
Towards Smarter Schedulers: Molding
Jobs into the Right Shape via Monitoring

and Modeling

Jean-Baptiste Besnard1(B), Ahmad Tarraf2, Clément Barthélemy3,
Alberto Cascajo4, Emmanuel Jeannot3, Sameer Shende1, and Felix Wolf2

1 ParaTools SAS, Bruyères-le-Châtel, France
jbbesnard@paratools.fr

2 Department of Computer Science, Technical University of Darmstadt,
Darmstadt, Germany

3 INRIA Bordeaux, Bordeaux, France
4 Computer Science Department, University Carlos III of Madrid, Madrid, Spain

Abstract. High-performance computing is not only a race towards
the fastest supercomputers but also the science of using such massive
machines productively to acquire valuable results – outlining the impor-
tance of performance modelling and optimization. However, it appears
that more than punctual optimization is required for current architec-
tures, with users having to choose between multiple intertwined paral-
lelism possibilities, dedicated accelerators, and I/O solutions. Witness-
ing this challenging context, our paper establishes an automatic feedback
loop between how applications run and how they are launched, with a spe-
cific focus on I/O. One goal is to optimize how applications are launched
through moldability (launch-time malleability). As a first step in this
direction, we propose a new, always-on measurement infrastructure based
on state-of-the-art cloud technologies adapted for HPC. In this paper,
we present the measurement infrastructure and associated design choices.
Moreover, we leverage an existing performance modelling tool to gener-
ate I/O performance models. We outline sample modelling capabilities,
as derived from our measurement chain showing the critical importance of
the measurement in future HPC systems, especially concerning resource
configurations. Thanks to this precise performance model infrastructure,
we can improve moldability and malleability on HPC systems.

Keywords: Monitoring · Performance Modeling · MPI · IO ·
Malleability

1 Introduction

A few decades ago, programmers did not have to change their code to gain
efficiency, as the benefits of the sequential Moore’s law were not depleted, and it
was possible to run the same code faster without any effort. However, as outlined
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bienz et al. (Eds.): ISC High Performance 2023 Workshops, LNCS 13999, pp. 68–81, 2023.
https://doi.org/10.1007/978-3-031-40843-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40843-4_6&domain=pdf
https://doi.org/10.1007/978-3-031-40843-4_6


Molding Jobs into the Right Shape via Monitoring and Modeling 69

in the well-known quotation “free lunch is over”, power dissipation constraints
have forced us to rely on multiple cores per socket and thus transitively led to
compulsory shared-memory parallelism. With applications running in MPI+X
(with X typically being OpenMP) to address inter- and intra-node parallelism,
the execution space already grew substantially. Indeed, if MPI is suitable for
memory locality as it works in distributed address space by nature, it is not the
case for OpenMP which then required careful handling at a time OpenMP places
were not devised. As a consequence, one of the practical ways was to run one
MPI process per NUMA node and then rely on shared-memory parallelism inside
each memory region. If we now continue our journey towards current hardware,
the pressure on energy consumption has advocated for simpler (or specialized)
cores, leading to the democratization of GPUs or, more commonly, accelerators.
It means that from now on, a non-negligible part of the computation has to run
on specialized hardware, which leads to data movements inside the node, from
and to the accelerator. And again, these data movements are typically associated
with at least affinity preferences (NUIOA) [15] or capacity constraints (stacked
HBM, memory-mapped GPU memory, split address space, etc.). We are now at a
point where the layering of runtime configurations and constraints are difficult to
untangle – generally leading to inefficient use of parallel systems simply because
of the difficulty of exploring the execution space.

Starting from this convoluted scenario, we can add a layer of complexity
now unfolding in the HPC field: the horizontalization of computing [13,32].
Indeed, HPC software tends to be relatively monolithic, often due to the bulk-
synchronous bias of MPI. It means features end up stacked in the same binary
as shared libraries and the program alternates between the various functions
over time. However, due to complexity constraints, this is probably about to
evolve towards a specialization of the software components [35], if not simply
as a mirror of the underlying hardware specialization. As a result, the program
is likely to become more composite, creating several pieces communicating in
workflows [1] or collocated in situ during the run. Similarly to what has been
advocated around power constraints in PowerStack [2,6,32], we consider this pro-
cess cannot be manual and should be generalized. The programmer should define
the workflow (i.e., dependencies), and computational needs (memory, device) but
addressing how to run shall be automated.

