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Preface

The International Cross-Domain Conference for Machine Learning & Knowledge
Extraction (CD-MAKE) is a joint effort of IFIP TC 5, TC 12, IFIP WG 8.4, IFIP WG
8.9 and IFIP WG 12.9 and is held in conjunction with the International Conference on
Availability, Reliability and Security (ARES) – this time in beautiful Benevento, Italy.
Thanks to the end of the Corona Pandemic, which affected us all heavily, we are all
happy that we can meet all our international colleagues and friends in-vivo again.

For those who are new to our traditional conference: The letters CD in CD-MAKE
stand for “Cross-Domain” and describe the integration and appraisal of different fields
and application domains to provide an atmosphere to foster different perspectives and
opinions.We are strongly convinced that exactly this cross-domain approach is very fruit-
ful for new developments and novel discoveries. The conference fosters an integrative
machine learning approach, considering the importance of data science and visualiza-
tion for the algorithmic pipeline with a strong emphasis on privacy, data protection,
safety and security. It is dedicated to offer an international platform for novel ideas
and a fresh look at methodologies to put crazy ideas into business for the benefit of
humans. Serendipity is a desired effect, leading to cross-fertilization of methodologies
and transfer of algorithmic developments.

The acronym MAKE stands for “MAchine Learning & Knowledge Extraction”, a
field of Artificial Intelligence (AI) that, while quite old in its fundamentals, has just
recently begun to thrive based on both novel developments in the algorithmic area and
the availability of vast computing resources at a comparatively low cost.

Machine learning (ML) studies algorithms that can learn fromdata to gain knowledge
from experience and to generate decisions and predictions. A grand goal is to understand
intelligence for the design and development of algorithms that work autonomously (ide-
ally without a human-in-the-loop) and can improve their learning behaviour over time.
The challenge is to discover relevant structural and/or temporal patterns (“knowledge”)
in data, which is often hidden in arbitrarily high-dimensional spaces, and thus simply
not accessible to humans. Knowledge Extraction is one of the oldest fields in AI and is
seeing a renaissance, particularly in the combination of statistical methods with classical
ontological approaches.

AI is currently undergoing a kind of Cambrian explosion and is the fastest growing
field in computer science today thanks to the successes in machine learning to help to
solve real-world problems. There are many application domains, e.g., in agriculture,
climate research, forestry, etc. with many use cases from our daily lives which can be
useful to help to solve various problemsExamples include recommender systems, speech
recognition, autonomous driving, cyber-physical systems, robotics, etc.

However, in our opinion the grand challenges are in sensemaking, in context under-
standing, and in decision making under uncertainty, as well as solving the problem of
human interpretability, explainability and verification.
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Our real world is full of uncertainties and probabilistic inference has enormously
influenced AI generally and ML specifically. The inverse probability allows one to infer
unknowns, to learn from data and to make predictions to support decision-making.
Whether in social networks, recommender systems, health applications or industrial
applications, the increasingly complex data sets require a joint interdisciplinary effort
bringing the human-in-control and to foster ethical and social issues, accountability,
retractability, explainability, causability and privacy, safety and security!

A few words about IFIP and the importance of it: IFIP – the International Federation
for Information Processing – is the leading multi-national, non-governmental, apolitical
organization in Information & Communications Technologies and Computer Sciences.
IFIP is recognized by the United Nations (UN) and was established in the year 1960
under the auspices of UNESCO as an outcome of the first World Computer Congress,
held in Paris in 1959.

IFIP is incorporated in Austria by decree of the Austrian Foreign Ministry (20th
September 1996, GZ 1055.170/120-I.2/96), granting IFIP the legal status of a non-
governmental international organization under the Austrian Law on the Granting of
Privileges to Non-Governmental International Organizations (Federal Law Gazette
1992/174). IFIP brings together more than 3500 scientists without boundaries from
both academia and industry, organized in more than 100 Working Groups (WGs) and
13 Technical Committees (TCs).

To acknowledge all those who contributed to the efforts and stimulating discussions
would be impossible in a preface like this. Many people contributed to the development
of this volume, either directly or indirectly, so it would be completely impossible to list
all of them.We herewith thank all local, national and international colleagues and friends
for their positive and supportive encouragement. Finally, yet importantly, we thank the
Springer management team and the Springer production team for their professional
support.

Thank you to all! Let’s MAKE it cross-domain!

Andreas Holzinger
Peter Kieseberg
Federico Cabitza

Andrea Campagner
Edgar Weippl
A Min Tjoa
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Controllable AI - An Alternative
to Trustworthiness in Complex AI
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Abstract. The release of ChatGPT to the general public has sparked
discussions about the dangers of artificial intelligence (AI) among the
public. The European Commission’s draft of the AI Act has further
fueled these discussions, particularly in relation to the definition of AI
and the assignment of risk levels to different technologies. Security con-
cerns in AI systems arise from the need to protect against potential
adversaries and to safeguard individuals from AI decisions that may harm
their well-being. However, ensuring secure and trustworthy AI systems is
challenging, especially with deep learning models that lack explainabil-
ity. This paper proposes the concept of Controllable AI as an alternative
to Trustworthy AI and explores the major differences between the two.
The aim is to initiate discussions on securing complex AI systems with-
out sacrificing practical capabilities or transparency. The paper provides
an overview of techniques that can be employed to achieve Controllable
AI. It discusses the background definitions of explainability, Trustworthy
AI, and the AI Act. The principles and techniques of Controllable AI are
detailed, including detecting and managing control loss, implementing
transparent AI decisions, and addressing intentional bias or backdoors.
The paper concludes by discussing the potential applications of Control-
lable AI and its implications for real-world scenarios.

Keywords: Artificial Intelligence · Digital Transformation ·
Robustness · Trustworthy AI · Explainability · Explainable AI ·
Safety · Security · AI risks · AI threats
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2 P. Kieseberg et al.

1 Introduction and Motivation

More than any other subject, Artificial Intelligence (AI) has experienced many
ups and downs since its formal introduction as an academic discipline six decades
ago. The success of the digital computer [9] along with the remarkable achieve-
ments in statistical data-driven machine learning (ML) have rekindled signifi-
cant interest in digitalization generally and AI specifically. Two key factors have
contributed to its practical success: the availability of big data and the growing
computational power. Around 2010, a breakthrough occurred with the success of
deep learning (DL) algorithms [2] (aka neural networks [7,18]). This success led
to widespread use in all sorts of industrial and everyday applications in virtually
every field, literally from agriculture to zoology [15]. This marked the beginning
of a new era in AI, often referred to as the second AI spring. A prime example of
AI’s capabilities today is OpenAI’s latest natural language technology, GPT-4,
which demonstrates the impressive potential of AI while also highlighting its
limitations, such as the lack of human common sense [3,6].

