and Minkowski made to physics, their deep involvement with the subject in the 1900s 
and 1910s; the close links with the physicists, which Max Born for instance describes. See Rowe 
(1989). 
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people like the writer Hermann Broch, the painter Wassily Kandinsky, and so on. 
Kramer remarks: 

That the emergence of abstraction early in the second decade of this century represented 
for its pioneer creators a solution to a spiritual crisis; that the conception of this momentous 
artistic innovation entailed a categorical rejection of the materialism of modern life; and that 
abstraction was meant by its visionary inventors to play a role in redefining our relationship 
to the universe—all of this, were its implications even dimly grasped, would come as a 
shock to many people who now happily embrace the history of modern art as little more 
than a succession of styles, or art fashions, ...41 

Properly revised, those are fitting words for Brouwer’s intuitionism, its origins and 
its goals. Thinking about a mathematical counterpart to abstraction in painting, it 
seems to me that intuitionism is clearly the best. And if you consider again Herf’s 
characterisation of modernism (quoted above), it should be obvious that Brouwer 
fits it better than any of the other figures we have mentioned so far. Modernism was 
not a movement of the political left or right, it could well be anti-democratic and 
elitistic, it was often against the myths of progress and modern civilisation.42 Its 
“central legend,” says Herf (1984, 12), was “the free creative spirit, at war with the 
bourgeoisie, who refuses to accept any limits” –how well does this fit Brouwer! 

Brouwer’s outlook may seem reactionary, and yet there is nothing in his 
proposals that resonates with the traditionalistic tendencies of a Cantor. It is true that 
Brouwer opposed technological progress, and he also rejected socialism because of 
his fierce individualism – is this not a modernist trait? One should also remember 
the aestheticizing tendencies of modernism, which again fit Brouwer’s life and work 
so well. His truly rooted mathematics, based on intuition, is highly deviant from 
mainstream modern mathematics, but this can hardly constitute an argument for 
classifying him from the cultural and intellectual point of view. The great difference 
between mathematics and art, at this point, is that the former – unlike the latter – 
has seen a dominant orientation during the twentieth century. But if we let this fact 
influence too much our cultural judgements about the past, we shall commit an 
anachronism. 

I should add that, if the reader is pondering the possibility of using the label 
“reactionary modernism” for Brouwer, there are some reasons why this runs into 
trouble. Herf’s reactionary modernists were not only cultural traditionalists, but also 
nationalists, and they managed to combine some form of romanticism and cult of 
the soul with advanced technology. Brouwer was clearly not a traditionalist, he was 
against nationalism, and also against modern technology. The point concerning the 
latter has already been done, and as regards the former suffice it to say that, in 
the middle of the Great War, he wrote approvingly of anti-nationalism, denouncing

41 Kramer (1995), p. 3. How that relationship was to be redefined was explored by Kandinsky not 
only in his paintings but in his influential treatise Concerning the Spiritual in Art (1911). 
42 Notice that Herf is not defining reactionary modernism here, but modernism in general. In this 
respect, van Atten comments that intuitionism was hailed by figures from both left and right, such 
as A. Khinchin in 1926 Soviet Russia (Verburgt and Hoppe-Kondrikova 2016) and O. Becker in 
1933 Nazi Germany (van Atten 2003). 
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“words-of-power” such as ‘Fatherland’ as a “means of defense of injustice” (van  
Dalen 1999, 248–249). There have been attempts to align Brouwer with reactionary 
political ideas, largely because he was a great admirer of German culture and 
fought against the decision of the allied scientists to exclude German scientists 
from international meetings and scientific organisations during the 1920s. But the 
historical circumstances of these events were far more complex than a simplifying 
picture suggests (see vol. II of van Dalen’s biography, but also Rowe and Felsch 
2019). 

Thus I think we have to admit Brouwer’s modernism and with it the ambivalent 
nature of this cultural trend. Let me try to summarize the point in a simple and 
quick way, by adapting words of the modernist artist Ad Reinhardt43 : The key point 
of Brouwer’s modern mathematics was awareness of mathematics of itself – maths 
preoccupied with its own processes and means, with its own identity and distinction, 
maths preoccupied with its own unique statement, conscious of its own evolution 
and history and destiny – moving toward its own freedom, its own dignity, its own 
essence, its own reason, its own morality, and its own conscience. 

The point concerning freedom may be the most delicate one, even polemical, 
in connection with Brouwer’s work. His mathematics is a free creation of the 
human spirit, but it is certainly perceived as very restrictive by the modern 
mathematician. His tendency was against merely formal freedom, towards meaning 
and truth; it was a form of creative thinking free from transcendental assumptions 
like those of Platonism, and completely independent from questions of nature or 
reality (naturalism or realism). The greater freedom of modern mathematics would 
be regarded as based on a “high degree of arbitrariness” and the “belief in a 
transcendental world” that “taxes the strength of our faith hardly less than the 
doctrines of the early Fathers of the Church” (literal words of Weyl in 1946, many 
years after he abandoned intuitionism; quoted in Ferreirós 2007, 390). 

In my opinion, it is not only this cultural trend that turns out to be ambivalent, but 
quite generally cultural movements of the kind are rather complex and ambivalent – 
think of the Enlightenment, of Romanticism, of post-modernism.44 Historical 
epochs are marked by conflicts and tensions, because the new is not monovalent, 
and because the new and the old may combine in an endless variety of ways. This 
complicates significantly the task of historians who want to trace the links between 
cultural movements and the sciences, and makes it very difficult to formulate them 
in textbook-style summary form. But it is only by tackling that complexity, that we 
begin to confront the difficult question of the status of science as a form of culture.

43 I thank the organisers of a Frankfurt meeting that took place in 2006, in particular M. Epple, for 
bringing the relevant quote to my attention. 
44 I have made this same point for Romanticism in Ferreirós (2003). 
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18.6 Concluding Remarks 

The previous analysis has been based on two theses concerning modernisms: that 
their plurality has to be recognized explicitly, and that they have to be differentiated 
from modernity, a much broader movement. Let us now reflect these issues more 
explicitly. 

Jeremy Gray has emphasized the autonomy of mathematics as a clear character-
istic of its modern, twentieth-century form, and I could not agree more. However, 
in my view this was largely an effect of the modernisation of the discipline math-
ematics (alongside the other scientific disciplines) in the nineteenth and twentieth 
centuries.45 It should not be identified too quickly with modernism, albeit modernist 
mathematicians ought to be expected to emphasize that autonomy. Gray goes on to 
add that modern maths acknowledged “little or no outward reference,” and although 
all of the figures we have discussed are good examples, the issue is subtle and 
deserves careful scrutiny. In their practice, Hilbert and followers took full advantage 
of the autonomy of the new modernised configuration of mathematics – indeed they 
produced quintessential examples thereof. But in their practice, they also preserved 
carefully the ‘outward’ links to physics, natural science, and technology: for Klein 
and Hilbert and Courant, the outer reference was of the essence. 

Some authors stress the view that modern mathematics is a language, a purely 
syntactic, self-referential language (Mehrtens 1990, 8, 12). But this is an over-
statement, quite independently from the fact that Brouwer opposed such a view 
frontally. That viewpoint is akin to strict formalism, a position adopted by some 
mathematicians and philosophers from about 1930; Hilbert, in particular, was far 
from it.46 Often he emphasized the visual and the empirical origins of mathematics, 
and always its heavy load of conceptual contents. In a lecture course during the 
winter of 1919–1920 he explained: 

There is no talk of arbitrariness here. Mathematics is not like a game in which the problems 
are determined by rules invented arbitrarily – it is a conceptual system with inner necessity, 
that can only be this and not any other way. (Hilbert 1992, 14) 

On this basis, one might even conclude that Hilbert was a counter-modernist, like 
his older colleague and powerful ally Klein; but of course an overall evaluation has 
to be more detailed and nuanced.

45 On this topic there is abundant literature: see e.g. Bos et al. (1981), Rowe (1989), Goldstein et 
al. (1996), Bottazzini and Dalmedico (2001) – and of course Mehrtens (1990), chap. 5, and Gray 
(2008, 32  ff ). 
46 See Ferreirós 2017, 68. One can find attributed to Hilbert this sentence: “Mathematics is a game 
played according to certain simple rules with meaningless marks on paper.” But even if the phrase 
is repeated in a thousand web pages, it cannot be found anywhere in his work – it is just made up 
by putting together several things that, jointly, amount to a severe misrepresentation of Hilbert’s 
thought. In effect, he often emphasised the meaningfulness of mathematical statements and the 
depth of conceptual content expressed in them. 



18 On Set Theories and Modernism 475

Consider the question of outward reference in the works and thoughts of Hilbert 
and Brouwer. Here, Hilbert stroke very clearly and decidedly a middle ground, 
avoiding any kind of modernist excess47 : not only was he fully in favour of the 
Platonist methodology, which accepts (sometimes as an as-if )48 working on the  
assumption of an independent, ready-given realm of mathematical objects; he was 
crucial in the disciplinary effort of maintaining and promoting relations between 
physics and mathematics, and became a great propagandist of the central role 
of mathematics in all scientific theorizing.49 Meanwhile, as we have seen, our 
modernist Brouwer was from the beginning a staunch defender of the need to 
separate mathematics from the sciences and technology, from any kind of reference 
to the so-called external world. Intuitionistic mathematics is inner architecture, 
based purely and solely on mental constructions; it is “an introvert science”. 

Another key feature of modernism in mathematics, according to Gray, is its 
emphasis on the formal. What this means is less clear than in the case of painting, 
because mathematics (like music) has been rather formal and abstract throughout 
its history. If anything, mathematics has undergone several transitions to more 
abstract and formal versions, and this has happened repeatedly in different cultural 
contexts. Certainly Hilbert emphasized the formal structures and introduced novel 
ways of playing with them, but he was never a strict formalist in the later sense. 
His metamathematics is a methodology: recourse to the syntactic play of signs in 
order to secure the consistency of the traditional theories attacked by intuitionism. 
Furthermore, he was not at all willing to abandon or relegate old contents – while 
Brouwer was precisely the one who favoured this move. So in my view neither of 
them fully complies with this characteristic trait of Gray’s working definition of 
modernism. 

The last crucial trait is the “anxious relation to the day-to-day world,” and 
here things become more clear. I cannot find the least trace of such an anxiety 
in Hilbert, as his work and speeches were full of confidence in the future of 
mathematics, and its central role in relation to the sciences and the material world. 
Brouwer’s work, on the other hand, generated a lot of anxiety because it put at 
high risk traditional analysis (even the calculus) and with it, as it seemed, the 
scientific applications of mathematics and its practical utility in the day-to-day 
world. Brouwer was not anxious, since philosophically these were for him welcome

47 In questions like this it becomes obvious that Hilbert was indeed Klein’s follower in his 
pragmatic and well-thought disciplinary politics. In my view, this is fully modern (in the sense 
of modernisation) but not modernist at all. 
48 Hilbert’s views on this topic evolved, until he (together with Bernays) embraced a kind of as-if 
position in the context of his metamathematics of the 1920s; see Ferreirós (2009). Hans Vaihinger, 
who like Hilbert presented himself as a follower of Kant, published his book The Philosophy of As 
If in 1911. 
49 In a public lecture, 1930, he emphasised that mathematics is “the instrument that mediates 
between theory and practice, between thought and observation,” without which “today’s astronomy 
and physics would be impossible.” This was recorded and is available on the internet: see http:// 
math.sfsu.edu/smith/Documents/HilbertRadio/HilbertRadio.mp3 (accessed Sept. 2012). 
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traits. But Hilbert finally surrendered to anxiety and in 1928, thinking that the end 
of his life was coming, he dealt a severe blow to Brouwer’s position and influence 
in the mathematical community, in what Einstein (disapprovingly) called the war of 
the frog and the mice.50 This probably had some role in the practical finishing of 
the foundational debate, just like Gödel’s results had a role in its (certainly deep) 
theoretical redefinition afterwards. 

Summing up, it seems to me that two routes are possible. One of them is to deny 
one of my tenets, propounding that mathematical modernism must be expected to 
accompany mathematical professionalisation and modernisation. This is the route 
taken by Jeremy Gray, who for this reason must de-emphasize the links between 
mathematics and culture (Gray 2008, 14).51 If this way of proceeding is taken as 
a model, it would be quite interesting to apply it to the arts: what are the crucial 
features of the modernisation of the profession of artist, that the modernist artist 
ought to respect? And, how would the ensuing picture of modernism in the twentieth 
century deviate from current views? 

The other route, that I have tried to sketch, keeps a close eye on the connections 
between mathematics and the intellectual atmosphere – but to do so, it disassociates 
mathematical modernism from what is usually called “modern” mathematics. 
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Chapter 19 
Mathematical Modernism, Goal or 
Problem? The Opposing Views of Felix 
Hausdorff and Hermann Weyl 

Erhard Scholz 

Abstract This chapter contains a case study of the work and self-understanding 
of two important mathematicians during the rise of modern mathematics: Felix 
Hausdorff (1868–1942) and Hermann Weyl (1885–1955). The two had strongly 
diverging positions with regard to basic questions of the methodology and nature of 
mathematics, reflected in the style and content of their research. Herbert Mehrtens 
(1990) describes them as protagonists of what he sees as the two opposing camps of 
“modernists” (Hilbert, Hausdorff et al.) and “countermodernists” (Brouwer, Weyl 
et al.). There is no doubt that Hausdorff may be described as a mathematical 
“modernist”, while the qualification of Weyl as “countermodern” seems off the 
mark, once his work is taken into account. 

19.1 Introduction 

In the history of recent mathematics there is a wide consensus that mathematics 
underwent a deep transformation in its epistemic structure and its social system 
during, roughly, the last third of the nineteenth century and the first third of the 
following one. This led to modern mathematics in the sense of the twentieth century. 
Jeremy Gray called this phase a “modernist transformation of mathematics” (Gray 
2008). His book presents a wide panorama of this period of shift in knowledge. 
The choice of the attribute “modernist” alludes to a wider cultural context of 
contemporary change in (visual, literary and sound) art and architecture. For good 
reasons Gray left it open in what way, or even whether, the transformative tendencies 
in these different branches of culture can be comprehended as different expressions 
of a common historical phenomenon. This question is still open and discussed in the 
contributions by L. Corry and J. Ferreirós to this book. 
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By this choice of the word, and the question indicated by it, Gray took up 
a suggestion of Herbert Mehrtens made in Moderne Sprache Mathematik (sic! 
without punctuation) (Mehrtens 1990). For me the title of this book is difficult to 
translate, because it uses an ambiguity of the German language. It may be trans-
lated as “Modern Language Mathematics” or—adding punctuation—“Modernity, 
Language, Mathematics”. Without the punctuation the first alternative would be the 
correct translation, but one may also understand it in the second way.1 Mehrtens 
indicated the huge task of bringing together the historical understanding of the 
change in the practice of mathematics as a social (and institutional) system (chap. 5) 
and the knowledge style developed with it (chaps. 1–4). Apparently influenced by 
considerations from general history and history of art, and most importantly by Paul 
Forman’s provocative thesis on the role of Weimar culture for the rise of quantum 
mechanics (Forman 1971, 1973), he proposed to highlight the radicality of the 
modern transformation of mathematics by establishing a narrative of two opposing 
camps,2 the protagonists of modernity (“Moderne”), the “modernists” driving the 
modern transformation, and those opposing it, the “countermodernists”, represent-
ing some (slightly mythical) entity called countermodernity (“Gegenmoderne”). 

For both camps Mehrtens found two main, or at least typical, protagonists. 
David Hilbert (1862–1943) and Felix Hausdorff (1868–1942) (et al.) for the modern 
camp versus Luitzen E.J. Brouwer (1881–1966) and Hermann Weyl (1885–1955) 
(et al.) for the countermodern camp. Mehrtens made the separation of the camps 
plausible by arguing essentially on the discourse level about mathematics, including 
the debate on foundational issues, with only marginal references to mathematical 
knowledge (the mathematical discourse itself, to state it in his terminology). The 
strict separation of the camps did not appear particularly convincing to many readers 
and was not taken up by Jeremy Gray. But in a weakened form it seems to remain a 
part of the debate on modernism in mathematics. The contributions of L. Corry and 
J. Ferreirós to the present book discuss this point from different perspectives; they 
also give good explanations of the terms “ cultural modernism” and “modernism in 
mathematics”, which need not be doubled here. 

Hausdorff and Weyl, two protagonists of the opposing camps identified by 
Mehrtens, happen to have been subjects of historical studies of mine for some 
decades. The present book offers a good occasion for laying down my view of 
Mehrtens’ presentation of these mathematicians as representatives of his opposing 
camps. The paper presents a simple case study trying to determine the adequacy 
and usefulness of the proposed categories for our historical understanding of the

1 The first reading resonates with Mehrtens’ way of presenting mathematics as a language, 
organized in two levels of discourse: the discourse of mathematics in the production, repectively 
documentation of knowledge, and the discourse on (about) mathematics, a meta-discourse which 
may include the foundational studies in the sense of Hilbert (Mehrtens 1990, chap. 6). A non-
anonymous referee (N. Schappacher) of the present paper opts for the second alternative. 
2 No social, political, or cultural revolution ever happened without having to fight counter-
revolutionary forces. 
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twentieth century.3 Before drawing the conclusion in the last subsection of the paper, 
I try to avoid, as far as possible, the qualifications “modernist” or “countermodern”, 
also of “modernism”, at least as mathematics is concerned. On the other hand, I 
use the descriptive attribute “modern” for the deep transformation of mathematics 
between roughly 1860 and 1940 and the words “rise of modernity” for the social 
and cultural transformations in the late nineteenth century and the first half of the 
twentieth century. 

The paper consists of three sections. It begins with informations about the life 
and work of our protagonists, in order to make the paper accessible for readers 
who are not so well acquainted with their place in of the history of mathematics 
in the twentieth century. Although this report on their mathematical work has to 
be extremely short it has major importance for judging how they contributed to 
and viewed the rise of mathematical modernity. This section ends by analysing 
their parallel work on Riemann surfaces in 1912. Both mathematicians attacked 
the problem of making the understanding of Riemann surfaces more precise than 
was usual at that time. The answers given to this challenge illustrate in a nutshell 
their individual predilections and different working styles (Sect. 19.2.3). The section 
following discusses differences between our authors with regard to three questions 
which were important for both: the understanding of the mathematical continuum 
(Sect. 19.3.1), the relation between axiomatics, construction and the foundations 
of mathematics (Sect. 19.3.2), and the question of which role mathematics can, or 
ought to, play in the wider enterprise of understanding nature (Sect. 19.2.3). The 
final section (Sect. 19.4) discusses how Hausdorff and Weyl saw themselves in the 
rise of modern society, before returning to the initial question of modernity and/or 
countermodernity. 

19.2 Hausdorff and Weyl, Two Representatives of Twentieth 
Century Mathematics 

19.2.1 Two Generations, Two Social Backgrounds 

The main scientific work of our two authors took place in the first half of the 
twentieth century, although they belonged to two consecutive generations. Felix 
Hausdorff (1868–1942) was roughly Hilbert’s generation although 7 years younger; 
Hermann Weyl (1885–1955) was a central figure of the next generation. Both were 
Germans, with Hausdorff coming from a Jewish-German family. During large parts 
of their life both worked in German speaking countries. Between 1913 and 1930 
Weyl lived in Switzerland and moved back to Germany (Göttingen); but only for a

3 For a discussion of Brouwer see the contribution of José Ferreirós to this volume. 
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short while. After the rise to power of the Nazis in 1933 he emigrated to the United 
States. 

Hausdorff obtained his doctorate (1891) and habilitation (1895) at the University 
of Leipzig with mathematical studies of the refraction and absorption of light as part 
of the research program of the astronomer H. Bruns. He then turned towards Can-
tor’s theory of sets and transfinite cardinal and ordinal numbers, the most abstract 
type of mathematics available at the time.4 Like many Jewish mathematicians of 
this time he remained lecturer (Privatdozent) for a long time before he obtained his 
first associate professorship (Extraordinarius) at Bonn University in 1910. Three 
years later he accepted a call to Greifswald as full professor. In 1921 he returned to 
Bonn in the same position and stayed there for the rest of his life. Because of his 
Jewish origins Hausdorff was in more immediate danger than Weyl after the Nazis 
came to power, but he hesitated to emigrate in the early 1930s. When he finally tried 
to leave after 1939 he did not succeed. In 1942 when the anti-Jewish repression of 
the German Nazi regime reached its climax, he committed suicide with his wife 
and sister in law, in order to elude deportation and death in the concentration camps 
(Brieskorn and Purkert 2021; Siegmund-Schultze 2021). 

Weyl had a later and quite different start into academic life. He obtained his 
dissertation (1908) and habilitation (1910) in Göttingen with research in real 
analysis (singular differential equations) under the guidance of D. Hilbert and the 
intellectual influence of F. Klein. Swiftly accepted as a promising young researcher 
he received a call as full professor at the Eidgenössische Technische Hochschule 
Zürich only 3 years after his habilitation. He was happy to live in a neutral country 
during the (first) Great War of the twentieth century (World War I). He had to serve 
in the German army for only about a year from May 1915 onward, before he was 
released and could go back to Switzerland in 1916. He enjoyed the liberal culture 
of Switzerland and learned to value it against the torn and crisis stricken German 
social life during the inter-war years of the twentieth century. In 1930 he hesitatingly 
accepted a call to Göttingen as successor of David Hilbert.5 In 1933, after the rise 
of the Nazi movement to power, he emigrated to the USA following a call to the 
Institute of Advanced Studies where he was able to support other less privileged 
emigrants (Siegmund-Schultze 2009). He stayed there until his retirement in 1951 
and shuttled between Princeton and Zürich during the last years of his life. Only at 
rare occasions did he visit post-war Germany. 

Both men came from well-to-do families; they grew up in German life and culture 
of the late nineteenth and early twentieth centuries and shared its humanistic higher

4 A careful scientific and intellectual biography of Hausdorff can be found in (Brieskorn and 
Purkert 2021) and in (Hausdorff 2002–2021, vol. 1B); the turn towards Cantorian transfinite 
numbers is described in great detail in chap. 7 of (Brieskorn and Purkert 2021). 
5 For Weyl there is nothing close to a full biography like the one for Hausdorff, written by Brieskorn 
and Purkert. An intellectual biography of his early years (until 1927) can be found in (Sigurdsson 
1991) and (Rowe 2002), a documentation of his time in Zürich in (Frei and Stammbach 1992). 
For more extensive scientific biographies see (Coleman and Korté 2001; Chevalley and Weil 1957; 
Newman 1957; Atiyah  2002; Dieudonné 1976). 
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school education. Hausdorff’s father was a successful textile merchant and owner 
of a small publishing house in Leipzig. As a traditional Jew he participated in the 
community on a national level and was active against the rising anti-semitism in 
late nineteenth century Germany. He stood in opposition to the Jewish reformers 
and contributed to the scholarly orthodox Talmud discussion (Brieskorn and Purkert 
2021, chap. 1). Weyl’s father was a director of a local bank and city councillor 
of Elmshorn, a medium sized town in Northern Germany. Already during his 
school time Weyl grew up deeply immersed in German philosophical thinking by 
reading Kant’s Critique of Pure Reason at his parental home.6 Although his initial 
enthusiasm for a naive version of Kantianism broke down in the early years of his 
mathematical studies at Göttingen after encountering Hilbert’s axiomatic approach 
to geometry,7 he remained attracted by German idealistic philosophy in different 
guises, in particular Husserlian phenomenology and Fichtean constructive idealism 
(Ryckman 2005; Sieroka 2010, 2019). 

The young Hausdorff passed through a different intellectual development. In 
sharp opposition to his father’s orthodox Judaism, he too was attracted by Kant’s 
critical philosophy, though we was more fascinated by Schopenhauer’s pessimistic 
philosophy of life and the young Nietzsche’s radical cultural thoughts. In his later 
student’s years he joined a circle of modernist intellectuals at Leipzig and became 
active as a freelance writer, essayist and philosopher under the pseudonym Paul 
Mongré. Unlike Weyl, he considered the liberation from any metaphysical bonds 
as a desirable goal of late nineteenth century thought (Brieskorn and Purkert 
2021, chaps. 5, 6). These differences in general intellectual outlook between our 
protagonists would turn out to play a major role when it came to their predilections 
in mathematics and the way they reflected on their scientific work. 

19.2.2 A Short Glance at Our Authors’ Main Contributions to 
Mathematics 

Before we discuss the attitudes of Weyl and Hausdorff on methods, role and 
goals of mathematical research we ought to recollect their main achievements in 
mathematics. We deal here with two “giants” of science and have to restrict to a 
selective survey on the most important topics of their scientific achievements. For

6 Weyl (1955a, p. 632f.). 
7 The impression Hilbert’s approach to he foundations of geometry made on the young student 
Weyl at Göttingen was described by himself in hindsight: Hilbert examines the independence of 
the axioms of geometry “. . . not only by drawing on the so-called non-Euclidena geometry, then 
nearly a century old, but by constructing, mostly on an arithmetical basis, a plethora of other strange 
geometries. Kant’s bondage to Euclidean geometry now appeared naive. Under the overwhelming 
blow, the structure of Kantian philosophy, on which I had hung with faithful heart, crumbled into 
ruins” (Weyl 1955a, English, p. 206). Weyl was much more critical with respect to Hilbert’s later 
extension of the axiomatic method to the natural sciences, beautifully described in Corry (2004). 
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more extended report on F. Hausdorff see (Brieskorn and Purkert 2021), for Weyl 
(Coleman and Korté 2001; Chevalley and Weil 1957; Atiyah 2002). Readers who are 
not so well acquainted with these topics may prefer to skip the following passages 
and jump directly to Sect. 19.2.3. 

Felix Hausdorff is well known for his axiomatization of the concept of 
topological space in his opus magnum Grundzüge der Mengenlehre (Main Features 
of Set Theory) (Hausdorff 1914b). But this book presented far more than this. 
Its first 6 chapters contained the most comprehensive introduction to Cantorian 
set theory in the first decades of the twentieth century. Among other things, it 
included a detailed study of transfinite order structures to which Hausdorff had 
contributed himself in the preceding years (including the study of . ηα sets which 
later became important in foundational studies of set theory). The second half of the 
book established a program for founding axiomatically basic fields of mathematics 
using the framework of set theory. As we now understand, this was a main trend 
of the modernization of mathematics in the first half of the twentieth century 
culminating in the work of “modern algebra” and Bourbaki’s vision of mathematics 
around the middle of the century. Hausdorff himself exemplified the method for 
topological spaces (chap. 7), metrical spaces (chap. 8), functions (chap. 9), measure 
theory and integration (chap. 10). In these chapters he could in particular draw 
the consequences of developments of the first abstract (topological) space concepts 
about the turn of the centuries, due to M. Fréchet, F. Riesz, E.H. Moore and others.8 

At the end of the book Hausdorff published a paradoxical disjoint decomposition 
of the 2-sphere, using the axiom of choice, and republished the argument separately 
in (Hausdorff 1914a).9 According to his own description it showed that in Euclidean 
space “one third of the sphere” may be congruent to “one half” of it (ibid, 
p. 430). Hausdorff was a master of logical precise argumentation without using 
a formal system for logic itself. He was fond of counter-intuitive effects in the 
world of transfinite set theory. Some years later he generalized a measure theoretic 
approach initiated by C. Caratheodory and introduced a class of measures on 
subsets of metric spaces (Hausdorff measures) which enables to characterize the 
dimension p of point sets, where p may assume fractional values (Hausdorff 1919). 
The concept developed in this small paper on measure and dimension has been 
of enormous influence in mathematics (non-linear partial differential equations, 
dynamical systems, ergodic theory) and physics (potential theory, turbulent flows, 
meteorology) and has become widely known through with the rise of fractals and 
computer graphics at the end of the twentieth century.

8 See Brieskorn and Purkert (2021, p. 353ff.); a more extended discussion of the early development 
of topological space concepts is given in the commentary (in German) on the historical background 
of Hausdorff’s axioms in Hausdorff (2002–2021, vol. 2, pp. 675–708). 
9 Hausdorff was well aware that Zermelo’s axiom of choice was an important contribution to the 
clarification of the foundations of transfinite set theory, but considered this as a step only in a larger 
enterprise which had not come to an end, and to which the study of transfinite numbers ought still 
to contribute; see Brieskorn and Purkert (2021, chap. 7.3) and the remark at the end of their sec. 
7.2.1. 
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In his investigations of set theory he introduced important fundamental concepts 
like co-finality and co-initiality of ordered sets, or (Hausdorff) gaps in dense ordered 
structures. After establishing the distinction of regular and singular initial (cardinal) 
numbers he observed that regular cardinal numbers with limit index, should they 
exist at all, would be of “exorbitant” size (Plotkin 2005, 233). Later this became 
the starting point for the study of so-called “large cardinal numbers”. Among his 
diverse contributions to set theory we also find the Hausdorff maximality principle 
of partially ordered sets, the general recursion formula of aleph-exponentiation, and 
the concept of so-called . ηα sets which later became important in model theory.10 

Other contributions of his relate to different fields of mathematics of the twentieth 
century, e.g., the Baker-Campbell-Hausdorff formula in the theory of Lie groups, 
or the Hausdorff-distance of compact subsets of a metrical space, which was later 
used by M. Gromov to measure the “distance” of metrical spaces from being 
isometric. The resulting Gromov-Hausdorff distance of metrical spaces became an 
important tool for differential topology (Hausdorff 2002–2021, vol. 1B, p. 779). In 
Hausdorff’s lecture manuscripts we find many interesting insights, e.g. with regard 
to an axiomatic foundation of probability theory (Hausdorff 2002–2021, vol.  5, 595– 
723) similar to the one in Kolmogorov’s famous book of 1933, but 10 years earlier. 

The mentioned topics show already the profile of Hausdorff’s contribution to 
mathematics: set theory as the basis for work and as a framework of modern math-
ematics, order structures, point set topology, metric spaces, measure theory with 
particular attention to paradoxical or seemingly paradoxical (fractional dimension) 
results, and functional analysis. After his turn towards pure mathematics in the late 
1890s, mentioned in the last section, the contributions to applied mathematics of 
his early phase were no longer of interest to him. On the other hand, his interests 
in pure mathematics show traces of his epistemological reflections around 1900 in 
which he assigned mathematical arguments an important role for the critique and 
decomposition of classical metaphysics (Epple 2021, sec. 5f.). Hausdorff’s interest 
and active participation in philosophical reflection of mathematics faded away after 
his turn towards pure mathematics research. As Purkert/Brieskorn write, his alter 
ego Paul Mongré “bid farewell to the public” about 1910 (Brieskorn and Purkert 
2021, p. 318). 

Hermann Weyl, on the other side, was acknowledged as a leading figure of the 
post-Hilbert generation of mathematicians already during his life time. His research 
was as broad as the one of his academic teacher Hilbert; it comprised many fields 
inside mathematics and its foundations as well as long lasting contributions to 
mathematical physics. He was widely read in philosophy and did not hesitate to 
share his philosophical reflections on mathematics and science with the interested 
public. His most influential work in mathematics proper results from his studies 
in Lie theory starting in the mid-1920s (Weyl 1926). He combined E. Cartan’s 
characterization of infinitesimal groups (Lie algebras) and their representations

10 This list is a a selection of the survey of Hausdorff’s main contributions to set theory in 
(Brieskorn and Purkert 2021, p. x). For more details see there. 
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with an integral approach used by I. Schur to the characters of certain groups (the 
special orthogonal ones). Weyl was able to generalize Schur’s method to all the 
classical groups and to study their representations (Hawkins 2000; Eckes 2011). In 
his Princeton years he extended this approach, in cooperation with R. Brauer, to give 
a modern access to the invariants of the classical groups (Weyl 1939). 

Although lying deep inside mathematics proper (i.e., “pure” mathematics), for 
Weyl this research topic was multiply intertwined with questions coming from 
theoretical physics and leading back to the latter. He had started to develop interest 
in infinitesimal symmetries in his thoughts about general relativity and generalized 
Riemannian geometry by introducing what he called a “length” gauge (today scale 
gauge). This led him to propose a geometrically unified field theory of gravity and 
electromagnetism in the framework of the first gauge theory of electrodynamics 
with local symmetries of geometric scale as the gauge group (Weyl 1918b,d).11 In 
this context he contributed importantly to clarifying conceptual and mathematical 
questions in general relativity (Weyl 1918c) and differential geometry (Scholz 1999, 
1995). 

His proposal of a scale gauge theory of electromagnetism did not work out 
directly as a physical theory but could be “recycled” after the advent of the new 
quantum mechanics in form of a gauge theory for the phase of wave functions of 
charged particles (Vizgin 1994; Scholz 2004). Through the intermediation of W. 
Pauli (1933), (Pauli 1941), Weyl’s idea of a gauge field approach to electromag-
netism was generalized by C.N. Yang and L. Mills in 1954 to a more general gauge 
group of isotopic spin .SU(2) (O’Raifeartaigh and Straumann 2000). After a long 
interlude of laborious research in high energy physics it acquired a central role in the 
standard model of elementary particle physics in the 1970s (O’Raifeartaigh 1997). 
About the same time it entered also the research of differential topology and was 
used for defining new topological invariants (Kreck 1986). On a different, although 
connected route Weyl started to use group representation theory in the new quantum 
mechanics after 1926 (Weyl 1928). Together with E. Wigner he may be considered 
as a main actor for propagating symmetry considerations in the study of quantum 
systems which again became a main tool for particle physics in the second half of 
the twentieth century (Borrelli 2017, 2015). 

A third field (aside from the representation theory of Lie groups and theoretical 
physics) in which Weyl intervened with long lasting consequences was the debate 
on the foundations of mathematics in the first third of the twentieth century. In 
spite of his high regard for Hilbert as a mathematician he was not at all convinced 
philosophically by his teachers proposal for a formalistic solution of the problems 
arising in transfinite set theory after 1905 and the consequences for analysis,

11 In Jed Buchwald’s contribution to this volume “gauging” is discussed in the pre-Weylian 
perspective of under-determination of the electromagnetic potential (decomposed in its scalar and 
its vector part) up to exact differentials as a history of “gauge” ante letteram. We learn from it 
that important physical questions of this under-determination have been posed and answered long 
before the explicit concept of gauge was introduced; for the later development see, among others, 
(O’Raifeartaigh 1997; O’Raifeartaigh and Straumann 2000). 
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arithmetic and mathematics in general. He did not share Hilbert’s conviction 
that the consistency of a system of mathematical concepts and their postulated 
relations could justify it as mathematically valid theory (Hilbert spoke even of the 
“existence” of the conceptual objects, once their consistency was proved). He rather 
insisted on some symbolic/conceptual generation of the objects starting from the 
basic knowledge of natural numbers, perhaps added by elementary intuitions of 
continuity. 

While the first problem, a constructive foundation of natural numbers, seemed 
relatively uncontroversial,12 the second problem, a genetic foundation for the 
concept of the continuum, remained a lifelong problem for Weyl, and not only for 
him. Already in 1918 he sketched an alternative for the foundation of analysis, based 
on a reduced concept of predicatively defined real numbers (Weyl 1918a); but it 
remained unsatisfactory even for himself. He then fought for some years on the side 
of Brouwer for an intuitionistic program in the foundations of mathematics attacking 
Hilbert harshly (Weyl 1921). In the later 1920s he made attempts at founding 
the concept of an n-dimensional continuum by the methods of combinatorial 
topology. But also this approach remained open ended. This may have contributed to 
rethinking his earlier harsh critique of Hilbert’s formalist program; in later writings 
he came to a more balanced view of Hilbert’s foundational program (see below, 
Sect. 19.3.2). 

Just as with the presentation of Hausdorff’s work this survey is necessarily 
extremely selective: other fields of Weyl’s work, e.g., in convex geometry, real and 
complex analysis have fallen completely through the cracks. The next subsections 
gives the chance for partially correcting this at least with regard to complex analysis. 

19.2.3 Contrasting Trajectories: Riemann Surfaces as an 
Example 

By an odd historical coincidence, Hausdorff and Weyl lectured on complex function 
theory at the same time without knowing each other’s work. In the winter semester 
1911/1912, Hausdorff gave an introduction to function theory at Bonn university, 
whereas Weyl lectured on Riemann’s theory of Abelian integrals in Göttingen. Both 
had to struggle with the concept of a Riemann surface, which at that time was still 
only vaguely defined, and both made proposals about how to attack this question, 
with long range repercussions. Weyl’s notes became a draft for his book on the 
idea of Riemann surface (“Die Idee der Riemannschen Fläche”) published in the 
following year (Weyl 1913). This book is widely known for presenting the first 
definition of a manifold at least for the 2-dimensional case. For Hausdorff the lecture

12 Hilbert hoped to be able to build a consistency proof for large parts of mathematics including 
full Peano arithmetic and real analysis on it between his talk at the International Congress of 
Mathematicians in 1904 until his lecture course on logic in 1920 (Sieg 2000). 
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led him to think about neighbourhood systems which turned into his axiomatics of 
topological spaces 2 years later. 

Weyl drew upon Hilbert’s sketch of an axiomatic characterization of the (real) 
plane, based on topological concepts (Hilbert 1903b).13 Hilbert defined a plane as 
a “system of things” (set), with elements (“things”) called points, which could be 
bijectively mapped as a whole on the “number plane”. He then used Jordan domains 
of the latter for characterizing neighbourhoods (“Umgebungen”) of points in the 
plane. Weyl could take up this idea but had to modify it. For Riemann surfaces, 
thought to arise semi-constructively from analytic function elements (“analytische 
Gebilde”) in the sense of Weierstrass, he had to localize Hilbert’s idea and could 
no longer presuppose a global bijection with the number plane. This led to the 
first definition of a manifold . F in Riemann’s sense, although restricted to the 
2-dimensional case, by establishing an axiomatics of neighbourhood systems in 
. F, with bijective maps to open disks in the Euclidean plane (Weyl 1913, p.  
17f.). This sufficed for defining continuity, differentiability and even analyticity 
of maps between such manifolds and of functions and to build Riemann’s theory 
of Abelian differentials based on such a fundament. In particular the topological 
notions of triangulation, simple connectedness, covering surfaces, group of covering 
transformations and the topological genus of the surfaces etc. were thus put on 
an essentially clarified mathematical basis, if one kept the constructive context 
(analytic function elements and disks as coordinate images) in mind. 

A (later) analysis from the more refined point of view of Hausdorff’s topology 
would show that Weyl’s axioms were not strong enough to provide a self-sufficient 
formal axiomatization: the Hausdorff separation property was not secured by his 
axioms although implicitly presupposed in the derivations. But this was not Weyl’s 
concern during the next few decades. Only when he prepared the English translation 
from lectures given in 1954 at Harvard and Princeton, and in the third German 
edition did Weyl add Hausdorff separation axiom (Remmert 1997, p. xii). 

The idea to talk about neigbourhoods of points in Weierstrassian function theory 
and even for characterizing more general spaces based on set theory was not 
an exclusive privilege of the Göttingen mathematicians. Weierstrass had used the 
terminology already, and also F. Riesz used it for generalized spaces (Riesz 1908; 
Rodriguez 2006). Hausdorff had earlier lectured on Cantorian set theory in Leipzig 
in summer semester 1901 and again in Bonn in 1910, but without taking up this idea 
in his discussions of topological aspects in general sets. In his lectures on function 
theory he was confronted with neighbourhoods of function elements in a natural 
way. In his lecture notes of winter semester 1911/12 we find clear evidence that 
he realized at this point that the study of neighbourhood systems was the clue for 
“ordering the system of points” which arose from the study of equivalence classes 
of analytic function elements, and also more generally. Moreover he became aware 
that the structural properties of such neighbourhood systems had to be analysed. 
This he did more extensively during the summer semester 1912, in which he gave

13 Also in Hilbert (1903a, appendix IV). 
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his next course on set theory at Bonn. Here we find four structural properties of 
systems of neighbourhoods in metrical spaces which were essentially the axioms for 
a topological space, published in his book (Hausdorff 1914b). Moreover he already 
announced that these structural properties could be used as axioms for general 
spaces (Epple et al. 2002, p. 714ff.). 

This small episode seems characteristic for the different thought styles for 
Hausdorff and Weyl. The former used the analysis of conceptual features of 
Weierstrassian function elements underlying the concept of Riemann surface as a 
stepping stone for a general characterization of topological spaces in the framework 
of sets. Weyl, on the other hand, took the same as a starting point to establish 
an axiomatic clarification of the intuitive concept of Riemann surface which had 
been in use already for several decades. He kept this framework closely linked to 
the construction of global objects from Weierstrassian function elements, aiming at 
concrete mathematical objects with multiple structures. This difference may seem a 
nuance of research orientation only; but we will see that it is characteristic for their 
contrasting positions with regard to the aim and character of mathematics. During 
the following years it would develop into an open opposition. 

19.3 Mathematics in the Tension Between Formal Thought 
and Insight 

19.3.1 Two Opposing Views of the Continuum: A Modified 
Classical Concept Versus a Set-Theoretic Perspective 

Already in the period 1910–1914 Hausdorff and Weyl had developed quite different 
ideas about how to deal with the mathematical concept of continuum. As we  
know already Hausdorff was attracted by the epistemic perspective opened up by 
Cantor’s transfinite set theory once he got to know of it. Weyl, by contrast, became 
increasingly sceptical with regard to any truth claim for the latter after discussing 
foundational problems in his Habilitation lecture (1910) (see below). W. Purkert was 
able to reconstruct from indirect evidence (remarks on the infinite in philosophical 
essays written under the pseudonym Mongré) that Hausdorff got to know Cantor’s 
theory during the year 1897, the year of the First International Congress of Math-
ematicians at Zürich (Brieskorn and Purkert 2021, p. 262ff.). Hausdorff/Mongré 
was fascinated by the intellectual perspective of Cantor’s treatment of the transfinite 
cardinal and ordinal numbers (although not yet clarified in sufficient detail, not to 
speak of its axiomatization). At this time he pursued a philosophical program in 
the footsteps of Kant, radicalized by Nietzsche, for “proving”, more precisely by 
arguing with the use of mathematical metaphors, that no knowledge of the “thing 
in itself” is possible, and in particular no insight into the structure of “absolute 
time” or “absolute space” or even “cause” is possible (Stegmaier 2002; Epple 
2021; Mongré 1898a, 1899). Wearing the hat of Mongré, he tried to convince his
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readers by an “apagogic proof” (a proof by contradiction) that absolute time or 
space, if assumed, cannot have any type of structure. For this goal Cantorian set 
theory seemed to him an ideal tool. Relative structures, i.e., not completely absolute 
ones, were of course possible also for him, i.e., order structures in the case of time 
and geometrical or even topological structures (before the advent of the word) in 
the case of space. According to Mongré/Hausdorff such non-absolute structures 
were “selected” by the mind, to make human action and survival possible; they 
could then form a rather individualistic “cosmos”. The individualistic exaggerations 
found in the early Mongré’s literary and philosophical utterances were, however, 
step by step moderated by what Hausdorff later called a considerate empiricism, 
which respected empirically founded scientific knowledge, including theoretical 
refinement and critique (Epple 2006). 

As M. Epple and other authors have argued, Hausdorff’s mathematical research 
topics between 1900 and 1914 were still embossed by his interest in logically 
consistent, although intuitively surprising, perhaps even paradoxical insights into 
order structures (. ∼ time) and/or topological, metrical and measure structures (. ∼
space) (Epple 2006, sec. 5.6). Hausdorff’s first important works in transfinite set 
theory consisted in profound and technically demanding contributions to order 
structures (Hausdorff 1901). W. Purkert observed that an additional motivation for 
this work seems to have come from his interest in approaching a proof of Cantor’s 
famous continuum hypothesis; i.e. the assumption (at first a claim of Cantor) that 
the cardinal number of the subsets of the natural numbers .2ℵ0 = c (which encodes 
the cardinal number of the “continuum”, i.e. the real numbers) is the first non-
denumerable cardinal number 

. 2ℵ0 = ℵ1

or, even more generally, .2ℵν = ℵν+1. 
In Hausdorff’s view, the “continuum” itself would have to be understood by 

using all kinds of different types of topological and/or measure structures. Intuitive 
insight into the nature of the continuum seemed him of ephemeral value only, 
perhaps important for the imagination of the individual mathematician, but without 
any epistemic value with regard to truth claims. His great book Grundzüge der 
Mengenlehre was a splendid exemplification of this general view. 

Weyl had a completely different view of the continuum, which was deeply influ-
enced by the long tradition in mathematical and philosophical thought. Riemann’s 
concept of manifold appeared to him as the most promising modern clue to the 
topic. Its logical and formal foundations remained an open question for him until 
the end of his life, although he himself made at least three attempts to come to grips 
with it (Scholz 2000): a constructive approach in Weyl (1918a), influenced by E. 
Borel and H. Poincaré, which was designed to avoid the pitfall of impredicative
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definitions;14 an intuitionistic one in Weyl (1921); and a combinatorial topological 
one (Weyl 1924) or in his lecture course on Axiomatics in Göttingen 1930/1931 
(Weyl 1930/1931, §37). 

In a paper written for the Lobachevsky anniversary in 1925, though published 
only posthumously, we find an explicit remark explaining why Weyl would not 
agree with Cantor’s or Hausdorff’s approach to the continuum, at least understood 
in the sense of a manifold describing physical space. In such a manifold the local 
descriptions by coordinates in a “number space” are “arbitrarily projected into the 
world” and everything else, in particular the metric structure is turned into a field 
on the space. This could well be reflected in a Kantian type of approach which 
shaped his understanding of the role of the spacetime concept in general relativity. 
A few years earlier he had contributed to a deeper understanding of the underlying 
concepts by posing the problem of space anew, in response to the changed situation 
after the rise of special and general relativity (Scholz 2016; Bernard and Lobo 2019). 
In the mid-1920s Weyl resumed a (relativized) Kantian perspective and sharpened 
his criticism of a set-theoretic substitute for it in the following way: 

Space thus emerges [by separating the topological manifold from the metrical and other 
fields on it, ES] even more clearly as the form of appearances in contrast to its real content: 
the content is measured once the form has been referred to coordinates. [Set theory, one may 
say, goes even further; it reduces the mf [manifold] to a set as such and considers already 
the continuous connection as a field on the latter. It should, however, be clear that in doing 
so it violates the essence of the continuum which by its nature cannot be smashed into a set 
of isolated elements. The analysis of the continuum should not be founded on the relation 
between element and set, but on the one between part and the whole. . . . ] (Weyl  1925/1988, 
p. 4f., second square brackets in original; translation ES)15 

In other words, Weyl considered the notion of transfinite sets as an overstretched 
formal concept without substantial content, at least insofar as physical spacetime 
was concerned.16 Below we shall see that his scepticism regarding the continuum as 
a concept of mathematical physics also pertained to its role in mathematical analysis 
and in the foundations of mathematics.

14 For an appraisal of its mathematical long range import see Feferman (2000); a critical historical 
view is given in Schappacher (2010). 
15 “Deutlicher tritt dadurch der Raum als Form der Erscheinungen seinem realen Inhalt gegenüber: 
der Inhalt wird gemessen, nachdem die Form willkürlich auf Koordinaten bezogen ist. [Die 
Mengenlehre, kann man sagen, geht darin noch weiter; sie reduziert die Mf auf eine Menge 
schlechthin und betrachtet auch den stetigen Zusammenhang schon als ein in ihr bestehendes 
Feld. Es ist aber wohl sicher, daß sie dadurch gegen das Wesen des Kontinuums verstößt, als 
welches seiner Natur nach gar nicht in eine Menge einzelner Elemente zerschlagen werden kann. 
Nicht das Verhältnis von Element zur Menge, sondern dasjenige des Teiles zum Ganzen sollte der 
Analyse des Kontinuums zugrunde gelegt werden. Wir kommen darauf sogleich zurück.]” (Weyl 
1925/1988, §37). 
16 Ferreirós (2016) calls this a “pointillist” view of the continuum, see in particular the discussion 
in chap. 10.4. 
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19.3.2 Axiomatics, Construction and the Problem of the 
Foundations of Mathematics 

Weyl understood axiomatics as the defining basis of a conceptual framework on 
which a mathematical theory could be built. So far this was similar to Hilbert, but 
unlike the latter Weyl was not particularly convinced of the usefulness of trying to 
protect its internal consistency by a metatheoretical investigation, in particular if 
the metatheory was based on more or less strong transfinite methods the epistemic 
meaningfulness of which he doubted anyway. He pleaded for safeguarding the 
consistency of a mathematical theory in a different way, so to speak “on the 
job”, constructing its object fields and clarifying their axiomatic principles in an 
integrated approach.17 The task of an axiomatic formulation was to clarify the 
structure of some field of mathematical thought; its objects were to be constructed 
and dealt with symbolically. This should not depend on overly strong hypotheses 
about the infinite, in particular without making use of transfinite set theory and 
only if unavoidable with applying the principle of the excluded third without a 
constructive underpinning. Weyl’s axiomatization of 2-dimensional manifolds and 
Riemann surfaces was an early example. And he stuck to this conception essentially 
all his life (i.e., with gradual modifications only). In the late 1930s he came into 
contact with members of the early Bourbaki group, in particular C. Chevalley, after 
which he began to develop more respect for how algebraists use axiomatics as a 
research tool in its own right, although still not with respect to foundational issues 
(which were not in the focus of Bourbaki anyhow). 

Weyl was extremely sceptical with regard to Hilbert’s program of founding 
mathematics by axiomatization and a formal analysis of proof structures with 
the aim of showing internal consistency. He considered such a justification of 
mathematical theories or even of mathematics as a whole as nothing but a formal 
showpiece. This might be impressive because of its acumen, but it would fail to meet 
the goal of justifying the substance of mathematics. In Weyl’s view a meaningful 
justification would presuppose a clarification of the basic conceptual ingredients of 
a mathematical theory by symbolic construction, as he called it (Weyl 1927, 1949). 
A preliminary version of how a constructive approach to analysis might work was 
given in his famous book Das Kontinuum (Weyl 1918a); for its long-range impact 
see (Feferman 2000). But Weyl was discontent with his own achievements, in part 
because it justified only a restricted variant of analysis (without the general existence 
of a supremum of a bounded set of the reals). After he had constructed his reduced 
(denumerable) range of real numbers, he opened the discussion of the relation to 
geometry with a self-critical remark, deploring that the intuition of connectivity 
inherent in the geometrical concept continuum was not depicted in his constructive 
number continuum:

17 This is nicely demonstrated in his lecture course on Axiomatic in the winter semester at 
Göttingen (Weyl 1930/1931). 
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Once we have torn the continuum apart into isolated points, it is difficult to reconstruct ex 
post the connectivity between the single points, which is based on their non-independence, 
by some conceptual equivalent. (Weyl 1918a, 79, translation ES)18 

So his constructive (denumerable) continuum of 1918 offended against the 
“essence” of the continuum at least as much as did a Hausdorffian set-theoretic 
approach (criticized in the quotation at the end the last subsection). Its only 
advantage was its (semi-finitist) constructive methodology rather than one in which 
transfinite sets were postulated axiomatically. Irrevocable connectivity between 
points by their inseparable infinitesimal neighbourhoods was what Weyl looked for. 
For a while he believed one could find this in the intuitionist approach proclaimed 
by L.E.J. Brouwer more or less at the same time (Brouwer 1919). So Weyl’s 
attempts at laying the cornerstones of a constructive clarification for analysis shifted 
for some years (between 1919 and 1923) towards a strong support for Brouwer’s 
more radical intuitionistic program, most decidedly expressed in his open polemics 
of (Weyl 1921). This most radical phase of his contributions to the foundations 
of mathematics has attracted much attention in the history and philosophy of 
mathematics (Rowe 2002, 2024; Hesseling 2003; Scholz 2000), (Mehrtens 1990, 
sec. 4.1), and with more technical details (Coleman and Korté 2001, sec. 6). 

By the mid-1920s, however, he started to accept that Hilbert’s formalist program 
was, after all, a defensible position. He remained sceptical, however, with regard to 
the epistemic value of such a formalist approach to the foundations of mathematics 
and to the concept of continuum, because it did not live up to his (undefined and 
probably undefinable) criteria of “insight” and “meaning”. On different occasions 
he sketched how he would conceive of a constructive symbolic approach to 
the continuum, based on methods taken from combinatorial topology. He thus 
explored how far a symbolic representation of cell complexes with (denumerably) 
infinite sequences of barycentric subdivisions would carry (Weyl 1924, 1922, 
1930/1931, 1940, 1985); but a purely combinatorial constructive characterization 
of topological manifolds, which he considered as the best mathematical approach to 
the “continuum”, remained an unsolved problem. 

By the middle of the century he accepted and appreciated the meanwhile widely 
spread axiomatic approach in mathematics: 

. . . the axiomatic attitude has  ceased to be the pet subject of the methodologists [researchers 
in formal logic and foundations of mathematics, ES] its influence has spread from the roots 
to all branches of the mathematical tree (Weyl 1940). 

But it remained important for him that axiomatic postulates were not dissolved 
from “symbolic construction”. He was not satisfied with taking finitist methodology 
serious only at the level of metatheorical investigation (as Hilbert had proposed in 
his proof theoretic program for showing the consistency of axiomatic theories). He

18 “Nachdem wir das Kontinuum in isolierte Punkte zerrissen haben, fällt es jetzt schwer, den auf 
der Unselbständigkeit der einzelnen Punkte beruhenden Zusammenhang nachträglich durch ein 
begriffliches Äquivalent wieder herzustellen” (Weyl 1918a, 79). The translation in (Weyl 1987, 
103f.) suppresses the details “ex post” and the proxy character of the “conceptual equivalent”. 



494 E. Scholz

demanded that on all levels of knowledge production and reflection mathematics 
ought to be a “. . . dexterous  blending of constructive and axiomatic procedures” 
(Weyl 1985, 38). The foundations of mathematics, on the other hand, remained an 
open problem for him until the very end of his life. 

In one respect Hausdorff’s view of axiomatics was not very different from Weyl’s 
(or most other twentieth century mathematicians): both saw axiomatic systems as 
providing the format for defining the basic concepts of a mathematical theory. But 
in other respect they differed drastically. Hausdorff was an excellent logically sharp 
thinker who did not see a need for formalizing logic, as we noticed already. He 
could never imaging giving up a principle like the law of the excluded middle. For 
Hausdorff this would unnecessarily reduce the range of mathematics, which was 
completely unacceptable to him. Symbolically supported creation combined with 
logical precision took the place occupied by symbolic construction for Weyl in 
the generation of mathematical knowledge. Hausdorff thus took up transfinite set 
theory as outlined by Dedekind and Cantor, a program adopted by Hilbert and his 
school, which established a language and thought milieu for symbolic creativity par 
excellence. He knew, of course, about the open questions in the foundations of set 
theory, in particular that the comprehension of infinite totalities had to be handled 
with care, but he saw no risk in building mathematical theories along these lines. 
Still in the late 1920, when he published the so-called second edition of his book on 
set theory (in fact, a new book) he emphasized the aspect of creativity in his lucid 
rhetoric: 

It is the eternal achievement of Georg Cantor to have dared this step into infinity, under 
interior and exterior struggles against seeming paradoxies, popular prejudices, philosophi-
cal statements of power (infinitum actu non datur), but also against reservations pronounced 
by the greatest mathematicians. By this he has become the creator of a new science, set 
theory, which today forms the grounding of the whole of mathematics. In our opinion, this 
triumph of Cantorian ideas is not altered by the fact that a certain antinomy arising from 
an excessively boundless freedom of forming sets still needs a complete elucidation and 
elimination. (Hausdorff 1927, 11, Werke 3, 55)19 

He knew that in the environment of Hilbert (Zermelo, Fraenkel, Bernays) the 
axiomatization of set theory was under way, but he saw no pressure to proceed along 
these lines, and was far from feeling any “anxiety” that something would go wrong 
with the foundations set theory and mathematics (Brieskorn and Purkert 2021, sec. 
7.3).

19 “Es ist das unsterbliche Verdienst Georg Cantors, diesen Schritt in die Unendlichkeit gewagt 
zu haben, unter inneren wie äußeren Kämpfen gegen scheinbare Paradoxien, populäre Vorurteile, 
philosophische Machtsprüche (infinitum actu non datur), aber auch gegen Bedenken, die selbst 
von den größten Mathematikern ausgesprochen waren. Er ist dadurch der Schöpfer einer neuen 
Wissenschaft, der Mengenlehre geworden, die heute das Fundament der gesamten Mathematik 
bildet. An diesem Triumph der Cantorschen Ideen ändert es nach unserer Ansicht nichts, daß 
noch eine bei allzu uferloser Freiheit der Mengenbildung auftretende Antinomie der vollständigen 
Aufklärung und Beseitigung bedarf.” (Hausdorff 1927, 11, Werke 3, 55). 
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From such a viewpoint a methodology which demanded a reduction of symbolic 
creation to procedures that would deliver only denumerable ranges of objects 
(Weyl’s constructivism or Brouwer’s intuitionism) appeared to him ridiculous, or 
even worse. He did not state such an opinion publicly, but made his views perfectly 
clear in a letter to Abraham Fraenkel written June 9, 1924, in response to Fraenkel’s 
refinement of Zermelo’s system of axioms (Fraenkel 1923). He thanked for this 
and for the discussion of the set theoretic antinomies, because this spared him from 
dealing with matters of less personal concern for him (“Dinge, die mir nicht liegen”). 
From now on he would be able just to refer to Fraenkel’s book. He continued: 

You have even succeeded in making the oracle pronouncements of Brouwer and Weyl 
understandable – without making them appear to me any less nonsensical! You and Hilbert 
both treat intuitionism with too much respect; one must for once bring out heavier weapons 
against the senseless destructive anger of these mathematical Bolsheviks! (Hausdorff 
2002–2021, vol. 9, 293, translation (Rowe 2024))20 

Hausdorff’s surprisingly militant language has to be understood against the 
background of Weyl’s polemical language in his paper propagating an intuitionistic 
“revolution”—and the turbulent conditions in post-war Germany during the early 
1920s. It indicates a deep dividing line among early twentieth century mathemati-
cians (in Germany) with regard to basic methodological convictions and the value 
of certain research programs. But can this dividing line be better understood by 
declaring our two protagonists as belonging to two separate camps of modernists 
(Hausdorff) and counter- or even antimodernists (Weyl) as proposed by (Mehrtens 
1990)?—David Rowe calls Weyl, on the contrary, a “reluctant revolutionary” (Rowe 
2002). This seems to me much more to the point; we will come back to this question 
in the final discussion. 

19.3.3 Mathematics and the Material World 

Although Hausdorff no longer contributed actively to the natural sciences after 
his disappointing experiences with his early works in astronomical optics, he held 
strong views on the usefulness of mathematics for acquiring knowledge about the 
physical world (Brieskorn and Purkert 2021, chap. 3). These views, however, were 
not widely known at the time. His contributions to probability theory remained 
relatively unnoticed (Brieskorn and Purkert 2021, sec. 4.2, 10.3); the lecture 
containing a set theoretic axiomatization of probability remained unpublished 
(Hausdorff 1923/2006).

20 “Es ist Ihnen sogar geglückt, die Orakelsprüche der Herren Brouwer und Weyl verständlich 
zu machen – ohne dass sie mir nun weniger unsinnig ercheinen! Sowohl Sie als auch Hilbert 
behandeln den Intuitionismus zu achtungsvoll; man müsste gegen die sinnlose Zerstörungwuth 
dieser  mathematischen  Bolschewisten  einmal  gröberes  Geschütz  auffahren!  . . . ”  (Hausdorff  
2002–2021, vol. 9, 293). 
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In the 1890s and early 1900s he was highly interested in the question of non-
Euclidean geometry and in philosophico-mathematical question of space and time 
concepts (Epple 2021), (Brieskorn and Purkert 2021, sec. 5.6). In his radical 
thoughts on philosophical (epistemological and ontological) questions, published 
under the name Paul Mongré, mathematics played an important role for undermin-
ing the belief in fixed, perhaps even a priori, forms of knowledge of the external 
(material) world. The great variety of geometrical or, in nuce, even topological 
structures for spacelike thinking, and of order structures for timelike thinking 
became an important tool for him in putting established notions of mathematical 
physics, astronomy and cosmology into question. On the other hand, he made clear 
that the ordering of sense perceptions and scientific empirical knowledge needed 
mathematics for acquiring a well defined and intelligible form. He called such 
a methodology considered empiricism (“besonnener Empirismus”), in contrast to 
empiricism sans phrase and positivism on the one hand and neo-Kantianism, or any 
other rejuvenated version of German idealism, on the other (Epple 2006). 