2 From Ad-Hoc to Always-On Monitoring

Understanding and examining an application’s performance is crucial not only
for efficient system utilization but also for identifying performance bottlenecks
at an early stage, including during the execution. Given the complexity of these
systems, performance limitations at any level can significantly impact the appli-
cation’s performance. E.g., Parallel file systems (PFSs) like Lustre and GPFS,
form the storage backbone of HPC clusters and have been developed for over
two decades. As they have been extensively optimized to support traditional
compute-bound HPC applications, which sequentially read and write large data



70 J.-B. Besnard et al.

files [7], PFS cannot handle all types of workloads effectively (e.g., Deep learning
workloads). This aspect can have such an impact that the I/O performance for
identical workloads can differ by more than 200 times depending on the time
when the workloads are executed [23]. In general, performance variability, which
is the difference between execution times across repeated runs in the same execu-
tion environment, is far from being eliminated and will remain an active research
area as several studies have suggested [26,27].

Still, monitoring and modeling the performance of an application is an aspect
that future systems require for optimal throughput. In light of heterogeneous
computing and the current trends toward using programming models focusing on
job malleability, characterizing an application’s performance is crucial for appli-
cation developers, as well as for system optimization. Considering malleability,
e.g., a balance between the compute and I/O resources is required to utilize the
different underlying components of a system effectively. Without detailed knowl-
edge in both aspects, resource management of malleable jobs would be closer to
random guessing. Once the monitoring data is available, performance models
can be systematically generated to drive scheduling.

In this context, we present a monitoring infrastructure developed in the
ADMIRE project, with a particular focus on the trade-offs the infrastructure
relies on to provide always-on low overhead measurement capabilities. In the
second part, we generate performance models with Extra-P [5], which exceed
the computational aspect and consider also I/O. Then, we apply these moni-
toring and modeling capabilities to actual applications with the goal of defining
dynamically what is the best configuration to launch them, either for efficiency
or finding the best I/O configuration. Finally, we discuss how this work sets
the basis for systems only featuring self-configured jobs and approaches like
malleability.

3 On Performance and Execution Spaces

The execution space for applications can be complex due to current hardware.
Indeed, what used to be mono-variadic (i.e., only the number of MPI processes) is
now becoming a much more intricate space [3]. With compulsory shared-memory
parallelism and accelerators, programs have to obey several constraints to run
in their optimal configuration. From the user perspective, supercomputers are
means for producing results, and therefore, end-users often optimize for time-to-
result. This leads to running at the largest scale possible to minimize this time-
to-result. However, looking closely at existing parallel execution descriptors, such
a heuristic doesn’t necessarily lead to efficient execution.

Overall, there are two main ways of running a parallel program on an HPC
system. On one hand, one wants to accelerate computing, leading to strong
scaling “If I double the dedicated resources I want my execution time to be
divided by two”. Strong scaling is limited by the sequential part of the program
and facilitated by larger problem sizes. On the other hand, weak scaling “If I
double both the problem size and resources, I want to run for the same time”;



Molding Jobs into the Right Shape via Monitoring and Modeling 71

leads to payloads where the problem size increases with the number of cores [4].
Understanding how a program behaves is thus correlated with the ability to
track down multiple executions of the same program, and more precisely the
same test case in several configurations. Indeed, in current HPC machines, a
program is bound to run in a non-linear space; The same problem can be solved
on MPI, MPI+OpenMP, and even with accelerators such as GPUs. This leads
to a combinatorial space where previously mentioned scalability rules are still
valid. Exploring this space empirically is now impractical and therefore auto-
mated measurement and modeling capabilities are needed to obtain the correct
configuration for its target problem – we foresee the process in the context of
smart schedulers.

4 The Need for Smarter Schedulers

As mentioned, the job execution space is getting increasingly larger [3]. In addi-
tion, programs are getting more horizontal, running either as workflows or cou-
pled computation (in-situ [13] or services oriented [35]), which increases further
the combinatorial aspect. Consequently, we are convinced that manually launch-
ing programs is not realistic anymore as the target space is too large to be empir-
ically explored. As programming models are facing difficulties hiding hardware
complexity, requiring changes in programs (i.e. hybridization), the same is true
for launch configurations which now suffer from this lack of abstraction.

As outlined in the second part of the paper, thanks to a monitoring infras-
tructure, it should be possible to build models of running applications to drive
launch configurations over time. This major shift in how programs are launched
naturally requires a change in habits – efficient resource usage not being an
option anymore. It is important to note that our approach is not exclusive to
our particular implementation and that by design it has to fit in a larger shared
effort between standards and runtimes [19].

So, taking all of this into account, a smarter scheduler would enable a large
set of optimizations [29] over several system components, including:

– improved backfilling: by leveraging model projection, jobs can be molded
to improve their chance of being backfilled, improving platform utilization.

– automated job configuration: choose the configuration for jobs too max-
imize efficiency. This is elaborated in Sect. 7.1.

– reconfiguration: if a job can run on both CPU and GPU, the scheduler may
choose depending on availability while being aware of the efficiency difference.