With the release of ChatGPT for the general public, the discussion on the
dangers of artificial intelligence has shifted from abstract and rather academic
to a discussion required by the general public. In addition, the European Com-
mission issued a draft of the novel AI Act, which already generated a lot of
discussions, not only with respect to the exact definition of AI in the act, but
especially regarding the assignment of risk levels to certain technologies, with
the high capabilities of Chat GPT 3.5 being fuel to this discussion. Security as
a major concern is seen twofold: On the one hand, security AI systems against
potential (typically human) adversaries and thus making them robust and trust-
worthy. On the other hand, people require protection against AI systems and
their decisions, in case these are detrimental to their well-being, a discussion
which can be dated back at least until 1941 to Asimov’s three laws of robotics [1]
and leading to the definition of Trustworthy AI.

Still, providing secure and trustworthy AI systems is non-trivial when fac-
ing modern approaches of machine learning: While rule based systems provide
explainability to a certain practical degree, this cannot be said for the deep
learning models currently used in a multitude of applications fields ranging from
the medical field [17] to smart farming and forestry [12]. Especially when con-
sidering reinforcement learning, many approaches like penetration testing [23]
become moot, as (i) many testing approaches like input fuzzying might change
the underlying model resulting in damage to the tested system while yielding
the not-so-astonishing result that a model fed with garbage produces garbage
and (ii) the model itself is constantly changing, i.e. the system tested today is
different from the system available tomorrow in an unpredictable way from a
security perspective.

In this paper we propose the notion of Controllable Artificial Intelligence or
Controllable AI as an alternative to the more classical approach of Trustworthy
AI and detail the major differences. The main purpose of this editorial paper lies
in providing a starting point for discussion on how the new complex AI systems
that will definitively get put into service within the next years can be secured,
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without either requiring huge improvements in explainability capabilities, nor
an unrealistic reduction of the algorithms in use to an explainable and fully
transparent selection. Furthermore, we provide an overview on techniques that
can be used for achieving Controllable AI.

This paper is organized as follows: Sect. 2 provides an overview on the most
important related concepts like trustworthy AI and explainability, as well as some
relevant details on the upcoming AI Act. In Sect. 3, we define Controllable AI
and compare it to the concept of trustworthiness, while Sect. 4 gives an overview
on selected techniques for achieving control. Finally, in Sect. 5 we discuss the
approach and its potential in actual application.

2 Background

In this section, we will discuss some background definitions that build the founda-
tion for the notion of controllable AI. It must be noted that sometime definitions
differ slightly, we therefore have selected those definitions that we consider to be
the most prominent in recent literature, but acknowledging that high level defi-
nitions might change depending on authors, time of writing and exact research
field.

2.1 The Explainability Problem

The main challenge in the explainability problem is the complexity and opacity
of deep learning models used in many AI applications. Deep learning models,
such as neural networks, are highly complex, nonlinear and high dimensional
and consist of numerous interconnected layers, making it extremely difficult to
understand how such a model arrive at their predictions or decisions. Therefore
such models are called as black boxes, meaning that it is challenging to trace
the reasoning or logic behind their outputs.

Explainability in AI refers to the ability to provide understandable and inter-
pretable explanations for the decisions made by AI systems [4]. It is important
for various reasons, including enabling experts but also end-users sometimes to
understand and trust AI outputs, ensuring ethical and fair decision-making, iden-
tifying and rectifying biases or errors in the models, and facilitating regulatory
compliance. Deep learning models learn from vast amounts of data and extract
complex patterns and representations, making them highly accurate in many
tasks. However, this accuracy often comes at the cost of interpretability. The
relationships and features learned by these models are often distributed across
multiple layers, making it challenging to provide clear and intuitive explanations
for their decisions.

Furthermore, deep learning models are often non-linear and highly param-
eterized, with billions or even trillions of learnable parameters. This makes it
difficult to trace the influence of individual inputs or features on the model’s
output. As a result, it becomes challenging to provide human-understandable
explanations that can be easily interpreted and validated.
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Addressing the challenge of explainability in deep learning models requires
research and development of new methods and techniques [16]. Various
approaches, such as feature importance analysis, gradient-based methods, rule
extraction, and model distillation, are being explored to enhance explainability.
However, finding a balance between explainability and maintaining high perfor-
mance and accuracy in deep learning models remains an active area of research
and a significant challenge in the field of AI.

To tackle this challenge, it is crucial to seek standardized definitions in
both technical standardization and legislation. Standardized definitions provide
a shared understanding and a common language for discussing and evaluating
AI systems [20]. Efforts are underway to establish consistent definitions and
guidelines to ensure the transparency and explainability of AI models, especially
in contexts such as regulatory frameworks like the AI Act which goes towards
trustworthy AI.

2.2 Trustworthy AI

The most powerful learning methods generally suffer from two fundamental
problems: On the one hand, it is difficult to explain why a particular result
was obtained (see above), and on the other hand, our best methods are lacking
robustness. Even the smallest perturbations in the input data can have dra-
matic effects on the output, leading to completely different results. In certain
non-critical application areas, this may not seem so dramatic. But in critical
areas, e.g., medicine, and especially clinical medicine, the issue is trust - and
the future trust of clinicians in AI technologies. Explainability and robustness
increase reliability and trust in the results [13,14].

Trustworthy AI has been one of the fundamental key concepts for dealing
with the problems of AI during the last years. The High-Level Expert Group
(HLEG) of the European Union put forth the following seven key requirements
for Trustworthy AI [11]: (1) human agency and oversight, (2) technical robust-
ness and safety, (3) privacy and data governance, (4) transparency, (5) diversity,
non-discrimination and fairness, (6) environmental and societal well-being and
(7) accountability. This definition puts great focus on the fact that trustworthi-
ness is not a purely technical issue, but has to consider the socio-technological
systems involving AI, therefore requiring an AI to possess three key character-
istics throughout its entire life-cycle: (1) Lawfulness, (2) adherence to ethical
principles and (3) technological, as well as social, robustness.

The NIST provides a slightly different set of characteristics for trustworthy
AI [22], which need to be (1) valid and reliable, (2) safe, (3) secure and resilient,
(4) accountable and transparent, (5) explainable and interpretable, (6) privacy-
enhanced, and (7) fair with harmful bias managed. While these two sets are quite
similar in nature, it puts more focus on the system reliably producing correct
results (characteristic 1) and splits safety and security into two characteristics,
which we deem useful, as the mindsets behind both approaches are very dif-
ferent. Furthermore, the HLEG-definition focuses far more on human oversight,
which can be problematic in many automated decision making processes in e.g.
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industrial automation [21], in pervasive health technologies [19], or in clinical
applications [24]. Also, key requirement 6 on environmental and societal well-
being can be problematic in many application areas, both, in industry, as well as
military applications, which, nevertheless, require a high level of trustworthiness.

For the remainder of this work, we will mainly focus on the NIST-
characteristics. It must be noted that both publications, while focusing on their
definitions, state that they do not claim them to be exhaustive.

2.3 The AI Act

The AI Act that is currently available in draft format [5] focuses on establishing
harmonized rules for the development, marketing and use of AI in the EU as
its main goal. This includes ensuring that AI systems placed on the EU market
are safe, as well as ensuring legal certainty, for investment and innovation in the
field of AI, improving governance and effective enforcement and facilitating the
development of a single market for legitimate, safe, and trustworthy AI [8]. This
also includes the definition of forbidden AI systems like state-run applications
for social scoring and dividing AI applications into three distinctive categories
based on perceived risk:

– Unacceptable Risk: These systems are prohibited under the AI-Act and
include social scoring by any public authority, real-time remote biometric
identification in public spaces for law enforcement and behaviour manipula-
tion, amongst others.