In later years Hausdorff did not completely lose interest in mathematical physics 
but this interest clearly moved toward the background of his attention. We know 
that he prepared talks, perhaps even an introductory publication for a wider public, 
on (special) relativity (Epple 2021, sec. 5.1), but he never took up questions from 
mathematical physics for his own research. From the beginning of the twentieth 
century onward his research profile became that of a “pure” mathematician who 
appreciated the role of mathematics for an open minded and critical understanding 
of the material world. In his early years he had formulated an aphorism expressing 
what he considered the role of mathematics in natural science: 

What we are missing is a self-critique of science; the verdicts of science given by art, 
religion and sentiment are just as numerous as useless. Perhaps this is the ultimate task 
[or even destination, ES] of mathematics (Mongré 1897, aphorism 401, transl. ES).21 

Weyl, on the other hand, was a highly creative contributor to mathematical 
and theoretical physics, besides his great achievements in pure mathematics. As 
is well known, he made outstanding contributions to Einstein’s theory of gravity 
and early cosmology (Giulini forthcoming; Goenner 2001; Rowe  2016), the gen-
eralization of Riemannian geometry as a scale covariant (conformal) framework 
for relativistic field theory (Vizgin 1994; Ryckman 2005; McCoy  2021), to the 
introduction of the gauge principle into the rising quantum mechanics (Straumann 
1987; O’Raifeartaigh 1997), and finally he displayed, conjointly with B.L. van der 
Waerden and E. Wigner, the usability of group representations as a basic frame 
for studying symmetries in quantum physics (Eckes 2012; Schneider 2011; Scholz 
2006). All of this turned out to be of long ranging influence on the course of physics 
during the twentieth century, and probably also beyond (Yang 1986; Mackey 1988; 
Borrelli 2015, 2009; Scholz 2018).

21 “Uns fehlt eine Selbstkritik der Wissenschaft; Urtheile der Kunst, der Religion, des Gefühls 
über die Wissenschaft sind so zahlreich wie unnütz. Vielleicht ist dies die letzte Bestimmung der 
Mathematik.” (Mongré 1897, Aph. 401). 



19 Hausdorff–Weyl: Mathematical Modernism, Goal or Problem? 497

In addition to his direct contributions to mathematical and theoretical physics, 
Weyl published (and proposed in talks) profound reflections on the epistemology 
and ontology of the physical world, and the role of mathematics in it, most notably 
(Weyl 1927, 1948/1949, 1955b). Transformations of mathematical structures played 
a great role in his reflections; but in stark contrast to Hausdorff he proposed to 
identify, as clearly as possible, what he considered the automorphisms (global and 
gauge) of “Nature” herself to which the transformation group of the descriptive sym-
bol system ought to adapt as smoothly as possible. Weyl’s objective-transcendental 
constructive mode has recently been taken up in the philosophy of physics in 
(Catren 2018). We have seen that Hausdorff used the method of transformation 
and the related structure groups with the opposite goal of undermining a belief (at 
least a naive one) in being able to discern such structures in the world, i.e., in a 
deconstructivist mode ante letteram. 

For Weyl, philosophical reflections seemed important also for securing a cultural 
basis for mathematics, in particular the parts which were not amenable to what 
he accepted as constructive (i.e., essentially by denumerable procedures). From 
the mid-1920s onward he realized, at first hesitatingly, that the principle of the 
excluded third and axiomatically postulated transfinite mathematical objects of 
higher cardinality may be of importance and acceptable because of their role in 
making the difficult structures of modern physics intelligible, at least in an indirect 
symbolic way. 

From the formalist standpoint, the transfinite component of the axioms takes the place of 
complete induction and imprints its stamp upon mathematics. The latter does not consist 
here of evident truths but is bold theoretical construction, and as such the very opposite of 
analytical self-evidence. . . . 

In axiomatic formalism, finally, consciousness makes the attempt to ‘jump over its own 
shadow’. to leave behind the stuff of the given, to represent the transcendent—but, how 
could it be otherwise?, only through the symbol. (Weyl 1949, 64ff.) 

Hausdorff found joy in searching for logically consistent insight into transfinite 
constructions in the wide sense; he considered this a goal worth pursuing for its own 
sake, which carried an intrinsic value. Weyl, in contrast, considered such symbolical 
thought (dealing with a stronger transfinite than denumerable constructivism would 
accept) as meaningful only when it could be related to natural sciences directly or 
indirectly (Weyl 1949, 61). On this score, the differences between our protagonists 
could not have been larger. But does one of these opinions devaluate the other as 
a legitimate position for a twentieth century “modern” mathematician? It would 
seem more reasonable to consider both as understandable reactions of creative 
mathematicians to the challenge of the cultural and social modernization they lived 
in and contributed to.
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19.4 Outlook: Hausdorff’s and Weyl’s Stance Towards 
Modernity 

19.4.1 Hausdorff: Liberation, Rationalism and the “End of 
Metaphysics” 

We are well informed about Hausdorff’s perception and evaluation of cultural 
development in late nineteenth century Germany through the publication of his alter 
ego Mongré, in particular his time-critical essays in the Neue Deutsche Rundschau, 
a leading journal of liberal intellectuals in Germany (Brieskorn and Purkert 2021, 
Chap. 6), (Hausdorff 2002–2021, vol. 7). As mentioned above, he came from a 
conservative Jewish parental home, the religious traditions and creed of which he 
did not share. He grew up in a German environment in rapidly modernizing change, 
which allowed for a slow and selective emancipation of Jewish people on the one 
hand, but on the other hand was also hatching a rising anti-Semitism in daily life. On 
this background Hausdorff developed a sharp-minded, critical, highly individualistic 
view of life and culture which at the turn to the twentieth century was characterized 
in Germany by a streaky mix of turbid tradition and cheered up modernism. Later 
in his life he characterized his own cultural and philosophical trajectory as having 
developed “from Wagner to Schopenhauer, from there back to Kant and forward to 
Nietzsche” (Hausdorff 2002–2021, vol.  9, 503). With “Nietzsche” Hausdorff at this 
place referred to the young writer whom he emphatically talked about, at a different 
place, as the 

. . . affectionate,  tempered,  appreciative,  freethinking  Niezsche  and  the  cool,  dogma free, 
system-less sceptic Nietzsche and the (. . . ) world blessing, all positive ecstatic Zarathustra  
(Brieskorn and Purkert 2021, 181).22 

This picture of Nietzsche stands in stark contrast to the later “fanatic” Nietzsche 
who, in addition, was contorted for the worse by his the editors under the influence 
of his sister. The late, fanatic Niezsche preached a morality which, according to an 
observation made by Hausdorff as early as 1902, contained the potential for “turning 
into a world-historic scandal which might dwarf the inquisition and the witch trials, 
such that they would appear as harmless aberrances” (Brieskorn and Purkert 2021, 
180).23 

In short, the young Hausdorff/Mongré developed into an enlightened Niet-
zschean dissident in late nineteenth century Germany. He considered the cultural

22 “. . . von  dem  gütigen,  maßvollen,  verstehenden  Freigeist  Nietzsche  und  von  dem  kühlen, 
dogmenfreien, systemlosen Skeptiker Nietzsche und von dem Triumphator des Ja-und Amenliedes, 
dem weltsegnenden, allbejahenden Ekstatiker Zarathustra” (Brieskorn and Purkert 2021, 181). 
23 “In Nietzsche glüht ein Fanatiker. Seine Moral der Züchtung, auf unserem heutigen Fundamente 
biologischen und physiologischen Wissens errichtet: das könnte ein weltgeschichtlicher Skandal 
weden, gegen den Inquisition und Hexenprozeß zu harmlosen Verirrungen verblassen” (Brieskorn 
and Purkert 2021, 180). 
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modernisation as an emancipatory chance, with the intellectual and social liberation 
of the individual as the cultural task of the time. Some of his writings as P. Mongré 
had the flavour of a drastically exaggerated emphasis on the role of individual 
perception of the world, and the fiction of the happiness of the “higher” persona 
standing above the happiness of the many and in contrast to any other kind of social 
bonds (Mongré 1898c), (Brieskorn and Purkert 2021, sec. 6.1.1). To him the motif 
of individual freedom seemed to fit well with Cantor’s battle cry for set theory: “the 
essence of mathematics lies in its freedom”. In contrast to Cantor himself, Hausdorff 
took set theory as a model and tool for dissolving metaphysical bonds not only 
within mathematics, but in general, with mathematics as a trailblazer. In his view, 
mathematical thought ought to be tied back to the social and outer material world 
only in the indirect and sceptical form of his “considerate empiricism” (see above). 

In his book “Chaos in Cosmic Selection. An Epistemological Essay” Haus-
dorff/Mongré hoped to be able to do away with metaphysics once and for all. The 
book ended with the often cited, (all too) proud claim: 

Therewith the bridges have been torn down, which, in the imagination of all metaphysicians, 
connect the chaos [the transcendent world, ES] and the cosmos [the ordered sensible and 
intelligible world, ES] in both directions, and the end of metaphysics has been declared, the 
explicit one no less than the masked one, both of which the science of the coming century is 
obliged to scrap from its architecture (Mongré 1898a, 209; 7, 803, emph. in the original).24 

He broadened this argument in a more popular article “The unclean century” 
in the widely read journal Neue Deutsche Rundschau (Mongré 1898b). It contains a 
beautiful, in large parts satirical, general accounting with the cultural inconsistencies 
of the semi-modern culture in Wilhelmian Germany. Hausdorff/Mongré attacked, 
among others, the militaristic habitus among Germany’s self-defined elites, who 
continued to regard duelling as the proper form of honour-saving conflict resolution. 
He also spoke out against certain aspects of Neo-Kantianism in German humanistic 
education as cultural hypocrisy, but he also criticised the rising neo-religiousness of 
diverse flavours as obscurantism, and the unacknowledged metaphysical elements in 
natural science (Brieskorn and Purkert 2021, sec. 6.1.2). All this he saw as a ballast 
from earlier times that had to be done away with by 

. . . an  act  of  cleanliness  with  which  any  retiring  century  should recommend itself to its 
successor (Mongré 1898b, 352).25 

For the young Hausdorff (Mongré) some sort of purified modernity appeared 
as a desirable future state of the human world. Needless to say, this optimistic 
perspective was broken by the two Great Wars, the deep world crisis between them, 
and the rise of Nazism in Germany, with all the humiliations and cruelties against

24 “Damit sind die Brücken abgebrochen, die in der Phantasie aller Metaphysiker vom Chaos 
zum Kosmos herüber und hinüber führen, und ist das Ende der Metaphysik erklärt, – der 
eingeständlichen nicht minder als jener verlarvten, die aus ihrem Gefüge auszuscheiden der 
Naturwissenschaft des nächsten Jahrhunderts nicht erspart bleibt” (Mongré 1898a, 209; 7, 803). 
25 Man “. . . vollzieht einen Act der Reinlichkeit, mit dem jedes scheidende Jahrhundert sich seinem 
Nachfolger empfehlen sollte” (Mongré 1898b, Werke 7, 352). 
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the Jewish population, that he himself had to go through. One of his last letters 
written in January 1941, about a year before his suicide he was forced into, ended 
with realistic resignation: 

Nietzsche always feared that Europe might perish because of a hysteria of pity: one cannot 
claim that this diagnosis was particularly realistic (Hausdorff 2002–2021, vol. 9, 357).26 

19.4.2 Weyl: Awareness of Crisis and the Search for 
Metaphysical Horizons 

Weyl was among those who, while still at school, was strongly affected by Kant’s 
critical philosophy. For him this by no means lead to a complacent and indolent 
attitude, so forthrightly attacked by Mongré in his essay about the “unclean 
century”. In retrospect Weyl characterized the effect of Kant’s teaching of the 
“ideality of space and time” quite differently: 

. . . by one jerk I was awoken from the ‘dogmatic slumber’; the world was most radically put 
into question for the mind of the adolescent (Weyl 1955a, 4, 632).27 

Thus, for Weyl, the reading of Kant had an effect usually ascribed to “modernity” 
or “modernism”: a radical detachment of assuming simple bonds to reality. This 
detachment was even enhanced, when he entered Göttingen university and learned 
of Hilbert’s studies of the foundations of geometry. The “multitude of different 
unfamiliar geometries” studied in the axiomatic approach destroyed his simplified 
picture of an “edifice” of Kantian philosophy, which he had erected in his mind 
(ibid. 633). This retrospective description indicate that Weyl, in contrast to Haus-
dorff/Mongré, sensed the confrontation with a “modern” view of the world, and the 
adoption of it for himself, as a deeply irritating experience. In much of his later 
writings we find an embarrassment about the basic detachment of mathematical 
knowledge from the link to the external world. Weyl would sometimes speak of a 
“transcendent” reality, apparently alluding also to the religious connotation of the 
word besides a vague reference to an outer nature beyond the one “given” to the 
senses and to phenomenal insight. 

Many authors have argued that the experience of the breakdown of civil norms 
during the Great War and the following deep social crisis in Germany aggravated 
Weyl’s, and others, sensitivity with regard to the stability also of scientific and even 
mathematical knowledge (Mehrtens 1990; Sigurdsson 2001; Schappacher 2003). 
The latter had been untightened already in the later nineteenth century by the loss of

26 “Nietzsche hat immer befürchtet, dass Europa an einer Hysterie des Mitleids zugrunde gehen 
würde: man kann nicht behaupten, dass diese Diagnose sehr zutreffend war” (Hausdorff an J. 
Käfer, 2. Jan. 1941, (Hausdorff 2002–2021, vol.  9, 357)). 
27 “. . . mit  einem  Ruck  war  ich  aus  dem  dogmatischen Schlummer’ erwacht, war dem Geist des 
Knaben auf radikale Weise die Welt in Frage gestellt” (Weyl 1955a, 4, 632). 
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credibility of traditional metaphysics and an imputed direct reference to an external 
reality. This seems to have strongly influenced Weyl’s sensitivity for crisis in the 
debate on the foundations of analysis and set theory. 

This awareness of crisis was not only linked to the immediate post-war years 
and the early 1920s. Although in the second half of the 1920s he was willing to 
accept that Hilbert’s proof theoretic (“finitist”) program might even be successful 
with regard to a formal legitimation of the use of (strong) transfinite methods in 
mathematics, this would not solve, in his opinion, the problem of meaning of such 
parts of mathematics, which were based on transfinite axiomatic methods. In Weyl’s 
view (as we know not in Hilbert’s view) Gödel’s incompleteness theorem for a 
sufficiently strong formal system embracing arithmetic and a formalized logic as 
strong as the one of Russell’s Principia Mathematica dealt a “terrific blow” to 
Hilbert’s program (Weyl 1946, 4, 279). This was written after the second, even 
more devastating war than the one after which he had declared the new “crisis” 
in the foundations of mathematics. Weyl gave a short survey of the development of 
the research in the foundations of mathematics during the last few decades; then he 
repeated his diagnosis of the situation, given roughly 30 years ago: 

From this history one thing should be clear: we are less certain than ever about the ultimate 
foundations of (logic and) mathematics. Like everybody and everything in the world today, 
we have our ‘crisis’. We have had it for nearly fifty years. (Weyl 1946, 4, 279) 

As we also know, this did not hinder him from participating in the enterprise of 
modern mathematics and physics, though it shaped his selection of research topics 
and methods. He continued: 

Outwardly it does not seem to hamper our daily work, and yet I for one confess that it has 
had a considerable practical influence on my mathematical life: it directed my interests to 
fields I considered relatively ’safe’, and has been a constant drain on the enthusiasm and 
determination with which I pursued my research work. (ibid.) 

Here Weyl speaks of ‘safeness’ in the sense of cultural meaning of mathematics, 
including its links to the clarification of knowledge in the natural science, in 
particular physics. In addition, this remark may also be read as a partial explanation 
for Weyl’s never-ending efforts to find support in philosophical reflection of his 
work, an effort which did not stop short of explicit metaphysical considerations. This 
stands in the sharpest possible contrast to Hausdorff whose verdict of (classical) 
metaphysics we have seen above. 

19.4.3 Final Remarks: 
Modern—Countermodern—Trans-Modern? 

Neither of our two protagonists maintained a Platonist view of the objects of 
mathematical knowledge. Hausdorff rejected any claim of ideal order beyond 
the insights gained by logically precisely framed symbolic production in the 
realm of transfinite sets opened by Dedekind and Cantor. He was convinced that
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such highly elaborate argumentations of transfinite set-theory can be expanded 
without encountering contradictions, as long as this was carefully restrained by the 
comprehension principle. Although Hausdorff did not, to my knowledge, publish 
a short, conclusive verbal description of his view of mathematics, he may well be 
called a symbolic formalist. That is, he emphasized that mathematics deals with 
“objects of thought, symbols of undetermined meaning” which require no further 
constraint than that of logical consistency.28 In this respect he had a completely 
different conception of set theory than Cantor who attached ontological meaning to 
transfinite sets; Hausdorff’s view may rightly be called “modernist”. 

Weyl, as we have seen, had a rather different understanding of what mathematics 
is about, or at least ought to be about. His constructivist perspective or, over a 
time period, even intuitionist understanding (sui generis) of mathematical objects 
did not allow him to join the radical modernist attitudes of Hilbert, Hausdorff 
and, later, the young mathematicians of the Bourbaki generation. His decidedly 
constructivist perspective was, however, not at all “countermodern”. It even had 
strong resemblances to certain features of modernist architecture (Bauhaus) or art 
(cubism). Also Weyl’s most important philosophical inspirations received from 
Husserl’s phenomenology and Fichte’s “constructivism” (as he himself described 
it in (Weyl 1955a, 4, 641) and the latter’s contemporary liberal interpreter Fritz 
Medicus cannot be qualified as a “countermodern”, in contrast to the conservative 
nationalist interpreters of the South-German Fichteans, or even as an “antimodern” 
influence on Weyl. 

Finally, if one takes the corpus of their mathematical research work into account, 
surely the most important sources for the description of mathematicians, we see here 
two towering figures of mathematics in the “modern” period of the late nineteenth 
and the twentieth century. It would be misplaced to describe one of them, Weyl, 
as a “countermodern” mathematician and only the other one, Hausdorff, as modern. 
But, of course, the qualification of Weyl’s and Brouwer’s position in the foundations 
of mathematics as representatives of “countermodernism” (“Gegenmoderne”) in 
Herbert Mehrtens’ influential book (Mehrtens 1990, 289ff., 301) has an evident 
factual base. There were real differences between the two authors, which may be 
described in simple terms as follows: While Hausdorff, at least as a young man, 
welcomed the rising modernity/modernism in science and culture enthusiastically 
as a liberating movement, Weyl was irritated and suffered from the loss of security 
brought about by the intellectual and social turnovers of the late 19th and early 20th 
centuries. In consequence he tended to distance himself from modernist positions 
in the reflective discourse on mathematics, as Mehrtens calls it. This made him a 
modern scientist (not a modernist), who was critical of many aspects of modernity, 
not only with regard to epistemic questions but also with regard to the social 
destructions which were part of the rise of modernity.

28 The closest approximation to such a short characterisation can be found in section 1, “Der 
Formalism”, of an unpublished fragment (Hausdorff 1904/2021) written about 1904, in particular 
folio 4ff, vol. 6, p. 474ff. 
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After the second Great War of the twentieth century Weyl was shocked by the 
destructive potential which had developed on the basis of scientific achievements. It 
seems that he experienced the rise of modern society, in the sense of late nineteenth-
and twentieth-century high capitalism, including its scientific culture, as a challenge 
and a crisis set in permanence. In a manuscript written close to the end of his life and 
published posthumously by T. Tonietti, he deplored the state of things, dramatically 
clothed in his grave, humanistic style. He warned that modern science may be 
characterized by a kind of hubris (violent arrogance) and went on 

For who can close his eyes against the menace of our own self-destruction by science? 
The alarming fact is that the rapid progress of scientific knowledge is not paralleled by 
a corresponding growth of man’s moral strength and responsibility, which have hardly 
changed in historical times (Weyl 1985, 12). 

Weyl could not even follow Hardy’s move after the first War for exculpating pure 
mathematics on the basis of its “uselessness” in practical matters, which, according 
to Hardy, would protect it against a participation in “exploitation of our fellow-men” 
and the destruction up to their “extermination” (Weyl’s words). Weyl did not believe 
in such an escape route and emphasized: 

However the power of science rests on the combination of experiment, i.e., observation 
under freely chosen conditions, with symbolic construction, and the latter is its mathemat-
ical aspect. Thus if science is found guilty, mathematics cannot evade the verdict. (ibid.) 

This sentiment echoes a similar, although less dramatically stated fright which 
was expressed in Hausdorff’s downplayed remark of 1941 that Nietzsche’s warning 
that modern history might suffer from too much pity for humanity or nature has 
turned out as not “particularly realistic”. 

Weyl was a sceptical modern actor all his life. As we know too well, the dangers 
of extermination of mankind by war and/or destruction of our natural habitat are now 
even more severe than in the 1950s. But science is not only an accomplice of the 
destructive sides of modernity; it also plays the role of collecting the warning signs 
and is necessary for exploring exit strategies from the ongoing destruction. From 
our vantage point of the early twenty-first century, Weyl may appear as a modern 
scientist who tried to dive through the wave of modernism towards some not yet 
clearly visible type of trans-modern culture. The latter would demand remaining 
true to the enlightened elements of modernity, while diminishing the destructive 
forces against nature and our fellow-men. 

Acknowledgments I thank Walter Purkert, Norbert Schappacher, José Ferreirós, Lizhen Ji, Jinze 
Du, Matthias Kreck and David Rowe for their often detailed and valuable comments to preliminary 
versions of this chapter.
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Part V 
Mathematicians and Philosophy



Chapter 20 
The Direction-Theory of Parallels: 
Geometry and Philosophy in the Age 
of Kant 

Vincenzo De Risi 

Abstract The direction-theory of parallels was a mathematical theory that gained 
enormous importance and popularity for about a century, from the 1770s to the 
1870s. It was conceived for the purpose of proving the famous Parallel Postulate 
and establishing the foundations of Euclidean geometry. The development of 
this geometric theory was intertwined with that of mathematical epistemology. 
Proponents of the theory discussed at length such topics as the analyticity of 
mathematics, the role of intuition in geometry, mathematical constructivism, and the 
relationship between geometry and the structure of space. In the first few decades of 
its life, the direction-theory of parallels became the most important benchmark on 
which to test Kant’s philosophy, and Kantians and anti-Kantians alike wrote articles 
and books on it. The direction-theory was later generally accepted by the leading 
post-Kantian philosophers of the nineteenth century. It was finally subjected to fatal 
criticism by Lewis Carroll and Gottlob Frege. 

[Enter:] The phantasm of Herr Niemand, carrying a pile of 
phantom-books, the works of Euclid’s Modern Rivals, 
phantastically bound. 
(Lewis Carroll) 

20.1 Euclid’s Rivals on the Theory of Parallels 

Back fromWonderland, Lewis Carroll published (under his worldly name of Charles 
Dodgson) a treatise on the foundations of geometry written in “dramatic form” and 
“lighter style”. Euclid and His Modern Rivals appeared in 1879, and lambasted 
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recent treatments of elementary geometry in England, while extolling the logical 
virtues of the original Elements by Euclid. An entire act of this tragedy of geometry 
is dedicated to the modern theories of parallel lines, which are expounded by the 
German Herr Niemand (Mr. Nobody) and rebutted by the Greek (and infernal) judge 
Minos – as a champion of Euclid. The greatest part of this act deals with the so-
called “direction-theory” of parallels.1 

The direction-theory of parallels was, like Herr Niemand, German. It was first 
conceived in 1778, with the stated aim of reforming Euclid’s theory of parallels 
and proving the Parallel Postulate. This was a famous challenge in geometry, and 
since Antiquity mathematicians had been busy proposing new demonstrations of 
the postulate and at disproving other mathematicians’ proofs.2 The direction-theory 
fared much better for a long time and acquired great momentum at the turn of 
the nineteenth century. The theory began to be taught in schools, was endorsed by 
the most important philosophers, and was generally accepted by the mathematical 
community. It soon crossed Germany’s borders and spread all over Europe. In 1870, 
the British Association for the Improvement of Geometrical Teaching recommended 
that students in England should learn geometry from modern textbooks rather than 
from Euclid’s Elements – as was also the long-held custom in Germany.3 Many of 
these new English manuals embraced the direction-theory of parallels as a more 
suitable approach for students than Euclid’s. 

The discovery of non-Euclidean geometry by Lobachevsky and Bolyai did not 
slow down this booming phenomenon. The importance of these pioneering works 
was not recognized for several decades, and it was only in the course of the 1870s 
that non-Euclidean geometry began to gain wider acceptance – when Klein and 
Poincaré legitimized it even outside the field of foundational studies.4 At the end 
of the decade, Dodgson’s witty drama disposed of this German theory belatedly 
imported into Britain and defeated by modern mathematics. The direction-theory, 
that had flourished for 101 years in more than as many books, finally stepped 
through the looking-glass.5 

1 Dodgson (1879). The theory of parallels is discussed in Act Two, the direction-theory being dealt 
with in pp. 70–131 of the work. 
2 For an outstanding presentation of the history of non-Euclidean geometry, see Gray (1989). 
3 An exhaustive presentation of the English debate on the teaching of Euclid is found in Moktefi 
(2011). For its connection with non-Euclidean geometry, see Gray (2004), pp. 95 ff. 
4 On the acceptance of non-Euclidean geometry in the second half of the nineteenth century, see 
Voelke (2005) and  Volkert (2013). 
5 An important historical discussion of various attempts to prove the Parallel Postulate through 
arguments from direction, composed just when the era of such attempts was drawing to a close, is 
to be found in Schotten (1890–1893). For further discussions on the attardés who were still hoping 
to prove the Postulate through the direction-theory at the end of the nineteenth century, see Pont 
(1986).
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The gist of the direction-theory is easy to convey. Whereas Euclid had defined 
parallel lines as straight lines that do not meet, the direction-theorists defined them 
as straight lines having the same direction. Sameness of direction is commonly 
understood as to be a transitive relation: if A has the same direction as B, and B the 
same direction as C, then A has the same direction as C. This apparently harmless 
assumption, applied to parallel lines, entails however the transitivity of parallelism – 
something that fails in non-Euclidean geometry. As a consequence, Euclid’s modern 
rivals surreptitiously introduced an assumption equivalent into the Parallel Postulate 
in the definition of parallelism, and triumphantly derived the former from the latter. 
Minos did not need too much effort to expose the blatant petitio principii of these 
proofs, and Dodgson’s book could expound the criticism in painful detail. 

Five years after Dodgson’s rebuttal of the direction-theory, Gottlob Frege pro-
duced a logical analysis of its shortcomings in his Grundlagen der Arithmetik. Frege  
identified the main mistake in the theory in an incorrect epistemological assumption. 
According to him, geometry must begin with concrete objects, such as straight 
lines and circles. Abstract notions, such as direction, cannot be assumed beforehand 
and employed to define these basic geometric objects. Quite the opposite: abstract 
notions may only be defined by looking at the relations obtaining between concrete 
objects. If such a relation is an equivalence relation – and, therefore, if it is 
transitive – then it partitions the set of objects into equivalence classes to which 
an abstract notion may be attached. The transitivity of relations among concrete 
objects is a prerequisite for abstracting notions in the first place. 

The trouble is, that this is to reverse the true order of things. For surely everything 
geometrical must be given originally in intuition. But now I ask whether anyone has an 
intuition of the direction of a straight line. Of a straight line, certainly; but do we distinguish 
in our intuition between this straight line and something else, its direction? That is hardly 
plausible. The concept of direction is only discovered at all as a result of a process of 
intellectual activity which takes its start from intuition. On the other hand, we do have a 
representation of parallel straight lines.6 

According to Frege, the only possible procedure to abstract the notion of direction is 
the following. We consider the set of (concrete) straight lines in a plane and Euclid’s 
relation of parallelism (i.e. non-incidence). Since the Parallel Postulate is true, this 
relation is transitive and in fact an equivalence relation. Therefore, we may partition 
the set of straight lines into mutually exclusive equivalence classes of non-incident 
lines. Each of these classes defines a direction as an abstract notion. By means of 
this procedure, we transform the sentence “line a is parallel (non-incident) to line 
b”, which is about concrete objects given in intuition, into the statement that “the 
direction of line a is identical to the direction of line b”, revolving on abstract, non-
intuitive notions. From here, we get to the concept of direction in general.7 

6 Frege (1884), § 64, p. 75. Transl. by Austin in (Frege 1960), p. 75, modified. 
7 This last passage is further belabored by Frege in great detail, but it does not concern us here. Note 
that Lobachevsky and Bolyai were able to define the direction of asymptotic parallel lines, that is 
to say, of one special kind of parallels in hyperbolic geometry that have the transitive property.
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Following Frege’s analysis, one cannot even formulate the notion of direction 
without presupposing the Euclidean transitivity of parallelism and therefore the 
truth of the Parallel Postulate. The mathematical mistake of the direction-theorists 
was rooted in a faulty epistemology, which upturned the priority between intuition 
and concept. Frege’s analysis attempted to reach much deeper than Dodgson’s, and 
pointed a finger at the philosophical assumptions of the direction-theorists. In doing 
so, he exposed his own not inconsiderable share of philosophical commitments.8 

It is remarkable that neither Dodgson nor Frege rebutted the direction-theory 
by exploiting the consistency of non-Euclidean geometry. A decade after his book 
on Euclid, Dodgson himself was still attempting to prove the Parallel Postulate 
and show the impossibility of non-Euclidean geometry.9 Frege, committed to 
making use of intuition in geometry, explicitly rejected non-Euclidean geometry 
as a delusional, un-scientific theory engendered by an ill-conceived philosophy 
of mathematics.10 Dodgson’s and Frege’s criticisms to the direction-theory only 
concerned the possibility of defining parallel lines through the notion of direction 
and to prove the Parallel Postulate from such a definition. Dodgson took the Parallel 
Postulate as a statement provable by different means, Frege as an indemonstrable 
axiom given by pure intuition, but both of them firmly believed in its unconditional 
truth. 

The cultural phenomenon of the direction-theory of parallels and its demise 
poses a double challenge to the historians of mathematics. On the one hand, it is 
astonishing that such a clearly-faulted theory was accepted and taught for a hundred 
years. The theory was based on a trivial mistake – assuming the truth of the postulate 
in the definition of parallels – and it seems that Europe must have been relinquished 
by all gods if no one noticed such an obvious blunder. On the other hand, the 
direction-theory was destroyed by the discovery of non-Euclidean geometry, and yet 
the most important – and very belated – criticisms of it came from two important 
conservative (even “countermodern”) logicians who opposed such a discovery. 

The century in which the direction-theory thrived and waned marked the passage 
from a pre-modern epistemology to a modern – or modernist – philosophy of

8 Recently Mancosu (2015) has advanced the conjecture that Frege came to know the direction-
theory particularly from his reading of Schlömilch’s Grundzüge der Geometrie (Schlömilch 1849). 
Among Frege’s sources, Karl Georg Christian von Staudt (1798–1867) correctly assumed the 
Parallel Postulate as an axiom (in the form of Lorenz, see below), and then defined direction starting 
from (transitive, Euclidean) parallelism: see Staudt (1847), §§ 35–36, pp. 14–15. Frege had already 
endorsed a similar procedure in his doctoral dissertation from 1873, Über eine geometrische 
Darstellung der imaginären Gebilde in der Ebene. See  Frege (1967), pp. 3–4 and 49. 
9 Dodgson (1888). In the treatise, Dodgson provisionally accepted a further “quasi-axiom” in order 
to prove the Parallel Postulate, admitting to have failed to offer a completely unhypothetical proof 
of it. The 1888 book also offers a further discussion of the direction-theory of parallels in Appendix 
IV, § 5, and several important remarks on the Parallel Postulate in non-Archimedean planes. 
10 Frege’s clearest statements on this topic are in his unpublished Über Euklidische Geometrie. 
In it, he states that no one can serve two masters (Euclidean and non-Euclidean geometry), and 
concludes that non-Euclidean geometry is to be listed among the non-scientific disciplines having 
only historical interest – like astrology and mummies. See Frege (1983) pp. 182–84. 
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mathematics.11 It is from this vantage point, which also people like Dodgson and 
Frege contributed to shape, that we may look down at the direction-theory as an 
inexplicable failure of logic and common sense. The direction-theorists, however, 
were not naïve. Their mathematics was rather based on a quite developed pre-
modern epistemology. The direction-theory was elaborated in some crucial decades 
between the end of the eighteenth century and the beginning of the nineteenth 
century, in which German mathematicians and philosophers were highly engaged 
with epistemological questions. The direction-theorists played an important role in 
this debate, and they were not unaware of the challenges later raised against them by 
Dodgson and Frege. Only, their pre-modern answers were different from the modern 
ones. 

In the eighteenth century, for instance, the philosopher and mathematician 
Christian Wolff had argued that the axioms of mathematics should follow from the 
definitions of the terms involved. Consequently, it was expected that the Parallel 
Postulate could be drawn from a suitable definition of parallel lines. Dodgson’s 
complaint of a petitio principii would have been met with puzzlement by many 
mathematicians endorsing Wolff’s views. According to other Leibnizians, intuition 
should play no role in the foundations of geometry, and it was nonsense to claim 
that the abstract notion of direction should follow the concrete intuition of parallel 
straight lines. Quite the opposite: the concept of direction is simpler than, and should 
therefore precede, that of a straight line. Frege’s objection would have appeared to 
these philosophers as a serious epistemological error. 

These examples show that in order to understand why the direction-theory 
was so widely upheld for an entire century, we have to dive deeper into the 
philosophy of mathematics that engendered it. Similarly, in order to appreciate its 
demise, that did not happen for purely mathematical reasons (the discovery of non-
Euclidean geometry), we should follow the development of the nineteenth-century 
epistemology of mathematics up to the point in which it could no longer back the 
assumptions of the theory. The philosophy of Kant played an important role in this 
debate, since the direction-theory was born in the age of Kant and was immediately 
drawn into the disputes on transcendentalism. Kant’s shadow projected however 
much further into the following century, and Frege’s and Dodgson’s remarks on the 
syntheticity of geometry and the role of intuition still depended on their reading 
of the Critique.12 In short, the history of the cultural phenomenon of the direction-
theory may only be written together with a history of the philosophy of mathematics 
in the eighteenth and nineteenth centuries.

11 The topic of modernism in mathematics is wonderfully addressed in one of Jeremy Gray’s most 
fascinating books: Gray (2008). The notion of countermodernism in mathematics was famously 
introduced by Mehrtens (1990) and is discussed at length by Gray. 
12 Frege’s commitment to (broadly) Kantian views on geometry in the Grundlagen are well-known; 
see the classic paper by Dummett (1991). Dodgson quoted with approval Kant’s Critique in order 
to rebut the ideas of Herr Niemand: see Dodgson (1879, p. 55). 
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In the present essay, I will not attempt this much. I rather concentrate on the 
first period of the direction theory, roughly covering the fifty years from 1778 to 
the discovery of non-Euclidean geometry. In these decades the theory was still 
confined to Germany and the debate surrounding it was sensitive to the important 
transformations of the philosophical landscape. Historians have not yet explored 
this early history of the theory – in fact they have not even recognized it as a topic 
of investigation. The available narratives on the subject (including Dodgson’s own 
history of Euclid’s rivals) generally concentrate on the second half of the nineteenth 
century, when the direction-theory already had its current name and final shape. This 
may convey the false impression that the theory was originally conceived this late. 

An enquiry into the sources of the German and British direction-theorists of the 
nineteenth century, however, discloses another story – of which the present essay 
offers a first sketch. Under the name of a theory of Lage or situs, the “direction-
theory” (as it was later called) was born much earlier and had slowly transformed 
into its nineteenth-century counterpart. The appreciation of this fact is not only 
relevant in offering a more exact genealogy of the theory. Rather, it offers a rationale 
for its invention, since it can be shown that the direction-theory is deeply rooted 
in the logical and epistemological discussion that took place in Germany in the 
last three decades of the eighteenth century. Without this early history, the reasons 
for the success and demise of the direction-theory are destined, I claim, to remain 
unfathomable. 

In Sect. 20.2 of the present essay, I detail the background of the direction-
theory and its roots in Leibniz’ program of an analysis situs. In Sect. 20.3, I deal 
with Karsten’s invention (1778) of the direction-theory in the context of a broadly 
Wolffian epistemology. In Sect. 20.4, I mention the first reactions to Karsten’s 
theory and in particular Hindenburg’s own attempt and his philosophical qualms 
on intuition. In Sect. 20.5, I briefly discuss the impact of Kant’s new philosophy 
of mathematics on the direction-theory, and the beginnings of the analyticity-
syntheticity debate. In Sect. 20.6, I introduce Schwab’s theory, that soon became 
the standard view of the subject. In Sect. 20.7, I briefly mention the reception of the 
direction-theory among later philosophers and its general acceptance in Germany. 

20.2 Leibniz, Kästner, and the Analysis Situs 

The direction-theory of parallel lines did not declare its name before its full 
development. The early theorists did not put any special emphasis on the notion 
of direction (Richtung) and rather defined parallels through the concept of situs
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(German: Lage). Over the years, the term ‘Richtung’ became more and more 
common – to the point that it gave the name to the whole theory in the 1810s.13 

I am not aware of any important theory of parallel lines grounded on the notion 
of direction (or situs, or similar) predating the German attempts in the eighteenth 
century. The only exception is possibly offered by the German mathematician 
Nikolaus Kauffmann (Latin: Mercator, 1620–1687), who in 1678 published a 
reworking of Euclid’s Elements. In it, Mercator took the lead from Euclid’s 
definition of an angle as the inclination (κλίσις) between two lines, to define parallel 
lines as lines that do not incline the one towards the other. Following this definition, 
Mercator states an axiom to the effect that if two lines incline in the same way 
towards a third, they do not incline the one towards the other (i.e. are parallel). 
From this axiom he easily proves Elements I, 30 (the transitivity of parallelism) 
and from this all other standard properties of parallel lines in Euclidean geometry.14 

Mercator’s attempt has many points in common with the further developments of 
the direction-theory but I have not been able to trace a direct filiation from these 
1678 Elementa to the German theory of parallels presented a century later.15 

By contrast, an explicit, and yet fully fabricated, filiation may be found between 
the direction-theories and the geometrical essays of Gottfried Wilhelm Leibniz 
(1646–1716). Leibniz worked for his entire life on a new mathematical theory, 
that he called analysis situs, aimed at grounding all geometry on the notion of 
“situation”. Leibniz did not publish any of the many essays that he wrote on the 
subject. In the first half of the eighteenth century, however, a few letters that he 
had sent to Huygens and Johann Bernoulli were published, and the German world 
was informed of Leibniz’ grand geometrical project – a lost science which left no 
traces. The imagination of several mathematicians was tickled, and in the course of 
the following two centuries many different mathematical endeavors (combinatorial 
geometry, vector calculus, projective geometry, topology) were developed under 
the name of Leibniz’ mysterious analysis situs. The theory of parallels made no 
exception, and a long-lasting narrative was engendered, according to which Leibniz 
had in fact embraced a direction-theory of parallels.16 

13 The notion of direction was very much open to debate in the first half of the seventeenth 
century, and a definition of parallelism through direction was no simple matter, as it involved 
several commitments on the nature of space as an “affine” (rather than centered) structure. On the 
cosmological debate that brought the notion of direction to the core of the Copernican Revolution, 
see Miller (2014). 
14 Mercator (1678). The definition of parallelism is on p. 2. The axiom is the third one on the same 
page, and the easy proof of Elements I, 30 happens as Theorem 7 on p. 7. 
15 A few decades later, Edmund Scarburgh (1705) also talked about the “Tendency and Inclination 
towards one another” of non-parallel lines, even though he did not rely on transitivity to prove 
the Postulate. This could be a further source for the British direction-theorists of the nineteenth 
century. 
16 For a late assessment of Leibniz’s theory of parallels as a theory of direction, see Killing 
(1893–1898), vol. 1, p. 5.
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Unbeknownst to the direction-theorists, Leibniz had indeed strived to prove the 
Parallel Postulate through his analysis situs. Among his unpublished papers, now 
preserved in the Leibniz-Archiv in Hannover, we find many different attempts at 
establishing Euclidean geometry.17 Several of these attempts are quite ingenious, 
and the notion of situs is employed in them in unexpected ways. None of them, 
however, ever attempted to define parallel lines as lines having the same situation, or 
to assume the transitivity of parallelism through the notion of situation (or direction). 
The standard references made by the direction-theorists to Leibniz’ analysis situs 
were therefore entirely unwarranted. 

While Leibniz’ geometry had no authentic impact on the eighteenth-century 
theory of parallels, his epistemology exerted an important influence on the debate 
on the theory of direction. Several generations of German philosophers and 
mathematicians (and especially Christian Wolff, 1679–1754) shared Leibniz’ views 
on philosophy of science. Leibniz’ idea that all axioms of geometry could be 
proven starting from the definitions of the terms employed, had a pivotal role in 
orienting the German debate towards the search for a definition of parallel lines 
that could improve on Euclid’s. Leibniz’ ideas on the analyticity of truth brought 
mathematicians to disregard intuition in geometry. Leibniz’ insistence that geometry 
is the science of space (rather than the science of the individual figures in it), and 
that space is a complex structure of situational relations, offered a completely new 
perspective on the meaning of the Parallel Postulate. In short, Leibniz remained 
a looming figure throughout all the discussions on the theory of parallels that 
took place in Germany in the crucial years 1770–1830. The great majority of the 
direction-theorists styled themselves as Leibnizians. 

We can follow in detail how Leibniz’ heritage inspired the birth of the direction-
theory. In the second half of the eighteenth century, the most famous mathematician 
in Germany was a devoted Leibnizian: the Göttingen professor Abraham Gotthelf 
Kästner (1719–1800). After having attempted to prove the Parallel Postulate himself 
for many years, Kästner became disillusioned with obtaining a demonstration of it 
with standard mathematical tools. He collected a large number of treatises dealing 
with parallels, and turned with great hopes to Leibniz’ analysis of situation.18 One 
of his students, Georg Simon Klügel (1739–1812), defended a dissertation in which 
he took advantage of his professor’s library, and expounded a good number of failed 
attempts at proving the Postulate – including several by living mathematicians. This 
dissertation, the Conatuum praecipuorum theoriam parallelarum demonstrandi 
recensio, was published in 1763 and attracted considerable attention. Kästner added 
a note at the end of his student’s book:

17 Leibniz’ papers on the theory of parallels have been published in De Risi (2015). 
18 See the preface to Kästner (1758), as well as §§ 27–28, pp. 13–14, on the provability of axioms 
from definitions. On Kästner’s involvement with the Parallel Postulate, see Peters (1962). 
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I hardly hope that we will ever obtain the true demonstration [of the Parallel Postulate] – of 
which you, bringing the light of geometry, have vanished the specters – unless we cultivate 
more assiduously the theory of situs, the analysis of which perished with Leibniz.19 

Kästner also remarked that since all axioms of mathematics are grounded on, and 
provable from, the definitions of the terms, the major challenge for a theory of 
parallels was to find a new and appropriate definition of parallel lines.20 

The gauntlet had been thrown in the name of Leibniz’ analysis situs. 

20.3 Karsten and the Birth of the Direction-Theory 

The two main living mathematicians criticized by Klügel were Wenceslaus Johann 
Gustav Karsten (1732–1787), a professor at Bützow; and János András Segner 
(1704–1777), a Hungarian scholar who had been the first professor of mathematics 
at the University of Göttingen (and Kästner’s predecessor in that chair) and later 
moved to Halle. 

Segner had employed the notion of Lage (or situs) in his theory of parallels, 
but had made no use of it in his proof of the Postulate in his 1756 Cursus 
mathematicus.21 Segner’s proof implicitly assumed that any straight line, passing 
through a point inside an angle, cuts this angle. This principle is in turn a 
reformulation of the transitivity of parallelism, itself equivalent to the Parallel 
Postulate, and in hyperbolic geometry a straight line may be entirely contained 
within an angle. Klügel was not able to pinpoint Segner’s mistake, and concentrated 
on a marginal issue of no consequence for the demonstration.22 Segner may have 
taken note of Klügel’s criticism, since in 1764 he slightly revised his proof in 
the German translation of the Cursus; but since the criticism was incorrect, the

19 Klügel (1763), p. 33: “Habituros nos aliquando, veram eam cuius admoto geometriae lumine 
spectra dissipasti demonstrationem, vix speraverim nisi diligentius exculta doctrina situs, cuius 
analysis cum Leibnitio interiit”. 
20 Kästner, however, seems to have thought that the culprit here was Euclid’s famously obscure 
definition of a straight line, rather than Euclid’s definition of parallels: “Der Grund, warum man 
in diesem Axiome [the Parallel Postulate] nicht die Evidenz der übrigen findet, ist . . .  daß man 
von der geraden Linie nur einen klaren Begriff hat, nicht einen deutlichen” (Kästner, 1790, p. 414). 
Kästner himself did not attempt to define parallel lines through the notion of direction. 
21 The reference to Lage in relation to the theory of parallels occurred already in Segner (1747), 
p. 218; in this treatise there is a rather naïve proof of the Parallel Postulate. Segner’s more mature 
proof of the postulate was expounded in his Latin treatise on mathematics. See Segner (1756): in § 
11 of the section on Geometria, p. 144, is Segner’s assumption on angles; the proof of the Parallel 
Postulate, depending on such an assumption, is in § 31, pp. 150–51. 
22 Klügel (1763), § 11, pp. 15–16. 
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new demonstration did not fare any better.23 The first complete explanation of 
Segner’s petitio principii was offered by Johann Friedrich Lorenz (1738–1808) only 
in 1791.24 

Karsten, by contrast, was struck hard by Klügel’s Recensio. In 1758, he had 
published a work in which he accepted Segner’s proof of the Postulate. By 
1760, however, he had also offered an alternative demonstration of it, that was 
loosely inspired by a standard (and faulty) proof offered by the Persian mathe-
matician Nası̄r al-Dı̄n al-Tusi in the thirteenth century, which had later become 
commonplace in the European literature on the subject.25 Klügel criticized this 
latter proof with valid reasons, and Karsten realized that he needed a different 
demonstration.26 In 1778, Karsten was called to Halle to take Segner’s chair, and 
he took this momentous occasion to give an inaugural speech on the theory of 
parallels – which was published as a Versuch einer völlig berichtigten Theorie 
von den Parallellinien. In this important paper, Karsten publicly recognized that 
Klügel’s “bekannte Disputation” has disproven his and Segner’s proofs, and 
accepted Kästner’s suggestion of developing Leibniz’ theory of Lage in order to 
ground a novel approach to the theory of parallels. 

Karsten proposed a new definition of parallel lines that he intended to supplant 
Euclid’s. To this effect, Karsten introduced the notion of the Lage of a straight line. 
He claimed, with Leibniz, that a general definition of Lage cannot be given, as this 
is one of the most basic notions that we make use of in geometry: a simple concept, 
in fact, that admits of no conceptual analysis. This notwithstanding, it is possible 
to give an implicit definition of the Lage of a straight line by stating the conditions 
under which two straight lines have the same Lage. Needless to say, the relation 
of the sameness of Lage is called parallelism, and two lines having the same Lage 
may be called  parallel lines. Karsten made a comparison with the simple notion of a 
magnitude, which cannot be explicitly defined either, but may be implicitly defined 
through congruence (i.e. sameness of magnitude).27 We can note that Karsten’s

23 Segner (1764), § 259, pp. 198–200. The preface to this work is dated 1763, and it is not obvious 
that Segner had read Klügel’s Recensio at the time. Note that Segner published in 1767 a second 
edition of his 1747 treatise without relevant changes to the simple proof expounded there. 
24 Lorenz’ aim in this book was to vindicate Segner by making explicit the hidden assumptions in 
his work. Therefore, he assumed the principle on the straight line inside an angle as an axiom that 
he thought to be self-evident and much clearer than the original postulate of Euclid. See Lorenz 
(1791), where the new principle is stated in § 44 of the section on Planimetrie (pp. 102–103), and 
the Parallel Postulate is proven, as Prop. 10, a few pages later (§ 83, pp. 118–21). 
25 The first proof is in Karsten (1758); Segner’s assumption on angles is here accepted in § 73 (pp. 
34–35), and the Parallel Postulate is proven in § 76, p. 36. The second proof is in Karsten (1760), 
§ 91, pp. 31–35. Al-Tusi’s proof had been expounded by Clavius, Wallis, Arnauld, and others, and 
was well-known in the eighteenth century. 
26 Klügel (1763): §§ 11–12, pp. 15–17, on Karsten’s first proof from 1758; and § 8, pp. 12–13, on 
Karsten’s demonstration from 1760. 
27 Even though Karsten is not quoting Leibniz explicitly, he is clearly drawing on the point made 
at § 47 of Leibniz’s Fifth Letter to Samuel Clarke (1716), in which Leibniz claims that one cannot 
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argument is not much different from Frege’s introduction of the notion of direction 
by abstraction, even if their epistemological motivations were completely different. 

The sameness of Lage, according to Karsten, may be rigorously constructed in 
geometry. This is the core of Karsten’s theory, which is neither a purely analytic 
discussion based on definitions, nor a mere appeal to the intuition of parallel lines. 

Karsten writes that the relative position (the Lage) of two intersecting straight 
lines is expressed by their angle of incidence (as in Mercator’s theory, mentioned 
above). From this it follows that each of two straight lines which form equal angles 
with a common transversal has the same Lage with respect to this transversal. So 
far, so good; but then Karsten changed the relation of “having the same Lage with 
respect to a third line” into that of “having the same Lage” überhaupt. That is to say, 
he claimed that two straight lines which form equal angles with a transversal have 
the same Lage with respect to one another, irrespective of the specific transversal 
that has been used to establish this relation. Thanks to this unjustified assumption, 
Karsten claimed that two straight lines which have the same Lage with respect 
to a certain transversal, will also have the same Lage with respect to any other 
transversal. Given Karsten’s definition, this amounts to saying that two straight lines 
forming equal angles with one transversal will also form equal angles with any other 
transversal. This is a false claim in hyperbolic geometry, and one from which one 
can deduce the Parallel Postulate – as Karsten himself did in the subsequent pages.28 

It should be remarked that Karsten himself did raise a few doubts about the 
soundness of his proof and was not completely satisfied with it. He claimed that the 
unanalyzability of the notion of Lage forces us to accept several principles which 
immediately flow from the nature of this simple notion. In this respect, Karsten 
introduced some latitude into the rather severe epistemology developed by Leibniz 
and Wolff.29 

Karsten restated his theory without relevant changes in the 1780 edition of 
his textbook of elementary mathematics, and again in 1786, in an extended and 

define the notion of “place” but only the notion of “having the same place” (see Robinet 1957, pp. 
142–45).
28 Dodgson did not refer to Karsten (nor to other earlier German authors) in the course of his books, 
but in his own attempt at proving the Parallel Postulate (1888, p. 69) he was crystal clear that the 
notion of the sameness of direction is in fact equivalent to the property that two parallels make 
equal angles with any transversal whatsoever – which is in fact Karsten’s unwarranted assumption. 
As we know today, the latter assumption is only equivalent to the Parallel Postulate if we also 
accept the Axiom of Archimedes. 
29 Karsten’s epistemology had already been stated in abridged form in his 1778 essay, where he 
explicitly claimed that his first six propositions are to be considered as axioms (pp. 14 and 16). 
He returned to the question, however, in §§ 1–16 of his essay Von den Parallellinien, included in 
Karsten (1786), pp. 115–30, which is a short essay in Wolffian epistemology – with a twist. In 
the latter essay, it is pretty clear that Karsten was not thinking about assuming the propositions on 
the Lage of straight lines as authentically unprovable axioms, but rather as statements that accept 
some kind of proof (Beweis) or at least of an explanation or an exhibition in a figure. He had no 
concept of different axiom systems, and believed that everything about Euclidean geometry could 
be justified in one way or another. 
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(slightly) improved version, as an essay Von den Parallellinien included in his 
monumental Mathematische Abhandlungen.30 In the following years, Karsten’s 
books enjoyed a large diffusion, and the direction-theory became well-known in 
the German world. We find traces of Karsten’s theory even in technical schools and 
in the teaching at military academies.31 

Karsten did not call his own theory a “direction-theory” of parallels, even though 
he often equated the notion of Lage with that of the Richtung (direction) of the 
straight lines.32 There can be no doubt, however, that in his inaugural lecture of 
1778 he exploited for the first time a line of argument that in the following years 
transformed into the fully-fledged theory of direction later criticized by Dodgson 
and Frege. 

20.4 Hindenburg and Transitivity 

After Karsten, the most important step forward in the direction-theory of parallelism 
was made by the Leipzig professor Carl Friedrich Hindenburg (1741–1808), better 
known as the leading figure of the German group of mathematicians working on 
combinatorics.33 In his 1781 Neues System der Parallellinien, Hindenburg made 
good use of a few of Karsten’s ideas and attempted to prove the Parallel Postulate 
through a different route.34 

30 Karsten (1780), pp. 383–414; the 1768 first edition did not include a theory of parallels. Karsten 
(1786), pp. 113–202. 
31 For instance, the Meinert’s military textbook (1790) briefly mentions many attempts to prove the 
Parallel Postulate but states that Karsten’s theory is the best one, and “Die vorstehende Theorie der 
Parallellinien ist völlig die Karstensche [ . . .  ]. Fast sollte man glauben, wenn diese noch nicht alle 
Schwierigkeiten gehoben hat, daß sie schwerlich durch Hülfe der Elementargeometrie gehoben 
werden können. Auf die ausübende Mathematik haben die bisher erregten Zweifeln gegen die 
völlige Nichtigkeit der euklideischen Theorie der Parallellinien keinen Einfluß” (pp. 59–60; I thank 
Thomas Morel for pointing out this passage to me). But even a more theoretical work (even though 
practically oriented) such as Schmidt (1797), still followed Karsten’s proof (cf. pp. 132–34). 
32 This is clear already in Karsten’s essay from 1778. It should be noted, however, that the notion 
of Richtung is especially used by him in the later presentation of his theory, to be found in his 
Mathematische Abhandlungen from 1786. Here he still distinguished between Lage and Richtung, 
in the weak sense that in lines with the same situation two different directions may be spelled out 
(say, toward the left or the right side); more often, however, he simply wrote “Lage oder Richtung” 
as synonyms. 
33 For a biographical sketch of Hindenburg and a detailed analysis of his involvement with German 
combinatorics (as well as his relation with Leibniz’ thinking), see the recent Noble (2022). 
34 Hindenburg (1781). The first section, Über die Schwürigkeit bey der Lehre von den Paral-
lellinien, is a collection of criticisms of previous proofs of the Parallel Postulate (Hindenburg knew 
Klügel’s Recensio); the second section, Neues System der Parallellinien, contains Hindenburg’s 
own proof; and the third section, Anmerkungen über das neue System der Parallellinien, published 
in a later issue of the journal (still in the same year) replies to a few criticisms that had been
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Hindenburg’s epistemology was also different from Karsten’s. He was critical 
towards the Leibnizian tradition in logic, and rejected the idea that an axiom should 
be proven from definitions.35 This notwithstanding, Hindenburg appreciated the 
theory of Lage, and agreed with Kästner and Karsten that a fully developed analysis 
situs was required to handle the theory of parallels. The latter theory, however, had 
to be freed from the constraints of Leibniz’ epistemology and developed through 
constructive, ruler-and-compass constructions. 

Hindenburg maintained that geometry has two parts: one, which had been 
developed since ancient times, dealing with magnitudes; and another, instantiated 
by his own studies on combinatorics, dealing with Lage. Karsten had failed to keep 
these two branches apart and committed a μετάβασις εἰς ,̧

 
αλλο γένος of sorts by 

defining the Lage of a straight line through a reference to the magnitude of an angle. 
The geometry of Lage, and the theory of parallels in particular, should be developed 
without any recourse to the notion of quantity. Accordingly, Hindenburg put much 
emphasis on the transitivity of parallelism, that seemed to him a purely situational 
(non-metric) property. 

In sum, Hindenburg’s program in the theory of parallels aimed to offer a 
geometrical (rather than a merely logical) and non-metric demonstration of the 
transitivity of parallelism. 

Hindenburg considers two straight lines, a and b both parallel to a third line c, and 
attempts to prove that a and b are also parallel to one another. The demonstration is 
articulated in two different cases, depending on the position of line c. In Case One, 
lines a and b lie on different sides of the common parallel c. Hindenburg disposes of 
this case quickly, stating that if a and b were not parallel, the straight line c would 
meet one of them in the direction of their intersection, against the hypothesis. In the 
more difficult Case Two, a and b are both on the same side of the common parallel 
c, and Hindenburg builds a complex network of logical implications to bring back 
this case to the previous one, thus proving the theorem. 

The system of logical implications underpinning Case Two was seen as the most 
problematic part of Hindenburg’s proof. Several German mathematicians levelled 
objections to the logical form of the demonstration, and Karsten himself was among 
its fiercest opponents.36 Hindenburg got caught in a difficult logical controversy. 
He published an essay Noch etwas über die Parallellinien (1786), almost entirely 

levelled against the Neues System in a review which had appeared in the Königsbergsche Gelehrte 
und Politische Zeitungen.
35 It is possible that Hindenburg’s epistemological ideas were indebted to Johann Heinrich Lambert 
(1728–1777), who had sharply criticized Wolff’s abuse of definitions in mathematics. Hindenburg 
had been a correspondent of Lambert in the latter’s last year of life; their letters are to be found 
in Lambert (1781–1787, vol. 5.1, pp. 137 ff.), and do not concern geometry. In the System, 
Hindenburg explicitly quotes both Lambert’s Briefwechsel (whose first volume had been published 
by Johann III Bernoulli in the same year 1781) and the Neues Organon. Later on, in 1786, 
Hindenburg published for the first time Lambert’s important Theorie der Parallellinien, written 
in 1766 and left by him in manuscript form. On Lambert, see Gray and Tilling (1978). 
36 See Karsten, Von den Parallellinien, §§ 33–45, in Karsten (1786), pp. 145–162. 
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dedicated to the matter, and in the course of the debate he became convinced that 
the peculiar logical reasoning employed in Case Two was a form of consequentia 
mirabilis, a correct inferential scheme that had been employed in the theory of 
parallels by Gerolamo Saccheri in 1733.37 

This entire logical dispute eventually proved to have been in vain. Even though 
no mathematician recognized it for many years, the problem of Hindenburg’s proof 
was not in the difficult Case Two, but rather in the “self-evident” Case One – that 
no one discussed. In it, Hindenburg tacitly assumed that the straight line c cannot be 
entirely contained within the angle formed by a and b (if they are not parallel), and 
this assumption is equivalent to the Parallel Postulate. In fact, this was just Segner’s 
presupposition in his fauly proof from the 1750s. 

While Hindenburg’s proof was believed wrong for the wrong reason, his engage-
ment in a logical dispute showed how the alleged superiority of his mathematical 
method over Karsten’s more logical approach was an illusion. As a matter of fact, 
Karsten “analytic” proof of the Parallel Postulate was much more constructive and 
geometrical than Hindenburg’s “synthetic” demonstration. The Karsten-Hindenburg 
dispute was the prelude to a much wider debate on the role of intuition in 
geometrical proofs. 

20.5 Kant and the Analyticity Debate 

In the same year, 1781, in which Hindenburg published his essay on parallel lines, 
Immanuel Kant (1724–1804) printed the first edition of his Critique of Pure Reason. 
In the following 10 years, the philosophical landscape of Germany was completely 
transformed, and the debate on the analyticity and the syntheticity of mathematics 
came to the forefront. Kant’s statements on synthetic a priori  judgments and space 
as a pure intuition engendered a number of reactions. Leibnizian philosophers 
restated that no recourse to intuition was needed to prove mathematical theorems, 
and attempted to offer purely analytic demonstrations on the theory of parallels. 
Geometry was taken as the benchmark of Critical philosophy, and the direction-
theory as the crowning effort in the foundations of mathematics. At times, it seemed 
that Kant’s whole philosophy had to stand or fall according to whether the direction-
theory itself fell or stood. 

