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Abstract. Accurate and fast simulation of HPC job scheduling is an
important tool for exploring the effect of different scheduling strate-
gies on production systems and for providing insight into future HPC
design. Current realistic simulations are computationally intensive and
cannot provide a rapid feedback loop to facilitate the development of
novel scheduling strategies. This work presents a lightweight simulation
of the workload manager Slurm that is able to accurately reproduce the
performance of the UK’s national supercomputer ARCHER2 using his-
torical workload accounting data. The simulation achieves a speed up
of ∼400 over a period of full system utilisation, allowing for months of
activity to be simulated in hours, while maintaining wait times accurate
to 7%. The simulator design supports incorporating external factors into
scheduling to enable comparison of power-aware strategies. By using the
simulation to evaluate the effect of multiple possible scheduling changes
to ARCHER2, focusing on improving power management, the poten-
tial to provide insight into configuration changes and extensions to the
scheduling logic is demonstrated.
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1 Introduction

A well configured workload manager is a critical part of running an efficient HPC
system. It is the mechanism through which the system is controlled, allowing for
a balance to be struck between maximising utilisation, minimising wait times,
ensuring fair allocation among users, and meeting any specific system require-
ments. Current workload managers, notably the popular open-source workload
manager Slurm [2], are capable of striking this balance but have a large config-
urable parameter space that needs to be tuned and explored to do so. In addition
to this, as workloads grow larger and more complex, extensions to current work-
load managers will be desirable to allow for fine-grained control of system power
usage and integration of new advanced scheduling algorithms.

The important work of exploring configurations and new algorithms is diffi-
cult on a production system due to the risk of compromising system efficiency.
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This can lead to conservative parameter choices and a reluctance to employ new
scheduling strategies. Simulation can be used to provide the insight necessary
to find more optimal positions in the parameter space. It allows for different
combinations of parameters and the integration of novel scheduling algorithms
to be evaluated without risk. Although this principle applies to all workload
managers, this work attempts to simulate Slurm specifically. Many features of
Slurm are common to all workload managers, but focussing on a single piece of
software is necessary to ensure a uniform format for job traces and configuration
data, and to reproduce any particularities for validation purposes.

There are many grid scheduling simulations that can be used to study
scheduling strategies, such as GridSim [3] and SimGrid [4]. Although these frame-
works can be configured to study HPC systems, they are not well suited to explor-
ing specific scheduling changes. Simulation of Slurm specifically was initially
developed in [9] and has since been iterated on numerous times with attempts
to improve accuracy and performance [7,12,13]. Its potential to improve system
performance has been demonstrated in [10] and [11] which build frameworks for
using the simulation to test configuration changes on production systems. The
common approach of these works is to submit jobs to a simulated environment
running Slurm code from a job trace. Job allocation and termination messages
that would be sent from the daemons running on compute nodes to the controller
daemon are emulated. Speed up is achieved by skipping through time between
events. These simulators have generally been able to reach high accuracies and
successfully scale to large systems and workloads. However, by starting from the
Slurm source code they struggle to achieve the speed up necessary for any sig-
nificant parameter exploration on large systems where they are most needed. In
addition, exploration of new functionality requires significant time investment
as it requires implementation as a plugin to Slurm. This may be unfeasible if
the functionality is not yet proven to be beneficial to a wide number of systems.

Current research into HPC scheduling, especially those taking machine learn-
ing approaches, tend to create custom scheduling simulations to evaluate algo-
rithms [5,8]. These often capture some level of job priority calculation and back-
filling but do not include many features present in production workloads such
as resource limits, node failures, and fair share algorithms. This means that
they are not suitable for studying the integration of these new algorithms into
production HPC systems. A simulation that can sufficiently model a production
system while remaining fast and easily extendable would benefit HPC scheduling
research.

This work proposes a fast simulation that includes only the features of Slurm
directly relevant to scheduling. Even with Slurm’s implementation recreated in
full, stochasticity in routine execution guarantees that the precise order of job
submission will diverge for a constant stream of job submissions. For this rea-
son, the simulation should be able to accurately reproduce the dynamics of a
real system without trying to reproduce the design of Slurm. The simulation is
evaluated through how well it can recreate aggregate behaviours and respond
to changes in characteristics of the workload over time. The simulation is built
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from scratch and validated using a job trace from the production HPC system
ARCHER2. A less thorough validation is performed with other systems. Its use
is then demonstrated by studying the effect of changes to configuration and
scheduling logic on system performance over historical workload data.

