
Automatic Detection of HPC Job
Inefficiencies at TU Dresden’s HPC

Center with PIKA

Frank Winkler(B) and Andreas Knüpfer

Center for Information Services and High Performance Computing (ZIH),
Technische Universität Dresden, 01062 Dresden, Germany
{frank.winkler,andreas.knuepfer}@tu-dresden.de

Abstract. The efficient use of High Performance Computing (HPC)
resources is essential and requires continuous performance monitoring.
The NHR HPC Center at TU Dresden has been using PIKA [5], a contin-
uous job-level performance monitoring system, for more than five years. It
is active by default and allows retrospective analysis and comparison with
previous jobs. Its results are available to users for their jobs as well as to
admins and HPC support for all jobs. It has proven to be very useful for
reactive user support on various aspects of efficient use of HPC resources
in general as well as on specific performance issues of individual users.

At the same time, the continuously collected data can be scanned
proactively, as users may not yet be aware of performance issues. In
this article, we report on our methods for scanning for job inefficiencies,
and to inspire discussion about appropriate methods. It covers the most
useful heuristic checks for a variety of aspects. We focus on meaning-
ful performance criteria and commonly observed performance problems.
All parameters and thresholds are derived from experience and tuned to
detect the most severe cases in the average job mix. The heuristics range
from simple cases that compare against appropriate thresholds to more
sophisticated tests with some pre-processing.

Keywords: Job Monitoring · Data Analysis · Performance · Efficiency

1 Introduction

Even when an HPC system is well configured and maintained, HPC jobs can
be inefficient due to a variety of factors. Common reasons are poorly optimized
codes, incorrect resource allocations, or suboptimal data access. To address these
issues, HPC operators need a tool that continuously monitors and analyzes the
performance of jobs and classifies them into efficient and inefficient jobs. Criteria
for efficient usage are shortest possible runtimes (compared to similar jobs), high
utilization of the hardware and an even distribution of computational workloads
across processing units.

For early detection and notification of user job inefficiencies, automated
heuristics are needed to search jobs for inefficient patterns based on empirical
data from the HPC center.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bienz et al. (Eds.): ISC High Performance 2023 Workshops, LNCS 13999, pp. 295–306, 2023.
https://doi.org/10.1007/978-3-031-40843-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40843-4_22&domain=pdf
https://doi.org/10.1007/978-3-031-40843-4_22


296 F. Winkler and A. Knüpfer

PIKA is a performance monitoring stack for HPC clusters to identify poten-
tially inefficient jobs. It consists of several open source components. These
include a metric data collector to record runtime performance data on each
compute node and a job metadata collector that captures all required job meta-
data for both exclusive and node-sharing jobs. In order to analyze a job-specific
runtime metric, the job metadata must be mapped to it, in particular the node
list, the list of physical cores used, and the start and end time of the job. This
enables job-specific analysis for performance metrics such as CPU load, instruc-
tions per cycle, floating points operations per second or I/O bandwidths. The
PIKA web-frontend contains detailed timeline visualizations of each runtime
metric and provides correlation analysis between different metrics.

In order to provide HPC operators and users with additional performance
feedback, PIKA performs a regular post-processing to prepare the data for fur-
ther analysis. This includes, for example, the aggregation of all runtime data into
so-called performance footprints. Based on the footprint and a corresponding
performance model PIKA can for example determine whether a job is memory-
bound or compute-bound [5]. However, other performance issues like the over-
all idle CPU time, load imbalances, periodic blocking I/O phases, or memory
leak suspicions require more detailed analysis. For this purpose, a new analysis
engine was implemented, which scans jobs for performance issues on a weekly
basis. In addition, the PIKA web-frontend has been enhanced with a new feature
that allows operators to sort and analyze HPC users by importance whose jobs
included performance issues. Those users will be analyzed by the HPC support
team and contacted accordingly in order to solve the problem together.

Section 2 describes heuristics for detecting performance issues based on job-
specific timeline metrics. A case study of jobs with performance issues on the
HPC system at TU Dresden is described in Sect. 3. A review of related work
follows in Sect. 4.