Kant was aware of Karsten’s attempts to develop a direction-theory of parallels, 
and in private correspondence and notes, he explicitly criticized his analytic 
approach to geometry. In particular, Kant complained that the notion of direction 
(Richtung) cannot be defined without the concept of a straight line, and that,

37 Hindenburg’s defense of his Case Two had already begun in his Anmerkungen from 1781, 
which are almost entirely devoted to this purpose, but the main efforts in this direction came in 
the second section of his essay Noch etwas über die Parallellinien from 1786. On the history of the 
consequentia mirabilis in geometry, see my edition of Saccheri (2014). 
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therefore, one cannot define straight lines (or parallel straight lines) through 
direction – a remark, which is not much different from Frege’s later claim on the 
same subject.38 Kant agreed that the notion of Lage and Leibniz’ famous analysis 
situs may perhaps be employed to prove the Parallel Postulate, but was skeptical on 
a non-metric approach to the notion of parallelism. 

In the 1780s, Kant himself attempted to prove the Parallel Postulate, and seems 
to have arrived at the conclusion that no synthetic a priori  proof of it can be given. 
This was not, however, a statement of absolute indemonstrability, and much less 
an opening towards non-Euclidean geometries. Kant thought, on the contrary, that 
a purely analytic proof of the Postulate (that he called a “philosophical proof”) 
could be obtained starting from a viable definition of parallel lines. This proof 
could be an example of Leibniz’ lost analysis situs, here interpreted as a metric 
theory, but Kant’s reflections on the topic are unfortunately too brief and obscure 
to offer a perspicuous mathematical meaning. In any case, given the epistemology 
professed in the Critique, and the criticisms that Kant moved to Karsten’s approach, 
the recourse to a philosophical proof to prove a mathematical theorem is quite an 
astonishing claim. Kant never published his thoughts on parallels and his tentative 
demonstration remained buried among his private notes.39 

But while Kant did not publicly express his views on the theory of parallels, this 
was repeatedly done by the mathematician Johann Friedrich Schultz (1739–1805), 
who was a friend and follower of Kant, as well as one of the most prolific authors 
of proofs of the Parallel Postulate. In 1784, Schultz published his first important 
treatise on the topic, the Entdeckte Theorie der Parallelen, in which he expounded 
a theory based on the manipulation of infinite magnitudes that Kant himself found 
dubious and untenable. In the same essay, however, Schultz also strongly criticized 
both Karsten’s and Hindenburg’s attempts on the basis of Kant’s philosophy of 
mathematics. He claimed that their proofs were entirely grounded on the analysis of 
the notion of Lage, and merely deduced from a definition what they had themselves

38 The context of Kant’s claim is a reply to the philosopher Salomon Maimon (1753–1800). In his 
Versuch über die Transzendentalphilosophie from 1790 (pp. 65–68), Maimon endorsed a broadly 
Leibnizian epistemology of mathematics with several Kantian nuances. He attempted to show that 
the proposition stating that a straight line is the shortest line between two points, which Kant had 
famously claimed to be synthetic and thus irreducible to the definition of a straight line (KrV, 
B16), could in fact be proven by conceptual analysis alone. To this effect, Maimon defined a 
straight line as a line such that every part of it has the same direction or Lage. Maimon had the 
opportunity to send the draft of his philosophical essay to Kant himself, who replied by criticizing 
Maimon’s definition (Kant to Herz, May 26th, 1789; in KgS 11, pp. 48–54). In the very same 
years of Dodgson’s criticisms of the direction-theory, Kant’s opinion on direction was endorsed 
by Helmholtz in his 1878 presidential speech at the University of Berlin on Die Tatsachen in der 
Wahrnehmung. See Helmholtz (1921), p. 182. 
39 Kant himself attempted to prove the Parallel Postulate, making use of the metrical notion of 
“equidistance” and was convinced that this was the only viable way to address the issue. In this 
connection, he mentioned the Geometrie der Lage. See  the  Reflexionen nn. 8–10 in KgS 14, pp. 33– 
51, probably dating from 1784 to 1790. Kant’s standard distinction between philosophical proofs 
and mathematical demonstrations is to be found (among other places) in KrV, A734–35/B762–63. 
On the topic, see De Risi (2013) and  Heis  (2020). 
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introduced in it. By contrast, geometry should be grounded on synthetic a priori  
judgments, which are the only ones that can actually extend our knowledge.40 

Karsten, who honestly believed that any genuine geometrical theory must be 
analytic, did not reply to Schultz’ criticisms. He did state, however, that he could 
not accept Schultz’ demonstration, since arguments employing the infinite can only 
provide probable conclusions. Any strict mathematical proof should be analytic and 
finitistic.41 

Hindenburg, on the other hand, was outraged by Schultz’ allegations, which were 
not very different from those he himself had raised against Karsten. This time, he 
defended Karsten against Schultz, claiming that Karsten’s new principles on the 
theory of Lage were to be understood as true synthetic axioms rather than analytic 
consequences of the definition of Lage. Karsten had not proven these principles, 
Hindenburg added, but he himself had done so in a geometric way: thus synthetically 
proving the Parallel Postulate and securing the direction-theory. Hindenburg also 
retorted Schultz’ accusations, and stated that a theory of parallels like the one 
Schultz was advocating – employing the notion of infinite magnitudes – was wholly 
philosophical and un-mathematical. This was an analytic theory if there ever was 
one.42 

Finally, Hindenburg dragged Kästner into the dispute, by publishing a letter of 
his in which Kästner criticized a proof of the Parallel Postulate advanced by the 
Swiss mathematician Louis Bertrand (1731–1812), that was very similar to Schultz’. 
Pushed by the events, Kästner took up the pen himself and, as a good Leibnizian, 
strongly criticized Schultz’ theory of parallels as a monstrosity and restated, against 
Schultz’ master Kant, that geometry is wholly analytic.43 

Kant was unhappy to have been drawn into the fight. He had avowed Schultz’ 
theory of parallels and did not want to be attacked by a famous mathematician such 
as Kästner. In 1790, he wrote a dense and deep reply to him, that he transmitted to 
Schultz with the request of publishing it in his name. Shultz did publish Kant’s text, 
but could not help adding a conclusion with a further endorsement of the theory of 
infinite magnitudes.

40 See for instance the appreciation of Kant’s mathematical epistemology in Schultz (1784), pp. 
27–28. Schultz’ criticisms of Karsten and Hindenburg are here in pp. 31–65. Discussing the 
analyticity of Karsten’s proof, Schultz remarked “daß es aber überhaupt schlechterdings unmöglich 
sey, die Lehre von den Parallellinien durch bloße Analysirung des Begrifs ihrer Lage festzustellen” 
(p. 41, my emphasis). 
41 Karsten’s treatment of infinity was intended as an answer to a Preisaufgabe of the Berlin 
Academy (probably suggested by Lagrange), which had asked, in 1784, for papers dealing with 
the mathematics of the infinite. Karsten also explicitly discussed Schultz’ attempt in §§ 52–76 of 
his essay Von den Parallellinien in Karsten (1786), pp. 168–202. 
42 Hindenburg’s reply can be read in Hindenburg (1786, pp. 392–97); Hindenburg stated that 
Schultz’s proof was merely philosophical rather than mathematical on p. 368 of the same essay. 
43 Bertand’s proof is in (Bertrand 1778), vol. 2, p. 20. For Kästner’s letter on Bertrand, see 
Hindenburg (1786). Kästner’s views on infinity had already been expounded in his essay De vera 
infiniti notione, to be found in Kästner (1771, pp. 35–38). Kästner’s anti-Kantian essays are to be 
found in Kästner (1790). Kant is never explicitly mentioned in them, but Schultz is. 
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Kant was extremely disappointed by Schultz’ insubordination, as he feared a 
further rejoinder by Kästner. When it did not arrive, and he and Kästner exchanged 
polite private letters, Kant hoped – for a moment – to have settled the matter.44 

He was greatly mistaken. 

20.6 Schwab and His Critics 

Schultz’ reply had awakened the most relentless adversary of Kant’s philosophy of 
mathematics and the most prominent proponent of the direction-theory of parallels. 

Johann Christoph Schwab (1743–1821) was one of the founders of the 
Philosophisches Magazin, a journal that soon became the anti-Kantian organ in 
Germany. In a 1791 issue of the journal, Schwab published a paper against Schultz, 
and offered an analytic proof of the fact that one side of a triangle is shorter than 
the sum of the other two. The real target of the paper was Kant, who however 
decided not to reply. Other Kantians took up the fight, and Schwab’s proof was 
later rebutted by August Wilhelm Rehberg (1757–1836). Rehberg, who was an 
important correspondent for Kant in mathematical matters, exposed several hidden 
assumptions in Schwab’s proof, and restated the position that, without an appeal to 
an a priori  intuition, one cannot hope to prove such basic geometrical statements. 
Schwab counter-replied to Rehberg’s criticisms, and wrote further papers against 
Schultz.45 

A long debate arose in Germany concerning Kant’s philosophy of mathematics, 
the role of intuition in geometry, and the analyticity of proofs. The philosophical 
positions of the protagonists had many nuances, which cannot be recounted in full 
here, and sometimes the terms of discussion were uncertain. For instance, Schwab 
claimed against Rehberg that a single analytic proof of a geometrical theorem was 
enough to ruin Kantianism, whereas Rehberg maintained that showing the non-
analyticity of a single proof was sufficient to smite “Leibnizians” down. As a result, 
they played with ad hoc examples of analytic and synthetic proofs, without being 
able to settle the matter or find common ground for decision.

44 Kant’s reply to Kästner is now to be found in KgS 10, pp. 410–23. Kant complained to Schultz, 
in his letters from August 2nd and 16th, 1790, in KgS 11, pp. 184 and 200–201. The happy ending 
of Kant’s controversy with Kästner is witnessed to by a very respectful exchange in the same 
months (Kant to Kästner, August 5th, 1790, in KgS 11, p. 186; Kästner to Kant, October 2nd, 
1790, KgS 11, pp. 213–15). 
45 Schwab’s first paper is Über die geometrischen Beweise, published in the Philosophisches 
Magazin from 1791. See above for Maimon’s attempt at the same result. Rehberg’s reply to 
Schwab is the paper Über die Natur der geometrischen Evidenz, published in the Philosophisches 
Magazin, from 1792. Schwab counter-replied to Rehberg in the same issue of the journal (pp. 
461–69), but the discussion continued for many years. A further attack of Schwab against Schultz, 
for instance, is to be found in his Über das Unendliche des Herrn Hofpredigers Schultz in the 
Philosophisches Archiv from 1792. On the Schwab-Rehberg discussion, see Webb (1987). 
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A decade later, Schwab decided that the time was ripe for a final assessment, 
and began writing books presenting his views on the analyticity of mathematics. He 
set himself no less an aim than to resuscitate Leibniz’ analysis situs and prove the 
Parallel Postulate. 

Schwab’s first work on the topic is a Tentamen novae parallelarum theoriae, 
published in 1801, in which he presented his epistemological views and a new theory 
of parallels. This was later supplemented by a longer essay in French, the Essai 
sur la situation from 1808, which expounded Schwab’s more general views about 
Leibniz’s project of an analysis situs. And finally by a Commentatio on the First 
Book of the Elements (1814), in which Schwab attempted to reform elementary 
geometry and prove all the axioms in Euclid.46 

Schwab followed Hindenburg’s idea that a theory of situs (i.e. Lage) should 
complement the geometry of magnitudes, and that the whole of mathematics should 
be grounded on the two independent pillars of quantity and situation. These are 
simple notions, as Karsten had said, and cannot be defined. Schwab did not provide 
a definition of them by abstraction, and instead conceded to his adversaries that 
they can only be given in intuition. This does not mean, however, that geometry is 
based upon intuition, and much less upon synthetic a priori  judgments.47 Schwab 
rather endorsed an epistemology of eidetic abstraction, and stated that we are 
able to develop, out of the intuitions of situs and magnitude, a purely intellectual 
science which needs no further reference to the senses. Geometry is thus sensible 
in its origins, but nonetheless purely intellectual in its developments, and should 
rely solely upon sound logical reasoning without any recourse to any intuitive or 
diagrammatic support. Intuition does not provide us with any propositional content, 
and all axioms of geometry are provable from definitions and logic alone. 

Schwab supplemented this broadly Leibnizian and Aristotelian picture of science 
with a number of mathematical developments. He defined a straight line as a 
line “all the points of which have the same situation” (whatever this may mean), 
and parallel lines as straight lines having the same reciprocal situation.48 Finally, 
Schwab claimed that the statement that two things identical to a third are also 
identical to one another (i.e. the transitivity of identity) is a general logical principle 
that enjoys no less validity than does the Principle of Contradiction itself. From its

46 Schwab was a prolific writer, and published many more books on philosophy, often discussing 
Kant’s views (sometimes critically, and sometimes agreeing with him); in a few of them he restated 
his geometrical examples and the theory of parallels. Nonetheless, he did not write those eight 
volumes on the theory of parallels that De Morgan found somewhere attributed to him: “Eight 
volumes on the theory of parallels? If there be such a work, I trust I and it never meet, though ever 
so far produced” (De Morgan, 1915, vol. 1, p. 230). 
47 On Kant, see for instance Schwab (1808), pp. 28–29; (1814), §§ 5–6, pp. 8–10. 
48 Schwab gave no definition of a straight line in the Tentamen, and the latter was only added in the 
Essai: “Une ligne droite est donc celle dont tous les points ont la même situation” (1808, p. 20). 
His definition of parallel lines in the Tentamen, “Duae lineae rectae in eodem plano jacentes sunt 
parallelae inter se, si eundem situm habent ad se invicem” (1801, p. 1), is, in turn, identical to that 
in the Essai: “Deux droites sont parallèles, lorsqu’elles ont la même situation entr’elles, ou lorsque 
la situation de l’une est identique avec celle de l’autre” (1808, § 28, p. 26). 
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application to the simple notions of magnitude and situs, there immediately follows 
Euclid’s first Common Notion (“if two things are equal in magnitude to a third, 
they are equal in magnitude to one another”) and the transitivity of situation (“two 
things that have the same situation with respect to the same thing, have the same 
situation with respect to one another”). The latter principle, applied to the definition 
of parallel lines, entails the transitivity of parallelism and thus (as Schwab correctly 
proved) the Parallel Postulate itself.49 

Schwab’s “demonstration” collected a few aspects of the previous studies on 
the direction-theory, and offered a purely philosophical (and mathematically trivial) 
proof of the Parallel Postulate embedded in a rich, if eclectic, epistemology. For this 
very reason, Schwab’s construal of the theory of parallels represented an important 
standpoint in the German debate. His epistemological views were clearly stated and 
defended and he was considered for many years to be the Leibnizian champion 
against the new wave of Kantianism in mathematics. 

The historical relevance of Schwab’s proposal is also due to the criticisms that 
his theory elicited among mathematicians close to Gauss. 

Karl Felix Seyffer (1762–1822), an important astronomer in Göttingen who was 
one of Gauss’ teachers, reviewed Schwab’s essay only to conclude that the only 
correct attitude toward the Parallel Postulate was to accept it as an unprovable 
principle, since there is no salvation outside the Church of Euclid (“nulla salus extra 
Euclidem”).50 

Ferdinand Carl Schweikart (1780–1857) is particularly remembered nowadays 
since he was among the first to propose, in a private letter from 1818, the consistency 
of an “astral geometry” (astralische Grössenlehre) in which the Parallel Postulate 
is false. He also realized that there are in fact as many different astral geometries 
as the real values of a Constante which, with quite some interpretative generosity, 
may be related to Gaussian negative curvature.51 Schweikart’s early treatise on 
parallel lines (1807), however, was very much concerned with Schwab’s theory 
of direction, which he criticized harshly and at great length. On that occasion,

49 In the Tentamen, Schwab simply stated the transitivity of parallelism as an axiom (“Axioma: Si 
duae rectae in plano eundem situm habent ad se invicem; habent etiam eundem situm ad rectam 
tertiam”, p. 3), followed by a discussion about the grounds of its validity. In the following works, 
however, and especially in the Commentatio, it is very clear that every axiom has to be proven from 
purely logical principles. A Greek source of Schwab’s proof may be Proclus, who mentioned in 
passing that some relations have the property of transitivity; in particular, “similarity” is considered 
by Proclus to be transitive in general, and parallelism is just a “similarity of position” (o̔μοιότης 
θέσεως); thus, parallelism is transitive and the Parallel Postulate true (Proclus, In primum Euclidis 
373). 
50 Seyffer’s review of Schwab’s Tentamen appeared in Seyffer (1801). 
51 Schweikart’s note was attached to Gerling’s letter to Gauss from January 25th, 1819, and may 
now be found in Gauss (1863–1917), vol. 8, pp. 179–81, along with Gauss’s first reaction to it (vol. 
8, pp. 181–82). 
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Schweikart indulged in some Kantian or post-Kantian reflections on the need of 
mathematical intuition for any finite mind (endlicher Geist).52 

Finally, Carl Friedrich Gauss (1777–1855) himself wrote a review of Schwab’s 
Commentatio which proved in the end to be his sole (very limited) public expression 
of his thoughts on the Parallel Postulate. Against Schwab, Gauss claimed that 
definitions and logical principles 

are able to accomplish nothing by themselves, and that they put forth only sterile 
blossoms unless the fertilizing living intuition (Anschauung) of the object itself prevails 
everywhere.53 

This statement appeared to many scholars to be an endorsement of that very 
Kantianism which Schwab was attempting to wreck. Gauss’ appeal to intuition was 
in all probability addressed toward an empirical acquaintance with the structure of 
space rather than an a priori  intuition, and elsewhere he decidedly opposed Kant’s 
views on mathematics, advocating rather an empiricist stance on the matter. Still, 
in the absence of further evidence, Gauss’ criticisms of Schwab’s anti-Kantianism 
appeared to foster Kant’s transcendental epistemology. In later times, when his 
views on non-Euclidean geometries were finally disclosed to the public, a few neo-
Kantian philosophers were able to claim – thanks to this review of Schwab – that 
Gauss had admitted the compatibility between non-Euclidean space and a priori  
intuition.54 

20.7 Post-Kantian Philosophy and the Direction-Theory 

These few dissonant voices notwithstanding, Schwab acted as a pied-piper to 
the whole scholarly world, and in the subsequent decades the direction-theory of 
parallels became mainstream in Germany. Like all pieces of standard science, the 
direction-theory was provided with a history and a name. In 1807, Johann Ephraim 
Scheibel (1736–1809) published a history of the theory of parallels from Euclid 
to his own time, which was crowned by the modern theory of Lage. He traced

52 Schweikart’s criticisms of Schwab are to be found in Schweikart (1807), which also refers to 
Kant. 
53 Gauss’s review of Schwab’s Commentatio was published in 1816 in the Göttingische gelehrte 
Anzeigen, and can now be read in Gauss (1863–1917) vol. 4, pp. 364–68. The quoted sentence is 
translated into English in Ewald (1996), vol. 1, p. 300. See Gauss’s (much later) letter to Farkas 
Bolyai from March 6th, 1832, on the fact that the new geometrical discoveries made by János 
Bolyai (and Gauss himself) show that Kant was definitely wrong in believing that space is only a 
form of our intuition (“ . . . der klarste Beweis, dass Kant Unrecht hatte zu behaupten, der Raum sei 
nur Form unserer Anschauung”; Gauss, 1863–1917, vol. 8, pp. 220–224). On Gauss’ role (or lack 
thereof) in the discovery of non-Euclidean geometry, see Gray (2003). 
54 The first attempts to claim that the Kantian conception of geometry is compatible with non-
Euclidean geometries are probably those by Nelson (1905–1906); cf. in the same years also 
Meinecke (1906); and later Natorp (1910). 
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the origin of the notion back to Euclid himself, who had exploited the notion of 
position (θέσις) in his book on Data.55 In 1816, Carl Christian Hermann Vermehren 
(1792–1858) wrote an essay on the direction-theory in which the notion of Richtung 
supplanted that of Lage (or situs).56 It is probably at this time that the theory began 
to be widely known with its current name. 

In the meantime, the mathematician Karl Christian Langsdorf (1757–1834) 
updated Wolff’s textbook for students, the Anfangsgründe aller mathematischen 
Wissenschaften, adding to it the theory of direction.57 Among the other important 
and early essays on the theory, we can mention at least those by Andreas Jacobi 
(1801–1875) from 1824 and by Joseph Knar (1800–1864) from 1827 and 1828. 
The success of the theory was so extensive that even the Kantian philosopher Carl 
Siegmund Ouvrier (1751–1819) wrote an essay on parallel lines and the faculties of 
the mind, in which he accepted pure intuition as the basis of mathematics and also 
a theory of direction as the foundation of the theory of straight and parallel lines.58 

We will not follow in any detail the diffusion of the direction-theory in German 
textbooks on geometry, which was as pervasive as it is mathematically uninteresting. 
Rather, I would like to point out the lesser-known fact that the most important 
philosophers in Germany plainly endorsed Schwab’s theory. 

In 1805, Johann Gottlieb Fichte (1762–1814) rejected Kant’s views about the 
givenness of spatial intuition and claimed that space itself is generated by the 
thinking subject. He stated that the first determination of space is given by tracing 
an infinite straight line which is the archetypal diameter of space and the beginning 
of any further construction of finite magnitudes and figures. This line determines 
a “primal direction” (Ur-Richtung) in space, and therefore defines a first sheaf 
of parallel lines as those straight lines sharing the same original direction. As 
a consequence, the Parallel Postulate is firmly established upon the basis of the

55 See Scheibel (1807). Scheibel’s work includes a long discussion of Kästner’s three essays on 
space and geometry which had been published against Kant and Schultz. 
56 Vermehren (1816): the discussion on direction is to be found on pp. 19–26, while on p. 21 
Vermehren assumed an axiom regarding the transitivity of sameness of direction. 
57 Langsdorf edited the geometrical section of Wolff’s Anfangsgründe in 1797, that is, before 
Schwab’s contribution to the theory of parallels. Already in this book, Langsdorf mentioned the 
new theories by Karsten and Hindenburg, which he did not see as fundamentally opposing Wolff’s 
original views. In 1802, Langsdorf wrote his own Anfangsgründe. In them, he started with a 
definition of the Richtung of a straight line (section on Geometrie, § 14, pp. 129–30) so as to 
be able to give a definition of parallel lines (§ 15, pp. 131–32), which, albeit grounded upon it, 
recurred to the notion of equidistance; a little further on in the text, the Parallel Postulate is proven 
(Theorem 14, pp. 173–76). In this work, written a year after Schwab’s first essay on parallels, the 
latter’s influence is manifest. 
58 The main theorem of Jacobi (1824) is on p. 58: “Per punctum quoddam una tantum recta unius 
ejusdemque certae directionis duci potest”, which is “proven” without much discussion. Andreas 
Jacobi was the brother of the more famous mathematician Karl Friedrich Jacobi. Knar (1827) 
discusses several earlier attempts and quotes Karsten as the initiator of the theory that Knar himself 
advocated and tried to perfect. See also Knar (1828). A Kantian direction-theory is expounded in 
Ouvrier (1808). 
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original construction of space. The direction-theory of parallels appears to be the 
metaphysical foundation of space itself.59 

Jakob Friedrich Fries (1773–1843) offered his own “synthetic” proof of the 
Parallel Postulate in 1822. This proof is far more mathematical than Fichte’s but 
is still entirely based upon the notion of the direction of a straight line. Fries 
defined the straight line as a line the parts of which have the same Richtung, then 
complemented this definition by three Axiome der Richtung, and finally proved from 
all these assumptions that the interior angle sum of a triangle is equal to two right 
angles. The Parallel Postulate is an easy consequence of the latter fact.60 Fries’ 
philosophical influence on mathematicians was remarkable: Gauss appreciated his 
work, and Schlömilch (Frege’s source on the direction-theory) was a student of his. 
No one, however, seems to have followed his quite naïve proof of the postulate. 

Johann Friedrich Herbart (1776–1841) conceived of space as a structure pro-
duced by a system of monads, and for this reason he is sometimes credited for a 
philosophy of space that could possibly accommodate non-Euclidean manifolds. 
Historians generally regard him as the main philosophical source for Riemann’s 
thinking, and speculate on his role in establishing the possibility of a plurality of 
geometries. Yet, in 1829 Herbart also claimed that the Parallel Postulate can be 
analytically proven – without any recourse to pure or empirical intuition – from the 
very notion of Richtung.61 

Georg Wilhelm Friedrich Hegel (1770–1831), in the posthumous second edition 
of the Wissenschaft der Logik (1832), discussed at length the epistemology of 
mathematics and stated (in perfect agreement with the previous tradition) that 
any axiom can be proven starting from the definitions of the terms. The Parallel 
Postulate, in particular, may be proven from the definition of direction, or better of 
the sameness thereof, die Gleichheit der Richtung, even though Euclid and the other 
ancient writers had done well in assuming it without proof given the plastische 
Charakter of the beautiful endeavour of Greek science, which did not waste time on 
such trifles.62 

59 Fichte’s discussion of the theory of parallels was not published during his lifetime, and is to be 
found among his lecture notes from 1805 called the “Erlangen Logik”, in which he also mentions 
Schultz’s proof, judging it to be unpersuasive. See Fichte (1962–, vol. II 9, pp. 124–37). An English 
translation of this text, with a commentary, is to be found in Wood (2012). 
60 Fries’ discussion on the Parallel Postulate is to be found in (Fries 1822), §§ 66–69, pp. 355–380; 
the axioms of direction are on p. 369, the definition of a straight line on p. 376, the proof of the 
interior angle sum on p. 379. On Fries and geometry, see Gregory (1983). 
61 Herbart’s statement on the Parallel Postulate is to be found in § 257 of the second volume of his 
Allgemeine Metaphysik (1828–1829), vol. 2, pp. 240–42. The extent of the influence of Herbart’s 
philosophical views on Riemann’s foundational mathematical works continues to be a subject of 
great debate. For an informed assessment, see Scholz (1982). On Herbart’s theory of intelligible 
space, see Banks (2005). 
62 In his young years, Hegel studied a proof of Elements I, 29 (a proposition equivalent to the 
Parallel Postulate) through the definition of parallel lines as equidistant straight lines – in a broadly 
Wolffian perspective. These private notes have now been published in Hoffmeister (1936), pp. 
288–300. Hegel’s first public mention of the Parallel Postulate was in the third volume of the
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None of these philosophers ever doubted of the truth of the Parallel Postulate. The 
influence of their views on the generations that followed was enormous, and it may 
explain the general acceptance of the direction-theory even outside the mathematical 
community. Still many decades later, in 1879, the same year in which Dodgson 
published his rebuke of Euclid’s modern rivals, the illustrious philosopher Hermann 
Lotze (1817–1881) wrote a book in which he rejected non-Euclidean geometry on 
the basis of the direction-theory of parallels.63 

The direction-theory of parallels was one of the most prominent phenomena 
in the history of the philosophy of mathematics between the eighteenth and 
the nineteenth centuries. We regard it nowadays as a huge misunderstanding, a 
conceptual dead end, and a reactionary force in the development of mathematics 
towards non-Euclidean geometry. Yet, the debate it engendered revolved around 
the most important topics in the epistemology of mathematics – abstraction, 
intuition, infinity, analyticity – and shaped the history of thought for a century. 
These magmatic reflections on the nature of mathematics were the philosophical 
background in which Lobachevsky, Bolyai and Gauss first conceived non-Euclidean 
geometry as an alternative theory of parallels. These same reflections, continuing 
into the following generations, produced the rebuttals by Dodgson and Frege, who – 
no longer pre-modern and yet not modern, and even possibly countermodern – 
seriously engaged the epistemology of a waning age. Modernism itself, eventually, 
came out of this debate. 

The philosophical interest of the century of the direction-theory, with its support-
ers and its opponents, lies precisely in its being a passageway to modernity. 

Wissenschaft der Logik (1816), where he claimed (in the section dedicated to the notion of a 
“Theorem”) that all propositions of mathematics can be derived from their definitions, and the 
Parallel Postulate no less than any other. In the second edition of the first volume (1832; first remark 
to the notion of “Number”), however, he provided a much longer discussion of the analytic status 
of mathematics, criticizing Kant for his claim that the latter science should rather be understood to 
be synthetic and grounded in intuition. Here, in particular, Hegel concentrated on the definition of 
a straight line, attempting to show that its property of being the shortest line between two points 
can in fact be proven by pure logic and without any appeal to intuition (Schwab’s example). The 
reference to Greek science, the equality of directions and the Parallel Postulate follows (cf. Hegel 
1984, p. 200).
63 Lotze strenuously opposed non-Euclidean geometry on philosophical grounds and criticized 
the views of both Helmholtz and Riemann simply restating Karsten’s old (1778) argument on 
the transitivity of direction in parallelism – as nothing had happened in this field in the previous 
century (Lotze 1874–1879, vol. 2, § 131, pp. 247–49). The notions of Richtung and parallelism 
were already at work in Lotze’s first attempt in philosophy, even though at the time he had not 
dared to propose a proof of the Parallel Postulate: see Lotze (1841), pp. 184 ff. 
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Chapter 21 
The Geometer’s Gaze: On H. G. 
Zeuthen’s Holistic Epistemology 
of Mathematics 

Nicolas Michel 

I’m an eye. A mechanical eye. I, the machine, show you a world 
the way only I can see it. I free myself for today and forever from 
human immobility . . . Freed from the  boundaries of time and 
space, I co-ordinate any and all points of the universe, wherever 
I want them to be. My way leads towards the creation of fresh 
perception of the world. Thus I explain in a new way the world 
unknown to you. 

Dziga Vertov, Kinoks: A Revolution (1923), cited in Berger 
(1972, p. 17). 

Abstract This chapter explores the epistemology of geometry expounded by 
Danish mathematician Hieronymus Georg Zeuthen towards the end of his career. 
Zeuthen’s views, a defense and reinvention of the role of intuition in geometry, are 
placed against the backdrop of episodes in nineteenth-century history of algebraic 
enumerative geometry, the subject of the vast majority of Zeuthen’s scientific output; 
but also that of the holistic psychologies and philosophies of Harald Høffding 
and Henri Bergson. In so doing, this chapter presents Zeuthen’s late writings 
on mathematics as motivated by the construction of a novel way of perceiving 
geometrical figures, a gaze freed from the limitations of symbolic reasoning or 
mechanical computations. 

N. Michel (�) 
Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Wuppertal, 
Germany 
e-mail: michel@uni-wuppertal.de 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
K. Chemla et al. (eds.), The Richness of the History of Mathematics, 
Archimedes 66, https://doi.org/10.1007/978-3-031-40855-7_21

537

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40855-7protect T1	extunderscore 21&domain=pdf

 885 56845 a 885 56845 a
 
mailto:michel@uni-wuppertal.de
mailto:michel@uni-wuppertal.de
mailto:michel@uni-wuppertal.de
https://doi.org/10.1007/978-3-031-40855-7_21
https://doi.org/10.1007/978-3-031-40855-7_21
https://doi.org/10.1007/978-3-031-40855-7_21
https://doi.org/10.1007/978-3-031-40855-7_21
https://doi.org/10.1007/978-3-031-40855-7_21
https://doi.org/10.1007/978-3-031-40855-7_21
https://doi.org/10.1007/978-3-031-40855-7_21
https://doi.org/10.1007/978-3-031-40855-7_21
https://doi.org/10.1007/978-3-031-40855-7_21
https://doi.org/10.1007/978-3-031-40855-7_21
https://doi.org/10.1007/978-3-031-40855-7_21


538 N. Michel

21.1 Introduction: An Address at The Danish Royal 
Academy 

On October 16th, 1914, the mathematician Hieronymous Georg Zeuthen (1839– 
1920) stepped foot into the main lecture hall of the Danish Royal Academy 
of Science to address a mixed audience composed equally of philologists and 
philosophers, of psychologists and physiologists (see Fig. 21.1).1 Such an address 
by Zeuthen was a common occurrence in Copenhagen, where he was often 
seen expounding the importance of the history and epistemology of ancient 
mathematics—for modern practitioners and outsiders to the field alike. On this 
particular day, however, Zeuthen was instead scheduled to present his newly 
published book, a Textbook on the Enumerative Methods of Geometry (“Lehrbuch 
der abzählenden Methoden der Geometrie”). This was the branch of mathematics 
on which he had spent the vast majority of his professional career, starting with 
his 1865 dissertation. It was also a discipline in which he was widely regarded as a 
leading specialist, well beyond the borders of Denmark. His expertise had translated 
into a massive research output, disseminated in journals in France, Germany, Italy, 
and England;2 he had also been called upon by Felix Klein to arbitrate matters of 
dispute in the pages of the Mathematische Annalen and to write an authoritative 
survey for the Encyklopädie der mathematischen Wissenschaften.3 Lastly, Zeuthen 
had made these methods the subject of his more advanced teaching at the University 
of Copenhagen since the late 1870s.4 This much-awaited textbook, the content 
of which Zeuthen had already been collecting and organising at the turn of the 
century, was to be his final word on geometrical theories of growing importance 
to mathematicians at large, and on the proper way to teach them. 

So that his fellow academicians might appreciate the significance of this book, 
however, Zeuthen had to leave geometrical technicalities aside. Instead, his presen-
tation would focus on the connections between the methodological principles under-
lying his own research and a question central to the “trends in the scientific world 
of the time,” namely, that of the relation between “the scientific use of symbols and

1 On the institutional organisation of Danish science at this time, and the central place this 
Academy occupied therein, see Kragh (2015). 
2 Beyond the Tidsskrift for Mathematik, of which he was chief editor between 1871 and 
1889, Zeuthen mostly published in the Mathematische Annalen and in the Comptes Rendus de 
l’Académie des Sciences. A general biography can be found in Kleiman (1991). 
3 Zeuthen (1890, 1921). This survey was for the most part written and handed down to the editors 
of the Encyklopädie in 1899, then revised and finalised in March 1905. As such, contrary to what 
the dates of publication indicate, it is the preparation of this survey which informed much of the 
content of Zeuthen’s 1914 textbook and not the other way around. 
4 Zeuthen retired from his position at the University of Copenhagen in 1910, having secured 
funding from the Carlsberg Foundation to finish writing his textbook. This foundation played a 
major role in the funding of Danish science at this time; see Kragh et al. (2008, pp. 320–324; 
399–403). 
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Fig. 21.1 P. S. Krøyer, Et møde i Videnskabernes Selskab (1897). Zeuthen can be seen seated 
on the right, while Høffding is on the front left (both circled in red). Reproduced with generous 
permission from the Royal Danish Academy of Sciences and Letters 

intuition.”5 The term ‘symbol,’ Zeuthen immediately added, was to be understood 
in the extended sense given to it by the French philosopher Henri Bergson (1859– 
1941): beyond the sole characters of algebraic calculations or specious arithmetic, 
it encompassed all technical images or nomenclatures which may be combined 
mechanically, in “law-bound” [lovbundne] fashion, in order to enable intelligence to 
represent and analyse objects of knowledge. The articles of a legal code [Regler], for 
instance, constitute such symbols; and their formal prescriptions in the context of 
judicial procedures can be distinguished from the manner in which actual judgments 
[Skøn] are delivered, a process which involves much more flexibility and attention 
to particular circumstances. The same goes for mathematics, according to Zeuthen, 
wherein one must distinguish between computations [Regning]—regulated by rigid 
symbolic laws—and reasoning [Ræsonnement]—a faculty which ultimately relies 
on intuition.

5 Zeuthen (1914b, p. 273). All translations mine, unless otherwise noted. Zeuthen gives no 
indication as to what those ‘scientific trends’ are. The second half of this chapter, however, will 
suggest various plausible examples as we turn to Harald Høffding’s lectures on the psychology and 
philosophy of science and explore their impact on Zeuthen’s own epistemology of geometry. This 
distinction between symbolic and intuitive cognition (in the sciences) was by no means new. In his 
famous 1684 Meditations on Knowledge, Truth, and Ideas, G. W. Leibniz had already described 
adequate knowledge as being either “symbolic” and “intuitive”; see Leibniz (1684, p. 537). 
Furthermore, Kant’s theory of human cognition as stemming from both sensibility (Sinnlichkeit) 
and understanding (Verstand) and ensuing questions regarding the connection between both stems 
fuelled a long tradition of commentaries all through the nineteenth century amongst scientists, 
artists, and philosophers alike; see Huehn and Vigus (2013). 
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Zeuthen viewed his own work as firmly rooted in the camp of the latter. To 
an image of computations as the paragon of epistemic safety and exactness in 
mathematics, he opposed an agent-centred epistemology which does not underplay 
the risk of human-induced mistakes and the array of strategies routinely deployed by 
computers to avoid them, from active training to the verification of results through 
alternative computational methods. One particularly important source of computa-
tional error, for Zeuthen, was the use of symbolic computations outside of their 
proper domain of applicability—something which arises especially often when “the 
computer [Regneren], busy operating with computing symbols [Regnesymbolerne], 
forgets to reason about their proper use.”6 As a historian of mathematics, Zeuthen 
viewed this as a routine occurrence in the early development of analysis, especially 
in the context of computations with possibly divergent series. It was also a tendency 
that needed combatting in his own geometrical provinces; hence his writing of a 
textbook revolving around not calculations but rather methods, their rational use, 
and the intuition that undergirds them.7 

Prima facie, it might appear somewhat unsurprising that a mathematician writing 
in the 1910s would elect to reflect on the limits of symbolic means of representation 
and on their relation to computing and reasoning. Much has been written about 
the so-called ‘conceptual’ approach of Göttingen-based mathematicians who, after 
Peter Gustav Lejeune-Dirichlet’s famous dictum, sought to “replace calculations by 
thought,” and to construct theories reliant not on external forms of representation, 
but on concepts themselves.8 The years following Zeuthen’s address also saw the 
emergence within mathematics of broader, sharper critiques of language (symbolic 
or otherwise) and of its ability to express what matters most to mathematical life, 
from L. E. J. Brouwer to Ludwig Wittgenstein.9 More generally, the ‘modernist 
transformation’ of mathematics as a discipline between the 1880s and the 1920s 
has largely been described as a reconfiguration of the relation between mathematics 
and its language(s), the roles of intuition and symbols being at the core of well-
documented disputes related to this transformation.10 

And yet, Zeuthen’s reflections on intuition and computations escape the Pro-
crustean bed formed by these classical narratives. For his intuition was neither Felix 
Klein’s Anschauung nor Brouwer’s mystical introspection, but rather what he some-
what mysteriously defined as a form of ‘holistic perception’ [Helhedsopfattelse], 
an ability to perceive at once a connected whole where symbolic cognition and

6 Zeuthen (1914b, p. 272). Emphasis mine. 
7 On the separation of intelligence and calculation at the turn of the nineteenth century, see Daston 
(1994). 
8 Ferreirós (2007, p. 28). For an example of a mathematical practice developed in keeping with 
these methodological principles, see Haffner (2017). 
9 Brouwer (1975, pp. 6–8; 72–75), Janik and Toulmin (1973, pp. 177–184). One may also think of 
Hermann Weyl, who shared certain holistic commitments with Zeuthen, albeit in a very different 
mathematical, political, and philosophical context Schappacher (2010, pp. 3269–3276), Eckes 
(2018). 
10 See Mehrtens (1990), Gray (2008), as well as the chapters in part IV of the present volume. 
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rigid computational rules present one’s mind with disconnected particulars11 . This  
holistic intuition, as will be shown, constituted for Zeuthen the faculty that grounded 
not only proper understanding of mathematical theorems and their proofs, but also 
the critical and rigorous use of methods in geometry.12 And Zeuthen’s critique of 
symbolic expressions, as his borrowing of Bergson’s definition already implies, 
runs askew of traditional discourses on the shortcomings of algebraic notations or 
computations. At its core, it is a wide-reaching critique of any and all attempts at a 
mechanical, impersonal use of language that pretends to do away with the critical 
subject perceiving the proof or the figures featuring in it. Lastly, while commentators 
have often sought to confine Zeuthen’s philosophy of mathematics within the vague 
category of ‘Platonism’, such qualifications only obscure his more original claims 
regarding the existence of various perspectives on a given geometrical figure, as well 
as his sensitivity to the historical and cognitive processes involved in the formation 
of such figures.13 

To fully understand these admittedly abstract pronouncements, one must first 
contextualise them within Zeuthen’s scientific practice and milieu. Contextualising, 
here, necessitates the conjunction of two localisations. First, Zeuthen’s epistemol-
ogy of mathematics must be situated against the specific backdrop of the (algebraic) 
enumerative geometry he had practised throughout his whole career; a theory 
often ignored in the historiography of modern(ist) mathematics. Second, Zeuthen’s 
conception of intuition must be traced back to the Bergsonian philosophy of the 
Danish philosopher and psychologist Harald Høffding (1843–1931), and more 
largely to the particular brand of rational holism that was increasingly gaining 
traction amongst members of the Danish Royal Academy of Science. These two 
localisations, carried out respectively in Sects. 21.2–21.3 and 21.4–21.5, will then 
reveal a much more precise and potent meaning behind Zeuthen’s philosophical 
forays. In Zeuthen’s reflective writings, I shall argue, these commitments amounted 
to the creation, justification, and teaching of a novel way of seeing and forming 
geometrical figures, a form of mathematical subjectivity informed by a productive 
dialogue between mathematics, philosophy, and psychology.14 

11 The Danish word ‘Helhed’ translates to ‘whole’ or ‘totality’ in English. In Zeuthen’s texts, it is 
constantly paired with the term ‘Enkeltheder’, or ‘particular’. 
12 Of course, the idea that there can be a “method of intuition” is itself a core Bergsonian 
commitment. 
13 Lützen and Purkert (1989), Sigurdsson (1992). 
14 On the relation between geometry and psychology at the turn of the twentieth century in a rather 
different context (both scientific and cultural), see Gray (2008, pp. 388–405).
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21.2 The Theory of Relative Generality 

Weaving the mathematical and the philosophical was not something Zeuthen 
reserved exclusively for his Danish audience, nor something he discovered late in 
his life. While overt references to holistic psychology and philosophy would only 
appear in his writings in the 1910s, as a reaction to scientific conversations only 
then developing in Copenhagen, this conceptual encounter had been made possible 
by past decades of reflexive and thoughtful engagement with algebraic geometry and 
the history of mathematics. In both endeavours, one theme of constant importance 
to Zeuthen was the definition and comparison of the “general” and the “particular” 
in geometry—a theme we need to first explore in order to make sense of his later 
defence of geometrical intuition.15 

To Zeuthen, the distinction between the general and the particular was both a 
technical and an epistemological one, having to do with the very validity of certain 
theorems as well as with the sort of knowledge one could or should strive for in 
the course of mathematical research. The first sections of the Lehrbuch are in fact 
entirely devoted to the clarification of this distinction, as a necessary propaedeutic 
for the teaching, usage, and interpretation of all enumerative methods in geometry.16 

Of such crucial importance was the discussion of generality that one also finds traces 
of it all through Zeuthen’s correspondence with the French mathematician Georges-
Henri Halphen (1844–1889).17 

The lesson Zeuthen drew from his decades-long engagement with algebraic 
geometry was that the distinction between the general and the particular was 
essentially a “relative” one: a figure, a formula, or a theorem could all be equally 
found to be general or particular depending on the selection of a specific point of 
view. This relativity, in return, made it crucial and even necessary to teach “methods 
rather than calculations,” for an emphasis on the latter obfuscates the need for 
a specification of the sense in which their (symbolic) results may be viewed as 
generally valid.18 

To explicate these claims, Zeuthen had a plethora of examples at his disposal. 
In 1909, while presenting an early draft of his Lehrbuch at the first Scandinavian 
Congress of Mathematicians, Zeuthen elected to discuss a result at the heart of 
the ‘Duality controversy’ between Joseph-Diez Gergonne (1771–1859), Jean-Victor 
Poncelet (1788–1867), and Julius Plücker (1801–1868); a result he viewed as a

15 On generality as an epistemic value in the history of mathematics, see Chemla et al. (2016). 
16 Zeuthen (1914a, pp. 1–17). 
17 Halphen was not only a renowned expert in (among other things) enumerative geometry, but 
also a close friend of Zeuthen’s, whose letters to Halphen can be found at the Bibliothèque de 
l’Institut, Paris (Cod Ms 5624). A portion of this correspondence is transcribed in Michel (2020, 
pp. 465–497). 
18 Letter from Zeuthen to Halphen dated Nov. 5th 1879, Bib. de l’Institut, Paris, Cod Ms 5624/231; 
Michel (2020, p. 480). 
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paradigmatic example of the sort of errors which may arise in geometry from an 
“inconsiderate usage of the words ‘general’ and ‘particular’.”19 

This controversy, it is known, was initially triggered by a plagiarism charge 
repeatedly thrown by Poncelet towards a young Plücker in 1827 and 1828.20 

This accusation, it turned out, was largely the result of a creative rewriting 
and reorganization of one of Plücker’s papers by Gergonne, acting as editor of 
the journal to which this paper was destined. Gergonne had disposed Plücker’s 
geometrical propositions in parallel columns, so as to highlight the duality between 
geometrical objects and propositions through textual symmetry (e.g., interverting 
the words ‘points’ and ‘lines,’ ‘intersections’ and ‘tangents’ etc. so as to turn the 
statement of Pascal’s theorem into that of Brianchon’s). In so doing, Gergonne had 
also made Plücker an unwitting party and ally in a dispute of his own with Poncelet, 
a dispute that revolved around the nature and scope of the notion of duality in 
geometry as well as around matters of priority. 

Part of Poncelet’s rhetorical strategy, in this controversy, was to accuse Gergonne 
of having exaggerated the importance of duality as a general mechanism for the 
transformation and duplication of geometrical theorems through linguistic substi-
tutions (as opposed to his own conception of duality, centered around pole/polar 
relations). In so doing, Poncelet claimed, Gergonne had been led to grave errors. 
In one memoir, starting with the classical definition of the order m of a curve 
(i.e., the number of points at which the curve intersects an arbitrary fixed straight 
line), and applying to it the aforementioned linguistic transformation, Gergonne had 
mistakenly concluded that, from an arbitrary fixed point, the same number m of 
tangents to the curve could be drawn.21 

As Poncelet was eager to point out, however, this theorem is only true for conics. 
Instead, the number of tangents one can draw to a curve of order m from an arbitrary 
fixed point is, in general, .m(m − 1).22 Acknowledging his mistake, Gergonne thus 
introduced the notion of ‘class’ (denoted by later authors with the symbol . m∗) to  
describe this latter number of tangents, a correction which Poncelet rejected on the 
grounds that it introduced two competing classifications for the same geometrical 
objects and thus had little scientific value.23 

19 Zeuthen (1910, pp. 33–34). On this Congress, of which Zeuthen was vice-president, and on the 
rise of a Scandinavian identity for mathematicians more broadly, see Turner and Sørensen (2013). 
20 For a thorough analysis of the social and institutional aspects of the Duality Controversy, 
from which the following paragraphs borrow, see Lorenat (2015b). In Zeuthen’s view, Poncelet’s 
projective geometry, and especially his “principle of continuity,” was the main precursor behind the 
principles that would lie at the core of the enumerative methods in the second half of the nineteenth 
century (Zeuthen 1917, p. iii). This might explain the use of this specific example while discussing 
the epistemological foundations of a later, distinct theory. In the final version of the Lehrbuch, 
however, Zeuthen would eventually elide most of these historical considerations. 
21 Gergonne (1827, p. 216). 
22 A simple algebraic proof of this result can be found in Salmon (1852, p. 62). See also Gray 
(2007, pp. 53–61; 165–170). 
23 On the history of these classifications, see Lê (2023).
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But the generality of Poncelet’s correction, Zeuthen noted, can also be questioned 
further. While it is true that, “in general,” a curve of order m is a curve of class 
.m(m−1), it is not the case that a “general” curve of order m is also a “general” curve 
of class .m(m−1). Indeed, viewed as a curve of class .m(m−1), the aforementioned 
general curve of order m will necessarily possess several singular tangents (e.g., 
bitangents or cuspidal tangents)—and therefore be a special member of this family 
of curves, one that presents singularities. Accordingly, the dual of a general curve 
of class n is only a special curve of order .n(n − 1), i.e., one that has certain singular 
points (e.g., double points or cusps). That this is necessarily the case derives from 
an elementary argument: considering a generic smooth curve of order m, suppose 
its dual curve is a general element of the family of curves of class . n = m(m − 1)

(i.e., one without singular tangents). One can then form the dual of this latter curve, 
which, per hypothesis, is of order .n(n − 1) = m(m − 1)(m2 − m − 1). Now, this  
immediately contradicts the involutive character of duality, as this dual curve is in 
fact the original curve of order m, and such explosions of the order do not happen 
under repeated dualisation. 

This is why, Zeuthen concluded, 

the definition of generality is different depending on whether we speak of a curve of a certain 
order or of a curve of a certain class. A general curve of order m is a curve represented in 
a usual system of coordinates through an equation of degree m, and its general properties 
are  those  which  belong  to  it  regardless  of  any  relations  between  its  coefficients  . . . Then,  
tangents are the lines which intersect the curve at two coinciding points. In the event the 
curve has multiple points, the number .m(m − 1) of tangents passing through an arbitrary 
point will then also include, a certain number of times, the straight lines joining this point to 
the multiple points; but these lines will be ‘foreign or improper solutions’ [to the problem 
of determining these tangents] if we look at the same curve as belonging to the curves of a 
certain class, and to obtain in reality this class, one must still subtract the number of these 
foreign solutions to the number .m(m − 1).24 

In other words, there exist two different ways of looking at a given curve: one 
may view it as a member of the collection of curves of a certain order or 
of curves a certain class; and, crucially, different theorems appear as general 
depending on which of these perspectives is chosen. A first major issue with blind 
reliance on computations thus appears: their proper, scientific use requires the clear 
specification of a viewpoint on the objects the symbols occurring throughout said 
computations represent—or, equivalently, the scientific use of symbols must be 
supplemented by a constant awareness of the genetic processes from which they 
originate, e.g., a awareness of whether they represent curves generated via point-
or line-motions. To mobilise the equation .m∗ = m(m − 1) in the course of a 
proof is to already fix one perspective on curves and their generation, namely a 
point-centric one. And to forego critical reasoning, that is to say to rely exclusively 
on symbols without reflecting on their provenance and the assumptions they carry 
with them, may in turn lead to the counting of unintended objects, such as the 
artificial tangent lines described by Zeuthen above. Relying on symbols, equations,

24 Zeuthen (1910, pp. 34–35). 
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and computations, thus requires a form of active oversight, a “personal control” over 
the origin of said symbols and the assumptions they carry—a task for which, as we 
will see below, Zeuthen found intuition (i.e., the faculty presiding over the rational 
use of methods) to be particularly well suited.25 

Of course, readers already familiar with this historical episode will know that 
more refined equations to treat such questions would soon become available. Indeed, 
though he had been forced into these debates by Gergonne, Plücker was no passive 
observer thereof. Building on Poncelet’s idea of regarding curves alternatively as a 
locus generated by the motion of a point or as an envelope generated by the motion 
of a (tangent) straight line, he analysed the impact of each type of singularity on the 
dual curve from each viewpoint. A double point, for instance, was found to cause 
a double reduction in the order of the dual; whereas a cusp counted for three. And 
conversely, for each bitangent a curve may have, its class would have to be reduced 
by two upon taking its dual.26 These insights would quickly be put in symbolic form 
and become what are now called “Plücker’s formulas,” i.e.: 

. m∗ = m(m − 1) − 2δ − 3κ

m = m∗(m∗ − 1) − 2δ∗ − 3κ∗

where .m, δ, κ represent respectively the order, number of double points, and number 
of cusps of a curve described in point-coordinates, and .m∗, δ∗, κ∗ represent the 
analogous quantities for the dual curve, described in line-coordinates.27 

These more refined formulas are, without a doubt, a net improvement over 
Poncelet’s. But, to Zeuthen’s eyes, even they remain imperfect for the teaching 
and practice of geometry. Whilst acknowledging “[their] great utility,” Zeuthen 
argued that therein is still nested an “obfuscat[ion] of the distinction between the 
general and the particular,” stemming from “the[ir] double starting point in the 
representation via point and line coordinates,” thereby giving particular significance 
to certain singularities (and only them).28 

Indeed, for symbolic computations to be exact, one must always employ them 
within the bounds of their range of applicability. In the theory of functions, this 
might mean that one has to handle with care the convergence of specific series; in 
algebraic geometry, it means ensuring that the sense in which a figure is taken to 
be general—in other words, the viewpoint from which they are looked at—suits the 
symbolic formulas one elects to use. And where the computer may lose sight of this 
imperative in the course of their symbolic activity, the geometer who relies chiefly

25 Zeuthen (1910, p. 40). 
26 Plücker (1834). 
27 In 1834, Plücker did not write these results as equations but rather spelt out how to reduce the 
order of a given curve to obtain that of its dual. Five years later, however, while systematising and 
expanding on these findings in his treatise on algebraic curves, he eventually wrote very similar 
equations (Plücker 1839, pp. 207–212). 
28 Zeuthen (1910, p. 35). 
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on methodical reasoning (i.e., ultimately, on intuition) always keeps this perspective 
in mind and in check, for theirs is a deductive practice which cannot be developed 
mechanically and detached from the figures under study.29 For this reason, formulas 
such as Poncelet’s or Plücker’s should not be viewed as ready-made equations to be 
plugged uncritically within geometrical reasoning, but as methods for the study of 
the correlation (or duality) of algebraic curves or surfaces, always to be employed 
with a clear view of the relative generality of the results they imply.30 It is in this 
sense that Zeuthen’s was a teaching of the methods and not of the computations of 
geometry, and that he viewed intuition, rather than computations, to be the surer 
path to rigour.31 

21.3 What Formulas Cannot Express 

Zeuthen’s subordination of calculations and symbols to reasoning and intuition 
went beyond the pedagogical and methodological concerns outlined in the previous 
section. In fact, Zeuthen proved even skeptical of the very possibility for symbolic 
language (in the extended sense previously given to this adjective) to precisely

29 Zeuthen expressed a related idea whilst discussing the history of early-modern mathematics: 
“The modern method will generally have far more extensive uses, and it will be stated in 
rules that can be applied purely mechanically; but precisely because the related older methods 
were not so designed, but rather had to be adapted to each case, they could lead to a deeper 
penetration and a more versatile investigation than the corresponding modern treatment. The 
mere fact that the less developed form required a greater effort of thought led to observations 
that would easily escape one who now reach the same main result with railroad speed” Zeuthen 
(1903, pp. 554–555), cited in Blåsjö (2021, pp. 11–12). Skúli Sigurdsson reads such passages as 
indicative of Zeuthen’s “distrust of mass-produced knowledge” and “scientific elitism” (Sigurdsson 
1992, p. 112). This interpretation, however, severely downplays the intrinsic epistemological and 
mathematical concerns that Zeuthen developed through his geometrical practice, which this chapter 
shows were much more substantial and coherent than whatever superficial disdain Zeuthen may 
have had for mass education. 
30 In his Encyklopädie entry, Zeuthen made a point of noting that Halphen’s rewriting of Plücker’s 
formulas into methods suitable for all kinds of singularities (as opposed to Plückerian singularities 
exclusively) is “more convenient for enumerations.” It was well known at the time that all (higher) 
singularities of an algebraic curve could be reduced to certain Plückerian invariants, and so this 
rewriting did not result in a net gain in mathematical knowledge but rather provided (to Zeuthen’s 
eyes) a more methodical approach to the geometry of these curves. A similar point is made 
regarding Halphen’s rules for the intersections of two algebraic curves at singular points and the 
formula corresponding to Bézout’s theorem (Zeuthen 1921, pp. 260–262). 
31 To be sure, Zeuthen was not alone in seeking to justify a form of generality that could 
accommodate the existence of possible counter-examples. In his discussion of Weierstrass’ theory 
of elementary divisors, for instance, historian Thomas Hawkins proposed the term “generic 
reasoning” to capture a certain disregard for problematic cases which may occur in certain 
instances of specification of algebraic symbols (Hawkins 1980, p. 295). 
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express and delineate the domain of applicability of profound geometrical truths, 
such as Poncelet’s principle of continuity: 

The exactness of the ‘principle’ will depend on the formal statement that is given to it, and 
it might be difficult to find one which leaves room for no objections and no abuses; but it 
will be enough to teach the method of which the ‘principle’ is but a formal condensation, in 
a manner that ensures its just application to all particular cases.32 

Not only do symbols conceal specific assumptions regarding the distinction between 
the general and the particular (and, therefore, specific viewpoints on geometrical 
figures); this limitation turns out to be beyond salvation by any sort of ad hoc 
refining of the formal expressions constructed therewith. The solution to the risks 
that symbolic practices carry with them is not more, better symbols; but a (re)turn 
to intuition and methodical reasoning. 

This skepticism towards symbolic practices, and the ensuing recommendation 
to focus on teaching the methods, which are only ever imperfectly encapsulated 
in formal expression(s), echoed decades of infighting amongst the protagonists of 
the early development of enumerative geometry. Further down the same paragraph, 
Zeuthen would predict that the fate of all attempts at reducing Poncelet’s principle 
down to a concise formula would also befall the ‘principle of conservation of 
number’ of Hermann Schubert, a leading figure in the development of this branch 
of geometry. More crucial to the formation of Zeuthen’s epistemology of geometry, 
however, was the series of disputes that had punctuated the emergence of the first 
enumerative theories of conic sections; an episode he had directly witnessed and 
participated in from his first forays into mathematical research onwards.33 

In the fall of 1863, a young Zeuthen left Denmark for Paris on a stipend in 
order to study with Michel Chasles (1793–1880), the world-famous geometer whose 
books had constituted an important part of his scientific education. The timing of this 
visit was auspicious: Chasles was putting the finishing touches on his latest grand 
theory, one that would garner much praise from mathematicians across Europe and 
convincingly exhibit the strength of his geometrical methods by solving problems 
that had theretofore eluded the most skilled of algebraists. This new theory, which

32 Zeuthen (1910, p. 38). As is well known, Poncelet’s principle had come under heavy fire from 
Augustin-Louis Cauchy and others (Gray 2007, pp. 47–50). 
33 On these disputes more broadly, see Michel (2021). In fact, one could read most of Zeuthen’s 
attacks on computational practices as a direct critique of Schubert’s own approach to enumerative 
geometry and especially his 1879 Kalkül der abzählenden Geometrie. Where Schubert laid out 
the computational rules at the heart of this branch of geometry and wrote a book full of symbols 
and numbers (the Kalkül), Zeuthen elected to rely on words, diagrams, and reasonings to teach 
individual mastery and control over the figures being enumerated (the Methoden). Only this, 
Zeuthen effectively argued, would ensure that future geometers avoid the pitfalls Schubert had 
been misled into by undue reliance on his symbolic calculus. Indeed, while containing a great deal 
of novel and impressive results, Schubert’s Kalkül had sustained substantial critiques by Halphen 
and several others for its lack of rigorous justifications and its reliance on principles against which 
many counter-examples could be levied. At the time of Zeuthen’s writing, acceptable justifications 
for Schubert’s most important results were still very much lacking, and in fact would not emerge 
for decades. 
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Chasles called ‘the theory of characteristics,’ served to enumerate all the conic 
sections of a plane that simultaneously satisfied five independent conditions, such as 
passing through a given point or touching a given curve.34 Chasles began publishing 
his method for solving these difficult problems in February 1864, and continued 
doing so for over two years. Zeuthen, meanwhile, had had to return to Denmark 
in April of that same year due to the outbreak of the Second Schleswig-Holstein 
War. Soon thereafter, he began writing his doctoral dissertation: an amelioration 
of Chasles’s aforementioned theory, and Zeuthen’s first contribution to a topic he 
would continuously revisit until his retirement. 

Chasles’s theory not only offered plenty in the way of novel results and methods; 
it also definitively refuted a series of previous results. In 1848, while working on 
unrelated geometrical questions and observing regularities in the number of conics 
satisfying contact problems, Jakob Steiner (1796–1863) had conjectured that there 
were .65 = 7776 conics tangent to five other given conics (all in the same plane). 
This conjecture was later justified and integrated into more general formulas by, 
among others, the naval officer Ernest de Fauque de Jonquières (1820–1901), a self-
styled disciple of Chasles. 