– High-Risk: Any AI system that constitutes a safety critical component, or is
where the product is protected under a certain range of specific legislation as
outlined in Annex II of the act. Furthermore, Annex III provides a taxative
enumeration of application fields. Any product containing an AI component
that falls under at least one of these fields must be considered as high-risk
AI. This includes biometric and medical use cases, but also applications in
the field of education amongst others. High-risk AI systems must adhere
to several requirements, reflecting fundamentals of trustworthy AI like risk-
management, transparency requirements and data management.

– Limited Risk: These systems are subject to additional requirements with
respect to transparency and focus on chat bots and deep fakes amongst oth-
ers. The categorization of the given examples is currently under discussion
due to the qualities of Chat GPT [10].

– Minimal Risk: All other system, these are basically unregulated under the
AI-Act, but are encouraged to voluntarily follow the requirements for high-
risk AI systems as a code of conduct. Systems for spam detection are given
as an example for systems of this category.

The definition of what constitutes which category is defined in Annex III of
the act and mainly focuses on the application space, like e.g. biometric identifica-
tion and categorisation of natural persons, management and operation of critical
infrastructure or education and vocational than on the technological basis. The
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act is currently under scrutiny due to (i) the problematic definition of AI and (ii)
because of rating chat bots into as limited risk AI system in the pre-Chat-GPT
draft.

3 Principles of Controllable AI

The major idea behind Controllable AI is that certain requirements derived
from the definition of trustworthy AI (see Sect. 2) cannot be fulfilled in real
live environments. Furthermore, we assume that with the gold digger mindset
currently surrounding AI and its application space, developers and companies
will not want to utilize explainable but inherently less powerful applications, i.e.
we do not agree with the idea that risk management will overrule practical system
capabilities due to concerns of trustworthiness in practical system development.
This is not only due to the unclear definitions in regulations that leave a wide field
for interpretation, but also due to competition with other players and especially
between nations.

Furthermore, while typically data is mentioned as an (important) factor for
building trustworthy AI, we are of the opinion that the impact of data on these
systems in neglected by intrinsically focusing on the system code. Still, in many
machine learning applications, the relevant knowledge, as well as many dangers
like algorithmic bias, do not lie within the code, but the models, i.e. we need to
talk about data defined software with a focus shifting from code to data. This is
especially important for security considerations, as the code might be perfectly
fine, but e.g. backdoors in the model allow for corruption of classification results.
This also has an effect on how we need to describe a system life-cycle: While
the system might be static from the code side, it might change a lot due to
new models being incorporated. This can be especially problematic in cases of
reinforcement learning, where the mode changes constantly and even versioning
becomes a management nightmare in realistic environments featuring high data
volumes. Here, the actors steering the learning process, whether human or also
automated, become an additional liability, as they possess a certain influence on
the iterative process that shapes the future system.

The principle behind Controllable AI is the assumption that no AI-system
should be considered trustworthy and that methods need to be put in place that
allow to detect malfunction and regain control.

As Controllable AI is a deviation from the definitions of Trustworthy AI, it
must be noted that the authors of the two most prominent definitions of Trust-
worthy AI were very clear about the fact that their principles/characteristics
might come into conflict with each other or with the application field in ques-
tion, thus, even in Trustworthy AI, while the respective principles/characteristics
should be followed as good as possible, conflict needs to be resolved. In Control-
lable AI we, on the other hand, explicitly weaken these principles/characteristics
without the advent of an explicit conflict.

Basically, Controllable AI cares about the detection of failure and the appli-
cation of mechanisms that either allow for rectification, or at least for removal
of the AI component:
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– Explainability is thus relegated from a key requirement/characteristic to a
method for achieving control, i.e. we do not assume that we can (or even
want to) provide explainability. For example, we do not want to trade in 10%
points of detection accuracy for explainability in a cancer detection system.
Furthermore, this is very much related to actual, often unexplainable, human
behaviour: In the example of driving, human actors can often not explain
their decisions that led to certain events like, e.g., overlooking a car, yet we
require autonomous driving to be fully explainable.

– The same holds true for Transparency, which is a requirement that we typi-
cally cannot achieve when dealing with human actors, as these forget things,
or take decisions based on intuition.

– Regarding Security and Resilience, a fully secured and hardened system might
even be a problem in cases where we want to introduce overrides or even
emergency backdoors in order to help us remove a system gotten out of hand.
So, while we do not tamper with this requirement too much in principle, and
the introduction of a backdoor could be defined as a feature, most researchers
in IT-Security consider this to be a weakness.

– With respect to Privacy, this is very much depending on the actual use-case,
but should be considered as best as possible.

– We skip the key requirement of environmental and societal well-being, as this
(i) is depending on the actual use-case and is highly debatable for applications
in e.g. the military sector and also might depend on an ideological point
of view. Furthermore, (ii) it does not integrate well with our approach of
controlling systems per se.

4 Techniques for Controllable AI

While, of course, many techniques might be used to achieve control over an
AI system, we want to focus on the techniques we consider to be either most
prominent, interesting, illustrative for the approach or usable for practical appli-
cations. Thus, while this list is definitively not comprehensive, it should give a
good overview on the key concepts. It must be noted that not all techniques will
be applicable in every setting.

4.1 Detecting Control Loss

The first part in order to control a system lies in achieving detection capabilities,
whether something wen wrong and to what extent. Thus, detection of control
loss is a fundamental task.

Providing Explainability: This is certainly one of the most powerful methods.
By being able to explain decision making, or even provide a formal model of the
system, control loss can be identified straightforward in many cases. Still, as we
argued in Sect. 3, this might be impossible to reach for a given set of algorithms
and/or data sets, also including methods for reinforcement learning that con-
stantly change their model. Thus, as we have already outlined, we relegated the
principle of Explainability to a method for achieving control.
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Sanity Checks: In many application fields, while the exact result might be in-
transparent and hard to control for the human user, certain boundaries can be
drawn where violations are simple to detect. Trivial examples include detection
of testicular cancer in biological women, but often resort to a deeper under-
standing of the underlying workings of a (business) process like e.g. traffic in
telecommunication networks based on weekdays, events or holidays. Such mea-
sures are often already in place in industrial environments when dealing with
potentially incorrect sensor information.

Corrective Model with Alternative Data: As an extension of applying sanity
checks, which we consider to be rather static, an alternative, corrective model
could be trained on a different data set. This set needs to be more or less redun-
dant to the original data, maybe using less data or simpler features, but close
enough in order to generate the boundaries for sanity checks. Details, of course,
very much depend on the actual use-case and data sets in question, as well as
the additional effort introduced.

4.2 Managing Control Loss

In order to (re-)gain control, many different mechanisms can be applied. While
the selection and often also the design will largely depend on the actual system
in place, we provide an overview on some rather generic approaches that can be
used in many different applications.

