
Analyzing Parallel Applications
for Unnecessary I/O Semantics

that Inhibit File System Performance

Sebastian Oeste1(B) , Michael Kluge1 , Ronny Tschüter2,
and Wolfgang E. Nagel1

1 Center for Information Services and High Performance Computing (ZIH),
Technische Universität Dresden, Dresden, Germany

{sebastian.oeste,michael.kluge,wolfgang.nagel}@tu-dresden.de
2 German Aerospace Center (DLR), Dresden, Germany

ronny.tschueter@dlr.de

Abstract. Scalability and performance of I/O intensive parallel appli-
cations are major concerns in modern High Performance Computing
(HPC) environments. Almost all applications use POSIX I/O explicitly
or implicitly through third party libraries like MPI-IO to perform I/O
operations on the file system. POSIX I/O is known to be one of the lead
causes of poor I/O performance due to its restrictive access semantics
and consistency requirements.

Some file systems therefore relax specific POSIX semantics to alleviate
I/O performance penalties. In order to make the most effective use of the
offered file systems features it is required to know what kind of POSIX
semantics an application requires. Existing tools can analyze parallel I/O
performance to report type and duration of executed I/O operations.
There are even tools that analyse the consistency requirements of data
operations, but none that also consider perfromance critical patterns of
metadata operations.

In this paper, we present a novel, systematic approach that groups
parallel I/O operations and analyzes their I/O semantics with respect
to POSIX I/O. We provide the tool rabbitxx that identifies concurrent
overlapping accesses to the same file but also identifies metadata accesses
such as concurrent create operations in the same directory. Our work
indicates that POSIX defined I/O access semantics, in its current form,
are often not necessary for parallel applications.

Keywords: Performance Analysis · I/O · POSIX · Semantics · File
system · HPC

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bienz et al. (Eds.): ISC High Performance 2023 Workshops, LNCS 13999, pp. 161–176, 2023.
https://doi.org/10.1007/978-3-031-40843-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40843-4_13&domain=pdf
http://orcid.org/0009-0002-3540-4657
http://orcid.org/0000-0002-1686-8440
https://doi.org/10.1007/978-3-031-40843-4_13

162 S. Oeste et al.

1 Introduction

High Performance Computing (HPC) systems use parallel file systems to manage
accesses from thousands of compute nodes to the back-end storage system. The
file system interface defines available I/O operations along with their semantics.
Many common parallel file systems, such as GPFS [21] or Lustre [2], provide a
POSIX [19] compliant interface. POSIX was being developed with a strong focus
on local file systems. Applied in a parallel distributed file system, its restrictive
access semantics can cause considerable performance degradation [10,13,28]. In
some cases, like file creations in a directory, POSIX I/O semantics enforce serial
processing of operations issued in parallel. The lack of appropriate support of
parallel I/O renders POSIX I/O (part of the POSIX standard) a major scala-
bility and performance bottleneck for parallel applications.

Consequently, parallel file system developers have started to discard individ-
ual POSIX features or relax their consistency requirements to enable scalability
for specific workloads. The NFS [22] file system relaxes the POSIX consistency
for parallel accesses to the same file to a close-to-open consistency model. The
PVFS [5] parallel file system supports non-conflicting write consistency seman-
tics, leaving the results of overlapping writes undefined. Many tools [12,24,32]
investigate and characterize parallel I/O performance of HPC applications. A lot
of tools [12,24,26,32] provide insight into the usage of programming interfaces,
I/O operation types, bandwidth, and files accesses. It has also been shown that
strict write consistency is not requried by many HPC applications [31].

In this paper we boarden the view and also examine performance critical
pattern of metadata operations. Therefore, we introduce a method that identi-
fies application phases and builds sets of concurrent I/O operations within these
steps. We check I/O operation sets for critical I/O access patterns that poten-
tially limit performance and thereby reveal potential for relaxing POSIX I/O
semantics of parallel file systems. We provide an exemplary implementation in
form of rabbitxx1, an open source, post-mortem analysis tool that identifies paral-
lel I/O operations and investigates their access semantics with regard to POSIX.
With this information, developers can optimize their applications, fine-tune I/O
consistency requirements of their programs, and choose the most suitable storage
infrastructure or file system configuration. Furthermore, parallel file system and
I/O middleware engineers can investigate which consistency guarantees today’s
HPC applications require.

The remainder of this paper is organized as follows. Section 2 highlights per-
formance critical I/O patterns to underline the importance of this work. Section 3
lists related work. Sections 5.1, 5.2, 5.3 present our methodology. First, we intro-
duce an algorithm that creates sets of concurrent I/O operations from an event
log of a parallel application. Then, we describe analysis modules that check these
sets for different performance critical semantics. Section 6 demonstrates rabbitxx
by analyzing two real world applications. We conclude and list future work in
Sect. 7.

1 https://github.com/blastmaster/rabbitxx.

https://github.com/blastmaster/rabbitxx

Analyzing Parallel Applications for Unnecessary I/O Semantics 163

2 Performance Critical Access Patterns

In this section we highlight three performance critical access patterns. The first
two show limitations due to POSIX semantics. POSIX semantics enforce a strict
serial processing for these patterns to prevent errors and guarantee data integrity.
However, in a parallel use case scenario these semantics are 1) often completely
unnecessary as applications can take care of data integrity more efficiently them-
selves, and 2) induce serious performance penalties. The last example demon-
strates so-called anti-patterns that should be avoided in parallel applications.

