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Abstract. The Distributed Asynchronous Object Storage (DAOS) is an open
source scale-out storage system that is designed from the ground up to support
Storage Class Memory (SCM) and NVMe storage in user space. Until now, the
DAOS storage stack has been based on Intel Optane Persistent Memory (PMem)
and the Persistent Memory Development Kit (PMDK). With the discontinuation
of Optane PMem, and no persistent CXL.mem devices in the market yet, DAOS
continues to support PMem-based servers but now also supports server configu-
rations where its Versioning Object Store (VOS) is held in DRAM. In this case,
the VOS data structures are persisted through a synchronous Write-Ahead-Log
(WAL) combined with asynchronous checkpointing to NVMe SSDs. This paper
describes the new non-PMem DAOS architecture, and reports first performance
results based on a DAOS 2.4 technology preview.

Keyword: DAOS · Storage Class Memory · Optane · CXL.mem · Versioning
Object Store · Parallel Filesystem · mdtest

1 Introduction

TheDistributedAsynchronousObject Storage (DAOS) [1–3] is an open source software-
defined object store designed from the ground up for massively distributed Non-Volatile
Memory (NVM) and Storage Class Memory (SCM). It presents a key-value storage
interface and provides features such as transactional non-blocking I/O, a versioned
data model, and global snapshots – all completely in user space. Its design eliminates
many of the bottlenecks of traditional parallel filesystems, as demonstrated by leadership
performance rankings in HPC storage benchmarks like the IO500 [4].

As shown in Fig. 1, the DAOS storage engine uses two types of backend stor-
age devices. Storage Class Memory is used to store DAOS internal metadata, applica-
tion/middleware key/index data, and latency sensitive small I/O. Up until today, DAOS
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SCM has been implemented with Intel Optane Persistent Memory (PMem) devices [9]
accessed through the Persistent Memory Development Toolkit (PMDK) [5–7]. DAOS
creates a DAX-enabled ext4 filesystem on the PMem devices (configured in AppDirect
mode). Space for the DAOS Versioning Object Store (VOS) is allocated as files in this
DAX-enabled filesystem (one file per DAOS pool and per DAOS storage target). DAOS
memory-maps these files when the engines are up and running, bypassing the Linux
page cache. It can then directly access persistent memory in user space by memory
instructions like load and store, instead of going through a thick storage stack.

Fig. 1. DAOS Software Architecture.

DAOS uses NVMe SSDs and the Storage Performance Development Kit (SPDK) [8]
software to support large storage capacities and large I/O requests. SPDKprovides direct,
zero-copy data transfer to and fromNVMe SSDs. TheDAOS engine can submit multiple
I/O requests to the NVMe SSDs, using SPDK queue pairs in an asynchronous manner,
fully from user space. On completion of the SPDK I/O, DAOS creates indexes in SCM
for the data stored on NVMe SSDs.

Intel has discontinued its Optane Persistent Memory product line [9–11]. And while
it is possible that future CXL.mem attached storage devices will provide persistent,
Byte-addressable storage with performance characteristics that are suitable for DAOS
SCM usage, no such devices currently exist in the industry.

DAOS therefore needs an alternative code path for its Storage Class Memory func-
tionality that does not depend on Optane PMem or PMDK. This new functionality has
been developed in the DAOS vos_on_blob feature branch [12], also known as “MD-
on-SSD” [13, 14], and is available as a technology preview in the DAOS 2.4 release.
This paper explains the new DAOS SCM backend and presents first performance results
based on an early vos_on_blob development snapshot.
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2 DAOS Persistent Memory and Volatile Memory Code Paths

Figure 2 shows the traditional DAOS backend with persistent memory. The DAOS Ver-
sioning Object Store (VOS) data structures are stored in memory-mapped files, which
reside on Optane PMem devices and are accessed through PMDK. Small (<4kiB) writes
are also stored on PMem. Pointers to large data blobs that are stored on NVMe SSDs
are maintained in the VOS trees.

Fig. 2. DAOS Backend using Persistent Memory.

The new DAOS backend is shown in Fig. 3. Here, the VOS data structures are held
in DRAM, using VOS files in a tmpfs filesystem that is not persistent. Small writes are
also stored in DRAM. To persist the data in this volatile tmpfs filesystem, two additional
functionalities are added to the code path:

1. A Write-Ahead Log (WAL) [14] performs synchronous commits of all write opera-
tions to a WAL blob that resides on NVMe SSDs. The WAL data structures are very
compact to guarantee low latency. Instead of a commit block, the WAL implemen-
tation relies on checksums to ensure consistency. Depending on the operation, it is
possible to perform parallel commits to the WAL.