Divine Rules: Especially in optimization applications, the optimal solution from
a mathematical point of view might not be the one aspired due to e.g. ethical
reasons. These so-called divine rules could be coded into an additional rule-based
model that either invokes the reward function in reinforcement learning in order
to steer the model away, or overrule a decision made by the AI and trigger a
warning.

Training Clearly Defined Non-goals: Defining non-goals and training the model
accordingly can be a powerful tool. Thus, these non-goals have to formulated
in the form of training goals and relevant training data needs to be provided in
case of trained models. However, stability of these goals needs to be discussed
in cases of reinforcement learning or systems introducing an expert in the loop.

Destructive Backdoors: In some selected applications, e.g. in the military sector,
it might be important to have means for shutting an AI off completely. While
this currently sounds rather like Science Fiction, battlefield automation amongst
other applications might require such a technique, especially when self-hardening
of the system is also done by the AI. Typically, such a backdoor would be intro-
duced on the logical (code) level, but might also include model components. This
measure, of course, directly violates the principles of security from the definitions
of Trustworthy AI.
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Intentional Bias/Logical Backdoor: In certain cases it might be useful to intro-
duce intentional bias into the trained model in order to steer the decision making,
or even make certain results impossible. For example, this could be done in order
to introduce positive discrimination into machine learning.

Fail-Safes and Logic Bombs: Apart from backdoors, which constitute a method
for arbitrarily taking over control of the system, fail-safes are introduced into
the AI beforehand and execute themselves depending on certain events inside
the system, e.g. when certain decisions are reached that are incompatible with
ethical values. Using logic bombs, these could reset the model or even shut down
the entire system.

4.3 Support Measures

This section comprises measures that can help in the detection, as well as the
management of control loss and are to some extent even required for controlling
a system altogether.

Transparent AI Decisions: Making transparent, which decision was done by an
AI and were other processes interfered is a very important technique, very much
in vein with the original concept of Trustworthy AI and, to some extent, also
required for compliance with the AI-Act. It is a pre-requisite for detecting, as
well as managing control loss.

Transparent Data Management: As we have already outlined, in many machine
leaning based systems, data is as important, if not even more important, for the
definition of a system as the code itself - still not a lot of attention has been
put on this fact that we have to consider these systems as data defined software.
Being able to decide, which data had been used at what point in time of the
decision making is thus of the utmost importance for exerting control over such
a system, as much as being able to explain the algorithm in use. This can be
especially challenging in reinforcement learning.

5 Discussion

The notion of Controllable AI presented in this paper offers an alternative app-
roach to addressing the challenges of securing and managing AI systems. By
deviating from the strict principles of Trustworthy AI, Controllable AI acknowl-
edges the limitations of achieving complete trustworthiness in real-life environ-
ments. Instead, it emphasizes the need for methods that enable the detection of
malfunction and the ability to regain control over AI systems.

One of the key observations in Controllable AI is the shift of focus from
code-centric approaches to data-centric approaches. While code plays a crucial
role, the impact of data on AI systems, including issues like algorithmic bias
and model vulnerabilities, cannot be ignored. Controllable AI recognizes the
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importance of addressing data-defined software and the continuous evolution of
models within the system lifecycle. This recognition highlights the significance
of understanding and managing the actors involved in the learning process, as
they influence the system’s future behavior.

The techniques proposed for achieving Controllable AI provide practical
insights into how control loss can be detected and managed. Measures such as
sanity checks, alternative data training, transparent AI decisions, and the incor-
poration of divine rules or corrective models demonstrate potential avenues for
ensuring control and mitigating undesired outcomes. However, the applicability
of these techniques may vary depending on the specific use case and data sets
involved.

It is important to note that the concept of Controllable AI does introduce
exceptions to the principles of trustworthiness, particularly in terms of security.
Techniques like introducing destructive backdoors or intentional bias raise eth-
ical considerations and potential risks. Striking a balance between control and
security while maintaining ethical standards is a critical aspect that needs to
be carefully addressed in the development and deployment of Controllable AI
systems.

6 Conclusion and Outlook for Future Research

This paper has proposed Controllable AI as an alternative approach to Trust-
worthy AI, focusing on achieving control and management of AI systems without
compromising practical capabilities or transparency. By recognizing the limita-
tions of achieving complete trustworthiness, Controllable AI provides a frame-
work for detecting and managing control loss in AI systems. The techniques
discussed offer practical insights into how control can be regained and undesired
outcomes can be mitigated.

Future research in the field of Controllable AI should further explore and
refine the proposed techniques. Extensive experimentation and case studies
across different application domains would help validate the effectiveness of
these techniques and identify their limitations. Additionally, ethical considera-
tions associated with exceptions to trustworthiness principles, such as intentional
bias or destructive backdoors, require in-depth investigation and guidelines for
responsible implementation.

Furthermore, research efforts should focus on developing standardized
methodologies and frameworks for assessing and certifying the controllability
of AI systems. This would help establish guidelines and best practices for devel-
opers, regulators, and end-users, ensuring the safe and responsible deployment
of Controllable AI in various domains.

As AI continues to advance and permeate various aspects of society, the dis-
cussion on securing AI systems and managing their behavior becomes increas-
ingly crucial. The concept of Controllable AI offers a valuable perspective and
opens up new avenues for research and development in this area. By embracing
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the idea of control and management in AI systems, we can strive for more prac-
tical and accountable AI solutions that cater to the needs and concerns of both
developers and end-users.
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Abstract. Asymmetric Shapley values (ASVs) are an extension of Shap-
ley values that allow a user to incorporate partial causal knowledge into
the explanation process. Unfortunately, computing ASVs requires sam-
pling permutations, which quickly becomes computationally expensive.
We propose A-PDD-SHAP, an algorithm that employs a functional
decomposition approach to approximate ASVs at a speed orders of mag-
nitude faster compared to permutation sampling, which significantly
reduces the amortized complexity of computing ASVs when many expla-
nations are needed. Apart from this, once the A-PDD-SHAP model is
trained, it can be used to compute both symmetric and asymmetric Shap-
ley values without having to re-train or re-sample, allowing for very effi-
cient comparisons between different types of explanations.

Keywords: Shapley values · Asymmetric Shapley values · Functional
Decomposition

1 Introduction

AI and Machine Learning algorithms have enabled breakthroughs in a multitude
of application fields, and show a large potential for improving productivity in
many more. However, an important prerequisite for successfully applying these
techniques in many cases is trustworthiness: Predictions made by any model are
only useful if the user can trust that they are correct or at least can identify when
they are not. Two important ingredients are crucial to achieve trust: Robustness
and explainability [8,9]. In his paper we concentrate on explainability, i.e. pro-
viding explanations of predictions in order to help to build trust, or to identify
failure modes of the model.

For this reason, many techniques have been proposed to provide explanations
of individual model predictions [11]. Recently, Shapley value-based techniques
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have gained significant popularity, due to their general applicability and inter-
esting theoretical properties. As a consequence, a multitude of variations on
Shapley value-based explanation methods have been proposed, each with their
specific advantages and disadvantages [16,22].