2 Job Performance Issues

Job performance issues can be caused by the HPC user due to improper use of
the job scheduling system as well as by HPC system problems such as file system
overload or poor network configuration. Mostly, however, users are responsible
for the efficiency of their jobs. Without knowing the application running in the
job, we show that it is possible to capture inefficient jobs by their performance
data. Each per-job performance metric captured by PIKA consists of one or
more vectors of performance values, depending on the allocated resources and
its granularity, e.g. per node, per socket, or per physical core. For example, the
CPU/GPU load vectors make it very easy to detect pathological problems, e.g.
when more CPUs/GPUs are requested than are used. These types of tests are
easy to implement, and it is sufficient to define certain thresholds, such as when
a CPU load can be considered idle. For other aspects, e.g. periodic synchronous
offloading or the detection of memory leaks, one has to design exactly tailored
tests and adjust parameters exactly, sometimes also ensure sufficient data quality.



Automatic Detection of HPC Job Inefficiencies with PIKA 297

Table 1. Possible performance issues with the inefficient HPC jobs of a user

Performance Issue Description

Idle CPU/GPU Time
(ICT/IGT)

Summed time intervals of all CPUs/GPUs
across all jobs in which the load was close to
zero

Idle CPU/GPU Ratio
(ICR/IGR)

Quotient of “Idle CPU/GPU Time” and
“Total CPU/GPU Time” across all jobs

Maximum Unused CPU/GPU Ratio
(Max UCR/UGR)

Maximum ratio of “unused” to “used”
CPUs/GPUs across all jobs

Maximum CPU/GPU Load Imbalance
(Max CLI/GLI)

Maximum of the average standard deviation of
CPU/GPU load across all jobs

Maximum I/O Congestion
(Max IOC)

Maximum rate of metadata operations at a
measuring point across all jobs. The
attribution per job starts with 40 operations

Maximum I/O Blocking Phases
(Max IOB)

Maximum periodic number of phases with an
inverse correlation between CPU load and I/O
metrics across all jobs. The attribution per job
starts with 10 periodic phases

Maximum Synchronous Offloading
(Max SO)

Maximum periodic number of phases with an
inverse correlation between CPU and GPU
load across all jobs. The attribution per job
starts with 10 periodic phases

Maximum Memory Leak
(Max ML)

Maximum of the linear increase of memory
usage over time across all jobs

Table 1 lists all HPC job performance issue metrics on a per-user basis that
we are able to generate from the job-specific vectors of performance metrics
using appropriate heuristics. These have proven very useful to us in identifying
users with inefficient jobs. In the following, we present the individual heuristics
for each performance issue and go into detail about the threshold values and
special features to be considered. It should be mentioned that we currently have
chosen the thresholds in a way to provide a manageable set of “worst jobs” in
the current job mix. It might be necessary to slightly adjust those thresholds in
the future or for other centers.

2.1 Setup and Data Preparation

PIKA stores all metric data in the time series database InfluxDB [1]. This data
is available on a long-term basis and is used for visualization and analysis. The
metric data used in the following analysis is sampled every 30 s. We analyze
the metrics of CPU/GPU load, memory usage, and all recorded metrics of I/O
bandwidths and I/O metadata operations. The first step of the analysis is to
find eligible jobs. Each of these jobs must have run for at least one hour, have
more than one physical core allocated, and terminated with a “completed”, “out
of memory”, or “timeout” Slurm status. Based on the runtime metrics of a



298 F. Winkler and A. Knüpfer

job, the performance issues listed in Table 1 are to be checked against the job
and attributed to the job if necessary. Performance issues related to the core
performance are identified for both exclusive and node-sharing jobs. All other
metrics that are recorded on a per-node basis are identified for exclusive jobs.

Regarding node exclusivity and simultaneous multithreading, there are some
important remarks. A job is marked as exclusive when either Slurm’s exclusive
flag has been set or all compute nodes associated with the job have been fully
allocated. In terms of simultaneous multithreading (SMT), PIKA only stores the
average over the hardware threads per physical core. Therefore, the maximum
utilization of a CPU core has the value 1. In the following, we will use the term
CPU to refer to a physical core.

