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Abstract. With the increasing scale of HPC supercomputers efficient
resource utilization on such systems becomes even more important. In
this context, dynamic resource management is a very active research
field, as it is expected to improve several metrics of resource utilization
on HPC systems, such as job throughput and energy efficiency.

However, dynamic resource management is complex and requires sig-
nificant changes to various layers of the software stack including resource-
and process management, programming models and applications. So far,
approaches for resource management are often specific to a particular
implementation of the resource management and process management
software, thus hindering interoperability, composability and comparabil-
ity of such approaches.

In this paper, we discuss the usage of the Process Management Inter-
face - Exascale (PMIx) Standard for interactions between the process
manager and the resource manager. We describe an architecture that
allows the resource manager to connect to the process manager as
PMIx Tool to have access to a set of PMIx services useful for resource
management.

In a concrete case-study we connect a python- and PMIx-based
resource manager to PRRTE and assess the applicability of this archi-
tecture for debugging and exploration of dynamic resource management
techniques. We conclude that a PMIx-based architecture can simplify the
process of exploring new dynamic and disruptive resource management
mechanisms while improving composability.

Keywords: Dynamic Resource Management · Process Management ·
PMIx

1 Introduction

HPC supercomputers are just entering the exascale era, which comes with a
myriad of challenges such as energy efficiency, scalability of system software
and resiliency [17]. To tackle these challenges, hardware technology, as well as
system software and HPC applications need to be rethought under these new
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circumstances. In the area of system software, new ways have to be explored
to make this software scalable and to improve the overall efficiency of resource
utilization on the system.

In this context, hierarchical resource management software and dynamic
resource management (where we consider malleability to be a subset of this) are
very active research areas. In the last years, a large amount of research has been
done ranging from theoretical work on dynamic resource scheduling [5,18,19] and
simulations of dynamic scheduling strategies [8,9,20], to concrete implementa-
tions of mechanisms for dynamic resource management software [3,7,16,22,23]
as well as runtime systems, programming models and applications (see, e.g., [4]
for an overview of work). In these works, various benefits of dynamic resource
management have been demonstrated. However, despite this large amount of
research in this area, different dynamic resource management approaches often
remain isolated from each other due to a lack of interoperability between the
different solutions for the components in the system software stack as well as a
high specialization on just one or a few applications.

To this end, we study the usage of PMIx [2] to increase the interoperability
in the system software stack. PMIx is a programming interface standard provid-
ing an abstract interface for various services required on parallel and distributed
systems, such as a distributed key-value store or an event notification system.
Thus, PMIx can enable implementation-independent interactions between differ-
ent system components. Despite providing an extensive API for the interaction
between various components in the system software stack, so far PMIx has not
been widely adopted. In most resource managers/process managers its usage is
restricted to the small subset of its API required for bootstrapping parallel appli-
cations. One exceptions is the PMIx Reference Runtime Environment (PRRTE)
[6], which provides a fully PMIx-enabled runtime environment. In the context of
containerization techniques PMIx has also been used for the separation of appli-
cation and runtime containers for running unprivileged HPC applications [15]
and for enabling on-node resource management for containerized HPC workloads
integrated into a hierarchical setup [24].

This work illustrates how PMIx could be used for portable interactions
between the Resource Manager (RM) and the Process Manager (PM). Here,
we refer to the RM as the global system software responsible for managing and
scheduling resources of the system. In contrast, we refer to the PM as the soft-
ware managing the lifecycle of jobs and processes on the resources assigned by
the resource manager.

We start by giving an overview of an architecture that allows PMIx-based
interaction between the RM and the PM in Sect. 2. Then, in Sect. 3, we describe
various possible PMIx-based interactions this architecture could provide for
resource management, based on the specifications in the PMIx Standard 4.1
[21]. Subsequently, Sect. 4 presents a concrete case study of such a architecture,
where we connect a Python- and PMIx-based dynamic RM to a modified version
of the PMIx Reference Runtime Environment (PRRTE) to provide a testbed for
dynamic resource management research. We conclude the paper by discussing
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and summarizing the key insights we gained from our case study in Sect. 5 and
Sect. 6.