An interesting line of research in this direction is the incorporation of causal
prior knowledge into (Shapley-value-based) explanations. If some partial knowl-
edge about the causal links in the data-generating process is known, incorporat-
ing these into the explanation can not only make the explanation sparser (thereby
increasing perceived explainability [17]), but can also increase the causal under-
standing of the data and the predictive model to the user receiving the explana-
tion. This property is also termed causability [10]. An explanation that uncovers
causal dependencies and their parameterization achieves a necessary leap in the
era of spurious correlation detection [15].

One technique in this category is given by Asymmetric Shapley Values
(ASVs) [5] This technique relaxes the Symmetry axiom of classical Shapley val-
ues, enabling the user to incorporate partial causal knowledge in the explanation
in the form of a partial order. This partial order encodes the known causal rela-
tionships in the data: if a feature i precedes another feature j in the partial
order, then i is assumed to be a causal ancestor (parent) of j. Note that this
encodes information about the causal DAG [14,18], i.e. the fact that i is an
ancestor of j in the DAG, without having to construct a complete DAG of the
data generating process. The authors provide multiple example use cases where
ASVs can provide more detailed insights than classical, symmetric Shapley val-
ues, including bias and discrimination detection, feature selection, and improved
causal understanding. For more details on the advantages and disadvantages of
ASVs, we refer the reader to [5].

In previous work [6], we have indicated a theoretical link between Shap-
ley values and the functional ANOVA decomposition [12], which leads to an
algorithm (called PDD-SHAP) for approximating Shapley values at an orders-
of-magnitude increase in speed. In this work, we show that this theoretical link
can be extended to ASVs. We proceed by developing an extension of our pre-
vious algorithm, called A-PDD-SHAP, that can approximate ASVs at a similar
orders-of-magnitude speedup. We also show that the same A-PDD-SHAP model
can be re-used to compute classical or asymmetric Shapley values under differ-
ent causal assumptions, allowing for efficient comparison between explanations
under different causal assumptions.

The rest of the paper is structured as follows: in the rest of the introduction,
we formally introduce Shapley values, ASVs and PDD-SHAP. In Sect. 2, we
explain the theoretical foundations of A-PDD-SHAP. In Sect. 3, we demonstrate
the resulting algorithm on a selection of synthetic and tabular datasets1. Finally,
we summarize in Sect. 4, and conclude and give an overview of possible future
work in Sect. 5.

1 Implementation available at https://github.com/arnegevaert/asv-anova.

https://github.com/arnegevaert/asv-anova
https://github.com/arnegevaert/asv-anova
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1.1 Shapley Values

Assume a group N = {1, . . . , n} of actors are cooperating to produce some value
v(N) ∈ R. The function v : P(N) → R is called the value function, and maps
subsets of actors to real numbers with the added assumption that v(∅) = 0. In
this context, the Shapley value [21] is a technique to fairly distribute the total
value v(N) among the n members of the group, based on the values of the subsets
S ⊆ N (also called “coalitions”).

Shapley values φv(i) are often said to distribute the total value v(N) fairly
because they adhere to the following set of axioms:

– Efficiency:
∑

i∈N φv(i) = v(N)
– Symmetry: If ∀S ⊆ N\{i, j} : v(S ∪ {i}) = v(S ∪ {j}), then φv(i) = φv(j).
– Linearity: If ∀S ⊆ N : v(S) = αu(S) + βw(S) for some value functions u,w

and real numbers α, β, then φv = αφu + βφw.
– Null player: If ∀S ⊆ N\{i} : v(S ∪ {i}) = v(S), then φv(i) = 0.

Shapley values are the unique way of distributing the total value v(N) among
the actors N such that all of these axioms are satisfied:

φv(i) =
1
n

∑

S⊆N\{i}

(
n − 1
|S|

)−1

(v(S ∪ {i}) − v(S))

=
∑

π∈Π(N)

1
n!

[v({j : j �π i}) − v({j : j ≺π i})]
(1)

where Π(N) is the set of all permutations on N , and j ≺π i if j precedes i in
permutation π (and similar for j �π i). These properties have made Shapley
values very interesting to the interpretable Machine Learning community as
a technique to explain model predictions [16]. To make a bridge between the
general game-theoretic formulation of Shapley values and the specific application
of explaining model predictions, the input features to the model are viewed
as the actors N , and the total value is given by the difference between the
predicted probability fy(x) for class y at some point x and the average predicted
probability for class y (in a regression context, we can replace class probabilities
by model outputs). What still needs to be defined, is the value function for any
coalition S ⊂ N , as a model typically cannot be evaluated on only a subset of
its features. This is usually done by taking either a marginal or a conditional
expectation of the output of the model:

vfy(x)
m (i) = E

x′∼p(X)
[fy (xS : x′

S)] − E
x′∼p(X)

[fy(x′)]

vfy(x)
c (i) = E

x′∼p(X|xS)
[fy (xS : x′

S)] − E
x′∼p(X)

[fy(x′)]
(2)

where S is the complement of S: S = N\S. These two approaches are often
called off- and on-manifold respectively [4]. This is because, when sampling
from the marginal distribution of a feature, correlations between this feature
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and others are ignored. The result is that samples will be constructed with a
very low likelihood, i.e. points that lie “off the data manifold”. By contrast, when
sampling from the conditional distribution of a feature given the other feature
values, such low-likelihood samples will be avoided, and only points that lie “on
the data manifold” are used. However, computing the on-manifold value function
is in general much more difficult because it requires conditioning on arbitrary
sets of input features. Different techniques to achieve this have recently been
introduced, using kernel methods and assumptions of normality [1] or using
variational auto-encoders [4], among others. Note that depending on the use
case, the off-manifold value function can be preferable to the on-manifold value
function. The choice of value function corresponds to the choice between being
“true to the model” or “true to the data”. For more information on this topic,
see [2].

The Shapley values described above form a local explanation of a prediction
fy(x). By averaging these local explanations over the dataset and labels, we
can construct Global Shapley values [4] as shown in Eq. 3 (using φfy(x)(i) as

shorthand notation for φv(i) where v ∈ {vfy(x)
m , v

fy(x)
c }):

Φf (i) = Ep(x,y)[φfy(x)(i)] (3)

Note that we sample over the joint distribution p(x, y) of the inputs and the
labels, not just over the joint distribution of the inputs p(x). Using the axioms
of Shapley values, it can be shown that the global Shapley value for feature i
can be interpreted as the portion of the model’s accuracy attributable to feature
i:

∑

i∈N

Φf (i) = Ep(x,y)[fy(x)] − Ep(x′)Ep(y)[fy(x′)] (4)

The first term on the right-hand side can be viewed as the accuracy one
achieves by sampling labels from the predicted probability distribution over
classes, whereas the second term can be viewed as the accuracy achieved by
predicting the label of x by sampling from the predicted probability distribution
for some randomly drawn x′.

