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Abstract. The field of High-Performance Computing is rapidly evolv-
ing, driven by the race for computing power and the emergence of
new architectures. Despite these changes, the process of launching pro-
grams has remained largely unchanged, even with the rise of hybridiza-
tion and accelerators. However, there is a need to express more com-
plex deployments for parallel applications to enable more efficient use of
these machines. In this paper, we propose a transparent way to express
malleability within MPI applications. This process relies on MPI pro-
cess virtualization, facilitated by a dedicated privatizing compiler and a
user-level scheduler. With this framework, using the MPC thread-based
MPI context, we demonstrate how code can mold its resources without
any software changes, opening the door to transparent MPI malleability.
After detailing the implementation and associated interface, we present
performance results on representative applications.
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1 Introduction

The field of High-Performance Computing (HPC) is witnessing an increasing
complexity in hardware, with hybridized architectures combining distributed
and shared-memory parallelism along with accelerators. This requires programs
to incorporate multiple programming models, potentially with diverse comput-
ing abstractions, to fully utilize the capabilities of the underlying computing
substrate. This complexity has consequences both on the programs themselves
and on their efficient utilization of the hardware. Programs in HPC are typically
large simulation codes, often consisting of millions of lines of code. Therefore,
adapting to new architectures is a planned and complex process. The chosen
technology should be able to remain relevant for a sufficient duration to avoid
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tying the codebase to a particular technology or vendor, necessitating parallelism
abstractions [4]. The process is often piece-wise, leading to incomplete paral-
lelism and parallel limitations due to fork-join patterns. Parallel runtimes play a
crucial role in abstracting hardware changes. However, due to increasing hard-
ware constraints, low-level behaviours start to impact applications. OpenMP is
successful in porting existing code to new architectures in a piece-wise man-
ner by adding #pragma parallel for. However, the slower adoption of recent
OpenMP advances suggests that this is less effective for tasks and OpenMP
targets, despite the preservation of optional pragmas. On the MPI side, the pro-
gramming model is deeply embedded in most of the HPC payloads due to its
robustness and ability to constantly evolve to handle new hardware while pro-
viding bare-metal performance. However, this strength is also a weakness as it
encloses parallelism expression in a relatively low-level and fine-grained form.
The end-users are directly using what could have become the “assembly” of a
higher-level abstraction.

Our paper highlights the imminent complexity barrier that HPC is facing due
to architectural evolutions and technical debt accumulated by HPC applications.
Although runtimes have evolved and new abstractions have been provided, they
often do not translate to applications [5,19]. The empirical nature of the usage of
supercomputers, driven by domain-specific scientists who are mainly interested
in their results and given virtually unlimited computing power with little or
no quota, has resulted in heuristics of doing good science that prioritize final
results over efficient use of parallel machines. However, with the rise of GPUs
and multi-level parallelism, the need for efficient use of parallel machines is
more pressing than ever. Ideally, the solution would be to rewrite applications
using new abstractions to address new hardware. However, this requires teaching
domain-specific scientists how to code in parallel abstractions or providing them
with tools that hide the complexity of parallelism. Several languages, including
domain-specific ones, have tried to define more expressive ways of parallelizing
programs [4,17,29]. Acknowledging the existence of inefficient (by design) and
potentially transitively inefficient parts of parallel programs, the question of
malleability then becomes preponderant.

2 Fast is Not Efficient

Time to result is not a correct heuristic to define how efficient a computation is.
Indeed, from the well-known parallel efficiency formula, one may add computing
resources to a computation while contributing only at the margin to the final
result. As a consequence, sometimes a slower run is making much better use of the
underlying hardware while leaving space for other runs on the freed resources [3,
10]. Malleability is the systematic and automated application of such reasoned
running configuration for a given heuristic. And for more optimized applications,
co-scheduling also provides opportunities for resource sharing for example during
alternating phases of computing or to cope with load imbalance. In this work, we
propose to implement transparent application co-location using the MPC thread-
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based MPI and a specialized compiler enabling the conversion of MPI+OpenMP
applications to threads.

3 The Multi-processor Computing Runtime

MPC is a thread-based implementation of MPI, where MPI processes run in
threads instead of traditional UNIX processes. This approach has various bene-
fits, including reduced memory usage, faster launch times, and improved intra-
node messaging (see Sect. 6). Moreover, MPC has its own implementation of
OpenMP and a user-level scheduler that is necessary for transparently running
programs in co-routines, as discussed in Sect. 3.2. Additionally, MPC provides a
specialized compiler that facilitates the porting of regular MPI+OpenMP codes
to a thread-based context.