To that end, De Jonquières had proposed to define a ‘series’ [série] of conic 
sections as a collection of such curves satisfying simultaneously four independent 
conditions. In other words, a series is a 1-parameter family of conics, which De 
Jonquières thought could be represented by a quadratic equation .F(x, y) = 0, with 
the coefficients of F all being rational functions of one common variable . λ (i.e., 
the parameter of the series).35 De Jonquières also defined the index [indice] N 
of such a series as the number of conics in it that pass through an arbitrary fixed 
point; the number being invariant due to the principle of continuity (so long as 
one accepts intersections which may be imaginary or at infinity, and as one counts 
with multiplicity). By fixing the values of x and y in the aforementioned quadratic 
equation, one can see that this number is none other than the maximal degree in . λ
of the coefficients of F . 

One key result of De Jonquières’s theory was that, in a series of index N , there 
are 2N conics touching a given arbitrary line L.36 Suppose, indeed, that the line 
L is the horizontal line .y = 0 (the general case presenting little added difficulty). 
Then, a curve tangent to L corresponds to a value of the parameter . λ such that 
.F(x, 0) is a quadratic polynomial with a double root, i.e., whose discriminant is 
zero. From elementary algebra and the previously-given characterisation of N it 
follows that this discriminant is of order 2N , hence the result. More generally, for 
any geometrical condition Z, De Jonquières thought he could find a number . α such

34 Chasles (1864), Michel (2020, pp. 127–184). 
35 de Jonquières (1861, pp. 1134). De Jonquières’s definition in fact extends to curves of order m. 
His assertion concerning the representability of such series via rational equations would later be 
shown to be erroneous by Cayley, but this mistake is of little importance for the present discussion. 
36 More generally, De Jonquières claimed that, in a system of curves of order m, the number of 
elements touching a given straight line was .2(m − 1)N . 
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that the number of curves satisfying Z in a series of index N would be . αN ; and it is 
through such a result that he justified and generalised Steiner’s conjecture.37 

In modern mathematical terms, we may understand this result as a direct 
application of Bézout’s theorem in the projective variety . P5. This latter variety is 
an obvious moduli space for plane conics, since each of these curves is defined by 
an (homogeneous) equation 

. aX2 + bY 2 + cZ2 + 2dXY + 2eXZ + f YZ = 0,

that is to say by six coefficients .(a, b, c, d, e, f ), of which at least one is non-
zero. Since two proportional sets of coefficients represent the same curve, a conic is 
associated not to a sextuplet directly, but to its equivalence class under the relation 
.(a, b, c, d, e, f ) ∼ (λa, λb, λc, λd, λe, λf ), i.e., an element of . P5. Within this 
framework, a series of conics of index N is thus represented by a subvariety of 
dimension 1 and of order N , while a condition corresponds to the hypersurface 
formed by the conics satisfying it: it is of dimension 4 and of a certain order . α. The  
intersections of these subvarieties, of which there are .αN per Bézout’s theorem, 
then represent the conics in the series that satisfy the condition, as stated by De 
Jonquières’s theorem.38 

Unfortunately, these results present several fatal flaws, which Chasles and others 
quickly pounced on. For one thing, De Jonquières’s theory implies that the number 
of conics touching five given straight lines is .25 = 32, when there should in fact 
only be one—this number following from the principle of duality and the fact that 
through five given points passes one and only one conic.39 The direct reason for 
this excess, as Luigi Cremona was the first to point out, is that De Jonquières’s 
methods count many double lines (i.e., ‘flat’ degenerate conics consisting of one 
line, counting twice) which do not properly satisfy the conditions under study, and 
which appear as mere computational artefacts.40 In the language of the anachronistic 
framework sketched above, the issue stems from the fact that the hypersurface of 
conics tangent to a given curve or line always contains the subvariety .V ⊂ P

5

37 de Jonquières (1861, pp. 115–116; 121). 
38 The modern mathematical explanations are adapted from Kleiman (1980). 
39 To see how this number 32 derives from De Jonquières’s theory, consider the series of conics 
passing through four given points. Its index is 1, as it is none other than the number of conics 
passing through .4 + 1 = 5 points. De Jonquières’s theorem above implies that the number of 
conics in this system touching a given straight line . L1 is .2 × 1 = 2. It follows that the index 
of the series of conics passing through three given points and touching . L1 is 2, per definition of 
this quantity. Therefore, De Jonquières’s theorem can once again be used to find that there are 
.2 × 2 conics touching . L1, another given straight line . L2, and passing through three given points. 
Repeating this reasoning three more times yields the stated result. 
40 Cremona (1863). 



550 N. Michel

formed by the double lines.41 As it turns out, this very argument also can be levied 
against Steiner’s 7776 conics, thus rendering this number ultimately meaningless. 

Chasles’s theory of characteristics, in a nutshell, rectifies these methods by restor-
ing duality in De Jonquières’s concepts.42 Discarding De Jonquières’s terminology, 
Chasles proposed to consider systems of conics, similarly defined as collections of 
conics satisfying four independent conditions, and to attach to them two numbers 
. μ and . ν, which he called ‘characteristics’ of the system. . μ is none other than de 
Jonquières’s index, while . ν denotes in dual fashion the number of conics in the 
system which touch a given straight line. Chasles’s central observation, borne out of 
the application of a uniform counting method over hundreds of particular cases, was 
the following: for any condition Z, one can find two numbers . α and . β such that, in 
any system S of characteristics . μ and . ν, the number of conics satisfying Z be 

. αμ + βν.

This formula thus replaces and complicates De Jonquières’s .αN by adding a second, 
dual factor. In so doing, it manages to keep at bay the unwanted double lines that 
ruined De Jonquières’s results (and it does so at a very low computational cost, since 
only one term is added). Indeed, such degenerate conics can now also be viewed as 
enveloped by two pencils of tangent lines, whose centres must be on the double line. 
To visualise this phenomenon, picture an ellipse on the verge of flattening whilst its 
endpoints are being fixed in place. As the ellipse turns into a double line, its tangents 
turn into two pencils centred around said endpoints (see Fig. 21.2). These centres 
thus play a specific role on the double line, as all tangent lines to the conic must 
pass through one of them. This added specification of what it means to be tangent to 
a (degenerate) conic makes it so that a double line does not appear tangent to every 

41 This subvariety can be identified with what is now called the Veronese surface, hence the choice 
of the letter V . This surface is the image of the map 

. v : P2 −→ P
5

[x, y, z] �−→ [x2, y2, z2, xy, xz, yz]
Now, the (homogeneous) equation of a double line is 

. (aX + bY + cZ)2 = a2X2 + b2Y 2 + c2Z2 + 2abXY + 2acXZ + 2bcYZ = 0

Hence, a double line corresponds in . P5 to a point of coordinates .(a2, b2, c2, ab, ac, bc) and thus 
belongs to the image of the map f (that is, to the Veronese surface). Conversely, if a point 
belongs to this surface, computations of the minors of its corresponding quadratic form show that 
it represents a double line in the space of conics.
42 The exact relation between Chasles’s and De Jonquières’s theories is more complex than this 
chapter can really suggest, and was the object of a fierce priority dispute between 1866 and 1867 
(Michel 2020, pp. 185–224). 
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Fig. 21.2 A degenerating ellipse and its tangents; Klein (1928, p. 84) 

single straight line in the plane, thereby excluding the artificial solutions which had 
plagued De Jonquières’s methods.43 

From a modern viewpoint, Chasles’s theory amounts to replacing the moduli 
space . P5 by a more involved parameter space which properly tracks point-conics 
and their duals, namely the variety of complete conics. One way of viewing it is to 
start with the subvariety .A ⊂ P

5 × P
5∗ composed of pairs .(C, C∗) of smooth conics 

and their duals. This is only a quasi-projective subvariety, however, and one cannot 
directly apply Bézout’s theorem in it to obtain Chasles’s formula. Instead, in order 
to enumerate intersections of systems and conditions, one must still compactify A 
by taking the closure in .P5 × P

5∗ of the graph of map sending a smooth conic . C to 
its dual . C∗. Modern intersection theory, in this new moduli space, yields Chasles’s 
theorem.44 

Zeuthen’s own analysis of this historical episode, however, departs from unnu-
anced assessments of Chasles’s theory as a mere correction and improvement upon 
De Jonquières’s. Instead, Zeuthen frames it as a complication of the point of view 
adopted on geometrical figures, akin to what had happened to Poncelet’s relation 
between the order and the class of a curve. In essence, Zeuthen views Steiner’s 
and De Jonquières’s results as “general theorems” fully worthy of this title, so long 
as one keeps in mind that they derive from a “representation of conic sections via 
point coordinates only.”45 From this perspective, a tangency is thus merely a double 
intersection, and these double intersections are precisely what was enumerated in 
the algebraic proof sketched above, when forming and cancelling discriminants. 
Double lines, however, always intersect a straight line at one such double point, 
thereby artificially appearing amongst the conics tangent to said straight line.46 

This is precisely what seemingly lead to an ‘explosion’ of the order of a curve 
when Poncelet’s formula was applied twice to it, as singularities gave rise to

43 Note that, from any arbitrary fixed point in the plane, two tangents to the conics can be drawn: 
namely, the two straight lines joining the point and the centres of the pencils. With this stipulation 
of the new meaning of tangency, the curve is still of class 2. 
44 See Semple (1982) for details. This compactification is equivalent to a blow-up of . P5 along the 
Veronese surface mentioned previously. 
45 Zeuthen (1910, p. 35). 
46 Note that, had we taken a purely lineal viewpoint on conics, artificial solutions would have arisen 
in the form of line pairs, that is to say the other kind of degenerate conics in classical projective 
geometry. 
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similar artificial intersections or tangencies. Systems of conics that include such 
degenerate curves, therefore, are no longer ‘general’ elements of this family of 
geometrical objects, and De Jonquières’s result, when wielded critically rather than 
mechanically, can be accommodated—with the distinction between the general and 
the particular from De Jonquières’s viewpoint being particularly clear, as Zeuthen 
noted, since it suffices to determine whether or not double lines are present in a 
given system.47 

Chasles’s theory, in Zeuthen’s retelling, thus appears as the move from De 
Jonquières’s limited, point-centric perspective on conics to one that equally encom-
passes point- and line-coordinates; a move which the anachronistic framework 
outlined above makes explicit as we depart from the naive moduli space . P5 to two 
copies thereof, coupled in a way that captures the duality so essential to the theory 
of conic sections. By so jointly taking into account both viewpoints on conics, 
and by consequently adding supplementary symbols to De Jonquières’s formula, 
Chasles seemingly accomplished a progress akin to the move from Poncelet’s 
theorem to Plücker’s formulas. And here, too, an adjunction of symbolic terms 
would prove insufficient. For one, Zeuthen argued that this dual viewpoint, and 
the distinction between the general and the particular therein, were much harder 
to properly define than De Jonquières’s. But more importantly, a series of new 
counter-examples to Chasles’s theorem discovered by Halphen in 1876 would reveal 
looming deficiencies even in this refined formula. 

What Halphen had found was that systems of conics may in fact present 
singularities—that is to say, degenerate curves—of a kind not fully captured by 
Chasles’s double representation as loci and envelopes.48 These conics always appear 
as formed by one straight line and one point on it, though they may arise in a 
variety of ways (see Fig. 21.3). For instance, Zeuthen explains, we may view them 
as a further degeneration of a double line in which the centres of the pencils of 
tangents coincide; or as a line pair in which the two lines coincide. And a key 
feature of Halphen’s discovery was that there was an infinite number of ways to 
view such degenerate conics as limits of general conics, thereby barring all hopes of 
representation and enumeration via finite symbolic expressions. 

To explain this phenomenon, a new representation of conics and their degenerate 
forms was required. To that end, Halphen attached a self-polar triangle to each 
conic of a system; that is to say a triangle in which each side is the polar line of 
the opposite vertex with respect to the conic, and vice-versa. This can be done

47 Zeuthen (1910, p. 36). 
48 The question of whether these degenerate conics constitute legitimate counter-examples to 
Chasles’s theorem is rather delicate, and I will limit myself in the present essay to Zeuthen’s 
understanding thereof. Suffice it to say that is very much possible to rigorously formalise and 
justify either Chasles’s and Halphen’s theory in the framework of modern algebraic geometry, 
and that choosing between them hinges upon meta-theoretical factors (computational tractability, 
geometrical significance, etc.). Note that in the case of Plücker’s formulas, representation theorems 
show that higher singularities can be reduced to those enumerated by said formulas, thereby 
ensuring the absence of such difficulties. 
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Fig. 21.3 Halphen’s 
degenerate conic (Zeuthen 
1914a, p. 316) 

in such a way that, in the neighbourhood of a singularity of the system (i.e., of 
a degenerate conic), these triangles remain proper.49 In return, these triangles give 
rise to particularly useful systems of homogeneous coordinates in which to represent 
the conics of the system, since expressing the (punctual) equation of a conic in 
the homogeneous coordinates of a self-polar triangle amounts to diagonalising the 
matrix of the conic.50 Thus, in the neighbourhood of a degenerate conic, each conic 
of the system can be represented via a punctual equation of the form: 

. g1Q
2 + g2R

2 + g3S
2 = 0

where .Q = 0, R = 0, S = 0 are the equations defining the three sides of the 
self-polar triangle attached to the conic (whose vertices I denote correspondingly 
.q, r, s) and the . gi’s are coefficients determining the conic, but also functions of the 
parameter which describes the entire system of conics. 

To investigate the singularities of a system of conic, Halphen explained, was to 
investigate the behaviour of the . gi’s in the neighbourhood of a degenerate conic, 
that is to say when at least one of these coefficients vanishes. Note that, at all times, 
at least one of . gi’s must be different from zero; and so Halphen assumed, without 
loss of generality, that this was the case for . g3. The remaining possibilities are thus:

• Only . g1 vanishes; in which case the degenerate conic is a line pair whose 
intersection coincides with q.51 

• Both . g1 and . g2 vanish, but at the same rate (i.e., the ratio .g1 : g2 converges); in 
which case the degenerate conic is a double line coinciding with S.52 

49 Halphen (1878, pp. 33–35). 
50 See Semple and Kneebone (1952, pp. 109–112) for justifications. 
51 Indeed, note that the (punctual) limit-equation is .g2R

2 +g3S
2 = 0, which is only satisfied by the 

two straight lines of equations .
√

g2R + √
g3S = 0 and .

√
g2R − √

g3S = 0. These lines intersect 
at the point of coordinates .(1, 0, 0), that is to say q.
52 To see that, one can form the dual equation .g2g3Q

2 + g1g3R
2 + g1g2S

2 = 0, which defines the 
tangents to the conic. Dividing both sides by . g1, the limit equation becomes . α · g3Q

2 + g3R
2 = 0

for some finite, non-zero coefficient . α. It follows that the tangents to the degenerate conic are the 
two pencils of equation .

√
αg3Q+√

g3R = 0 and .
√

αg3Q−√
g3R = 0 (those are linear equations
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• Both . g1 and . g2 vanish, but at different rates. Supposing . g1 vanishes at a higher 
rate, the degenerate conic will be formed of one line coinciding with S, with only 
one special point (namely, q).53 

This third case yielded a new type of degenerate conic which Chasles’s theory 
proved as incapable of differentiating as De Jonquières’s had been in the presence 
of double lines—that is to say, these conics could appear as “improper solutions, 
which do not answer the question originally asked, but which are introduced by 
the instruments (analytical or geometrical) used to solve it.”54 Indeed, in one of his 
earliest communications on the matter, Halphen had shown how to construct at will 
specific systems of conics and conditions that would put the lie to Chasles’s . αμ+βν

formula due to the very presence of one of these degenerations—which, following 
Zeuthen, we will call Halphenian degenerations [Halphenschen Ausartungen]. 

To account for the presence of one such degeneration, Zeuthen explained, one 
could always add a third term ‘.+γρ’ to Chasles’s formula. However, unlike double 
lines and line pairs, Halphen’s third category of conics contains a multitude of 
degenerate figures: one for each possible ratio between the vanishing rates of . g1 and 
. g2.55 To accommodate Chasles’s formula to a given system of conics, one would 
therefore have to add one new factor for each such ratio present in the system. 
In sum, no (finite) amount of formal tweaking would save computations in the 
enumerative geometry of conics, though Halphen’s memoir provided the elements 
of a method for solving each individual problem without resorting to a general 
expression.56 

Halphen’s conclusions, therefore, were not entirely negative—at least in 
Zeuthen’s reading. Rather than establishing a formal expression constrained by 
a specific viewpoint on conics (and a related distinction between the general and the 
particular), Halphen’s results constituted a new kind of result, which Zeuthen named 
an “absolute theorem.” Such a theorem, Zeuthen analysed, is one in which “it is no 
longer required to say or specify ‘in general,’ words which mean that a theorem is 
also true in every particular case, so long as it is viewed as a particular case.”57 In 

in dual coordinates, hence the equations of pencils of tangents rather than lines of points). These 
pencils intersect at the line of coordinate (0,0,1), that is to say S, which is in agreement with the 
fact that the limit point-equation is .S2 = 0.
53 That the conic as locus of points turns into the double line .S2 = 0 is obvious from the general 
equation. Furthermore, dividing the dual equation by . g2, one obtains .g3Q

2 + g1
g2

g3R
2 +g1S

2 = 0. 

Since . g1 vanishes at a greater rate, the limit form of this equation is .g3Q
2 = 0; hence the pencil of 

lines centred around q forms a double pencil of tangents to this degenerate conic. 
54 Zeuthen (1890, p. 462). 
55 Equivalently, one may associate each mode of degeneration to the ratio . m

n
, where  m and n are 

the (different) rates at which the semi-axes a and b of a degenerating conic are vanishing (Zeuthen 
1914a, pp. 318–322). 
56 Zeuthen (1910, p. 38). 
57 Letter from Zeuthen to Halphen dated Dec. 18th 1879, Bib. de l’Institut, Paris Cod Ms 5624/237; 
Michel (2020, p. 494). 
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lieu of a equation constrained by hidden assumptions and a domain of applicability, 
Halphen’s theory had resulted in an enumerative method which encompassed all 
possible singularities of systems of conics, and therefore all possible determinations 
of the meaning of the word ‘general.’ 

And this is exactly what one finds, if not directly in Halphen’s own memoirs, 
in the chapter on systems of conics in Zeuthen’s Lehrbuch. Given a certain 
system of conics and a geometrical condition, Zeuthen teaches therein how to 
methodically investigate which degenerate forms occur in said system and whether 
or not the condition can be satisfied by some Halphenian degenerations. More 
importantly still, he shows how to determine the genres [Gattungen] of Halphenian 
degenerations present in the system and satisfying the condition, that is to say the 
values corresponding to the ratios of degeneration coefficients described above. 
Only when this is done does he provide a simple computational rule to subtract 
from Chasles’s .αμ+βν formula the number of foreign solutions (with multiplicity), 
thereby solving the enumerative problem at hand.58 

Such a method does not proceed by the mechanical application of a single 
formula. Instead, it requires one’s constant surveying of the figures of a system 
and acute awareness of all the particulars cases one can find amongst them—that 
is to say, all the ways curves can degenerate. In Zeuthen’s view, however, this slow 
and methodical examination has its own rewards. Not proceeding from symbols, it 
does not embark implicit assumptions about what counts as general or as particular. 
Rather, it provides an overview from which such specifications become superfluous, 
a gaze that encompasses at once the infinite variety of particulars that can present 
themselves in the course of the application of a method to a certain figure. It is 
the conceptualisation of this gaze, borne out of practical and pedagogical necessity 
to overcome the failures of symbolic expression, that form the basis for Zeuthen’s 
conceptualisation of holistic intuition—to which we now turn. 

21.4 Bergson in Copenhagen 

As a matter of fact, the notion of intuition scarcely features in Zeuthen’s writings 
prior to 1914, whether it be his correspondence, his publications, or his public 
addresses. Perhaps wary of associations with unrigorous reliance on visual rea-
soning, Zeuthen instead contrasted his use of geometrical methods to the analysts’ 
computations. In the pages of the Lehrbuch and in his address to the Academy in 
Copenhagen, however, Zeuthen began embracing a novel rhetoric of intuition; and

58 These methods and their application to several examples are detailed in Zeuthen (1914a, pp. 
315–328). Note that, except in trivial cases, the number of degenerate conics in a system of conics 
is always finite. In fact, in a system of characteristics .(μ, ν), there are in general .2μ − ν double 
lines and .2ν − μ line pairs (a result which Chasles had already found in 1864, and which Zeuthen 
placed at the centre of his 1865 dissertation). Consequently, there can only be a finite number of 
Halphenian degenerations in a given system, though this number can be arbitrarily large. 
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he did so after revisiting this concept and placing it at the centre of a decidedly 
holistic epistemology of mathematics. This transformation, it turns out, reflects 
Zeuthen’s engagement with his immediate scientific entourage in Copenhagen, and 
especially with the philosopher and psychologist Harald Høffding. In the years 
directly preceding the publication and presentation of his textbook, Zeuthen had 
attended Høffding’s lectures on the history of philosophy and on experimental 
psychology. In particular, Høffding’s positivist twist on the philosophy of Henri 
Bergson and his holistic proposal to think anew scientific cognition had left a strong 
impression on Zeuthen. No passive listener, Zeuthen found creative ways to connect 
these lectures with his own expertise in algebraic geometry, its history and its 
practice; and through this encounter he re-centred his epistemology of mathematics 
around the distinction between symbolic and intuitive cognition.59 

Indeed, key to Zeuthen’s late epistemological writings is a distinction first 
introduced by Bergson in his 1903 Introduction à la Métaphysique between “two 
profoundly different ways of knowing a thing.” Respectively, those forms of 
knowledge were analysis, which relies on symbolic representations and a specific 
viewpoint on said thing, and intuition, which eschews symbols and operates from 
within the thing itself.60 Or, to frame the distinction in the terms Bergson would 
employ in his 1907 L’Évolution créatrice, our epistemic life can take either one 
of two directions: that of “intelligence” or that of “instinct.”61 The first form of 
cognition can only yield “relative” knowledge, Bergson argued, due to its being 
obtained from a fixed location outside the object of study—knowledge of a thing 
being acquired through the study of what this thing isn’t, namely symbols standing 
in its place. By contrast, the second form yields “absolute” knowledge, for it is 
deployed without accommodating for any biased perspective or any translation 
into foreign symbolism—it is direct knowledge of a thing acquired from within 
it. What does it mean to really know a town, for instance? Suppose one uses 
a camera to capture it through an arbitrarily large number of still photographs, 
possibly even with atomic precision. Each of these photographs will depict but one 
fixed, immobile perspective on its streets and its monuments. The knowledge thus 
obtained, Bergson argued, can only be qualitatively different from (and inferior to) 
the inner comprehension of the specific organisation and dynamics of that same 
town which one will grasp by wandering and living in it—by inhabiting it as one

59 Høffding lectured on Bergson’s philosophy during the year 1913, that is to say the very year 
preceding Zeuthen’s address in which the concepts of (Bergsonian) intuition and symbols are made 
central. These lectures were later published and translated in several languages, including French 
(1917) and English (1920). 
60 This distinction, of course, was not entirely new, and Bergson framed it also as a reaction to 
certain neo-Kantian epistemologies and metaphysics; a topic well outside the scope of the present 
chapter. 
61 Bergson (1907, pp. 146–147). Note that this distinction is not a dichotomy: Bergson immediately 
followed its introduction by the acknowledgement that “neither intelligence nor instinct can be 
found in its pure state . . . there  is  no  intelligence  in  which  one  cannot find traces of instinct; no 
instinct which isn’t surrounded by a halo of intelligence” (Bergson 1907, pp. 147–148). 
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inhabits a cohesive and mobile whole. No matter how many photographs of this 
faraway town are obtained, and the reconstruction of its layout one can obtain 
through the combination of these motionless clichés, its inner life and distinct 
ambience remain a mystery to those who cannot experience it directly and fully.62 

The similarity between Bergson’s distinction and Zeuthen’s epistemological 
assessment of the historical development of enumerative geometry is striking. 
The passage from De Jonquières’s .αμ formula to Chasles’s .αμ + βν formula to 
accommodate double lines, as well as all the supplementary terms ‘.+γρ’ potentially 
introduced to account for each individual Halphenian degeneration, may all be 
regarded as constitutive of an ‘analysis’ of the enumerative geometry of conics. 
That is, seeking to patch faulty formulas by adding these terms is akin to the endless 
conjunction of yet more viewpoints on one same object of knowledge, which always 
remains imperfectly encoded into symbols. Such finite symbolic expressions, as 
we have seen, can only yield a ‘relative’ knowledge of the enumerative geometry 
of conics, for they enforce specific distinctions between the particular and the 
general—they disregard the fact that certain degenerations give rise to artificial 
solutions to enumerative problems. Halphen’s ‘absolute theorem,’ by contrast, is 
constitutive of a fuller understanding of the theory of these curves that encompasses 
all possible perspectives on them, precisely because its methodical principle is 
located within the degenerating conic itself, with its infinity of subtle variations. It 
is perhaps for this reason that Zeuthen, in a letter to Halphen directly following the 
publication of the latter’s counter-examples, argued that while “[Halphen] attributed 
to computations [au calcul] the honour of putting him on the right path regarding 
.αμ + βν . . . [Halphen] seemed [to Zeuthen] to be the most geometrical amongst 
those who tackled this question—as he was the only one who had managed to shed 
complete light on it.”63 Halphen’s theory, as read by Zeuthen, thus overcomes the 
limitations of discursive representations and provides an intuitive knowledge of the 
theory of conics. 

But this comparison of Zeuthen’s epistemology of (enumerative) geometry and of 
Bergson’s metaphysics is not without issues. When he described Halphen’s theorem 
as “absolute,” Zeuthen could not have possibly been aware of Bergson’s association 
of this word with intuitive knowledge, for obvious chronological reasons. More 
substantial is the apparent tension nested within Zeuthen’s repurposing of the 
conceptual categories of a philosopher so uninterested in the possibility of genuine 
intuitive knowledge in geometry—or mathematics more broadly.64 The way out

62 Bergson (1903, pp. 1–3). At the time of Høffding’s lectures, Bergson’s theory of intuition was the 
subject of much discussion, with scholars in various European countries but also in China as well 
as in the U.S. producing both interpretative and critical assessments. Various recent publications in 
Bergsoniana, the journal edited by the Société des amis de Bergson, explore this multi-faceted and 
global reception. 
63 Letter from Zeuthen to Halphen dated Dec. 15th 1877, Bib. de l’Institut, Paris, Cod Ms 
5624/226, Michel (2020, p. 475). 
64 In various texts, Bergson characterises geometry as a special domain of knowledge in which 
our (analytical) intelligence can triumph alone, and where intuition is not only superfluous, but 
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of these difficulties is to recognise that, as reception history has amply shown, one 
should not seek to confront Zeuthen’s use of the words ‘symbol’ and ‘intuition’ with 
an hypothetical, undiluted Bergsonism, but rather with the local interpretation and 
reinvention thereof to which he had been exposed.65 And Bergson in Copenhagen 
was a figure whose views had been mostly mediated and reshaped by Høffding—a 
self-avowed empiricist in constant conversation with the local scientific community, 
from Zeuthen himself to the members of the Bohr family, and who sought to 
accommodate Bergsonism to what he understood to be the scientific practice of his 
contemporaries.66 For this reason, we must first make a detour through Høffding’s 
lectures before returning to Zeuthen’s defense of intuition. 

While finding plenty to praise and promote in Bergson’s epistemology and 
metaphysics, especially in its polemical charge against mechanical conceptions of 
human psychology and cognition, Høffding nonetheless raised one central objection 
against the theses outlined above. Analysis and intelligence, he argued, should not 
be pitted against intuition and instinct, but rather these faculties should be viewed as 
working in tandem, on a historical as well as on individual scale.67 More precisely, 
while he agreed with Bergson that intuition constituted the ideal form of knowledge 
one should strive for in most, if not all, epistemic endeavours, Høffding argued 
that instinct and intelligence had in fact complementary roles to play towards this 
very goal. “Pure instinct,” he explained, “points immediately and exclusively in a 
single direction,” namely that of basic needs and interests. Only the awakening of 
intelligence allows one to go past this stage, for it “delivers instinct from need, 
makes it entirely disinterested, and thereby plunges it into the . . . whole  of  our  
existence”: it opens the very possibility of a richer understanding and appreciation 
of the world, which intuition will eventually provide to those who attain it. In 
sum, Høffding argued, “there was an ascent from instinct, through intelligence, to 

made impossible by the spatialisation of duration and motion. See for instance Bergson (1907, pp. 
174–175).
65 To discuss the nuances of reception theory and historiography is well beyond the scopes of 
the present chapter. To fix ideas, it is enough to cite one particularly influential presentation 
of this approach: “Our current interpretations of ancient texts, whether or not we are aware of 
it, are, in complex ways, constructed by the chain of receptions through which their continued 
readability has been effected. As a result we cannot get back to any originary meaning wholly free 
of subsequent accretions. Meaning is produced and exchanged socially and discursively, and this 
is true of reading, even in a society like ours, in which it has become, to a greater or lesser degree, 
a ‘private’ activity. In order to be read, a text has to be made readable, in a complex process which 
begins with the acculturation of children and continues through educational institutions to wider 
interpretative groups” (Martindale 1994, pp. 7–8). 
66 On Høffding’s holistic epistemology and its influence on Niels Bohr’s understanding of quantum 
mechanics, see Faye (1991, pp. 77–109). One would be remiss not to note that intellectual 
exchanges went both ways, and Høffding frequently engaged with the scientific practice of his 
colleagues to substantiate his philosophical positions, including Zeuthen’s cognitive history of 
mathematics; see for instance Høffding (1915, p. 315). 
67 For related reasons, Høffding is equally skeptical of Bergson’s sharp demarcation between 
science and art (Høffding 1915, p. 299). 
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intuition.”68 Through the description of such an ascent, Høffding effectively sought 
to adapt Comtean narratives for the historical progress of scientific knowledge 
to Bergsonian distinctions between forms of cognition. He did so through the 
postulation of another law of three stages: the law that presides over the transition 
from unrefined instinct to a higher form of intuition through the necessary mediation 
of intelligence—that is, of a symbolic grasp on things.69 

Elaborating on this critique of Bergson, Høffding thus proposed a classification 
of the types and levels of intuition, so as to separate the “original and immediate 
intuition” from that “at which we arrive having passed through the work of analysis,” 
and to identify various transitional phases.70 Of this classification, “concrete 
intuition” forms the most elementary level of intuition: an example of it is “the 
perception of a sensible image upon opening one eye’s, image which at this 
stage forms a certain totality.”71 Other faculties, such as memory or imagination, 
contribute to this concrete intuition; the common factor being that they summon 
to one’s consciousness a totality in which no parts can yet be analysed, compared, 
or abstracted—tasks which will be accomplished through the use of intelligence. 
A second, intermediary level of intuition is then introduced, which in fact relies 
explicitly on intellectual activity: “analytical intuition,” Høffding explains, provides 
“immediate knowledge of a relation” between two totalities grasped by the first, 
concrete intuition.72 Through reflexive comparison of successive perceptions or 
representations, analytical intuition for instance enables one to grasp the similarity 
or identity between two objects of concrete intuition, and thus marks the “passage 
from perception to analysis.” 

Intelligence may then grasp these very objects through symbols and the method 
of analysis, but this is not enough to achieve the highest form of knowledge. 
As Bergson had argued, intelligence compartmentalises the comprehension of an 
object into the symbolic grasp of its particulars, thus not providing the complete

68 Høffding (1915, p. 252). Note the presence, here as in several other parts of this text, of 
then-fashionable evolutionary tropes. At a similar period, Høffding had extensively lectured on 
Charles Darwin’s theory of evolution: “Høffding revealed some reservations about Darwin’s 
scientific  theories  . . . In  spite  of  these  reservations,  Høffding  argued  that  Darwin’s  work  had  a  
profound impact on philosophy. In Høffding’s eyes, Darwin brought to victory a developmental 
and evolutionary view of life that also characterised the work of Spencer” (Hjermitslev 2014, pp. 
134–135). 
69 Høffding made no secret of his admiration for Comte, whom he described in his lectures as “the 
greatest figure of the nineteenth century” (Høffding 1915, p. 71). 
70 Høffding (1915, p. 253). 
71 Høffding (1915, p. 255). 
72 Høffding (1915, p. 257). Høffding in fact identifies some other intermediary forms of intuition, 
including a “metaphysical intuition” whose relation to Bergson’s intuition is discussed at length. 
I shall not enter these nuances here, as Zeuthen mostly ignored them and they only marginally 
concern the present discussion. 
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understanding one should strive for. This highest form of knowledge, in Høffding’s 
epistemology, is called “synthetic intuition” and defined as: 

The immediate perception of a connection or a totality which may be acquired by going 
through a series or a group of members or parts, if one has a certain comprehension of 
their mutual relations. Thus, the action of following a complicated demonstration, or of 
observing the connection between different points of view under which one and the same 
subject  can  be  considered,  often  becomes  the  object  of  a  comprehensive  glance  . . . Even  
the work of thought, analysis and demonstration, is useful to the intuition of totality . . . The  
view of the totality is conditioned by the regular connection discovered by the aid of thought 
. . . [This  intuition] differs at once from the observation of particular subjects and from the 
abstract knowledge of the laws which govern their appearance. It sees concrete existence in 
its individuality, and at the same time as a whole, as a folding together of the general laws 
by which it has inner connection with the rest of existence.73 

Analysis, which decomposes the totality first given by concrete intuition into 
symbols, is thus resolved into a new synthesis. The whole thus obtained is a 
much more potent object of knowledge as the one provided by concrete intuition, 
however, as intelligence has brought to the fore the properties of its individuals and 
allowed for the emergence of the patterns and connections that now structure the 
whole and its proper understanding. In fact, for Høffding, the sharper the analytical 
decomposition the clearer the intuitive synthesis; scientific practice thus synergizing 
with holistic epistemology, pace Bergson. 

And indeed, like Bergson himself, Høffding spent considerable amounts of time 
reading and engaging with the sciences of his time, whether it be psychology (to 
which he himself contributed), linguistics, or even mechanics. In this regard, his 
rational holism and his theory of the developmental stages of intuition were not 
merely to be viewed as correctives to Bergson’s philosophy, but rather as empirically 
supported description of the development of each and every form of scientific 
activity. 

In his 1882 Outlines of Psychology already, Høffding had borrowed the model 
for the formation of human languages proposed by the German philologist Friedrich 
Max Müller to argue for strikingly similar conceptions of the historical development 
of human cognition. This model, as Høffding recalled it, proposes that “human 
speech seems to have passed through three stages of development.” At the first 
one of these stages, words consist merely of roots; that is, of primitive sounds 
which operate as inseparable totalities and in direct correlation with individual 
sensations. At the second stage, roots coalesce two-by-two to form words— 
Høffding gives the artificial example of the composed word ‘meat-broth,’ which 
serves to distinguish in consciousness between various types of broths, but also 
to symbolise the conjunction of two kinds of food. And at the third, final stage, 
roots become so intractably intertwined that words form complex totalities, which 
only trained philologists can analyse back to their original components—a situation 
supposedly exemplified by the Aryan and Semitic languages. These stages are 
perfectly analogous to the levels of intuition discussed above, with words being

73 Høffding (1915, pp. 257–258). 
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first associated to unrefined, instinctual totalities; intelligence forming then the 
first analyses and associations of these first totalities; and a higher intuition finally 
producing linguistic systems consisting of complex wholes which only a select 
few can analyse and decompose into the particulars involved in their genesis. 
Concluding his summary of Müller’s views, Høffding then stated in no uncertain 
terms the vast generality he ascribed to this sort of explanatory framework: 

The same holds good of every conception of a totality, which has been reached through 
the laborious working up of details; the totality stands out as the object of immediate 
intuition, of an “intuitive knowledge,” from which all discursive elements and processes 
have vanished. Here custom co-operates; the oftener we have gone through the details, the 
more completely and easily can the totality come instantaneously before us. Successive 
apprehension precedes simultaneous.74 

At this stage, it is worth pausing to consider how we moved from a discussion of 
ways of knowing, starting with Bergson’s distinction between analysis and intuition, 
to ways of forming objects of knowledge—such as linguistic systems, their syntax, 
and their semantics. This is no accidental slip: in Høffding’s dynamical conception 
of truth, forms and objects of cognition mutually determine each other. Colours, for 
instance, depend not only on the properties of things in the world but also on the 
beholder’s visual sensibility: their visual organs, the range of colours they are used 
to experiencing, the degree of effort they put into distinguishing between them etc.75 

In similar language, objects of knowledge in general are not merely given but rather 
form the “result of a process”—a process whose paradigmatic history is provided by 
the theory of the levels of intuition outlined above.76 Understanding and recalling 
the historical and cognitive processes through which totalities have emerged thus 
appears key in Høffding’s philosophy of science. To know how a language functions 
is not only to know how its components (nouns, verbs, grammatical rules, etc.) relate 
to each other, but also from which analytical decompositions and operations they 
arose—that is, their etymology, their relation to ancient tongues, etc. 

And this imperative was not only reserved to sciences dealing with human 
constructions such as language or colour perception: discussing James Clerk 
Maxwell’s analysis of the idea of motion, Høffding stressed its importance for 
geometry itself: 

Geometry, in its relation to the doctrine of motion is, in fact, derivative, or is a part of the 
latter; for geometry is peculiarly concerned with the process by means of which figures are 
produced in space. A line is not originally a mark on the blackboard, which can equally be 
called BA as AB, but it is the locus of a motion from A to B. The idea of motion lies back 
of the idea of form . . . We are far too much accustomed to hold fast to ready-made symbols 
and figures, and to overlook the genetic process of sense-perception and of thought.77 

74 Høffding (1891, pp. 163–164). In Müller’s theory, these stages are respectively called the 
radical, terminational, and  inflexional stages. 
75 Høffding (1891, pp. 103–104). 
76 Faye (1991, pp. 83–85). 
77 Høffding (1915, p. 111).
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One can very well picture how struck Zeuthen must have been upon hearing 
Høffding establish such connections between holistic philosophy and geometrical 
practice. Forgetting from which motions curves derive, manipulating symbols 
whose origin is lost—those were the very flaws he had detected in the work of 
predecessors and contemporaries, the very dangers against which he had warned 
students and colleagues. When using formulas such as De Jonquières’s .αμ or 
Poncelet’s .m∗ = m(m − 1), Zeuthen had shown, one must at all times remember 
that one is using symbols representing conics that derive from a specific “genetic 
process,” namely the view that curves are generated through the continuous motion 
of a point. But where Høffding in his lectures devoted only a few side-remarks to 
the mathematical sciences, Zeuthen saw an invitation to develop a novel account of 
geometrical intuition, both as a way of knowing and a way of forming geometrical 
objects. 

21.5 Perceiving Totalities 

Having explored Zeuthen’s engagement with enumerative geometry as well as 
Høffding’s rational holism, we are finally able to return to Zeuthen’s 1914 address 
(as well as to a few later, related texts) and to give a fuller account of the theses 
expounded therein. In essence, the main thrust of this address was to sketch the 
outlines of a ‘method of intuition’ (to borrow from another key term of Bergsonian 
philosophy) in modern geometry, and to appraise the epistemic benefits one could 
derive from embracing such a method in lieu of symbolic (that is, computational) 
ones. 

A first component of this project involved distinguishing between two forms of 
understanding of a mathematical proof along the lines of demarcation outlined by 
Bergson and Høffding. By intuitive understanding of a proof, accordingly, Zeuthen 
understood a “holistic” understanding of a proof—i.e., a total overview of an 
organically connected chain of propositions, each of which supports and verifies the 
others. Zeuthen then contrasted such an overview with a “logical” understanding 
of that same proof, an understanding which is limited to the mechanical derivation 
of each isolated symbolic step thereof, be it a computation or the invocation of a 
certain axiom. In other words, while reading a long and complicated proof, one 
may verify that each individual lemma in it is correctly established or that each 
individual computation in it is valid, and therefore be forced to acknowledge that 
the final statement has been proven. These verifications, however, are isolated and 
independent from each other (although one must ensure that they follow on a local 
level). Possessing an intuitive understanding of that same proof, by contrast, means 
being able to “encompass [at once] a recollection of all the particular inferences” 
present in it; that is, being able to account for the mutual dependence of its 
lemmas, its definitions, and its computations. From a foundational perspective, 
logical understanding may be enough to ground mathematics as a body of theorems; 
but Zeuthen argued that it leaves the working mathematician exposed to failure and
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“personal errors” [personlig Fejl], and therefore cannot provide the level of certainty 
and comprehension that a total intuition does.78 Already in 1877, Zeuthen had 
privately confessed to Halphen that “a mathematical truth [was] to him somewhat 
frightening, so long as he [did] not see its connection to other truths, or a path that 
[could] lead him to it.”79 

Zeuthen’s worry makes sense when viewed in light of the above discussion 
of theorems of algebraic geometry such as Poncelet’s .m∗ = m(m − 1) formula. 
Suppose such a formula is invoked in the course of a complex proof, possibly even 
as a lemma with a specific subproof, and suppose that its symbolic expression 
is correctly employed to derive another result. At the local level of mechanical 
verification, both steps might appear as perfectly valid, but one may still worry 
that, in the course of the larger proof, Poncelet’s formula be implicitly used in 
cases where its generality is faulty—i.e., that the assumptions it carries regarding 
the particular/general distinction in the theory of algebraic curves be no longer 
acceptable in other parts of the proof. Or, to borrow another domain of mathematics 
which Zeuthen frequently cites in relation to such epistemic fears, one may locally 
use valid computations with infinite series only to mistakenly use results of said 
computations outside of their initial domain of applicability—for instance, in 
domains where these series no longer converge. More generally, Zeuthen explains, 
in the absence of intuitive oversight, he does not “feel altogether secure regarding 
the possibility that the result obtained with one inference had not been used in 
a subsequent one with a greater extension than had been proved.”80 Intuitive 
understanding prevents such issues precisely because the encompassing gaze it 
provides connects at once all particular elements of the proof, thereby making it 
immediately apparent whether or not such errors are being committed or not.81 

In this view, the certainty of mathematical knowledge has less to do with its 
logical foundations and mechanisms than with the trained form of human intuition 
that can perceive it as a whole, control its internal coherence, and understand its 
organisation.82 

But Zeuthen’s concept of holistic intuition was not limited to the comprehension 
of mathematical proofs. Borrowing from Høffding’s general theory of intuition, 
Zeuthen relied on this latter concept to construct an account of the historical 
and psychological formation of mathematical objects, and especially geometrical 
figures. And in such an endeavour, Høffding’s comparison of various levels of

78 Zeuthen (1914b, p. 277). 
79 Letter from Zeuthen to Halphen dated Dec. 1st 1877, Bib. de l’Institut, Paris, Cod Ms 5624/225; 
Michel (2020, p. 473). 
80 Zeuthen (1914b, p. 277). 
81 In this sense, intuition is the faculty that undergirds the rational use of methods as described 
previously. 
82 In his final volume on the history of Ancient Greek geometry, Zeuthen would similarly argue 
that what makes mathematics a “reasoned science” is not merely “logical conclusions derived from 
arbitrary suppositions,” but the constitution of a “whole, in which hypotheses and conclusions are 
equally accounted for” (Zeuthen 1917, p. 174). 
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Fig. 21.4 Edgar Rubin’s 
vase, from his doctoral 
dissertation Synsoplevede 
Figurer (1915), a 
paradigmatic illustration of 
Gestalt psychology 

intuition would prove key in identifying different ways to perceive and apprehend 
geometrical totalities. 

The most primitive form of geometrical knowledge (and thus the most primitive 
geometrical figures), Zeuthen asserted, had emerged through the use of a primitive 
form of intuition: the “apprehension of a total image, through a combination of 
bodily and mental faculties.” Vision, of course, but also tactile perception, memory, 
and the ability to bring together or collate recollections all partake in the mostly 
unconscious formation of the first intuitive figures, which appear as complex 
totalities, out of reach of conscious (e.g., linguistic) description or analysis. As 
Edgar Rubin’s well-known studies of figure-ground perception (see Fig. 21.4) had 
shown, for Zeuthen, the identification of shapes and borders within the complete 
image perceived by one’s eyes could only derive from the formation and use of 
an intuitive sense.83 Moreover, Zeuthen noted, such a faculty was even subject 
to historical change, as painters of the Renaissance would increasingly appreciate 
perspective and thus identify new intuitive features within perceived images—just 
as perceptions of colours in Høffding’s psychological theories partially depend on 
the biological and cultural environment of the beholder.84 Through a historical and 
cognitive study of this process, Zeuthen thus depicted the emergence of geometry as 
the deployment and refinement of a “holistic sense” [Helhedsfornemmelse], that is to 
say a primitive form of intuition. Such a sense may be said to be holistic, he argued, 
because it “encompasses the particulars of the whole, none of which yet appear to 
consciousness”: it gives rise to intuitive images in which one can perceive shapes 
or borders whilst keeping subconscious the process of aggregation of memories and 
sensations that led to this perception.85 

83 Rubin defended his dissertation at the University of Copenhagen in 1915. By this point, he had 
been studying psychology and philosophy under (among others) Harald Høffding for some seven 
years. The cousin of Niels Bohr, he was already well integrated into the Danish scientific elite. 
His work would be rapidly co-opted by major proponents of Gestalt psychology such as Max 
Wertheimer (to whom I return shortly below). On Rubin’s scientific training and psychological 
contributions, see Pind (2014). 
84 Zeuthen (1914b, p. 53). 
85 Zeuthen (1914b, p. 274). This psychological account of the formation of geometrical objects is 
expressed in greater detail in Zeuthen (1917, pp. 46–54; 373).
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This pre-scientific intuitive grasp on geometrical objects and knowledge, Zeuthen 
explained, was allegedly that of “Eskimos” who “should be able to draw a very 
reliable coastline,” for they had—out of practical necessity, presumably—trained 
their senses so as to identify and represent the shape of the surrounding coastlines 
and to form an intuitive sense of the mathematical concept of “similarity” between 
shapes.86 Such a sense could prove extremely useful, as the intuitive knowledge that 
these imaginary Eskimos possess of their surroundings is sufficient for “the drawing 
of a very reliable coastline” by simple homothety; that is, without a conscious (let 
alone symbolic) grasp on the particulars that form the relation of similarity between 
the coastline and their intuitive representation of it.87 

However, Zeuthen continued, this sense is not a sufficient basis for the emergence 
of mathematics as a rational endeavour. This is due precisely to the fact that 
intuitive images thus obtained erase the particulars from which they were formed. In 
drawing intuitive maps of coastlines, for instance, Zeuthen’s Eskimos are incapable 
of introducing symbols for the magnitudes and angles present in the similar 
representations (i.e., maps) of the borders of their land, thereby not allowing for 
the development of a general theory of these figures.88 The introduction of such 
symbols, whether it be numbers for lengths, algebraic equations, or technical words 
like ‘similarity’ or ‘plane’, thus marks the passage from a primitive form of intuitive 
certainty to scientific knowledge—mirroring the first transition of Høffding’s own 
law of three stages, i.e., the first ascent from naive intuition through intelligence.

86 Zeuthen (1914b, p. 276). Note that the term Eskimo is no longer used to describe the ethnic 
groups Zeuthen was referring to and is in fact regarded as derogatory by many. One speaks instead 
of the Inuit and the Yupik. Zeuthen’s attribution of various levels of intuition to various peoples 
echoes Klein’s infamous 1893 lecture on spatial intuition during the Evanston Colloquium, in 
which a distinction between naive and refined intuition is drawn and distributed across racial lines 
(Klein 1894, pp. 41–42). Quite strikingly, Klein refers to Zeuthen’s historical research to position 
Euclid as a pivotal figure in the passage between these two forms of intuition. In fact, in another 
of these lectures given on American soil, Klein also presented Zeuthen’s work on plane quartics 
in the context of his defence of anschauliche Mathematik, though he ascribed to this latter term a 
rather different meaning. On Klein’s racial theory of intuition, see Jemma Lorenat’s chapter in this 
very volume. 
87 Elsewhere, Zeuthen described in similar fashion the emergence of an intuitive image of space in 
pre-scientific Greek geometry (Zeuthen 1917, p. 49). Zeuthen also noted that one can of course be 
taught to perceive such forms, something he viewed as routinely achieved in modern classrooms. 
However, for historical and epistemological purposes, he elected to focus on the spontaneous, 
organic emergence of such holistic intuitions (Zeuthen 1917, p. 51). 
88 It must be noted here that, as with his repurposing of Rubin’s work, Zeuthen was effectively 
connecting his philosophy of geometry to salient cultural references adapted to his Copenhagen-
based audience. Indeed, artefacts coming from Greenland (and thus from the hands of otherised 
‘Eskimos’) were of great interest to the Danish cultural elite, with explorers’ travel reports and 
public displays in ethnographic museums such as the National Museum of Denmark (National-
museet) garnering much success. And Inuit maps, whether drawn on flat surfaces or even carved 
on wood in three dimensions, had prominently featured in such displays (see Figs. 21.5 and 21.6). 
On these latter carved maps, which were brought to Copenhagen by the Danish explorer Gustav 
Holm in 1885 (De Jonghe 2022, pp. 60–63). 
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Fig. 21.5 R. J. Flaherty & 
Wetallok, Map of Belcher 
Islands (1909). US Library of 
Congress, www.loc.gov/item/ 
2021668436/ 

Fig. 21.6 Wooden Inuit 
Maps, Ammassalik Coast 
(Eastern Greenland), 
Greenland National Museum 
and Archives 

For reasons explained above, still, such symbolic encoding of intuitive images 
cannot suffice to buttress the mathematical practice of actual human agents. 
“From a logical standpoint,” Zeuthen stressed, “it is indeed enough to possess 
this mechanically accumulated sum of knowledge [mekanisk opdyngede Sum af 
Viden] expressed via symbols, but from a psychological standpoint, it is important 
. . . to  gather  all  this  knowledge into an organic and connected whole [organisk 
sammenhægende Hele].” Having symbolically analysed original intuitive totalities, 
one must still return them as wholes to intuition—but to a higher form thereof, 
which Zeuthen calls “holistic cognition” [Helhedserkendelse].89 

This holistic cognition, corresponding to the final stage of Høffding’s devel-
opmental model, consists in a form of holistic intuition wherein particulars can 
freely be conjured up before our consciousness, through the controlled use of 
symbols if necessary. It thus keeps the holistic quality of intuitive sense, thereby 
guaranteeing the clarity and understanding that mechanical reasoning fails to 
provide, but it also possesses the scientific quality that only symbols could bring 
by analysing the intuitive image qua totality into individual parts. This level of

89 Zeuthen (1914b, p. 276). 

www.loc.gov/item/2021668436/
www.loc.gov/item/2021668436/
www.loc.gov/item/2021668436/
www.loc.gov/item/2021668436/
www.loc.gov/item/2021668436/
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intuitive understanding is what one should strive for while mastering a formula, 
Zeuthen explains: 

Such a formula is entirely composed of symbols. They who know [these symbols] may 
apply this formula to such individual cases [Enkelttilfælde] as are obtained by giving 
determined numerical values [bestemte Talværdier] to symbols of magnitude [Symbolerne 
for Størrelser]  . . . The  wholly  new  investigations  in  which  [this  formula]  may  be  useful,  
however  . . . may  only  be  carried  out  by  one  who  possesses  an  intuitive overview, which  
regroups in one all the particulars of the formula, preferably with the addition of a 
recollection of the role played by these particulars in its genesis.90 

Such a process is not limited to ancient or elementary geometry: in fact, Zeuthen 
notes, it can still be observed in the latest branches of algebraic geometry, such 
as the theory of curves of the fourth order.91 This general description of what it 
means to master a formula must then be put in perspective with Zeuthen’s diagnosis 
regarding the imperfections and uses of Chasles’s .αμ + βν formula. This is, after 
all, a formula composed entirely of symbols and which may be applied (in fact, 
which had been applied) to a great many individual cases in order to determine 
numbers of conic sections satisfying certain conditions. As Halphen’s memoirs had 
shown, however, to employ this formula safely and fruitfully in further research, 
one had to master more than the symbols featured in it or the elementary rules of 
arithmetic. Rather, one had to maintain constant overwatch over the infinite variety 
of particulars that can arise in the use of this formula, that is to say, all of the 
ways conics being enumerated could degenerate and cease being ‘general’ curves. 
To master the formula is therefore to remember which viewpoints on conics these 
symbols originated from (i.e., the double viewpoint on conics as point- and line-

90 Zeuthen (1914b, p. 278). Emphasis mine. At a similar period, though with different mathe-
matical and philosophical references in mind, Henri Poincaré also critiqued the insufficiency of a 
purely formal (or logical) conception of mathematical knowledge while stressing the importance 
of understanding the genesis of mathematical proofs and concepts. This is why Poincaré, like 
Zeuthen, emphasised the necessary role played by intuition in the formation and the justification 
of said knowledge. One reconstruction of Poincaré’s views holds for instance that “pure intuition 
is necessary [to] understand [pure mathematics’] justifications and its proofs. The context of 
justification is pragmatically connected with the logical reconstruction of the genesis because 
‘to understand mathematics means to learn their development. So, if S has a true belief for p, 
justified by a formal proof, it does not follow that he is understanding p” (Heinzmann 1999, p.  
45). Repurposing language quite close to Zeuthen’s, Poincaré also placed mathematics on both 
sides of the intuition/intelligence divide by stressing the importance of “aesthetic sensibility” in 
mathematical practice as well as the inability of logic to provide cohesive understanding of the 
unity of a theory or proof: “When the logician has resolved each demonstration into a host of 
elementary operations, all of them correct, he will not yet be in possession of the whole reality; 
that indefinable something that constitutes the unity of the demonstration will still escape him 
completely. What good is it to admire the mason’s work in the edifices erected by great architects, 
if we cannot understand the general plan of the master? Now pure logic cannot give us this view of 
the whole; it is to intuition we must look for it” (Poincaré 1952, p. 126). Unlike Zeuthen, however, 
Poincaré did not go as far as theorising a use and a form of intuition that could lead to the sort 
exactness and certainty that formal arguments provide. 
91 Zeuthen (1914b, p. 276). 



568 N. Michel

figures) so as to know when it can be mechanically applied and when a certain 
number of foreign solutions had to be subtracted. Whether it be geometrical proofs 
or objects, proper knowledge requires both holistic overview and acute awareness 
of the genetic processes they derive from—the trained gaze which first constituted 
them. 

21.6 Conclusion: Geometry as a Way of Seeing 

Zeuthen’s epistemology and ontology of mathematics, now situated at the intersec-
tion of two specific locales—the emerging community of (algebraic) enumerative 
geometers and Harald Høffding’s lecture halls—thus appears indissociable from 
scientific and intellectual trends on a much wider scale, both in a geographical and a 
disciplinary sense. Alongside a new generation of scientists lamenting and reacting 
to the rise of atomising, mechanical explanations of the world, Zeuthen sought to 
construct in his own mathematical parcel an alternative form of objectivity and 
cognition: one that would rely on critical forms of reasoning rather than automatic 
calculations, on one’s refined intuition rather than on supposedly trustworthy 
symbolic rules, and on an appreciation for the historical and psychological origins of 
the figures under study. Or, in other words, Zeuthen sought to theorise a conception 
of mathematics, its epistemology as well as its ontology, that does not elide the 
figure of the mathematician at their centre: that is, of the epistemic agent who 
perceives, connects, understands, and constructs objects of knowledge. 

That such concerns and reactions were quite topical at this period is immediate if 
one compares the claims made above with the definition of “trained judgement” 
proposed by Lorraine Daston and Peter Galison in their history of scientific 
objectivity, an ideal which they argue emerged around the turn of the twentieth 
century and define as 

an act of cultivated perception and cognition . . . that  was  both  anti-algorithmic  and  
anti-mechanistic. Trained judgement . . . [stands]  opposed to—or perhaps on top of— 
the fragmented building-up, the mechanically calculated, automated, protocol-driven set 
of procedures. Scientific image judgement had to be acquired through a sophisticated 
apprenticeship, but it was a labour of a very different sort from the rehearsed moves of the 
nineteenth-century mechanical objectivist. Interpreted images got their force not from the 
labour behind automation, self-registration, or absolute self-restraint, but from the expert 
training of the eye, which drew on a historically specific way of seeing.92 

One paradigmatic example of this specific conception of and quest for scientific 
objectivity lies in the core tenets of Gestalt psychology as they had been formulated 
in the early 1910s, e.g. by Austro-Hungarian psychologist Max Wertheimer. Follow-
ing Gabriele von Wartensleben, one of Wertheimer’s first and most acute students,

92 Daston and Galison (2006, p. 331). 
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one can encapsulate those tenets in the following theses:93 

• “The contents [Erlebnisinhalte] of our consciousness are mostly not summative, 
but constitute a particular characteristic togetherness [Zusammensein].”

• “Most impressions are grasped as chaotic masses . . . on  the  way  to  sharper  
formations [Gestalten]. What is finally grasped are ‘impressions of structure’ 
[Gebildefassungen]  . . . They  are  something  specifically different from and more 
than the summative totality of the individual components. Often the ‘whole’ is 
grasped even before the individual parts enter consciousness.”

• “The process of knowing is very often a process of ‘centring,’ [Zentrieren] i.e., 
of ‘structuring’ [Gestalten] that particular aspect which provides the key to an 
orderly whole, a unification of the particular individual parts that happen to be 
present.”

• “The entity that results from the knowledge process depends in many respects 
not only on the object, but also on the observer. Thus there are several ways of 
grasping many phenomena, but generally only one can be correct: that which 
makes all states understandable and derivable from the central ‘idea’ and thus 
gives meaning to the entire given.” 

Drawing out the parallel to Zeuthen’s reconstruction of the origins of geometrical 
cognition thus yields a striking match. In it, geometrical figures first appear to our 
consciousness not as collections of shapes and magnitudes, but as wholes which we 
progressively learn to comprehend by identifying borders and similarities. These 
identifications amount to grasping structures on the whole, through which individual 
parts (the interior and the exterior of a given line, for instance) are brought to 
consciousness—an activity we may also regard as a centring of the perspective 
on totalities. Through such centring, the whole is made orderly: its particulars 
are brought to consciousness, but one’s intuitive grasp still oversees their mutual 
connection as well as the perspective from which they originate. Crucially, the 
mathematical object resulting from this process (e.g., the general conic section) 
depends on the perspective from which the data of unrefined intuition was centred: 
this is exactly what Zeuthen had explained when dissecting the history of algebraic 
curves and systems of conics.94 

93 von Wartensleben (1914, pp. 1–3), emphases in the original, cited in Ash (1995, pp. 123– 
124) (whose translation I reproduce with minor alterations). Ash describes this summary as 
“[containing] nearly all of the fundamental principles of Gestalt theory, with their implications 
for logic and the theory of knowledge.” For a study of the cultural history of holism and 
Gestalt psychology in Germany at this period, see also Harrington (1996). It must be noted 
here that the literature on scientific holism suffers from a quasi-exclusive focus on the German-
speaking territories, thereby not fully restoring the specificities of the brand of holism developed 
simultaneously by the Danish authors discussed here and in the previous pages. This gap is yet to 
be filled.
94 This parallel should not be misconstrued as an indication that Høffding, Zeuthen’s foremost 
psychological reference, was a Gestaltist. Rather, his own psychological theory is closer to that 
of the English associationists such as Mill and Spencer; see Pind (2014, pp. 32–37). Furthermore, 
the peak of Høffding’s engagement with psychological research predates the rise in popularity of
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Gestalt psychologists were no relativists, however. Rather, their quest was one 
“for objective order that lies not behind, but within the flux of experience.”95 This is 
why von Wartensleben, upon concluding her summary, stressed the existence of one 
superior perspective on the totalities present to our consciousness. It is not enough to 
say that one can identify various structures in them; one must still seek to join them 
into one all-encompassing gaze. In Zeuthen’s holistic epistemology of geometry, 
such a perspective was to be found in the ‘absolute’ theorems of sort exemplified 
by Halphen’s enumerative methods. Absolute knowledge, here, is one in which 
intuitive apprehension of the totality is maintained (thereby eschewing the ruinous 
reduction to a series of symbolic inferences that computers limit themselves to), 
but in which particulars can always be brought up to consciousness and critically 
assessed if necessary, the modalities of their genesis being equally transparent to 
the knowing agent. The art of the intuitive geometer, in sum, is the art of perceiving 
totalities; and while axioms and inferential rules may found geometry as a logical 
system, it is this art which, for Zeuthen, founds geometry as mathematical practice. 

