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Abstract. Short text classification is a crucial and challenging aspect
of Natural Language Processing. For this reason, there are numerous
highly specialized short text classifiers. A variety of approaches have been
employed in short text classifiers such as convolutional and recurrent net-
works. Also many short text classifier based on graph neural networks
have emerged in the last years. However, in recent short text research,
State of the Art (SOTA) methods for traditional text classification, par-
ticularly the pure use of Transformers, have been unexploited. In this
work, we examine the performance of a variety of short text classifiers
as well as the top performing traditional text classifier on benchmark
datasets. We further investigate the effects on two new real-world short
text datasets in an effort to address the issue of becoming overly depen-
dent on benchmark datasets with a limited number of characteristics.
The datasets are motivated from a real-world use case on classifying
goods and services for tax auditing. NICE is a classification system for
goods and services that divides them into 45 classes and is based on
the Nice Classification of the World Intellectual Property Organization.
The Short Texts Of Products and Services (STOPS) dataset is based on
Amazon product descriptions and Yelp business entries. Our experiments
unambiguously demonstrate that Transformers achieve SOTA accuracy
on short text classification tasks, raising the question of whether spe-
cialized short text techniques are necessary. The NICE dataset showed
to be particularly challenging and makes a good benchmark for future
advancements.

A preprint can be also found on arXiv [14]. Source code is available
here: https://github.com/FKarl/short-text-classification.
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1 Introduction

Text classification is a crucial aspect of Natural Language Processing (NLP), and
extensive research in this field is being conducted. Many researchers are working
to improve the speed, accuracy, or robustness of their algorithms. Traditional
text classification, however, does not take some traits into account that appear
in numerous real-world applications, such as short text. Therefore, studies have
been conducted specifically on short texts [38,47]. From user-generated content
like social media to business data like accounting records, short text covers a
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wide range of topics. For example, the division into goods and services (see
Sect. 4.1) is an important part of the tax audit. Currently, an auditor checks
whether the element descriptions match the appropriate class of good or service.
Since this can be very time-consuming, it is desirable to bring it into a semi-
automatic context with the help of classifiers. Also, the subdivision into more
specific classes can be useful for determining whether a given amount for an
entry in the accounting records is reasonable.

Since short texts are typically only one to two sentences long, they lack con-
text and therefore pose a challenge for text classification. In order to get better
results, many short text classifiers also operate in a transductive setup [38,41,43],
which includes the test set during training. However, as they need to be retrained
each time new data needs to be classified, those transductive models are not very
suitable for real-world applications. The results of both transductive and the gen-
erally more useful inductive short text classifier are typically unsatisfactory due
to the challenge that short text presents. Recent studies on short texts have
emphasized specialized models [33,36,38,41,43,47] to address the issues associ-
ated with the short text length. However, State of the Art (SOTA) text classifica-
tion methods, particularly the pure use of Transformers, have been unexploited.
In this work, the effectiveness on short texts is examined and tested by means of
benchmark datasets. We also introduce two new, realistic datasets in the domain
of goods and services descriptions. Our contributions are in summary:

– We provide a comparison of various modern text classification techniques. In
particular, specialized short text methods are compared with the top per-
forming traditional text classification models.

– We introduce two new real-world datasets in the goods and services domain
to cover additional dataset characteristics in a realistic use-case.

– Transformers achieve SOTA accuracy on short text classification tasks. This
questions the need of specialized short text classifier.

Below, we summarize the related work. Section 3 provides a description of
the models that were selected for our experiments. The experimental apparatus
is described in Sect. 4. An overview of the achieved results is reported in Sect. 5.
Section 6 discusses the results, before we conclude.

2 Related Work

Despite the fact that Bag of Words (BoW)-based models have long represented
the cutting edge in text classification, attention has recently shifted to sequence-
based and, more recently, graph-based concepts. However, BoW-based models
continue to offer a solid baseline [7]. For example in fastText [12] the average of
the trained word representations are used as text representation and then fed
into a linear classifier. This results in an efficient model for text classification.
To give an overview of the various concepts, Sect. 2.1 provides various works
in the field of sequence-based models, Sect. 2.2 discusses graph-based models,
and Sect. 2.3 examines how these concepts are applied to short text. Finally, a
summary of the findings from the related work is presented in Sect. 2.4.
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2.1 Sequence-Based Models

For any NLP task, Recurrent Neural Networks (RNN) and Long short-term
memory (LSTM) are frequently used and a logical choice because both mod-
els learn historical information while taking location information for all words
into account [17,23]. Since RNNs must be computed sequentially and cannot be
computed in parallel, the use of Convolutional Neural Networks (CNNs) is also
common [17,34]. The text must be represented as a set of vectors that are con-
catenated into a matrix in order to be used by CNNs. The standard CNN convo-
lution and pooling operations can then be applied to this matrix. TextCNN [15]
uses this in combination with pretrained word embeddings for sentence-level
classification tasks. While CNN-based models extract the characteristics from
the convolution kernels, the relationship between the input words is captured by
RNN-based models [17]. An important turning point in the advancement of NLP
technologies was the introduction of Bidirectional Encoder Representations from
Transformers (BERT) [35]. By performing extensive pre-training in an unsuper-
vised manner and automatically mining semantic knowledge, BERT learns to
produce contextualized word vectors that have a global semantic representation.