Concurrent Create Operations within the Same Directory. POSIX requires strict
consistency for file metadata and directory structures. Since parallel file creations
may access the same directory structure (i.e., directory blocks), file systems have
to lock it, see Fig. 1a. This is particularly relevant in parallel file systems where
directory structures are globally accessible and all metadata operations have to
be immediately visible on all nodes. Among others, this requires a large number
of expensive global locking communication and can significantly impact the file
system’s metadata throughput [28].

Process A: /foo/A

Create File

Process B: /foo/B

Create File

Intention: Execution on Parallel FS:

/foo/A

Create File

/foo/B

Create File

t t

FS
Lock

(a) Concurrent create
operations in one
directory.

Process A:

Write Block

Process B:

Write Block

Intention: Execution on Parallel FS:

Write Block

Write Block

t t

FS Lock

B
lo

ck

Region

/foo/A

B
lo

ck

Region

/foo/A

B
lo

ck

Region

/foo/A

/foo/A B
lo

ck

Region

(b) Concurrent write
operations to one file.

Process A: /foo/A

Read File

Process B: /foo/A

Write File

Execution Option A: Execution Option B:

/foo/A

Read File

/foo/A

Write File

t t

FS
Lock

(c) Non-synchronized
read/write operations to
one file.

Fig. 1. Illustration of examples of performance critical access patterns.

Concurrent Overlapping File Accesses. The strict write consistency of POSIX
requires that writes to the same region of a file are mutually exclusive. Thus,
parallel writes appear as a sequential stream of operations, see Fig. 1b. The
POSIX I/O semantics further dictate that write operations block until the data
has been written to durable storage. Concurrently occurring read operations
have to see the new data immediately. Local file systems can utilize the page
cache to ensure this semantic restriction. However, parallel file systems need to
hold locks and issue additional communication for this purpose.

In practice, the strict consistency semantics of write operations are unneces-
sary in case of non-overlapping accesses. Moreover, we assume that most HPC
applications ensure non-overlapping accesses at a higher application level for
scalability reasons.

164 S. Oeste et al.

Concurrent Read-Modify-Write Access to the Same Region of a File. The con-
current Read-Modify-Write access pattern describes the situation where process
A reads a region of a file while process B writes to the same region of the file.
This pattern indicates a possible data consistency violation. Depending on the
runtime scheduling of both operations (process A reads before process B writes,
or vice versa) it is undefined which “version” of the file process A reads, see
Fig. 1c. In such a case the POSIX semantics only ensure that the read opera-
tion is not executed while the write operation is active. Therefore, distributed
file systems need to employ global locking communication. We treat this as an
anti-pattern for HPC-IO which requires stronger semantics from the underlying
file system and poses performance penalties.

3 Related Work

The first paragraph of this section focuses on POSIX I/O semantics, whereas
the second paragraph gives an overview on research related to I/O analysis.

POSIX I/O Semantics. The Portable Operating System Interface (POSIX) stan-
dard [19] defines portable interfaces between applications and the operating sys-
tem. Its first formal specification dates back to 1988. The I/O section of the
POSIX standard (henceforth referred to as POSIX I/O) comprises two essen-
tial parts. First, the POSIX I/O API specifies I/O operations and their syntac-
tic requirements. Second, the POSIX I/O semantics define the behavior of I/O
operations, e.g., guarantees with respect to consistency and correctness when
using specific POSIX I/O operations. Some of these guarantees are very restric-
tive and impede efficient parallelization of I/O tasks [14]. The HPC community
made efforts to extend POSIX I/O semantics for parallel I/O [30]. In 2006 there
was a High End Computing Extensions Working Group [25].

Some parallel file systems discard certain POSIX I/O semantics to circum-
vent scalability issues. For instance, PVFS [5] supports non-conflicting consis-
tency semantics and leave overlapping access to the same region of a file unde-
fined. GekkoFS [27] is a job-temporal file system that relaxes POSIX I/O seman-
tics for eventual consistency and improves scalability of metadata handling. Cur-
rent research investigates object stores to explore trade-offs between scalability
and flexible semantics [6,15].

I/O Analysis Tools. There is a number of tools to characterize I/O in the past
decades [9,16,20]. For instance, Darshan [4] is widely known to characterize
application I/O accurately. The Darshan tool is implemented as a set of user-
space libraries and records counters for POSIX and MPI-IO operations. It yields
statistics, such as MPI-IO adoption rate, number of files opened per job, or the
ratio of read and write operations. ScalaIOTrace [29] records event logs including
calls to MPI-IO and POSIX I/O. Data compression techniques utilize repetitive
event sequences to keep event logs small, but preserve application’s communi-
cation and I/O structure. Therefore, event logs recorded by ScalaIOTrace are

Analyzing Parallel Applications for Unnecessary I/O Semantics 165

well-suited to replay I/O characteristics of applications. Méndez et al. [17] model
I/O phases to estimate the runtime of an application for a certain I/O subsys-
tem. They weight an I/O phase based on their repetitions and request size.
Reed published together with different collaborators several papers related to
I/O characterization [16,18,23]. The presented characterization is defined by
three dimensions: type of operation, spatial and temporal access pattern. Byna
et al. [3] present a five-dimensional characterization approach taking even the
request size and number of repetition into account. They generate a signature
of the I/O behavior to provide online prefetching strategies. The approaches
mentioned above record statistics and metrics to describe the I/O behavior of
applications or jobs on a cluster. These insights are useful to get an overview
of the workload, identify performance critical operations, as well as detecting
repetitive patterns.