– job horizontalization: as the service island in machines probably get
smaller, the scheduler could be the pivot to service side components such as
I/O back-end [8] on demand. This is a core aspect in the ADMIRE project,
which features ad-hoc filesystems [35].

After, contextualizing our approach with related work, the following sections
illustrate a possible implementation of such a smarter scheduler. After introduc-
ing the monitoring and modeling architecture (Sect. 6), we show how it can be
applied to two use cases (Sect. 7).



72 J.-B. Besnard et al.

5 Related Work

The concept of running parallel programs in the right configuration is not new,
and several attempts have been made to provide such a feature, commonly known
as auto-tuning [3,16,17,37], which involves exploring the execution space of a
program to find optimal configurations. Our contribution follows the same app-
roach but with a unique focus on systematizing it at the scheduler level. This
systematization introduces specific monitoring requirements, such as always-on
monitoring and data management challenges. A similar effort to our ADMIRE
project is PowerStack [38], which focuses on power optimization rather than
I/O. In the PowerStack framework, similar needs for measurement and perfor-
mance models are identified, with the ultimate goal of optimizing overall resource
usage. However, our approach differs in its generalization to all launch parame-
ters including I/O backend, combining moldability and at-term malleability to
leverage performance models. We believe that moldability gains have not been
depleted yet by current approaches, despite being simpler to implement com-
pared to malleability. In terms of the monitoring approach, a closely related
contribution is the Data-Center Data-Base (DCDB) [25], which shares many
aspects with our model. In our approach, as we will further outline, Prometheus
manages this role and aggregation is done directly on the node, including from
the target application, Overall, our methodology is similar in that it systemati-
cally manages application metrics by design.

In HPC systems, the resources are managed by the Resource Management Sys-
tem (RMS), which is responsible for multiplexing resources between multiple users
and jobs. This component becomes more crucial in dynamic environments running
moldable and malleable applications. Typical RMSs can configure the resources
for a job before the execution, whereas dynamic applications require an RMS capa-
ble of reshaping the resource allocations at runtime [10,34]. Several efforts are
looking into this, including the PMIX standard [19] but such support for malleabil-
ity is not mainstream. Authors in [20] proposed CooRMv2, an RMS that is able to
give more/fewer resources to the executing jobs based on their requests. This app-
roach relies on pre-allocated resources estimated from peak usage, which can result
from underutilization. D’Amico et Al. [11] proposed a new job scheduling policy
for malleable applications to increase the response of the jobs. This approach dif-
fers by using shared computing nodes for all possible jobs, instead of exclusive
node allocations. While this reduces job response time, interference between jobs
in the same node could affect the results (CPU, memory, I/O, etc.). Developing
smart schedulers for dynamic environments in HPC can yield many benefits for
all (researchers and developers). The executions could be more efficient, reduce
job completion times, and improve the global system performance.

6 ADMIRE Monitoring Infrastructure

Our proposal aims to measure how applications run to fine-tune them before or
during their execution. With a particular focus on I/O, the project features sev-
eral ad-hoc file systems [14,22,35], each with its specificities. By building this



Molding Jobs into the Right Shape via Monitoring and Modeling 73

feedback loop between the expression of a job and its parameters, the project
aims at defining a new way of using parallel machines due to a generalized auto-
tuning approach crossing all layers of the parallel machine. These measurements
can then be leveraged to reconfigure the run when it starts (i.e. moldability), either
choosing the right scale to run or the right ad-hoc file system. This can also be
done at runtime (i.e. malleability). However, we focus on moldability in this paper
since it is already benefiting from this infrastructure, which fulfils the malleabil-
ity constraints. Among these constraints, we have first the ability to model all
runs, enforcing always-on measurements. Transitively, the measure has to be low-
overhead not to impact performance. A second aspect related to programmability
is that it should be non-intrusive by default as malleability supposes a holistic view
of the system. Consequently, the ADMIRE monitoring infrastructure focused on
the interception of the parallel programming interfaces, voluntarily leaving the
applicative side apart. We developed instrumentation layers for MPI, and for the
ad-hoc file systems part of the project. Similarly, to capture the I/O syscalls, we
have modified strace to attach and detach from running programs to provide on-
demand data. The goal in maintaining this data variety in the system is to provide
a large set of information to feed potential models guiding the dynamicity deci-
sions. To do so, the time series for each node and profiles per job are generated by
a dedicated component relying on the TAU metric proxy.

6.1 TAU Metric Proxy

Fig. 1. Interconnection with the aggregating push gateway to implement on-node
always on counter tracking.