The effectiveness of BERT-like models for text classification is demonstrated
by Galke and Scherp [7].

2.2 Graph-Based Models

Recently, text classification has paid a lot of attention to graph-based models,
particularly Graph Neural Networks (GNNs) [3,28,37]. This is due to the fact
that tasks with rich relational structures benefit from the powerful represen-
tation capabilities of GNNs, which preserve global structure information [37].
The task of text classification offers this rich relational structure because text
can be modeled as edges and nodes in a graph structure. There are different
ways to represent the documents in a graph structure, but two main approaches
have emerged [37,38]. The first approach builds a graph for each document
using words as nodes and structural data, such as word co-occurence data, as
edges. However, only local structural data is used. The task is constructed as
a whole graph classification problem in order to classify the text. A popular
document-level approach is HyperGAT [5] which uses a dual attention mech-
anism and hypergraphs applied to documents to learn text embeddings. The
second approach creates a graph for the entire corpus using words and docu-
ments as nodes. The text classification task is now a node classification task
for the unlabeled document nodes. The drawback of this method is that mod-
els using it are inherently transductive. For example, TextGCN [42] uses this
concept by employing a standard Graph Convolutional Networks (GCN) on this
heterogeneous graph. Following TextGCN, Lin et al. [19] propose BertGCN, a
model that makes use of BERT to initialize representations for the document
nodes in order to combine the benefits of both the large-scale pretraining of
BERT and the transductive TextGCN. However, the increase provided by this
method is limited to datasets with long average text lengths. Zeng et al. [44]
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also experiment with combining TextGCN and BERT in the form of TextGCN-
Bert-serial-SB, a Simplified-Boosting Ensemble, where BERT is only trained on
the TextGCN’s misclassification. Which model is applied to which document is
determined by a heuristic based on the node degree of the test document. How-
ever, TextGCN-CNN-serial-SB, which substitutes TextCNN for BERT, yields
better results. By using a joint training mechanism, TextING [46] and BERT
are trained on sub-word tokens and base their predictions on the results of the
two models. In contrast to applying each model separately, this produces better
results. Another approach combining graph classifiers with BERT is ContTex-
tING [11]. ContTextING utilizes a joint training mechanism to create a uni-
fied model that incorporates both document-wise contextual information from a
BERT-style model and node interactions within a document through the use of
a GNN module. The predictions for the text classification task are determined
by combining the output from both of these modules.

2.3 Short Text Models

Of course, short texts can also be classified using the methods discussed above.
However, this is challenging because short texts tend to lack context and adhere
to less strict syntactic structure [38]. This has led to the emergence of special-
ized techniques that focus on improving the results for short text. Early works
focused on sentence classification using methods like Support Vector Machines
(SVM) [29]. A survey by Galke et al. [6] compared SVM and other classical
methods like Naive Bayes and kNN with multi-layer perceptron models (MLP)
on short text classification. Other works on sentence classification used Convolu-
tional Neural Networks (CNN) [13,36,45], which showed strong performance on
benchmark datasets. Recently, also methods exploiting graph neural networks
were adopted to the needs of short text. For instance, Heterogeneous Graph
Attention networks (HGAT) [41] is a powerful semi-supervised short text classi-
fier. This was the first attempt to model short texts as well as additional informa-
tion like topics gathered from a Latent Dirichlet Allocation (LDA) [1] and entities
retrieved from Wikipedia with a Heterogeneous Information Network (HIN). To
achieve this, a HIN embedding with a dual-level attention mechanism for nodes
and their relations was used. For the semantic sparsity of short text, both the
additional information and the captured relations are beneficial. A transductive
and an inductive HGAT model were released, with the transductive model being
better on every dataset. NC-HGAT [33] expands the HGAT model to produce a
more robust variant. Neighbor contrastive learning is based on the premise that
documents that are connected have a higher likelihood of sharing a class label
and, as a result, should therefore be closer in feature space. In order to represent
the additional information, SHINE [38] also makes use of a heterogenous graph.
In contrast, SHINE generates component graphs in the form of word, entity,
and Part Of Speech (POS) graphs and creates a dynamically learned short doc-
ument graph by employing hierarchical pooling over all component graphs. In
the semi-supervised setting, SHINE outperforms HGAT as a strong transduc-
tive model. SimpleSTC (Simple Short Text Classification) [48] is a graph-based
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method for short-text classification similar to SHINE. But instead of construct-
ing the word-graph only over the data corpus itself, SimpleSTC employs a global
corpus to create a reference graph that shall enrich and help to understand the
short text in the smaller corpus. As global corpus, articles from Wikipedia are
used. The authors sample 20 labeled documents per class as training set and
validation set. Short-Text Graph Convolutional Networks (STGCN) [43] is an
additional short text classifier. A graph of topics, documents, and unique words
is the foundation of STGCN. Although the STGCN results by themselves are not
particularly strong, the impact of pre-trained word vectors obtained by BERT
was also examined. The classification of the STGCN is significantly enhanced
by the combination of STGCN with BERT and a Bi-LSTM.