2.2 Straightforward Heuristics

In the following, heuristics and their thresholds are presented for CPUs/GPUs
that either have long idle phases, are completely unused or have large load imbal-
ances. Idle time of CPUs/GPUs results from unused resources as well as phases
in the job where the load is close to zero. These idle phases can also be caused
by load imbalances, where some CPUs/GPUs may be overloaded while others
remain underutilized respectively idle. For the issue metrics described below, we
have defined the following heuristics and thresholds.

1. A measuring point of a CPU is idle, if the usage is below 0.01.
2. A measuring point of a GPU is idle, if the usage has the value 0.
3. A CPU/GPU is unused, if the idle count per measurement point is greater

than (n− 2) measurement points.
4. A load imbalance is attributed to a job, if the average standard deviation of

CPUs/GPUs is greater than 0.2.

Idle CPU/GPU Time is the summed idle time over all CPUs/GPUs across all
jobs. Internally, we multiply the idle counts of each CPU/GPU with 30 s and
sum them up. Note that the idle time is only an estimation and upper limit as we
only measure every 30 s. Nevertheless, this estimation is well suited to capture
long idle time phases.

Idle CPU/GPU Ratio is an issue metric that characterises the ratio of idle
to total time over all CPUs/GPUs across all jobs. Internally, we compute the
quotient of idle time and the sum of CPU/GPU hours per job. A value close to
zero means that all CPUs/GPUs were used, while a value close to 1 means, that
the user has caused almost no CPU/GPU usage for all jobs.

Maximum Unused CPU/GPU Ratio is an issue metric that characterises the
maximum ratio of unused to used CPUs/GPUs across all jobs. Internally, we
compute the quotient of unused and used CPUs/GPUs per job and finally pro-
vide the maximum quotient of all jobs. A value close to zero means that almost
all CPUs/GPUs were used by all jobs, while a value close to 1 means, that almost
no CPU/GPU was used by at least one job.



Automatic Detection of HPC Job Inefficiencies with PIKA 299

Maximum CPU/GPU Load Imbalance quantifies how the load was distributed
over all CPUs/GPUs across all jobs. Internally, we calculate the standard devi-
ation vectors across all CPUs/GPUs for each job and take the average. If the
standard deviation is within the range of our defined threshold, the load imbal-
ance issue is attributed to the job. Finally, we provide the maximum average
standard deviation of all jobs. A value close to our defined threshold means that
the CPUs/GPUs were reasonably evenly distributed in all jobs, while a value
close to 1 means that at least one CPU/GPU was almost fully utilized and at
least one CPU/GPU was almost idle in at least one job. A value equal to 0
means that no load imbalances could be detected for any of the jobs.

Another heuristic is the detection of inappropriate I/O behavior due to inef-
ficient handling of metadata operations. Using a large number of metadata oper-
ations in a very short period of time can overload the file system, which in turn
can affect the performance of the job and other jobs. The following performance
issue detects jobs with high open/close rates.

Maximum I/O Congestion quantifies the peak rate of I/O metadata operations
across all jobs. Internally, for each job, the open/close rate vectors summed
over all nodes are queried and added up. Then, the maximum of the summed
metadata vector is determined for each job and attributed to the job if the value
has at least the threshold we set. Since our cluster has multiple mount points
of the Lustre file system, we perform the heuristics described above for each
mount point. The mount point that returns the largest value is automatically
the mount point used by the job. Finally, we provide the maximum rate of
metadata operations of all jobs.

2.3 Periodic Performance Issues

In scientific HPC applications, it is common for the same algorithm to be exe-
cuted repeatedly for many iterations. One reason for this is that scientific compu-
tations often involve solving complex mathematical problems, such as numerical
simulations of physical systems. These problems require the repeated execution
of the same algorithm on different sets of input data or with different parameter
values to obtain accurate results. A common bottleneck in an iteration is the use
of synchronous rather than asynchronous large I/O operations at checkpoints for
intermediate results, which causes the program to block and wait for the I/O
operation to complete. Offloading computation to GPUs can significantly speed
up the computation process, if used efficiently. To maximize the performance of
those applications, CPU load should overlap GPU load whenever possible.