2 Overview of a PMIx-Based Architecture

Fig. 1. Overview of an architecture for PMIx-based interactions between
the Resource Manager (RM) and the Process Manager (PM). The bottom
part represents the PM, which manages the execution of one or more applications.
It operates PMIx servers to expose certain services to the application processes or
other software components via the PMIx Client and PMIx Tool interface. The top part
represents a RM manager consisting of various components. The PMIx component
is responsible for managing the PMIx-based connection and interaction with the PM
(yellow arrow) and possibly other system components (blue arrow) using the PMIx Tool
interface. Note, that although the PM could potentially manage multiple applications
across multiple nodes, the RM only needs to connect to one of the PM’s PMIx servers,
which facilitates the scalability of the approach. (Color figure online)

In this section we introduce a possible, basic architecture that enables PMIx-
based interaction between the RM and the PM. An overview of this architecture
is given in Fig. 1. The following subsections describe the three basic components
in our architecture: PMIx, the PMIx-based PM and the PMIx-based RM.

2.1 PMIx

The central component in our architecture is PMIx. The PMIx standard defines
PMIx as an “application programming interface standard that provides libraries
and programming models with portable and well-defined access to commonly
needed services in distributed and parallel computing systems” [21, p. 1]. This
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is achieved by providing an abstraction from the concrete system component
using three generic roles: PMIx Server, PMIx Client and PMIx Tool. In the
following we briefly introduce these PMIx roles.

PMIx Server: A process can initialize PMIx as PMIx Server using the
PMIx_server_init function. Subsequently, PMIx Clients and PMIx Tools can
connect to this PMIx Server, which gives them access to the PMIx services
defined by the PMIx Standard. While some PMIx services can be serviced solely
by the PMIx Server library implementation, usually interaction with the pro-
cess that initialized the PMIx server library is required. To this end, during the
initialization call, the process passes callback functions which enables the PMIx
server library to pass on requests to be serviced by this process. The behavior
of these callback functions is defined by the PMIx Standard, however, the con-
crete implementation needs to be provided by the hosting process. Thus, the
PMIx server role provides an abstraction that can be used by system software
components such as the PM to expose certain services.

PMIx Client: A process can initialize PMIx as PMIx Client using the
PMIx_Client_init function, which establishes a connection with a local PMIx
server. PMIx Clients are usually application processes launched by the process
that hosts the PMIx server. Through the PMIx Client interface the launched
processes have access to various PMIx services such as process synchronization
and a distributed key-value store. In many MPI implementations MPI Processes
use the PMIx Client role to interact with the MPI runtime environment, e.g., to
exchange process wire-up information during MPI initialization.

PMIx Tool: A process can initialize PMIx as a PMIx Tool using
the PMIx_Tool_init function. The PMIx Tools Interface is a superset of the
PMIx Client Interface, providing additional functionality for establishing con-
nections to PMIx servers and for I/O forwarding. PMIx Tools are able to connect
to PMIx Servers on local as well as on remote hosts and are usually used for
HPC tools, such as debuggers and launchers. We will use this interface for the
connection between the RM and PM.

2.2 PMIx-Based Process Manager

PMs for distributed applications mange the lifecycle of applications and their
processes. This involves launching and monitoring of application processes as
well as process termination and cleanup. For this, PMs usually create an overlay-
network of daemons on the compute nodes where the applications are running
on. Beyond these basic functionalities, PMs often provide a varying degree of
runtime services for applications.

Figure 1 (bottom) illustrates the concept of a PMIx-based PM. A PMIx-based
PM is a PM that follows the PMIx Standard to provide its process management
functionalities. For this, daemon processes usually initialize PMIx as a PMIx
Server, i.e., the PM runs one PMIx Server per compute node. When launching
applications, the application processes connect to the PMIx Server on their local
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node as PMIx Clients, giving them access to services of the PM exposed via
PMIx.