2.4 Summary

Graph neural network-based methods are widely used in short text classification.
However, in recent short text research, SOTA text classification methods, par-
ticularly the pure use of Transformers, have been unexploited. The majority of
short text models are transductive. The crucial drawback of being transductive
is that every time new data needs to be classified, the model must be retrained.

3 Selected Models for Our Comparison

We begin with models for short text classification in Sect. 3.1 and then Sect. 3.2
introduces a selection of top-performing models for text classification. Follow-
ing Galke and Scherp [7], we have excluded works that employ non-standard
datasets only, use different measures, or are otherwise not comparable.For exam-
ple, regarding short text classification there are works that are applied on non-
standard datasets only [10,49].

3.1 Models for Short Text Classification

The models listed below either make claims about their ability to categorize
short texts or were designed with that specific goal. The SECNN [36] is a
text classification model built on CNNs that was created specifically for short
texts with few and insufficient semantic features. Wang et al. [36] suggested
four components to address this issue. In order to achieve better coverage on
the word vector table, they used an improved Jaro-Winkler similarity during
preprocessing to identify any potential spelling mistakes. Second, they use a
CNN model built on the attention mechanism to look for words that are related.
Third, in order to accomplish the goal of short text semantic expansion, the
external knowledgebase Probase [39] is used to enhance the semantic features of
short text. Finally, the classification process is performed using a straightforward
CNN with a Softmax output layer.
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The Sequential Graph Neural Network (SGNN) [47] is a GNN-based model
that emphasizes the propagation of features based on sequences. By training each
document as a separate graph, it is possible to learn the words’ local and sequen-
tial features. GloVe’s [24] pre-trained word embedding is utilized as a semantic
feature of words. In order to update the feature matrix for each document graph,
a Bi-LSTM is used to extract the contextual feature of each word. After that, a
simplified GCN aggregates the features of neighboring word nodes. Additionally,
Zhao et al. [47] introduce two variants: Extended-SGNN (ESGNN), in which
the initial contextual feature of words is preserved, and C-BERT, in which the
Bi-LSTM is swapped for BERT.

The Deep Attention Diffusion Graph Neural Network (DADGNN) [22]
is a graph-based method that combats the oversmoothing problem of GNNs
and allows stacking more layers by utilizing attention diffusion and decoupling
techniques. This decoupling technique is also very advantageous for short texts
because it obtains distinct hidden features in deep graph networks.

The Long short-term memory (LSTM) [9], which is frequently used in text
classification, has a bidirectional variant called Bi-LSTM [20]. Due to its strong
results for short texts [23,47] and years of use as the SOTA method for many
tasks, this model is a good baseline for our purpose.

3.2 Top-Performing Models for Text Classification

An overview of the top text classification models that excel on texts of all lengths
and were not specifically created with short texts in mind is provided in this
section. We employ the base models for the Transformers.

The Bidirectional Encoder Representations from Transformers (BERT) [4]
is a language representation model that is based on the Transformer architec-
ture [35]. Encoder-only models, such as BERT, rely solely on the encoder com-
ponent of the Transformer architecture, whereby the text sequences are con-
verted into rich numerical representations [34]. These models are well suited
for text classification due to this representation. BERT is designed to incorpo-
rate a token’s left and right contexts into its computed representation. This is
commonly referred to as bidirectional attention.

The Robustly optimized BERT approach (RoBERTa) [21] is a systemat-
ically improved BERT adaptation. In the RoBERTa model, the pre-training
strategy was changed and training was done on larger batches with more data,
to increase BERT’s performance.

To improve BERT and RoBERTa models, Decoding-enhanced BERT with
disentangled attention (DeBERTa) [8] makes two architectural adjustments.
The first is the disentangled attention mechanism, which encodes the content
and location of each word using two vectors. The content of the token at posi-
tion i is represented by Hi and the relative position i|j between the token at
position i and j are represented by Pi|j . The equation for determining the cross
attention score is as follows: Ai,j = HiH

T
j + HiP

T
j|i + Pi|jHT

j + Pi|jPT
j|i. The

second adjustment is an enhanced mask decoder that uses absolute positions
in the decoding layer to predict masked tokens during pre-training. For masked
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token prediction, DeBERTa includes the absolute position after the transform
layers but before the softmax layer. In contrast, BERT incorporates the position
embedding into the input layer. As a result, DeBERTa is able to capture the
relative position in all Transformer layers.

Sun et al. [32] proposed ERNIE 2.0, a continuous pre-training framework
that builds and learns pre-training tasks through continuous multi-task learning.
This allows the extraction of additional valuable lexical, syntactic, and semantic
information in addition to co-occurring information, which is typically the focus.