2 Simulation

2.1 Overview

Fig. 1. Class diagram for scheduling simulation. Only a handful of important methods
and attributes are shown for clarity. Classes are grouped into system and queue to
indicate the general scheduling component each collection is responsible for.

The simplified class diagram in Fig. 1 gives an overview of the simulator’s design.
The class Controller steps through time and controls which operations are exe-
cuted at each time step. It is also where the main scheduling and backfilling
loops are implemented. The collection of classes labelled queue are responsible
for providing a priority sorted queue of jobs waiting to be scheduled and for
determining which jobs are allowed to be started at any given time. Job submis-
sion from the historical data is simulated here. The collection labelled system is
responsible for tracking the current state of the system i.e. the compute nodes.
The controller decides which jobs to schedule based on data from these two col-
lections. The class SlurmDataReader is used at the start of the simulation to
parse the Slurm data used to initialise the system and queue.

The simulation is implemented in standard library Python with some use of
libraries for CSV file manipulation. The system is configured using a YAML file
that contains the locations of the Slurm configuration file and Slurm accounting
data dumps for job data, node events, quality of service (QoS), active reser-
vations, and association (4-tuple of user, cluster, partition, and account used
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in Slurm accounting) data. Scheduling parameters set by the configuration file
can be overridden by explicitly setting them in the YAML file. More substantial
changes and extensions to the scheduling can be achieved by directly modifying
class methods. This design is intended to be used to realise different scheduling
strategies for a production system over part or all of its historical job trace.

2.2 Features

The simulation includes numerous features both general to scheduling and spe-
cific to Slurm that are either implemented in their entirety or partially. The
three features most relevant to scheduling are discussed in this section.

Backfilling. A conservative backfilling algorithm [6] is implemented to run
alongside the main scheduling loop at configured intervals. Backfilling is a com-
putationally expensive operation that can take a long time to complete. Large
HPC sites will typically need to configure Slurm’s backfilling thread to peri-
odically yield locks so that other operations can be allowed to complete. The
backfilling will then continue operation, ignoring any changes to system state
that occurred during the lock release interval. To capture this in the simulation,
the backfilling executes in steps of the lock yield interval parameter. Between
these steps, the main scheduling loop is allowed to run if triggered.

Resource Limits. The QOS class is used to track resource use and report
if a job should be considered for scheduling at a given time. The hierarchy
between limits set in the QoS and limits set at the user association level is
also implemented. Slurm has an additional partition level hierarchy which is
not implemented at this time. Any resource limits that will prevent a job from
running indefinitely e.g. MaxWallDurationPerJob or MaxTRESPerJob, do not
need to be implemented since they result in the job being absent from the trace.
Of the subset that are relevant for the simulation, the majority are implemented.

Fairshare. A ubiquitous feature of Slurm is its multifactor priority plugin.
It is used to sort the queue according to a hierarchy of factors that take into
account advanced reservations, partition, and multiple job properties including
wait time, size, and a fairshare factor. The fairshare calculation is fully imple-
mented with the fair tree implementation [2]. A rooted ordered tree of associa-
tions is constructed and used to sort users by their usage relative to allocated
system shares.

2.3 Limitations

A key limitation in any simulation making use of historical Slurm data comes
from missing information in the Slurm accounting database. Some job informa-
tion such as dependencies and requested nodes are not explicitly recorded. They
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can sometimes be extracted from the submission line but if set inside the sub-
mission script or using environment variables it may not be possible to recover
them. In addition to this, records of completed reservations are not stored. This
means that a reservation history would need to be kept externally or a synthetic
set of reservations generated. Lastly, there can be discrepancies coming from
human interaction with the system e.g. holding jobs and changing user resource
limits, that cannot be replicated.

The simulation was developed by implementing features of Slurm in order
of their assumed importance in making scheduling decisions. In this way, the
simulation was incremented until the subset of Slurm required to reproduce
scheduling behaviour on the HPC systems considered for validation was imple-
mented. This subset encompasses the majority of the desirable features. Many of
the missing features are options that slightly alter already implemented parts of
the simulation and would require minor changes to incorporate. Notably miss-
ing is the ability to specify consumable resources other than compute nodes.
The scheduler already chooses nodes from all valid nodes based on the config-
ured node weight, so checking, for example, CPU count would not require much
change to the structure of the simulation. Features that are expected to require
a more substantial effort to implement are job preemption and heterogeneous
job support.