Wang et al. [31] developed a method for detecting I/O accesses that can
cause conflicts under weaker consistency models. Further, they provide a termi-
nology for the categorization of the consistency semantics of parallel file systems.
They found out that 16 of 17 applications can utilize file systems with weaker
semantics. However, the algorithm to determine consistency semantics needs of
an application uses only data operations. In contrast, our work also provides
analysis modules for I/O patterns of performance critical metadata operations.
Further, we analyze groups of parallel I/O operations, considers all combinations
of their concurrent execution. Instead of being focused on the I/O events as they
appear in an individual application run.

4 Methodology

This section gives an overview of our approach. The basis of our analysis method
is information about I/O operations executed by an application.

Application Instrumentation: To acquire the necessary information from
an application, we use the performance measurement infrastructure Score-P2

[11,26]. Therefore, we intercept application calls to I/O and synchronization
routines.

Application Execution and Trace Data Generation: When the instru-
mented application executes, it generates an OTF2 [7] trace file containing I/O
and synchronization operations. A trace file represents an event log. Figure 2a
shows information stored within a trace. Each event contains the time when the
event occurred, the process that executed the event, and the type of that event.
This information enables reconstruction of event sequences and their transfor-
mation into a graph structure (Fig. 2b).

Construction of the I/O Graph: We read the event sequences from the
trace file and convert them into a directed acyclic graph (DAG) data structure.

2 http://www.score-p.org/.

http://www.score-p.org/

166 S. Oeste et al.

Fig. 2. Example of an application trace along with the corresponding graph represen-
tation of the event sequence.

Section 5.1 presents detailed information about the graph construction. Subse-
quent processing and analysis tasks work on the graph data structure.

Creation of Concurrent I/O Sets: First, we analyze each process individually
and identify phases in its event sequence. A Phase contains all I/O operations
between two synchronization points. Section 5.2 explains the phase identification
step in more detail. Then, we expand our analysis over multiple processes. We
identify corresponding phases across all processes and define sets of concurrent
I/O operations (CIO-Set). A CIO-Set contains all I/O operations that can be
executed concurrently on the participating processes. Consequently, the CIO-Set
algorithm must not only handle the I/O event sequence as stored in the trace
file. Multiple executions of the instrumented application might generate slightly
different event sequence orders. Therefore, our creation algorithm also considers
event permutations in order to find all possible CIO-Sets. We introduce the
CIO-Set algorithm in Sect. 5.2.

Analysis of I/O Access Patterns and Their Semantics: Our analysis uses
the CIO-Sets to evaluate whether the I/O access patterns of an application
require specific POSIX I/O semantics. Analysis results reveal potential perfor-
mance bottlenecks as well as options to relax POSIX I/O semantics for HPC
applications. Section 5.3 presents currently implemented analysis modules.

5 Implementation

This section describes the implementation of our methodology presented in
Sect. 4. We use the example introduced in Fig. 3 throughout this section to
explain the construction of the I/O graph and the algorithm identifying the
CIO-Sets.

5.1 Construction of the I/O Graph

An application trace builds the foundation for the I/O graph construction. We
distinguish three kinds of vertices in the I/O graph: I/O, synchronization and

Analyzing Parallel Applications for Unnecessary I/O Semantics 167

synthetic vertices. An I/O vertex represents an individual I/O event, e.g., a
write request, or the creation of a new file. The synchronization vertex rep-
resents communication or synchronization between processes. These are either
collective operations, e.g., MPI_Barrier, or blocking point-to-point operations,
e.g., an MPI_Send, MPI_Recv pair. The synthetic vertices model a dedicated
Program-Start and Program-End vertex. Trace event information (e.g., number
of transferred bytes) is stored in the vertex properties.

Each I/O graph starts with a common synthetic Program-Start vertex. The
Program-Start vertex connects to the first non-synthetic vertex of each process.
From this point, each branch represents the execution of the respective process
including I/O and synchronization events. A common synthetic Program-End
vertex finalizes the I/O graph. An edge from the last non-synthetic vertex of
each process connects to the Program-End vertex.

Fig. 3. Example of an I/O graph. The graph consists of synthetic (gray), I/O (red), and
synchronization (green) vertices, synchronization points across processes (horizontal
green bars), and Phases (vertical gray bars). A Phase of an individual process is enclosed
by a CIO-Start () and CIO-End () event. (Color figure online)

Figure 3 illustrates the I/O graph constructed from the trace of a program
running on four processes. The event sequence starts with an MPI_Barrier across
all processes. Then, each process reads data, before an MPI_Allreduce operation
synchronizes process 1 and 2. Subsequently, a second stage of I/O operations
starts. The event sequence ends with two MPI_Gather operations. Processes 0
and 1 participate in the first operation, processes 2 and 3 in the second operation.

The first part of the I/O graph construction reads the trace data, analyzes
the event, and constructs the corresponding vertex. After adding the vertex, the

168 S. Oeste et al.

next part creates an edge between the current vertex and the previous one of
the process. This reflects the event flow for each process.