2.3 PMIx-Based Resource Manager

The RM is responsible for the efficient execution of jobs on the system’s
resources. Figure 1 (top) illustrates the concept of a PMIx-based RM. A sim-
ple, PMIx-based RM could consist of the following components:

Event Loop Component: The event loop is the central component of the
RM. It allows for thread-safe, serialized processing of events from different event
sources. Events can be periodic, such as periodic invocations of the scheduling
component, as well as non-periodic invocations, such as events triggered by noti-
fications from the PM, e.g., to update the system state in the system component.

Job Submission Component: This component allows the submission of jobs
to be executed on the system. While on production systems jobs usually are
submitted interactively by users, for investigating novel resource management
strategies it is preferable to simulate job submissions, e.g., by providing a job
mix file with jobs and job arrival times. Submitted jobs are included in the job
queue of the system component and are considered by the scheduling component.

PMIx Component: The PMIx component manages the connections and inter-
actions with PMIx-enabled system software components. To this end, the PMIx
Tools interface is used to connect, e.g., to the PMIx-based PM (dark yellow
arrow in Fig. 1). This allows for various interactions, which are described in the
next section. The PMIx Standard also allows tools to be connected to multiple
PMIx servers. Thus, the PMIx component could possibly manage multiple con-
nections (indicated by the blue arrow in Fig. 1), e.g., to multiple PMIx-enabled
PMs or to a parent RM instance in a hierarchical resource management setup.

System State Component: The system state component provides a repre-
sentation of the current state of the system under management. This includes
for instance information about the usage of system resources such as compute
nodes as well as information about currently running jobs and jobs in the job
queue. Here, the PMIx component allows for tight interaction with other system
software components to collect information about the current system state.

Resource Management Component: The resource management component
is responsible for scheduling job execution and dynamic resource management
during a job’s lifetime based on the information of the system component.

To this end, an instance of a resource management component can be
assigned to an instance of the system state component. This design allows to
(dynamically) change the resource management strategy of the system and to
facilitate the exploration of such strategies within a Python environment.
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3 PMIx-Based Interactions for Resource Management

The architecture described in the last section provides the PMIx-based RM
access to various PMIx functionalities of the PMIx Tool Interface. This section
summaries some of these PMIx services and describes how they can be used by
such an RM to interact with the PM. However, it is important to note that a
PMIx-based PM might not provide support for all of these PMIx services listed
below, or it might not support all of the attributes the PMIx standard defines
for these services. For our case study in Sect. 4 we used a subset of these services.

3.1 Controlling Job Execution

An important area of interaction between the RM and PM are functionalities
for controlling job executions. PMIx provides several functions related to job
execution.

– PMIx_Spawn: Launches the specified number of instances of the given exe-
cutable(s) on the specified resources. PMIx specifies various attributes that
can be passed to further control properties of the job, such as I/O forwarding,
event generation and logging. The RM can make use of this function to start
jobs based on the scheduling decisions.

– PMIx_Abort: Aborts the specified processes. The RM could for instance use
this function to abort jobs exceeding their time limit.

– PMIx_Job_control: Requests job control actions. Control actions include
for instance, pausing, restarting or terminating processes, checkpointing and
directory cleanup. The RM could use such control actions to enforce, e.g.,
fault tolerance or dynamic job co-scheduling strategies.

3.2 Retrieving System, Job and Process Information

Another requirement for the RM is to have access to system and application
information relevant for the efficient management of the system resources. PMIx
provides various functionalities to retrieve information about supported oper-
ations, system soft- and hardware as well as jobs, applications and processes.
The RM can make use of these functions to retrieve information for its system
state component, which can then be considered by its resource management
component.

– PMIx_Query_info: Queries general information about the system. The PMIx
Standard defines a rich set of query keys to be used to query system informa-
tion. This includes queries for function and attribute supported by the PMIx
implementation and host environment, names of running jobs, memory usage
of daemons and application processes and statuses of jobs and application
processes. The RM can make use of the query functionality to adjust its
execution to the support level of the PM and to retrieve information for its
system component.
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– PMIx_Get: Retrieves key-value pairs associated with the specified process.
This can be information about the process itself, as well as the session, job,
application or node the process is associated with. The RM can use this
functionality to retrieve information to be included in its system component,
such as the mapping of a job’s processes, or the memory size and CPU set of
compute nodes.