In the following, we present a heuristic for detecting periodic phases with
an inverse correlation between two performance metric vectors. We use this
heuristic to detect repetitive I/O blocking phases or synchronous offloading. For
the implementation we use the NumPy [2] and SciPy [3] Python packages. Before
specifically addressing the corresponding performance issues, we first describe
this heuristic in general.



300 F. Winkler and A. Knüpfer

1. Acquire two mean metric vectors (signals) to be analyzed and check whether
they are suitable for further analysis.

2. Compute the FFT of both signals using a fast Fourier transform algorithm.
3. Compute the frequency spectrum of both signals from the FFT output.
4. Normalize the amplitudes of each frequency spectrum to 1 and calculate the

element-wise sum of both frequency spectra.
5. Find the maximum amplitude of the summed frequency spectrum and check

if this is a dominant frequency.
6. If the conditions of a dominant frequency are met, determine the Pearson

correlation coefficient between both signals.
7. If the correlation coefficient meets a defined threshold for inverse correlation,

attribute the number of periodic phases (dominant frequency multiplied by
job duration) to the corresponding job.

In both periodic performance issues described above, we analyze how the CPU
load vector correlates with the I/O metrics or the GPU load vector. To avoid hav-
ing to run the complex heuristic for every eligible job, we first validate whether
the metric vectors are useful for our tests. The extensive analysis is not executed
if the CPU/GPU vector has one of the following properties:

– The mean value of the CPU/GPU load vector is less than 0.1.
– The difference of the maximum and minimum value of the mean CPU/GPU

load vector is less than 0.7.

With the second restriction, we want to make sure that there is enough variation
of the minimum and maximum CPU/GPU load over time. To include the I/O
metrics in the analysis, we have set the following conditions:

– The mean value of an I/O bandwidth vector is at least 1 MB/s.
– The mean value of an I/O metadata vector is at least 1 OPS.

To achieve more precise results for subsequent analysis, we make further
adjustments to the appropriate vectors. We round all CPU load values to the
first decimal place and set all I/O metric values that are less than the average
to zero to avoid capturing very small FFT frequencies and to obtain a better
correlation coefficient as we focus only on I/O peak values. To compute the FFT,
we must ensure that all vectors are aligned, which means that there must be a
value for each timestamp. If a value is missing for a certain time step, it is set
with the previous value, if available, or with zero.

In the following, we discuss the term dominant frequency (DF), the threshold
for the correlation coefficient (CC) of an inverse correlation as well as other
considerations. The DF is located at the maximum amplitude of the normalized
summed frequency spectrum (Fig. 1b). It is valid if the maximum amplitude is
in the range between 1.8 and 2.0 and the median over all amplitudes does not
exceed the value 0.1. If the value is 2.0, both metrics have exactly the same
periodic behavior. If it is slightly below 2.0, a metric has one or more stronger
subfrequencies unrelated to the metric being compared. If the value is below 1.8,
the difference between the maximum amplitudes of both metrics is too large. The



Automatic Detection of HPC Job Inefficiencies with PIKA 301

Fig. 1. Heuristic for detecting periodic I/O blocking phases

median of 0.1 ensures that there are only a few frequencies with high amplitudes
in the entire frequency spectrum. A CC between two metrics ranges from −1
to 1, where a value of −1 indicates a perfect inverse correlation, 0 indicates
no correlation, and 1 indicates a perfect correlation. After numerous tests on
selected jobs with inverse correlations between CPU load vector and an I/O
bandwidth vector, we settled on a CC threshold of −0.4 to identify all these
jobs. To obtain an even more accurate CC value, we consider only the phase of
the job between 25% and 75% of the runtime, to avoid degrading the value in
the initialization and completion of the job.