3.1 MPC Compiler Additions: Privatization

The process of converting global variables to Thread-Local Storage (TLS) vari-
ables using MPC’s privatizing compiler [6] is crucial to enable the thread-based
execution of regular MPI programs inside threads. This is necessary because
global variables can cause conflicts when loaded in the same address space. The
MPC privatizing compiler converts these global variables to MPC’s TLS vari-
ables, which enables loading the same program multiple times in a single address
space without any conflicts. The privatizing compiler is based on a modified ver-
sion of GCC and includes a pass that converts global variables and other TLS
levels (such as OpenMP thread-locals) to MPC’s TLS. This pass has been imple-
mented in a component called libextls (extended TLS) [6].

After a program has been privatized, it can be executed in the context of a
thread, initially to meet the needs of a thread-based MPI. However, as we will
discuss later in this paper, we aim to expand this concept to hybrid comput-
ing, where various executables are loaded in the same address space. In such a
setup, the MPC runtime (MPI and OpenMP) can better address performance
differences between the different applications.

3.2 User-Level Threads

Once MPI processes are threads, it becomes interesting to consider their exe-
cution inside user-level threads. This is a convenient way to hide waiting time,
replacing it with context switches [31]. When a task is delayed, the resources can
be used productively by moving to another task, instead of remaining in a busy
loop. MPC is built around the concept of co-routines, and to make this approach
viable, it is crucial to not only privatize threads but also to wrap the complete
Pthread interface to capture potentially blocking calls, redirecting them to the
scheduling loop inside MPC. Otherwise, a lock could be held by a pending task.
Using MPC’s m:n scheduler, it is already possible to run two programs on the
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same resources in an oversubscribed fashion, meaning that the two programs
will alternate on the underlying Pthread (co-routines).

By extending this idea to malleable programs, two programs can run on the
same resources [25]. In addition, since MPI programs are now running inside
threads, it is possible to move them on the node, changing their affinities. This
is analogous to changing the target pending list in the scheduler without having
to handle data dependencies, which can be complex in the case of regular MPI
processes, but trivial in shared-memory. This extended support for threads and
the user-level scheduler provides opportunities for fine-grained control over cross-
scheduling of runtimes [13,18,32].

3.3 OpenMP Runtime

The MPC framework includes an OpenMP runtime that utilizes the same user-
level thread and privatization infrastructures as the MPI runtime. This runtime
is designed to be compatible with both GOMP and Intel/LLVM ABIs, enabling
it to run OpenMP programs generated by different compilers. One significant
advantage of co-locating both OpenMP and MPI threads in the same scheduler
is the potential for runtime-stacking [11,28]. This refers to the idea of combining
multiple runtimes for improved scheduling. Recent research has shown that it is
possible to convert MPI waiting time into OpenMP task progress [32]. We aim
to utilize this feature, in conjunction with privatization, in our co-scheduling
approach, which relies on MPI process virtualization.

4 MPI Process Virtualization

MPI process virtualization is the process of converting MPI processes into
threads within compute nodes [6,31]. This approach allows for new scheduling
opportunities for parallel applications by implementing cross-job malleability at
the node level, instead of relying on a single scheduler. In this section, we will
provide an overview of this concept. We will discuss how it involves using a node-
level scheduler, specifically MPC, to enable job malleability, resource sharing,
and mitigation. Additionally, we will explore the compilation aspect of gather-
ing multiple programs in the same binary and the executive part of leveraging
OpenMP tasking, building on previous work [32], to optimize performance.

4.1 The Need for Node-Level Schedulers

As shown in Fig. 1a, a traditional HPC scheduler allocates resources based on
UNIX processes. Typically, there is a one-to-one correspondence between UNIX
processes and MPI processes. In contrast, our approach using MPC involves
colocating and co-scheduling multiple programs within a single address space
on each node, as illustrated in Fig. 1b. One advantage of this approach is that
it requires fewer processes to run a given program. This is because there is
no longer a direct mapping between UNIX and MPI processes; MPI processes
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(a) Process-based MPI. (b) Virtualized MPI processes.