As time-based metrics are critical when making dynamic decisions (i.e., as such
decisions have to be done over time), we decided early in the project to store
them in a dedicated Time-Series Database (TSDB). One of the most prominent
ones is Prometheus, which has a significant record of usage in production while
remaining simple and heavily interfaceable thanks to its HTTP-based interface.
Prometheus pulls data from a variety of exporters, which are practically HTTP
servers embedded in the various components of interest. The database then reg-
ularly accumulates values over time to store as time series. While this scheme
is excellent for composability, it faces challenges in the HPC context as it is
not affordable to open an HTTP listening socket in each MPI process and to
dynamically track all running processes. To solve this problem, we had to design



74 J.-B. Besnard et al.

a push gateway which allows components to push data inside Prometheus. Note
that there were existing push gateways but none of them was designed for HPC
as they rely on HTTP. As shown in Fig. 1, the TAU metric proxy is an aggre-
gating push gateway based on UNIX sockets, capable of handling hundreds of
local clients. The client-side library is a single C file that allows forwarding the
counters in an opt-in manner. The performance counters are stored in memory
at the client level, and polling threads send them periodically over the UNIX
socket to the push gateway for decoupling. When reaching the server, two arrays
accumulate the values, one for the given job and another for the whole node.
In addition, a global summative system view at high frequency is provided by a
Tree-Based overlay Network (TBON) thanks to the LIMITLESS [9] monitoring
infrastructure, which is coupled to the proxy. This architecture allows several
distinct components to contribute to node-level counters in a scalable manner,
in Fig. 1, we have the application, its launcher, the strace wrapper, the ad-hoc
file system and node-level monitoring pushing data concurrently. Conjointly,
the Prometheus time-series database polls the metric-proxy HTTP server which
holds the aggregated state for the node, inserting new points and time series
inside the database for data persistence. At a given moment, the metric proxy
only holds a single value for all the counters and exposes them dynamically when
receiving an HTTP request using the OpenMetric Format. In addition, the mea-
surement chain can only handle counters due to the summative nature of the
measurements, a common design approach when creating Prometheus collectors
as storage relies on delta encoding. In addition, PromQL, the language allow-
ing arbitrarily complex queries to the performance database includes means of
computing derivative (rate function) to infer dynamic behaviours over time.

To complement this node-level view with a per-job one, when all participants
of a given job have disconnected, the per-job array is released and stored in the
file system according to the Slurm job-id. We run a metric proxy on each node,
meaning that we maintain performance counters on a per-node basis. Per-job
profiles are also generated on a per-node basis and lazily aggregated from the file
system to create a single summed-up profile. Such profiles are generated for all
jobs and stored in a dedicated profile storage directory. Conjointly, we designed
a Python library to read and compare values from these profiles. Besides, each
profile contains meta-data describing the associated job, including time span,
allocation parameters, and spanning nodes.

6.2 Performance Modeling

Performance modeling has a long research history [5,17,28,31,36]. These mod-
els were usually used to generate scalability models that show how the run-
time scales in accordance with one or more execution parameters, one of them
often being the number of processors. Extra-P, for example, is an automatic
performance-modeling tool that generates empirical performance models. A per-
formance model is a mathematical formula that expresses a performance metric
of interest (e.g., execution time or energy consumption) as a function of one or
more execution parameters (e.g., size of the input problem or the number of



Molding Jobs into the Right Shape via Monitoring and Modeling 75

processors). The tool has a long research history, with recent updates adding
noise-resilient empirical performance modeling capabilities to use cases such as
Deep Neural Networks [31] or statistical meaningfulness [30].

To generate performance models, Extra-P requires repeated performance
measurements. It is suggested that at least five measuring points per param-
eter should be performed. By profiling an application, the required data for
model generation can be collected. Moreover, by continuously passing data from
the Prometheus database, it is possible to continuously improve the models. So
far, Extra-P has been used to model the call path of the application, focusing
on computational and communication aspects but excluding I/O. Though recent
terms, such as the storage wall [18], try to quantify the I/O performance bot-
tleneck from the application scalability perspective. Indeed, due to the fact that
I/O subsystems have not kept up with the rapid enhancement of the remain-
ing resource on an HPC Cluster, I/O bottlenecks are often encountered due to
various aspects (I/O contention, hardware restrictions, etc.). Thus, there is a
need to analyze the scalability behaviour in regard to I/O as well. Thus, instead
of developing a new tool, we used Extra-P to generate performance models for
various I/O metrics. This is done by providing the I/O data in an Extra-P com-
patible format. Moreover, when using the JSON Lines format, the continuously
collected I/O monitoring data can be appended to such a file, allowing us to
refine the performance models whenever more data is available. This becomes
especially interesting if several I/O metrics are captured alongside significant
computational metrics. By generating several performance models, we can judge
the computational I/O intensity of an application regarding the number of pro-
cessors. Moreover, if we model, e.g. the write bandwidth over the number of
nodes or MPI ranks, we can depict which roofline in Fig. 2a is encountered and
can hence decide on using burst buffers to counter such a scenario.