Maximum I/O Blocking Phases quantifies the periodic number of phases with
an inverse correlation between CPU load and I/O metrics across all jobs. Inter-
nally we perform the heuristic tests described above for each job. We check the
correlation of the CPU load vector with each suitable I/O metric vector. Based
on our preconditions, we automatically filter out all I/O metrics that do not
belong to the used file system mount point. If we find more valid correlations
between CPU load and I/O metric, we select the correlation with the better
correlation coefficient. There may be a correlation of CPU Load with I/O band-
width and I/O metadata. In general, however, read bandwidths, for example,
have the same periodic behavior as read requests operations. If a valid frequency
and correlation are found, the number of periodic phases is attributed to the



302 F. Winkler and A. Knüpfer

job, provided that the value has reached the threshold we have set. Finally, we
provide the maximum number of periodic phases of all jobs.

Maximum Synchronous Offloading characterizes the periodic number of phases
with an inverse correlation between CPU load and GPU load across all jobs.
The entire heuristic is analogous to the I/O blocking tests, except that only one
correlation test between two metric vectors is required.

2.4 Memory Leaks

Memory leaks are a recurring and particularly detrimental problem in some
HPC applications, occurring when memory is continuously allocated without
being released. This is typically caused by code bugs rather than faulty resource
allocation. However, it is definitely a problem for efficient HPC usage. Memory
leaks of HPC jobs can be detected by observing a strong positive linear trend
in memory usage, but it is not a guarantee. For example, if a job is processing
increasingly large amounts of data over time, it may require more memory and
exhibit a positive linear trend in memory usage. Nevertheless, this trend could
be a potential indicator of a memory leak.

We have developed a heuristic (Fig. 2) that checks jobs with a memory leak
suspicion based on the memory usage vector. Since a certain amount of memory
is allocated during initialization, which is released at the end by the application
itself or by the job, we focus our analysis between 25% and 75% of the runtime.
After normalizing the timestamp and memory usage values by dividing them by
their respective maximum values, we determine the linear trend of the memory
usage by assigning the slope m and the y-intercept n of the linear function
f(x) = mx + n using NumPy’s “polyfit”1 method. For further memory leak
investigation, the linear slope must be between 0.01 and 1. If the slope is less
than 0.01, we consider the memory usage to be constant, if it is greater than
1, it is very likely that there is a very high abrupt slope and not a linear one.
Note that for long jobs, up to 7 days, a rather small slope is expected, which is
why we set the lower limit to m = 0.01. High slopes are to be expected for jobs
that only have a few hours of runtime or run into “out of memory”. Next we
calculate the euclidean distance of all measuring points to the linear function.
At the last step we determine the maximum of the euclidean distance vector,
which must not exceed the maximum value max distance. The max distance
value depends on the position of P , which is further to the left at higher slope,
see the graphic and formula in Fig. 2. This allows to recognize both steady linear
slopes and slopes in the form of stairs or zigzags.

Maximum Memory Leak describes the suspicion of a memory leak on the basis
of the linear increase of the memory usage across all jobs. Internally we perform
the heuristic tests described above for each job and attribute the slope m of
the memory usage vector to the job if a memory leak is suspected. Finally, we
provide the maximum slope m of all jobs.
1 https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html.

https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html


Automatic Detection of HPC Job Inefficiencies with PIKA 303

Fig. 2. Heuristic to detect a memory leak based on memory usage over time

3 HPC Support Case Studies

Administrators and the HPC support team of TU Dresden’s HPC cluster have
the possibility to get a weekly overview of HPC users who have sent a large
number of inefficient jobs. For this purpose, they can use PIKA’s new top-down
approach as illustrated in Fig. 3. Starting from the issue table view with the abil-
ity to prioritize users by a specific performance issue metric, they can navigate
from user issue data, to job issue data, to individual job issue data, and finally to
a timeline view that reveals all identified performance issues in timeline charts.
Figure 3a shows an interactive table of users with performance issues sorted by
the number of I/O blocking phases. The issue data of an individual job run is
shown in Fig. 3b. This view lists all job runs with associated job ID that belong
to collection of a specific job name. Finally, Fig. 3c shows the job-specific visu-
alization of all recorded performance metrics including the metadata and allows
analysts to understand the root cause of the identified issues. At this point, the
analyst also has the option to review the user’s job submission script.