Understood in this way, Zeuthen’s intuitive cognition appears constitutive of a 
‘way of seeing’ geometrical figures, a technique for the perception of a totality that 
allows for specific modes of (symbolic) individuation, a gaze that requires individual 
training, self-control, but also slow and massive historical progress.96 Beyond, or 
rather beneath epistemological discussions of the respective merits of intuition and 
computations, Zeuthen’s was an attempt at reconfiguring the relationship between 
the mathematician and their objects, and at reinventing the practices of objectivity 
which modern enumerative geometry called for. 

Acknowledgments My gratitude goes to Viktor Blåsjö for his linguistic help with the Danish 
sources; all remaining errors being of course solely mine. Previous versions of this paper have 
been significantly improved thanks to remarks from Karine Chemla, Chanchan Guo, Eric M. 
Gurevitch, Francois Lê, Jemma Lorenat, and David Waszek. I also wish to thank audiences at 
the Toeplitz Kolloquium in Bonn and the Geometry Center in Utrecht for their useful feedback on 
early presentations of this material. 

Gestaltist theories. Many of Høffding’s insights, however, would later be put to good use by Gestalt 
theorists, including but not limited to Rubin; see Ash (1995, pp. 84–85).
95 Ash (1995, p. 2). See also, a few paragraphs below: “[The Gestalt theorists] challenged the 
empiricist assumption that ‘sense data’ are the ‘atomic facts’ of experience by arguing that there are 
no such unambiguous ‘data.’ Rather, they maintained, the objects we perceive are always located 
in what would now be called self-organising systems—constantly changing dynamic contexts or 
situations, of which our phenomenal selves, too, are parts.” 
96 I borrow this expression from Berger (1972), though Berger himself shaped it on the back 
of his reading of Walter Benjamin’s 1935 essay The Work of Art in the Age of its Mechanical 
Reproduction, and especially the suggestion expressed therein that modes of human perception (of 
works of art) are not ahistorical, but in fact did and do change in keeping with transformations in 
culture and civil society. For a comparable perspective on the historicisation of ways of perceiving 
geometrical figures, see Lorenat (2015a). 
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Chapter 22 
Variations on Enriques’ ‘Scientific 
Philosophy’ 

Umberto Bottazzini 

Abstract In the 1930s Federigo Enriques presented the essential elements of his 
‘historical epistemology’. This was the result of a long philosophical journey that 
began in the last decade of the nineteenth century, and from his early interest in the 
philosophical problem of space and in the philosophy of geometry grew up to his 
critical approach to the nature of scientific knowledge as discussed in his Problemi 
della scienza (Enriques, 1906). Eventually, through his criticism of both kantianism 
and logical empiricism he elaborated his new epistemology founded on historical 
criticism of scientific theories. 

22.1 Introduction 

Paris, September 15, 1935. Congrès international de philosophie scientifique. 

J’appartiens – moi – à la génération de ceux qui, élevéés dans le milieu de la philosophie 
positive, ont vu, dans leur jeunesse même, se relever l’étendard de l’idéalisme métaphysique 
et engager une lutte violente contre l’esprit positif. Après trente années dominées par ces 
courants de la pensée, j’assiste aujourd’hui au renouveau de la philosophie scientifique, qui 
– à la vérité – n’a jamais cessé d’exister et d’être affirmée, pendant cette période, par des 
penseurs sortis du domaine des sciences particulières, mais qui, – depuis quelque temps 
– semble reprendre force, tendant à une domination nouvelle sur la culture. C’est là un 
événement que je salue de tout mon coeur. (Enriques, 1936b, p. 23) 

There was an evident autobiographical flavor in the words with which Federigo 
Enriques, in the opening talk of the first section of the Congrès, devoted to 
Rationalisme empirique et empirisme logique, hailed “the revival of scientific 
philosophy”. Not only did he have to fight ‘metaphysical idealism’ in his youth, 
but he was one of the “thinkers from the field of particular sciences” (namely, 
mathematics) who in the last decades has steadily risen as a defender of scientific 
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philosophy. What was meant by “scientific philosophy”? How could it be defined? 
In Enriques’ words, 

La philosophie scientifique, en tant qu’elle aspire à établir une discipline supérieure de la 
pensée rationnelle, ne saurait se réduire à un système philosophique particulier, résolvant 
en un sens déterminé les oppositions traditionnelles des écoles. (Enriques, 1936b, p. 24) 

But he was not the only one to offer a definition of it. For instance, in the opening 
address of the Congress Louis Rougier stated: 

Nous croyons que la philosophie peut devenir scientifique, en prenant pour objet la 
science elle-même, et pour méthode l’analyse logiques de ses notions, de ses propositions, 
de ses théories, de ses démonstrations. Ainsi comprise, la philosophie constitue ce que 
on a proposé d’appeler la syntaxe et la sémantique du language scientifique. (Rougier, 1936, 
p. 8) 

This conception, developed mainly by the followers of the Vienna circle, 
reduces the philosophers to play the role of “grammairiens de la science”, Rougier 
continued. By establishing the tautological character of thought thanks to logic, 
they were able to “achever la désagrégation de l’apriorisme au profit de l’empirisme 
logique”, he claimed before ending his address with the invitation to pay homage on 
one side to the ancestors of the Vienna school Frege, Peano, Hilbert, and above all 
to Russell, “notre maître à tous”, as well as on the other side to Poincaré, Mach and 
Duhem. 

Following Rougier’s talk Russell, who attended the Congress, took the floor to 
say he was “glad that Frege and Peano received due honors”. Then he mentioned 
Leibniz, Wittgenstein and both the Vienna and the Polish schools, and concluded his 
address stating that “modern science arose from the marriage of mathematics and 
empiricism; three centuries later, the same union is giving birth to a second child, 
scientific philosophy” prophesying that the latter “is perhaps destined to as great a 
career” (Russell, 1936, p. 11). 

In turn, Russell’s speech was followed by Enriques’s. In his short welcome 
address the Italian mathematician/philosopher argued that philosophical freedom 
must be preserved within scientific thought adding that the danger threatening the 
revival of scientific thought was logicism “d’où pourrait bien sortir une nouvelle 
scolastique” (Enriques, 1936a, p. 12). 

Enriques’ talk Philosophie scientifique opened the first section of the Congress 
devoted to “Rationalisme empirique et empirisme logique”. After his confession 
of juvenile philosophical faith quoted above, Enriques accused positive philosophy 
of having lost “le sense de l’unité du savoir”, and warned against the risks 
of dogmatism of the positivist philosophers who cite scientific manuals “avec 
l’assurance des théologiens qui se réclament de la Bible” (Enriques, 1936b, p. 25) 
while the savant chercheur et critique (maybe, Enriques himself?) could not find in 
their considerations the atmosphere of doubt needed for the life of reason. 

According to Enriques, his criticism of Kantian apriorism could also be 
addressed to the renewed currents of thought that the program of the Congress 
“semble confondre un peu avec la ‘philosophie scientifique’ tout court” (Enriques, 
1936b, p. 26), namely the empirical logicism. In spite of his great interest in the
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ideas and critiques of the followers of this philosophical school he stated openly 
he would be less willing to admit that “leur système constitue la seule philosophie 
vraiment scientifique”. Enriques continued: 

Je me défie davantage du logicisme. La raison qui construit la science, et qui se révèle par 
l’évolution historique de la pensée, ne saurait s’expliquer par une analyse purement logique. 
(Enriques, 1936b, p. 26) 

In other words, “un système de signes vide et tautologique” could not “satisfaire 
notre raison scientifique” Enriques added. In his opinion, logic itself posed a 
problem. Actually, what is meant by logic? Enriques asked. If it is viewed as an 
analysis of the operations of the mind there is the risk of falling into psychologism. 
If, on the contrary, we consider logic as aiming at relationships that are somehow 
outside our mind we are getting very close to the medieval position oscillating 
between metaphysical realism and nominalism. Summing up, he concluded, “des 
deux côtés je vois surgir devant nous le spectre d’une nouvelle scolastique”. 
(Enriques, 1936b, p. 27) 

The same view was shared by Lautman, who attended the Congress. In his talk 
Mathématiques et réalité he stated: 

Les logiciens de l’Ecole de Vienne prétendent que l’étude formelle du langage scientifique 
doit être le seul objet de la philosophie des sciences. C’est là une thèse difficile à admettre 
pour ceux des philosophes qui considèrent comme leur tâche essentielle d’établir une 
théorie cohérente des rapports de la logique et du réel. (Lautman, 1936, p. 24) 

There is a physical reality—Lautman continued—and ‘a miracle’ should be 
explained, namely the fact that the most developed mathematical theories are needed 
to interpret such a reality. (To the modern reader Lautman’s words recall Wigner’s 
claim about “the miracle of the appropriateness of the language of mathematics for 
the formulation of the laws of physics” as he stated in his celebrated paper (Wigner, 
1960)). A philosophy that would not be entirely concerned with this solidarity 
between domains of reality and methods of investigation would be singularly devoid 
of interest, was Lautman’s conclusion. 

As for Enriques, this kind of conclusion was not new. In recent years he repeated 
it in his reviews of texts by logical positivists published in Scientia, the journal 
he founded in 1907. Reviewing Carnap’s essay L’ancienne et la nouvelle logique 
(1933) Enriques warned that 

Nous devons faire les plus grandes réserves sur la valeur que l’éminent auteur attribue à 
la tendance de la critique logique. Car une philosophie qui tirerait sa norme exclusivement 
de cette logique risquerait de revenir au point où se trouvaient les écoles médiévales, dont 
l’idéal des nouveaux logiciens se rapproche si singulièrement. (Enriques, 1935, p. 69) 

He also disagreed with Carnap’s claim that the precise logical method was going 
to give the coup de grâce to all forms of metaphysics. Instead, Enriques objected that 
precisely starting from his own research in logic Russell arrived at “une nouvelle 
métaphysique réaliste”, something that according to Carnap’s critique of logic 
should turn out to be meaningless. And finally he challenged Russell’s position,
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adopted by Carnap, which reduced mathematics to be a branch of logic as “un stérile 
jeu de combinaisons tautologiques”. (Enriques, 1935, pp. 69–70) 

In the same issue of Scientia Enriques published his review of Ph. Frank’s 
essay Théorie de la connaissance et physique moderne (1934). As “ce nouveau 
positivisme a beaucoup points de contact avec notre pensée” Enriques admitted 
(Enriques, 1935, p. 227), it was interesting to highlight the differences. To this 
aim it was necessary to go back to Mach, whose disciple “dans un sens large” 
he was pleased to proclaim himself. However, according to Enriques, it was too 
limiting for the scientist’s activity to reduce science to the economic description of 
facts by excluding “la répresentation imaginative d’une réalité plus vaste, construite 
pour satisfaire les exigences de la raison”. His beliefs—Enriques added—matured 
as a reaction against certain tendencies in which the conception of truth dissolves 
either into forms of pragmatism as W. James’s that will eventually lead to a new 
“idéalisme métaphysique”, or into “positions scolastiques” as Duhem’s (Enriques, 
1935, p. 228). 

Enriques repeated essentially the same criticism in his review of Carnap’s 
essay La Science et la Métaphysique devant l’analyse logique du language (1934). 
Although in his essay Carnap offered “un spécimen savoureux de la philosophie de 
Heidegger (‘le Néant néante’)” (Enriques, 1936c, pp. 109–110) Enriques claimed 
to have no illusions that it will contribute to “refroidir l’enthousiasme de tant de 
fanatiques de ce genre de spéculations”. A more serious objection to Carnap’s 
logicism was that “tendances naturelles à l’ontologie” could be expressed through 
mathematical logic as Russell’s renewed realism showed. In the end, he invited to 
look with a certain mistrust at this philosophical conception that “nous ramène assez 
près de la mentalité médievale”. In Enriques’ opinion, one of the clearest and most 
in-depth expositions of the ideas of the Vienna circle (Mach-Verein) was provided 
by H. Hahn’s essay Logique, mathématique et connaissance de la réalité (1935). 
But, against Hahn’s conception, Enriques stated once more: “nous devons protester 
contre le jugement d’après lequel la pensée logique ne serait que tautologique”. 
(Enriques, 1936c, p. 176) 

As Lolli (Lolli, 2018, p. 121) has remarked, this notwithstanding, Enriques was 
appointed to the International Committee of the Congress for the Unity of Science, 
planned to take place in Paris, along with Carnap, Frank, Neurath, Reichenbach, 
Schlick, Morris, Niels Bohr, Rougier, and Russell among others. He had already 
been listed among the ancestors of the neo-positivist philosophers in the manifesto 
of the Vienna Circle, written by Hahn, Neurath, and Carnap (Hahn-Neurath-Carnap, 
1929). In addition to Enriques, under the heading “Foundations, goals and methods 
of empirical science (hypotheses in physics, geometry, and so on)” their list included 
Helmholtz, Riemann, Mach, Poincaré, Duhem, Boltzmann and Einstein. In fact, the 
reflections on the nature of space and geometry had been at the basis of Enriques’ 
interest in philosophy.
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22.2 Early Philosophical Hints 

“A train of thought which gradually came to maturity during the ten years from 1890 
to 1900 has resulted in a critical study of certain problems relating to the logical and 
psychological development of scientific knowledge” (Enriques, 1914, p. XIV). This 
was the philosophical path followed by Enriques as he confessed in the opening 
lines of his Problemi della scienza (Enriques, 1906), the book that marked his entry 
into the philosophical scene. 

At the beginning of the twentieth century, when Enriques entered the field of 
philosophy, he was one of the leading mathematicians of his days, a great geometer 
internationally recognized who achieved fundamental results in algebraic geometry, 
including the classification of algebraic surfaces obtained through joint work with 
Guido Castelnuovo. This notwithstanding, as his correspondence with the latter 
shows, Enriques has been involved in philosophical issues ever since he began 
teaching projective geometry at the university of Bologna. Or even many years 
before, according to the testimony of Gaetano Scorza-Dragoni, who once told of 
a conversation with Enriques during a walk in Rome: “We had both found ourselves 
led to the study of sciences, let’s say exact, by a high school philosophical infection 
and by the conviction that only in natural philosophy could we find an answer 
(admittedly, partial) to the problems that had fascinated us during the years of high 
school (liceo)” (In: (Enriques, 1958, p. 7))). 

Apparently, Enriques was provided by his students with the opportunity to 
resume his philosophical interests openly. On November 23, 1894 he wrote to 
Castelnuovo: 

Some young pupils ask me to give a course in Higher Geometry. I am not alien to the idea 
of  partially  satisfying  them  with  a  series  of  weekly  conferences.  [. . . ]  In  that  case,  I  will  
tell you the plan: they would be inspired by a general principle that completes that of Klein 
(Programm) in order to include various other types of research. (Bottazzini-Conte-Gario, 
1996, p. 151) 

A few weeks later he wrote that he had begun preparing the conferences, and 
explained: “I wanted to start with philosophical-mathematical reflections, and with 
the development of the concept of abstract geometry” (Bottazzini-Conte-Gario, 
1996, p. 164). Eventually, his conferences were collected in the lithographed volume 
Conferenze di geometria (Enriques, 1894–95). Under the heading “Foundations of 
a geometry of hyperspace” there Enriques began by stating that “Geometry has as 
its object the study of the relations inherent in the concept of space as it arises in 
our mind from the order of external sensitivity, that is, as it is presented to us by 
intuition” (Enriques, 1894–95, p. 2).  

As Peano argued, even according to Enriques “there is something arbitrary in the 
choice of the fundamental entities of space”, among whom there are relations “given 
a priori  as postulates”. These “are deduced from intuition and their complex takes 
the place of definition for the fundamental entities”, that is, it implicitly defines the 
fundamental entities “by establishing those mutual relations among them, which 
serve to fix them as much as necessary for geometric developments” (Enriques,
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1894–95, p. 3). Therefore, in Enriques’ eyes geometry appeared “in its principle 
and in its development” to be a “subjective” science, since the postulates reflect the 
concept of “intuitive space” present in our mind, the definitions and demonstrations 
being “only logical operations”. Whether “real” space corresponds to this “intuitive 
space” is a philosophical question “closely related to the problem of knowledge”, 
which Enriques only hinted at there, but which within a few years will become 
dominant in his interests. 

However, Enriques went on, the development of geometry is independent 
of its relationship with external reality. The distinction between “physical” and 
“subjective” geometry allows us to found various “more general” geometries, in 
which some postulate is disregarded through an analysis of the postulates conducted 
following (a) the “physical” criterion; (b) the “physical-psychological” criterion; 
and finally (c) the “logical” criterion. Enriques favored the last two criteria that are 
based on intuition and logic, since relying on logic alone “as some believe” would 
end up reducing “mathematics to a mere syllogistic exercise”(Enriques, 1894–95, 
p. 6). 

His aim was “to reconcile the needs of the logical spirit with the advantages and 
attractions that intuition confers on geometric studies”, as he would write in the 
introduction to Lezioni di geometria proiettiva (Enriques, 1898, p. V). (At Klein’s  
suggestion Enriques’ Lezioni were translated into German in 1903.) 

The fact that the postulates of geometry are “derived from intuition” allowed 
Enriques to hold a priori  that they are compatible with each other on the basis of 
the “principle of reason”, according to which “several truths conceived together as 
elements of the same concept are compatible” (Enriques, 1894–95, pp. 7–8). As for 
their independence, Enriques recognized its meaning both in the order in which the 
postulates are stated (as Peano claimed), and in their composition (since a postulate 
can “split into others, some of which can be deduced from the preceding ones”). 

Enriques’ interest was aimed at “abstract” geometry that “can be interpreted 
in infinite ways as a concrete (intuitive) geometry by fixing the nature of its 
elements” (Enriques, 1894–95, p. 9–10). Thus, for example, abstract plane geometry 
can be “interpreted indifferently as intuitive geometry on the plane or as that on 
developable surfaces”, and abstract projective geometry of space can be interpreted 
as a geometry of linear systems .∞3 of algebraic plane curves of given order, or 
as a geometry of the involutions of order .n(> 2) and of 3rd kind on the straight 
line (Enriques, 1894–95, p. 15). Similarly, the “abstract geometry of hyperspaces 
will thus receive an infinity of various interpretations”, some of whom Enriques 
exemplified in his Conferenze. 

In this connection, commenting on the foundation of the geometry of hyper-
spaces he stated in (Enriques, 1894) that his aim had been “to establish the postulates 
derived from the experimental intuition of space that appear simpler to define the 
object of projective geometry” (Enriques, 1894, p. 142) adding in a footnote: “As 
for those intuitive concepts, we do not intend to introduce anything more than their 
logical relations so that geometry thus founded can still receive an infinite number 
of interpretations [. . . ]. It only seems to us that the experimental origin of geometry 
should not be forgotten in the search for the hypotheses on which it is based”.
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On the other hand, in the Appendix to his Lezioni di geometria proiettiva he 
made it clear once more: “Projective geometry can be considered as an abstract 
science, and it can therefore be given interpretations different from the intuitive 
one, by stating that its elements (points, lines, planes) are concepts determined in 
whatever way satisfy the logical relations expressed by the postulates (italics in 
original). 

His latent interest in philosophical questions had clearly emerged a couple of 
years before. On May 4, 1896 Enriques confessed to Castelnuovo that 

while mathematical questions doze until the best time, for several days I have been dealing 
with another question that takes only the pretext from mathematics: hearing its name you 
will be more horrified than amazed. It is the “philosophical problem of space” (Bottazzini-
Conte-Gario, 1996, p. 260) 

The whole letter is worth reading for it sheds light on Enriques’ early steps in the 
philosophical field. 

Books on psychology and logic, physiology and comparative psychology, criticism of 
knowledge etc. pass on my desk where I savor them with pleasure trying to extract the juice 
as far as my problem is concerned. At another time I will show you the method and the plan 
of my work, for which I certainly do not expect your full adherence. However I hope you 
will be convinced that the issue I am dealing with is not metaphysical but positive-critical, 
and some aspects may have at least a benevolent neutrality on your part. 

For in my program there is the question of the genesis of the concepts of space from the 
data of physiological psychology (especially of the eye and of touch) of Helmholtz, Wundt 
etc. And I would like to draw proof of the concept already stated in my Conferenze that the 
two main lines of development (metric-analytic and projective-metric) of the treatment of 
postulates have their foundation in the differentiation of senses. 

But this is not the only aspect in which I consider the problem. There is first the critical 
side with respect to the theory of knowledge, and the question of the genesis of the concept 
of space in evolution: then, the question of innate ideas and reattachment to the controversial 
biological problem of inheritance. 

As you see there is fun. For my part, I bring to research an enthusiasm, which you will 
deem worthy of a better cause, but which is certainly greater than I have ever felt for any 
other matter. (Bottazzini-Conte-Gario, 1996, pp. 260–261) 

Enriques concluded his letter with a enthusiastic appreciation of Wilhelm Wundt, 
whom he did not hesitate to hail as the “the most marvellous philosophical, 
physiological, psychological, mathematical, etc. intelligence”. At the same time 
he invited Castelnuovo “to read the ‘Logik’ of Wundt, at least that part about the 
methods of mathematics”. 

A few years later the ideas sketched in this letter will be taken up by Enriques 
in an elaborate way in the opening article of his own (Enriques (1900a)). “The 
primitive data of geometry and physics are fundamentally acquired in the same 
way on the basis of certain immediate sensations or certain very simple elementary 
experiences, interpreted in accordance with the logical structure of our mind” 
(italics in original) (Enriques, 1900a, pp. 4–5). In the end, Enriques stated, the 
common foundation of both physics and geometry lies in their empirical basis 
that gives geometry the character of an experimental science. The strictly Kantian
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point of view that the postulates express a priori  conditions of subjective sensitivity, 
almost structural laws of the psyche, seems to be outdated, Enriques commented. 

Starting to discuss the fundamental concepts and propositions of geometry, he 
stated that “it is desirable” that primitive concepts and postulates be “absolutely 
independent”. This is an “essential condition” for geometry to be treated in a 
“rigorously” logical way as an “abstract logical theory” (italics in original) worthy 
of receiving various interpretations, as he had shown in his Conferenze di geometria 
(Enriques, 1894–95). At the same time he warned against an excess of formalism: 
going beyond the limits of reality to follow only the laws of symbols there is a risk 
of falling into the void, “the thought fades and disappears into nothingness, like 
a vague and incoherent fog” (Enriques, 1900a, p. 12). Instead, when it comes to 
geometry, intuitive evidence must shine brightly in principles (italics in original), 
Enriques emphasized. 

It is interesting to remark that when he wrote these pages on the principles of 
geometry, and the independence of the postulates, he had already got to know (and 
studied) Hilbert’s Grundlagen der Geometrie just appeared a few months before. 
In fact, writing to Castelnuovo on October 2, 1899 he raised an objection against 
the way in which Hilbert “claims to establish the independence of his postulates 
of congruence from the previous ones” (Bottazzini-Conte-Gario, 1996, p. 428). 
Enriques resumed his criticism in his review (Enriques, 1900b) of Hilbert’s booklet: 
“The independence of group IV [axioms of congruence] does not seem us to be 
established in a satisfactory way”, he claimed before explaining why. 

Indeed, Enriques did not share Hilbert’s formalistic approach. However, in the 
concluding remarks he stated that “by studying abstract questions of a purely 
logical nature with abstract methods” Hilbert showed to “understand all the value 
of geometrical intuition” (Enriques, 1900b, p. 7). Instead, Enriques was openly 
inspired by the physiological, psychological approach of Helmholtz and Wundt as 
exemplified by Klein for geometry, for instance in (Klein, 1890). This was also the 
approach to the foundations of geometry that Enriques followed in the article on 
the principles of geometry that he wrote for the Encyclopädie der mathematischen 
Wissenschaften. (In 1897 he was asked by Burkhardt to write it, but the article 
appeared in print only ten years later, in 1907.) 

Enriques discussed the matter in detail in Sulla spiegazione psicologica dei 
postulati della geometria, the first article of properly philosophical nature that he 
published in 1901 in a philosophical journal (Enriques, 1901). While waiting to 
expose his research in a larger work, in this article he presented the results of his 
study of the geometric postulates as seen in the genetic aspect of the psyche. 

In his terms, the general problem he faced was that of deducing the spatial 
concepts that fall under the exact intuition of the mathematician from sensitive 
representations whose genesis is clarified by physiology. More precisely, his aim 
was “to explain the postulates of geometry that is thus subjectively constructed by 
re-attaching their necessity to the logical structure of thought”. (Enriques, 1901, p.  
146) 

Referring to the works of Helmholtz and Wundt, Enriques underlined the 
importance of “a previous analysis of spatial concepts that only the mathematician is
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able of carrying out”, adding that “the mathematician himself would be lost” trying 
to figure out the constitutive elements in the aforementioned concepts “if they did 
not appear already separated in the evolution of geometric science, in the various 
branches of projective, metric and differential geometry, whose common foundation 
is the general theory of the continuum or Analysis situs”. (Enriques, 1901, pp. 148– 
149) 

The latter is a conception that Enriques made his own from Klein (1890). 
“In what sense—Klein asked—is it psychologically correct to treat projective 
geometry before metric geometry, and even to consider the first as the foundation 
of the second?” (Klein, 1890, p. 570). The former has to do with the “optical” 
properties of space, the latter with the “mechanical” ones and, admittedly, there 
is an obvious distinction between them. The question Klein asked was: in the 
“methodical building” of the science of space which one has to be considered first? 
Helmholtz argued that we must begin with the mechanical properties that “find their 
mathematical expression in the free mobility of bodies”. But “my works—Klein 
objected—show that we can start just as well with the optical properties”. 

Turning to the nature of the geometrical axioms, Klein claimed to consider 
the spatial intuition (Anschauung) as “something essentially imprecise” (italics in 
original). Thus, he went on, stating the axioms of geometry was a way of putting 
precise statements in the imprecise intuition. A few years later, Klein discussed 
the origin and nature of the axioms of geometry in the preliminary remarks to his 
report for the Lobac̆evskij Prize awarded to Sophus Lie. “Where do the axioms come 
from?”, Klein asked . “A mathematician who knows the non-Euclidean theories will 
hardly want to hold on to the opinion of earlier times that the axioms, according 
to their concrete content, were necessities of inner intuition” (Klein, 1898, p. 584). 
Thus, “do the axioms come from experience?” was the further question he asked. No 
doubt that experience plays a great role, Klein admitted. However, while “the results 
of observation are only valid within certain limits of accuracy and under particular 
conditions, by setting up the axioms we are making statements of absolute precision 
and generality” (italics in original) (Klein, 1898, p. 585). Summing up, according to 
Klein “the real essence of the axioms lies in the idealization of the empirical data”. 

From the philosophical point of view, in the background there is the problem of 
the correspondence between logical and/or mathematical theories and reality, which 
Enriques discussed in his letters to Giovanni Vailati, a philosopher and logician 
trained at Peano’s school. In a letter on April 16, 1901 after mentioning in general 
terms their respective criticism of Kantian philosophy, Enriques claimed not to care 
much for philosophers who are not scientifically educated, adding the programmatic 
statement: “I think philosophy should be done by scientific minds, and in the service 
of science (italics in original)” (in: Vailati, 1971, pp. 564–565). 

And one month later (May 16, 1901), as a reply to Vailati’s comments on his 
paper (Enriques, 1901) Enriques refused to continue the discussion on Kantianism, 
and turned instead to his own studies on logic. In his opinion there are two aspects 
to logic: (1) “The subjective aspect in which logic appears as the study of certain 
operations of thought” and (2) an objective aspect, in which “we can ask if anything 
real corresponds to the principles and logical axioms”.
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Then, according to Enriques, a third research was needed. 

“Is subjective logic experimentally acquired (as a set of data) - he asked - or has it to be 
considered as a reflection of the structure of thought? As you know, I’m for the second 
thesis. 

How then to explain the correspondence between structural logical laws and external 
reality? Here the research turns to physiology, and asks for a hypothesis on the functioning 
of the brain that satisfies the required explanation. You will not imagine that I am so bold as 
to ask what the physiological conditions or the physiological aspect of thinking are. But it 
can be admitted that the phenomenon of thought responds to a physiological phenomenon 
localized in a certain group of cells and nerve fibers of association” (in: Vailati, 1971, pp. 
568–569). 

Vailati commented to Giuseppe Vacca, another member of Peano’s school, to 
have read Enriques’ paper, and to have not hidden his own appreciation of the kind 
of ‘philosophy’ on which the paper was based but also to have criticized Enriques for 
his “taking psycho-physiology too seriously”. Now—Vailati continued—Enriques 
“is dealing with logic, but I still haven’t quite understood with what kind of ‘logic’: 
certainly not mathematical logic, as far as one can see (in: Vailati, 1971, pp. 188– 
189). 

Indeed, Enriques was talking about how logical reasoning relates to reality, a 
subject that appears repeatedly not only in his Problemi della scienza, but also later 
on in the volume Per la storia della logica (1922) in which Enriques retraced, 
explained and exemplified this conception of logic, far from the contemporary 
developments of mathematical logic. 

22.3 Problemi della scienza 

The plan of this book—Enriques confessed in the Preface—has been basically 
settled since the year 1901, when he published the paper on the psychological 
explanation of the geometric postulates. Then, he explained that 

my faith in this philosophy of science has led me from the fields of geometry, where thought 
rests quietly in the security of acquired facts, to discuss the building up of a science of 
knowledge which may become the common possession of the studious and may tend to 
unify the various domains of knowledge in one synthetic view of the cognitive methods. 
(italics in original) (Enriques, 1914, p. XV) 

Problemi della scienza begins with a long introduction in which Enriques’ 
criticism is addressed to Kantianism and positivism. Then, in the search for “a 
positive definition of reality” he observed that “our belief in the reality of a thing 
rests upon a totality of sensations which invariably follow under certain conditions 
arranged at will” (italics in original) (Enriques, 1914, pp. 55–56). In the last 
analysis, Enriques commented, “the belief in reality rests upon an associative 
relation between our sensations” (italics in original). In his opinion, the true 
character of reality is constituted by “the correspondence between sensation and 
expectation” that “gives us the positive definition of reality” (Enriques, 1914, p. 56). 
At first sight, Enriques continued, this way of presenting things is shocking because
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it does not seem to fit with the ordinary view according to which reality “would not 
cease to exist in itself, even if all communication between our minds and the external 
world were broken off” (italics in original). The latter was not Enriques’ view. 

In a letter to Vailati on April 23, 1901 he had written that “the claimed ‘things in 
themselves’, the ‘absolute real or independent of us’, etc. are meaningless sentences, 
so that saying that the aforesaid things are unknowable is also nonsense” (in: 
(Vailati, 1971, p. 566)). In Problemi della scienza he repeated that the expression 
existence in itself “is devoid of sense, unless indeed it signifies the impotence of the 
will to modify the sensations that refer to reality, without changing the conditions 
with which these sensations are bound up” (italics in original) (Enriques, 1914, 
p. 56). Rejecting as void of sense what he called the transcendental idealism that 
attributed to reality an absolute significance in and for itself—Enriques went on— 
would lead nearer to Mach’s phenomenalism or Vailati’s interpretation of idealism. 

It took Enriques some ten pages to clarify his position on realism, and to reach 
the conclusion (the postulate of knowledge) that “the real gets defined [. . . ]  as  an 
invariant in the correspondence between volition and sensation” (italics in original) 
(Enriques, 1914, p. 65). The term ‘invariant’ was not chosen at random. Referring to 
its group-theoretical meaning Enriques explained that his view that the real was an 
invariant required to “carefully limiting” the group of elements (namely volitions 
and sensations) and the group of transformations (italics in original) to which 
the relevant invariant referred. In Enriques’ view the postulate of knowledge thus 
formulated applied equally to common sense knowledge and to scientific knowledge 
as well. 

As for the process of the acquisition of knowledge, he held that the latter was 
subject to a continual process of revision. In his opinion 

The progress of science is a process of successive approximations, in which new and 
more precise, more probable and more extended inductions result from partially verified 
deductions, and from those contradictions that correct the implicit hypotheses. In this 
process certain primary and general concepts, such as those of geometry and mechanics, 
give us some guiding principles that are but slightly variable if not absolutely fixed. 
Therefore we should turn our attention to these concepts in order to explain their actual 
value and their psychological origin. (italics in original) (Enriques, 1914, p. 166) 

This was exemplified in the chapters devoted to Geometry and Mechanics, for in 
his view “we must give geometry a place of honor among philosophical studies!”. 
All the more because “especially in the past century the progress of geometry has 
had a direct effect upon the development of a form of rationalism” (Enriques, 1914, 
p. 173). 

Against Kant’s thesis (“which denies the existence of a real object corresponding 
to the word ‘space’ ”) Enriques (with Herbart) held the reality of “spatial relation-
ships”. To Poincaré’s “new nominalism” (those relationships have no real meaning, 
absolutely independent of bodies) Enriques opposed a “more precise evaluation of 
Geometry as part of physics”. 

Moving on to discuss the psychological acquisition of geometric concepts (“the 
psycho-genetic development of the postulates of geometry”), he resumed in detail 
what he held in his paper (Enriques, 1901) on the relationships between the spacial
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data of sight and projective geometry, the spatial data of tactile and muscular 
sensations and metric geometry, and eventually the postulates of continuity. 

Then Enriques turned to mechanics treated “as an extension of geometry”, and 
finally to physics treated “as an extension of mechanics”. 

Problemi della scienza got contrasted receptions. In Italy it received fair reviews 
by Vailati, who pointed his criticism to Enriques’ approach to logic et pour cause 
(Vailati, 1906), and by Enriques’ colleagues and friends Severi and Levi-Civita (who 
limited himself to reviewing the chapter on mechanics). 

Abroad, in an enthusiastic review appeared in Mind (17 (1908), p. 132) Enriques’ 
book was hailed as “probably the most comprehensive study that has appeared 
in recent years on the concepts on which modern science is built”. According to 
the reviewer, its author shows “profound knowledge of the history and modern 
developments of science” as well as “critical grasp of the trends of philosophical 
thought and the underlying psychological questions rarely found united in one 
mind”. 

On the contrary, not quite as enthusiastic was Broad’s review of Problems of 
science, the English translation of Enriques’ 1906 book, which also appeared in 
Mind (24 (1) (1915), pp. 94–98). Broad began by remarking that the book “covers 
very much the same ground as Poincaré’s three books on the philosophy of science”. 
(For a comparison of Enriques’ and Poincaré’s works see Gray (2006)). Admittedly, 
Broad continued, Enriques’ book “gives an impression of very deep and wide 
learning  [. . . ].  Unhappily the style is very heavy, and one can never forget for 
a moment that one is reading a translation from a foreign tongue”. In addition, 
“the argument is obscure trough its condensation even to persons familiar with the 
problems under discussion; to others it must often be quite unintelligible”. 

However, the fiercest criticisms came from the Italian idealist philosophers Croce 
and Gentile who viewed science as a practical activity without any philosophical 
value. In his long review of Problemi della scienza appeared in “La Critica”, (6 
(1908), 430–446) the latter stated that Enriques, as “all the dreamers of a scientific 
philosophy  [. . . ]  doing  scientific  philosophy  never  clashes  with  philosophy”.  Gen-
tile’s criticism was also addressed against “Scientia. Rivista di scienza”, the new 
journal for “a scientific synthesis” founded by Enriques and a group of scientists 
in 1907. According to Gentile, “it can only encourage scientific amateurism”. (It’s 
worth mentioning that in a short period of time, in addition to papers by Italian 
authors like Vailati, Castelnuovo, Volterra and Peano, “Scientia” published papers 
by Russell, Rutherford, Freud, Poincaré, Borel, Boutroux, Picard, Einstein etc.) 

At the International Congress of Philosophy at Heidelberg (1908), attended by 
Enriques (and by Croce, who gave a talk on ‘The lyrical character of art and pure 
intuition’), the former—in his capacity of President of the Italian Philosophical 
Society—was charged to organize the next Congress to be held at Bologna in 
1911. At Bologna’s Congress Enriques gave the opening talk on ‘The problem 
of reality’. With an image lent by the practice of honor duels still widespread 
at the time, Enriques recorded that during the Congress, attended by Croce and 
Peano, “he had the honor of crossing the foil of the word” about the nature 
of logic with Alessandro Padoa, a distinguished pupil of Peano. The Congress



22 Variations on Enriques’ ‘Scientific Philosophy’ 587

offered the occasion for a public controversy between Croce and Enriques. After 
the end of the Congress, on his way to Naples in an interview to a newspaper 
Croce called Enriques as “a willing professor, who with zeal but little preparation 
delights in philosophy”. Furthermore Croce added ironically that Enriques “bears 
the burden of congresses of philosophers, which is as meritorious as mine would be 
meritorious and disinterested, if I were to organize congresses of mathematicians” 
(Croce, 1919). This was the beginning of a bitter controversy that has been told by 
historians many times (see e.g. Simili’s preface to (Enriques, 2000)). After a series 
of interviews and polemical papers, eventually it ended with the victory of Croce’s 
and Gentile’s idealism. 

Years later, in 1919 when he was Minister of Public Education, Croce reminded 
all that as “a small argument” with a mathematician who “had been taken by 
zeal for the abstractly rationalistic philosophy that arises easily in the brains of 
mathematicians, and seeks and finds fortune in democratic and Masonic circles. 
With their help, [Enriques] was able to put together the International Congress of 
Philosophy at Bologna in 1911” (Croce, 1919). 

In this allusive way apparently Croce referred to the French “Revue de méta-
physique et de morale”, and to philosophers like Léon Brunschvicg, Émile Mey-
erson, or Xavier Léon who held positions close to Enriques’s. As a matter of fact 
Enriques was highly appreciated in French philosophical circles. In the 1930s he was 
called by the publisher Hermann to take the scientific direction of the book series 
‘Philosophie et histoire de la pensée scientifique’, and in 1936 after Meyerson’s 
death he was elected as ‘Correspondant de l’Académie des sciences morales et 
politiques’ (Section de Philosophie) de l’Institut de France. 

There is hardly any doubt that Enriques was referring to this thwarted period 
of his life when, in his 1935 talk quoted at the beginning of the present paper, he 
reminded the “lutte violente contre l’esprit positif” undertaken in his own youth by 
the supporters the “idéalisme métaphysique”. 

22.4 Towards a ‘New, Historical Epistemology’ 

In Problemi della scienza Enriques had clarified how reality is not a pure fact, but the 
result of the rational construction in cognitive activity, which coordinates suitably 
associated data of the senses. His “critique of science” had shown that this is the 
case both with crude reality and with scientific reality as well. “Like the reality 
that belongs to common life, scientific reality is also a rational construction that 
coordinates the data of the senses”, he held in Scienza e razionalismo (Enriques, 
1912, p. 20). There he took up and clarified the model of science and, from this, that 
of scientific knowledge deriving from his epistemological analysis of 1906: 

The concept constructed by science represents the facts in an approximate way; therefore in 
its determination there is - it is true - an arbitrary element and an economic choice; but the 
arbitrariness is contained within the limits of the approximation marked by the experience, 
and with regard to the progress of the scientific construction it must be considered not a



588 U. Bottazzini

convention but a hypothesis, that is, a preordained disposition of future experiences. Thus, 
in the scientific relationship between hypothesis and experience we find in a higher form the 
invariant relationship between voluntary act and sensation, which constitutes the common 
meaning of reality. Science is not only approximate but also relative. This implies that the 
meaning of a scientific fact must be subordinated at all times to the set of all acquired 
knowledge. (italics in original) (Enriques, 1912, p. 20) 

In this connection, one most characteristic elements of Enriques’ scientific 
philosophy, including his philosophical continuism, namely the confidence in the 
continuity of scientific development, emerged clearly in the talk (Enriques, 1921) 
he gave in 1921 to introduce Einstein to the crowd of students and scholars who 
flocked in Bologna to attend the famous scientist’s lectures. 

“Einstein is presented to the public as a revolutionary”, Enriques began. The 
theory of relativity “has brought a new opportunity to cry out for the bankruptcy 
of science”. Someone has rejoiced or grieved that “even the firmest truth that for 
two centuries we have learned to revere as the triumph of human reason”, i.e. the 
Newtonian law of universal gravitation, “must now be recognized as not exact” 
because “reason cannot admit intermediate term to the alternative of true or false” 
(Enriques, 1921, p. 271). Nothing is further away not only from Einstein’s thought, 
Enriques protested, but also from the “historical concept of science” that is now 
accepted by scientists and especially by “mathematical thinkers”. For, “no theory 
today claims to absolute exactness, but each one is given as a perfectible degree 
of truth, which unfolds and grows with the progress of reason”. Thus, Einstein’s 
theory does not mark the death of Newton’s theory, but it represents “the conquest 
of a truer truth, in front of which the previous one will always appear as a degree of 
approximation”. 

It is interesting to remark that in Enriques’ opinion Einstein had accomplished 
a “philosophical” revolution by bringing to an end a process that began in classical 
Greece and lasted many centuries. In his words 

The philosophical revolution that Einstein brought to completion is shown as the result 
of an evolution of thought over several centuries. It began 500 years before the Common 
Era with Parmenides of Elea, first advocate of the relativity of movement. Einstein is not 
belittled by saying that he concludes, in a broader cosmological synthesis, the work of a 
long series of philosophers, mathematicians and physicists, from whom he has collected 
disparate elements to merge them into his own construction. (Enriques, 1921, p. 274) 

As for his reference to Parmenides, it is worth mentioning that Enriques wrote to 
Xavier Léon on October 27, 1918 that he had been working “for a year on the history 
of Greek philosophy and above all on the Eleatic school and on Democritus” in the 
hope “to draw new conclusions that are not without interest and will also provide 
me with clearer indications on modern philosophy”. 

Indeed, in his view, the historical understanding of knowledge was the only way 
to gain a deep understanding of a theory, not only in philosophy but also in science. 
“A dynamic view of science naturally leads to the terrain of history”, he stated in 
the opening lines of his 1915 treatise on the geometric theory of algebraic equations 
and functions (Enriques, 1915, p. XI).
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Thus, history becomes an integral part of science and finds its place in the 
exposition of theories. In a programmatic passage worth quoting in extenso from 
his Preface to (Rufini, 1926) Enriques wrote: 

The path of the history of knowledge is so hard that one must be well prepared to walk 
it. Minute erudition, the tool of tongues, the diligence in collecting and arranging study 
materials, are required as a preliminary ruling; but above these qualities the historian is 
asked for that intrinsic interest in the subject, which is true scientific and philosophical 
intelligence, addressed not so much to the development of the results as to the position of 
the problems and the inspiring ideas of the doctrines, without which the erudite remains 
only a erudite, a translator, a collector, an organizer and never becomes a historian; for, 
unable to understand science in its being, much less can he grasp its becoming, that is, 
reconstruct and evaluate its progress. (Rufini, 1926, p. 15) 

In other words, history “ne peut évidemment pas se réduire à une collection et 
à une collation de textes et de notices savantes. I faut qu’elle soit construite par la 
pensée de l’historien” (Enriques, 1934, p. 48) Enriques will hold almost 10 years 
later in his 1934 pamphlet Signification de l’histoire de la pensée scientifique. “La  
science n’est pas simplement le reflet d’un ordre de choses en dehors de nous, c’est 
au contraire, la construction de la réalité par l’intelligence” (Enriques, 1934, p. 22), 
and the construction is built according to experience data, and even the principles 
evolve to adapt a larger reality. To the effect that, in conclusion “la vérité n’est qu’un 
acheminement vers le vrai” (Enriques, 1934, p. 7).  

In his 1934 pamphlet his criticism was addressed against both Kantianism and 
pragmatism and, above all, idealism. 

La philosophie de la nature est chue dans le néant et les idéalistes de formation nouvelle 
croient s’être débarassés de ce poids mort en declarant que, sous n’importe quelle forme, 
l’étude de la nature est una activité d’ordre pratique, indifférente à la pensée. Ce faisant, 
ils n’ont pas seulement anémié l’idéalisme en méconaissant les raisons profondes de 
l’expression  romantique  [. . . ]  mais  –  fait  bien  plus  grave  pour des penseurs aux yeux 
desquels tout est dans l’histoire – ils ont péché contre la vérité historique. Car depuis ses 
plus lointaines origines la philosophie, ou tout au moins la philosophie occidentale, s’est 
inspirée et s’est conformée à la pensée naturaliste. (Enriques, 1934, pp. 32–33) 

Nonetheless, at that time Enriques was considered by the heirs of the Vienna 
Circle as one of the thinkers who “prepared the ground for a modern theory of 
scientific empiricism”. This is what Neurath would say in a letter to Enriques on 
June 18, 1937 reminding the “truly touching way” in which Enriques remembered 
his battles in favor of empiricism against metaphysical idealism in his talk at the 
1935 Congress in Paris (quoted above). In a letter of February 4, 1937, Neurath 
asked Enriques to contribute the International Encyclopaedia of Unified Science 
with a seventy pages paper on the history of science (which in the end Enriques 
never wrote). In addition, Enriques was also invited by Neurath to write a short 
introductory text for the first issue of that Encyclopaedia. 

In the same year 1937 Enriques took part in the Congrès Descartes with a talk 
on Le problème de la raison in which he summarized the essential features of his 
philosophical conception. He summed up his thoughts by saying that “la raison 
ne peut être conçue à la manière kantienne; elle n’est pas intuition capable de
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jugements sintentique a priori ni simple intellect discursif” (Enriques, 1937, p. 3).  
In his view, this ‘new epistemology’ will have both its foundation and its method in 
the historical critique of scientific concepts. 

Nowadays, Enriques continued, 

on a compris que toute théorie scientifique ne renferme que des vérités partielles et 
nécessairement approchées. La Vérité adorée par les hommes ne descend pas de son autel, 
mais devient un terme idéal du progrès que la raison humaine ne saurait atteindre et qu’elle 
tend à réaliser par la construction historique d’une science toujours plus parfaite. (Enriques, 
1937, p. 6)  

Enriques would not have had much time to elaborate his ideas further. The 
racial laws in Italy (1938) that excluded him from universities and academies, and 
prevented him from publishing his writings, were followed by WWII. His research 
on Democritus carried on during the German occupation of Rome with the young 
Massimo Mazziotti was only published posthumously, after his death in 1946. 

22.5 Conclusion 

There is scarcely any doubt that Enriques was a somehow emblematic figure of his 
days, as was for example Poincaré, to whom often he has been compared. And, like 
Poincaré it is also true that Enriques sowed seeds that were to bear fruit even several 
years after his death. 

The “meaning of the history of scientific thought”, the relationship between 
science and history, between reason and history, between truth and error, the 
experimental rationalism “enlarged by the coordination of historical experience”, 
the rational needs in the “scientific construction”, the “construction of history”, 
all these are elements that Enriques worked out in the mid-1930s and that in 
1937 allowed him to present his “new” epistemology at the Congrès Descartes. 
His “historical epistemology” was the end point of a long philosophical journey 
begun with the Problemi della scienza. Thus, the image of Enriques as anchored to 
the philosophical themes and options of the early twentieth century, and therefore 
irremediably outdated, seems to me to be no longer sustainable. 
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Part VI 
Philosophical Issues



Chapter 23 
Who’s Afraid of Mathematical 
Platonism?—An Historical Perspective 

Dirk Schlimm 

Abstract In Plato’s Ghost Jeremy Gray presented many connections between 
mathematical practices in the nineteenth century and the rise of mathematical 
platonism in the context of more general developments, which he refers to as 
modernism. In this paper, I take up this theme and present a condensed discussion 
of some arguments put forward in favor of and against the view of mathematical 
platonism. In particular, I highlight some pressures that arose in the work of Frege, 
Cantor, and Gödel, which support adopting a platonist position. The aim of this 
discussion is to provide an historically informed introduction to the philosophical 
position of mathematical platonism and to point at some of its mathematical and 
philosophical roots in the nineteenth century. 

23.1 Introduction 

It is a general theme in the work of some historians and philosophers of mathematics 
that mathematical practice and philosophical reflections about mathematics should 
be seen as intertwined and that a better understanding of both the history and the phi-
losophy of mathematics can be gained by studying their interactions. In particular, 
the connection between mathematical developments in the nineteenth century and 
the rise of mathematical platonism was highlighted in Jeremy Gray’s Plato’s Ghost 
(2008) in the context of more general developments that he refers to with the term 
modernism. In this paper, I take up this theme and present a condensed discussion 
of some arguments put forward in favor of and against the view of mathematical 
platonism (Sect. 23.2). In particular the claim that abstract mathematical objects 
exists independently of human agents lacks prima facie plausibility. To give some 
support to this aspect of mathematical platonism I present some motivations for 
it that arose in the work of Frege, Cantor, and Gödel (Sect. 23.3) as well as in  
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the experience of engaging with mathematics (Sect. 23.4). Finally, how some more 
recent discussions are related to those earlier motivations is indicated (Sect. 23.5). 
The aim of these discussions is to provide an historically informed introduction 
to the philosophical position of mathematical platonism and to present some of 
the early motivations behind it, thereby pointing at some of its mathematical and 
philosophical roots. 

Due to the wide range of historical developments and philosophical arguments 
that are being touched upon, as well as the aim of keeping the discussion generally 
accessible, many fine-grained distinctions that have been introduced in the vast 
amount of literature on mathematical platonism of the past decades and many 
nuances of the mathematical and philosophical details of the work that contributed 
to its rise are beyond the scope of this paper. Thus, it can only be a modest 
contribution towards a prehistory of mathematical platonism, i. e., towards a better 
understanding of the developments that led mathematical platonism to become the 
main position in philosophy of mathematics of the twentieth century. 

23.2 Aspects of Mathematical Platonism 

The term ‘platonism’ appeared prominently in philosophy of mathematics for the 
first time in Bernays’s paper ‘Sur le platonisme dans les mathèmatiques’ (1935).1 

However, in the same volume of the journal in which Bernays’s paper appeared, 
also Fraenkel referred to Plato’s view of mathematical objects and, even earlier, 
Poincaré had connected Cantor’s realism to ‘Plato’s theory of ideas’ (Bouveresse 
2005, 55 and 62). Nevertheless, mathematical platonism should not be confused 
with Plato’s views.2 To avoid this confusion, some philosophers prefer to use the 
term realism, while others use ‘Platonism’ with an upper-case ‘P’ to refer to Plato’s 
views and (lower-case) ‘platonism’ to refer to the contemporary position. We shall 
adopt the latter convention here and, without delving deeper into these issues, 
consider mathematical platonism as a philosophical position regarding the nature 
of mathematical entities, characterized by the following three claims:3 

1. Mathematical entities are abstract. 
2. Mathematical entities exist. 
3. Mathematical entities are independent from human agents.

1 Bernays advances his position in reaction to constructivist and intuitionist critiques of analysis 
and set theory, and distinguishes between different versions of platonism according to the strength 
of their assumptions. For a discussion of Bernays’s philosophy, see Parsons (2008). We leave aside 
Bernays’s reflections, as they deserve a more thorough discussion than can be given here. 
2 See Landry (2023). 
3 For an introduction to platonism from a contemporary perspective that is nevertheless sensitive 
to historical developments, see Panza and Sereni (2013); cf. also Linnebo (2018a). 
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Paradigmatic mathematical entities, which have been in use since antiquity, are 
numbers and geometrical points and lines. Contemporary mathematics is replete 
with other quite different entities, but for the present paper focusing on numbers 
and geometrical objects will do, as they exhibit many of the features that are 
characteristic also of many other entities. To get started, let us briefly discuss in turn 
the claims of mathematical platonism and assess them with regard to their prima 
facie plausibility. 

23.2.1 Abstractness 

When being confronted with the symbol ‘3’, it is not uncommon, in particular for 
children, to say that ‘this is the number three’. However, a different symbol of the 
same shape would then also be the number three and so we would have two different 
entities being the number three, so that the use of the definite article ‘the’ would no 
longer be appropriate.4 One way out of this conundrum would be to invoke the 
distinction between types and tokens: in this case, the concrete instances that we can 
see are tokens of the same type. And suddenly we are in the realm of the abstract, 
since types are generally considered to be abstract. 

Another motivation for considering numbers to be abstract is the simple fact 
that we can use different words or notations to refer to the number three, such 
as ‘trois’, ‘drei’, or ‘III’. Consequently, we should not identify the number three 
with particular words or symbols (or, more accurately, with their abstract types), but 
rather with what these words or symbols stand for or represent. 

Finally, from a mathematical perspective there are infinitely many natural 
numbers, and geometric lines do not have any width (according to Euclid), which 
does not easily square well with the view that these objects are concrete entities 
in our physical universe. There are, of course, many ways to give substance to the 
notions of types and mathematical entities, but that they are abstract seems fairly 
uncontroversial. In this respect, mathematical entities are no different than everyday 
concepts, such as redness and justice. 

The abstract nature of mathematical entities accounts for the fact that questions 
such as ‘How many letters has the number three?’ or ‘What color is the number 
three?’ are nonsensical, although one can meaningfully ask them about particular 
linguistic or mental representations of the numbers, say in a particular language or 
when thinking about them.5 

The abstractness of numbers and geometric objects also raises some perplexing 
questions, most prominently: How do we interact with such abstract entities? In the 
literature this is often referred to as the problem of access to abstract entities. Note,

4 This, and many of the other arguments against alternatives to mathematical platonism can be 
found in Frege (1884). 
5 In fact, some people with synesthesia associate specific colors with particular numbers or 
numerals, see Cytowic (2018). 
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however, that this question is not specific to mathematics, but can be asked about 
any abstract entity, whether it is the letter ‘A’, Beethoven’s fifth symphony, or the 
concept of justice. 

23.2.2 Existence 

Spelling out the notion of existence is a thorny issue when it comes to abstract 
entities. While one might hesitate to concede that ‘The natural numbers exist’, I 
would also expect that most readers would answer the question whether there is 
a natural number greater than 3, but smaller than 5, with an emphatic ‘Of course, 
there is: it’s 4!’. This observation brings out a tension with our ordinary uses of 
‘existence’ and ‘there is’. More importantly for the topic of this paper, it shows that 
we might not be as reluctant to talk about the existence of abstract entities as one 
might be inclined to assume initially. 

While it is commonly accepted to say that the objects one directly perceives with 
the senses, such as trees and trains, exist in the world,6 the situation is different in 
the case of abstract entities. Clearly, the number three cannot be seen, touched, or 
smelled, so that it does not exist in the same sense (if it does at all) as the tree I see 
outside. Again, however, this is not a problem specific to mathematical entities: we 
might also be inclined to say that Beethoven’s fifth symphony exists, even though 
there might not be anybody in the world playing it at this time. A possible solution 
of this problem is to distinguish between actual existence in the physical world and 
a different kind of existence that applies to abstract entities and that needs to be 
fleshed out separately. 

An alternative approach to the existence of abstract entities is to consider 
them as human creations, whose existence is maintained through practices (e. g., 
concert performances) and physical or mental representations (e. g., the score of 
Beethoven’s symphony or the memory of how to play it). Without any such practices 
and representations, we might well be inclined to declare the object in question 
as having ceased to exist—however, people disagree whether this also applies to 
mathematical objects. 

23.2.3 Positions in Nineteenth-Century Philosophy 
of Mathematics 

The above considerations show that the first two characteristic features of mathemat-
ical platonism discussed above are not immediately obvious. While only few reject 
the abstract nature of mathematics, the notion of mathematical existence is clearly in

6 This does not rule out the possibility of optical illusions. However, the fact that we can recognize 
them as such, also presupposes that other perceptions are not illusory. 
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need of more discussion. Indeed, we can interpret the main positions in nineteenth-
century philosophy of mathematics as attempts to address the reservations about 
the abstractness and existence of mathematical entities. In all of these accounts, 
however, their existence remains tied, in one way or another, to empirical objects 
or human thought. That it should be conceived of as being completely independent 
from human agents requires additional motivations, some of which will be discussed 
in Sects. 23.2.4 and 23.3. 

Worries about the existence of mathematical objects, conceived as abstract, has 
stood behind the move made by some mathematicians to identify them with concrete 
inscriptions. In the nineteenth century this view was sometimes called formalism 
(not to be confused with the position attributed to Hilbert in the first decades of the 
twentieth century, presented in Sect. 23.3.3). However, while one can find individual 
expressions of such an attitude towards mathematics, these views rarely caught 
on. The following passage by Heine is one that is frequently referred to in this 
connection: ‘I adopt a purely formal standpoint in the definition [of numbers] by 
calling certain tangible signs numbers, such that the existence of these numbers 
is beyond all question’ (1872, 173; translation and emphasis by DS). One reason 
why this view has not been taken up by many is, presumably, because it would be 
difficult to maintain in light of questions such as: Given that only a finite amount of 
numerals have been written so far, does this mean that there are only finitely many 
natural numbers? A possible reply would be to not identify the numbers with actual 
concrete inscriptions, but with possible ones. However, such talk about possible 
entities takes us away again from the view that mathematical entities are concrete 
and tangible, thus defeating the original motivation for the position. 

Worries about the existence of mathematical entities are related to two other 
philosophical positions that link them either to the physical or the mental world: 
empiricism and apriorism.7 

If I see three oranges on the table in front of me and my peers confirm this, 
I am fairly confident that there exist three oranges. By taking empirical evidence 
like this as a starting point, one can try to give an account of abstract entities 
through the process of abstraction. For example, first, by abstracting away from 
all properties of the oranges and retaining only the fact that there are three different 
objects one can arrive at an understanding of what it means to say that there are three 
things, rather than, say, four. Second, by abstracting away from all imperfections 
and sensible qualities of one of the oranges and idealizing its shape to a set of points 
that all have the same distance from a center, one can arrive at an understanding 
of the geometrical entity of a sphere. Indeed, Aristotle gave an account of Plato’s 
abstract Forms along similar lines. Now, how exactly this process of abstraction 
is supposed to work and what it yields has been a matter of debate since then. 
Two popular alternatives are the following. First, abstraction brings into being or 
generates abstract entities that then continue their existence in some sort of abstract

7 This terminology is taken from Pasch, who considered ‘empiricism’ and ‘apriorism’ as the main 
philosophical positions of his time (1926, 138). 
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realm. Second, through abstraction we are able to conceive of the concrete objects 
as imperfect instantiations of abstract entities; in other words, we actually see 
an orange, but we mentally see it as a sphere. Without delving further into the 
details of these accounts, the point is that empiricism connects the existence of 
mathematical entities to the existence of concrete objects through an (admittedly 
somewhat mysterious) process of abstraction. 

What makes empiricism a prima facie plausible account is that it goes together 
well with how children seem to actually learn mathematical terminology. We learn 
the word sequence ‘one, two, three, . . . ’ and how to map them to individual objects 
that we want to count. Then, we realize that this process can be applied to any 
collection of objects and can, in principle, be carried out indefinitely. Geometric 
shapes are initially studied with the use of diagrams, which can be made more and 
more accurate with the use of a ruler and a thinner pencil. In both cases concrete 
physical objects are the starting point and there is a gradual development towards 
more abstract mathematical notions. Indeed, the learning process was put forward 
in favor of an empiricist account by nineteenth-century empiricists, such as Klein 
and Pasch.8 

Some difficulties of empiricism are: (1) to find appropriate physical correlates 
for all mathematical objects, (2) how to know in advance (i. e., without already 
possessing the concept of a sphere) what properties of an orange I need to abstract 
in order to arrive at a sphere, and (3) to account for how it is possible to ground 
(seemingly) necessary truths on contingent foundations. These problems can be 
resolved more easily if the origins of mathematical entities are located directly in 
the mind instead of in the physical world. Particularly influential for the nineteenth-
century was Kant’s account that mathematics studies the forms of intuition, i. e.,  
space and time, and that the objects of mathematics exist as long as they can 
be presented in pure intuition. Thus, without the need to establish a direct link 
between the physical and the mathematical worlds, the abstractness and existence 
of mathematical entities can be accounted for. The charge of making mathematics 
depend on our psychology is countered by Kant by conceiving of the forms of 
intuition as transcendental, i. e., as necessary conditions for both pure and empirical 
thought. However, developments in nineteenth-century mathematics, such as the 
emergence of non-Euclidean geometries and of continuous, nowhere differentiable 
functions, which both defied imagination and expectation, were interpreted as 
severe, if not devastating, challenges to Kant’s account. 