1.2 Asymmetric Shapley Values

Asymmetric Shapley values (ASVs) [5] were recently introduced to incorporate
partial causal knowledge about the data-generating procedure into the Shapley
value explanations. This is done by relaxing the Symmetry axiom (see Sect. 1.1).
The reasoning behind this is as follows: the Symmetry axiom states that if two
features i and j have the exact same effect on the value function, then their
Shapley values will be identical. However, if feature j is known to be a deter-
ministic causal ancestor of feature i, then one might prefer to attribute all of
the importance of both features to feature j. Asymmetric Shapley values achieve
this by defining a probability distribution over permutations w : Π(N) → [0, 1]:
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φw
v (i) =

∑

π∈Π(N)

w(π)[v({j : j �π i}) − v({j : j ≺π i})] (5)

where i ≺π j denotes that i is a predecessor to j in permutation π. Note that
if w is the uniform distribution, then ∀π ∈ Π(N) : w(π) = 1

n! , and the original
Shapley values are recovered. The probability distribution w can be used to
incorporate causal prior knowledge in the explanation. To see this intuitively,
note that if w(π) > 0 only for permutations π such that i ≺π j, then φ

(w)
v (i)

is the average effect of feature i when feature j is unknown, whereas φ
(w)
v (j) is

the average effect of feature j when feature i is already specified. Given partial
causal knowledge in the form of a partial order ≺, such that i ≺ j iff i is
an ancestor of j in the causal DAG, the authors specify two approaches to
incorporate this knowledge: one that attributes more to distal (root) causes, and
one that attributes more to proximate (direct) causes. The distal approach is
defined as follows:

wd(π) ∝
{

1 if ∀i, j ∈ N : i ≺ j =⇒ i ≺π j
0 otherwise (6)

The proximate approach is analogous but reverses the relation ≺ such that
only permutations that place causal ancestors after their descendants receive a
non-zero weight.

Note that the authors of [4] argue for the use of the conditional value func-
tion v

fy(x)
c in combination with ASVs. However, these two choices are indepen-

dent of each other: one can choose to generate ASVs using the conditional or
the marginal value function. The advantages and disadvantages of both choices
are similar to the general Shapley value context: the conditional value function
takes into account the data manifold, but is in general more difficult to compute
because it requires modelling multiple conditional distributions of the dataset.

1.3 PDD-SHAP

Partial Dependence Decomposition (PDD) is a functional decomposition of the
form:

f(x) =
∑

S⊆N

fS(x) (7)

where each function fS depends only on the variables xj , j ∈ S. The PDD is
defined recursively as follows:
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f∅ := μ = E[f(x)]

fS(x) := E
x′∼p(X)

[
f

(
x : x′

S

)] −
∑

T⊂S

fT (x) (8)

=
∑

T⊆S

[

(−1)|S|−|T |
E

x′∼p(X)

[
f

(
xT : x′

T

)]
]

(9)

The univariate components f{i} correspond to a vertically translated ver-
sion of the Partial Dependence Plot [3], so each component can be viewed as a
generalized version of a PDP, hence the name. The PDD is strongly related to
the functional ANOVA decomposition [12], with the only fundamental difference
being that the marginal distributions of the variables are not assumed to be uni-
form. Previous work has shown [6] that if the value function can be written as
a sum of non-empty PDD components:

v(S) =
∑

T⊆S
T 	=∅

fT (x) (10)

then the Shapley values for v can be computed as follows:

φv(i) =
∑

i∈S⊆N

fS(x)
|S| (11)

In the case of off-manifold Shapley values, the value function can indeed be
expressed as a sum of non-empty PDD components using the Möbius inversion
formula and Eq. (9):

vfy(x)
m (S) = E

x′∼p(X)
[f(xS : x′

S
)] − E

x′∼p(X)
[f(X)] (12)

=
∑

T⊆S

fT (x) − f∅ (13)

=
∑

T⊆S
T 	=∅

fT (x) (14)

implying that Eq. (11) holds for the partial dependence decomposition and off-
manifold Shapley values. Analogously, replacing the marginal distribution p(X)
with a conditional distribution p(X|xS) in the definition of fS produces on-
manifold instead of off-manifold Shapley values. This property can then be used
to create an efficient algorithm for approximating Shapley values by training a
simple model f̂S for each PDD component fS , as shown in Algorithm 1 (adapted
from [6]). The labels for f̂S are computed using Eq. (8). The sum of all com-
ponents f̂S can then be viewed as a surrogate model for f . Once this surrogate
model is trained, Shapley values can be computed using Eq. (11) without having
to draw samples from a marginal or conditional distribution, thereby reducing
the computational cost.
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Algorithm 1. PDD-SHAP training
Input: k ∈ N, background sample Xbg with |Xbg| = n
Output: PDD surrogate model f̂ := {f̂S : S ⊆ N, |S| ≤ k}

1: f∅ ← 1
n

∑
x∈Xbg

f(x)

2: for i = 1, . . . , k do
3: for S ⊆ N, |S| = i do
4: for xj ∈ Xbg do
5: yj ← 1

n

∑
z∈Xbg

f(xS : zS) − ∑
T⊂S f̂T (x)

6: end for
7: Train model f̂S on {(xj , yj) : xj ∈ Xbg}
8: end for
9: end for

10: return {f̂S : S ⊆ N, |S| ≤ k}

2 A-PDD-SHAP

In this work, we extend the PDD-SHAP algorithm described in the previous
section to compute asymmetric Shapley values. To do this, we first introduce
a specific kind of partial order. Although this class of partial orders does not
include all possible partial orders, it will prove to be flexible enough for our use
cases.

Definition 1 (Simple partial order). A simple partial order ≺A generated
by a set of subsets A = {A1, . . . , Ak} of N is a partial order defined as follows:
∀x, y ∈ N : x ≺A y ⇐⇒ ∃Ai, Aj ∈ A : x ∈ Ai ∧ y ∈ Aj ∧ i < j. A simple
partially-ordered set (poset) is a couple (N,≺A), where N is a set of elements
and ≺A is a simple partial order.

The subsets Ai in a simple partial order can be viewed intuitively as follows:
if i < j, then each element of Ai must come before each element of Aj . If some
element e ∈ N is not in any of the subsets Ai, then there are no restrictions on

it. We denote the set of such elements as A := N\
(

⋃

A∈A
A

)

.

The following theorem, the proof of which can be found in Appendix A, will
allow us to compute asymmetric Shapley values using the Partial Dependence
Decomposition:

Theorem 1. Let the value of a subset of variables S ⊆ N be v(S) :=
∑

T⊆S
T 	=∅

fT (x),

where the functions fS are given by the Partial Dependence Decomposition of f ,
and let ≺A be a simple partial order on N . Then the asymmetric Shapley value
for variable j and simple partial order ≺A is
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φA
v (j) =

∑

S⊆N\j

αj
SfS∪j(x) (15)

αj
S =

{
0 if ∃e ∈ S : j ≺A e

1
|S|+1 otherwise. (16)

where S = {e ∈ S : e �≺ j ∧ j �≺ e} is the set of elements of S that are not
comparable to j.