The following is a brief description of the user support process. Typically, our
support team will contact users who have caused the same performance issues
on a large number of jobs, or on a highly scalable job with up to 100 nodes. This
is done using PIKA’s interactive issue table, which is updated weekly by our
analysis engine. Once a user with inefficient jobs has been identified, the first step
is to create a problem hypothesis. It has proven very useful to provide the Slurm
job scripts to the analyst to understand the root cause of performance issues
and to derive helpful recommendations for the user. For example, by analyzing
the job script and comparing it to the performance data collected by PIKA,
analysts can check the job script for misconfigurations that may be causing a
job inefficiency. To avoid the perception of spamming, we refrain from sending
automated emails to our users. In an initial email, we make the user aware of
the performance issue and provide initial instructions on how to resolve the



304 F. Winkler and A. Knüpfer

Fig. 3. PIKA’s top-down approach to analyze a performance issue job.

issue. Depending on the severity of the problem, we may also offer a face-to-face
meeting to resolve the performance issues together.

4 Related Work

We have presented the core architecture of PIKA in [5], which did not deal with
detecting inefficiencies as presented here. ClusterCockpit [6] is a web-frontend



Automatic Detection of HPC Job Inefficiencies with PIKA 305

based on the Likwid Monitoring Stack (LMS) [12] that provides a job issue
detection in particular for pathological and inefficient jobs. TACC stats [7] auto-
matically detects underperforming and misconfigured jobs. Julia Roigk describes
in her master thesis [13] the determination of periodic resource utilization using
FFT analysis. This work involves, among other things, creating a rule set to find
HPC jobs that have distinct stages or periodic patterns. Monika Multani shows
in her bachelor thesis [10] that system monitoring data, especially from the net-
work area, often have a waveform, which can be determined by means of FFT.
Jindal et al. specialize in the aspect of memory leak detection in cloud-based
infrastructures based on the system’s memory usage using machine learning
algorithms [9].

In many publications, the authors have used machine learning techniques
to classify jobs on the basis of performance data. Felix Fischer presents in his
bachelor thesis [8] an approach for measuring the similarity of HPC jobs based on
their hardware performance data using unsupervised clustering methods. Ozer
et al. introduce an approach for characterizing performance variation in HPC
systems using monitoring and unsupervised learning techniques [11].

5 Conclusion and Future Work

In this paper, we presented heuristics that enable administrators of TU Dresden’s
HPC cluster to identify users who have submitted a large number of inefficient
jobs using the top-down approach in PIKA. A new analysis engine with heuristics
and defined thresholds has been implemented to scan jobs for performance issues
on a weekly basis. These heuristics can identify jobs that are using excessive idle
CPU/GPU hours or have load imbalances, periodic blocking I/O phases, or
suspected memory leaks. By detecting such performance issues, administrators
can contact and advise HPC users on how to improve the performance of their
jobs. By doing so, users can reduce their job runtime, freeing up resources for
other users and increasing the overall efficiency of the HPC system. In addition,
the assigned jobs with performance issues can be used to investigate former
project proposals that have requested very high CPU/GPU hours. Both the
allocated and idle CPU/GPU hours of jobs can also be assigned to a project.
Taking this information into account, subsequent project proposals with the
same request of CPU/GPU hours can be handled accordingly.

Further improvements to the PIKA web front-end are planned to better
identify users with major performance issues. We intend to provide an additional
severity column in the issue table that better prioritizes problem jobs according
to defined characteristics, e.g., highly scalable or very long jobs. In addition, we
plan to allow administrators to mark problematic jobs where users have already
been contacted to see if future jobs have resolved those issues. Finally, we plan
to enrich the recorded jobs with application-specific parameters to be able to
classify jobs by application type. One promising tool for this task is XALT [4],
which tracks job-specific executable information and the linkage of static shared
and dynamically linked libraries.