2. The complete VOS trees are asynchronously checkpointed to a meta blob on NVMe
SSDs (one per DAOS storage target). The VOS checkpointing is triggered by space
pressure in the WAL blob, combined with a timed mechanism that initiates a VOS
checkpoint at regular intervals even in the absence of space pressure. The detailed
behaviour of the checkpointing mechanism can be fine-tuned through DAOS pool
properties.

Compared to the PMem-based DAOS backend, this design has two advantages.
Firstly, all reads are served fromDRAM, so read performance should be higher compared
to reads from Optane PMem. Secondly, by eliminating the Optane PMem hardware
dependency it will now be possible to run DAOS servers on additional server hardware
platforms, broadening the DAOS ecosystem.

The biggest drawback of the non-PMem design is its limited metadata capacity. The
DRAMcapacity per DAOS server is significantly smaller thanwhat can be achievedwith
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Fig. 3. DAOS Backend using Volatile Memory.

the 128GB, 256GB or 512GB Optane PMem DIMMs. In the phase 1 design described
here, metadata is never migrated to the data blobs, so the DRAM capacity limits the total
metadata capacity.

This metadata capacity limitation is addressed in two ways: Firstly, the design has
been reviewed to optimize the metadata footprint wherever possible. This allows to
reduce the ratio of SCM (PMem or DRAM) capacity to NVMe capacity. Secondly, a
phase 2 roadmap item for the MD-on-SSD feature will implement mechanisms that will
allow parts of the metadata to be serialized and migrated to the data blobs. This design
will optimize the cost effectiveness of the DAOS servers, at the expense of an increase
in latency when sections of the metadata that have been migrated to data blobs need to
be loaded back from NVMe SSDs into DRAM. The design of this phase 2 functionality
is beyond the scope of this paper.

Fig. 4. New DAOS Backend Stack Layering.
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It is important to note that the changes to enable DAOSmetadata on volatile memory
(plus NVMe SSDs) are isolated to a few layers of the DAOS server code stack, with no
changes to the DAOS API or client-side software. Figure 4 shows the code paths for the
traditional PMem-based DAOS design (in blue), and the added bmem blob allocator and
bio_wal module (in yellow).

3 DAOS Server Design Considerations

In Sect. 2 we have described the DAOS software architecture for DAOS servers with
and without Optane Persistent Memory. In this section we are combining that software-
centric view with the hardware architecture of the DAOS servers, and we discuss some
of the design choices to configure a balanced DAOS server.

The performance evolution of DAOS servers across three hardware generations is
described in detail in [15]. DAOS servers with Intel 2nd Gen Intel Xeon SP (formerly
codenamed Cascade Lake) and 3rd Gen Intel Xeon SP (formerly codenamed Ice Lake)
support Optane Persistent Memory. Configuring these servers is straightforward: DAOS
starts one DAOS engine on each CPU socket, there is one SCM tier configured on the
Optane PMemDIMMs that are attached to that socket, and oneNVMe tier that comprises
all the NVMe SSDs that are managed by that engine. Each engine uses a single HPC
network port to connect to the DAOS clients.

When configuring DAOS servers with 4th Gen Intel Xeon SP (formerly codenamed
Sapphire Rapids), the main design change is the fact that Optane PMem is not available
on 4th Gen Intel Xeon SP. The new DAOS code path for volatile memory must be
used, and the NVMe SSDs must store the Write-Ahead Log and the asynchronous VOS
checkpoints in addition to the end user data.

Fig. 5. DAOS Server Design Options for 4th Gen Xeon SP (from [15]).
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Figure 5 outlines three typical DAOS server designswith 4th Gen Intel Xeon SP. They
differ primarily in the number and speed of HPC network ports, and the corresponding
number of DAOS engines. As the bandwidth of an HPC network port needs to be “fed”
by a corresponding NVMe SSD bandwidth, these differences also imply a different
minimum and maximum number of NVMe SSDs per DAOS engine. These boundaries
are relevant for the placement of WAL, VOS checkpoints and user data.