Due to the aforementioned limitations, this work is presented as a demonstra-
tion of the ability of a lightweight scheduling simulation to provide useful insight
into scheduling strategies. The simulation has the potential to be expanded to be
able to produce accurate simulation of any HPC system regardless of its config-
uration and workload characteristics. At this time however, the simulation does
not have sufficient coverage of Slurm’s features to guarantee this.

3 Validation

3.1 ARCHER2

ARCHER2 is the UK’s national supercomputer consisting of 23 HPE Cray EX
cabinets forming a network of 5,860 compute nodes. The workload manager
configuration as of the time of writing is described here. The system uses Slurm
version 21.08 with a configuration refined from multiple years of operation. Nodes
are assigned to overlapping standard and high memory partitions and jobs to a
QoS depending on their size, length, and importance. The workload comes from
a wide range of academic fields and includes job sizes ranging from a one to a few
thousand nodes. System utilisation is consistently over 90% with a queue of at
least a few hundred jobs. This means that even minor changes to job scheduling
can create significantly different submission orders.

Input to the simulation job data was collected from the Slurm accounting
database for four months of operation from October 2022, totalling approxi-
mately 600,000 jobs. Where possible, job dependencies and reservations were
parsed from the submission line stored in the record. The system state was cap-
tured at the end of the four month period and used to configure the simulation.
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3.2 Results and Discussion

As discussed previously, the simulation aims to accurately reproduce aggregate
features of the scheduling while allowing the precise order of job submission to
deviate. To evaluate this, the two week moving average wait time for the results
of the simulation and for the true submission times taken from the data are
compared. This is shown in Fig. 2 over the four month period. Over this time
period the simulation differs from the data by a mean absolute percentage error
of 7.3% The simulation closely matches the high frequency trends of the data,
suggesting that as groups of jobs enter the moving average they are treated in
the same way relative to current jobs in the window for both the simulation and
data. Low frequency behaviour is generally captured well but for the wait time it
is consistently lower. This is likely due to imperfect historical reservations which
were partially recovered for ARCHER2.

Fig. 2. Moving average wait time and standard deviation for jobs in a two week sub-
mission window.

To examine this behaviour over time closer, Fig. 3 shows the two week mov-
ing average wait time for jobs from a selection of QoS. Jobs from these QoS
differ not only by their resource limits but also by their typical usage, for exam-
ple taskfarm jobs will tend to be from a small group of users submitting a large
number of jobs. This means that accurate simulation of their wait times depends
on the implementation of many scheduling components in addition to resource
limits. The wait times for each QoS are generally well matched between data
and simulation. The lowpriority jobs are configured to be considered for schedul-
ing only after all jobs from other QoS have been. The resulting long wait times
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are correctly reproduced in the simulation. Jobs from the largescale QoS have
significantly shorter simulation wait times. The simulation usually spends much
less time attempting to schedule these large jobs, a pronounced example of this
is in Fig. 4. The reduced time spent at lower system utilisation is also a factor
in the slightly shorter wait times seen in Fig. 2. It is not likely that the shorter
largescale wait times are caused by the priority calculation or backfilling algo-
rithm as all other metrics suggest these are implemented correctly. The cause
may be a constraint, such as a maximum number of leaf switches, set outside
the submission line or perhaps more complicated behaviour related to Slurm’s
design that is not captured by the simulation. Further investigation into the
system state during the scheduling of such jobs is required to understand the
cause.

Fig. 3. Moving average wait time over a two week window for jobs from different QoS.

In Fig. 5, the simulated average wait time is compared with the average wait
time from data for users with the highest overall system usage over the four
month time period. The simulation matches the data reasonably well but has
wait times that are generally shorter for most users for the previously stated
reasons. This shows that the simulation can be used to provide insight into the
effect of scheduling changes down to the user level.

To study the behaviour of the simulator, the relationship between wait time
and certain job properties can be examined. Two-dimensional histograms of
wait time against both requested nodes and requested time are shown in Fig. 6.
Ignoring any correlations between job properties, the distributions are primarily
a result of how difficult a job of a given size or length is to backfill. The rela-
tionship of wait time to these job properties matches reasonably well between
simulation and data, but with wait times for the simulation shifted to earlier
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times. This suggests that the backfill algorithm is correctly implemented but the
simulation operates with a higher throughput.

Fig. 4. System utilisation during schedul-
ing of a large scale job.