306 F. Winkler and A. Knüpfer

No Blackbox AI Approach

The heuristics proposed in this paper allow an appropriate classification of inef-
ficient jobs. The computational load is very manageable and the classification
criteria are directly comprehensible for human analysts. We refrain from using
this classified data set as starting point for machine learning approaches because
this offers no additional benefits. The result would be another classification tool,
yet our heuristics already provide a suitable tool. It would, however, cost sub-
stantial computational effort for training with little hope that inference would
provide faster or better answers.

References

1. InfluxDB: Scalable datastore for metrics, events, and real-time analytics. https://
github.com/influxdata/influxdb. Accessed February 2023

2. NumPy: The fundamental package for scientific computing with Python. https://
numpy.org/. Accessed February 2023

3. SciPy: Fundamental algorithms for scientific computing in Python. https://scipy.
org/. Accessed February 2023

4. Agrawal, K., Fahey, M.R., McLay, R., James, D.: User environment tracking and
problem detection with XALT. In: 2014 First International Workshop on HPC
User Support Tools, pp. 32–40 (2014). https://doi.org/10.1109/HUST.2014.6

5. Dietrich, R., Winkler, F., Knüpfer, A., Nagel, W.: PIKA: center-wide and job-aware
cluster monitoring. In: Workshop on Monitoring and Analysis for High Performance
Computing Systems Plus Applications. HPCMASPA (2020). https://doi.org/10.
1109/CLUSTER49012.2020.00061

6. Eitzinger, J., Gruber, T., Afzal, A., Zeiser, T., Wellein, G.: ClusterCockpit—a web
application for job-specific performance monitoring. In: 2019 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 1–7 (2019). https://doi.org/
10.1109/CLUSTER.2019.8891017

7. Evans, T., et al.: Comprehensive resource use monitoring for HPC systems with
TACC stats. In: 2014 First International Workshop on HPC User Support Tools,
pp. 13–21 (2014). https://doi.org/10.1109/HUST.2014.7

8. Fischer, F.: Metrics for job similarity based on hardware performance data. Mas-
ter’s thesis, Technische Universität München (2020)

9. Jindal, A., Staab, P., Kulkarni, P., Cardoso, J., Gerndt, M., Podolskiy, V.: Memory
leak detection algorithms in the cloud-based infrastructure. CoRR abs/2106.08938
(2021). https://arxiv.org/abs/2106.08938

10. Multani, M.: Statistical characterization of HPC monitoring data (2021)
11. Ozer, G., Netti, A., Tafani, D., Schulz, M.: Characterizing HPC performance vari-

ation with monitoring and unsupervised learning. In: Jagode, H., Anzt, H., Juck-
eland, G., Ltaief, H. (eds.) ISC High Performance 2020. LNCS, vol. 12321, pp.
280–292. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59851-8 18

12. Röhl, T., Eitzinger, J., Hager, G., Wellein, G.: LIKWID monitoring stack: a flexible
framework enabling job specific performance monitoring for the masses. In: 2017
IEEE International Conference on Cluster Computing (CLUSTER), pp. 781–784
(2017). https://doi.org/10.1109/CLUSTER.2017.115

13. Roigk, J.: Feasibility study for detecting different job stages using a system moni-
toring daemon. Master’s thesis (2022)

https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://numpy.org/
https://numpy.org/
https://scipy.org/
https://scipy.org/
https://doi.org/10.1109/HUST.2014.6
https://doi.org/10.1109/CLUSTER49012.2020.00061
https://doi.org/10.1109/CLUSTER49012.2020.00061
https://doi.org/10.1109/CLUSTER.2019.8891017
https://doi.org/10.1109/CLUSTER.2019.8891017
https://doi.org/10.1109/HUST.2014.7
https://arxiv.org/abs/2106.08938
https://doi.org/10.1007/978-3-030-59851-8_18
https://doi.org/10.1109/CLUSTER.2017.115

	Automatic Detection of HPC Job Inefficiencies at TU Dresden's HPC Center with PIKA
	1 Introduction
	2 Job Performance Issues
	2.1 Setup and Data Preparation
	2.2 Straightforward Heuristics
	2.3 Periodic Performance Issues
	2.4 Memory Leaks

	3 HPC Support Case Studies
	4 Related Work
	5 Conclusion and Future Work
	References