In the context of a smart scheduler, Extra-P is used to generate either offline
or online models corresponding to all executions on a system. These models
are then leveraged to guide decisions with respect to optimization criteria as
mentioned in Sect. 4.

7 Use-Cases

This section shows two examples of heuristics driving job configuration. We start
with an auto-tuning job configuration to maintain running jobs within a given
time frame. As a second example, we show how job requirements in terms of I/O
can be extracted from relatively compact metrics linked to bandwidth and I/O
operations per second (IOPS).

7.1 Deadline Scheduling of Moldable Jobs

In this section we focus on moldability. However, this approach can be extended
for malleability, i.e. changing configuration at runtime. The reason we consider
this use case as relevant is that we are convinced that the moldability gains have



76 J.-B. Besnard et al.

Job 1 Job 2

(a) Job 2 takes too long

Job 1
Job 2

(b) Use more resources

Job 1

Job 2

(c) Use less resources

Fig. 2. Molding job 2 to fit a deadline. Job 1 is fixed. There are two possibilities: either
use more resources to accelerate job 2, i.e. scale up; or use fewer resources to take
advantage of the scheduler backfilling policy. Solution (c) is better because it reaches
the deadline using less resources, which is more efficient.

not been depleted. To validate and implement our moldability goals, we base our
first implementation of a smart scheduler on a simple shell script wrapping the
Slurm command line. More precisely, let us assume that the user wants to run
a job with a given deadline (e.g. the job needs to be done by Monday morning
or the end of the night). The tool will (1) extract this deadline parameter, (2)
compute the number of cores required to reach the deadline given the Extra-P
scaling model and (3) launch the job with this configuration. The monitoring
infrastructure will then generate a profile of this run that will, in turn, be used
to refine the scaling model and improve prediction for subsequent runs. As of
now, this solution is incomplete because it does not take into account the time
spent in the Slurm scheduler queue. Ideally, the tool would balance the expected
performance of the application with the wait time incurred when asking for a
larger set of resources, allowing it to finish on time, but not earlier, improving
the job efficiency as described in Fig. 2. Some schedulers such as Slurm and
OAR provide interfaces to query the expected wait time of an application in the
queue, but can only rely on estimates provided by application users, which are
usually inaccurate [24]. Several approaches have been proposed to obtain better
estimates of the queuing time, using e.g. statistical analysis [21] or based on
simulating the scheduler behavior [33]. Finally, note that this approach is not
restricted to deadline scheduling, any launch parameter could be extracted and
redefined before the run.

7.2 Characterising I/O Applicative Requirements

Typically, the file system (FS) is a shared resource in HPC, which makes it
subject to contention. To outline the potential performance effect of I/O, we
have implemented a dedicated I/O benchmark to measure peak performance in
terms of bandwidth and I/O operations per second (IOPS). As shown in Fig. 3,
FSs can have very different responses in the function of both their nature and
of the contention level. Measurements were run on the same two bi-socket nodes
connected in Infiniband (100 Gb/s ConnectX-4) for the three FSs. As mentioned
in Sect. 6.2, characterizing the scalability behavior of an application in terms
of I/O can bring various advantages, especially for choosing the appropriate
configuration that uses the different resources on an HPC cluster.



Molding Jobs into the Right Shape via Monitoring and Modeling 77

(a) Write bandwidth (b) Rate of create IOPS (c) Rate of delete IOPS

Fig. 3. Experimental FS peak performance in function of MPI processes.

Generally speaking, I/O subsystems present a similar performance behaviour
driven by two main parameters, bandwidth, and IOPS. The Bandwidth increases
with the number of nodes, as does the bisection bandwidth between compute and
storage (more network links), up to a point where the back-end storage capabil-
ities are saturated, leading to peak bandwidth. As far as IOPS are concerned,
we observe such an increase, a plateau, and often contention, as the POSIX
coherency requirements do imply a form of locking on meta-data operations.
As we further develop, we rely on a derivation of these two rooflines [12,36] to
implement a multi-variadic saturation diagram, guiding our FS choices.

In Fig. 3, the peak performance measurements on a dual socket 64-core AMD
Milan featuring multiple FSs (SHM, BeeGFs, local NVME) are shown. We can
observe behaviours matching the roofline models. In particular, each file system
parametrizes a given roofline, and thus, such compact representation can be
leveraged to characterize I/O trade-offs between FS.