The concept behind DistilBERT [26] is to leverage knowledge distillation
to produce a more compact and faster version of BERT while retaining most
of its language understanding capacities. DistilBERT reduces the size of BERT
by 40%, is 60% faster, and still retains 97% of its language understanding capa-
bilities. In order to accomplish this, DistilBERT optimizes the following three
objectives while using the BERT model as a teacher: (1) Distillation loss: The
model was trained to output probabilities equivalent to those of the BERT base
model. (2) Masked Language Modeling (MLM): As described by Devlin et al. [4]
for the BERT model, the common pre-training using masked language modeling
is being used.(3) Cosine embedding loss: The model was trained to align the
DistilBERT and BERT hidden state vectors.

A Lite BERT (ALBERT) [16] is a Transformer that uses two parameter-
reduction strategies to save memory and speed up training by sharing the weights
of all layers across its Transformer. This model is therefore particularly effective
for longer texts. During pretraining, ALBERTv2 employs MLM and Sentence-
Order Prediction (SOP), which predicts the sequence of two subsequent text
segments.

WideMLP [7] is a BoW-Based Multilayer Perceptron (MLP) with a single
wide hidden layer of 1, 024 Rectified Linear Units (ReLUs). This model serves
as a useful benchmark against which we can measure actual scientific progress.

InducTive Graph Convolutional Networks for Text classification (InducT-
GCN) [37] is a GCN-based method that categorically rejects any information
or statistics from the test set. To achieve the inductive setup, InducT-GCN
represents document vectors with a weighted sum of word vectors and applies
TF-IDF weights instead of representing document nodes with one-hot vectors.
A two-layer GCN is employed for training, with the first layer learning the word
embeddings and the second layer in the dimension of the dataset’s classes outputs
into a softmax activation function.

4 Experimental Apparatus

4.1 Datasets

First, we describe the benchmark datasets. Second, we introduce our new
datasets in the domain of goods and services. The characteristics are denoted in
Table 1.
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Table 1. Characteristics of short text datasets. #C refers to the number of classes.
Avg. L is the average document length.

Benchmarks #Doc #Train #Test #C Avg. L

R8 7,674 5,485 2,189 8 65.72
MR 10,662 7,108 3,554 2 20.39
SearchSnippets 12,340 10,060 2,280 8 18.10
Twitter 10,000 7,000 3,000 2 11.64
TREC 5,952 5,452 500 6 10.06
SST-2 9,613 7,792 1,821 2 20.32
Goods & Services #Doc #Train #Test #C Avg. L
NICE-45 9,593 6,715 2,878 45 3.75
NICE-2 9,593 6,715 2,878 2 3.75
STOPS-41 200,341 140,238 60,103 41 5.64
STOPS-2 200,341 140,238 60,103 2 5.64

Benchmark Datasets. Six short text benchmark datasets, namely R8, MR,
SearchSnippets, Twitter, TREC, and SST-2, are used in our experiments. The
following gives a detailed description of them. R8 is an 8-class subset of the
Reuters 21578 news dataset1. It is not a classical short text scenario with an
average length of 65.72 tokens but offers the ability to set the methods in com-
parison to traditional text classification. MR2 is a widely used dataset for text
classification. It contains movie-review documents with an average length of
20.39 tokens and is therefore suitable for short text classification. The dataset
SearchSnippets3, which is made up of snippets returned by a search engine
and has an average length of 18.10 tokens, was released by Phan et al. [25].
Twitter4 is a collection of 10, 000 tweets that are split into the categories neg-
ative and positive based on sentiment. The length of those tweets is on average
11.64 tokens. TREC5, which was introduced by Li and Roth [18], is a ques-
tion type classification dataset with six classifications for questions. It provides
the shortest texts in our collection of benchmark datasets, with an average text
length of 10.06 tokens. SST-26 [30] or SST-binary is a subset of the Stanford
Sentiment Treebank, a fine-grained sentiment analysis dataset, in which neutral
reviews have been removed and the data has either a positive or negative label.
The average number of tokens in the texts is 20.32.

1 http://www.daviddlewis.com/resources/testcollections/reuters21578/.
2 https://www.cs.cornell.edu/people/pabo/movie-review-data/.
3 http://jwebpro.sourceforge.net/data-web-snippets.tar.gz.
4 https://www.nltk.org/howto/twitter.html#Using-a-Tweet-Corpus.
5 https://cogcomp.seas.upenn.edu/Data/QA/QC/.
6 https://nlp.stanford.edu/sentiment/.

http://www.daviddlewis.com/resources/testcollections/reuters21578/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
https://www.nltk.org/howto/twitter.html#Using-a-Tweet-Corpus
https://cogcomp.seas.upenn.edu/Data/QA/QC/
https://nlp.stanford.edu/sentiment/
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Fig. 1. Class distribution of our new datasets (separated by train and test split)