Table 1. Summary of notation

Notation Description

Process-Group The set of process IDs that participate on a synchronization event
Sync-List The unique list of CIO-End events of the Phases in the current View
Sync-Pairs List of all unique combinations of pairs of elements in Sync-List

5.2 Identification of Concurrent I/O Sets

In order to identify sets of concurrent I/O operations, we process the I/O graph.
While traversing the graph, we define sets of I/O events. Each I/O event is
represented by its Vertex ID. Additionally, we collect the Vertex IDs of the
CIO-Start/CIO-End synchronization events which start/stop a Phase. Since pro-
grams do not have to start or end with synchronization, it is also valid to set a
synthetic event as CIO-Start or CIO-End event.

Per-Process Phase Identification. We perform a depth-first-traversal on the
graph to identify its Phases. A Phase can be in one of two states: open or close.
A Phase is open as soon as the object is initialized. In other words, it has at
least a CIO-Start event. A closed Phase means that the CIO-End event of the
Phase was set and no further I/O events can be added to the Phase.

The phase identification finishes when all vertices are processed. The resulting
Phases provide a local view of the I/O behavior of a single process. Consequently,
we store the Phases in a per-process queue in the order of their occurrence. While
defining global CIO-Sets, we process these queues and keep track of the currently
active Phase in each queue. A View is a collection of the currently active Phases
across all processes.

Global CIO-Sets. The algorithm to identify global CIO-Sets consists of four
parts. The next paragraphs provide a detailed explanation of each part based on
the I/O graph of our example (Fig. 3). Table 1 shows the notation used.

Initialize View. The algorithm starts with a View containing the first Phases
of all processes. In our example, Fig. 4a highlights a View containing the first
Phases of four processes. All I/O events in these Phases will be merged into a
global CIO-Set. To decide how the View can be updated, the CIO-End event of
the CIO-Set must be found.

Analyzing Parallel Applications for Unnecessary I/O Semantics 169

I/O Set: 1
Sync-ID: 2

I/O Set: 2
Sync-ID: 1

I/O Set: 3
Sync-ID: 1

I/O Set: 4
Sync-ID: 3

Sync: 1
PG:{1,2}

I/O Set: 6
Sync-ID: 3

I/O Set: 5
Sync-ID: 2

Sync: 2
PG:{0,1}

Sync: 3
PG:{2,3}

1

Pro cess 0 Pro cess 1 Pro cess 2 Pro cess 3

Global CIO Set

I/O Set: 1
Sync-ID: 2

I/O Set: 2
Sync-ID: 1

I/O Set: 3
Sync-ID: 1

I/O Set: 4
Sync-ID: 3

Sync: 1
PG:{1,2}

I/O Set: 6
Sync-ID: 3

I/O Set: 5
Sync-ID: 2

Sync: 2
PG:{0,1}

Sync: 3
PG:{2,3}

Pro cess 0 Pro cess 1 Pro cess 2 Pro cess 3

Global CIO Set

Fig. 4. Steps of the CIO-Set algorithm.

Determine Boundaries. The next part analyzes the current View, identifies par-
ticipating Phases and inserts all CIO-End events contained therein into the
Sync-List. In our example, this results in Sync-List = {2, 1, 3} (Fig. 4a). The
CIO-End events are denoted as Sync-IDs in Fig. 4a. Then, all unique com-
binations of pairs of the elements in Sync-List are built. There are n(n−1)

2
pairs, where n is the number of CIO-End events. In our example, this gives
Sync-Pairs = {{1, 2}, {1, 3}, {2, 3}}. Next, for each pair in Sync-Pairs, the algo-
rithm checks if the synchronization operations referred in the pair are dependent
or independent. Two synchronization operations are called independent if the
intersection of their Process-Group is empty. Otherwise, synchronization opera-
tions with processes participating in both synchronizations of the pair are called
dependent. In our example, the synchronizations 2 and 3 depend on synchro-
nization 1. In other words, some processes participating in synchronization 2 or
3 have a Phase in their current View where the CIO-End event refers to another
synchronization. In this case, it refers to synchronization 1.

Define Global. CIO-Set Fig. 4b illustrates synchronization 1 as the CIO-End
event of the first global CIO-Set. Therefore, the creation of the global CIO-Set
is finished and the CIO-Set is saved for further analysis.

Update View. Next, all processes in the Process-Group of the CIO-End event
update the View to their next Phase. In our example, processes 1 and 2 can

170 S. Oeste et al.

update to their next Phase (Fig. 4b). The View remains unchanged for pro-
cess 0 and 3. Figure 4c shows the next part of the algorithm with an updated
View. In this part, the Sync-List contains the synchronization events 2 and
3 (Sync-List = {2, 3}). Both synchronization events are independent, since
Process-Group (2) ∩ Process-Group (3) = ∅. When independent synchroniza-
tions are detected, the algorithm updates the View for each of them recursively.
This is necessary because it is not guaranteed which of the independent synchro-
nization events will occur first. Figure 4d shows both resulting CIO-Sets of the
parts before. The resulting CIO-Sets are overlapping. Phases 1 and 4 of the pro-
cesses 0 and 3 occur in both sets because they are not synchronized with other
processes until synchronization 2 and 3. Therefore, they actually may occur in
parallel with the Phases 2 and 3 but also with 5 and 6.

The algorithm continues until all Phases are processed. After the algorithm
finished, we start to analyze the I/O behavior within CIO-Sets. In the next
section, we discuss our analyses.