We summarize our I/O parametrization implementation in Fig. 4, based on
the peak values shown in Fig. 3. Metadata operations in BeeGFS, like in most
HPC-oriented file systems, have lower efficiency compared to bandwidth. On the
other hand, the single local NVME has better metadata performance but cannot
match the performance of a whole storage array. In comparison, SHM is signifi-
cantly faster. This diagram provides a practical way to quantify the performance
differences between file systems and see what limits the I/O performance for a
given program, whether it is IOPS or bandwidth. We also overlaid the execution
coordinates of multiple applications using average bandwidth and average IOPS,
creating a combined resource saturation diagram that can be used to measure
the sensitivity of a program to I/O. The I/O benchmarks showed variable per-
formance, whereas LULESH (with visualization activated) and BT-IO (class C)
mainly remained fixed in this diagram. We are currently using models backed
up by Extra-P to project the total dataset size and execution times to compute
this mapping and anticipate saturation for a given file system, which can guide
moldability. In particular, we anticipate that machine learning payloads may
lead to higher IOPS, leading to patterns diverging from HPC applications.



78 J.-B. Besnard et al.

Fig. 4. Resource saturation diagram over bandwidth and IOPS. All scales are loga-
rithmic. Applications are mapped as per average bandwidth and IOPS.

8 Conclusion and Future Work

To enable productivity and ease of use of HPC platforms, and in light of the
increasingly complex launch configuration space of applications, there is a need
for potential abstractions and automation. The concept of the smart scheduler
has been discussed in this paper as a means of abstracting the use of HPC
systems through monitoring and dynamic job configuration (moldability and
malleability), it fits in a larger effort transversal to the whole execution chain.
We briefly described the ADMIRE monitoring infrastructure and highlighted
its capabilities for always-on monitoring, real-time performance tracking, and
job profile generation. Additionally, we presented two use cases demonstrating
dynamic job configuration and I/O tuning at launch time. Currently, we are
integrating the ADMIRE infrastructure to leverage the concept of smart sched-
uler. This integration is expected to provide practical results shortly. Overall,
the main contribution of the paper is offering a new approach to managing the
complexity of HPC systems to enable their efficient use.

While we focused on moldability in this paper, the monitoring approach
is also especially suited for malleability, as it provides key information (e.g.,
compute and I/O loads) that can be utilized. Hence, our future work focuses
on using the described approach scheduling algorithms that consider malleable
jobs, to effectively utilizes the different components of the HPC cluster and
enhance the system throughput. Moreover, since in such a context, it can be
valuable to know some key aspects like the periodicity of I/O phases (in case
they are periodic), future work also centers on adding predictive capabilities to
this infrastructure to boost the malleable decisions.



Molding Jobs into the Right Shape via Monitoring and Modeling 79

Acknowledgment. This work has been partially funded by the European Union’s
Horizon 2020 under the ADMIRE project, grant Agreement number: 956748-ADMIRE-
H2020-JTI-EuroHPC-2019-1.

References

1. Ahn, D.H., Garlick, J., Grondona, M., Lipari, D., Springmeyer, B., Schulz, M.:
Flux: a next-generation resource management framework for large HPC centers.
In: 2014 43rd International Conference on Parallel Processing Workshops, pp. 9–17.
IEEE (2014)

2. Arima, E., Comprés, A.I., Schulz, M.: On the convergence of malleability and the
HPC PowerStack: exploiting dynamism in over-provisioned and power-constrained
HPC systems. In: Anzt, H., Bienz, A., Luszczek, P., Baboulin, M. (eds.) ISC High
Performance 2022. LNCS, vol. 13387, pp. 206–217. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-23220-6 14

3. Balaprakash, P., et al.: Autotuning in high-performance computing applications.
Proc. IEEE 106(11), 2068–2083 (2018)

4. Besnard, J.B., Malony, A.D., Shende, S., Pérache, M., Carribault, P., Jaeger, J.:
Towards a better expressiveness of the speedup metric in MPI context. In: 2017
46th International Conference on Parallel Processing Workshops (ICPPW), pp.
251–260. IEEE (2017)

5. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance mod-
eling to find scalability bugs in complex codes. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
p. 45 (2013). tex.organization: ACM Citation Key: CA13

6. Cantalupo, C., et al.: A strawman for an HPC PowerStack. Technical report, Intel
Corporation, United States; Lawrence Livermore National Lab. (LLNL) (2018)

7. Carns, P.H., et al.: Understanding and improving computational science storage
access through continuous characterization. ACM Trans. Storage 7(3), 8:1–8:26
(2011). https://doi.org/10.1145/2027066.2027068

8. Carretero, J., Jeannot, E., Pallez, G., Singh, D.E., Vidal, N.: Mapping and schedul-
ing HPC applications for optimizing I/O. In: Proceedings of the 34th ACM Inter-
national Conference on Supercomputing, pp. 1–12 (2020)