– PMIx_Compute_distances: Computes relative distances from the specified
process location to local devices such as GPUs, or network devices. This
information could be included in the RM’s system component to provide
additional input to the resource management component, e.g., when dynam-
ically assigning accelerators to jobs.

– PMIx_Fabric_(de)register: Registers access to fabric related information
such as a cost matrix. The RM could include this information in its system
component and use it in its scheduling decisions, e.g., to improve locality of
communication.

3.3 Event Notification System and Logging

Finally, the last feature which is missing for the interaction between the RM and
PM is the exchange of events. PMIx provides functionalities for event notification
and logging. This allows the RM to record and react to changes of the system
state and to inform the PM about reconfiguration decisions.

– PMIx_register_event/PMIx_Notify_event: Event Notifications are an
important building block for the interaction between the RM and PM. Pro-
cesses can use the PMIx_register_event function to register callbacks for
particular event codes. The PMIx_Notify_event function can be used to send
notifications of an event, thus triggering registered callbacks. The RM could
for instance register callbacks for events triggered by the PM, such as job
completion, node failures or reconfiguration requests. The PM could register
callback for events triggered by the RM, such as job reconfiguration decisions.

– PMIx_Log: This function can be used to log data, such as events, to a data
service. This can be useful to record and analyze the interactions between the
RM and PM.

4 Case Study

In this section we present a case study of connecting a Python- and PMIx-based
RM to a PMIx-based PM for debugging and exploration of dynamic resource
management techniques. The code we develop and use in our work is included
in a public repository [12]. The main objectives of this case study are a) to
provide a proof-of-concept of a setup with a PMIx-based interaction between
the RM and PM and b) reporting our experiences of using this setup to explore
dynamic resource management techniques. We first describe our concrete setup
and implementation in Sect. 4.1 followed by an evaluation based on a simple test
case for dynamic resource management in Sect. 4.2.
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4.1 Setup

In our setup, we closely follow the design described in Sect. 2 and we use a small
subset of the possible interactions outlined in Sect. 3.

PMIx-Based Process Manager. For the PMIx-based PM we use a modi-
fied implementation of the PMIx Reference Runtime Environment (PRRTE).
PRRTE is a fully PMIX-enabled PM for parallel and distributed applications
and it is the native runtime environment of the Open MPI [11] implementation.
It is capable of running and managing multiple jobs simultaneously, where each
job can consist of multiple executables.

The PRRTE implementation we use in our setup is based on an implementa-
tion from prior work [10,13], which introduced dynamic MPI features to Open
MPI, OpenPMIx and PRRTE. We extended the implementation from the prior
version in two ways. First, we improve the flexibility of the dynamic MPI inter-
face which will be described in a forthcoming publication. Second, we add sup-
port for connections with a PMIx-based RM. For this, we extend PRRTE’s
Resource Allocation Subsystem (RAS) framework and implement a RAS mod-
ule for the interactions with our PMIx-based RM. This setup allows for single-
application jobs to be reconfigured with node granularity based on the RM’s
resource management decisions, i.e., only full nodes can be added to or removed
from applications.

Dynamic Resource Manager. We develop the (dynamic) RM entirely in
Python to lay the fundament for future work on the fast prototyping of dynamic
resource managers. So far we only investigate the basics of it. The user can
specify the hostnames to be included in the managed system, the interval of the
resource management loop and the file containing the job mix to be executed.
At startup, it starts PRRTE using the

prterun --host hostnames --daemonize --mca ras timex --report-pid filename
command, which starts PRRTE on the specified hosts, daemonizes the DVM
daemons into the background, selects our new RAS module and writes the PID
of the PRRTE master process into the specified file. The design of the resource
manager follows the component design from Sect. 2.3:

– Job Submission Component: The job submission component parses an
input file containing a job mix. Each line is a job description in json format,
containing the name of the job, the mpirun command to be executed and the
arrival time.