23.2.4 Independence 

All of the philosophical positions discussed above make mathematical truths 
dependent on our choice of concrete means of representation (formalism), on facts

8 See Schlimm (2010, 102). 
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about the world (empiricism), or on facts about our minds (apriorism). However, 
that .5 + 7 = 12 seems to be true independently of our notations, the nature of 
the universe, and our minds. Moreover, we already noticed above that the actual 
presence of particular representations for mathematical entities might be too strong 
a requirement for their existence. The fact that the real numbers are uncountable, 
but that there are only countably many sentences in English, for example, only adds 
to this difficulty, as it makes it impossible to represent all real numbers by different 
English expressions. These concerns are addressed by the third characteristic claim 
of mathematical platonism, namely that mathematical entities exist independently 
from human agents. 

There are different ways of interpreting what it means for an abstract entity to 
depend on human agents: it might be said to exist only when somebody actually 
thinks of it, or it might begin to exist when somebody thinks of it and then 
simply continue its existence, or it might be said to exist as long as it features 
in some practices, or in physical or mental representations. For mathematical 
platonism, in its strongest from, the independent existence of mathematical entities 
is often expressed counterfactually: even if there had never been any human beings, 
mathematical entities would still exist. 

This aspect of platonism is often considered to be the most difficult to accept. 
Indeed, it runs counter to our knowledge of other abstract entities, such as cultural 
artifacts. Clearly, Beethoven was the originator of his symphonies. Likewise, it 
is common lore of the history of mathematics that numbers only emerged over 
time, first with the positive integers, then zero, etc. That their existence (however 
conceptualized) should be independent of any human activities is a hard pill to 
swallow, so that we need compelling reasons for accepting it. In particular, if the 
existence of mathematical entities does not depend on any humans or on physical 
circumstances, it should also be timeless, or, perhaps, eternal — properties that are 
usually attributed only to religious entities. 

23.3 Mathematical and Philosophical Pressures 

In order to find some motivations for the independent existence of mathematical 
entities, let us now trace some of the roots of mathematical platonism by examining 
briefly some historical developments in mathematics. The nineteenth century was a 
time of tremendous advances, laying the foundation for modern mathematics as we 
know it today. In particular, the developments which transformed geometry have, 
deservedly, received a lot of attention: The possibility of consistent theories of 
non-Euclidean geometry questioned Kant’s aprioristic view that the subject matter 
of geometry is space, taken as one of the forms of our intuition, and nudged 
mathematicians such as Gauss and Riemann towards an empiricist stance towards 
mathematics; the duality of projective geometry questioned the tight link between 
the language of mathematics and its meaning, paving the way towards formal 
approaches. In addition, advances in analysis, such as Weierstrass’ definition of
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continuous, nowhere differentiable functions, put pressure on the roles of intu-
ition and visualizability, and developments in algebraic number theory introduced 
hitherto unknown mathematical entities.9 These developments are well known and 
their connections to platonist positions in the philosophy of mathematics are mainly 
indirect, by questioning the plausibility of alternative accounts. In the following, I 
want to present three mathematicians, whose work led them directly to formulate a 
view of mathematical entities as existing independently of human thought. In other 
words, their reflections on mathematics provided the motivation for accepting the 
third characteristic claim of mathematical platonism. 

23.3.1 Cantor on Set Theory and Criteria for Existence 

The work of Dedekind and Cantor on set theory has certainly been one of the 
turning points in modern mathematics. It introduced a coherent way of reasoning 
about infinity and led to a theory that was based on a few primitive notions, 
but nevertheless powerful enough to be considered as the foundation of all of 
mathematics. In this section, I will focus on Cantor’s account of the introduction 
of transfinite numbers and his philosophical principles, as identified by Hallett 
(1984), because these considerations give some motivation to Cantor’s views on 
the existence of mathematical entities.10 

Cantor distinguishes between the power [Mächtigkeit] of a set and its ordinal 
number [Anzahl], which is defined only if the set is well-ordered. Every well-
defined set A has a power, denoted by . |A|, and two sets A and B have the same 
power if there is a bijection between them. On this basis, Cantor was able to show 
that .|N| = |Z| = |Q|, but .|N| �= |R|, i. e., that the power of the set of natural 
numbers, which Cantor called . ℵ0, is different from that of the real numbers. A set 
A, together with a successor relation, is called well-ordered by Cantor if it satisfies 
the following conditions: 

(i) there is a first element of the set; (ii) every single element (provided it is not the last 
in the succession) is followed by another determinate element; and (iii) for any desired 
finite or infinite set of elements there exists a determinate element which is their immediate 
successor in the succession (unless there is absolutely nothing in the succession following 
all of them). (Cantor 1883, 884)11 

In contemporary set theory, a set is well-ordered by a total order relation if every 
non-empty subset has a smallest element. According to both definitions, .(N,<) is 
well-ordered, but the integers (.Z,<) are not. Cantor attributes ordinal numbers to 
well-ordered sets in such a way that two sets have the same ordinal number if there

9 For a discussion of some of these developments, see Gray (1992, 2008). 
10 More details about Cantor’s work can be found in Ferreirós (2007). 
11 The page numbers refer to the translation in Ewald (1996), who leaves the original ‘Anzahl’, 
which is rendered as ‘ordinal number’ in the present text. 
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is a bijection between them that also preserves the order of the elements (i. e., is 
an isomorphism). Thus, while the power of a set gives us some information about 
how many elements it has (cardinal numbers), the ordinal number also gives us 
some information about the particular structure of the set that is determined by the 
order relation. In particular, two sets of the same power can have a different ordinal 
number. 

A question that arises from these considerations is: What ordinal numbers are 
there? Cantor provides three principles for their ‘generation’, here the first: 

The sequence (I) of positive integers .1, 2, 3, . . . , v, . . . has its ground of origin in the 
repeated positing and uniting of underlying unities, which are regarded as alike; the number 
v is the expression for a definite finite ordinal number of such positings following one 
another in a sequence; it is also the expression for the unification of the posited unities into 
a whole. The formation of the finite real integers thus rests upon the principle of adding a 
unity to an already formed and existing number; I call this principle (which, as we shall soon 
see, also plays an essential role in the generation of the higher integers) the first principle of 
generation. The ordinal number of the numbers v of class (I) formed in this way is infinite 
and there is no greatest among them. (Cantor 1883, 907) 

Leaving aside some problematic issues with Cantor’s conception of unities, which 
have been pointed out and criticized by Frege,12 the account is similar to that put 
forward by others and has some initial plausibility. We simply keep on adding units 
(represented in the following by ‘ ’) to form larger numbers: 

.

Since this process can be continued indefinitely, there is a (potential) infinity 
of numbers characterized in this way. It is at this point that Cantor’s philosophical 
principle of actual infinity, or the domain principle, applies: ‘Any potential infinity 
presupposes a corresponding actual infinity’ (Hallett 1984, 7). After all, we cannot 
actually generate all positive integers in this way, but by accepting this process as 
never-ending, we must assume the existence of all such numbers in the first place. 
Otherwise, we might run out of units to add and the process could not be continued 
indefinitely. Cantor named the ordinal number of the infinite set of positive integers 
‘. ω’, 

.

and described its introduction as follows: 

I call it the  second principle of generation of integers, and define it more exactly thus: if 
any definite succession of defined integers is put forward of which no greatest exists, a new

12 Cantor’s conception of pure units has also found it’s defenders, e. g., Hallett (1984) and Fine 
(1998). 
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number is created by means of this second principle of generation, which is thought of as 
the limit of those numbers; that is, it is defined as the next number greater than all of them. 
(Cantor 1883, 907–908) 

A crucial aspect of Cantor’s account is that we can apply his two principles of 
generation of integers again and again: 

.

Indeed, we can also add . ω to . ω (resulting, in modern notation, in .ω ·2) and again 
repeat this process indefinitely, which yields the next ordinal number, . ω2: 

.

We notice how Cantor assimilates the transfinite ordinal numbers to the positive 
integers, an assimilation which is encapsulated in the principle of finitism: ‘The  
transfinite is on a par with the finite and mathematically is to be treated as far as 
possible like the finite’ (Hallett 1984, 7). This is clearly a metaphysical principle 
for Cantor, but (once we accept the existence of infinite sets) it has a mathemtical 
underpinning, namely though the notion of well-ordering. In this way, we obtain 
the sequence of ordinal numbers: . 1, 2, 3, . . . , ω, ω + 1, ω + 2, . . . , ω · 2, ω · 2 +
1, . . . , ω2, . . . , ωω, . . . , which so far are all countable, i. e., belong to sets of 
cardinality . ℵ0. 

To generate ordinal numbers of uncountable sets, such as . ω1, Cantor invokes a 
third principle, but we don’t need to consider that here in order to get the main point. 

As I have indicated, there is no limit for the generation of ordinal numbers, but 
by the domain principle, each potential infinity presupposes an actual infinity, which 
Cantor called transfinite. In addition, to have one place for all of these infinities 
to live without the need of having to go beyond it again, Cantor invoked a third 
philosophical principle, the principle of Absolute infinity: ‘The Absolute infinite 
cannot be mathematically determined’ (Hallett 1984, 7).  

Cantor saw his considerations about ordinal numbers as a special case of a 
more general methodology in mathematics. The limitlessness of the growth of 
mathematics is perhaps one of the most well-known aspects of Cantor’s view, — 
expressed in the famous quote ‘the essence of mathematics lies precisely in its 
freedom’ (Cantor 1883, 896)—but it should be kept in mind that he did formulate 
some requirements on the introduction of new mathematical concepts. He writes: 

Mathematics is in its development entirely free and is only bound in the self-evident 
respect that its concepts must both be consistent with each other and also stand in 
exact relationships, ordered by definitions, to those concepts which have previously been 
introduced and are already at hand and established. 

In particular, in the introduction of new numbers it is only obligated to give definitions 
of them which will bestow such a determinacy and, in certain circumstances, such 
a relationship to the older numbers that they can in any given instance be precisely
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distinguished. As soon as a number satisfies all these conditions it can and must be regarded 
in mathematics as existent and real. (Cantor 1883, 896) 

Thus, for Cantor new mathematical concepts must be consistent and connected to 
other concepts by exact relationships. As soon as these conditions are met, the 
mathematical entities in questions are ‘existent and real’. This view foreshadows 
that of Hilbert, formulated at the turn of the twentieth century in terms of the 
consistency of axioms instead of concepts, to which we will return in Sect. 23.3.3. 

We’ve seen that Cantor formulated a view that assigns a reality, or existence, to 
mathematical entities that are independent of any direct link to the physical world, 
visualization, or representation in intuition, but that are defined purely conceptually 
and with no other restrictions than their consistency and rigorously defined relations 
to other entities. Thus, despite the fact that Cantor speaks of ‘awakening the 
concept’ which ‘slumbered inside us’ in his mathematical paper (Cantor 1883, 
918) and relegates any further speculations to philosophy, his view satisfies the 
three characteristic claims of mathematical platonism. Most importantly, that 
mathematical entities exist independently of human agents is motivated by the need 
to presuppose an actual infinite domain for any potentially infinite domain one 
defines and an absolute infinite domain to make room for any possible extension. As 
Hallett put it, Cantor proposes ‘a Platonic principle: the “creation” of a consistent 
coherent concept in the human mind is actually the uncovering or discovering of 
a permanently and independently existing real abstract idea’ (Hallett 1984, 18). 
Indeed, it becomes particularly clear in his correspondence that Cantor grounds 
the existence of mathematical entities in the existence of an eternal God, which 
is independent from human beings.13 

23.3.2 Frege on Logic and Independence 

Frege’s main philosophical project was to show that arithmetic can be developed 
out of logic alone and that, in consequence, no appeal to intuition is required, as 
was held by Kant. As part of the project, Frege studied the views on the nature 
of numbers that were held by his contemporaries and found them all lacking. He 
fiercefully criticized these attempts and concluded that numbers are ‘not abstracted 
from things’, nor ‘a property of things’, ‘not anything physical’, nor ‘anything 
subjective (an idea)’; finally, in contrast to Cantor’s account, ‘Number does not 
result from the annexing of thing to thing’ (Frege 1884). For Frege, numbers are 
not attributed to collections of things, but to concepts, such as ‘moons of Venus’

13 Such a view did not originate with Cantor. For example, Kepler wrote in 1611: ‘Without doubt, 
the authentic type of these [geometric; added by DS] figures exists in the mind of God the Creator 
and shares His eternity’ (quoted from Davis et al. (2012, 145)). For more on Cantor’s linking of 
mathematics and theology, see Hallett (1984) and Tapp (2014). 
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or ‘being a round square’. The latter can be used to illustrate an application of the 
number zero, as in ‘The number of round squares is zero.’ 

Concepts also underlie logical reasoning for Frege. It is thus no surprise that 
he called his logical calculus a ‘Begriffsschrift’, i. e., concept script (1879), and 
devoted considerable attention to the study of concepts (Frege 1892). In order to be 
used in logical inferences, Frege demands of concepts to be definite and fixed (Frege 
1884, xvii). The former means that it must be unambiguous for any object whether 
it falls under the concept in question or not, which avoids problems of vagueness 
which we find in concepts such as ‘being bald’; the latter means that the extension 
of a concept must remain fixed once and for all.14 The reason for this requirement 
is the following. Since the time of Aristotle it was held that logical inferences do 
not depend on the particular content of the terms involved, but on the form of the 
inferences, such as: 

. If (1) all A are B and (2) x is A, then (3) x is B.

This inference form is considered to be valid, because whenever the premises (1) 
and (2) are true, the conclusion (3) must also be true. However, if the extension of 
B could change over time, it would in principle be possible for the premises to be 
true at some time, but the conclusion false at some other time, thereby rendering the 
inference invalid. In fact, without the concepts involved remaining fixed over the 
course of the argument, we would not be able to establish the validity of any logical 
inference, and Frege’s project of grounding arithmetic in logic could not get off the 
ground.15 Thus his insistence on the view of concepts as definite and unchanging. 
This also makes them objective, i. e., not subject to the accidental state of the world 
or the ‘fancies of the mental’, which, in turn, guarantees the objective character of 
arithmetic as built purely on logical concepts.16 

The objective reality of arithmetical concepts is illustrated by Frege with 
analogies to the physical world. He writes: 

[ . . . ]  number  is  no  whit  more  an  object  of  psychology  or  a  product of mental processes 
than, let us say, the North Sea is. The objectivity of the North Sea is not affected by the fact 
that it is a matter of our arbitrary choice which part of all the water of the earth’s surface we 
mark off and elect to call the “North Sea”. There is no reason for deciding to investigate the 
North Sea by psychological methods. In the same way number, too, is something objective. 
(Frege 1884, §26) 

Accordingly, Frege takes a clear side on the debate whether mathematics is invented 
or discovered: 

[E]ven the mathematician cannot create things at will, any more than the geographer can; 
he too can only discover what is there and give it a name. (Frege 1884, §96, 107–108)

14 See Schlimm (2012) for a discussion of the contrast between a Fregean and a Lakatosian 
conception of concepts. 
15 For a similar argument, see Poincaré (1909, 461). 
16 Frege considered his view to pertain only to arithmetic and not, for example, to geometry. 
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Thus, while mathematicians cannot bring mathematical entities into existence, they 
can nevertheless interact with them. Frege gives only a hint on how this can be 
done, namely that the access problem can be solved by recourse to reason as a link 
between the realm of concepts and human thought: 

It is in this way that I understand objective to mean what is independent of our sensation, 
intuition and imagination, and of all construction of mental pictures out of memories of 
earlier sensations, but not what is independent of reason,—for what are things independent 
of reason? To answer that would be as much as to judge without judging, or to wash the fur 
without wetting it. (Frege 1884, §26, 36) 

Later in his life, when writing about the senses of sentences, which he called 
thoughts, Frege explicitly talked about a ‘third realm’, different from both the 
physical world of things and the mental world of ideas: 

A third realm must be recognized. Anything belonging to this realm has it in common with 
ideas that it cannot be perceived by the senses, but has it in common with things that it does 
not need an owner so as to belong to the contents of his consciousness. Thus for example the 
thought we have expressed in the Pythagorean theorem is timelessly true, true independently 
of whether anyone takes it to be true. It needs no owner. It is not true only from the time 
when it is discovered; just as a planet, even before anyone saw it, was in interaction with 
other planets. (‘Thought’, quoted from Beaney (1997, 337).) 

Here, again, Frege argues for the existence of an abstract realm, which is timeless 
and independent from human agents. 

While both Cantor and Frege based their positions on the nature of mathematics 
on concepts, they focused on different aspects of mathematics to motivate the 
independence of mathematics from human agents. For Cantor, it was the indefinite 
extendability of mathematics that required a large enough ontology to fit it all in and 
he concluded that such a realm must be independent from human agents. For Frege, 
it was the objectivity of mathematics that was at stake. Since he found no other 
way of accounting for it on the basis of the available philosophical alternatives (i. e., 
based on physical or mental worlds), he argued for a view of numbers as being based 
on logical concepts and a view of logic as being based on definite and fixed concepts. 
For Frege, then, these motivated the third claim of mathematical platonism, i. e., its 
independence from human agents.17 

23.3.3 Gödel on the Limits of Formalization 

With the development of formal systems with explicit, truth-preserving inference 
rules, an alternative route to account for mathematical objectivity seemed to open 
up without requiring the positing of a platonic realm: mathematics could be 
reconstructed as the formal deduction of theorems from accepted true axioms.

17 The sense in which Frege was indeed a platonist has been the subject of much debate. For a 
nuanced discussion of Frege’s views, see Reck (2005). 
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Granted, accounting for the truth of the axioms remained a problem, but perhaps 
one that could be solved. Echoing Cantor’s requirement of the consistency of 
mathematical concepts, now the consistency of the axioms became the conditio 
sine qua non for accepting a formal system. This could be shown by providing 
an interpretation, typically by exhibiting a set of objects and relations, or, as was 
suggested by Hilbert, by providing a proof of the syntactic consistency. Such a 
proof would still require the acceptance of some, presumably innocent, base system, 
but promised to make Cantor’s and Frege’s expansive views on existence largely 
unnecessary. The famous correspondence between Frege and Hilbert illustrates their 
diametrically opposed views regarding consistency and truth. As Hilbert writes in a 
reply to Frege: 

I was very much interested in your sentence: ‘From the truth of the axioms follows that 
they do not contradict one another’, because for as long as I have been thinking, writing, 
lecturing, about these things, I have been saying exactly the reverse: If the arbitrarily given 
axioms do not contradict one another, then they are true, and the things defined by the 
axioms exist. This for me is the criterion of truth and existence. (Letter from Hilbert to 
Frege, December 29, 1899; Frege 1980, 42) 

What came to be known as Hilbert’s Program consisted in (1) the formalization 
of mathematical theories and (2) giving proofs of the consistency of the resulting 
formal theories on the basis of (3) a very small and unproblematic part of 
mathematics, which Hilbert called finitary. In this way, Hilbert hoped, mathematics 
could be given a rigorous foundation that guaranteed that it was free from 
hidden contradictions. However, Gödel’s groundbreaking incompleteness results 
(1931) showed these aims to be unachievable. His First Incompleteness Theorem 
asserts that the theory of natural numbers cannot be formalized in an appropriate 
axiom system of first-order logic, such that all truths that are expressible in the 
formal language can be derived from the axioms. As a consequence, the formal 
reconstruction is not complete. Gödel’s Second Incompleteness Theorem asserts 
that a sufficiently strong formal system cannot prove its own consistency, so that its 
consistency cannot be proved by an even weaker system. Thus, the aim of proving 
the consistency of formalized mathematical theories with a weaker, finitary system, 
is impossible. While Gödel’s technical results can be expressed more rigorously, the 
general lesson that has been drawn from them is that the notions of mathematical 
truth and provability in a formal system do not coincide.18 

Without the recourse to formal systems Gödel himself returned to Frege’s 
analogy between mathematics and natural science, comparing the axioms of 
mathematics with laws in science. Neither need to be self-evident, but they can 
be investigated on the basis of their consequences, which can be independently 
judged through sense perception in the case of science and intuition in the case 
of mathematics. Gödel writes: 

But, despite their remoteness from sense experience, we do have something like a 
perception also of the objects of set theory, as is seen from the fact that the axioms force

18 For further discussion of the context and results of Gödel’s work, see Giaquinto (2002). 



23 Who’s Afraid of Mathematical Platonism?—An Historical Perspective 609

themselves upon us as being true. I don’t see any reason why we should have less confidence 
in this kind of perception, i. e., in mathematical intuition, than in sense perception, which 
induces us to build up physical theories and to expect that future sense perceptions will 
agree with them [ . . . ] (Gödel 1947, 483–484) 

Gödel saw further similarities between mathematics and science. Scientific and 
mathematical theories both help us understand our sensory observations and 
mathematical intuitions, but they also introduce elements that go beyond them: 
unobservables in science and higher set theory in mathematics. Our confidence 
in such assumptions must rest in both cases on their fruitfulness, in deriving 
empirical consequences in science, and leading to simpler proofs and new theorems 
in mathematics. 

From a philosophical perspective, Gödel was more interested in the epistemology 
of mathematics and the methodological question of how to choose the right axioms 
of set theory given that particular claims, such as Cantor’s Continuum Hypothesis, 
could not be settled by the hitherto accepted axioms. 

While Gödel himself reported that he ‘was a conceptual and mathematical 
realist since about 1925’ (Wang 1987, 20), that is, even before he proved his 
Incompleteness Theorems, the gap between provability and truth that they opened 
up might well have pushed him even further in this direction. The analogy Gödel 
drew between mathematics and science certainly supports attributing to him a 
realist conception of mathematical entities that satisfies our characterization of 
mathematical platonism.19 

23.4 The Mathematical Experience 

In addition to the previous arguments, a motivation for mathematical platonism 
can be found in the experience of actually engaging in mathematics. In particular, 
a recurring question about the nature of mathematics, which appeared already in 
our discussion of Frege, is whether mathematics is invented or discovered. The 
historical development of mathematics itself, including the fact that we tend to 
identify important mathematical theorems with individual mathematicians, such 
as Pythagoras’ Theorem and Cantor’s Theorem, is often presented in a way that 
emphasizes that mathematics is made by humans and thus invented. However, 
everybody who has struggled at some point through a mathematical proof or realized 
a surprising connection between seemingly disparate mathematical concepts (e. g., 
between the theory of groups and the solvability of polynomial equations) can 
easily get the impression that mathematical results are not up to them, but impose 
themselves on us. The analogies between mathematics and natural science put

19 It seems that Gödel would not have used the label ‘platonism’ for his view, see Urquhart (2014, 
505). For more nuanced discussions of Gödel’s philosophical views, see Gödel et al. (2010) and  
Elsby and Buldt (2019). 
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forward by Frege and Gödel quoted above clearly speak to such an impression, 
and Maddy interprets many mathematicians as considering realism to correspond to 
the phenomenological experience of ‘actual mathematical activity’ (Maddy 1996, 
492). 

The power of the mathematical experience of dealing with a reality that is outside 
of us is also expressed by many mathematicians. For example, according to Monk’s 
‘subjective evaluation’, ‘the mathematical world is populated with 65% platonists, 
30% formalists, and 5% intuitionists’ (Monk 1976, 3); Davis et al. (2012, 377) 
write that ‘Platonism was and is believed by (nearly) all mathematicians’; and 
Maher (1996, 146) suspects ‘that nearly all mathematicians are, insofar as they give 
the matter conscious thought, unreconstructed Platonists’. Despite the fact that he 
considers mathematical platonism a myth and ultimately argues against a view of 
mathematics as certain and based on truth, Hersh acknowledges how one can easily 
be tempted to accept platonism: 

The basis for Platonism is the awareness we all have that the problems and concepts of 
mathematics exist independently of us as individuals. The zeroes of the zeta function are 
where they are, regardless of what I may think or know on the subject. It is then easy for me 
to imagine that this objectivity is given outside of human consciousness as a whole, outside 
of history and culture. This is the myth of Platonism. It remains alive because it corresponds 
to something real in the daily experience of the mathematician. (Hersh 1979, 18) 

Based on related considerations, Tait speaks of realism as the ‘default position’ held 
by many nineteenth-century mathematicians, such as Cantor, Dedekind, Frege, and 
Hilbert (Tait 2005, 91). 

23.5 Mathematical Platonism in More Recent Years 

Many philosophical discussions about platonism have taken place since the work 
of Cantor, Frege, and Gödel, and contemporary debates involve much more fine-
grained conceptual distinctions and elaborated arguments, but these are well beyond 
the scope of this paper. Nevertheless, in order to present a glimpse of some 
later discussions, let us briefly take a look at the direction of some contemporary 
philosophical discussions. These are usually not presented in relation to their 
nineteenth-century and early twentieth-century predecessors,20 so I’d like to take 
the opportunity here to point out some connections. 

As we’ve seen, some arguments for mathematical platonism were initially 
based on specific mathematical domains, such as transfinite set theory in the 
case of Cantor, arithmetic and logic in the case of Frege, and meta-mathematical 
results in the case of Gödel. However, the view of mathematics that emerged 
from these considerations was frequently extended to all of mathematics. Recall 
Cantor’s emphasis on the freedom of mathematics in general, according to which

20 But, see Maddy (1989) and Panza and Sereni (2013). 
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no restrictions should be imposed on mathematics, other than it should not lead to 
contradictions. Cantor formulated this requirement in terms of concepts, Hilbert in 
terms of the syntax of the formal reconstructions of mathematics. In recent years, a 
related position has been developed by Balaguer under the name of ‘plenitudinous 
platonism’ or ‘full-blooded platonism’, which states that ‘all possible mathematical 
objects exist’, where ‘possible’ is understood in the broadest sense as logical 
consistency (Balaguer 1998, 5).  

The relation between the objects of mathematics and those of the natural sciences 
has also received considerable scrutiny. On the one hand, the view that science is 
the ultimate arbiter of what exists (i. e., the philosophical position of naturalism) 
has led Quine and Putnam to put forward their famous indispensability argument. 
According to it, we must accept the existence of those mathematical entities that are 
indispensable for the formulation of our current scientific theories—and perhaps a 
bit more, to round it off. A major drawback of this position is that it classifies those 
entities that are accepted by mathematicians into those that exist and those that do 
not on the basis of their use in science. Consequently, as accepted scientific theories 
change, so would the ontological status of the mathematical entities involved. On 
the other hand, some philosophers consider the analogy between mathematics and 
science to be too strong, in particular with regard of the notions of objects and 
existence, and developed so-called ‘lightweight’ versions of platonism that rely only 
on ‘thin’ objects (Linnebo 2018b). 

An influential development in philosophy of mathematics has been the shift 
from considering individual mathematical objects, such as the number four, towards 
considering mathematical structures, such as the natural number structure, as the 
fundamental entities of mathematics—this move also has its roots in the nineteenth 
century (Reck and Schiemer 2020). While this shift avoids some of the difficulties 
that alternative views have, the basic ontological and epistemological questions 
and difficulties remain, but a realist (or platonist) view of structures, such as in 
re structuralism (Shapiro 1997), is again very popular. 

23.6 Conclusion 

The aim of this paper was to present some of the motivations behind mathematical 
platonism and to illustrate how these emerged from philosophical reflections 
about mathematical work in the late nineteenth century. While the claim of an 
independent existence of mathematical entities might appear to be initially the 
most difficult to accept, we have seen that its origins do not lie with dogmatic 
philosophers who speculate about mathematics from their armchair, but in careful 
considerations about the nature of mathematics by mathematicians themselves, such 
as Cantor, Frege, and Gödel. The considerations that led them towards a platonist 
conception of mathematics are: (a) The unboundedness of mathematical entities, 
which makes it impossible to locate them in the physical world and in actual mental 
constructions; (b) a view of mathematics as being true objectively and independently
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of human activities, which leads to the timeless character of mathematical entities. 
Finally, (c) the failure of a promising alternative, namely the attempt to capture 
all arithmetical truths in terms of provability in a formal system. A point to notice 
is that all three mathematicians discussed focused their attention on mathematical 
concepts, which might also have contributed to their leaning towards mathematical 
platonism.21 

What also became apparent in our discussions is that one reason why mathe-
matical platonism remains a popular but also contested position in philosophy of 
mathematics is that there are some strong and initially plausible intuitions about 
the nature of mathematics that stand in conflict with each other. On the one hand, 
there is the dynamic view of mathematics as a human enterprise that has developed 
over time and is continuing to change. According to this view, mathematics is 
invented. On the other hand, there is the static view of mathematics as a body of 
objective and unchanging truths that are there to be discovered. As we have seen 
in Sect. 23.4, the latter is the view that fits more naturally to the experience of 
engaging with mathematics, in particular by research mathematicians. A possible 
way to reconcile a static conception of mathematics with the dynamic process 
of mathematical practice and education is to distinguish between the realm of 
mathematical entities as the grand framework in which all of mathematics takes 
place from our engagement with this realm. In fact, the accounts of Cantor, Frege, 
and Gödel can also be recast from this perspective: For Cantor, the Absolute infinite 
provides the background for all definitions of transfinite numbers; for Frege, the 
immutable realm of concepts is there to be grasped and explored by reason; for 
Gödel, the realm of mathematical concepts is there to be perceived by intuition and 
new definitions are to be evaluated in terms of their fruitfulness to obtain new results. 
Such a division of labor between what constitutes the mathematical landscape and 
what is involved in exploring it can also be used to reconcile philosophy and 
pedagogy in such a way that mathematical platonism is not opposed to teaching 
mathematics in a way that encourages the exploration of creative ideas. 

Because the above considerations pull in opposite directions with regard to 
accepting the independent existence of mathematical entities, mathematical pla-
tonism is still a polarizing position, finding both committed supporters and ardent 
opponents. Opponents to mathematical platonism are faced with two main options: 
Either (i) they have to give a different account of the objectivity and truth of 
mathematical statements, or (ii) they have to give up these strong claims about 
mathematics. With regard to the first option we have seen some major difficulties 
that alternative accounts are faced with in the discussions of the main philosophical 
positions in nineteenth-century philosophy of mathematics (Sect. 23.2.3) and of 
Gödel’s incompleteness results (Sect. 23.3.3). With regard to (ii), some philosophers 
have argued for mathematics as being a social construction (Ernest 1998) or for  
mathematical truth as being time-dependent (Grabiner 1974), but these views have 
remained suggestive and their implications have not been found very convincing.

21 I am indebted to Erich Reck for this observation. 
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Thus, mathematical platonism still seems to enjoy the popularity that was expressed 
in the quotations in Sect. 23.4. 

The focus of this paper was mathematical platonism and some motivations for 
it that emerged in the mathematical work and philosophical reflections of the late-
nineteenth and early-twentieth centuries. As such, it supports Ferreirós and Gray’s 
claim that ‘many pivotal mathematical contributions’ in this time period ‘were not 
philosophically neutral’ and it can be seen as a contribution to the general project 
towards ‘an adequate historical understanding of modern mathematics’ (Ferreirós 
and Gray 2006, 1–2). 
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Chapter 24 
History of Mathematics Illuminates 
Philosophy of Mathematics: Riemann, 
Weierstrass and Mathematical 
Understanding 

Jamie Tappenden 

Abstract This paper explores two respects in which a study of the history of 
mathematics can enrich the philosophy of mathematics. First, central concepts in 
the informal methodology of mathematical research—understanding, explanation, 
the “proper context”, the correct or natural definition of a concept, etc.—can in 
many cases only be identified, refined and adjudicated as the practice evolves over 
time. Second, the distinction between mathematics and philosophy in many cases is 
not sharply delineated. Many paradigmatically “philosophical” goals—identifying 
central concepts and providing rationales for such choices, analysing concepts, 
establishing criteria of “rigour” etc.—arise organically within mathematical practice 
itself. I illustrate these observations by exploring the historical sequence beginning 
with the rationales of Gauss and Riemann for studying real functions in the complex 
numbers, with special attention to the double periodicity of elliptic functions. I 
illustrate the profundity of some of the methodological issues that can arise via a 
contrast between the Riemann and Weierstrass approaches to elliptic functions and 
their generalisations. 

24.1 Nineteenth Century Analysis as Philosophy 
of Mathematics 

This paper aims to convey a sense of what the philosophy of mathematics can learn 
from the history of mathematics, and that Jeremy Gray’s work (particularly, but not 
exclusively, in nineteenth century complex analysis) is an especially rich source. I 
draw inspiration from the title theme of Gray (2009): “Nineteenth Century Analysis 
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as Philosophy of Mathematics”.1 Philosophical analysis and foundations are not just 
conceptual flying buttresses welded to an autonomous practice of mathematics. As 
nineteenth century analysis examplifies, demands for conceptual analysis, debates 
over the proper choice of core concepts, over the nature of rigorous argument, 
over the relation between mathematical objects and the language used to describe 
them, etc. arise within mathematical practice itself, shaping ongoing mathematical 
investigation.2 

The paper will unfold as follows. In Sect. 24.2, I’ll lay out the objective: explore 
the roles of a family of vague concepts—“understanding”, “explanation”, “correct 
definition”, “proper context”, “appropriate technique” . . . —that collectively inform  
what I’ll call the “informal methodology” of mathematical practice. (The modifier 
“informal” signifies not merely “not expressed via some formal system” but 
also something like “not systematically articulated” or “sometimes tacit/not fully 
explicit”.) In Sect. 24.3 I’ll briefly consider one case for orientation: Gauss’ and Rie-
mann’s rationales for viewing the complex numbers as the proper environment for 
investigating functions of real numbers. I’ll then explore the way the basic insights 
were developed in profoundly different directions in the study of elliptic functions 
by Riemann (Sect. 24.4) and Weierstrass (Sect. 24.5). These two approaches were 
viewed as profoundly in opposition in the second half of the nineteenth century. In 
Sect. 24.6 I’ll consider some of the reasons for this opposition as it stood at the time, 
and how those reasons were refined, addressed and adjudicated in the subsequent 
decades. 

24.2 “Explanation”, “Understanding”, “Proper Setting”, 
“Fruitfulness” and Other Concepts of Informal 
Methodology 

24.2.1 Informal Methodology 

Say we have a theorem that admits of two different proofs, each equally rigorous 
(or at least potentially so) and drawing from logically equivalent premises. Or we 
have two equivalent definitions of some concept or class. It can happen that one of 
the proofs or definitions will be preferred over the other. What reasons might be

1 Indeed, you could see much of the present essay as an extended reflection on the discussion of 
Fourier series in Gray (2009, §3). 
2 Lawrence Sklar’s Locke Lectures (Sklar, 2000) make a similar observation for physics: in 
many cases foundational philosophy arises organically within physics. Of course, there are also 
important cases where philosophy and mathematics interact at more of a distance, so to speak, 
such as Riemann’s immersion in Naturphilosophie (cf. Bottazzini and Tazzioli, 1995) and Herbart’s 
writings in particular (Scholz, 1982), (Ferreirós, 2006), and (Laugwitz, 1999, §3.3). Gray (2008) 
explores a wealth of other interactions between mathematics and philosophy. 
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cited for that preference? Well, one might be taken to provide an “explanation”, or 
“understanding” but not the other. One might admit of a “natural” generalization 
supporting proofs of other “important” theorems. One proof might be judged to be 
“deeper”, or “more fruitful”. One environment may be judged to be “more natural” 
or “appropriately X [where X might be “algebraic”, “geometric”, “analytic”, . . . ]”.3 

Preferences may be justified in broadly aesthetic terms—“beautiful”, “elegant”, 
“rich”, “deep”—that may in themselves seem opaque, but in a context where more 
substance can be discerned. (cf. Sect. 24.3.2) 

Recent decades have featured attempts to address these aspects of mathematical 
research.4 To be sure, this practice-oriented research stream faces distinctive chal-
lenges, not least of which is the vagueness of the expressions it seeks to illuminate: 
it is unlikely that any will admit sharp necessary and sufficient conditions. Also, 
efforts to explain one typically end up appealing to others; it’s difficult to treat just 
one in isolation. 

To make sense of these patterns, we need to clarify how they are bound up 
with the practice of formulating and proving theorems. Mathematicians are not just 
black boxes that input premises and coffee, then output rigorous proofs of clearly 
stated results. They engage in what I’m calling informal methodology: making and 
giving reasons for conjectures, proposing and debating proof strategies, identifying 
potentially representative special cases, etc. en route to cogent proofs of interesting 
results. Talk of “explanation”, “understanding”, “proper context”, etc. is a part of 
this orienting discourse. However formless this talk of “understanding” etc. may 
sometimes seem at first encounter, we can get some purchase on the content of what 
practicing mathematicians say by looking to what they subsequently do. This will 
not, of course, give the sharpness, clarity and unequivocal character of the definition 
of ring or group, nor can we expect many, if any, exceptionless generalisations. 
But one plays the hand that’s dealt: you can only get as much exactness as the 
phenomena support. 

24.2.2 Objectivity? Fruitfulness and Prediction 

Much of the support for any investigation of this type will consist in simple 
judgements of practitioners: Accomplished mathematician X states a preference for 
Y and cites reasons . Z1, . Z2 and . Z3. Of course, any time human beings get involved, 
there will be differences of opinion, and indeed this paper will explore some 
variations that revealed themselves over the years to be quite profound. It could

3 “. . . the ring and the corresponding affine scheme are equivalent objects. The scheme is, however, 
a more natural setting for many geometric arguments” (Eisenbud and Harris, 1992, p. 5).  
4 Early stirrings of this orientation can be found in Lakatos (1976) and the work of Philip Kitcher 
(for example Kitcher, 1981 and Kitcher, 1984). More recent representatives are the essays in 
Mancosu (2008) and Ferreirós and Gray (2006). 
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be, and occasionally has been suggested that such disagreements undercut the value 
of studying informal methodology, in some cases even suggesting dismissively that 
it will amount to nothing more than just each individual mathematician capriciously 
judging “what I like”?5 Of course, this is not in itself an objection to studying 
informal methodology if the preferences themselves are systematically articulated 
and can be to some extent objectively characterised. Furthermore, those preferences 
that do exist are often themselves grounded in, or at least can be defended with, 
reasons that can themselves be critically evaluated. Also, there are cases where a 
judgement of informal methodology is unanimous or at least close to it. A core 
example in this paper is one such case: the consensus (or near-consensus) judgement 
that a family of problems in real analysis are only fully understood when framed 
within complex analysis. In addition, there is a further consideration, that will be 
a submotif of this paper: mathematics is forward-looking, and whether or not a 
judgement of informal methdology is ultimately tenable may depend upon matters 
as yet unknown. 

I’ll use the label “fruitfulness” for this mathematical virtue: One way for a 
proof, or definition, or framework, (etc.) to be superior to a competitor is for it 
to better facilitate further discovery.6 Judgements of “fruitfulness”, under various 
descriptions and labels, reflect a bedrock attitude of the culture of mathematics: 
hard-nosed orientation toward getting results, by finding proofs (of a sought-after 
type) for theorems judged to be worth proving. Of course, this is a virtue that draws 
upon others in the circle of informal evaluations: proofs are not sought for just any 
old theorems, one wants ideally to discover proofs to “important” theorems (or at 
least “theorems that are not a complete waste of time”), that “explain”, or convey 
“understanding”, etc. But the question of whether or not there is a proof there to be 
found, and whether it can be found, is not a matter of mathematicians’ preferences. 

To view a framework, concept, etc. as fruitful is to make a tacit or explicit predic-
tion that worthwhile discoveries will be supported by that framework/concept/etc. 
These predictions can be correct or incorrect: perhaps the results won’t come 
after all and the research will stagnate. This could prompt a re-evaluation—“they 
thought X was the right formulation 100 years ago, but now we know it doesn’t 
work outside restricted domain Y ”. The concept of “scheme” was much disputed 
upon its introduction in the mid-twentieth century. A few decades later it became 
“the language of modern algebraic geometry” (following the title of Eisenbud and 
Harris, 1992). What changed? Many things, of course, and no doubt psychological 
and social factors were involved. But a decisively important factor was just that 
the scheme concept supported proofs of hard unsolved problems like the Weil 
conjectures in a way that the available alternatives didn’t.

5 “[Many mathematicians may use expressions like “explanatory”] to mean little more than “of the 
kind I like”. And different kinds of mathematicians like different kinds of proofs” (Burgess, 2015, 
p. 96 fn. 22). 
6 I have more to say on this topic in Tappenden (1995, 2008, 2012). 
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“Fruitfulness” is a useful reference point for studying informal methodology 
because it offers a foothold in a kind of objectivity. I use the word “objectivity” with 
some trepidation, as it is itself notoriously slippery, but I have something minimal 
in mind: to be objective in this minimal sense is for it to be possible to make a 
distinction between seeming to have a property and actually having it. It can’t be 
that to be an explanation, or a proof that conveys understanding (etc.) is merely for 
some group of qualified people to feel that it is (though such judgements provide 
defeasible evidence that it is). It should make sense to say things like “this sure 
seemed like an explanation, and still seems that way, but for reasons p,q, and r , it  
now appears that appearance is mistaken.” 

The coming sections will develop an extended example of mathematical inno-
vation explicitly motivated by fruitfulness considerations, with attention to the 
way that other bits of informal methodology were subsequently deployed, drawing 
extensively from Jeremy Gray’s work, especially Bottazzini and Gray (2013), Gray 
(2015) and Gray (1989). The claim will not be anything as simple as (say) “such 
and such is an explanation if the concepts involved are fruitful”, since the discourse 
we’re looking to clarify is not as simple as that. As we’ll see, much of the value of 
work like Bottazzini and Gray (2013) for students of informal methodology is that 
the phenomena under study, and the predictions made, can take a very long time 
to play themselves out, in intricate and subtle ways. Sometimes it isn’t until after 
several generations of mathematicians have finished their work that we can evaluate 
whether not the original evaluations were correct and spell out why. 

24.3 “Hidden Harmony”: The Introduction of Complex 
Numbers 

24.3.1 Examples for Orientation: A Method or a Trick? 

Sometimes we encounter an account of a phenomenon that strikes us as making 
everything clear and intelligible. Our immediate reaction may be to take the 
phenomenon to have been explained. These responses can be critically evaluated: is 
this really an explanation, or does it just appear to be? It will be useful for orientation 
to glance at two small-scale, limited cases. 

A familar example appears in Spivak’s Calculus, a widely used introductory 
textbook.7 In the chapter on sequences and series of real numbers, it’s noted that

7 This case is also discussed in connection with philosophical studies of explanation by Steiner 
(1978, pp. 18–9), Lange (2010, pp. 329–32), and Skow (2015, pp. 80–2). See also Needham (1997, 
pp. 64–70). 
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the Taylor series for .f (x) = 1
1+x2 has a circle of convergence .−1 < x < 1. The  

discussion continues: 

If .|x| > 1 the Taylor series does not converge at all. Why? . . . What unseen obstacle prevents  
the Taylor series from extending past 1 and . −1? Asking this sort of question is always 
dangerous, since we may have to settle for an unsympathetic answer: it happens because it 
happens – that’s the way things are! In this case there does happen to be an explanation, but 
this explanation is impossible to give at the present time; although the question is about real 
numbers, it can be answered intelligently only when placed in a broader context. (Spivak, 
1967, p. 428) 

Two chapters later the “broader context” has been developed—complex power 
series—and we read: “it is no accident that the circle of convergence contains the 
two points i and .−i at which the function f is undefined. . . ”(p.  470) This is a 
psychologically satisfying explanation that dispels any sense that “it happens [just] 
because it happens”. And the view that this is indeed an explanation does seem to 
be universal, or nearly so, among those with the necessary background. 

But is it just psychologically satisfying? It’s instructive to contrast another 
solution that has given countless students a delicious “aha” moment: Poisson’s 

evaluation of .
∫ ∞

0 e−x2
dx =

√
π

2 by squaring the integral and evaluating the resulting 
double integral in polar coordinates. “A miracle occurs” and everything quickly 
falls into place. But after the sugar rush wears off the student might wonder: 
there are other ways to evaluate this integral, does this quick, magic way tell us 
anything special?8 This use of polar coordinates doesn’t appear useful for many 
other integrals, which could prompt the title question of Bell (2010): is this a method 
or a trick? (Bell’s answer: so much needs to be true of the equation for the Poisson 
calculation to work that it has essentially just this one application. So: a trick.) 

In the Spivak explanation, there is similarly a passing of the burden to one’s 
attitude toward . C: why should what happens in the .C-world explain what happens 
in the .R-world? We could certainly slap together any number of bizarre structures 
containing an object o, stipulating that . 1

1+o2 is undefined and at a distance 1 from the 
origin. We wouldn’t count such structures as explaining anything. So the question 
“Is this an explanation?” is partly dependent on the question “What makes . C
special? What reasons can be given for viewing the specific broader context of . C
as the “right” one within which to address the convergence of .f (x) = 1

1+x2 ? And  
why should mathematicians write and choose textbooks that try to inculcate students 
with the instincts, intuitions and habits of thinking that prompt that reaction? 

The consensus attitude of the mathematical community appears to be that 
studying the behaviour of a function in . C is indeed indispensible for understanding 
its behaviour in . R. It’s a method, not a trick. There are many reasons for this. 
Some of them might be seen as simple matters of convenience—for example,

8 For an extensive collection of other ways, see Boros and Moll (2004, ch. 8). See also Iwasawa 
(2009). 
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(Fundamental Theorem of Algebra) it is quite handy that polynomials with complex 
coefficients always split into linear factors over . C. But other reasons appear deeper. 
It will be illuminating to reach back in history to the initial motivations for giving . C

such a distinguished status, and follow out the consequences. 

24.3.2 Gauss and Riemann: “Beauty”, “Simplicity”, 
“Roundness”, “Hidden Harmony”. . . 

An early declaration for complex numbers collectively as the correct context for 
the study of functions of analysis comes from Gauss.9 He first asks whether a new 
function is to be applied only to real numbers “[with] the imaginary values of the 
argument only an appendage”, or . . . 

. . . [one]  accedes to my principle that in the realm of magnitude one must regard the 
imaginary .a + √−b = a + bi as enjoying equal rights with the real. We are not 
talking about practical use here; rather to me analysis is an independent science, which 
by slighting imaginary magnitudes loses exceptionally in beauty and roundness [Schönheit 
und Rundung], and suddenly every truth that would otherwise be generally valid would have 
to be accompanied by highly tiresome restrictions.10 

In 1832 Gauss made similar remarks about the “highest simplicity and natural 
beauty” emerging when arithmetic is extended to include .

√−1.11 

What is Gauss gesturing at? Of course, it’s far from clear from the words alone 
what the significance of “Beauty and roundness”/“highest simplicity and natural 
beauty” is for proof construction. I would guess that by “roundness” Gauss means 
something that could be described as “intellectual/thematic cohesion”, since without 
this roundness, “every truth that would otherwise be generally valid would have to 
be accompanied by highly tiresome restrictions”, but this interpretation is hardly 
forced. A lot remains to be filled in. 

Gauss acknowledges that he is groping and probing, striving for a rigorous, 
explicit articulation of what he grasps only dimly. Here is a not atypical remark, 
from a letter of 1825, indicating both his evaluation of the importance of his 
speculations for research and the state of those speculations as work in progress: 

These investigations [into curved surfaces] penetrate deeply into many others, I may even 
say into the metaphysics of space, . . . for  example  the  true  metaphysics  of  negative  and

9 The point is not just that complex numbers should be used, but that they are collectively treated as 
an object of study in their own right, and as supporting rigorous proof, in contrast to (say) Poisson, 
who saw them as a tool for discovery but not rigorous proof (Bottazzini and Gray, 2013, p. 127.). 
10 Letter of 1811 to Bessel (Gauss, 1880, p. 156). Translation (slightly modified) from Bottazzini 
and Gray (2013, p. 72). 
11 Gauss (1832, p. 102). These and similar passages from Gauss are discussed in Bottazzini and 
Gray (2013) section 1.5.3 and passim. 
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imaginary quantities. The true meaning of .
√−1 stands very vividly before my mind, but it 

will be very difficult to put it into words, which can only give but a vague fleeing image.12 

We can be confident that Gauss isn’t just making a disinterested aesthetic 
evaluation. He is also making a methodological recommendation: This is the context 
in which certain problems should be addressed. Gauss sees something, he urges its 
importance, and it’s safe to say, given that this is Gauss we are talking about, that 
he expects at least some of the eventual payoff will be proofs of hard problems. But 
to hazard informed conjectures about what he’s trying to express, we’ll need to dig 
into the details of the mathematics itself. 

Here is a passage a few decades later in the tradition Gauss initiated, opening 
article 20 of (Gauss student) Riemann’s epochal PhD thesis (Riemann, 1851) 
on complex functions (containing “the germ” of “a major part of the modern 
theory of analytic functions” (Ahlfors)).13 Riemann notes that for functions of real 
analysis, after extending the domain to . C “an otherwise hidden enduring harmony 
and regularity [Harmonie und Regelmässigkeit] emerges”, providing coherence to 
already known theorems, and “open[ing] the road” to further discoveries. 

If we give these [functions of analysis] an extended range by assigning complex values 
. . . an  otherwise  hidden  harmony  and  regularity  emerges. . . [A]lmost  every  step  taken  here  
has not only given a simpler, more compact Gestalt to results established without the help 
of complex magnitudes, but opened a road to new discoveries, as attested by the history of 
the investigations into algebraic functions, circular and exponential functions, elliptic and 
Abelian functions. (Riemann, 1851, p. 69–70; 34–5)14 

Riemann explicitly indicates some research directions fertilized by this “harmony 
and regularity”. (I’ll follow out the elliptic functions reference in this paper.) He 
points to both “new discoveries” and new proofs of known results, evaluating these 
new proofs as preferable in qualitative respects (“a simpler, more compact Gestalt”). 
In fact, this promise of fruitfulness was realised in many different ways, as I’ll 
discuss in Sect. 24.3.3 and passim through the rest of the paper. 

Gauss and Riemann are not just saying that their constructions have certain 
aesthetic properties, and that by lucky happenstance they are also fruitful, but rather 
that whatever it is that grounds the aesthetic reaction (“beautiful”, “harmonious”, 
. . . )  is  also  at  least  partly  responsible for the fruitfulness, suggesting a picture of 
this particular flavour of mathematical beauty as a kind of “productive richness”.15 

12 Gauss (1927, p. 8). Johnson (1979) drew my attention to this letter; the paper (pp. 112–14) has 
additional quotes and more extended discussion of Gauss’s efforts to articulate the foundations of 
.
√−1 including the use of geometric imagery faute de mieux. 
13 Ahlfors (1953, p. 3). This passage is quoted more extensively in footnote 36. For a discussion of 
Riemann’s thesis in its historical context, see Bottazzini and Gray (2013, pp. 263–76) and Laugwitz 
(1999, pp. 96–123). 
14 I’ve modified the translation in Riemann (2004), drawing partly on Abe Schenitzer’s translation 
in Laugwitz (1999, p. 97). 
15 There is precedent for such an analysis of aesthetic judgement in Hutcheson (1725). I have some 
tentative remarks about fruitfulness and aesthetic judgements of productive richness in Tappenden 
(2012)
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With over . 1 1
2 centuries of mathematics to survey, there is virtually no dispute 

among mathematicians that Gauss and Riemann were right to view . C as they did. No 
doubt they liked working in . C, but the preference was grounded in reasons that we 
can retrospectively evaluate as deep and well-founded. This in turn helps explicate 
Spivak’s assessment of an “explanation” of the convergence of the Taylor series 
for .f (x) = 1

1+x2 : Behaviour over . C is consistently, systematically, and profoundly 
relevant to our understanding of functions over . R. It’s not a trick. 

24.3.3 More Riemann: Concepts Versus Calculation, Objects 
Versus “Manner of Representation” 

Continuing with the Gray (2009) theme of nineteenth century analysis as philosophy 
of mathematics, I’ll note that Riemann (1851) not only introduced new definitions 
and proof techniques but also inaugurated a broader debate about the nature of 
mathematical investigation, between a “computational” approach associated with 
the Berlin of Kummer, Kronecker and Weierstrass, and another, described by its 
adherents as “conceptual”, striving to have proofs “compelled not by calculations 
but by thought alone.”16 The latter was particularly associated with Göttingen and 
Riemann, tracing back to Gauss and Dirichlet, and forward through Dedekind, 
Hilbert and others. I and others have discussed the “conceptual”/“computational” 
debate elsewhere, so I’ll refer the reader there for more details.17 In the coming 
pages I’ll take up just what is needed as background to the discussion of elliptic 
functions. 

Dedekind, in his Lebenslauf of Riemann (1876, p. 576), relates that in the late 
1840s the young Riemann attended Eisenstein’s lectures on elliptic functions, and 
they engaged in many discussions. Riemann conveyed that the two fundamentally 
disagreed on principles, since Eisenstein “stopped with formal calculation” while 
Riemann held that partial differential equations gave the “essential (wesentliche) 
definition” of the targeted functions.18 Dedekind suggests this as the moment when

16 For example: “I have tried to avoid Kummer’s elaborate computational machinery so that here 
too Riemann’s principle may be realized and the proofs compelled not by calculations but by 
thought alone.” Hilbert (1998, p. X).  
17 This “conceptual” dimension of Riemann’s approach is a theme running throughout Laugwitz 
(1999). I discuss Riemann’s reorientation in a philosophical context in Tappenden (2006) and  
more briefly in Tappenden (2013, §9.3). A useful brief historical overview of the rivalry is Rowe 
(2000). For details and philosophical discussion of Dedekind’s Riemann-inspired methodology see 
Avigad (2006) and Tappenden (2008). Some of the antecedents of the “conceptual” interpretation 
in Gauss’s work are explored in Ferreirós (2007). 
18 This does not mean that Riemann didn’t carry out virtuoso calculations when needed; cf. Siegel 
(1932, esp. p. 771). 
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Riemann began developing ideas that were “decisive for his entire later career”.19 

Some years later, Riemann refers back to §20 of his thesis as conveying “the princi-
ple” of his “method” which “yields all the earlier results nearly without calculation” 
(Riemann, 1857b, p. 85). In Riemann (857c, p. 99) he asserts a variation: his method 
produced improved proofs “almost directly from the definition” of results which 
were previously established with “tiresome calculations”. 

Riemann also approached mathematical objects as language-independent. Just 
before §20 of his thesis, Riemann wrote that his principles “open the way for the 
investigation of specific functions of a complex variable, independently of expres-
sions for the functions” (Riemann, 1851, §19). At one point in Riemann (1857a, 
p. 90) he makes explicit that he means to reject definitions based on power series. 
He notes that such a definition would be possible, but adds: “However, it seems 
inappropriate to express properties independent of the mode of representation, by 
criteria based on a particular expression for the function.”20 Instead, as he did 
in his discussions with Eisenstein, Riemann fixes the object of investigation— 
the complex-differentiable functions—via what are called the Cauchy-Riemann 
equations, conditions on the functions themselves.21 

This emphasis on objects themselves rather than modes of representation under-
writes one of the strategies making possible Riemann’s “simpler, more compact 
Gestalt”: determining specific functions in a way that reduces the information 
required “to the necessary minimum”, “avoiding superfluous components”:22 

Previous methods of treating these functions always set down as a definition an expression 
for the function, giving its value for every argument. Our investigation shows that, due to 
the general character of a function of a variable complex quantity, in such a determination 
parts of the determination are consequences of the others [so the information needed can 
be reduced to what is necessary]. This significantly simplifies the treatment. For example, 
in order to show the equality of two expressions for the same function, one usually needed 
to  transform  one  into  the  other,  i.e.  one  had  to  show  they  agreed  for  every  value  . . . now  it  
is sufficient to establish their agreement for a much smaller [set of arguments] (Riemann, 
1851, §20) 

That is: problems are crucially simplified because often limited information 
suffices to determine a specific function. For example: Where is the function 
zero? Where is it infinite, and in what way? As just one illustration of this broad 
phenomenon, I’ll use the elliptic functions we’ll consider in Sect. 24.4. As we’ll

19 The Eisenstein calculation-based treatment resembled in important respects the work of 
Weierstrass that I’ll consider below. Weil (1976) explores the power of the Eisenstein account. 
Bottazzini and Gray (2013, §4.2.3.2) puts it in historical context. 
20 I discuss this feature of Riemann’s view, with particular emphasis on Frege’s conception of 
mathematics as dealing with objects rather than symbols, in Tappenden (2005a, 2006), and in 
§10.6 of Tappenden (2019). 
21 Riemann’s definition and the Weierstrass series-based definition I’ll discuss in Sect. 24.5 are 
essentially equivalent, though it would be some decades before that was proven. The qualifier 
“essentially” is necessary here; note for example the Weierstrass objection in footnote 50. 
22 Riemann (1851, p. 41). The quoted words are from the description of §20 in the table of contents. 
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see in 24.5 such a function can fruitfully be defined with a series, in a way that 
“gives its value for every argument”. On the other hand, in line with the Riemann 
approach, it can be shown that, after fixing a background structure (the “period 
lattice”), if two elliptic functions .Φ1 and .Φ2 have zeros and poles of the same 
order at the same points, then there is a non-zero constant .c ∈ C such that for 
every .z ∈ C, c · Φ1(z) = Φ2(z).23 The functions differing by a constant multiple 
are, from a mathematical point of view, essentially identical, so simply knowing 
the information about the zeros and poles suffices to determine the whole elliptic 
function. 

Dedekind and other followers of Riemann spoke of this approach as “defining 
functions through essential characteristic properties”, in one case tracing the idea 
back to Gauss, and reinforcing the language-independence of the approach: 

[Gauss remarks in the Disquisitiones Arithmeticae]: ‘But neither [Waring nor Wilson] was 
able to prove the theorem, and Waring confessed that the demonstration was made more 
difficult by the fact that no notation can be devised to express a prime number. But in our 
opinion truths of this kind ought to be drawn out of notions not out of notations.’ In these 
last words lies, if they are taken in the most general sense, the statement of a great scientific 
thought: the decision for the internal in contrast to the external. This contrast also recurs in 
mathematics in almost all areas; [For example] . . . Riemann’s definition of functions through 
internal characteristic properties, from which the external forms of representation flow with 
necessity (Dedekind, 1895, pp. 54–55).24 

To get a more robust sense of the consequences of Riemann’s informal method-
ology we’ll need to look to the mathematics that was guided by it. In the coming 
Sect. 24.4 I’ll continue following out Riemann’s reference to elliptic functions. 

24.4 Foothold: The Double Periodicity of Elliptic Functions, 
Downstream from Riemann (1851)25 

With the hindsight of more than one and a half centuries, Riemann’s tacit prediction 
that his approach would prove fruitful has been borne out. And though there 
have been refinements of definitions, more rigour, and various bits of adjusting, 
clarifying and error-correcting, Riemann’s core insights retain their force. Here I’ll 
consider one case that exemplifies this power to not only support proofs but convey

23 Jones and Singerman (1987, p. 76). 
24 I discuss the “inner characteristic properties” versus “external forms of representation” theme, 
with other quotes from Dedekind and others, in Tappenden (2006, esp §II). A more systematic 
examination of this and other aspects of Dedekind’s methodology is Avigad (2006). A more 
recent paper, which connects Dedekind’s interpretation of Riemann’s methods with contemporary 
“structuralism” in mathematics is Ferreirós and Reck (2020). 
25 In this section I’m greatly indebted to the discussion in Stillwell (1989, esp. §14.4, §15). 
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understanding of a question confronted at roughly the time of Riemann’s writing: 
why do elliptic functions have two periods?26 

24.4.1 Riemann Surfaces Invoked as Explanations 

Here are some expressions of a widespread opinion, citing a construction originating 
in Riemann (1851) as explanatory: 

People who know only the happy ending of the story can hardly imagine the state of affairs 
in complex analysis around 1850. The field of elliptic functions had grown rapidly for a 
quarter of a century, although their most fundamental property, double periodicity, had 
not been properly understood; it had been discovered by Abel and Jacobi as an algebraic 
curiosity rather than a topological necessity. The more the field expanded, the more 
was algorithmic skill required to compensate for the lack of fundamental understanding. 
[Cauchy even came] to understand the periods of elliptic and hyperelliptic integrals, 
although not the reason for their existence. There was one thing he lacked: Riemann 
surfaces. (Freudenthal, 1975, p. 449) (my italics) 

The reason for the double periodicity becomes completely clear with the introduction of 
Riemann surfaces by Riemann [in Riemann (1851)]. . .  
One could not ask for a more satisfying explanation of the mysteries of elliptic integrals. It 
is as if an analyst innocent of geometry had begun with 

. 