Goods and Services Datasets. In order to evaluate the performance on data
with real world applications, we introduce two new datasets that are focused on
the distinction between goods and services. Although there are already datasets
for product classification, such as the WDC-LSPM7, to the best of our knowl-
edge, our datasets are the first to combine goods and services. NICE is a clas-
sification system for goods and services that divides them into 45 classes and is
based on the Nice Classification8 of the World Intellectual Property Organiza-
tion (WIPO). There are 11 classes for various service types and 34 categories for
goods. With 9, 593 documents, NICE-45 is comparable in size to the benchmark
datasets. This dataset, which has texts with an average length of 3.75 tokens,
is an excellent example of extremely short text. For the division into goods and
services, there is also the binary version NICE-2. Short Texts Of Products
and Services (STOPS) is the second dataset we offer. With 200, 341 docu-
ments and an average length of 5.64 tokens, STOPS-41 is a reasonably large
dataset. The data set was derived from a potential use case in the form of Ama-
zon descriptions and Yelp business entries, making it the most realistic. Like
NICE, STOPS has a binary version STOPS-2. Both datasets provide novel char-
acteristic properties that the benchmark datasets did not cover. In particular,
the number of fine-granular classes presents a challenge that is not addressed
by common benchmarks. For details on the class distribution of these datasets,
please refer to Fig. 1.

4.2 Preprocessing

To create NICE, the WIPO9 classification data was converted to lower case, all
punctuation was removed, and side information that was enclosed in brackets was
7 http://webdatacommons.org/largescaleproductcorpus/.
8 https://www.wipo.int/classifications/nice/en/.
9 https://www.wipo.int/nice/its4nice/ITSupport_and_download_area/20220101/

MasterFiles/index.html.

http://webdatacommons.org/largescaleproductcorpus/
https://www.wipo.int/classifications/nice/en/
https://www.wipo.int/nice/its4nice/ITSupport_and_download_area/20220101/MasterFiles/index.html
https://www.wipo.int/nice/its4nice/ITSupport_and_download_area/20220101/MasterFiles/index.html
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also removed. Additionally, accents were dropped. Following a random shuffle,
the data was divided into 70% train and 30% test.

As product and service entries for STOPS, we use the product descriptions
of MAVE10 [40] and the business names of YELP11. Due to the different data
sources, these also had to be preprocessed differently. All classes’ occurrences in
the MAVE data were counted, and 5, 000 sentences from each of the 20 most
common classes were chosen. The multi-label categories for the YELP data were
broken down into a list of single label categories, and the sentences were then
mapped to the most common single label that each one has. In order to prevent
any label from taking up too much of the dataset, the data was collected such that
there is a maximum of 1, 200 documents per label. After that, all punctuation was
dropped, the data was converted to lower case, and accents were also dropped.
The data was split into train and test in a 70:30 ratio after being randomly
shuffled.

4.3 Procedure

The best short text classifier and text classification models were retrieved from
the literature (see description of the models in Sect. 3). The accuracy scores were
extracted in order to establish a comparison. Own experiments, particularly
using various Transformers, were conducted in order to compare them. Inves-
tigations into the impacts of hyperparameters on short texts were performed.
More details about these are provided in Sect. 4.4. In order to test the methods
in novel contexts, we also created two new datasets, whereby STOPS stands out
due to its much higher quantity of documents.

4.4 Hyperparameter Optimization

Our experiments for BERT, DistilBERT, and WideMLP used the hyperparam-
eter from Galke and Scherp [7]. The parameters for BERT and DistilBERT are
a learning rate of 5 · 10−5, a batch size of 128, and fine-tuning for 10 epochs.
WideMLP was trained for 100 epochs with a learning rate of 10−3, a batch size
of 16, and a dropout of 0.5. For ERNIE 2.0 and ALBERTv2, we make use of the
SST-2 values that Sun et al. [32] and Lan et al. [16], respectively, published. For
our hyperparameter selection for DeBERTa and RoBERTa, we used the BERT
values from Galke and Scherp [7] as a starting point and investigated the effect
of smaller learning rates. This resulted in learning rates of 2 ·10−5 for DeBERTa
and 4 · 10−5 for RoBERTa while maintaining the other parameters. For compar-
ison, we followed the same procedure to create ERNIE 2.0 (optimized), which
yields a learning rate of 25 ·10−6. The Bi-LSTM values from Zhao et al. [47] were
used for both the LSTM and the Bi-LSTM model. We used DADGNN with the
default parameters of 0.5 dropout, 10−6 weight decay, and two attention heads
for all datasets.

10 https://github.com/google-research-datasets/MAVE.
11 https://www.yelp.com/dataset/download.

https://github.com/google-research-datasets/MAVE
https://www.yelp.com/dataset/download
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4.5 Metrics

Accuracy is used to measure the classification of short text. For multi-class cases,
the subset accuracy is calculated.