• The continuation of the original DAOS server design of a 2-socket server with one
DAOS engine per CPU socket is shown on the left of Fig. 5. To saturate a 400 Gbps
HPC network link (e.g., NDR InfiniBand), at least four PCIe gen5 NVMe SSDs per
DAOS engine are needed. Themaximum of 14NVMe SSDs per DAOS engine shown
in the figure is determined by the total number of 80 PCIe gen5 lanes per CPU socket.
(Some PCIe lanes are used for other functions, for example a management LAN card,
so using 16 NVMe SSDs per DAOS engine is not possible).

• The middle of Fig. 5 shows a server design to support 200 Gbps HPC fabrics, by
using PCIe gen5 NICs with two 200 Gbps ports (e.g., dual HDR InfiniBand) instead
of a single 400 Gbps port. Because DAOS requires exactly one HPC network port per
engine, this configuration requires to run two DAOS engines per CPU socket with
2–7 NVMe SSDs per engine.

• Due to the higher number of PCIe lanes of 4th Gen Intel Xeon SP compared to
previous generations, it is now also possible to populate a 2-socket DAOS server with
four HPC network cards, doubling the peak bandwidth to≤184 GiB/s. This is shown
on the right of Fig. 5, together with the resulting 4–5 PCIe gen5 NVMe SSDs per
engine to feed those network ports.

TheDAOS server configurationwith four 400Gbps network links and 4–5 PCIe gen5
NVMe SSDs provides the best bandwidth. It is the standard configuration for traditional
supercomputing environments that use a 400 Gbps HPC fabric. For this reason, the
remainder of this study focuses on a DAOS configuration with four NVMe SSDs per
DAOS engine. The other configurations in Fig. 5 are more suitable for capacity-oriented
solutions, or in environments that only operate 200 Gbps (or 100 Gbps) fabrics and
cannot fully utilize the PCIe gen5 networking capabilities of a Sapphire Rapids based
DAOS server.

The discussion of these different hardware designs highlights a critical question that
needs to be answered when using the non-PMem DAOS code path: Because the NVMe
SSDs now hold three different types of data (WAL, VOS checkpoints, and user data), it
must be decided which of the NVMe SSDs should be used for which purpose.

Figure 6 shows the traditional storage configuration options in the DAOS servers’
configuration file: There is one SCM tier of class “dcpm” using Optane PMem, and one
NVMe tier for the user data. For testing and for ephemeral storage use cases, persistent
memory can be emulated by an SCM tier of class “ram”. But such a configuration will
not survive failures or engine restarts and does not use the MD-on-SSD code path.
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Fig. 6. Traditional Storage Configuration Options in daos_server.yml: Optane PMem-based
configuration (left); Ephemeral DRAM-based configuration (right).

In DAOS 2.4, the MD-on-SSD code path will only be used if it is explicitly
enabled by specifying the new bdev_role property for the NVMe storage tier(s) in the
daos_server.yml file. There are three types of bdev_role: wal, meta, and data. Each role
must be assigned to exactly one NVMe tier. Depending on the number of NVMe SSDs
per DAOS engine there may be one, two or three NVMe tiers with different bdev_role
assignments.

Fig. 7. MD-on-SSD Storage Configuration Options in daos_server.yml: Left: One NVMe tier;
wal/meta/data shared on four SSDs (4wmd). Center: Two NVMe tiers; wal on one SSD, meta/data
shared on three SSDs (1w3md). Right: Two NVMe tiers; wal/meta shared on one SSD, data on
three SSDs (1wm3d).
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Figure 7 shows three different storage configurations that represent three possible
scenarios for a DAOS engine with four NVMe SSDs and MD-on-SSD enabled:

• Figure 7 (left) shows the typical use case for a DAOS server with a small number of
NVMe SSDs. With only four or five NVMe SSDs per engine, it is natural to assign
all three roles to all NVMe SSDs configured as a single NVMe tier.

• Figure 7 (center) presents a configuration where one NVMe SSD is dedicated for the
wal, while the remaining threeNVMeSSDs are assigned to hold theVOS checkpoints
(meta) and the user data. Using two NVMe tiers makes it possible to use a higher
endurance and higher performance SSD for thewal tier. But note that the performance
of a single high-performance SSD may still be lower than the aggregate performance
of multiple lower-performance SSDs in the previous scenario.