Theorem 1 enables us to compute ASVs using the same Partial Dependence
Decomposition that we use in PDD-SHAP to compute both symmetric and
asymmetric Shapley values, independently of which simple partial order (i.e.
causal assumptions and choice of proximate vs. distal) is chosen. This is because
Eq. 16 only depends on the simple partial order ≺A through the denominator |S|.
The result is that training the Partial Dependence Decomposition (Algorithm
1), which is the computationally most expensive part of (A-)PDD-SHAP, only
needs to happen once. After that, a user can try out and compare different types
of (Asymmetric) Shapley values efficiently. This can be a very useful tool to
test the results under different causal assumptions, which allows for an efficient
human-in-the-loop implementation.

3 Experiments

In this section, we demonstrate the A-PDD-SHAP algorithm on a selection of
datasets. We begin by reproducing a synthetic data experiment from the original
publication that introduces Asymmetric Shapley Values [5], and show that the
same conclusions can be reached using A-PDD-SHAP as using ASV sampling.
We then investigate the accuracy and speed of A-PDD-SHAP on a selection of
real-world tabular datasets.

3.1 Causal Explanations of Unfair Discrimination

In this synthetic data experiment, which was proposed in [5], we focus on unre-
solved discrimination [13]. In this context, we define certain sensitive attributes,
such as gender or ethnicity, and resolving variables. The sensitive attributes are
not allowed to influence a model’s output unless mediated by the resolving vari-
ables. In this experiment, we simulate data from a college admissions process.
Here, gender should not directly influence an admission decision, but different
genders may apply to more or less competitive departments. In this case, the
department acts as a resolving variable: department choice can be influenced by
gender, and can in its turn influence the admission decision. If gender would
influence the decision through some other channel, it would be deemed unfair.

To simulate this context, we generate two synthetic datasets, labelled “fair”
and “unfair” respectively. Each of these datasets has 3 observed features: X1

= gender, X2 = test score, and X3 = department. The label Y = admission is
binary. In the fair dataset, data is generated using the causal graph in Fig. 2(a)
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without the feature X4. The label Y is influenced by the test score of the candi-
date and the choice of department, which is in turn influenced by the gender of
the candidate. See Appendix B.2 of [5] for details on the explicit data-generating
process.

To simulate the unfair dataset, we add a new, unobserved feature: X4 =
unreported referral. In this dataset, men at the university recommend other
men for admission more often than women. This is not explicitly visible in the
data, as the feature X4 is not recorded. In both datasets, men are admitted more
frequently than women at similar rates, and the classes are balanced. The bias
in the unfair dataset is therefore not obviously visible in the dataset.

The conditional probability tables for the random variables X1,X3,X4 are
given in Fig. 1. X2 is distributed normally: X2 ∼ N (0, 1). The distribution of Y
is as follows:

– Fair dataset: P (Y = 1|x2, x3, x4) = sigmoid(x2 − 2x3 + 1)
– Unfair dataset: P (Y = 1|x2, x3, x4) = sigmoid(x2 − 2 ∗ x3 + 2 ∗ x4)

X1 = 0 X1 = 1
0.5 0.5

(a)

X3 = 0 X3 = 1
X1 = 0 0.2 0.8
X1 = 1 0.8 0.2

(b)

X4 = 0 X4 = 1
X1 = 0 2/3 1/3
X1 = 1 1/3 2/3

(c)

Fig. 1. Conditional probability tables for the random variables X1, X3, X4.

To detect the difference between the fair and unfair datasets, we compute
global ASVs using a variant of the proximate approach:

w(π) ∝
{

1 if X3 ≺π X1

0 otherwise (17)

This corresponds to the simple partial order A := {A1, A2} with A1 = {X3},
A2 = {X1} and A = N\{X1,X3} = {X2}. The resulting global ASV for gender
can be interpreted as the accuracy of the model attributable to that feature after
the choice of the department is already known. This implies that if the global
ASV for gender is nonzero, then the model relies on this feature through some
unresolved path, i.e. a path that does not go through X3. In other words, the
model is biased.

The global ASVs were computed using A-PDD-SHAP using the conditional
value function, as the conditional distributions are available through the syn-
thetic data generation process. If the exact conditional distributions would not
be available, a similar outcome could be reached using one of the proposed meth-
ods for approximating the conditional value function, e.g. using auto-encoders
[4]. The results are shown in Fig. 2(b). We see that the global ASV for gen-
der vanishes in the fair dataset, while obtaining a nonzero value in the unfair
dataset, showing the unfair bias in the latter. These results are similar to the
results reported in [5].
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X1

X3

Y

X2 X4

(a) (b)

Fig. 2. (a): Causal graph for synthetic college admissions data sets. (b): Global ASVs
for the three features as computed by A-PDD-SHAP.

3.2 Evaluation on Real-World Datasets

In this section, we demonstrate the A-PDD-SHAP algorithm on a selection of
tabular datasets, retrieved from the OpenML repository [23]. An overview of the
datasets with their OpenML IDs is given in Table 1. For each of these datasets,
we measure the accuracy, training time and speed of explanations given by A-
PDD-SHAP. Note that in these experiments, we use the marginal value function
for both A-PDD-SHAP and ASV sampling for computational reasons. However,
as shown in Sect. 3.1, A-PDD-SHAP can also be applied using a conditional value
function, if a model of the conditional distributions of the data is available (which
is also a requirement for ASV sampling using the conditional value function).
The surrogate model was trained using all components of up to and including 4
features, except for the Superconduct dataset, where only components of 1 and
2 features were included for computational reasons. We will go into more depth
on these limitations of the algorithm when discussing the training time below.
Each PDD component was modelled using a single decision tree. All timing
experiments were conducted on a single core of an AMD EPYC 7552 processor
at 2.2 GHz.

Table 1. Overview of datasets.

Name Type # Features OpenML ID

Adult Classification 14 43898

Credit Classification 20 31

Housing Regression 8 44031

Abalone Classification 8 1557

Superconduct Regression 79 44006
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Accuracy. Measuring the accuracy of Shapley value-based explanations is gen-
erally difficult, as a ground truth value is either not available or computationally
intractable to compute. To mitigate this problem, we consider Shapley values
and ASVs obtained using permutation sampling as a proxy for ground truth
and evaluate the capability of A-PDD-SHAP to approximate Shapley values and
ASVs obtained through sampling. The results are given in Fig. 3. To evaluate
the capability of A-PDD-SHAP to compute ASVs, we impose an arbitrary par-
tial order on the features, where the first �d/2� features are assumed to precede
the others (indicated as “Asymmetric” in the figures). We show both R2 val-
ues and the average Spearman rank correlations r between A-PDD-SHAP and
permutation sampling. The reasoning behind this is as follows: if R2 is large,
then A-PDD-SHAP can be viewed as a good approximation for permutation
sampling. However, if R2 is low but r is large, this means that even though the
approximation as a regression problem is poor, the order of feature relevances
is still relatively preserved. In practice, this means that A-PDD-SHAP is still
able to identify which features are more or less important than the others, even
though the magnitude of the estimated Shapley values might be slightly off. In
Fig. 3, we see this especially on the Abalone dataset for ASVs.