∫
dx√

1 − x2

discovered sin and cos, and finally discovered the circle. 
(Stillwell “Introduction” to Poincaré, 1985, p. 6) (my italics) 

This intuitive explanation of double periodicity is due to Riemann [in his 1851 thesis], 
who later [1857] developed the theory of elliptic functions from this standpoint. (Stillwell, 
1989, p. 227) (my italics) 

If we take the integral [.y = ∫ z

0
dt√

(t−α)(t−β)(t−γ )(t−δ)
] as the starting point, then 

Riemann’s construction of the Riemann surface corresponding to (6.85) explains the double 
periodicity of the inverse [= elliptic JT] function. This in turn provides a complete answer 
to Eisenstein’s question about the inverse of an integral and its periodicity. (Roy, 2017, p.  
182) (my italics) 

In each case we find Riemann’s approach credited with “explaining” the double 
periodicity; indeed we “could not ask for a more satisfying explanation”. He dis-
covered “the reason” for the double periodicity of elliptic functions, a “topological 
necessity” not an “algebraic curiosity”. Only with Riemann surfaces did we attain 
“fundamental understanding” of this “fundamental property” of elliptic functions.27 

OK, so what are elliptic functions, and what is double periodicity?

26 Note Bottazzini and Gray (2013, p. 70). 
27 In connection with Sect. 24.5 below, note “Eisenstein was also pleased that his approach showed 
clearly why the elliptic functions are doubly periodic.” (Bottazzini and Gray, 2013, p. 227). 
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24.4.2 An Aside for Orientation: sin(x) Is Periodic 

In Sect. 24.4.1 Stillwell makes an analogy with a familiar fact about trigonometric 
functions that will be useful for clarification. .Sin(x) is (singly) periodic (with period 
. 2π ), in that for arbitrary real x and integer n: .sin(x) = sin(x + 2nπ). Geometric 
explanation: form a right triangle with x as one of its non-right angles. Setting 
the hypotenuse = 1 (and temporarily changing the argument variable to . θ to avoid 
ambiguity), .sin(θ) is the length of the line opposite angle . θ . With hypotenuse as the 
radius of a circle, there’s a familiar picture: 

θ 
sin θ 

So why is .sin(x) periodic? Because as x increases you just go around a circle! 
Stillwell also points to this equation for the inverse: 

. sin−1(x) =
∫ x

0

dx√
1 − x2

(Taking the inverse of .sin−1(x) gives .sin(x) back.) 

24.4.3 Elliptic Integrals on a Torus 

I’ll approach elliptic functions in a nineteenth-century way, via the inverse of 
what can be seen as a generalization of the .sin−1 integral: elliptic integrals.28 It 
will suffice for our purposes to take the integral from the Roy quote above as a 
representative. Notationally it’s convenient to ask how .Φ(z) behaves, with: 

.Φ−1(z) =
∫ z

0

dt√
(t − α)(t − β)(t − γ )(t − δ)

28 In contemporary textbooks, elliptic functions are often just defined as doubly periodic mero-
morphic functions of a complex variable. See for example Jones and Singerman (1987, p. 72) or 
Markushevich (1987, p. 138). 
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As with trigonometric functions, the behaviour of the inverse of .Φ−1 is in key 
ways more tractable than the integral. When .Φ(z) is obtained by inverting an elliptic 
integral, it is called an elliptic function. As advertised, elliptic functions are doubly 
periodic: given an elliptic .Φ(z), there will be two independent .ω1, ω2 ∈ C such that 
.∀z ∈ C,∀m, n ∈ N: 

.Φ(z) = Φ(z + mω1 + nω2).29 

Why? With limited space I’ll just sketch enough of the argument to convey its 
conceptual significance. (Much of the action in §§1–4 of Bottazzini and Gray, 2013 
is the clicking into place of components of this explanation, with the denoument in 
§5.) 

For the present purposes, we’ll just think vaguely of .y = ∫ z

z1
Φ(t)dt as (with 

qualification) the length of a path extending from . z1 to z, and .y = ∫
C Φ(t)dt as the 

length along the curve . C. I say “with qualification” because the “length” of a line 
in complex analysis diverges from geometric intuition. So long as nothing funny 
occurs, the “length” of the curve will depend only on its beginning and end points, 
not the specific path taken.30 If a curve returns upon itself, starting and ending at 
one specific point . za , the value of the integral—the “length of the curve”—will be 
0. One way for “something funny” to occur is if the curve starts and ends at . z0, 
but doesn’t divide the surface into distinct areas: inside, outside, and the boundary 
consisting of the curve itself. In that case, the integral can be non-zero. 

The Riemann approach replants the original integral on a new surface, restruc-
turing the problem in different, ultimately topological terms. This is valuable for 
many reasons; I’ll just note a simple one. If .z2 = y is understood as presenting 
y as a function of z it is unambiguous: each z corresponds to just one y. But the  
inverse, with z a “function” of y, assigns every y but 0 two values: .+√

y and 
.−√

y. Riemann found it fruitful to turn such multifunctions into functions (strictly 
speaking), by dividing the plane into copies (“sheets”), with distinct values of a 
given argument on distinct sheets. It’s helpful to compactify a sheet by adding a 
single point at infinity, “rolling the plane up” into a sphere (the “Riemann sphere”).

29 An aside: This is already a point where the choice of the complex numbers as the domain is 
theoretically crucial. The inverted function makes sense if restricted to the real numbers, but the 
fundamental property of double periodicity only appears if the function ranges over all the complex 
numbers. Except in trivial cases, one of the periods must be a complex, non-real number and the 
other a real number. This illustrates a point that is often neglected in connection with the subject 
of ontology in mathematics: extending a domain can change which classifications of objects in the 
original domain count as “natural”. 
30 This “length” is more formally the net effect of a complex velocity along the whole curve, where 
complex velocities combine differently than real velocities do (so that visually very different paths 
can all have the same “length” in this sense of same net effect). I’m grateful to Colin McClarty 
here. 
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In the case of .z = ±√
y there will be two sheets, for .+√

y and . −√
y. An integral  

with .
√

(t − α)(t − β)(t − γ )(t − δ) in the denominator needs two sheets, because 
of the . √ .31 

There is a 0 on each sheet, but .0 = +√
0 = −√

0, so there should only be one 0. 
Also, there are continuous curves beginning on one sheet and ending on another. So 
the sheets must be “glued together”. For reasons I won’t go into, this has to be done 
in very specific ways.32 For the elliptic integral, because the polynomial has zeros 
at .α, β, γ, δ there needs to be four points of contact when gluing the two spheres 
together. 

Draw lines from . α to . β and . γ to . δ on each, and paste the spheres together at 
these cuts. . α to . β (.L1− and . L1+) and from . γ to . δ (.L2− and . L2+) to reflect that certain 
transitions are sensitive to the direction of a curve relative to the zeros.33 

Connect the lines so that .L1− on one sheet matches up with .L1+ on the other 
and similarly each .L2− on one sheet matches up with .L2+ on the other. The result, 
topologically, is a torus/donut: 

OK, so what about that elliptic integral? Recall that the integral will (very 
vaguely speaking) give the length of a path, sensitive only to the beginning and

31 On the construction of the Riemann surface for . 1
p(z)

, with .p(z) a polynomial, see Jones and 
Singerman (1987, pp. 157–67). 
32 Wilson (2006, pp. 312–19 ) discusses some of the relevant complexities in a philosophical 
context. 
33 I am of course hopscotching across many complications. For more detail see Jones and 
Singerman (1987, pp. 149–72 esp. p. 161) or Springer (1981, pp. 1–10). 
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the end points, except for curves that return onto themselves but don’t divide the 
surface into inside/outside/boundary. On a torus (relative to a choice of coordinates) 
there is a particularly natural way to make an independent pair of such curves, 
corresponding to cycles . C1 and . C2: 

C1 
length C1 = ω1 

C2 
length C2 = ω2 

Say that the value of the integral is . ω1 along the cycle . C1 , and . ω2 along . C2. What 
is the value of the elliptic function .Φ(k)? Consider the inverse .Φ−1(z) = k. Say 
that k is the length of a direct path from 0 to . z1. The same beginning and end are 
also the result of integrating the path from 0 to . z1 that goes along . C1 m times, . C2 n 
times and then to . z1. In terms of . Φ, we get: 

.Φ(k) = Φ(k + mω1 + nω2) for arbitrary integers m and n. 
That is the explanation of why elliptic functions have precisely two periods. 

More than 150 years after its introduction, it remains a compelling diagnosis. It 
illustrates what Riemann meant when he spoke of establishing, “practically without 
computing” results that had required “tiresome calculations”, and of establishing 
properties of the function without reference to the means of expression.34 Though 
Riemann’s informal methodology was stated explicitly in an only somewhat 
formless way, his subsequent practice allows us to fill in many details of what he 
had in mind. 

24.4.4 Riemann Surfaces, Fruitfulness and Informal 
Methodology 

As the language of the quotes opening Sect. 24.4.1 indicates, the presentation of 
double periodicity via Riemann surfaces prompts, for many of us, a feeling that 
the phenomenon has been explained, and that in virtue of this explanation we 
understand what is going on.35 It does happen that many people feel something

34 The main reference point for Riemann’s remarks were a specific cluster of results he had derived 
on hypergeometric series. I’m taking his words to be intended more broadly. 
35 No doubt some of the psychological force arises from the fact that this Riemann surface can 
be visualised. It’s an issue worth study, and visualisation in mathematics has been the topic of 
excellent research in recent decades, but I’ll set it aside in this paper. Giaquinto (2020) is an  
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compelling, something viscerally “right”, about the explanation of double periodic-
ity via Riemann surfaces, as the quotes in Sect. 24.4.1 reveal. In what ways can we 
see this as an objective evaluation of the mathematical facts themselves? 

There is, of course, a lot to say, so I’ll keep focus with the benchmark comparison 
from Sect. 24.3.1: why does behaviour of a function in . C explain its behaviour in 
. R, rather than just provide a trick that conveys the illusion of understanding? At 
least part of an answer comes from a broader question of what is special about . C
for mathematical investigation and insight more broadly. To answer this you need 
to clarify the sorts of things that Gauss and Riemann gesture at in Sect. 24.3.2 when 
they write of beauty, roundness, harmony . . . That  preliminary  gesturing  has  been 
given substance, not just by Gauss and Riemann’s work, but also by the nearly two 
centuries of discovery that ensued. 

This explanation of double periodicity presents the same situation: at least part of 
the robust value of the explanation is grounded in the status Riemann’s framework 
overall has earned. Were Riemann’s predictions correct? Did the Riemann approach, 
and in particular the concept of Riemann surface, prove fruitful, support further 
discoveries and subsequently verified conjectures, etc.? Not only is the answer yes, 
but it is hard to find superlatives adequate to express just how yes the answer 
is. It revolutionised, and remains indispensable to, not only complex analysis but 
a diverse range of other areas of mathematics, many not obviously connected to 
complex analysis.36 From the point of view of its role in contemporary mathematics, 
there are compelling reasons to view “Riemann Surface” as a basic and fundamental 
concept. I’ll return to this point in Sect. 24.6.2, after setting a point of contrast. 

24.5 Contrast: Weierstrass and the ℘-Function 

It will be illuminating to consider the contrasting virtues of the Weierstrass 
approach. In earlier writing (for example Tappenden, 2005b and Tappenden, 2006) 
my enthusiasm for Riemann was combined with a (rightly criticised) failure to do 
justice to the complementary power of Weierstrass’s work.37 Here I’ll take steps to 
rectify this imbalance. 

excellent survey of this work. The methodological significance of visualisation is complicated for 
reasons I discuss in Tappenden (2005b) (see especially Sect. 2.3).
36 Speaking on the 100th anniversary of Riemann’s thesis, Ahlfors wrote: “Very few mathematical 
papers have exercised an influence on the later development of mathematics which is comparable 
to the stimulus received from Riemann’s dissertation. It contains the germ to a major part of the 
modern theory of analytic functions, it initiated the systematic study of topology, it revolutionized 
algebraic geometry, and it paved the way for Riemann’s own approach to differential geometry.” 
(Ahlfors, 1953, p. 3). The list could easily be extended: Lie groups, algebraic number theory, 
. . . (Farkas and Kra, 1992, p. 1).  
37 See for example Fillion (2019). Jeremy Gray, Stephen Menn and Philip Kitcher were especially 
helpful in coaxing me to a more balanced point of view. 
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For Weierstrass, the basic objects of complex analysis are analytic functions: 
those that can be represented by a convergent power series . f (z) = Σ∞

n=0an(z − c)n

(with the . ai’s and c complex numbers). Here is a series-based exploration of the 
double periodicity of elliptic functions, drawing on central Weierstrass concepts, 
methods and results. 

Given two periods . ω1 and . ω2 with non-real ratio, we can define what is called 
the Weierstrass . ℘—function for . ω1 and . ω2: 

. ℘(z) = 1

z2 + Σm,n �=0[ 1

(z − mω1 − nω2)2 + 1

(mω1 − nω2)2 ]

This series can be seen to be doubly periodic “by inspection”, since adding 
integer multiples of . ω1 or . ω2 just shifts everything down.38 The series is uniformly 
convergent, so its derivative . ℘′ exists. . ℘′ is similarly obviously doubly periodic 
with the same periods as .℘(z). Weierstrass produced from . ω1, . ω2 an integral whose 
inversion yields the .℘-function with periods . ω1, . ω2, so .℘(z) is elliptic by the 
definition used here. Quite remarkably, it can be shown that every elliptic function 
.Φ(z) with periods . ω1 and . ω2 can be given a simple representation in terms of the 
.℘(z) and .℘′(z) with those periods. There will be two rational functions (i.e. ratios 
of polynomials) . R1 and . R2 such that: 

. Φ(z) = R1(℘ (z)) + R2(℘ (z))℘′(z)

This representation preserves double periodicity. So: any elliptic function . Φ(z)

must be doubly periodic, because it admits of a double-periodicity preserving 
representation in terms of doubly periodic functions. 

Is this a compelling account, and perhaps even an explanation? For those of us 
without a specialist’s knowledge it lacks the immediacy of the Riemann surface 
explanation, but deeper immersion in the details could change that. What could 
support a case that this shows that double periodicity “didn’t just happen”, that we 
have an explanation and not a trick? Are there convincing reasons, beyond just the 
representation theorem, for regarding the . ℘ function as non-arbitrary or in some 
sense “natural”? Does this function show up here by accident, or is there a reason? 

As it happens, .℘(z) is a remarkable function indeed, with many unexpected 
ramifications. I’ll footnote sources for some basic points, and note a more profound 
connection in Sect. 24.6.3.39 Furthermore, the . ℘ function has turned out to be

38 This conjures up a visual analogy with the periodicity of the sine function, different from the 
“go around the circle” one. Why is sine periodic with period . 2π? Because adding . 2π just shifts the 
sine curve to the right in such a way that the curve remains unchanged. 
39 cf. McKean and Moll (1997, section 2.8 (pp. 84–87)) or Stein and Shakarchi (2003, pp. 266–73) 
for clear explanations of why the series is the simplest and most reasonable one to pick, given what 
work the . ℘ function is meant to do. For a variety of illustrations of the ubiquity of the .℘-function, 
see McKean and Moll (1997, pp. 84–104). 
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exceptionally fruitful, often in connections far from what a nineteenth century 
mathematician could envision in more than (at best) an indistinct way.40 

24.6 Background: Riemann and Weierstrass Styles of 
Reasoning 

24.6.1 Weierstrass Versus Riemann: Points of Debate 

Say we ask naïvely: Is one of these an explanation and the other not? Or are both 
of them explanations, but one is not a good explanation? Or are both of them good, 
but one is better? With more than a century and a half of hindsight, and guided by 
our fruitfulness condition we can say that these questions are misleadingly simple: 
both are good—indeed profound—in different respects and for importantly different 
reasons. Two illustrations of many: The Riemann approach unifies many apparently 
profoundly distinct branches of mathematics,41 while series-based approaches 
require minimal machinery.42 What appears to be a consensus view is expressed by 
Catanese, commenting on “classical functions of a real variable are truly understood 
only after one extends their definition to the complex domain”: 

. . . the  great  appeal  of  [Complex]  Function  Theory  rests  on  the  . . . variety  of  different  
methods and perspectives: polynomials, power series, analysis, and geometry, all of these 
illustrate several facets of the theory of holomorphic functions, complex differentiability, 
analyticity (local representation through a power series), conformality (Catanese, 2016, p.  
196).43 

This isn’t to say that one can never make distinctions of better and worse, 
good and not-so-good, in connection with candidate mathematical explanations. 
One illustration (explored in Mancosu, 2001, pp. 108–112) is Weierstrass follower 
Pringsheim’s explicitly expressed desire—in his 1925 Vorlesungen über Funktio-
nenslehre—to “explain” phenomena in complex analysis. It is valuable work, but 
as Mancosu notes, it hasn’t led anywhere, suggesting a negative assessment of the 
explanatory project.44 Whatever comparisons could be made between Weierstrass’

40 For example, avoiding integration proved useful for an extensive range of number types, such as 
p-adics (Roy, 2017, p. 183). 
41 Farkas and Kra (2001, p. XV), (Farkas and Kra, 1992, p. 1), (Napier and Ramachandran, 2011, 
p. vii). 
42 Walker (1996, p. xv). Walker also notes that the Eisenstein series-based treatment displays on 
its face the analogy with trigonometric functions. See also Weil (1976). 
43 See also Weyl (1995a) and Weyl (1995b) (a two part essay), developing the suggestion that 
algebraic and topological approaches are two fundamentally different and complementary modes 
of mathematical thinking, with Riemann and Weierstrass on complex analysis as the central 
reference point. 
44 This point is also made in Remmert (1991, pp. 351–2 and 431). 
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and Riemann’s accounts, one may not unreasonably say that both are more 
explanatory than Pringsheim’s. 

The contrast of frameworks and styles did seem to be of great moment at the 
time, and we no longer see it with the same urgency largely because the issues 
that were raised came to be resolved, or in some cases reconceived, through 
mathematical investigation and methodological reflection. Here is one example: an 
objection raised by Weierstrass was the problem of extending complex variable 
theory from functions of one variable to functions of several. Among the reasons 
cited: the apparent intractability of the problem of generalizing the Cauchy-
Riemann equations to several variables, and the apparent complexity of the task 
of generalizing Riemann surfaces to multiple dimensions.45 Not just to many in the 
nineteenth century, but for decades later the case seemed compelling: even as late 
as 1966 Siegel describes the Weierstrass power series approach as stronger than 
Riemann’s when the subject is functions of several variables.46 But by 1996 we find 
an analyst stating a opinion roughly opposite to Siegel’s (Laugwitz, 1999, pp. 148– 
52): “A century later we see that . . . the general function theory of several variables 
must be viewed as a further development of Riemann’s conception.” Riemannian 
approaches to functions of several complex variables are now thriving, thanks 
to, among other innovations, Hörmander’s work in the 1960’s on the .∂̄-equation, 
generalizing the Cauchy-Riemann equations, and the development of Riemann 
surfaces in n dimensions.47 In this instance, the accepted view as to which approach 
was superior in just this one respect required over a century of research to reevaluate. 

It will be illuminating to take up some of the objections raised to Riemann’s 
methods, to see how they unfolded in the subsequent century and a half. I’ll just 
take up two more topics briefly; the evolution of the understanding of this material 
was so rich and subtle that I can only cover a small part. 

24.6.2 Rigour 

Weierstrass acknowledged the fruitfulness of Riemann’s framework while insisting 
that this is insufficient without an establishment of “systematic foundations”.48 

Poincaré echoed this evaluation: “. . . the  method  of  Riemann  is  above  all  one  of

45 cf. Weierstrass (1988, p. 115, p. 141) and Bottazzini and Gray (2013, ch. 9). 
46 Siegel (1973, p. 1); the German original appeared in 1966. 
47 On the .∂̄-equation, I’m indebted to correspondence with Jon-Erik Fornæss. The emergence of 
one style of n-dimensional generalization of Riemann’s approach is charted in Remmert (1998). 
48 “. . . function theory . . . must be built on the foundation of algebraic truths, and that it is therefore 
not  the  right  path  when  the  “trancendant”  . . . is  taken  as  the  basis  of  simple  and  fundamental 
algebraic propositions. [Appeal to the “transcendant”] seems so attractive at first sight, in that 
through it Riemann was able to discover so many of the important properties of algebraic functions. 
(It is self-evident that, as long as he is working, the researcher must be allowed to follow every path 
he wishes; it is only a matter of systematic foundations.)” (Werke II p. 235). 
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discovery, that of Weierstrass is above all a method of demonstration.” (Poincaré, 
1900, p. 7). Sophus Lie put it this way: 

[Riemann’s] astonishing mathematical instinct let him see immediately what his time didn’t 
allow him to prove definitively by purely logical considerations, nonetheless these brilliant 
results are the best testament to the fruitfulness of his methods. (Lie and Scheffers, 1896, 
pp. v–vi)49 

Indeed, Riemann made mistakes, and some of his arguments were obscure.50 

After Riemann’s early death at age 39 in 1866 he couldn’t clarify and develop 
further, so that even on the 100th anniversary of Riemann’s thesis, Ahlfors could 
famously speak of Riemann’s “cryptic messages to the future” (Ahlfors, 1953, p. 3).  
But the “discovery/justification” distinction, and talk of “astonishing mathematical 
instinct” is misleading, to the extent that it presents discovery as an oracular 
revelation of ultimately inexplicable genius, the inscrutable voice of an external 
daimon whispering in Riemann’s ear. There were principles and methods that 
Riemann grasped, however obscurely, which guided him to his “brilliant results” and 
a task for his successors was to articulate these principles in a more disciplined way 
(even if there might be other means to demonstrate the results, once discovered). 
When the work was not rigorous as it stood, it could usually be made rigorous in a 
way that retained its core insights.51 

This rigorisation was also a creative process of (broadly speaking) interpretation 
in various directions. In Sects. 24.6.2.1 and 24.6.2.2 I’ll consider aspects of the 
“orthodox” development of complex functions, but I’ll briefly note two others.

49 For one contemporary opinion, in connection with elliptic functions in particular, note 
Remmert’s remark, concerning Abelian functions, which generalise elliptic functions: Though 
Weierstrass regarded the topic as crucial, “here Riemann’s ideas were more fruitful” (Weierstraß, 
1988, p. ix).  
50 Weierstrass himself noted several Riemannian lapses of rigour, for example Riemann’s overly 
general formulation of the Dirichlet principle, as noted in Sect. 24.6.2.2. Another of Weierstrass’s 
objections directly addressed §20 of Riemann’s thesis, indicating a limitation on the generality of 
Riemann’s approach. (Weierstrass says §19, but §20 is clearly intended.) Riemann states at the 
end of §20 that he is not proving that the class of (“monogenic”) functions he is defining coincide 
with those that can be “expressed by operations on quantities”, but that such a proof would be 
needed to view his approach as foundational to “a general theory of operations on quantities”, and 
he certainly appears to believe that such a proof can be found. But though the equivalence holds 
for the most part, Weierstrass produced a class of counterexamples displaying that “the concept of 
a monogenic function of one complex variable does not coincide with the concept of a dependence 
that can be expressed by means of (arithmetical) operations on magnitudes” (Weierstrass, 1880, p.  
79). Weierstrass was no doubt pleased to note, “the contrary has been stated by Riemann”. (ibid 
p. 79 footnote) I am here indebted to Bottazzini and Gray (2013, p. 465), and to a communication 
from Bottazzini. 
51 For present purposes I’m presupposing that we can make sense of the idea that a precise set of 
concepts and techniques can to some degree or other accurately represent concepts/techniques that 
are only vaguely implicit in earlier work. There has been philosophical scrutiny of this, tracing 
back to Burge (1979) on Frege’s view of partial grasp of concepts and Peacocke (1998) on the  
relation between the Leibniz/Newton treatment of calculus and later ones. Smith (2015) on the  
derivative is a good recent discussion. 
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Clebsch and his students treated Riemann’s account of Abelian functions as 
a computational theory of algebraic curves and surfaces.52 Developed by Max 
Noether and Clebsch student Alexander Brill, this flowed into the Italian tradition 
of algebraic geometry. Dedekind avoided appeals to geometric intuition by defining 
Riemann surfaces within a recognizably modern, “structural” approach to algebra 
in Dedekind and Weber (1882) and elsewhere. Subsequent development by Emmy 
Noether and her students led to the contemporary conception of abstract algebra. 

24.6.2.1 Rigour: Intuition and Riemann Surfaces 

The main objection to Riemann’s approach from the Weierstrass side is the absence 
of rigour: At the time of Riemann’s death, Riemann surfaces were not so much 
defined as they were described and graphically depicted.53 There are two distinct 
claims about rigour in the Weierstrass passage quoted in footnote 48: Riemann’s 
project as it stood lacked necessary “systematic foundations” and they “must be 
built on the foundation of algebraic truths”. It is possible to address the first without 
the second, thereby introducing an expanded conception of rigour. The challenge 
for those attempting to develop Riemann’s work in such a way as to preserve the 
Riemannian essence responsible for its fecundity as a means of discovery is to come 
up with a “conceptual” rather than “computational” style of rigorous proof. 

Though it was a long process of refinement with many additional results required 
to set the stage, an adequate definition was finally arrived at, with the shape of 
the current conception visible in Hermann Weyl’s Die Idee der Riemannschen 
Fläche (Weyl, 1997).54 Weyl’s account presents a further flowering of a Riemannian 
principle of mathematical ontology noted above: As Riemann viewed it as crucial 
to study functions without requiring reference to the linguistic means by which 
the functions were introduced and designated, Weyl lays a foundation for treating 
Riemann surfaces without reference to the functions through which they were 
originally introduced.55 

52 See, for example, Clebsch and Gordan (1866). A rich exploration of (inter alia) Clebsch’s  
approach to Riemann is Gray (1989). An extensive, clear presentation of the Brill-Noether 
approach is Casas-Alvero (2019). Lê (2017) is a revealing immersion in Clebsch’s computational 
conception of geometry, including the genus/deficiency relation (see esp. §4.1, §4.2) touched on in 
footnote 58 below. 
53 There were other objections, as noted in footnote 50. Another turned on “purity of method” con-
siderations, as Mittag-Leffler (presumably channeling Weierstrass) wrote that even if Riemann’s 
approach could be developed rigorously, it would “[introduce] elements into function theory that 
are in principle altogether foreign”. Frostman (1966, pp. 54–5) cf. Tappenden (2006, p. 113) and 
Bottazzini and Gray (2013, p. 424). 
54 See Bottazzini and Gray (2013, pp. 612–620). A useful compact discussion of the historical 
events, including Weyl (1997) and its reception, is in Remmert (1998). 
55 Indeed, Weyl seems to suggest that Riemann was well aware of this possibility but chose to 
hold back from conveying “too strange ideas” to his contemporaries. Weyl (1997, p. VII) (Though
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24.6.2.2 Rigour: Dirichlet Principle and Function Existence 

Riemann’s use of a function-existence principle called the Dirichlet principle posed 
a problem. It’s a well-known story—I’ll just recount key points.56 As noted, 
Riemann treated functions as independent objects. Certain properties (zeros, number 
and type of singularities, . . . )  were  established, then (ideally) the existence of a 
function with those properties would be proven. The Dirichlet principle justified 
such existence claims in key arguments. But the principle as Riemann stated it 
admitted counter-examples. Could the results be saved? Ultimately the Dirichlet 
principle in versions sufficient for Riemann’s arguments was worked out. A nice 
example of the classic Lakatos (1976) pattern: proof . ⇒ counterexample . ⇒ refined 
proof. 

Here I want to consider less the Dirichlet principle itself than one proposed 
diagnosis of its failure: that it appeals to an uncontrolled concept of function. This 
was a Weierstrassian objection,57 but it also arose within an intramural dispute 
between the tradition of complex analysis that followed out an orthodox Riemannian 
style and Clebsch’s research stream. The Clebsch approach was partly motivated by 
a desire for rigour, avoiding: “. . . all  consideration of functions in general, which are 
always precarious, because the concept involves completely vague and unidentified 
possibilities” (Clebsch and Gordan, 1866, p. VI). This reservation continued to 
be cited as a defect by writers in the Clebsch tradition even nearly thirty years 
later: “[There are misgivings about] the operation with functions of indeterminate 
determination in the Riemann style. The function concept in such generality, 
incomprehensible and amorphous, no longer leads to verifiable conclusions.” (Brill 
and Noether, 1894, p. 265). 

Among the Riemannian responses to this was to maintain that the Clebsch 
strategy inverted the proper order of explanation. Thus Riemann’s student Prym 
in a letter: “The attempt to base function theory on algebra is completely use-
less. . . algebra is a consequence of function theory rather than the other way around.” 
(quoted in Neuenschwander, 1978/79, p. 61.) Today we would not say one needs to 
be taken as absolutely prior to the other—rather, they complement one another— 
but Prym’s opinion is not just a matter of “what I like”; it rests on some subtle 
judgements of informal methodology. I’ll consider just one example to illustrate: 
the definition of genus. 

For Riemann, the genus is a topological property: in the simplest cases, it’s the 
number of holes in a surface. Remarkably, it’s equivalent to an algebraic property, 
reflecting the number of singularities short of the maximum for a surface of the given 

perhaps this was among the things that prompted Weyl’s mature 3rd edition reflection that his 
“enthusiastic preface betrayed the youth of the author” (Weyl, 1955, p. VII)).
56 In addition to the technical details, the classic textbook presentation Courant (1950) begins with  
a brief but clear account of the physical motivations for the principle (pp. 1–3). For historical 
discussion, see Gray (2015) esp. 14.4, 16.4 and 18.3. 
57 Mittag-Leffler notes this in an 1875 letter, for example Frostman (1966, p. 54). 
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degree.58 Klein used the contrast of definitions as a touchstone for his affirmation 
of the value of Riemann’s approach: 

[An] objection to adopting Clebsch’s presentation lies in the fact that, from Riemann’s 
point of view, many points of the theory become far more simple and almost self-evident, 
whereas in Clebsch’s theory they are not brought out in all their beauty. An example of this is 
presented by the idea of the deficiency [=genus] p. In Riemann’s theory,. . . the invariability  
of p under any rational transformation is self-evident, while from the point of view of 
Clebsch this invariability must be proved by means of a long elimination, without affording 
the true geometrical insight into its meaning. (Klein, 1893, pp. 3–5) 

Setting aside the comparative evaluation and just addressing the evaluation of 
Riemann’s topological approach: Klein is right to emphasise the mathematical value 
and fruitfulness of understanding genus topologically and taking the topological 
invariance of genus as central.59 Klein’s informal methodology strives to further 
articulate the insight that Riemann is on to something vital in his characterisation of 
the genus. 

But “function” did need to be clarified. This was among the driving forces for the 
development of set theory.60 Hence, 100 years after Riemann’s thesis, Carathéodory 
could frame his complex analysis textbook in the following way. After noting that 
Weierstrass developed an arithmetic treatment of unexcelled “rigour and beauty”, 
he continues: 

During the last third of the 19th Century the followers of Riemann and those of Weierstrass 
formed two sharply separated schools of thought. However, in the 1870’s Georg Cantor 
(1845–1918) created the Theory of Sets.. . . With  the  aid  of  Set  Theory  it  was  possible  for  
the concepts and results of Cauchy’s and Riemann’s theories to be put on just as firm a 
basis  as  that  on  which  Weierstrass’  theory  rests,  . . . and  this  led  to  the  discovery  of  great  
new results in the Theory of Functions as well as of many simplifications in the exposition. 
(Carathéodory, 1954, p. vii) 

This confers further substance on the title thesis of Gray (2009), in that nineteenth 
century analysis drove a refinement of our understanding of how a theory can 
be “rigorous”. It also displayed a case that undercuts the “discovery/justification” 
distinction as manifested in the contrast of Riemann’s “astonishing mathematical 
instinct/method of discovery” and Weierstrass’s “method of demonstration/purely

58 Clebsch called this the Geschlecht, usually translated “genus”. (Cayley’s term “deficiency” is 
sometimes used for genus defined in Clebsch’s way, especially in older textbooks (for example 
Hilton, 1920, p. 113).) Popescu-Pampu (2016) is illuminating on the history of the variations on 
the genus concept. 
59 This is not to endorse the negative side of Klein’s evaluation. Clebsch’s non-topological 
approach to genus also marks out a central property as a birational invariant—in this case a 
central property of algebraic curves, which interacts systematically with the degree of the curve. 
For reasons of space I won’t explore Weierstrass’ important non-topological definition of genus 
via his “Lückensatz” (gap theorem). For the history, see Bottazzini and Gray (2013, §6.8.6) and 
Del Centina (2008). Edwards (2005, ch. 4) (“The Genus of an Algebraic Curve”) explores the 
value of a further non-topological definition. 
60 cf. Jourdain’s introduction to Cantor (1955). Some of the ways nineteenth century analysis 
shaped the development of set theory are explored in Ferreirós (1999). 
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logical means”, as represented by the quotes opening Sect. 24.6.2. Riemann’s work 
and its subsequent evolution suggest that it can be worthwhile to craft methods of 
justification that make proven means of discovery explicit, in the spirit of one of 
Frege’s justifications of his foundations: “. . . if,  by  examining  the  simplest  cases,  
we can bring to light what people have there done by instinct, and can extract from 
such procedures what is universally valid in them, may we not thus arrive at general 
methods for forming concepts and establishing principles which will be applicable 
also in more complicated cases?” (Frege, 1884, §2). 

24.6.3 Weierstrass and Algebraic Addition Theorems 

I’ve considered Weierstrassian objections that the Riemann tradition managed to 
overcome. Now I’ll look at something of the highest importance to Weierstrass, 
about which the Riemann tradition says little: Weierstrass’s characterisation of the 
elliptic functions as the most general class of functions with an algebraic addition 
theorem (AAT). In school we learn the addition formula for sine, which expresses 
.sin(x +y) as an algebraic function of sine and its derivative cosine applied to x and 
y: 

. sin(x + y) = sin(x)cos(y) + sin(y)cos(x)

We can mark out a more general characterisation of such patterns: A func-
tion .φ(z) has an algebraic addition theorem if there is a nonzero polynomial 
.F(x1, x2, x3) in three variables such that: 

. F(φ(z1 + z2), φ(z1), φ(z2)) = 0

Among the remarkable features of the .℘-function is that it has an addition 
formula; it follows without much fuss that all elliptic functions do. 

. ℘(z1 + z2) =
(

℘′(z1)−℘′(z2)
℘ (z1)−℘(z2)

)2 − ℘(z1) − ℘(z2)
61 

A result concerning addition theorems was a core component of Weierstrass’s 
lectures in the mid-1860s and onwards: every analytic function that admits an 
algebraic addition formula is either an elliptic function, or a limiting case.62 

61 The addition theorem for . ℘ directly entails an algebraic addition theorem for . ℘, since . ℘′(z1)

and .℘′(z2) are algebraic functions of .℘(z1) and .℘(z2) cf. Akhiezer (1990, p. 45). 
62 Bottazzini and Gray (2013, §6.6.3) and Del Centina (2019). A clear textbook discussion of the 
mathematical details is Prasolov and Solovyev (1997, §2.9). In this section I’m also indebted to an 
unpublished manuscript by Mark Villarino, which cites the proof of Weierstrass’s characterisation 
as indicating that “the ‘cause’ or ‘explanation’ of the existence of a period of the meromorphic 
function” is the combination of the AAT and the dispersion of points around essential singularities.” 
(Villarino, 2022, p. 7).
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(Specifically: Let .φ(z) be an analytic function admitting an algebraic addition 
theorem. Then .φ(z) is either: (i) an algebraic function of z (ii) an algebraic 

function of .e
iπz
ω (. ω some constant) or (iii) a doubly periodic function of z.) That 

is, Weierstrass proved that possession of an algebraic addition theorem was a 
distinguishing characteristic of the elliptic functions. Beginning with that basic 
characterisation, Weierstrass derives the .℘-function, and uses it as a stepping stone 
to the entire theory. Mittag-Leffler wrote in 1876 lectures drawing from Weierstrass’ 
classes: 

[Is it] possible to find a characteristic property common to the doubly periodic functions and 
this particular sub-class of simply periodic functions, and which is the exclusive property 
of these functions and thus distinguishes them in contrast to all other analytic functions? 
Weierstrass found such a property in the addition theorem, and from this starting point he 
succeeded in developing the theory of elliptic functions to the highest degree of perfection 
that a mathematical theory may ever reach. (Mittag-Leffler, 1923, pp. 350–51) 

Treating the addition theorem as the “characteristic property” represents a diver-
gence between Weierstrass and Riemann that seems to rest on incommensurable 
values—there were research objectives that mattered a great deal to Weierstrass 
and his followers, which were not salient concerns for Riemann and his followers. 
This was not a capricious preference on Weierstrass’s part: Given the problems 
Weierstrass wanted to address, emphasis on addition theorems was an exceptionally 
fruitful means of organisation, and it was reasonable to have the .℘-function play a 
starring role. 

And more than 100 years later the set of considerations turned out to be fruitful in 
ways that Weierstrass couldn’t have imagined. A particularly compelling example is 
in the theory of elliptic curves, where the addition theorems (and the .℘-function in 
particular) support the proof of the group law on cubic curves, illuminating a range 
of areas of mathematics from cryptography to Fermat’s Last Theorem.63 

24.7 Nineteenth Century Analysis as Philosophy 
of Mathematics: Reprise 

The informal side of the pursuit of mathematical understanding is necessarily a 
dynamic process, because many of the reasons offered for particular theoretical 
choices and verdicts involve predictions and are hostages to the future. Is it possible

63 For the use of the .℘-function to demonstrate the group law for elliptic curves see Koblitz (1993, 
§7 ) or Lang (1978, §§2–3). Griffiths and Harris (1994, p. 240) write of the group structure of cubic 
curves and the addition theorem for elliptic functions as arising from different “interpretations” of 
a basic equation containing the .℘-function. For connections to cryptography and number theory, 
see Washington (2008). Pastras (2020), as the name suggests, is an illustration of the long reach 
of the Weierstrass conception, the .℘-function in particular. Another illustration of the addition-
theorem centred conception of elliptic functions in an applied context is the textbook (Hietarinta 
et al., 2016). See especially Appendix B. See also Nijhoff (2022) Appendix A for more explicit 
framing remarks. 
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to work out a general concept of function sufficiently sharp and disciplined for 
Riemann’s analysis? Yes, though it took many decades before that was put to bed. 
Is Riemann’s approach limited due to an inability to generalize from one to many 
variables? It turns out it isn’t, but it took 100 years to work that out. In some cases, 
points of difference can turn on incommensurable values, and formless matters of 
‘styles of reasoning”. Is the possession of an addition theorem a reasonable choice of 
basic property delineating a class of objects? On Weierstrass’ way of doing things, 
absolutely, but for Riemann, not so much. . . 

This in turn gives us a perspective on the Gauss and Riemann motivations for 
taking . C as the domain for the study of the functions of analysis. They struggled to 
informally articulate the advantages through vague and often expressly aesthetic 
evaluations, but the research driven by the insights make it clear how much 
substance was behind the “cryptic messages to the future”. Subsequent development 
bore this out: the vague ideas and proof techniques were generally rendered precise 
and rigorous. To the extent that the Gauss/Riemann remarks in §3 were bound up 
with tacit or explicit predictions, those predictions could hardly have been more 
emphatically confirmed. We now have a still partial, but more detailed sense of just 
what “beauty and roundness” gestured at, and of what substantial principles guided 
Riemann’s “astonishing mathematical instinct”. 

Nineteenth century analysis is a particularly rich and vivid manifestation of a 
wider phenomenon: deep mathematical ideas can often outstrip the conceptual, 
technical and linguistic resources available to lay them out in a rigorous way. It 
is a long way from “beauty and roundness”, or “hidden harmony and regularity” to 
where we are now. One of the things that drives mathematical investigation is the 
quest for the resources to articulate what is as yet only viewed through a glass darkly. 
What I’m calling informal methodology is part of the process of gaining intellectual 
mastery of the subject. People sought explanations and understanding, argued about 
what is fundamental and what is secondary, debated which arguments were/were not 
rigorous and why, and disputed what “rigour” was. Some scrutinized the relationship 
between the subject matter and the language used to describe it, some disputed 
which definitions capture the essence of an idea and which fasten on accidental 
properties . . . Activities that in other contexts would be called “philosophy”. 
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Chapter 25 
What We Talk About When We Talk 
About Mathematics 

Jeremy Avigad 

Abstract This is an essay about the ways that philosophers talk about mathematics. 

What do we talk about when we talk about mathematics? Numbers and functions, 
certainly. Algebraic structures sometimes. The structures can get pretty complicated. 
But these are really things that we talk about when we do mathematics. What do we 
talk about when we talk about mathematics, which has been around for a long time? 

Philosophers have two ways of talking about mathematics. Some of them 
talk about what mathematicians say and do. When these philosophers talk about 
mathematics, they talk about definitions, theorems, and proofs, and sometimes 
calculations, questions, and conjectures. They also talk about methods, intuitions, 
and ideas, and maybe it is not so clear what those are. But even methods, intuitions, 
and ideas are found in what mathematicians say and do. So when these philosophers 
talk about mathematics, they are talking about mathematical talk. 

The other way of answering the second question is to repeat the answer to the first 
question with more emphasis. When some philosophers talk about mathematics, 
they talk about numbers, functions, and algebraic structures, and about how our 
ordinary mathematical talk latches on to those things. When these philosophers talk 
about mathematics, they are talking about what mathematical talk is about. 

Logicians make a big deal about the difference between syntax and semantics. 
When logicians talk about syntax, they talk about the rules of a language. When 
they talk about semantics, they talk about what a language means. So it’s tempting 
to say that the first bunch of philosophers are interested in the syntax of mathematics 
and the second bunch of philosophers are interested in its semantics. 

The distinction between syntax and semantics is useful in logic, but it is not very 
useful in philosophy. In fact, it causes a lot of problems. We ought to think long and 
hard about how we got stuck with these problems, and then we ought to figure out 
how to get out of the mess we are in. 
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25.1 The Problem 

It helps to think about the ways we talk about mathematics. That’s how we got 
axiomatic foundations like set theory and type theory. Foundations helped clarify 
the ways we talk about numbers and functions and algebraic structures. They also 
helped us think about important questions, like, is it o.k. to talk about functions we 
cannot compute? Is it o.k. to use the axiom of choice? 

People came up with formal languages for mathematics before there were 
programming languages, or languages for databases and expert systems. Those are 
also formal languages, but formal languages for mathematics were there first, and 
we got them by thinking about the ways we talk about mathematics. 

So theories of mathematical language are useful. What have philosophical 
theories of mathematical objects given us? Not much. Mathematicians did not 
decide that it was o.k. to use the axiom of choice because philosophers were able to 
tell them what it means. Philosophers can’t even agree about what it means. That’s 
not a problem, because you don’t have to say what the axiom of choice means to do 
mathematics. You do have to decide whether to use the axiom of choice. If you are 
trying to do that, you ought to talk it over with people you know, especially if you 
want them to listen to you later on. It’s probably better not to talk to philosophers. 

I am not saying that semantics isn’t useful. It’s really useful in logic. There are 
a million proof systems for propositional logic, and what they all have in common 
is that they prove formulas that are always true, no matter how you interpret the 
variables. Without knowing what it means for a propositional formula to be true, 
you can’t say what it means for a proof system to be correct, and then it’s really 
hard to explain what all the good proof systems have in common. 

It is also useful in computer science. The semantics of a programming language 
tells you what the programming language is supposed to do and what it means for a 
compiler to be correct. We use programming languages all the time. If we couldn’t 
think about whether we are implementing them correctly, we would be in pretty bad 
shape. 

Semantics is even useful in mathematics. On the face of it, a polynomial is an 
expression. It has terms, maybe a constant term, and a term of highest degree, 
and those are expressions too. But a polynomial can also be a function on the real 
numbers, which is a thing that the expression describes. A polynomial can also be 
an element in a polynomial ring. Polynomial rings give us ways of thinking about 
polynomials without worrying about whether .x +1 and .1+x are the same. At some 
point, we have to say what the elements of a polynomial ring are, and one way is 
to do it is to say that they are expressions, maybe up to an equivalence relation. 
Knowing how to reason about expressions and how the expressions are related to 
what they express is generally helpful. 

In all these situations, we have expressions that describe things and we have other 
ways of thinking about the things that the expressions describe. Semantics fits the 
pieces together.
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When we talk about mathematical statements, how do we talk about the things 
that they describe? With mathematical statements, of course. We use mathematics 
to talk about things like numbers and groups and spaces. When we talk about them 
we are just doing mathematics. It’s not like we have some other way of talking 
about them. Logicians and computer scientists have special-purpose languages, like 
the language of an algebraic structure or a programming language. But when they 
talk about those languages and what they mean, they use mathematics. There is no 
magical philosophical language that tells us what things really are, and we don’t 
need one. 

It’s not just that worrying about what mathematical objects are isn’t helpful. It 
causes a lot of problems. One of them is Benacerraf’s problem, which goes like 
this. Scientists learn about the world by poking it and seeing what happens. They do 
experiments and measure things. But then how do they learn about numbers? You 
can’t poke them and measure them because they aren’t anywhere. If we can’t learn 
about them in a scientific way, it’s hard to say how they can be useful for science. 
Maybe you want to say that mathematics isn’t part of science, but even so, if you are 
a responsible scientist and you use numbers, you ought to say how you know what 
you think you know about them. 

This way of thinking about mathematics has to be wrong. Of course we can 
learn mathematics. That’s one of the things we do in school and also when we get 
older. And of course mathematics is useful for building airplanes and bridges and for 
making our tax forms come out right. That’s why we learn it. It’s just that numbers 
and triangles are not like rocks and trees and sofas. We don’t learn about them by 
bumping into them. They aren’t even like atoms and magnetic fields. We learn about 
them in different ways. 

I don’t blame Paul Benacerraf for saying what was on his mind. Sometimes you 
have to talk about the things that are bothering you and get them out in the open. 
Then you can take a serious look at them and realize that you don’t have to worry 
about them. The problem is, a lot of philosophers can’t get over it. 

There are many important questions about mathematics. Should we use com-
puters to do proofs? Is mathematics on the right path? Is it getting too abstract? Is 
it getting too applied? How can we tell whether something is good mathematics? 
Does statistics count? Is AI going to change everything? Should we be worried? 
But now there is nobody left to talk about things like that. Mathematicians are too 
busy trying to prove their theorems and philosophers are too busy trying to figure 
out what numbers really are. Nobody wants to be a bad mathematician or a bad 
philosopher so they stick to what they are doing. 

25.2 What Went Wrong 

The philosophy of mathematics took a bad turn sometime in the twentieth century. 
The first half of the twentieth century was pretty good for philosophy of mathemat-
ics. It was bad for humanity, especially in Europe, but it was good for philosophy of 
mathematics. It was good for philosophy of science too.
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The logical positivists got things going by telling everyone how science works. 
It is not as simple as they made it out to be, but one of the things they got more or 
less right is that the way we talk about things is important. Rudolf Carnap said a lot 
about “linguistic frameworks,” but that just means ways of talking about things. 

The logical positivists said that mathematics comes down to a choice of linguistic 
framework. This makes sense when you think about it. Doing mathematics means 
coming up with ways of thinking about things, which is pretty much the same as 
coming up with ways of talking about things. Having good ways of thinking about 
things means having good ways of thinking about the world. But mathematics is 
about the ways of thinking and not about the world. When we do science we choose 
a mathematical description a lot like the way we buy a car to get around. If the car 
doesn’t work, we unload it on someone and get a better one. 

But even though the logical positivists thought that mathematics comes down 
to making choices—they called them pragmatic choices—they also said that we 
shouldn’t talk about the reasons for making those choices. They are outside the 
framework. That makes them metaphysical questions, which means that they are 
not scientific, which is bad. 

If we are going to do mathematics, why shouldn’t we talk about how we are 
doing it? If we have reasons for our choices, why can’t they be scientific? If I want 
to decide what car to buy, I am sure as hell going to talk about it. I am going to think 
about all the things I want to do with the car. I am going to go to the library to look 
at all the car magazines and I am going to ask my friends for advice. It’s hard to 
make decisions. It helps to talk about them. 

Eventually W. V. O. Quine came along and said that the logical positivists were 
wrong. It’s not just mathematics that is determined by language. All of science is 
determined by language, and there is nothing special about mathematics. It is all 
one big web of beliefs. Everything has to do with how we talk about things, and we 
had better make good choices about how we talk about things if we want science to 
work out. 

But even though Quine thought we had to make choices, he also thought we 
shouldn’t talk about them much. When we talk about science and do it right, we 
are just doing science. He also said that there isn’t a principled distinction between 
talking about things and coming up with ways of talking about them. This was a jab 
at the logical positivists, who thought that this was exactly the difference between 
science and mathematics. Science is about things, and mathematics is about how we 
talk about them. 

Philosophers like to talk about principled distinctions, but mathematics is 
different from science and it doesn’t make sense to pretend they are the same. The 
logical positivists said that mathematics is different because it is analytic, which 
means that mathematicians define everything. Or stipulate everything. Definitions 
determine what words mean because that’s what definitions do. Axioms are true 
because we decide that they are true, not because of the way the world is. Axioms 
are like definitions. They define the things they talk about. 

Quine said that has to be wrong because when someone writes a dictionary and 
says that some word means something or other, they aren’t supposed to make it up.
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The definition is supposed to describe something that is already there, and the logical 
positivists didn’t explain how the way mathematics got to be there is any different 
from the way that science got to be there. Then he backed up a little and allowed 
that sometimes definitions do other things. Some definitions clarify the meaning 
of words and other definitions are abbreviations. But even the definitions that are 
supposed to clarify are supposed to clarify things that are already there, and Quine 
didn’t think that the abbreviations were all that interesting. 

But that’s the whole point. When you clarify something enough so that you know 
what the rules are, that’s when you have mathematics. Any mathematician will tell 
you that coming up with good definitions is very hard to do. So Quine took the most 
interesting part of mathematics and made it sound too boring to talk about. 

Mathematicians still think about important questions, but they are afraid that 
if they talk about them, they are doing philosophy, which is a waste of time. 
Philosophers think that if they try to be scientific about mathematics, then they are 
not doing philosophy, which, for them, is also a waste of time. So mostly we talk 
about things that don’t matter, and when we talk about things that matter, we don’t 
do it well. At least the mathematicians can go back to doing mathematics. 

25.3 How to Fix Things 

How can we avoid talking about things that don’t matter? Sometimes it helps to 
look around and notice that nobody cares what we are saying. But that doesn’t 
always work. Sometimes we tell ourselves that the reason nobody cares is that 
we are talking about things that are so deep and important that nobody else can 
appreciate them. 

Another thing we can do is look at the history of mathematics. History is really 
interesting. When you read about how mathematics was done you see that people 
had very good ideas. They had to work hard to come up with the ideas. You can 
think about why they decided to talk about things the way they did and you can 
think about what makes the ideas they had so good. 

It doesn’t help to think about whether the numbers people used to talk about are 
the same as the numbers we talk about today and whether their words latched onto 
them in the same ways that ours do. It is interesting to think about how people used 
to talk about numbers and how we talk about numbers today and how our talk has 
changed. But that’s not the same as thinking about how numbers have changed. 

There is a guy I know who writes about mathematics. He has written about the 
history of analysis and the history of algebra and the history of geometry in the 
nineteenth century. He has written about where mathematics comes from and how it 
gets used in physics. He has also written about famous mathematicians and big ideas 
like modernism. Mostly he writes about what mathematicians thought and what they 
did. Sometimes he uses words like “ontology” and “epistemology.” By that he just 
means the way people talk about things and think about them.
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It would be nice if more mathematicians read about the history of mathematics. 
It would be nice if some philosophers read about it too, and even some people who 
aren’t mathematicians or philosophers. Then we could all get together and talk about 
it. We could talk about mathematics and how it got to be the way it is. We could talk 
about why we like mathematics so much and what we like about it. We could even 
talk about how it might be different by the time our children and grandchildren are 
grown up and are doing mathematics on their own. It would be nice to talk. I am 
pretty sure we would like it. 

Appendix 

I am grateful to the editors for accepting this unconventional contribution to an 
otherwise scholarly collection. The title is an homage to Raymond Carver’s short 
story, “What We Talk About When We Talk About Love.” I originally set out to 
write an ordinary philosophical essay about the role of syntax and semantics in 
the philosophy of mathematics, but having chosen the title, it was hard to resist 
emulating Carver’s narrative style. Doing so was liberating because it encouraged 
me to avoid overworn philosophical tropes and to formulate ideas as clearly and 
simply as I could. 

The history of mathematics is a powerful philosophical tool, and thinking about 
what has changed and what has remained constant provides critical insights as to 
why we do mathematics the way we do. The guy in Sect. 25.3 who writes about 
mathematics is, of course, Jeremy Gray, who has always treated the history of 
mathematics as a history of ideas. His respect for the power of those ideas animates 
his work. I have learned a lot from him, and if this essay brings him a bit of 
enjoyment in return, it will have served its main purpose. 

A secondary purpose was to explore the way that certain developments in 
twentieth century philosophy of mathematics have shaped the way we think about 
the subject. Carnap’s influential “Empiricism, Semantics, and Ontology” (Carnap 
1950) can be taken as an exemplar of the views attributed to the logical positivists 
in Sect. 25.2, and, of course, the counterpoint provided there is a summary of 
Quine’s “Two Dogmas of Empiricism” (Quine 1951). Volumes have been written 
about the issues raised in these two publications, and readers can turn to the 
Stanford Encyclopedia of Philosophy (Creath 2021) for details and references. I 
also recommend Edmonds’ recent book, The Murder of Professor Schlick: The Rise 
and Fall of the Vienna Circle (Edmonds 2020), for an engaging exposition of the 
historical context. 

My goal here has not been to add to the debates, but, rather, to reflect on the way 
they have influenced the philosophy of mathematics. I find the things that Carnap 
and Quine have in common to be more striking than their differences, and I hope 
this essay makes it clear that I take their shared focus on the communicative and 
inferential norms of mathematics and the sciences to be an important philosophical 
advance.
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But, curiously, this focus is not what drives the philosophy of mathematics 
today. This essay offers one possible explanation as to why not. It is easy to 
interpret Carnap’s and Quine’s portrayal of the relationship between philosophy 
and science as an implicit affirmation that the best thing that philosophers can do 
is to respectfully step aside while mathematicians and scientists do their work. It is 
not surprising that philosophers since then have resisted that conclusion and have 
instead turned their attention to puzzles in metaphysics and epistemology, topics 
that are comfortably within their wheelhouse. 

This perceived dichotomy between thinking about mathematics and thinking 
about meaning, reference, and the nature of mathematical objects is unfortunate. 
There is a lot to be learned by paying attention to mathematics itself, and philoso-
phers are well positioned to help us make sense of the norms, values, and goals of the 
practice. Mathematicians may be very good at doing mathematics, but that doesn’t 
necessarily imply that they are good at thinking about what they do. Philosophers’ 
training puts them in a position to assess the mathematical literature critically, 
analyze the conceptual and inferential structure, make sense of the implicit norms 
and expectations, study the means that mathematicians employ, and understand how 
they are suited to their goals. That requires familiarity with the relevant mathematics 
but not the same type of expertise. We still have a lot to learn about the nature of 
mathematics and its applications to science, industry, and policy. 

Instead, an interminable focus on disconnected technical problems has had a 
devastating effect on philosophy of mathematics. A recent analysis of tenure-track 
positions advertised in Jobs for Philosophers in the 2021–2022 academic year 
doesn’t even mention philosophy of mathematics in its categorization.1 Digging 
into the data shows that the phrase “philosophy of mathematics” occurs in only 
three of the 201 advertisements, in each case listed among multiple areas of potential 
interest. Surely this is an indication that the field is no longer viewed as important. It 
is sad that a discipline that was so central to the philosophical tradition from ancient 
times to the middle of the twentieth century now barely registers a pulse. 

But let me temper this doom and gloom with some more positive notes. First, 
colleagues assure me that the outlook for philosophy of mathematics is more 
optimistic in Europe, and I would not be surprised to learn that other communities 
have also managed to escape the gravity of the Anglo-American analytic tradition. 

Second, whatever their long-term career prospects may be, a number of talented 
young people are throwing caution to the winds and finding ways of doing 
important work in the field. Meetings of the Association for the Philosophy of 
Mathematical Practice, of which Jeremy was a founding member, are lively and 
well attended. I only wish the organization would drop the phrase “philosophy 
of mathematical practice” in favor of “philosophy of mathematics.” We should 
worry about philosophy of mathematics that doesn’t have anything to do with

1 https://philosopherscocoon.typepad.com/blog/2022/04/where-the-tt-jobs-werent-in-2021-22. 
html. 
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mathematical practice, and we should avoid depicting philosophy that does as 
anything less than the proper heir to a long philosophical tradition. 

Third, there is still a lot to be done. Almost all of the philosophical papers I have 
written end with cheery exhortations to roll up our sleeves and get to work. See, 
for example, the last section of my “Reliability of Mathematical Inference” (Avigad 
2021), which, incidentally, cites a number of the young philosophers alluded to in 
the previous paragraph. 

Finally, there is considerable interest. At a time when it seems that every 
undergraduate is majoring in computer science, data science, or business, I still 
come across students from across the United States that are double-majoring in 
mathematics and philosophy. Rebelling against the segregation of science from the 
humanities, they are an encouraging reminder that there are still young people who 
find value in the scholarly traditions that have served us well for centuries. We would 
do well to support them. 

At the end of the day, mathematicians are among the most philosophically 
inclined people on the planet. Dealing with creative flights of abstraction on a daily 
basis encourages constant reflection on the nature and meaning of their craft, so 
there is still room for a philosophy of mathematics that does the subject justice. All 
we need to do is take stock of where we are and where we want to be, and then 
figure out how to get from here to there. 
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Part VII 
The Making of a Historian of Mathematics



Chapter 26 
History Is a Foreign Country: A Journey 
Through the History of Mathematics 

Snezana Lawrence 

Abstract This chapter has three strands that are interwoven together to trace a nar-
rative showing how understanding of a contextual development of a mathematical 
concept or a technique is a necessary step in uncovering the historical development 
of the same. To generalise, three strands are a context and invention of an original 
mathematical technique; historian’s own context and interpretation at a time of 
research and writing of a historical thesis; and finally, a dialogue between such 
interpretation and different audiences. In particular, the mathematical technique is 
that of Descriptive Geometry of Gaspard Monge; the research and interpretation that 
I made as I undertook during my PhD studies under the supervision of Jeremy Gray 
to whom this volume is dedicated is the second strand of the chapter; the lessons I 
learnt from communicating such interpretation to my audience of the time – Jeremy 
and my examiners, is the third strand. 

This narrative is not intended to serve as a model of historical research and/or 
writing to be recreated by future PhD students or mathematical historians. It is but 
an example of what worked well to uncover some interesting new roles geometry 
played in nineteenth century England and France. It is a method that worked for me, 
but I hope there will be lessons for the new and aspiring historians of mathematics in 
this narrative too. It is also a personal tribute to my PhD supervisor, whose friendship 
and intelligence contributed not only to my academic success but to my continuing 
personal and professional development and wellbeing. 
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26.1 Introduction 

In the spring of 1991, I was completing my degree in architecture, and my little 
daughter was going to the first grade of primary school in Belgrade, the capital of 
then Yugoslavia. I was on a trip to Greece during Easter break. Whilst returning 
from this trip, we stopped at a restaurant on the border between Yugoslavia and 
Greece. As my friends and I we spoke over dinner, people next to our table asked us 
whether we heard of the news. They were from Netherlands and said that ‘the war 
had started in Yugoslavia’ that day. Of course, this was worrying, but we thought 
that they had misinterpreted the news they heard on the radio earlier in the day. The 
next ten years showed us that this piece of news was indeed true. 