• Figure 7 (right) also uses twoNVMe tiers but co-locates thewal andmeta blobs on the
same tier. This may be a better choice than co-locatingmeta and data if the endurance
of the data NVMe SSDs is too low for the relatively frequent VOS checkpointing.
But it may also hurt performance by reducing the number of NVMe SSDs available
for VOS checkpointing from three to one.

The third option to use two NVMe tiers would be to co-locate wal and data and
dedicate the other tier for meta. But the main rationale for a separate wal tier is the
ability to use a small number of higher-performance SSDs for the synchronous Write-
Ahead Log. If wal is co-located with data then this rationale disappears, and it is better
to use a single tier for all three roles. And finally, using three NVMe tiers (one per role)
is not reasonable when there are only four NVMe SSDs per engine.

The three MD-on-SSD configurations shown in Fig. 7 will be benchmarked in the
next section. They will be compared with the traditional PMem-based configuration
shown in Fig. 6 (left), which consist of a single SCM tier and a single NVMe tier with
no specification of a bdev_role for the NVMe tier.

In this studywehavefixed the total number ofNVMeSSDsper engine to four tomake
performance comparisons easier. But it should be noted that in a production environment
the number of NVMe SSDs in the data tier should not be reduced below four, because
that is typically the minimum number of NVMe SSDs required to saturate the bandwidth
of the HPC network link. This implies that for the performance configuration of Fig. 5
(right), a separation into twoNVMe tiers is only reasonable if there are fiveNVMeSSDs:
Four NVMe SSDs with the data role provide sufficient aggregate bandwidth to saturate
the engine’s HPC network port, and the 5th NVMe SSD can hold the wal blobs.

4 Performance Results

To compare the metadata performance of DAOS servers with Optane PMem to the
performance of the new DAOS code path, the mdtest [16] benchmark with the DAOS
DFSAPI [17] has been runon aDAOSserverwith Intel 8352YCPUs (32 cores, 2.2GHz).
Only a single DAOS engine has been configured on one CPU, to keep the testing setup
simple. All tests have used four Intel/Solidigm D7-P5500 3.84 TB PCIe gen4 NVMe
SSDs, see [18] for performance specs. The PMem configuration uses 8x 128GB Optane
200 Series PMem DIMMs [9], and DRAM configurations use a tmpfs of size 156GB
configured on the 16x 16GB DDR4 DRAM DIMMs of the server.
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For DAOS Servers based on Optane PMem, earlier studies have clearly shown that
DAOSmetadata rates scale with the number of targets per engine, where each target runs
on a dedicated physical CPU core. Figure 11 of [19] shows this relationship, varying
the number of targets per engine from 4 to 32. The current study uses 24 targets and six
xs_helper threads for all benchmarks.

TheDAOSclients are 2-socket nodes using the sameCPUs, connected through a fully
non-blocking InfiniBand HDR fabric with NVIDIAQM8790 HDR switches. All mdtest
benchmarks have been performed with a stonewall time of 60 s for the write phases.
Three sets of benchmarks have been performed, following the setup of the IO500 [4]
with one addition:

• mdtest-easy: Metadata operations on 0-Byte files, using separate directories for each
MPI task. No user data is written to the files.

• mdtest-hard: Metadata operations on small (3901 Byte) files in a shared directory.
The size of the user data is below the DAOS cut-off limit of 4kiB, so all writes will
go to the metadata in PMem or DRAM (plus WAL and metadata/checkpoints).

• mdtest-hard2: Same setup as mdtest-hard but using 2x the file size. Here the user data
is bigger than 4kiB and will be written to the data blobs on NVMe SSDs.

All benchmarks have been run on one client node and 16 client nodes, and for each
node count the number of MPI tasks per node has been varied from 1 to 64, for a total
of 1 to 1024 MPI tasks. All performance graphs in this section show the total number
of MPI tasks of a benchmark on the x-axis (in log scale), and the different numbers of
tasks per node for a given node count are shown as a line-graph of the same color.

For eachmdtest benchmark, the following storage configurations (shown inFig. 6 and
Fig. 7) have beenmeasured, with labels in the graphs indicating the engine configuration:

• PMEM, 4d: PMem-based configuration with four NVMe SSDs for data;
• DRAM, 4wmd: DRAM-based configuration with one NVMe tier, four NVMe SSDs

are shared for all three roles (wal, meta and data);
• DRAM, 1w3md: DRAM-based configuration with two NVMe tiers, one NVMe SSD

dedicated to wal and three NVMe SSDs shared for meta and data;
• DRAM, 1wm3d: DRAM-based configuration with two NVMe tiers, one NVMe SSD

shared for wal and meta and three NVMe SSDs dedicated for data.