5.3 Analysis of I/O Access Patterns and Their Semantics

In this section, we describe the design and implementation of our analysis fea-
tures. The rabbitxx design follows a modular approach. Each specific analysis
task is implemented in its own analysis module. In a first step, the rabbitxx tool
reads the event trace and calculates the CIO-Sets. In the scope of this work we
present three analysis modules covering the three access patterns introduced in
Sect. 2. All three modules produce a text-based report as output. The following
paragraphs introduce each analysis module. The rabbitxx analysis capabilities
are easily extendable by adding new analysis modules.

Module A: Concurrent Create Operations within the Same Directory. This anal-
ysis module filters create operations within a CIO-Set and checks if they target
the same directory. If it detects such operations, it reports the CIO-Set number,
the number and the function name of the create operations, and the affected
directory.

Module B: Concurrent Overlapping File Accesses. This analysis module checks
each CIO-Set for overlapping accesses. Therefore, it calculates the access inter-
vals of read and write operations for each process. Then, for each file, it com-
pares the respective intervals between all processes. If the module detects over-
laps, it reports the CIO-Set number, the file name, the range that overlaps, and
all affected processes.

Module C: Concurrent Read-Modify-Write Access to the Same Region of a File.
This analysis module checks for all CIO-Sets if any read access will be overwritten
by another process with a write operation to the same file offset. If the module
detects this case, it reports the CIO-Set number, the file name, and all affected
processes.

Analyzing Parallel Applications for Unnecessary I/O Semantics 171

6 Experiments and Evaluation

This section presents the results of our analysis modules for two HPC benchmark
applications. We choose two benchmarks which utilize I/O kernels from real-
world HPC workloads. To verify our approach, we choose the MADbench2 [1]
and HACC-IO [8] benchmark applications.

All tests were executed on Taurus3, a generic BULL Linux Cluster at Tech-
nische Universität Dresden. Taurus consists of 2189 compute nodes with 43000
cores attached to a 5.1PB disk-based, and a 43TB SSD-based Lustre parallel file
system.

6.1 MADbench2

MADbench2 is a benchmark based on the MADspec code, which calculates the
maximum likelihood angular power spectrum of the Cosmic Microwave Back-
ground radiation. It operates on large floating-point matrices which are too large
to hold them completely in main memory. Therefore, data will be written to disk
and read back later.

We use MADbench2 in I/O-only mode, which skips calculations. We instru-
ment and run the MADbench2 code on 16 and 64 processes. For the configu-
ration, we choose POSIX as IOMETHOD in synchronous IOMODE. Because
we want to investigate overlapping file accesses, we select “shared file access” as
FILETYPE. Afterwards, we analyze the resulting trace with our tool rabbitxx .
Independent of the number of application processes, our analysis identifies six
different CIO-Sets. The resulting sets are non-overlapping because the MAD-
bench2 code synchronizes with collective MPI synchronization routines encom-
passing all processes. Except from the number of processes and files accesses, the
semantic analysis results are equal for all runs. Thus, we present only analysis
results for the runs with 64 processes in the following.

Our first analysis module tests whether concurrent create operations appear
in the same directory. The analysis report the application issues 64 create oper-
ations in the same directory within CIO-Set 2. The affected directory is located
on the parallel file system. Consequently, all participating processes open the
same file.

The second analysis module tests for overlapping accesses to the same
address range within a file. Due to the strong consistency of write operations in
POSIX I/O, overlapping writes can significantly impair the scalability of a par-
allel file system. Overlapping accesses to the same file region could also result in
undefined behavior in case of file systems that relax POSIX I/O consistency, such
as PVFS [5] or NFS [22]. Our analysis module reports no overlapping accesses for
MADbench2. Nevertheless, Table 2 shows that all participating processes access
the same file in CIO-Sets 2 to 5. Such a non-overlapping access pattern on a
shared file is common for HPC applications. Our analysis of MADbench2 pro-
vides one example for such applications, that usually coordinate parallel accesses
by themselves at a higher level.

172 S. Oeste et al.

Table 2. MADbench2: Concurrent accesses per file.

CIO-Set File #processes

2 /lustre/scratch2/.../MADbench2/files/data 64
3 /lustre/scratch2/.../MADbench2/files/data 64
4 /lustre/scratch2/.../MADbench2/files/data 64
5 /lustre/scratch2/.../MADbench2/files/data 64

Fig. 5. HACC-IO: The number of oper-
ation types per CIO-Set.

Fig. 6. MADbench2: Number of opera-
tion types per CIO-Set.

The third analysis module investigates whether concurrent read-modify-write
accesses appear to the same region of a file. Our analysis module reports no such
accesses for MADbench2. The application coordinates its accesses in a non-
contiguous, non-overlapping manner. Figure 6 shows the number of operation
types per CIO-Set for MADbench2. Concurrent read and write accesses occur
only in CIO-Set 3. All other CIO-Sets perform either read or write or none of
both. The results support the assumption that HPC applications typically issue
their I/O operations in distinct phases.

6.2 HACC-IO

HACC-IO is an I/O-performance benchmark that computes an n-body simula-
tion of collision-less fluids in space. HACC-IO uses random I/O write operations
as well as all-to-all communication patterns. For our analysis we instrument
HACC-IO with Score-P and run it with 16, 32, 64, and 128 processes. The
rabbitxx analysis reports seven non-overlapping CIO-Sets for each of these con-
figurations. Again, as all configurations show similar behavior, we present only
results for the run with 64 processes here.