Months later, I found myself with my daughter in England. Finding work was 
difficult as UK was at the time having an economic crisis and architectural firms 
were making people redundant. They were not employing new architects and 
technicians at all, let alone those who just happened to drop in from another country 
and had no idea of British regulations or its building industry. 

The only thing I could think of and the only thing I loved doing apart from 
architecture was teaching descriptive geometry which I did as a tutor for some 
years. Descriptive geometry was a popular academic subject in then Yugoslavia, 
and is still taught in many countries around the world, although not in France from 
which it originated (Belhoste 2003). As a first step towards achieving this goal, I 
thought I should find an English language textbook to pick technical terms related 
to descriptive geometry so that I could teach it well. This is how my introduction to 
the history of mathematics started. 

For young readers, one must put a reminder here that this was all happening in the 
time before the internet. There was no Amazon, no online repositories of old books, 
and no internet forums where you could just ask any type of question like the one 
that was preoccupying me: ‘why aren’t there any books on descriptive geometry in 
England?’. In absence of these ways of finding answers, I went to my local, small-
town library, travelled to see larger libraries in some larger towns near the one I 
lived in at the time, and then, one day by accident, stumbled upon a ‘historian of 
mathematics’ in a national newspaper. I perked up at first, as I didn’t know one can 
be a historian of mathematics, and then thought that this historian, Professor David 
Singmaster, from the Southbank University in London, could perhaps, just perhaps, 
know how and why there weren’t any new and more importantly old descriptive 
geometry books in England. If these books existed at all, they couldn’t have all 
been sold or disappeared. But not a single book was to be found in any of the new 
or second-hand bookshops I visited, or any of the libraries I went through in the 
Southeast of Kent, England. I wrote a letter to David and told him simply and very 
briefly my story. I came to England from Yugoslavia; I wanted to teach descriptive 
geometry; I couldn’t find any textbooks to get my language up to scratch; does he 
know why there aren’t any old books on the subject? 

To my surprise, the answer came quickly and was incredibly helpful and 
encouraging. David said that he had no idea, and that indeed as he was an American,
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he had heard of descriptive geometry. He said it was a well-known subject in the US; 
if I was there, he said, I could find some old books on the subject. But he had, he 
said, a colleague who would be able to say something on the history of the subject in 
England. He suggested I get in touch with Jeremy Gray from the Open University. 

From this letter a few months passed. I looked Jeremy up in the local library and 
got his Ideas of Space (1979) first. From this book I learnt more of the history of 
non-Euclidean geometry which intrigued me. I followed this by reading, for the first 
time, an original text, Halsted’s translation (1896) of Bolyai’s appendix (1896) and 
literally felt like my mind had opened to a new world that I had no idea existed. 
This world of old mathematics texts took me to a different intellectual space to the 
one I existed in until then. It was the world in which I could learn, first-hand, from 
the people who were the first to realise some mathematical truths. Contrast that 
with the re-interpretation, summaries, and ambiguities I met with when learning 
about mathematical inventions! I was very excited about this. I realised that the 
old mathematics books would lead me to learning a little more about the history of 
mathematics, and that this can indeed, be an answer to my trying to learn how to 
teach descriptive geometry (and find a book in English language on it!). Later on, 
I also realised that this new interest in the history of mathematics in general had 
replaced the original interest or rather a desire to teach descriptive geometry. This 
realisation crystallised more clearly over the coming years. 

To get back to the mid-1990s, I got in touch with Jeremy. I don’t remember how 
I did that. I must have written a letter and explained all of this in my pretty broken 
English at the time. But making contact with Jeremy marked the beginning of my 
work in the history of mathematics. 

26.2 The PhD Journey 

I met Jeremy Gray and John Fauvel (1947–2001) one spring morning of 1994 at the 
Open University in Milton Keynes. We spoke about why there weren’t any books on 
descriptive geometry in England and why the subject was never taught in the school 
system, unlike most of Europe, and unlike Eastern Europe and Yugoslavia where 
the subject still survived since the ninteenth century. Jeremy and John were very 
hospitable, took me around the university, and bought me a lunch. And then they 
said that it may be an interesting topic to investigate further. Would I consider doing 
some research on it? Of course I would – what more interesting could I imagine 
doing at the time? They suggested I could even register to do it as a PhD student. I 
was worried about that for two reasons: I didn’t think my English was good enough 
to write a thesis, and I had absolutely no spare money for the university fees. We 
left it at that, and I said I would think about it. 

The war in my country was raging by this time, and I realised I wasn’t going 
back there any time soon. I had a job as a teaching assistant in a sixth form college, 
and was also teaching a couple of courses to adults: one was a course on computer 
aided design, and the other on foundation mathematics. I made some friends at this
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college, and one friend was very happy to drive me several times to the library 
of the University of Kent in Canterbury (from Deal where I lived at the time). I 
spent hours in this library trying to find and read some old mathematics books and 
some books on the history of mathematics. This friend and I used to walk around 
the shelves, picked the books, read them. We spoke about them. He persuaded me 
that my English was good enough and would get better if I read and wrote all the 
time. It was already ‘getting better as we spoke’ he exclaimed! He also said one 
day ‘Let’s look at that application form [for the Open University PhD programme] 
and everything it entails’. I am very indebted to this friend, who has sadly passed 
since. His name was Chris Cooper. He was truly a gentle-man. Without his support I 
would not have dared to write that application form, but I did, and I started my PhD 
studies. 

26.3 Finding the Magic Word 

So many diverse tribes and sticks have contributed to the formation of the English nation 
that it is not easy to draw a line between the native and the foreign elements. After all, 
the Jutes and Saxons and Angles were themselves immigrants, who came to this island in 
historical times; the main stock was transplanted, and is no more native to the soil than the 
branches which have been grafted into it from time to time. It seems a little arbitrary to fix 
on any definite date and designate the immigrants of the earlier times, component parts of 
the English race, while we speak of the later arrivals as aliens. 

William Cunningham (1897). Alien Immigrants to England. Macmillan Co, p. 3. 

Slowly I started finding my way around English libraries and educational system, 
but also on another more general existential level, finding my way around England. 
Through reading and writing notes on all the old mathematics books I was able 
to find, I was learning about the development of mathematics in England, and I 
was learning about descriptive geometry and why it wasn’t accepted here. Finding 
answers to my questions about mathematics history began to make me also feel 
clearer about my predicament at the time. I realised this feeling of becoming to feel 
more settled was due in great part to learning the history of the new place in which I 
found myself. So, I pursued this path, as it took me towards the place that, although 
I didn’t know it until then, started to feel like home. 

I started PhD about three and a half years after I arrived in Britain, and the first 
year I was doing it I was a part-time student. Somehow Jeremy and John managed 
to get my fees reduced to an absolute minimum – I have no idea how they managed 
to do that. For the Christmas period of that year, Jeremy offered that I stay, with my 
daughter, at his sister-in-law’s house in Oxford as a house-sitter. This would have 
given me an opportunity not only to explore the city, but also to see whether there is 
anything interesting in the Bodleian Library from the period I was interested in (late 
eighteenth, early nineteenth century). I jumped at the opportunity and was happily 
registered with the Bodleian Library where I spent time reading for a week or a little 
more over this period. I remember how quaint I found the admission system at the
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Library – not only did I have to provide the usual documents so that they could see 
who I was, but I had to read aloud the text they gave me: a promise that I will not 
damage anything I see or read whilst in the library. 

I was very lucky over that short period of time. Not only did I find new things 
in the Bodleian Library about descriptive geometry and its translations into English 
language – a few sparse and incomplete translations like the ones by Hall (1841), 
and Bradley (1861), but I also came across the work of William Cunningham (1849– 
1919), a Scottish historian. To be more precise, Cunningham was a Scottish historian 
of economics, and is credited by some as one of the inventors of economic history 
as a scholarly discipline. He wrote, for example, on Growth of English Industry and 
Commerce in Modern times (1882) and Growth of English Industry and Commerce 
in Early and Middle Ages (1890). Cunningham became a professor of economics 
at King’s College London where he taught 1891–1897, later taught at Cambridge, 
and for a time also at Harvard. He was one of the founding fellows of the British 
Academy and was towards the end of his life appointed as Archdeacon of Ely, one 
of the largest, most beautiful, and rather important centres of Anglican Church in 
England (Fig. 26.1). 

Cunningham’s paper on descriptive geometry was one of his early papers in 
economic history, and I found it in the Bodleian. This paper, or a pamphlet, was 
published in Edinburgh in 1868, and set out to trace some Notes on the History, 
Methods and Technological Importance of Descriptive Geometry, compiled with 
reference to Technical Education in France, Germany & Great Britain. My research 
by then had already showed me that there were differences between how descriptive 
geometry was perceived, narrated on, and taught in different European countries in 
the early to mid-nineteenth century. 

First of all, once a treatise on descriptive geometry was first published in France 
during the Revolution, in 1795 (Lawrence 2002; Sakarovitch 2005), it was soon 

Fig. 26.1 William 
Cunningham, drawn by 
William Strang. (Creative 
Commons CC by National 
Galleries of Scotland)
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realised not only in France, where its inventor Gaspard Monge (1746–1818) had 
a role in establishing the new system of education, but elsewhere (Barbin et al. 
2019), that descriptive geometry could be used as a principal tool of graphical 
communication. It was undoubtedly the most coherent system of all available at 
the time in this respect, but various texts on it published in England, and in English 
language more broadly, seemed to have gone out of the way to find some faults with 
it (Lawrence 2002, 2019). So, Cunningham’s text came as a real surprise to me at 
the time – surprise in the sense that someone else had also felt that there was such a 
difference in the approach to the technique between the French and the English. 

There was a little nugget of genius in what Cunningham spotted, without 
ever having, to my best knowledge, done descriptive geometry himself. He didn’t 
concentrate on politics (although as the time descriptive geometry was first taught 
England and France were intermittently at war – 1803–1815), but instead on a 
crucial difference between how space was communicated by using descriptive 
geometry in England and elsewhere through the analysis of the language used to 
describe procedures in the textbooks on the subject. He identified, most importantly, 
that the terms that the English books used, ‘plan and elevation’ were not actually 
native to the original technique of Monge. His view was that 

it is impossible to express the co-ordinate relation of the two planes of projection in such 
terms as Plan and Elevation, which involve the special ideas – Horizontal and Vertical. 

William Cunningham (1868) p. 25. 

Instead, Cunningham suggested the use of the word ‘rabatting’ based on the original 
French verb, rabattre which means to turn, to turn down, to pull (Fig. 26.2). 

Having found the simple explanation between these different perceptions that I 
couldn’t, until then, articulate so well, I was very happy to report on my finding 
next time when I met Jeremy for a tutorial. ‘Hang on’ Jeremy said, ‘I’ve never 
heard of that word before. When did you say this word was used, what was the 
publication date of this paper?’ And so, we looked at the Oxford English Dictionary, 
the ‘definitive record of the English language’ which gives the instances of the use 
of each word as given in print for the first time, with examples. And we noticed that 
the date of the first use of this word, rabatting, was in fact noted wrongly, some 14 
years after the paper Cunningham wrote it in. I wrote a letter to the Editors of the 
OED, and got a reply reporting that they will amend this error in all the subsequent 
editions of the Dictionary. 

Finding this little mistake about this rarely used word in English language, 
became an important point of persuasion for the Open University to award me a 
grant to start doing my PhD full-time. And from there on, I was registered as a 
full-time student (Fig. 26.3). 

26.4 The New Worlds That Research Leads You to 

Unlike the vague lineaments of times ahead, the fixed past has been sketched by countless 
chroniclers. Its vestiges in landscape and memory reflect innumerable details of what we 
and our predecessors have done and felt. The richly elaborated past seems more familiar
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than the geographically remote, in some respects even more than our own nearby present; 
the here and now lacks the felt density and completeness of what time has filtered and 
ordered. 

David Lowenthal (1985). The Past is a Foreign Country. Cambridge University Press, 
p. 3. 

Fig. 26.2 (Bottom of the plate) from Monge’s Géométrie Descriptive (1795), showing how a line 
in space, AB, can be defined by its projections onto horizontal and vertical planes, and how, in order 
to extract measurements, the vertical plane can be considered revolved to lie flat in the horizontal 
plane. This describes the process of rabatting, or bringing the plane in which a particular length 
lies into the projection plane, in order to get the real length of a segment in question
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Fig. 26.3 Cunningham’s use of the term ‘rabatting’ and phrase ‘to rabatt’ is its first occurrence in 
the English language and directly derived from the French. (Cunningham 1868, p. 25) 

At some point after I began to work on my thesis, I started also to see that what 
was available on the surface, did not always agree with the snippets of the internal 
narratives of the subjects of my research as I came across them. In particular, 
this related to the original works or the unpublished papers of authors such as 
Peter Nicholson (1765–1844), Scottish architect and mathematician, who worked 
with people like Sydney Smirke (1797–1877) the English architect and one of the 
designers of the British Museum in London. Apart from the interest and contribution 
Nicholson made to introducing and modifying descriptive geometry into a graphical 
communication in English publications, his social network and correspondence 
between some of the people in that network, showed a deeper underlying interest 
in the stone-masons’ craft. Their language and the objects they were interested 
in, as well as the institutions they belonged to or helped establish, began to feel 
quite different to the external history. I started unearthing new things I haven’t 
heard of before (Lawrence 2002, pp. 69–96). I began to look further through their 
correspondence and their social networks, in order to try and see what was really 
going on with these people almost 200 years ago. A lesson for a new student in the 
history of mathematics is to see whether they can find any correspondence of the 
people they are most interested in. Letters are a treasure trove for historians: they 
are primary source for the researcher to find directly ‘from the horse’s mouth’ what 
people were living through, at the time. 

In this process there is, of course, a danger that you begin building a ‘museum’ to 
house all your nuggets of understanding and feelings that you collect about the past 
you are investigating. In the process you then may become little like a tourist who 
buys a souvenir but doesn’t really remember the real place they visited. Lowenthal 
(1985) rightly pointed out that there is some escapism in the history in that respect. 
Certainly, the history was becoming clearer to me than my own life and situation 
at the time. In my private life, everything seemed to be in a flux and I had no idea
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where things would lead eventually. But in an increased clarity about the history 
of descriptive geometry in England in the nineteenth century, every single little 
thing that didn’t ‘fit’ was therefore becoming a nuisance that had to be investigated. 
Not that past had to be ‘clean’ from these imperfections of the things that I didn’t 
understand, but rather I realised there was a huge gap between the official history, 
the recorded history, and what people were really involved in and what mattered to 
them most. 

By this stage on my PhD journey, I realised that there was an underlying 
animosity between England and France at the beginning of the nineteenth century. 
Napoleonic wars (1803–1815) should certainly have given me a hint of what was 
going on, but in all seriousness, I could not believe that this would have influenced 
mathematicians in terms of doing mathematics. I did, however, begin to realise 
that the overall, public, general picture and the publications that came out of this 
period may have been influenced by the perceptions or even more importantly by the 
expectations of certain perceptions and that for sure, these were partially influenced 
by the political and social life of the time. But underneath there seemed to have 
existed an underlying structure of communication, even friendship, and to certain 
extent a set of undeclared connections that didn’t seem to relate to anything I knew 
about. 

26.5 National Lore and an International Movement 

Q. Why was you made a Fellow-Craft? 
A. For the sake of the letter G. 
Q. What does that G denote? 
A. Geometry or the Fifth Science. 
Pritchard (1730) Masonry Dissected, London, p. 12 

Thus came the secondary stage of my PhD research. At this point I began to know 
more about the connections certain people I came across in my research so far had, 
in the most unexpected ways. These connections all in some way related to how 
descriptive geometry was used or translated between England and France, and some 
were in fact part of the movement of establishing the emerging architectural and 
engineering professions in both countries across the Channel. What I wanted to 
know was how would, for example, certain individuals be able to get hold of a copy 
of Monge’s book from the Revolutionary period, and even study it and make their 
own inventions related to it (Lawrence 2002, 115–128) when England and France 
were most of the time in a war, in this period? 

These kinds of questions led me to explore geometry in a wider context and 
to see the role it had in the, for the want of a better word, its ‘underground’ 
existence in eighteenth and nineteenth century, and in particular its role in the civil 
society movement of Freemasonry. Within this context, geometry, and especially 
descriptive geometry as it was originally related to the stone-masons’ knowledge 
and craft – as did Freemasonry itself – was viewed as something almost as a
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Fig. 26.4 An engraving 
published in 1734, showing a 
‘Master-Mason rare, Whose 
mystic Portrait does declare, 
The Secrets of Free 
Masonry...’. It shows the 
main symbols of 
Freemasonry and their 
applicability to initiates’ life 
philosophy. (United Grand 
Lodge of England collection) 

sacred knowledge in increasingly secularised societies in both France and England. 
In France of course, in the aftermath of Revolution, even Freemasonry became 
different to that of England, so that French Freemasons did not to need to believe 
in the ‘Supreme Being’ or any deity for that matter. But both French, and English 
‘branches’ of Freemasonry, played an important role in establishing new institutions 
of education (Cumming 1954), And in England, the University College London, was 
the first university in the country to be based on religious un-denominationalism, 
and was, at the time, even considered a Freemasonic project as it was opened by 
the then Grand Master, Duke of Sussex (Augustus Frederick, 1773–1843) in full 
Freemasonic regalia in 1829. 

It intrigued me to see that Freemasonry seemed to have become an international 
force towards the latter part of the eighteenth century and at the same time 
drew ontological links with architecture as a profession and geometry at the core 
knowledge of architects. I spoke to Jeremy about this, and the only thing he could 
recommend was to go into the Freemasons’ Hall in London, the first Grand Lodge 
of the world, and try to see what they had in their archive. So I did. I managed to 
get access to the library and archive of the United Grand Lodge in London, and over 
painstaking work over some months had dug up traces of a network of connections 
in architecture and engineering no one had known about until then (Lawrence 2002). 
I also found that Monge himself was an enthusiastic Freemason, as well as his much 
less known and influential counterpart in Britain, Peter Nicholson (Lawrence 2002; 
pp. 101–153) (Fig. 26.4). 

But here we come to the point where Jeremy would have happily left me to it 
rather than followed as a supervisor on my new research trek. Although I could see 
that a number of scholars globally at approximately the same time were coming



26 History Is a Foreign Country: A Journey Through the History of Mathematics 671

to similar conclusions and wrote a number of books on the subject, most notably 
Jacobs (1983) and who followed with more on the same theme post my PhD 
(Jacobs 2005, 2006), I could see how it could look like in our then contemporary 
context. This too can’t be forgotten when describing a historical research or the 
contemporary scene from which a historian works. At the time, in the late 1980s 
and early 1990s, there was a political affair in the UK that negatively impacted the 
image of Freemasonry. For the sake of keeping mathematics in the spotlight as well 
as the historical rather than contemporary Freemasonry, the full description of this 
affair is avoided in this chapter, but suffice it to say that in the UK at least, this 
became a very contentious issue and the whole organisation began to also be seen 
in the light of what was going on at the time. And so, it wasn’t a surprise to me 
when Jeremy, on a number of occasions around this time, had started our pre-dinner 
tutorials at his home with this metaphor: 

Mathematics is a swamp in which there are many stagnant pools, and through which there 
wind many narrow, twisting paths. It is the teacher’s job to escort the students along the 
narrow, twisting paths and one by one to push them into the swamp. 

According to Jeremy (but after an unsuccessful search for the original quote, hence 
not evidenced further) this quote is taken from Abram Samoilovitch Besicovitch 
(1891–1970). In retrospect I think this metaphor came to Jeremy as I entered these 
waters that he considered probably a little murky for his taste. But we did come out 
at the other end, together, with the finished thesis. I had managed to understand the 
networks, developments, schools, establishment of professions of architecture and 
engineering, and the role Freemasonry played in all this, in both England and France 
in the nineteenth century. More importantly I had also learnt that there, indeed, were 
only a handful of books on descriptive geometry written in Britain, somewhere in 
the middle of the nineteenth century. The technique never took hold in England, and 
it never became properly understood. In its place were introduced techniques similar 
to descriptive geometry, but not quite it – like the one invented by Peter Nicholson 
(Lawrence 2002, 2019). Whilst its application in France (and other places in which 
it was taken up), see in particular Barbin et al. (2019), included applications to other 
branches of mathematics, analysis for example, in England it became for ever known 
as a little more than a geometrical drawing technique (Lawrence 2019). 

26.6 The Inner Circle 

I completed my PhD in 2002. I submitted it a year earlier, but in that year many 
things had happened. John Fauvel who originally also helped with getting through 
the administration for my full-time grant to materialise, sadly died. A number of 
other things happened by then in relation to my status too. I was granted an indefinite 
leave to remain in Britain; the war in Yugoslavia was finished; my daughter and I 
had contemplated going back but decided that this – Yugoslavia and our life there – 
had become a part of our past. We had settled in England, had got a little house on
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the south coast, and both felt very much British. In fact, we became officially British 
in the early 2000s. 

In Britain however, the positions for historians of mathematics had not materi-
alised in the meantime bar the one at the Open University and a couple in Scotland. 
Rather than thinking of what else to do, I plunged myself into education and enjoyed 
an enormously happy and successful decade of teaching mathematics to secondary 
school pupils. Sometimes the students would ask me what history had to do with 
mathematics, but in time I became better at teaching, and they became more and 
more enchanted with mathematics through its history. Jeremy followed me all the 
way as a supporter and an observer, but mostly a very good friend. Whenever I 
needed a reference in these times, he had been right there by me. In time, the number 
of projects in the history of mathematics and their role in education multiplied in 
my work. I had various projects on integrating history in teaching of mathematics at 
primary and secondary level in the late 2000s. I eventually moved into the teacher 
training, and after a decade of working there, I moved into Higher Education, 
where I have happily found a new, academic home, since 2009. Currently I work 
at Middlesex University in the Design Engineering and Mathematics Department 
and try to include history of mathematics in all the modules on which I teach. 
One of these modules itself is partially dedicated to history of mathematics, and 
partially to communication of mathematical concepts. Internationally I am perhaps 
even more recognised for my work in this area, and have been voted in as a Chair 
of the International Study Group in the History and Pedagogy of Mathematics (an 
affiliate group of the International Mathematics Union) in 2020 (I finish my mandate 
in 2024). 

In the words of a colleague who once told me why I should make sure I completed 
my PhD, especially in the times when I wasn’t sure I could sustain this financially, 
I always remembered that the PhD is indeed a necessary step to join the ‘inner 
circle’. It is rare that you will be considered a professional historian of mathematics 
(or indeed academic in any discipline) without it. I’m happy I followed this advice. 

26.7 Some Suggestions for New Researchers 

The journey I have undertaken was unique to me and no one else can have exactly 
the same experience whilst becoming a historian of mathematics, and therefore 
won’t have the same outcomes. However, there are some steps that can be identified 
for those starting up in the history of mathematics that I hope would be useful for 
the novices: and by this, I mean to those who are new to the history of mathematics. 

Firstly, the original question sustained my interest and research throughout 
the period of starting with, and completing my PhD. There had been many a 
difficult moment during that time and many opportunities to give it all up and start 
something else, but it was that original question that I really wanted an answer 
to, not only for myself, that sustained me. This was because the question, and its 
answer, said something about how mathematics is made, discovered, communicated,
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disseminated, and learnt. So the conclusion from my experience is that the core, 
central research question, if you are at the point when you are contemplating a PhD 
work, should be the one that is crucially important to you, and that you believe would 
be crucially important for others to hear about it too. Of course that is probably 
a definition of a PhD: you should believe answering your research question can 
contribute, in a significant way, to the scholarship if you were able to answer it. 
In my case, the answer turned out to be something else than what I thought it was 
originally, and even my original question had slightly changed, but nevertheless 
the intensity of my desire succoured me through difficulties that many doctorate 
students have: of persisting with PhD studies, writing it all up, and not getting a 
better paid job in which you wouldn’t have the time to complete what you had 
started! 

Secondly, the history of mathematics is a field that is heavily reliant on your 
knowing both mathematics and history. Neither is more important, and in some 
cases, you will be inspired by history, and in some by mathematics. What I learnt 
to be even more important than the two disciplines in a way, is how you weave 
these two strands into your history of mathematics narrative. You don’t have to be 
a creative mathematician, and you do not have to have, currently, a training of a 
historian. But you do need to know the branch of mathematics you are researching 
pretty well in order to understand the nuances of different approaches or material 
culture you come across. In my case, this entailed me being able to understand 
before I came across the proof, that there were crucial differences between the ways 
space was understood if it was to be communicated by the technique I was interested 
in (descriptive geometry) in two different countries. If you are a student thinking 
of beginning this type of journey, you also need to read about various methods of 
history. Perhaps the best one I could recommend as a starter is an old gem, the little 
book by Collingwood (1946). 

Thirdly, the material culture and context are important for the history of 
mathematics not only because they show you how people lived and thought in the 
time of your interest, but because they are the remnants of the space they created for 
themselves during their lives. The material remnants of past times literally have the 
power to take you to your research subjects’ metaphorical, and sometimes, their real 
homes. These artefacts and their reconstructed ‘totality’ – how they were used, how 
they were made, what they were made for, and why they mattered to the people – 
was what surrounded your people in their time and space. It is this material culture 
that can transport you to their world, to a place they created and made with love. 
In the case of my research, this material culture was heavily outside of the scope 
of my original question, but understanding it was crucial to answering the original 
question. In other words, even if the research takes you to a place you never thought 
it would, you should try to venture and understand it, especially if it will enlighten, 
and illuminate in some way, your original question.
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26.8 An Epilogue: The History Is a Foreign Country 

Oh call back yesterday . . .  bid time return. 
Shakespeare, Richard II, 3.2. 

The opening phrase of the novel The Go-Between, by L. P. Hartley 1953, is ‘The past 
is a foreign country’. It is a novel in which the childhood memories are revisited by 
a man, who in his childhood tried to help two lovers by passing messages between 
them. The love affair had disastrous consequences because of the context and social 
norms of the times, and only with the reflection undertaken with the passage of 
time, the main character understands all the forces that contributed to this outcome. 
Without the love affair, or the going-in between, I often thought how I turned to 
history because of a disaster of the war and of losing my country. Trying to find 
something personal in a landscape and culture that was completely foreign to me as 
I landed in England, certainly became interwoven with my original very pragmatic 
desire to find employment by doing something meaningful that connected not only 
with my skills and abilities but with what I brought with me from the previous, 
happier times of my life. I had a great luck to stumble upon Jeremy. It happened that, 
additionally to all the benefits of finding what I could do, settling down, and finding 
good employment, I also had a great friend in this quest for meaning. My supervisor 
Jeremy Gray and his whole family without exception, accepted me, and my search, 
without question, without doubt, with gentleness of spirit and great intelligence and 
kindness, and made me realise that home really is where your friends are. 
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Chapter 27 
Reflections 

Jeremy Gray 

Abstract The accidental story of how I became a historian of mathematics, from 
the University of Warwick and back via the Open University, and met some of the 
colleagues and friends I acquired along the way. 

I didn’t set out to become a historian of mathematics. I graduated from Oxford 
in 1969 and went to Warwick to do an MSc. and a Ph.D. in mathematics. The 
MSc. went well enough, but almost immediately on embarking on the Ph.D. things 
fell apart between me and my supervisor. Inspired by the general folly of the 
times (it was 1970, man) I tried to go it alone—it wasn’t clear actually who else 
could have supervised me, but nor did I push back hard enough—and predictably I 
dropped out. It was the first big failure of my academic life, and very depressing. I 
moved to London in 1972, got a part-time job at what was then called South Bank 
Polytechnic—the upside of the early 1970s was that there were jobs—and wondered 
what to do next. 

My MSc., plus a willingness to look at the history of mathematics, enabled me 
to get a one-year job as a production assistant at the BBC to work on programmes 
being made for the upcoming course on the subject at the Open University. This 
was at Alexandra Palace, the BBC’s first TV studios, and just up a hill from where 
I lived. My contract ended in 1974, and I moved to the Open University as a course 
assistant on that course. The OU was the last of new universities, and it showed. The 
central staff were people who had not been caught up in earlier appointments to the 
new universities of the 1960s, and they were a mixed bag. The production model 
was also strange. The idea was there would be a small core of staff who would 
be permanent, and would decide there should be a course on, let’s say, history of 
mathematics. One of them would perhaps write a detailed outline, and a course 
assistant would be hired to produce the full version; this job was not permanent, but 
the course would be. By the time I joined it was already clear that this model didn’t 
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work; we were never able to produce courses as planned and on schedule. But for 
the course assistants, this was life-saving. Already there weren’t so many jobs out 
there, so to be the person writing a course that had been commissioned by someone 
else who couldn’t do it on their own was a way to stay in academia. And these 
course assistants were recent Ph.D.s who knew about research, and whose career 
depended on doing more. Finally, the university did the decent thing and gave these 
people tenure, and in 1978 we all became lecturers. 

The OU’s first course on the history of mathematics was already running, its 
best material being on ancient mathematics, written at short notice by Bartel van 
der Waerden, and the early history of the calculus by Henk Bos. In the late 1970s, 
I had the opportunity to produce an entirely new course with John Fauvel, who 
had also passed through Warwick, and that led to the source book The History of 
Mathematics: a Reader (1981), which sold surprisingly well for more than a decade. 
Sadly, John died in 2001. He could make anything interesting, or maybe he had 
a magpie’s eye for the interesting bits, and I learned from him to appreciate the 
importance of elementary mathematics and how it is integrated into the social life 
around it. It’s another approach to the history of mathematics, much less concerned 
with elites, but in his hands often revelatory. Various pressures on the OU led to 
the end of the course, and since then, in one of my long-running collaborations, 
June Barrow-Green, Robin Wilson, and I have been rewriting and updating it as a 
two-volume book, keeping its reliance on the study of sources in translation, and we 
make a good team. One volume came out in 2019 and the second and final volume 
came out at the end of 2022. 

There’d been a second-year lecture course at Warwick on hyperbolic geometry 
in the early 1970s, and like all the graduate students I’d help tutor it. The lecturer 
had included historical information, which he took from Bonola’s book on non-
Euclidean geometry (Bonola, 1912) and I thought I’d look at it. Up to page 80 
it’s full of famous names getting nowhere: one fallacious argument in defence of 
the parallel postulate after another. After page 80, in addition to the names of 
János Bolyai, Lobachevskii, and Gauss, are people I’d never heard of, almost all 
doing well, and it seemed to me that the magic ingredient must be described and 
presented as such somewhere in the book. Well, it’s not; Bonola didn’t seem to 
appreciate hyperbolic trigonometry, and it just slithers in unannounced. I checked 
what historical literature I could find, and realised that no-one had put the story 
together the way I wanted to, so I had a question and an original answer. I wrote it 
up, with some helpful editorial advice it was published, and I started to become a 
historian of mathematics. 

In fact, it wasn’t my first published article. That was on Johann Lambert, 
a fascinating figure we ought to know more about. I’d met Laura Tilling at a 
conference of the newly founded British Society for the History of Mathematics 
(BSHM), where we commiserated over what happens if you give a talk with Tom 
Whiteside in the audience and have to face his absolute confidence that the evidence 
for one of your claims is not as you have described it. I had given a talk on Lambert, 
and Laura and I teamed up to write a piece on him (Gray and Tilling, 1978). This 
was much harder for me; Lambert’s eighteenth century German and the German 
script severely taxed the one year’s German I’d done at school.
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The BSHM had been set up in 1971, and it was run by a number of elderly 
academics, as they seemed to me then, with professional positions in the colleges 
of London University or the various Polytechnics, and it contained people with a 
genuine interest in the history of mathematics as well as those who hoped it would 
be useful in mathematics education. None of them had much experience of research 
in the subject, and so with two exceptions standards were low. Of these, Whiteside 
was one and Ivor Grattan-Guinness was the other. Whiteside seemed to have Newton 
covered, and anyway I wanted to look at more modern topics, related to the present-
day mathematics syllabus. Ivor was a product of the philosophers of science in the 
LSE and he had an enormous ability to find sources. He was working at the time on 
his monumental three-volume work Convolutions in French Mathematics (1990), 
but he was smarting under the heavy criticism the old guard at the Archive for the 
History of Exact Sciences had levelled at him over his article ‘Did Cauchy plagiarise 
Bolzano?’ that the journal had recently published. He said Cauchy had, but the 
short answer was and still is ‘No’, and a flavour of the criticism was Freudenthal’s 
remark “Of course you must read between the lines, but first you must read the 
lines themselves”. I would have quit on the spot, but Ivor bravely battled through, 
although his generally poor relations with professional mathematicians remained 
an obstacle all his life. As a result, the BSHM was a society of people who were 
amateur historians, prone to thinking that something they’d read in some old book 
or journal could be written up as a piece of historical research. I fitted in nicely. The 
only difference was that I wrote about topics of greater mathematical difficulty, as I 
began to see where the discovery of non-Euclidean or hyperbolic geometry had led. 

In 1979, it seemed to me that I should try again to get a Ph.D., this time in 
history of mathematics. I was writing Ideas of Space at the time, and a flatmate 
suggested that I take it to Warwick and see if they’d call it a Ph.D. thesis. Very 
wisely, the Mathematics Department there said they wouldn’t, because they hadn’t 
supervised it, but they would take me back to write one if I would agree to accept the 
help of David Fowler and Ian Stewart, even though they were not strictly speaking 
historians of mathematics (naturally, I did), and the OU said I could go ahead as 
long as my work for them did not suffer. This all meant that I never did a formal 
course in history of science, let alone mathematics, and I don’t think there was any 
possibility of enrolling anywhere in the U.K. on a graduate course in the history 
of mathematics. But Ian and David were very helpful, as was Henk Bos later, and I 
have no regrets at having had to find my own way. Overall, the help I had at Warwick 
more than cancelled out my original unhappy experience there. 

I knew from my link to Warwick that Bill Thurston was making Fuchsian and 
Kleinian functions big topics again. It was soon clear that both Klein and Poincaré 
had been involved in the nineteenth century, and that non-Euclidean geometry had 
been crucial to their discoveries. But who was Fuchs, and what had he contributed? 
His work took me back to Riemann and the hypergeometric equation, and therefore 
to Gauss. I started to fill in the gaps in my knowledge, helped by a meeting early 
on with Wilhelm Magnus in New York, who put me on to Schlesinger’s papers and 
his intimidatingly large Handbuch on differential equations. Periodically I worried 
that my entire thesis was in there somewhere. I was also helped on that trip by Tom
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Hawkins at Boston University and Garrett Birkhoff at Harvard. I began to realise that 
nineteenth century mathematics is full of intriguing connections between what can 
seem to be separate aspects, and that recognising and exploiting these connections 
has been a driving force in the subject. 

I went to Paris in December 1980, partly for a holiday with my girlfriend Sue 
(later my wife) who was studying there, partly for research, all set to say that I’d 
looked for Poincaré’s unpublished entry to the Académie’s Prize Competition in 
1880 and had failed to find it, although it marks his first use of non-Euclidean 
geometry and opened the road to his theory of Fuchsian and Kleinian functions. The 
morning I went to the Académie des Sciences I learned that they would be closing 
at lunchtime for the long holiday break. I asked if they had any Poincaré documents, 
and immediately they took an ornate box off the shelves in the room I was in, and 
there, halfway down, were the papers I wanted. I asked for copies to be made, and 
when I got back to London I wrote to Jean Dieudonné to tell him what I’d found. 
With the help of Sue’s mother I wrote a paper about the discovery in French, then I 
finished my thesis, and graduated in 1982. Much later, Scott Walter and I published 
them as (Poincaré, 1997). 

With my Ph.D. behind me and some study leave stored up, I could travel, and 
I was lucky enough to go to Brandeis for two terms in 1983–1984. They paid me 
generously to do some elementary teaching, which left me ample time to sit in on 
David Eisenbud’s algebraic geometry class, and drop in on classes in Harvard by Joe 
Harris and Serge Lang. It was all too hard for me, but in any case I only wanted to 
acquire a rough and ready sense of what schemes are and what they are for. I had a 
vague idea that I might write about the history of algebraic geometry around 1900. 
But the good relations I had with David Eisenbud lasted, and we should shortly 
finish a project that had its hazy beginnings all those years ago. While there, I met 
Roger Cooke. I suspect most of us are, as I am, indebted to him for his knowledge 
of Russian and his knowledge of mathematics in Russia, which became difficult to 
acquire with the decline of history of mathematics there after the collapse of the 
Soviet Union. 

When I returned, I set about turning my thesis into a book, which came out in 
1986, the same year that Judith Field and I published our book on Desargues. We 
surely met through the BSHM, and she had the idea that with her good French and 
my understanding of the mathematics we could do something worthwhile. Since 
then, Jan Hogendijk has made some valuable criticisms, and in the last couple of 
years Jean-Yves Briend and Marie Anglade have subjected the Brouillon Projet to a 
very thorough and illuminating analysis, while the works of Andrea del Centina (see 
e.g. his 2020) and Kirsti Andersen (see e.g. her 2007) have elaborated a rich picture 
of perspective, projective geometry, and related issues in which Desargues played 
an important part. I’m glad to have had something to do with it, but no regrets about 
returning to the nineteenth century. 

I believe it was in the early 1980s when I was first invited to what was then 
an annual gathering of historians of mathematics at Oberwolfach, the German 
Mathematical Society’s wonderful conference centre in the Black Forest, with its 
splendid runs of journals. If I remember correctly, one of speakers on that occasion
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took out of his bag what he proclaimed was the skull of Swedenborg. This was 
not what meetings of the BSHM had prepared me for! On the other hand, for the 
first time I met significant numbers of historians with high professional standards. 
Without attempting to be complete, there was Kirsti Andersen and Henk Bos, 
Adolf Youschkevich, Hans Wussing, Ivor Grattan-Guinness, and a number of (west) 
German historians including Christoph Scriba and Eberhard Knobloch. If not at that 
Tagung then at one soon after, Scriba produced one of a large number of large red 
books that represented what they intended to publish concerning Leibniz’s work 
on algebra, which was everything; there was a heated discussion about the merits 
of this, all in the days before the internet. A surprising number of the talks were 
in English, but the randomised seating allocation at meal times was good for my 
German. 

Also at the meeting were a number of younger historians, some of whom quickly 
became good friends: Umberto Bottazzini, Jesper Lützen, and Erhard Scholz among 
them (it turned out that Erhard had spent the MSc. year at Warwick when I was 
there, but we only barely remembered each other). He was in some sense a student 
of Henk’s, Jesper was a student of Kirsti’s, and I think Umberto may have been more 
independent. We were united in being the rising generation in those political times, 
and in trying to do work that was simply better than much of what the previous 
generation had done, at least as far as our common field, the nineteenth century, 
was concerned. Henk was very supportive, and it took me some time to appreciate 
what he was saying, because he always looked behind a question to see where it was 
coming from, what presumptions it concealed, and why it might be worth asking. 

The language issue is an obstacle to all this work. I benefitted from being 
able to write in my native language, and ever since I’ve tried to redress the 
balance by polishing other people’s articles before they are published, provided 
they start off in reasonably good English. The downside is that not very much 
high level mathematics was written in English in the nineteenth century, the rich 
archives are in France, Germany, Italy, and most problematically in Russia. For my 
friends, and many other European historians, the balance is reversed: rich, relatively 
accessible archives, but the knowledge that publishing in English is the best way 
to a readership. My friend David Rowe has drawn in recent years on the advantage 
of being an English speaker in Germany to produce increasingly rich pictures of 
mathematics in Göttingen; (see e.g. Rowe, 2018). If you worked on the nineteenth 
century, the archival problem was to some extent reduced by the fact that there was 
simply no good account in any language: Boyer’s (1968) but much revised was 
superficial and Kline actively disliked modern pure mathematics (his account of 
nineteenth century matters in his (1972) is, however, quite thorough and reliable, if 
more of a reference work than a critical history). Accordingly, just putting together 
an account based on what was in the journals and not simply the folklore of the 
working mathematician seemed to most of us to be worth doing. 

Missing from older histories of modern mathematics was much attention to the 
methods by which the results had been achieved. I think most of us were starting to 
realise that how results were found was as much part of the story as the accumulation 
of the results themselves. It’s a difficult balance to strike, and it led on to tricky
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questions over what to do with arguments that are not proofs by modern standards: 
what made them convincing at the time, and how should they be presented? It also 
became easier to ask why certain results were wanted at all, quite independently of 
any present-day significance they may have. 

Thus Erhard Scholz wrote his book (1980) on the origin of the idea of a 
manifold in the period from Riemann to Poincaré, which impressed me greatly, 
Umberto Bottazzini wrote his book (1986) on real and complex analysis—it was the 
complex part that was truly innovative—and Jesper Lützen produced his biography 
of Liouville (1990), which is exceptional in being grounded in all of Liouville’s 
notebooks (a resource that does not seem to exist for other mathematicians, 
unfortunately). We are often reminded not to write ‘Whig history’, history that leads 
progressively to us; Grattan-Guinness came to hold views about this by making a 
distinction between history and heritage that I think said more about his strained 
relationship with mathematicians than anything else. I think there was a move to tell 
it as it really was so far as the sources would permit, and yes, that often meant what 
was in the nineteenth century mathematics journals. But sometimes that was done 
exceptionally well, the papers and books by Tom Hawkins—e.g. his (2000)—being 
another good example that I learned a lot from. But by now, the OU was making 
everyone work hard. I wrote a book or two in the next 20 years, and a number of 
articles that kept me reading and writing and therefore visible. They are of uneven 
merit, but most of them have something in them worth saying. 

In the 1980s, attempts to ground the history of mathematics in social history lost 
some of their charm with the change in the ambient politics of the time, although 
good work was still done; perhaps the massive volumes currently being edited by 
Joe Dauben and David Rowe will revitalise things. In their place came a string 
of well-researched biographies: Jesper Lützen on Liouville as already mentioned, 
Bruno Belhoste on Cauchy (1991), Tony Crilly on Cayley (2006), Joe Dauben on 
Cantor (1979), the books by Anne Koblitz (1983) and Roger Cooke (1984) on  
Kovalevskaya, Detlef Laugwitz on Riemann (1999), Vladimir Maz’ya and Tatyana 
Shaposhnikova on Hadamard (1998), Karen Parshall on Sylvester (2006), Arild 
Stubhaug on Abel (2000), Lie (2002), and Mittag-Leffler (2010), and only recently 
Uta Merzbach (2018) on Dirichlet. They all strike a different balance between the 
life and the work, and make different appeals to different people, but they all are 
substantial (and not ‘Whig’) works of history, and they all have tried to be readable. 
Lützen’s solution has a lot to recommend it: a first half on the life, a second half on 
the works that goes into much more mathematical detail. 

Quite generally, in the 1980s there was a move to ask what it was that historians 
of mathematics were trying to do and what, indeed, they should try to do. Were 
there any big themes, or sweeping subjects that would make more valuable topics 
to research? Certainly there were substantial historical works focussed on particular 
themes: Hawkins’ work on Lie theory from Lie via Killing to Cartan is a case in 
point. Scholz took up the study of Hermann Weyl. He gave an ICM address on 
Weyl’s geometry in 1994 that emphasised his Fichtean roots (Scholz, 1995), and 
then turned to his cosmology, and ever since he has been in a productive relationship 
with physicists. Karine Chemla was beginning to suggest a way of reading Chinese
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mathematics that questioned what constituted a proof (see her essays in her 2012): 
obviously I wasn’t going to take up Chinese mathematics, but we became good 
friends—we first met at a conference in Luminy in the early 1980s—and I have 
ever since regarded her as a force for fresh thinking and conceptual rigour that can 
drive up standards across our field. Several of my favourite books raised the idea 
of major shifts in mathematics, Bos’s Redefining Geometrical Exactness (2000), 
for example. By now there were also several competing French camps, all of which 
tended to emphasise methodological rigour (defining a corpus, etc.). Soon, it was no 
longer possible to write good history of mathematics in advance of a serious wrestle 
with the sources; the folklore could no longer be accepted, and there were numerous 
readable books and papers out there trying to replace it. In this spirit, Bottazzini and I 
decided to rescue complex analysis from the shadow of real analysis, and eventually 
published our big book in 2013, to the surprise of our colleagues, I suspect. 

In 1989 I persuaded the London Mathematical Society to launch a series of books 
on the history of mathematics. By then various Americans had the same effect on 
the American Mathematical Society, and the two series soon merged. They operated 
with very different attitudes to money, but I was very glad to be involved as an editor 
and to have a hand in some books of lasting merit. This, and my later work as an 
Editor-in-Chief with my good friend Jed Buchwald of Archive for History of Exact 
Sciences, which sprang out of my term at the Dibner Institute MIT in 1996, has 
been my way of making up for small number of Ph.D. students I was able to attract. 
Small here means two. One was June Barrow-Green, about whom more below, the 
other Snezana Lawrence, who came from Serbia during the Bosnian war of 1992– 
1995, wrote a fine Ph.D. thesis on the Freemasons in England which deserves to 
be published, and went on to become an influential figure in mathematics education 
and a good friend. It may well have been on that trip to the Dibner that I also met 
the indefatigable John Stillwell, who has translated so many things and also written 
several books that illuminate important topics that wrongly get overlooked, not least 
his translations of papers by Poincaré (1985) and (2010). I also met John McCleary 
then, who encouraged me to stay interested in differential geometry. I owe more to 
these two than it is easy to say, and I’m very grateful for their support. 

There came a point in my life some 20 years ago where I didn’t expect a 
nineteenth century journal or book to say anything major that I didn’t already know 
about or come up with a reference to a paper that would truly surprise me. Of course 
I had a shallow grasp of most things, and I had deliberately avoided anything to 
do with partial differential equations, or advanced number theory; I learned a lot, 
both in content and approach, from Goldstein, Schappacher and Schwermer’s The 
Shaping of Arithmetic (2007). Still, I had the feeling it was now possible to map out 
the salient features of the nineteenth century mathematical landscape. What then, I 
asked myself, was I meant to do with all this knowledge? Certainly I should deepen 
my understanding of it, but to be a better historian meant asking better historical 
questions and coming up with better historical answers. 

The idea of modernism in mathematics appealed to me. In 1989, the late Herbert 
Mehrtens had published his Moderne Sprache Mathematik that launched the idea 
of mathematical modernism and coupled it to an exploration of broader social
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and intellectual issues not too far, in some directions, from the Nazi time and all 
packaged in the Foucauldian analysis of the day. I had no liking for Foucauldian 
tales of power, I felt that for all its originality Mehrtens’s book still relied too much 
on the received wisdom about Hilbert, Klein, Poincaré, and Brouwer (although the 
attention paid to Hausdorff was new to me), and dwelt too much on their explicitly 
philosophical views to the exclusion of the range of the mathematical work. It 
seemed to me that wherever one looked in the years just before 1900 there were 
advocates of a new way of doing mathematics—in algebra, analysis, geometry, 
logic, right across the board—and that this point of view had pretty much won 
in many more places than Germany and France to boot. Quite some scholarship 
on specific cases supported this point of view, and quite a bit also enabled me to 
balance it more subtly than Mehrtens’ division into Moderne and Gegenmoderne, 
and on the back of that to sketch out how the new modern mathematics renegotiated 
its relations with science and even philosophy. At all events, that’s what I attempted 
to do in Plato’s Ghost, which Princeton U.P. published in 2008. 

Unfortunately, Mehrtens never commented on my book, came out at left the field 
for his chosen field of cultural criticism. I can see now that he may have thought I 
gave him too little credit. His intellectual world was not mine, and that is also part 
of the story. I wish too that I had made more of the implications of modernism as I 
interpreted it for the contemporary domains of applied mathematics. It seems to me 
more than ever that a full study of how modernist mathematics related to physics 
would be a good test of any modernism thesis, but such a book has yet to be written. 
I’ve recently written a little more about this in the memorial volume to Herbert (see 
Gray, 2023). On the other hand, I learned recently that Plato’s Ghost inspired a 
breakaway movement in literary studies from literature and science to literature and 
mathematics, which is oddly gratifying. 

Many of the historians I have most respect for have based new analyses on 
unpublished sources. I began by trying to make better sense of published sources, 
and slowly felt the need for a language to describe what I had read. I didn’t want 
to write Mathematical Reviews for the past, and I began to think of what kind of 
knowledge mathematics might be. How was it acquired, secured, conveyed? What 
was it, more precisely, that a mathematician knew? What mattered, and why? What 
do mathematicians mean when they say there are good and less good ways to 
prove things? These questions were much debated around 1900, and by various 
historians and philosophers around 2000. I had the luxury of being able to ignore 
modern philosophy of mathematics, although I read quite a bit of it, and I’d picked 
up some sort of education in philosophy at Oxford by attending many philosophy 
seminars (especially the magnificent weekly seminar run by Freddie Ayer that every 
serious philosophy student attended). This was a year or two before Oxford brought 
in a degree in Mathematics and Philosophy, but I’m glad I missed it. I would 
have learned more logic and less mathematics than would have been good for me. 
Gradually, words like ‘epistemology’, ‘ontology’, and ‘semantics’ crept into my 
work. I began to see how to fit my questions about the nature of old mathematical 
arguments into debates about fruitful proofs, purity of method, depth (e.g my 2015), 
and other themes.
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These questions were the purview of philosophers of mathematics and logic out 
there who did not think highly of structuralism or questions about mathematics 
that see only set theory as capturing what they wanted to get at. Probably my 
first acquaintance here was my friend Jamie Tappenden, whom I met in Boston 
when I visited the Dibner Institute in 1996. His subtle analysis of how Frege can 
be seen as influenced by Riemann appealed to me. Somewhere along the line I 
met José Ferreirós, who combines interests in logic and history and philosophy 
of mathematics to an extraordinary degree, and we also became good friends, 
and in the push to establish the Association for the Philosophy of Mathematical 
Practice (APMP) I was happy to be called in as a sufficiently useful historian. At 
the early meetings I also met Paolo Mancosu, whose own work expertly bridges 
close readings of many mathematical works with novel questions of a logical and 
philosophical kind (see e.g. the many essays collected in his 2010). The book 
he edited, The Philosophy of Mathematical Practice, is the envy of us all for 
managing to contain elementary and more advanced essays in a coherent whole. 
In this group I met another good friend, Jeremy Avigad, who combines expertise in 
formal mathematics and machine-produced proofs with an ability to reflect on what 
mathematicians actually do. Or, rather, have actually done, it being very difficult to 
follow mathematicians at work, if only because they don’t have laboratories to run, 
and nobody likes to be watched filling up a wastebasket with bad ideas. I also got 
to know and become friends with Colin McLarty, the category theorist and logician 
who has taught me a lot about Emmy Noether. 

Independently, and somewhat differently, my friend Moritz Epple had taken 
to approaching mathematics through his theory of epistemological configurations, 
which he adapted from the work of Hans-Jörg Rheinberger’s (1997)—see (Epple, 
2011). I got to know him through Oberwolfach, and through his supervisor, David 
Rowe, who also supervised Leo Corry; his thesis later became his Modern Algebra 
and the Rise of Mathematical Structures, a rare and valuable book on twentieth 
century mathematics. Leo Corry went on in his (2004) to transform our views of 
Hilbert by using volumes of his lectures notes to document his interest in applied 
mathematics, which has implications for any theory of modernism in mathematics. 
Moritz Epple’s trajectory has taken him from an early interest in Wittgenstein to his 
much-admired, philosophically acute book on knot theory (1999), and the immense 
labour he expended editing the works of Hausdorff in ten volumes. Hausdorff is 
key figure in any account of mathematical modernism, and I suspect all of us know 
and appreciate Hausdorff’s work because of the work done by Moritz Epple, Erhard 
Scholz, Walter Purkert, and, of course, Egbert Brieskorn (among many others). The 
upshot of all of this was that a number of us found ways to ways to write about 
the nature and significance of mathematical discoveries that complement the more 
traditional approach, which was also becoming deeper and more insightful. 

As Mehrtens had noted, Poincaré was a counter-modern of some stature. So 
much of what I had written about led up to Poincaré, and the work of others 
pushed me further towards him. The first of my former students and now good
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friend June Barrow-Green turned her Ph.D. thesis into her book (1997) on Poincaré 
and the three-body problem, one of the few books by a historian that I believe 
mathematicians are entirely comfortable with. It contains her thorough rewriting 
of the story based on her discovery of the original manuscript that Poincaré had 
submitted for King Oscar the Second’s prize, with its major mistake that Mittag-
Leffler had tried to cover up. There was good work already done by others 
on various aspects of Poincaré’s work: Arthur Miller (1981) and Scott Walter 
(2009) (on special relativity); Dieudonné (1989), Karanbir Sarkaria (1999), Stillwell 
(1985 and 2010), and others on his topology (see Ji and Wang, 2020 and 2022); 
numerous philosophers, including Gerhard Heinzmann (2008), on the four volumes 
of Poincaré’s essays; and above all the continuing efforts of the people in the Archive 
Henri Poincaré in Nancy to produce editions of Poincaré’s correspondence. Finally, 
the gravitational pull proved irresistible. I had helpful visits to Nancy that taught me 
a lot about the institutional side of Poincaré’s life, and Princeton U.P. produced 
my Henri Poincaré: a Scientific Biography in 2013, just missing the hundredth 
anniversary of his death. 

High level books should be no more difficult than they have to be, but below the 
snow line the problem of connecting to an audience is a real one. As I have already 
said, 2001 was a time for me to move on, but I didn’t know how. An OU colleague 
suggested I approach Warwick. David Fowler, by then a respected historian of Greek 
mathematics, had recently taken early retirement on medical grounds, and in 2002 
Warwick agreed to have me teach a course one term a year provided that it pulled 
in large numbers (David’s course on Newton had been capped at twenty to ensure 
each student presented a paper). I leapt at this, but what to teach? The history of non-
Euclidean geometry, of course. I bashed out a full set of notes, expanding the subject 
to include some projective geometry, Felix Klein’s view of geometry, Poincaré’s 
non-Euclidean geometry, and Hilbert’s axiomatisation of elementary geometry. The 
students liked it in adequate numbers, and after 4 years, during which I discovered 
the pleasures of rewriting a course from one year to the next in the light of its 
reception—something the OU cannot provide—it was time to pick a new topic. 
I wasn’t happy with the reception of my big book with Umberto Bottazzini, so I 
distilled from it a course on real and complex analysis in the nineteenth century. 
Four years later I produced a course on nineteenth century algebra, which has some 
new things to say about Klein, his book on the icosahedron of 1884, and Galois 
Theory. How much mathematics descends from Gauss and Galois! I concluded my 
time at Warwick with a course on the history of ordinary and partial differential 
equations. I found it quite shocking that there was no single substantial book on the 
history of differential equations and the real reason we have the calculus (which is 
not to bewilder students with epsilons and deltas), although Craig Fraser and Tom 
Archibald’s papers gave me a good start on several topics. 

All these courses became books published in the Springer SUMS series. They 
are a compromise intended to help keep history of mathematics alive at a difficult 
time for it in the U.K. and perhaps the USA. The one on geometry is used at 
the OU in its MSc. course. A course in thirty lectures with assessment material 
and advice on how to tackle it is not the ideal place to publish original research,



27 Reflections 687

there is always the problem of keeping the material accessible, although Warwick 
students can be very bright, but I believe the topic is popular with students and 
part of what stops universities from teaching it more often is the problem of 
how to assess it. Anyway, the deed is done, and perhaps inevitably the level of 
mathematical difficulty increased from one course to the next. Despite John Fauvel’s 
example, I continue to believe that the history of mathematics from the time of 
Newton and Leibniz to yesterday is easier to explain to an audience with at least 
some mathematics (it should be a third-year course, not a first-year one), such as 
undergraduates and higher-level school teachers, people with mathematics degrees. 
Or, sadly less likely, historians of science. Each group has its merits and poses its 
challenges. 

I had hoped that my scientific biography of Poincaré would reach historians of 
science, and perhaps it did. But the relations between historians of mathematics and 
historians of science, specifically physics, are complicated and vary from country to 
country. How a closer relationship with historians of science might work in future 
is not clear, but one possibility is this. Now that we know so much more about 
the early calculus, thanks to the ability of Niccolò Guicciardini, George Smith, and 
others to get beyond the imposing eight volumes of Newton’s Mathematical Papers 
that Tom Whiteside had completed, and we can read what has finally come out of the 
immense Leibniz project thanks to Eberhard Knobloch, Richard Arthur and David 
Rabouin, somebody really should write a good up-to-date book about it. It could 
continue into the eighteenth century more easily than before, thanks to the very 
positive development of the Euler Archive, a fine example of collaborative work 
on the web, with its extensive array of translations. We may then also get beyond 
Truesdell’s comprehensive vision of rational mechanics, and rediscover Lambert. 

For myself, prompted by Niccolò Guicciardini, like several of us, to think about 
anachronism, I have recently been back to Bonola in my (2021), and seen properly 
for the first time where he went wrong. Wedded to an anachronistic view of 
geometry, he put hyperbolic trigonometry in the wrong place and messed up his 
account of Lobachevskii as a result. It’s odd to think that had Bonola’s book been 
better I might never have got started. 

Since then, I have swung back to hard mathematics. Retirement from the 
OU and Warwick has only served to revive two long-running, much interrupted 
collaborations, one with Mario Micallef at Warwick (on Douglas, minimal surfaces, 
and the first Fields Medal, which has turned out to require an extensive prehistory 
about partial differential equations) and the other with David Eisenbud at MSRI 
Berkeley (on Macaulay and the theory of polynomial rings after Max Noether). 
Happily, my co-authors understand the mathematics much better than I do, and 
generate fresh questions. I wish I’d worked with mathematicians more, but that’s 
not so easy to arrange. 

In conclusion, I was lucky to have enough French and German to read papers in 
mathematics, and to graduate at a time when the history of mathematics was being 
revived, lucky to get a job teaching the history of mathematics, and luckier still 
to land initially on non-Euclidean geometry, a topic of perennial interest at many 
levels, leading as it does to work by Gauss, Riemann, Poincaré, and many others,
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and numerous mathematical, philosophical, and historical questions. I look back at 
some things I wrote and wish that I had taken more time, and pushed a little deeper, 
but it took me a long time to work out why history of mathematics matters and how 
perhaps it can be done better. For a long time I just followed my nose, tracing the 
implications of the discovery of non-Euclidean geometry, happy to find that others 
had written in depth on related topics. It takes time to have read enough to build 
up a store of information that assembles into a worthwhile argument with some 
chance of being tested. I have also worked either as a coauthor, editor, or simply 
as a colleague alongside several other historians, and together we have contributed 
to the production of a much more detailed set of accounts of mathematics in the 
nineteenth century, richer in mathematical detail, in social context, and in historical 
analysis. This makes it easier to see what still needs to be done, but that is the 
paradox of research. 

I have not been able to mention here everyone who helped me, worked on the 
same topics and enriched the history of mathematics with different perspectives, 
wrote books and articles I felt able to rely on, or even those who disagreed with me. 
(I do think there should be more disagreement in the subject; if it is well intended 
and not tendentious it would be productive.) I owe a special thanks, of course, to 
the editors of this book, especially Lizhen Ji, not only for all his work pulling this 
book together but for a spirited email correspondence that I hope will long continue. 
I apologise to anyone who feels I have left them out, but this brief autobiography is 
surely long enough already. 

I owe a lot, in ways that extend well beyond the academic, to my colleagues in 
Europe and America, who were people I could learn from, and who became good 
friends. Those friendships are, in the end, among the most rewarding part of my life, 
outside of the wonders of living with Sue and sharing our lives with our daughters 
Martha and Eleanor. I thank them all. 
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694 Photos 

Top: Jeremy Gray and Kirsti Andersen. Bottom: Jeremy Gray talking (2014)
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Jeremy Gray in Xi’An (2010). Top: with R. Chorlay, R. Siegmund-Schultze, M. Schneider, K. 
Chemla
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Jeremy Gray and Sue 
Lawrence with grandson 
Rufus (2021) 

Jeremy Gray with 
granddaughter Benny (2022)



Photos 697 

From left to right: N. Guicciardini, L. Corry, K. Chemla, J. Barrow-Green, J. Gray, M. Epple, E. 
Scholz, U. Bottazzini, J. Lützen (valediction conference 2014) 

Second photo: copyright K. Andersen.
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