Fig. 5. Mean wait times for top fifteen
users by usage.

Fig. 6. 2D histograms of job size in nodes (left) and job requested time (right) against
wait time. Bin counts in each column, corresponding to a range of job sizes or requested
times, are normalised to unity.

Using a single thread on a 64-core AMD EPYC 7742 process at 2.25 GHz, the
simulation completes in approximately 7 h and 20 min. This represents a speed
up by a factor of 400, meaning 400 simulated hours pass with every 1 h of simu-
lation time. The simulation time is dominated by the backfilling algorithm which
requires frequent I/O operations to maintain a map of current and future job
placement. For ARCHER2 during the simulated time period, the queue contains
541 jobs on average and the backfilling loop is configured to run for 30 s simu-
lated time over a maximum of 1,000 jobs and then sleep for 30 s simulated time.
Simulation time will scale with queue length up to this configured maximum.
For larger maxima, the backfill thread will typically need more time to complete
and so will run less frequently. This means that simulation times for other sys-
tems should not increase significantly. In the current implementation simulation
time also scales poorly with queue size due to liberal use of sort operations.
Refactoring to use heap data structures would help mitigate this.

Other simulators that modify the Slurm source code typically achieve speed
ups between 10 and 25 [10–12] for large HPC systems. An exception to this is
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in [7] where a speed up of approximately 220 is reached using the CEA Curie
log from the Parallel Workloads Archive [1]. However, it is not clear if this job
trace can be taken as a good representation of a modern production system. The
archive states an average utilisation of 62% compared to over 90% for ARCHER2.
This will have a significant impact on the computational cost of backfilling and
queue sorting operations which are key drivers in simulation time. In order to
gain a better understanding of the differences in performance between simula-
tors, direct comparisons that use the same job traces are required. This is an
important direction for future research.

3.3 Other Systems

LUMI. LUMI is a HPE Cray EX system that is currently the third fastest glob-
ally. It is made up of 4,096 compute nodes in both GPU and CPU partitions.
The component of the system partitions allocatable by node was loaded into the
simulator along with a 3 month job trace containing 25,402 jobs. The simula-
tion successfully ran over this time period after implementing some additional
Slurm features. Due to a lack of historical reservation data, past reservations
are approximated using the total system utilisation at different times. Every
two days the maximum utilisation is taken to be the total number of nodes not
down or reserved, any jobs specifying a reservation are moved to the front of the
general queue.

The simulated wait times match the truth with reasonable accuracy as shown
by the two week moving average wait times in Fig. 7. High frequency behaviour is
reproduced accurately, but as simulated time progresses discrepancies grow with
jobs queueing for approximately 2 h less than in the data at some times. This
is at least partially a consequence of the aforementioned approximation used to
make up for a lack of historical reservation data. Despite this the simulation
achieves a mean absolute percentage error of 10.4%.

The average simulated wait time for users with the greatest system usage is
compared with the data in Fig. 8. The agreement between simulation and data
is not as close as for ARCHER2 with simulated times being significantly lower
for User2 and User4 and slightly lower for other users. This may be caused by
job properties not stored in the Slurm accounting database.

While the simulation is not as accurate as for ARCHER2, validation with
LUMI shows that it is general enough to be configured for any system running
Slurm and at least coarsely reproduce behaviour. This highlights the potential
of the simulator to generalise to any HPC system with further development.

Peta4. Peta4 is a 1,468 node supercomputer forming part of the Cambridge
Service for Data-Driven Discovery. Anonymised Slurm data was collected over
a two month period and the system state and job trace was successfully loaded
into the simulator. However, the simulation does not currently have the features
necessary to sufficiently reproduce the scheduling behaviour. Extending it with
these features is an important direction for future work since its workload has a
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much higher throughput than ARCHER2 with approximately four million jobs
over the two month period. This would make it a valuable test of the simulator’s
performance.

Fig. 7. Moving average wait time and standard deviation for jobs in a two week sub-
mission window for LUMI.