The analysis of concurrent creates report CIO-Set 1 and 5 issue 64 open64
operations on the same file. The identified behavior is similar to MADbench2.
The POSIX I/O semantics for open operations dictate that the file system needs
to hold file descriptors for each accessing processes and a corresponding file
description entry. If the accessed file does not exist, the file system has to create
it and update the metadata entries. This metadata update requires additional
locking and communication in distributed environments.
3 https://doc.zih.tu-dresden.de/jobs_and_resources/hardware_overview/.

https://doc.zih.tu-dresden.de/jobs_and_resources/hardware_overview/

Analyzing Parallel Applications for Unnecessary I/O Semantics 173

HACC-IO follows a “shared file access” pattern. Our analysis reports no over-
lapping accesses to the same address range of a file. However, Table 3 shows that
CIO-Sets 1, 2, 3, 5, and 6 access the same file concurrently. This result strength-
ens our assumption that many HPC applications are designed for parallel file
systems and avoid accesses to the same file with overlapping offsets.

Table 3. HACC-IO: Concurrent accesses per file.

CIO-Set File #processes

0 /lustre/scratch2/.../haccio/haccio-out.data 1
1 /lustre/scratch2/.../haccio/haccio-out.data 64
2 /lustre/scratch2/.../haccio/haccio-out.data 64
3 /lustre/scratch2/.../haccio/haccio-out.data 64
4 /lustre/scratch2/.../haccio/haccio-out.data 1
5 /lustre/scratch2/.../haccio/haccio-out.data 64
6 /lustre/scratch2/.../haccio/haccio-out.data 64

In analogy to MADbench2, our analysis does not report any read-modify-
write file access patterns. No CIO-Set of HACC-IO contains simultaneous read
and write operations. Figure 5 shows that all concurrent write operations are
executed in CIO-Set 2, while read operations occur in CIO-Set 4 and 6.

In summary, our analysis of MADbench2 and HACC-IO shows that both
applications concurrently create files in the same directory. Furthermore, they
perform non-conflicting, non-overlapping accesses to shared files. Both applica-
tions calculate offsets and use seek operations to manage their file accesses. We
conclude that these kinds of applications do not require the atomicity and strong
consistency for read and write operations defined by POSIX I/O. In addition,
the POSIX I/O semantics for metadata consistency and file creation represent
a potential performance bottleneck that parallel application cannot circumvent
with the current API. HPC applications can benefit from the concept of file
descriptors shared across multiple processes or a collective file open operation
for multiple processes. Moreover, both applications were only accessing files in a
single directory. Consequently, strict consistency of a global namespace as dic-
tated by POSIX I/O seems unnecessary for many HPC applications. Instead, we
propose application-private namespaces where consistency requirements hold for
participating nodes, not the whole cluster. The analysis of required I/O seman-
tics of HPC applications indeed requires further research.

7 Conclusion and Future Work

This paper presents a systematic approach to analyze parallel applications for
understanding the need of specific I/O semantics. Based on the event log of a

174 S. Oeste et al.

parallel application, we generate a graph that preserves the happens-before rela-
tion of events on individual processes and reflects synchronization points across
multiple processes. We present a two-stage algorithm using this information to
identify all sets of concurrent I/O events. As a result, we get all sets of I/O events
that may occur in parallel within an application – either as observed in the given
event log or in any other parallel execution order with the given synchronization
operations. Then, we analyze the I/O behavior and determine which POSIX I/O
semantics are unnecessary for the application.

Our evaluations indicate that the fundamental semantic restrictions implied
by the POSIX I/O standard might not be necessary for many HPC applications.
Dropping of unnecessary semantics would remove significant performance bottle-
necks from the parallel file system. One example of this is the strict consistency
of write operations. The results of our analyses reveal potential for replacing or
relaxing POSIX I/O semantics in future storage systems.

In the future, we plan to add more analysis capabilities to rabbitxx .

References

1. Borrill, J., Carter, J., Oliker, L., Skinner, D., Biswas, R.: Integrated perfor-
mance monitoring of a cosmology application on leading HEC platforms. In:
2005 International Conference on Parallel Processing (ICPP 2005), pp. 119–128.
IEEE (2005). https://doi.org/10.1109/ICPP.2005.47, https://ieeexplore.ieee.org/
document/1488607/

2. Braam, P.J., Zahir, R.: Lustre: a scalable, high performance file system. Clust.
File Syst. 8(11), 3429–3441 (2002). https://cse.buffalo.edu/faculty/tkosar/cse710/
papers/lustre-whitepaper.pdf

3. Byna, S., Chen, Y., Sun, X.H., Thakur, R., Gropp, W.: Parallel I/O prefetching
using MPI file caching and I/O signatures. In: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, pp. 1–12. IEEE (2008). https://doi.org/10.1109/
SC.2008.5213604

4. Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., Riley, K.: 24/7 characterization
of petascale I/O workloads. In: 2009 IEEE International Conference on Cluster
Computing and Workshops, pp. 1–10 (2009)

5. Carns, P., Ligon, W., Ross, R., Thakur, R.: PVFS: a parallel file system for Linux
clusters. In: 4th Annual Linux Showcase and Conference, vol. 4, pp. 1–11 (2000)