– PMIx Component: The PMIx component makes use of the PMIx Python
package that provides Python bindings for the PMIx Interface. PMIx is ini-
tialized as PMIx Tool and the connection to PRRTE is established using
the PID reported by the prterun command. The interaction with PRRTE is
based on only a small subset of the functionalities outlined in Sect. 3:
• PMIx_Spawn is used to launch new jobs from the job queue.
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• PMIx_Query is used to query the names of compute nodes, running jobs
and process sets.

• PMIx_Get is used to query the mapping of processes on nodes.
• PMIx_register_event is used to register callbacks for events such as

job termination, process set definition, job reconfiguration requests and
finalization of job reconfigurations.

• PMIx_Notify_event is used to notify PRRTE about job reconfiguration
decisions of the scheduler.

– Event Loop Component: For the event loop component the asyncio
Python package [1] is used. We use a periodic event that checks for new sub-
missions based on the information from the job submission component and
executes the resource management policy. Based on the results of the resource
management decision, it makes use of the PMIx component to launch new
jobs or to communicate job reconfiguration decisions to the PM. Here, we
like to briefly mention that the periodic event could lead to delayed resource
management decisions, but could be replaced with events related to updates
to the system-state components. However, this is not required in the present
work.

– System State Component: The system state component stores a small set
of information about the current system state. In our setup, the system state
is characterized by the nodes available in the system, the jobs executing on
these nodes, the processes included in each job and the current job reconfig-
uration requests. Moreover, the system state component provides a resource
management function, which produces resource management decisions based
on the currently assigned policy instance.

– Resource Management Component: The resource management compo-
nent provides the resource management policy class with an abstract resource
management function definition, allowing for different instances of such poli-
cies. A resource management policy instance can be assigned to the system
state component dynamically.

4.2 Evaluation

We evaluate the applicability of our setup based on a concrete example. This
example show-cases the usage of our setup in the context of debugging and
exploring dynamic job reconfiguration and in particular resource management
strategies.

Test System. As a test system we use a Docker-swarm based environment [14]
to simulate the nodes of a compute cluster. For our tests we simulate a 4-node
system, where each node has 8 cores and runs a CentOS based docker image.
Such a docker based setup is optimal for fast debugging and exploration as it
allows to simulate a multi-host environment on a local machine. Thus it is a
convenient and efficient environment for the functionality experiments, which
are the main goal of the present work. However, this setup is obviously not
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suited for any kind of realistic performance measurements, as it usually leads to
oversubscription to simulate multiple nodes on a single machine.

Test Case. In our test case we compare the resource management of jobs
exhibiting dynamically varying resource requirements with and without dynamic
reconfiguration. We use a simple loop-based test application, which executes a
50 ms sleep command followed by an MPI Barrier in every iteration. In the
static case (without reconfiguration) the number of processes remains the same
for each iteration. In the dynamic case (with reconfiguration), the application
can request a reconfiguration to add or remove processes before entering the
next loop iteration. Here, we use a blocking approach, i.e., dynamic applications
block until their reconfiguration request can be fulfilled. While such a blocking
approach can obviously lead to deadlocks, it is sufficient for the functionality
tests of the interactions between RM and PM, which are the main objective of
this test case.

We execute test runs for two different job mix files containing two dynamic
and two static jobs respectively. Table 1 lists the number of processes in each
iteration for the dynamic and static jobs. In both cases, the arrival time for
job1 and job2 is after 3.6 and 5.7 s, respectively. For the resource management
we use a simple approach, which first attempts to start jobs from the job queue
whenever there are enough system resources available. If no jobs can be launched,
it checks if any job reconfiguration request can be fulfilled. The duration of the
resource management loop is 0.3 s. We plan to replace this by events triggered
by changes of the system state.

Table 1. Number of processes in each iteration.