Fig. 8. Mean wait times for top fifteen users by usage for LUMI.
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4 Experiments

4.1 High Priority Jobs

It may be desirable for a HPC system to offer a high priority QoS for prioritising
time sensitive work. Before implementing this, the simulation can be used to
provide insight into its impact on system performance. An example of this with
ARCHER2 is shown in Fig. 9, where the effect of putting different proportions of
standard QoS jobs into a highpriority QoS at random is tested. High priority jobs
have their wait times reduced by a factor of 8 with little effect on other QoS when
5% of standard jobs are submitted as high priority. As this proportion grows, its
impact on other QoS grows also until at 30% they begin to significantly impact
scheduling of large jobs and starve high memory jobs of resources. The average
system performance across all jobs is negatively impacted when there is a small
number of high priority jobs but for larger numbers it is not. This is likely
due to reaching a threshold where high priority jobs form a substantial portion
of the queue rather than acting as sporadic disruptions to the backfilling. The
simulation can be used to study the impact introducing this QoS at different
granularities and experiment with the different possible implementations and
uses of a high priority QoS, highlighting its value to production HPC systems.

4.2 Large Scale Jobs at Peak Times

Slurm can be configured to associate energy counters collected from compute
nodes with running jobs. This is used to provide a consumed energy for each
job, allowing for average job power to be inferred from the accounting data. For
ARCHER2, energy accounting is configured. To use this data to estimate total
system power draw at any given time, the power reported by nodes with running
jobs is fitted to power reported at the cabinet level with an occupancy term to
account for idle nodes. This allows the simulator to be used to analyse the total
power usage over time for different scheduling strategies.

ARCHER2 uses a large scale QoS to manage jobs over one thousand nodes.
Although these represent a very small fraction of the workload, they have a
significant effect on the system when being scheduled. When being scheduled,
the backfilling algorithm will struggle to find jobs with requested times short
enough that they will not interfere with the start time of the large job. This
results in a significant drop in system utilisation over the hours leading up to the
large job being submitted. This effect is inevitable for priority based schedulers.
In the context of power management it would be desirable to ensure that this
period of low utilisation overlaps with the peak hours of the day when electricity
is in high demand and cooling is under the most stress. The simulator can be
used to evaluate strategies that attempt to do this.

The largescale QoS is adapted to hold all jobs until a specified time the next
morning. The simulator determines the time they are allowed to be scheduled
from a small set of switch cases dependent on job size and with optimal submit
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Fig. 9. Effect of different usages of a high priority QoS on wait times by QoS (left) and
system-wide performance metrics (right). Nominal refers to the unmodified simulation.
Relative metrics are computed such that a larger area enclosed by a line corresponds
to better performance over the nominal. For the left, the nominal mean wait time of
the standard QoS is used in the computation of the relative highpriority QoS mean
wait time.

Fig. 10. Effect of holding scheduling of largescale jobs until morning on power (left)
and system-wide performance metrics (right).

times estimated from average behaviour. The effect of this modification on sys-
tem power and performance can be seen in Fig. 10. The scheduling of large jobs
result in reductions in power usage of up to 0.8 MW depending on their size. Even
using the rudimentary method for choosing the release time, the utilisation drops
are fairly well aligned with peak times. It would be interesting to explore more
advanced algorithms that identify jobs expected to be hard to backfill and hold
them until a predicted optimal time, thus trading low utilisation during peak
times for higher utilisation at off-peak times. This could be explored by extend-
ing the simulator with elements from machine learning libraries. Also shown in
the figure is the impact of this scheduling modification on performance metrics.
The drop in performance is due to the scheduling of large jobs coinciding with
the peak submission time in the day, rather than a drop in throughput. Further
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examination of the effect on particular users or jobs with certain characteristics
can be extracted from the simulation results as required.

5 Summary

This work presents a lightweight scheduling simulator to fill the gap between
simple custom schedulers and full simulation of workload managers. The simula-
tor’s design incorporates the majority of Slurm’s features relevant to scheduling,
allowing for simulation of some HPC systems. It’s design is easily extendable and
well suited for rapid testing of scheduling strategies. The simulator was validated
using a recent historical workload from the production system ARCHER2. The
aggregated performance of the simulator closely matches the data down to the
granularity of a single user despite limitations in recovering complete job proper-
ties from Slurm accounting data. Further investigation is required to understand
the significantly shorter simulated wait times of a small number of large jobs.
The potential of the simulation to provide insight into the effects of scheduling
strategies is demonstrated with two experiments. The latter experiment shows
how Slurm’s energy accounting enables the exploration of scheduling strategies
focused on power management using the simulator.

An important avenue for future work is the further development of the simula-
tion to achieve coverage of Slurm’s features sufficient to simulate the majority of
HPC systems. This would permit validation with a wide range of systems. Using
the simulation to demonstrate significantly more advanced scheduling strategies
than those presented previously is another valuable direction for future efforts.
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