6. Danilov, N., Rutman, N., Narasimhamurthy, S., Bent, J.: Mero: co-designing an
object store for extreme scale (2016). https://www.pdsw.org/pdsw-discs16/wips/
danilov-wip-pdsw-discs16.pdf

7. Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W.E., Wolf, F.: Open
trace format 2: the next generation of scalable trace formats and support libraries.
In: De Bosschere, K., D’Hollander, E.H., Joubert, G.R., Padua, D., Peters, F.,
Sawyer, M. (eds.) Applications, Tools and Techniques on the Road to Exascale
Computing. Advances in Parallel Computing, vol. 22, pp. 481–490. IOS Press
(2012). https://doi.org/10.3233/978-1-61499-041-3-481

8. Habib, S., et al.: The universe at extreme scale: multi-petaflop sky simulation
on the BG/Q. In: SC 2012: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pp. 4:1–4:11. IEEE
(2012). https://dl.acm.org/citation.cfm?id=2388996.2389002

https://doi.org/10.1109/ICPP.2005.47
https://ieeexplore.ieee.org/document/1488607/
https://ieeexplore.ieee.org/document/1488607/
https://cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
https://cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
https://doi.org/10.1109/SC.2008.5213604
https://doi.org/10.1109/SC.2008.5213604
https://www.pdsw.org/pdsw-discs16/wips/danilov-wip-pdsw-discs16.pdf
https://www.pdsw.org/pdsw-discs16/wips/danilov-wip-pdsw-discs16.pdf
https://doi.org/10.3233/978-1-61499-041-3-481
https://dl.acm.org/citation.cfm?id=2388996.2389002

Analyzing Parallel Applications for Unnecessary I/O Semantics 175

9. He, J., et al.: Discovering structure in unstructured I/O. In: 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis, pp. 1–6. IEEE
(2012). https://doi.org/10.1109/SC.Companion.2012.11

10. Hildebrand, D., Nisar, A., Haskin, R.: pNFS, POSIX, and MPI-IO: a tale of three
semantics. In: Proceedings of the 4th Annual Workshop on Petascale Data Storage,
PDSW 2009, pp. 32–36. ACM (2009). https://doi.org/10.1145/1713072.1713082,
https://portal.acm.org/citation.cfm?doid=1713072.1713082

11. Knüpfer, A., et al.: Score-P: a joint performance measurement run-time infrastruc-
ture for periscope, Scalasca, TAU, and Vampir. In: Brunst, H., Müller, M.S., Nagel,
W.E., Resch, M.M. (eds.) Tools for High Performance Computing 2011, pp. 79–91.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31476-6_7

12. Kunkel, J.M., et al.: The SIOX architecture – coupling automatic monitoring and
optimization of parallel I/O. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.)
ISC 2014. LNCS, vol. 8488, pp. 245–260. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07518-1_16

13. Latham, R., Ross, R., Thakur, R.: The impact of file systems on MPI-IO scalability.
In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS,
vol. 3241, pp. 87–96. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30218-6_18

14. Lockwood, G.: What’s so bad about Posix I/O (2017). https://www.nextplatform.
com/2017/09/11/whats-bad-posix-io/

15. Lofstead, J., Jimenez, I., Maltzahn, C., Koziol, Q., Bent, J., Barton, E.: DAOS and
friends: a proposal for an exascale storage system. In: SC 2016: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 585–596 (2016). https://doi.org/10.1109/SC.2016.49

16. Madhyastha, T.M., Reed, D.A.: Learning to classify parallel input/output access
patterns. IEEE Trans. Parallel Distrib. Syst. 13(8), 802–813 (2002). https://doi.
org/10.1109/TPDS.2002.1028437

17. Méndez, S., Rexachs, D., Luque, E.: Modeling parallel scientific applications
through their input/output phases. In: 2012 IEEE International Conference on
Cluster Computing Workshops, pp. 7–15. IEEE (2012). https://doi.org/10.1109/
ClusterW.2012.37

18. Oly, J., Reed, D.A.: Markov model prediction of I/O requests for scientific appli-
cations. In: Proceedings of the 16th international conference on Supercomput-
ing, ICS 2002, pp. 147–155. ACM (2002). https://doi.org/10.1145/514191.514214,
https://doi.acm.org/10.1145/514191.514214

19. IEEE Standard for Information Technology-Portable Operating System Interface
(POSIX(R)) Base Specifications, Issue 7. IEEE Std 1003.1-2017 (Revision of IEEE
Std 1003.1-2008), pp. 1–3951 (2018)

20. Sayed, S.E., Bolten, M., Pleiter, D., Frings, W.: Parallel I/O characterisation based
on server-side performance counters. In: Proceedings of the 1st Joint Interna-
tional Workshop on Parallel Data Storage and Data Intensive Scalable Computing
Systems (PDSW-DISCS), pp. 7–12. IEEE Press (2016). https://doi.org/10.1109/
PDSW-DISCS.2016.006

21. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing
clusters. In: Proceedings of the 1st USENIX Conference on File and Storage Tech-
nologies, FAST 2002, pp. 231–244. USENIX Association (2002). https://dl.acm.
org/citation.cfm?id=1083323.1083349