A DAOS pool with an NVMe size of 8 TB and one POSIX container has been used
for all mdtest benchmarks. The SCM size was set to 500 GB for the PMem configuration
(a ratio of 1:16 = 6.25%), while an SCM size of 125 GB (a ratio of 1:64 = 1.56%) was
used for the DRAM configurations.

Figure 8 shows the performance result for the mdtest-easy benchmark. Create rates
in Fig. 8 (A) are highest when using PMem, indicating that the writing of the WAL
and VOS checkpoints to NVMe does slow down the achievable create rate. However,
the difference from the DRAM-based configurations using MD-on-SSD is relatively
small. Among those, co-locating the WAL and VOS checkpoints on a single NVMe
SSD (1wm3d) results in the lowest performance. Assigning all roles to a single NVMe
tier with four NVMe SSDs (4wmd) results in roughly the same performance as sharing
three NVMe SSDs for VOS checkpoints and data (1w3md), and both are slightly ahead
of the 1wm3d case. This suggests that a higher number of NVMe SSDs is beneficial for
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the VOS checkpointing. The stat operations in Fig. 8 (B) are read-only operations, so
there is no need for wal logging and consequently no noticeable performance difference
between the four configurations. When deleting the 0-Byte files, Fig. 8 (D) shows a
similar behaviour to the create case, which is expected as this operation generates a
similar load for the wal and meta blobs. Overall, the achievable performance is very
comparable for all four server configurations. The noticeable degradation at high task
counts (particularly for the stat rates) is present for all PMem- and DRAM-based server
configurations. This will be subject to further studies.

Fig. 8. DAOS Metadata Performance Scaling (mdtest-easy, 0-Byte files): (A) write, (B) stat, no
read test (C) for 0-Byte files, (D) delete.
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Figure 9 reports the performance for the mdtest-hard testcase. Absolute values of
the metadata rates are lower because actual data is written and read (instead of just
creating empty files). But qualitatively the performance graphs are very similar to Fig. 8,
with all three MD-on-SSD configurations showing comparable performance and the
PMem-based configuration showing slightly better write and delete rates.

Fig. 9. DAOS Metadata Performance Scaling (mdtest-hard, 3901-Byte files): (A) write, (B) stat,
(C) read, (D) delete.

Finally, Fig. 10 repeats the mdtest-hard benchmarks but uses an increased file size
of 7802 Byte to ensure that data is written to the data blobs on NVMe SSDs. The read
phase is slower than in Fig. 9, which is expected due to the increased file size. The write,
stat and delete performance is almost identical to the performance with the smaller file
size. It would be interesting to study this test case with a higher number of NVMe SSDs
per engine – four SSDs are probably a too small number to see significant differences
between the different configuration options.
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Fig. 10. DAOS Metadata Performance Scaling (mdtest-hard2, 7802-Byte files): (A) write, (B)
stat, (C) read, (D) delete.

5 Summary and Conclusions

We have presented the newDAOS code path to support DAOS servers without persistent
memory, as an alternative to the existing Optane PMem-based DAOS design that contin-
ues to be supported. Code changes are localized to a few code layers on the server side,
with no changes to the DAOS APIs or the DAOS clients. Initial studies using a tech-
nology preview of the feature are very encouraging. Performance results with an early
implementation of the vos_on_blob feature show very similar metadata rates across the
tested server configurations. Future work will focus on optimizing the implementation
for metadata space efficiency, as well as for performance.

The behaviour of VOS checkpointing can be fine-tuned through DAOS pool proper-
ties: The checkpoint property can be set to either “timed” or “lazy” mode. The “timed”
mode is the default and triggers a VOS checkpoint every checkpoint_freq seconds – or
whenever space pressure in the WAL builds up. In “lazy” mode, only space pressure
(fill grade of checkpoint_thresh percent or higher) will trigger a VOS checkpoint. All
benchmarks in this study have been performed with the default (“timed” mode with a
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5 s interval). More extensive studies are necessary to better understand how to optimize
these tunables for specific workloads or NVMe storage media characteristics.
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