9. Cascajo, A., Singh, D.E., Carretero, J.: LIMITLESS-light-weight monitoring tool
for large scale systems. Microprocess. Microsyst. 93, 104586 (2022)

10. Cera, M.C., Georgiou, Y., Richard, O., Maillard, N., Navaux, P.O.A.: Support-
ing malleability in parallel architectures with dynamic CPUSETs mapping and
dynamic MPI. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds.)
ICDCN 2010. LNCS, vol. 5935, pp. 242–257. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11322-2 26

11. D’Amico, M., Jokanovic, A., Corbalan, J.: Holistic slowdown driven scheduling
and resource management for malleable jobs. In: ACM International Conference
Proceeding Series (2019). https://doi.org/10.1145/3337821.3337909

12. Denoyelle, N., Goglin, B., Ilic, A., Jeannot, E., Sousa, L.: Modeling large compute
nodes with heterogeneous memories with cache-aware roofline model. In: Jarvis,
S., Wright, S., Hammond, S. (eds.) PMBS 2017. LNCS, vol. 10724, pp. 91–113.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72971-8 5

https://doi.org/10.1007/978-3-031-23220-6_14
https://doi.org/10.1007/978-3-031-23220-6_14
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1007/978-3-642-11322-2_26
https://doi.org/10.1007/978-3-642-11322-2_26
https://doi.org/10.1145/3337821.3337909
https://doi.org/10.1007/978-3-319-72971-8_5


80 J.-B. Besnard et al.

13. Dorier, M., Dreher, M., Peterka, T., Wozniak, J.M., Antoniu, G., Raffin, B.:
Lessons learned from building in situ coupling frameworks. In: Proceedings of the
First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization, pp. 19–24 (2015)

14. Duro, F.R., Blas, J.G., Isaila, F., Carretero, J., Wozniak, J., Ross, R.: Exploit-
ing data locality in Swift/T workflows using Hercules. In: Proceedings of NESUS
Workshop (2014)

15. Goglin, B., Moreaud, S.: Dodging non-uniform I/O access in hierarchical collective
operations for multicore clusters. In: 2011 IEEE International Symposium on Par-
allel and Distributed Processing Workshops and Phd Forum, pp. 788–794. IEEE
(2011)

16. Gupta, R., Laguna, I., Ahn, D., Gamblin, T., Bagchi, S., Lin, F.: STATuner: effi-
cient tuning of CUDA kernels parameters. In: Supercomputing Conference (SC
2015), Poster (2015)

17. Hoefler, T., Gropp, W., Kramer, W., Snir, M.: Performance modeling for system-
atic performance tuning. In: State of the Practice Reports, SC 2011, pp. 1–12.
Association for Computing Machinery, New York (2011). https://doi.org/10.1145/
2063348.2063356

18. Hu, W., Liu, G., Li, Q., Jiang, Y., Cai, G.: Storage wall for exascale supercom-
puting. Front. Inf. Technol. Electron. Eng. 17(11), 1154–1175 (2016). https://doi.
org/10.1631/FITEE.1601336

19. Huber, D., Streubel, M., Comprés, I., Schulz, M., Schreiber, M., Pritchard, H.:
Towards dynamic resource management with MPI sessions and PMIx. In: Pro-
ceedings of the 29th European MPI Users’ Group Meeting, pp. 57–67 (2022)

20. Klein, C., Pérez, C.: An RMS for non-predictably evolving applications. In: Pro-
ceedings - IEEE International Conference on Cluster Computing, ICCC, pp. 326–
334 (2011). https://doi.org/10.1109/CLUSTER.2011.56

21. Kumar, R., Vadhiyar, S.: Identifying quick starters: towards an integrated frame-
work for efficient predictions of queue waiting times of batch parallel jobs. In:
Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2012.
LNCS, vol. 7698, pp. 196–215. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35867-8 11

22. Mart́ı Fraiz, J.: dataClay: next generation object storage (2017)
23. Miranda, A., Jackson, A., Tocci, T., Panourgias, I., Nou, R.: NORNS: extending

Slurm to support data-driven workflows through asynchronous data staging. In:
2019 IEEE International Conference on Cluster Computing (CLUSTER), USA,
pp. 1–12. IEEE (2019). https://doi.org/10.1109/CLUSTER.2019.8891014

24. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001). https://doi.org/10.1109/71.932708

25. Netti, A., et al.: DCDB wintermute: enabling online and holistic operational data
analytics on HPC systems. In: Proceedings of the 29th International Symposium
on High-Performance Parallel and Distributed Computing, pp. 101–112 (2020)

26. Nikitenko, D.A., et al.: Influence of noisy environments on behavior of HPC appli-
cations. Lobachevskii J. Math. 42(7), 1560–1570 (2021). https://doi.org/10.1134/
S1995080221070192