22. Shepler, S., et al.: Network file system (NFS) version 4 Protocol. RFC 3530, RFC
Editor (2003). https://www.rfc-editor.org/pdfrfc/rfc3530.txt.pdf

https://doi.org/10.1109/SC.Companion.2012.11
https://doi.org/10.1145/1713072.1713082
https://portal.acm.org/citation.cfm?doid=1713072.1713082
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-319-07518-1_16
https://doi.org/10.1007/978-3-319-07518-1_16
https://doi.org/10.1007/978-3-540-30218-6_18
https://doi.org/10.1007/978-3-540-30218-6_18
https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/
https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/
https://doi.org/10.1109/SC.2016.49
https://doi.org/10.1109/TPDS.2002.1028437
https://doi.org/10.1109/TPDS.2002.1028437
https://doi.org/10.1109/ClusterW.2012.37
https://doi.org/10.1109/ClusterW.2012.37
https://doi.org/10.1145/514191.514214
https://doi.acm.org/10.1145/514191.514214
https://doi.org/10.1109/PDSW-DISCS.2016.006
https://doi.org/10.1109/PDSW-DISCS.2016.006
https://dl.acm.org/citation.cfm?id=1083323.1083349
https://dl.acm.org/citation.cfm?id=1083323.1083349
https://www.rfc-editor.org/pdfrfc/rfc3530.txt.pdf

176 S. Oeste et al.

23. Smirni, E., Reed, D.A.: Lessons from characterizing the input/output behav-
ior of parallel scientific applications. Perform. Eval. 33(1), 27–44 (1998).
https://doi.org/10.1016/S0166-5316(98)00009-1, http://www.sciencedirect.com/
science/article/pii/S0166531698000091

24. Snyder, S., Carns, P., Harms, K., Ross, R., Lockwood, G.K., Wright, N.J.: Modular
HPC I/O characterization with darshan. In: Proceedings of the 5th Workshop on
Extreme-Scale Programming Tools, ESPT 2016, pp. 9–17. IEEE (2016). https://
doi.org/10.1109/ESPT.2016.9

25. The Open Group: High End Computing Extensions Working Group (2006).
https://collaboration.opengroup.org/platform/hecewg

26. Tschüter, R., Herold, C., Wesarg, B., Weber, M.: A methodology for performance
analysis of applications using multi-layer I/O. In: Aldinucci, M., Padovani, L.,
Torquati, M. (eds.) Euro-Par 2018. LNCS, vol. 11014, pp. 16–30. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96983-1_2

27. Vef, M.A., et al.: GekkoFS - a temporary distributed file system for HPC applica-
tions. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 319–324 (2018). https://doi.org/10.1109/CLUSTER.2018.00049

28. Vef, M.A., Tarasov, V., Hildebrand, D., Brinkmann, A.: Challenges and
solutions for tracing storage systems: a case study with spectrum scale.
ACM Trans. Storage 14(2), 18:1–18:24 (2018). https://doi.org/10.1145/3149376,
https://doi.acm.org/10.1145/3149376

29. Vijayakumar, K., Mueller, F., Ma, X., Roth, P.C.: Scalable I/O tracing and anal-
ysis. In: Proceedings of the 4th Annual Workshop on Petascale Data Storage,
PDSW 2009, pp. 26–31. ACM, New York (2009). https://doi.org/10.1145/1713072.
1713080, https://doi.acm.org/10.1145/1713072.1713080

30. Vilayannur, M., Lang, S., Ross, R., Klundt, R., Ward, L.: Extending the POSIX
I/O interface: a parallel file system. Perspective (2008). https://doi.org/10.2172/
946036, http://www.osti.gov/servlets/purl/946036-pnI90N/

31. Wang, C., Mohror, K., Snir, M.: File system semantics requirements of HPC appli-
cations. In: Proceedings of the 30th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC 2021, pp. 19–30. Association for Com-
puting Machinery, New York (2021). https://doi.org/10.1145/3431379.3460637

32. Wang, C., Sun, J., Snir, M., Mohror, K., Gonsiorowski, E.: Recorder 2.0: efficient
parallel I/O tracing and analysis. In: 2020 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), pp. 1–8. IEEE (2020)

https://doi.org/10.1016/S0166-5316(98)00009-1
http://www.sciencedirect.com/science/article/pii/S0166531698000091
http://www.sciencedirect.com/science/article/pii/S0166531698000091
https://doi.org/10.1109/ESPT.2016.9
https://doi.org/10.1109/ESPT.2016.9
https://collaboration.opengroup.org/platform/hecewg
https://doi.org/10.1007/978-3-319-96983-1_2
https://doi.org/10.1109/CLUSTER.2018.00049
https://doi.org/10.1145/3149376
https://doi.acm.org/10.1145/3149376
https://doi.org/10.1145/1713072.1713080
https://doi.org/10.1145/1713072.1713080
https://doi.acm.org/10.1145/1713072.1713080
https://doi.org/10.2172/946036
https://doi.org/10.2172/946036
http://www.osti.gov/servlets/purl/946036-pnI90N/
https://doi.org/10.1145/3431379.3460637

	Analyzing Parallel Applications for Unnecessary I/O Semantics that Inhibit File System Performance
	1 Introduction
	2 Performance Critical Access Patterns
	3 Related Work
	4 Methodology
	5 Implementation
	5.1 Construction of the I/O Graph
	5.2 Identification of Concurrent I/O Sets
	5.3 Analysis of I/O Access Patterns and Their Semantics

	6 Experiments and Evaluation
	6.1 MADbench2
	6.2 HACC-IO

	7 Conclusion and Future Work
	References