Iteration 0–10 11–20 21–30 31–40 41–50 51–60 61–70

Job1 (dynamic) 8 16 8 24 8 32 8
Job2 (dynamic) 8 16 8 24 8 – –
Job1 (static) 32 32 32 32 32 32 32
Job2 (static) 24 24 24 24 24 – –

Results. Figure 2 shows a side-by-side comparison of the node occupation in the
system at the beginning of each iteration of the resource management loop for the
dynamic and static test run. In the static case job1 occupies all nodes of the sys-
tem during its entire runtime, thus preventing any other jobs to be started. In the
dynamic case, job1 grows step wise, which allows job2 to be launched in iteration
19 and to be executed simultaneously. This allows for a higher job throughput in
the dynamic case (37 resource management iterations vs. 46 resource manage-
ment iterations). However, the individual time-to-completion of the jobs is higher
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in the dynamic case with 37 vs. 27 and 21 vs. 18 for job1 and job2 respectively.
This is mainly due to the dynamic jobs blocking until resources are available
for the requested reconfiguration. When comparing the node-hours (in terms of
resource management iterations), the dynamic setup still provides benefits from
the application perspective, with 69 vs. 108 and 35 vs. 72 iterations for job1 and
job2, respectively.

5 Discussion

Our case study demonstrated the applicability of the architecture described in
Sect. 2 to enable PMIx-based interaction between the RM and PM and provides
examples of concrete interactions for dynamic resource management using a
subset of the functionalities described in Sect. 3. Based on the specifications in
the PMIx standard, this architecture, in future work, can be integrated into a
hierarchical resource management strategy, as described in Sect. 2.3.

Fig. 2. Node occupation during each iteration of the resource management loop using
dynamic jobs (left) and static jobs (right).

We have shown how connecting a Python- and PMIx-based RM to a PMIx-
based PM facilitates fast prototyping, debugging and exploration of dynamic
resource management strategies. To this end, PMIx provides various benefits:
First, it already provides a rich interface for managing and controlling resources
and job executions, where we assessed its usability for at-least a basic PMIx-
based setup for resource management. It maintains a separation-of-concerns
between resource management and process management by acting as a messen-
ger between these components. Thus, it reduces the time spent for implement-
ing the communication protocol and allows to focus on exploring novel dynamic
resource management strategies where we are convinced that these novel meth-
ods are required for convincing cases to make dynamic resource utilization a
success. Second, it defines python bindings which allows for fast development
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and for the direct integration of python package for visualization, data anal-
ysis and mathematical models. This facilitates the debugging and comparison
when exploring new techniques for dynamic resource management. Third, the
usage of PMIx potentially allows for interchangeability of different RMs and PM
that support PMIx, which could simplify the transfer from exploratory setups
to production environments.

Our case study provided some valuable insight into various aspects of the
usage of PMIx for resource management, however, it is also limited in some
aspects:

Our tests were run inside of a docker environment and based on small-scale
examples. While this is a convenient setup for development, debugging and pro-
totyping, it can only provide limited insight into performance behavior and hard-
ware related aspects. Thus, not all results from this setup are fully transferable
to real HPC systems and large-scale experiments.

Moreover, while the specifications in the PMIx standard indicate that this
architecture could be easily integrated into hierarchical resource management, in
our case study we so far only provided a proof-of-concept for the case where the
RM manages the resources assigned to the connected PM. A setup with deeper
hierarchies remains to be demonstrated in future work.

6 Summary

The increase of the scale of HPC supercomputers introduces new challenges
for system hardware and software. One of these challenges is to ensure efficient
usage of the system’s resources. To this end, scalable, dynamic resource manage-
ment has gained significant interest over the last years. While there has been a
large amount of work towards enabling dynamic resource management in differ-
ent components of the system software stack, these attempts are often tailored
towards particular implementations of these components and are often isolated
from each other.

In this paper we investigated the usage of PMIx to facilitate portable inter-
action between the Resource Manager and Process Manager and to simplify the
exploration of new resource management techniques. We first described a generic
setup to enable a PMIx-based connection between the resource and process man-
ager and describe possible interactions for resource management based on the
PMIx Standard. We then described a case study based on a concrete implemen-
tation of the described setup and demonstrated its applicability to debug and
explore dynamic resource management mechanisms and strategies. We see this
as a proof of concept of a PMIx-based interaction between the resource manager
and process manager which we expect to be an important building block for
research on dynamic resource management.

In future work we will work on extending our implementation to support
a hierarchical setup and use it to explore more sophisticated interactions and
resource management strategies on real HPC systems.
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