5 Results

The accuracy scores for the text classification models on the six benchmark
datasets are shown in Table 2. The findings demonstrate that the relatively
straightforward models LSTM, Bi-LSTM, and WideMLP provide a strong base-
line across all datasets. This comparison clearly demonstrates the limitations of
some models, with InducT-GCN falling short in all datasets except SearchSnip-
pets, SECNN underperforming on TREC, and DADGNN producing weak MR
results in our own experiment. The Transformer models, on the other hand, are
the best performing across all datasets with the exception of SearchSnippets.
With consistently strong performance across all datasets, DeBERTa stands out
in particular. The graph-based models from Zhao et al. [47], SGNN, ESGNN,
and C-BERT, all perform well for the datasets for which results are available
and ESGNN even outperforms all other models for SearchSnippets. It is impor-
tant to note that Zhao et al. [47] used a modified training split and additional
preprocessing. While an increase of about 5 percentage points for MR could
be obtained by extending ESGNN with BERT in C-BERT, the increase is not
noticeable for other datasets. When applied to short texts, the inductive models
even outperform transductive models. On Twitter, ERNIE 2.0 and ALBERTv2
reach a performance of 99.97%, and when using BERT on the TREC dataset,
a performance of 99.4% is obtained. Non-Transformer models also perform well
on TREC, although Transformers outperform them. For the graph-based models
SHINE and InducT-GCN, we also calculated the mean and standard deviation
of the accuracy scores across 5 runs. This is motivated from the observation that
models based on graph-neural networks are susceptible to the initialization of
the embeddings [27]. SHINE had a generally high standard deviation of up to
nearly 5 points, indicating greater variance in its performance. In comparison,
InducT-GCN has a rather small variance of always below 1 point.

The accuracy results for our newly introduced datasets, NICE and STOPS,
are shown in Table 3. New characteristics covered by NICE and STOPS include
shorter average lengths and the ability to distinguish between classes at a fine-
granular level in NICE-45 and STOPS-41. The investigation of more docu-
ments is also conducted in the case of STOPS. As a result, NICE-45 and
STOPS-41 reveal that DADGNN encounters issues when dealing with more
classes, even falling around 20 and 60 percent points behind the baseline mod-
els. While still performing worse than the baseline models, InducT-GCN out-
performs DADGNN on all four datasets. Transformers once again demonstrate
their strength and rank as the top performing models across all datasets on
this dataset. There are also significant drops. ERNIE 2.0 performs worse than
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Table 2. Accuracy on short text classification datasets. The “Short?” column indicates
whether the model makes claims about its ability to categorize short texts. Provenance
refers to the source of the accuracy scores.

Inductive Models Short? R8 MR Snippets Twitter TREC SST-2 Provenance

Transformer Models
BERT N 98.17a 86.94 88.20 99.96 99.4 91.37 Own experiment
RoBERTa N 98.17a 89.42 85.22 99.9 98.6 94.01 Own experiment
DeBERTa N 98.45a 90.21 86.14 99.93 98.8 94.78 Own experiment
ERNIE 2.0 N 98.04a 88.97 89.12 99.97 98.8 93.36 Own experiment
ERNIE 2.0 (optimized) N 98.17a 89.53 89.17 99.97 99 94.07 Own experiment
DistilBERT N 97.98a 85.31 89.69 99.96 99 90.49 Own experiment
ALBERTv2 N 97.62 86.02 87.68 99.97 98.6 91.54 Own experiment
BoW Models
SVM Y — — — — 95f — Silva et al. [29]
WideMLP N 96.98 76.48 67.28 99.86 97 82.26 Own experiment
fastText N 96.13 75.14 88.56d — — — Zhao et al. [47]
Graph-based Models
HGATb Y — 62.75 82.36 63.21 — — Yang et al. [41]
NC-HGATb Y — 62.46 — 63.76 — — Sun et al. [33]
SGNNc Y 98.09 80.58 90.68d — — — Zhao et al. [47]
ESGNNc Y 98.23 80.93 90.80d — — — Zhao et al. [47]
C-BERT (ESGNN+BERT)c Y 98.28 86.06 90.43d — — — Zhao et al. [47]
DADGNN Y 98.15 78.64 — — 97.99 84.32 Liu et al. [22]
DADGNN Y 97.28 74.54 84.91 98.16 97.54 82.81 Own experiment
HyperGAT N 97.97 78.32 — — — — Ding et al. [5]
InducT-GCN N 96.68 75.34 76.67 88.56 92.50 79.97 Own experiment
ConTextING-BERT N 97.91 86.01 — — — — Huang et al. [11]
ConTextING-RoBERTa N 98.13 89.43 — — — — Huang et al. [11]
CNN and LSTMs
SECNNc Y — 83.89 — — 91.34 87.37 Wang et al. [36]
MGNC-CNN Y — — — — 95.52 88.30g Zhang et al. [45]
DCNN Y — 86.80h — — 93 — Kalchbr. et al. [13]
LSTM (BERT) Y 94.28 75.10 65.13 99.83 97 81.38 Own experiment
Bi-LSTM (BERT) Y 95.52 75.30 66.79 99.76 97.2 80.83 Own experiment
LSTM (GloVe) Y 96.34 74.99 67.67 95.23 97.4 79.95 Own experiment
Bi-LSTM (GloVe) Y 96.84 75.32 68.15 95.53 97.2 80.17 Own experiment
Bi-LSTM (GloVe) Y 96.31 77.68 84.81d — — — Zhao et al. [47]
Transductive Models Short? R8 MR Snippets Twitter TREC SST-2 Provenance
Graph-based Models
SHINEe Y — 64.58 82.39 72.54 — — Wang et al. [38]
SHINE Y 79.80 62.05 82.14 70.64 79.90 61.71 Own experiment
STGCN Y 97.2 78.2 — — — — Ye et al. [43]
STGCN+BiLSTM Y — 78.5 — — — — Ye et al. [43]
STGCN+BERT+BiLSTM Y 98.5 82.5 — — — — Ye et al. [43]
SimpleSTCi Y — 62.27 80.96 62.19 — — Zheng et al. [48]
TextGCN N 97.07 76.74 83.49 — — — Zhao et al. [47]
TextGCN N 97.07 76.74 — — 91.40 81.02 Liu et al. [22]
BertGCN N 98.1 86.0 — — — — Lin et al. [19]
RoBERTaGCN N 98.2 89.7 — — — — Lin et al. [19]
TextGCN-BERT-serial-SB N 97.78 86.69 — — — — Zeng et al. [44]
TextGCN-CNN-serial-SB N 98.53 87.59 — — — — Zeng et al. [44]
a With a batch size of 32 and for DeBERTa of 16.
b With only 40 randomly selected documents per class.
c Not reproducible. Authors have been contacted twice without a response.
d Using a modified training split of 8, 636 training and 3, 704 test documents and further
preprocessing.
e Employing very low train ratios (0.38% to 6.22%).
f Uni-gram model with extensive pre-processing, use of WordNet, etc. and 60 hand-coded
rules
g Removed phrases of length less than 4 from the training set
h Using a slightly different split of 6,920 sentences for training, 872 for development, and
1,821 for test
i Samples 20 labeled documents per class as training set and validation set
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Table 3. Accuracy on our own short text classification datasets. The “Short?” column
indicates whether the model makes claims about its ability to categorize short texts.
Provenance refers to the source of the accuracy scores.