Fig. 1. Comparison between regular scheduling approach and virtualized MPI
processes.

are now threads. Furthermore, the work we present in this paper has indirect
implications for malleability pivoting with a centralized scheduler (e.g., using
the Process Management Interface or PMIx), as it can now be partially a local
scheduling decision that is fully dynamic and arbitrary. Our two-level scheduling
approach can leand to multiple profitable scenarios that have been explored in
the literature:

– Resource sharing [1,12,16,22,24,30]: two applications residing in the same
address space can dynamically exchange their resources without the need for
copying or remapping of data. This allows the underlying scheduler to balance
the compute resources from all collocated applications without complex code
adaptation. For instance, two applications that require linear algebra compu-
tations on the node could have their respective tasks scheduled on the GPUs
with a global view of the system, potentially achieving higher utilization than
when allocating GPUs to each program separately.

– Overprovisioning [8,21,25,36]: in this configuration we run multiple appli-
cations per core, forcing them to alternate on the resources. In this case, the
waiting time is directly recovered by the yield mechanism of the user-level
scheduler, hiding latency. This case is of course bound to the availability of
enough memory on the node.

– Specialization [14,15,35]: this opens the way to define in-process services
providing facilities such as I/O to all programs running on the node in a very
efficient manner (true zero-copy). Doing so may open the way to machines
with smaller service islands, I/O being part of the job themselves with dedi-
cated resources. This provides strong advantages to in-situ scenarios.

Overall, the main advantage of this two-level scheduler model is that schedul-
ing decisions at the node level is now local, and there is no need to rely on an
external component, except when more resources are needed. In the context of
this work, we consider that we have colocated multiple applications in the same
address space, and they now share their CPUs. Moving an application is now
equivalent to moving a simple thread.

Therefore, as shown in Fig. 2, malleability inside the node becomes practical
for any MPI+OpenMP application without requiring specific porting or mod-
ification. This is due to MPC’s privatizing compiler that ensures applications
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Fig. 2. Illustation of node-level malleability in the context of virtualized MPI processes.

can run inside threads, and we can simply adjust the resources allocated to
each of these applications while sharing all the runtime components between the
two programs. In the next section, we will describe how an application can be
converted to a virtualized program inside MPC.

4.2 Virtualizing Programs

The process of virtualizing an existing program is very similar to the one done
inside MPC for privatization purposes, which involves running the same program
image multiple times in a single process [6]. It consists of compiling the program
with a modified compiler that converts global variables and thread-local variables
to the extended TLS hierarchy of MPC, which features an additional “process”
level that matches each MPI process in the final runtime memory image. This
process preserves TLS optimizations [6]. As shown in Fig. 1b, once this is done,
and because the main function of the application has been renamed using a
preprocessor directive, MPC simply launches N threads with their respective
pinning, TLS context, and ranks to mimic the execution of the process in MPI,
except that it is now in threads. This process has been reliably used by MPC
to run C, Fortran, and C++ applications, with C++ being the most complex
due to potential dynamic initializers, global objects, and templates. The idea of
virtualizing MPI processes is not new and has a long research history [20,25,31].
AMPI [31], FG-MPI [26] and the Charm++ [24] runtimes have demonstrated
many benefits of virtualized MPI processes, such as load-balancing [31] and
dynamicity [23]. The closest related work to the idea we present in this paper
is Adaptive Jobs [23]. This work moves the scheduler inside virtualized MPI
processes and proposes to allocate programs in these address spaces. Conversely,
in our approach, we stay much closer to the existing parallelism interfaces and
runtimes, with the goal of transparently running existing programs in a virtual-
ized configuration. This is only possible because MPC features its own OpenMP
implementation and a Pthread interface to redirect locking calls to the user-
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level scheduler. When multiple programs are living in the same address space,
there are opportunities for runtime stacking, and it is this aspect that we aim
to highlight in this paper.

Returning to our initial goal of generalizing the approach to multiple pro-
grams, we needed to load multiple privatized programs in the same address space.
To achieve this, we compiled the codes with the -fpic -rdynamic -shared
flags, making the code position independent (as shared libraries) and exposing
symbols in the final binary (and therefore the main). With this done, we were
able to dynamically open binaries and their shared library dependencies with
the help of the loader. The programs now run inside the same process, and
we eventually replace their MPI COMM WORLD with a subset of the actual world,
matching the actual program splitting. As MPC is also an MPI runtime, doing
so is straightforward, as it simply involves replacing the communicator in the
MPI process context. Note that this last step can become even more transparent
using the session model, in which the application builds its COMM WORLD, enabling
explicit redirection. There are of course security issues when colocating programs
in a single address space, and therefore such a scenario can only be envisioned
for binaries belonging to the same user, and not as a way to run general pro-
grams in such a configuration. Memory segmentation from the Operating System
and the zero-page mechanism are essential security measures to ensure perfect
impermeability in between address spaces. Besides, signals are also handled by
the controlling process and therefore, events such as SIGINT cannot be handled
individually in such a configuration.