27. Patki, T., Thiagarajan, J.J., Ayala, A., Islam, T.Z.: Performance optimality or
reproducibility: that is the question. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, Denver
Colorado, pp. 1–30. ACM (2019). https://doi.org/10.1145/3295500.3356217

https://doi.org/10.1145/2063348.2063356
https://doi.org/10.1145/2063348.2063356
https://doi.org/10.1631/FITEE.1601336
https://doi.org/10.1631/FITEE.1601336
https://doi.org/10.1109/CLUSTER.2011.56
https://doi.org/10.1007/978-3-642-35867-8_11
https://doi.org/10.1007/978-3-642-35867-8_11
https://doi.org/10.1109/CLUSTER.2019.8891014
https://doi.org/10.1109/71.932708
https://doi.org/10.1134/S1995080221070192
https://doi.org/10.1134/S1995080221070192
https://doi.org/10.1145/3295500.3356217


Molding Jobs into the Right Shape via Monitoring and Modeling 81

28. Petrini, F., Kerbyson, D., Pakin, S.: The case of the missing supercomputer per-
formance: achieving optimal performance on the 8,192 processors of ASCI Q. In:
SC 2003: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, p.
55 (2003). https://doi.org/10.1145/1048935.1050204

29. Prabhakaran, S., Neumann, M., Rinke, S., Wolf, F., Gupta, A., Kale, L.V.: A batch
system with efficient adaptive scheduling for malleable and evolving applications.
In: 2015 IEEE International Parallel and Distributed Processing Symposium, pp.
429–438. IEEE (2015)

30. Ritter, M., Calotoiu, A., Rinke, S., Reimann, T., Hoefler, T., Wolf, F.: Learn-
ing cost-effective sampling strategies for empirical performance modeling. In: 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp.
884–895 (2020). https://doi.org/10.1109/IPDPS47924.2020.00095

31. Ritter, M., et al.: Noise-resilient empirical performance modeling with deep neural
networks. In: 2021 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 23–34 (2021). https://doi.org/10.1109/IPDPS49936.2021.00012

32. Schulz, M., Kranzlmüller, D., Schulz, L.B., Trinitis, C., Weidendorfer, J.: On the
inevitability of integrated HPC systems and how they will change HPC system
operations. In: Proceedings of the 11th International Symposium on Highly Effi-
cient Accelerators and Reconfigurable Technologies, pp. 1–6 (2021)

33. Smith, W., Taylor, V., Foster, I.: Using run-time predictions to estimate queue
wait times and improve scheduler performance. In: Feitelson, D.G., Rudolph, L.
(eds.) JSSPP 1999. LNCS, vol. 1659, pp. 202–219. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-47954-6 11

34. Sudarsan, R., Ribbens, C.J.: ReSHAPE: a framework for dynamic resizing and
scheduling of homogeneous applications in a parallel environment. In: Proceedings
of the International Conference on Parallel Processing (2007). https://doi.org/10.
1109/ICPP.2007.73

35. Vef, M.A., et al.: GekkoFS-a temporary distributed file system for HPC applica-
tions. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 319–324. IEEE (2018)

36. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
https://doi.org/10.1145/1498765.1498785

37. Wood, C., et al.: Artemis: automatic runtime tuning of parallel execution parame-
ters using machine learning. In: Chamberlain, B.L., Varbanescu, A.-L., Ltaief, H.,
Luszczek, P. (eds.) ISC High Performance 2021. LNCS, vol. 12728, pp. 453–472.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78713-4 24

38. Wu, X., et al.: Toward an end-to-end auto-tuning framework in HPC PowerStack.
In: 2020 IEEE International Conference on Cluster Computing (CLUSTER), pp.
473–483. IEEE (2020)

https://doi.org/10.1145/1048935.1050204
https://doi.org/10.1109/IPDPS47924.2020.00095
https://doi.org/10.1109/IPDPS49936.2021.00012
https://doi.org/10.1007/3-540-47954-6_11
https://doi.org/10.1109/ICPP.2007.73
https://doi.org/10.1109/ICPP.2007.73
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1007/978-3-030-78713-4_24

	Towards Smarter Schedulers: Molding Jobs into the Right Shape via Monitoring and Modeling
	1 Introduction
	2 From Ad-Hoc to Always-On Monitoring
	3 On Performance and Execution Spaces
	4 The Need for Smarter Schedulers
	5 Related Work
	6 ADMIRE Monitoring Infrastructure
	6.1 TAU Metric Proxy
	6.2 Performance Modeling

	7 Use-Cases
	7.1 Deadline Scheduling of Moldable Jobs
	7.2 Characterising I/O Applicative Requirements

	8 Conclusion and Future Work
	References