Inductive Models Short Text NICE-45 NICE-2 STOPS-41 STOPS-2

Transformer Models
BERT N 72.79 99.72 89.4 99.87
RoBERTa N 66.09 99.76 89.56 99.86
DeBERTa N 59.42 99.72 89.73 99.85
ERNIE 2.0 N 45.55 99.69 89.39 99.85
ERNIE 2.0 (optimized) N 67.65 99.72 89.65 99.88
DistilBERT N 69.28 99.75 89.32 99.85
ALBERTv2 N 59.24 99.51 88.58 99.83
BoW Models
WideMLP N 58.99 96.76 88.2 97.05
Graph-based Models
DADGNN Y 28.51 91.15 26.75 97.48
InducT-GCN N 47.06 94.98 86.08 97.74
CNN and LSTMs
LSTM (BERT) Y 47.81 96.63 86.27 96.05
Bi-LSTM (BERT) Y 52.39 96.63 85.93 98.54
LSTM (GloVe) Y 52.64 96.17 87.4 99.46
Bi-LSTM (GloVe) Y 55.35 95.93 87.38 99.43

the baseline models with 45.55% on NICE-45. However, ERNIE 2.0 (opti-
mized), which uses different hyperparameter values (see Sect. 4.4), comes in third
with 67.65%.

6 Discussion

Graph-based models are computationally expensive because they require not
only the creation of the graph but also its training, which can be resource- and
time-intensive, especially for word-document graphs with O(N2) space [7]. On
STOPS, this drawback becomes very apparent. We could observe that DADGNN
required roughly 30 hours of training time, while BERT only took 30 minutes
to fine-tune with the same resources. Although in the case of BERT, the pre-
training was already very expensive, transfer learning allows this effort to be used
for a variety of tasks. Nevertheless, the Transformers outperform the inductive
graph-based models as well as the short text models, with just one exception.
The best model for SearchSnippets is ESGNN, but additional preprocessing and
a modified training split were employed. Our Bi-LSTM results, obtained without
additional preprocessing, differ by 16.66 percentage points from the Bi-LSTM
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results from Zhao et el. [47]. This indicates that preprocessing, and not a better
model, is primarily responsible for the strong outcomes of the SearchSnippets
experiments. Another interesting discovery can be made using the sentiment
datasets. In comparison to other datasets, the Transformers outperform graph-
based models that do not utilize a Transformer themselves by a large margin.
This demonstrates that graph-based models may not be as effective at senti-
ment prediction tasks. In contrast, the CNN-based models show strong perfor-
mance on the sentiment analysis task SST-2. Still, the best CNN model is more
than 6 points below the best transformer. However, it should be noted that not
all Transformers are consistently excellent. For instance, for NICE-45, one can
observe a lower performance with ERNIE 2.0. But the absence of this perfor-
mance decrease in our optimized version of ERNIE 2.0 (optimized) suggests that
choosing suitable hyperparameters is crucial in this case.

6.1 Key Results

Our experiments unambiguously demonstrate that Transformers achieve SOTA
accuracy on short text classification tasks. This raises the question of whether
specialized short text techniques are necessary given that the performance of the
existing models is insufficient. This observation is especially interesting because
many of the short text models used are from 2021 [22,36,41,47] or 2022 [33].
Most short text models attempt to enrich the documents with some kind of
external context, such as a knowledge base or POS tags. However, one could
argue that Transformers implicitly contain context in their weights through their
pre-training.