4.3 Co-scheduling Multiple Programs in a Single Process

Thanks to the nature of the MPC thread-based MPI+OpenMP runtime, multi-
ple programs can run within a single UNIX process. Now comes the question of
co-scheduling [2] each program to guarantee efficient progression of each appli-
cation. The first possibility is through cores oversubscription with kernel threads
(e.g., pthreads), letting the operating system preemptively schedule threads of
each program. With n cores and m > n threads, this is the m:n co-scheduling
approach. Oversubscription has been widely adopted in runtimes for overlap-
ping synchronization idleness on cores, on AMPI [31] or LLVM OpenMP [34] for
instance. Yet, it can degrade performances when a high number of asynchronous
operations concurrently progresses [21,36], one source of overheads being the
operating system [7,33]. The second possibility is an n:n approach: each core
is assigned a single kernel thread, and the scheduling decision is taken by the
MPC user space scheduler. In particular, recent work on the MPC OpenMP task
scheduler has shown improvement over the LLVM m:n approach for target tasks
offloading [18].

The final goal of our work, which we are yet to reach, is to deploy a co-
scheduling approach as depicted on Listing 1.1. Line 1 to 6 corresponds to pro-
gram dynamic loading, line 10 the n:n threads binding is created. From lines 11
to 19, each program starts execution within an OpenMP task with its own fiber,
which is an MPC extension hinting at the OpenMP runtime to execute tasks
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on their stack, enabling more scheduling flexibility. Descendant MPI processes,
OpenMP parallel regions, and tasks created by each program will then run as
part of a single MPC OpenMP task scheduler responsible for co-scheduling. Note
that our execution model assumes tasks can migrate between teams which is not
compliant with current OpenMP specifications and therefore still requires dedi-
cated work. Recent work on Free Agent Threads [27] provided a solution to this
limitation, improving the malleability of OpenMP tasking. Our execution model
also relies on runtimes interoperability [32] so that a task blocking within an
MPI call is automatically preempted instead of retaining its core.

Listing 1.1. Pseudo-code of the launcher wrapper

1 extern s t r u c t program t {
2 int argc ;
3 char ∗∗ argv ;
4 int (∗main ) ( int , char ∗∗) ;
5 } ∗ programs ;
6 extern int n programs ;
7
8 int main ( void )
9 {

10 # pragma omp p a r a l l e l
11 # pragma omp s i n g l e
12 {
13 f o r ( int i = 0 ; i < n programs ; ++i )
14 {
15 program t ∗ p = programs + i ;
16 #pragma omp ta s k f i b e r
17 p−>main (p−>argc , p−>argv ) ;
18 }
19 }
20 return 0 ;
21 }

5 Co-scheduling Experiment

In this section, we present the results of our initial experiments, which involved
running applications on the same node in order to identify optimal execution
times. The purpose of this setup was to identify potential “sweet spots” for
execution time, which could eventually become more dynamic as shared-memory
models used within applications become more flexible, particularly in terms of
their ability to be invasive. However, it is important to note that the results
presented here are limited by the static nature of the allocation used in our
experiments.

In Fig. 3a, we show the scalability of the various kernels, which have different
problem sizes and exhibit different strong scaling behavior. The smaller kernels
exhaust their parallelism more quickly than the larger ones. This behavior is
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(a) Scalability of the individual kernels on
the machine.

(b) Combination of four programs bt.A,
lu.C, ft.C and mg.C over the machine
(walltimes)

Fig. 3. Walltime for various resource breakdowns for co-located NAS MPI benchmarks.

also present in the individual nodes of larger simulations, particularly when
considering dynamic behavior over time.

To further investigate co-location, we selected four of these benchmarks
(bt.A, lu.C, ft.C, and mg.C) and ran them on a single node. As expected from
the scaling behavior, there are sweet spots of scheduling for these four programs,
which are indicated by the lower values in Fig. 3b. This suggests that dynami-
cally reshaping jobs over time to follow these sweet spots could lead to improved
performance. However, this can be difficult to accomplish through models alone,
which is why our future work will focus on developing a node-level shared run-
time to support malleability.

Co-locating programs is not a new idea, and several MPI runtimes and exper-
iments dedicated to malleability have demonstrated similar gains to the ones we
present here [2,9,24,30]. However, one of the main motivations for our work is
that MPC can convert existing programs to shared-address space transparently,
while still supporting regular MPI and OpenMP. This simplifies the process
of making programs malleable and expands the range of applications that can
benefit from this approach.

6 Networking Performance

As a thread-based MPI, MPC is capable of exchanging MPI messages between
MPI Processes (now threads) running in the same process. In addition, it also
supports all intermediate configurations, including a regular process-based exe-
cution. Besides, MPC has support for standard HPC networks, including SHM,
Infiniband, Portals 4 BXI [?] interconnect and libFabric. It means co-scheduled
programs can run distributed as regular MPI applications, malleability would
only occur at the level of nodes, in between colocated programs thanks to the
shared runtimes (mostly OpenMP for compute).
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(a) Latency for IMB-MPI1 Ping-Pong. (b) Bandwidth for IMB-MPI1 Ping-Pong.

Fig. 4. Comparison of MPC, OpenMPI and MPICH over various biding configuration
using the IMB-MPI1 Ping-Pong benchmark.

Figure 4 presents the performance results of running the Intel IMB-MPI1
Ping-Pong benchmark between two processes co-located on the same node. This
simple benchmark allows us to assess the relative bandwidth and latency per-
formance between co-located programs. The tests were conducted on a bi-socket
AMD EPYC 7413 machine with a total of 48 cores. The “packed” configuration
means processes are running on nearby cores, while the “scattered” configura-
tion means processes are spread across the two NUMA nodes. We measured the
performance using MPC 4.1.0, OpenMPI 4.1.5, and MPICH 4.1, all of which
were installed through spack using the default configuration flags.

In Fig. 4a, we observe that MPC has lower latencies for larger messages. How-
ever, for smaller messages, other runtimes, particularly OpenMPI, can perform
better. The main reason for this is that in MPC, the THREAD MULTIPLE support
is always on, due to its thread-based nature, which leads to locking requirements
and impacts the micro-optimizations needed to reach performance levels com-
parable to OpenMPI. However, thanks mostly to the improved bandwidth as
messages are moved through direct memcpy (as shown in Fig. 4b), MPC yields
lower latencies for larger messages. Other runtimes may use SHM fragments or
more optimal Cross-Memory Attach (CMA) to transfer such large buffers, which
are less direct than a regular memcpy.

Overall, we have demonstrated that running programs in shared memory
with MPC can result in improved messaging bandwidth in some cases. This
improvement is more pronounced for larger messages, but smaller messages still
suffer from locking overhead. To address this limitation, we are currently in the
process of fully rewriting the networking stack in the MPC runtime. Our goal
is to improve performance and reduce overhead for all message sizes, further
enhancing the benefits of running programs in shared memory with MPC.
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7 Conclusion

High-performance computing architectures are evolving towards increased flex-
ibility in utilizing node-level resources. However, shared-memory resources are
often underutilized due to a lack of collaboration between programming models.
For instance, MPI may get stuck in a busy-wait loop while OpenMP may have
pending tasks. To address this issue, we utilized the virtualization capabilities
of the MPC thread-based MPI + OpenMP runtime to transparently port MPI
applications to a space where they can be adapted to shared memory with less
effort. This process is analogous to what MPC does for MPI programs, utilizing
its Extended TLS model. In this work, we presented two types of co-scheduling:
oversubscription to eliminate busy waiting by using context yields and a unified
scheduler that balances computing on a whole node, including between different
virtualized programs. We also showcased the OpenMP code that we plan to use
to achieve this.

We then conducted co-scheduling experiments that showed the potential for
dynamic scheduling at the node level to compensate for imbalance and inefficien-
cies by opening a common task-oriented scheduler to all runtimes. Eventually,
we have shown that by running in shared memory there were opportunities to
improve MPI messaging performance. Going forward, we plan to further develop
this work on the OpenMP side, seeking a practical way to define node-wide task
stealing, which is currently not feasible between different parallel regions. This
would enable OpenMP programs co-located in the same node (and virtualized
in the same process) to dynamically balance their computations.
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