Those short text models that compare themselves to Transformers assert
that they outperform them. For instance, Ye et al. [43] claim to outperform
BERT by 2.2 percentage points on MR, but their fine-tuned BERT only achieves
80.3%. In contrast, our own experiments show that BERT achieves 86.94%.
With 85.86% on MR, Zhao et al. [47] achieve better BERT results, but only
to beat it by a meager 0.2% with C-BERT. Given the low surplus, they would
no longer outperform it with a marginally better selection of hyperparameters
for BERT. Therefore, it is reasonable to assume that the importance of good
hyperparameters for Transformers is underestimated and that they are often
not properly optimized. ERNIE 2.0 (optimized), which outperforms ERNIE 2.0
on every dataset, also demonstrates the effect of better hyperparameters. Finally,
Zhao et al. [47] is already outperformed by other transformers like RoBERTa and
DeBERTa by 3 and 4 points, respectively.

Additionally, there is a need for new short text datasets because the widely
used benchmark datasets share many characteristics and fall short in many use
cases. The common benchmark datasets all contain around 10, 000 documents,
distinguish only a few classes, and frequently have a similar average length.
Furthermore, many of them cover the same tasks. For instance, MR, Twitter,
and SST-2 all perform sentiment prediction, which makes sense given how much
short text is produced by social media. In this paper, we introduce two new
datasets with distinctive attributes to cover more cases in NICE and STOPS.
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New and intriguing findings are produced by the new characteristics that are
investigated using these datasets. Particularly, the ability to distinguish between
classes at a fine-granular level reveals the shortcomings of various models, like
DADGNN or ERNIE 2.0. NICE-45 in particular proved to be challenging for all
models, making it a good benchmark for future advancements.

6.2 Threats to Validity

In our study, each experiment was generally conducted once. The rationale is
the extremely low standard deviation for text classification tasks observed in
previous studies [7,22,47]. However, it has been reported in the literature on
models using graph neural networks (GNN) that they generally have high stan-
dard deviation in their performance, which has been attributed among others to
the influence of the random initialization in the evaluation [27]. Thus, we have
run our experiments for SHINE and InducT-GCN five times and report aver-
ages and standard deviation. The high standard deviation observed in SHINE’s
performance adds to the evidence of the need for caution when interpreting the
results of GNNs [27].

We acknowledge that STOPS contains user-generated labels, some of which
may not be entirely accurate. However, given that this occurs frequently in
numerous use cases, it is also crucial to test the models in these scenarios.

6.3 Parameter Count of Models

Table 4 lists the parameter counts of selected Transformer models, the BoW-
based baseline methods WideMLP, and graph-based methods used in our exper-
iments. Generally, the top performing Transformer models have a similar size
between 110M to 130M parameters. Although DistilBERT is only have of that
size and ALBERTv2 only about a tens, our experiments show still compara-
ble accuracy scores on R8, Snippets, Twitter, and TREC. ALBERTv2 with its
12M parameters outperforms the WideMLP baseline with 31.3M parameters on
all datasets, some with a large margin. The graph-based model ConTextING-
RoBERTa has a similar parameter count compared to the pure Transformer mod-
els, since the RoBERTa transformer is used internally. It is the top-performer
among the graph-based models on R8 and MR but cannot outperform the pure
Transformer models.

6.4 Generalization

As we cover in our experiments a range of diverse domains, with sentiment
analysis on various themes (MR, SST-2, Twitter), question type classification
(TREC), news (R8), and even search queries (SearchSnippets), we expect to
find equivalent results on other short text classification datasets. Additionally,
the categorization of goods and services is covered by our new datasets NICE
and STOPS. They include additional features not covered by the benchmark
datasets, including a significantly larger amount of training data in STOPS, a



118 F. Karl and A. Scherp

Table 4. Parameter counts for selected methods used in our experiments

Model #parameters

Transformer models
BERT 110M
RoBERTA 123M
DeBERTA 134M
ERNIE 2.0 110M
DistilBERT 66M
ALBERTv2 12M
BoW-based methods
WideMLP 31.3M
Graph-based methods
HyperGAT LDA parameters + 3.1M
ConTextING-RoBERTa 129M

shorter average length, and the capacity to differentiate between a wider range
of classes. By using an example from a business problem, STOPS specifically
demonstrates how the knowledge gained here can be applied in corporate use.

In this work, we cover a variety of models for each architecture, particularly
the most popular and best-performing ones. Our findings are consistent with the
studies by Galke and Scherp [7], which demonstrate the tremendous power of
Transformers for traditional text classification.

7 Conclusion and Future Work

Our experiments unequivocally demonstrate the outstanding capability of Trans-
formers for short text classification tasks. Additional research on our newly
released datasets, NICE and STOPS, supports these findings and highlights the
issue of becoming overly dependent on benchmark datasets with a limited num-
ber of characteristics. In conclusion, our study raises the question of whether
specialized short text techniques are required given the lower performance of
current models.

Future research on improving the performance of Transformers on short text
could be to do pre-training on short texts or on in-domain texts (i.e., pre-training
in the same domain as the target task) [2,31,34], multi-task fine-tuning [31,34],
or an ensemble of multiple Transformer models [50].
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