Fig. 3. R2 scores (left) and Spearman correlations (right) for symmetric and asymmet-
ric Shapley values produced by A-PDD-SHAP versus their counterparts produced by
permutation sampling.

Training Time. In Fig. 4(a), we show the time in seconds required to train
the A-PDD-SHAP surrogate model. Note that the required time for the credit
dataset is larger than for the superconduct dataset, despite the superconduct
dataset having many more features than the credit dataset. This is because we
only train components with 1 or 2 features for the superconduct dataset. Note
that the number of components with k features out of a total of n features is equal
to

(
n
k

)
, which grows exponentially both in n and k. This is the main weakness of

the algorithm: as the number of features n increases, or the dataset contains high-
order interactions, training the surrogate model becomes prohibitively expensive.
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Techniques to mitigate this problem, by selecting components that are likely to
be influential and/or parallelise the training process, will be investigated in future
work.

The total number of components modelled for each dataset is shown in
Table 2, together with the average training time per component. We see that
the average training time per component remains nearly constant, confirming
that the combinatorial explosion in the number of components is mainly respon-
sible for the training time of the algorithm.

Table 2. Training time per component for each dataset.

Name # Components Time per component (s)

Adult 1470 0.033

Credit 6195 0.037

Housing 162 0.029

Superconduct 3081 0.033

Abalone 162 0.064

Explanation Speed. Finally, we show the time required for generating expla-
nations for symmetric and asymmetric Shapley values using (A-)PDD-SHAP and
classical permutation sampling in Fig. 4(b), averaging over 1000 explanations. We
see that the (A-)PDD-SHAP approaches generate (asymmetric) Shapley values
up to 3 or 4 orders of magnitude faster than permutation sampling, depending
on the dataset. This shows that, even though training the PDD model might
be computationally expensive, this one-time expense can compensate for the
speedup in explanation generation if the total number of explanations required
is large enough.

4 Summary and Outlook

This research work is an example of the human-in-the-loop principle [7] applied
for a substantial performance improvement of an Explainable AI method (see
Sect. 3.2). In cases where a human expert has strong beliefs about the causal
dependencies of the input features, due to prior domain knowledge and expertise,
this approach can help the efficiency of the implementation enormously [19].
Even if the user has uncertainties about the causal dependencies or wants to
experiment with different assumptions, the methodology is flexible enough and
does not need a full retraining of the Partial Dependence Decomposition model
(see Sect. 2). Furthermore, it has been demonstrated in Sect. 3.1 that this method
can be used to test and verify properties of the data generating process, such as
unresolved biases, to a certain extent. This is in practical terms an application
of the Actionable Explainable AI (AxAI) principle [20] where the human expert
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Fig. 4. (a): Time (in seconds) required to train the Partial Dependence Decomposition
model for each dataset. (b): Runtime of explanations (in seconds per explanation) for
(A-)PDD-SHAP versus permutation sampling. Note that the Y axis is logarithmic.

is motivated and empowered to improve all parts of an AI algorithm’s pipeline,
but also continuously update his or her own knowledge from the insights gained
through the xAI methods.

5 Conclusion

In this work, we introduce A-PDD-SHAP, an algorithm that can be used to effi-
ciently approximate Asymmetric Shapley Values. We demonstrate the algorithm
on a selection of tabular datasets and show that the approximation is multiple
orders of magnitude faster than the classical permutation sampling approach
for computing Asymmetric Shapley Values. However, the main disadvantage of
A-PDD-SHAP is the combinatorial explosion in the number of components that
need to be modelled when the number of features or the order of interactions
increases. In future work, we will focus on techniques to mitigate this problem, by
identifying which components are most likely to be important before modelling
them, and by parallelizing the modelling process, as each component can be
trained independently of all others provided that its subcomponents are avail-
able. Finally, although the single decision tree already gives a relatively good
approximation for the datasets considered here, we will further investigate the
use of more sophisticated models to approximate the PDD components.
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explainable AI.
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A Proof of Theorem 1

We begin by defining linear extensions of a partially ordered set (poset):

Definition 2 (Linear extension).
A linear extension of a poset (N,≺) is a permutation π of the elements of N
that is compatible with the partial order ≺, i.e.:

∀i, j ∈ N : i ≺ j =⇒ i ≺π j (18)

Asymmetric Shapley values are defined as follows:

φw
v (i) =

∑

π∈Π

w(π)[v({j : j �π i}) − v({j : j ≺π i})] (19)

where w is a probability distribution over permutations π ∈ Π(N). By sum-
ming over subsets rather than permutations, we get to the following equivalent
definition:

φw
v (i) =

∑

T⊆N\i

pi
T [v(T ∪ {i}) − v(T )] (20)

pi
T =

∑

π∈Πi
T

w(π) (21)

Πi
T = {π ∈ Π : pred(i, π) = T} (22)

where pred(i, π) := {j ∈ N : j ≺π i} is the set of predecessors to i in π. From
the assumptions, we know that the value function can be written as a sum of
non-empty PDD components:

vx(S) =
∑

T⊆S
S 	=∅

fS(x) (23)

Substituting this expression into Eq. (20), we get:

φv(i) =
∑

T⊆N\i

pi
T

⎡

⎢
⎢
⎣

∑

S⊆T∪i
S 	=∅

fS(x) −
∑

S⊆T
S 	=∅

fS(x)

⎤

⎥
⎥
⎦

=
∑

T⊆N\i

pi
T

∑

S⊆T
S 	=∅

fS∪{i}(x)

=
∑

T⊆N\i

pi
T

∑

S⊆T
i∈S

fS(x)

(24)
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We can now write this as a single sum by observing that every term fS∪i(x)
gets counted exactly once for each of its supersets T ⊇ S, with a weight of pi

T :

φv(i) =
∑

S⊆N\i

αi
SfS∪i(x) (25)

αi
S =

∑

S⊆T⊆N\i

pi
T (26)

Substituting Eq. (21) into the expression for αS , we again end up with a
nested sum:

αi
S =

∑

S⊆T⊆N\i

∑

π∈Πi
T

w(π) (27)

We can write this as a single sum by observing that the sets Πi
T form a

partition of the set of all permutations Π(N):

– Each set Πi
T is disjoint to all other sets Πi

T ′ . This can easily be seen by the
fact that if π ∈ Πi

T , the set of predecessors to i must be equal to T , so if π is
also in Πi

T ′ , then T = T ′.
– Each permutation π ∈ Π(N) must be in some set Πi

T , namely the set for
which T is the set of predecessors to i in π (this can also be the empty set).

Because these permutation sets to form a partition, we can reduce the expression
of αi

S to:

αi
S =

∑

π∈Π
i
S

w(π) (28)

where Π
i

S is the set of all permutations where the predecessors of i contain a
given set S:

Π
i

S =
⊔

S⊆T⊆N\i

Πi
T = {π ∈ Π : S ⊆ pred(i, π)} (29)

where
⊔

denotes the disjoint union of sets.
Without loss of generality, we can assume that the probability distribution

w is defined as follows:

w(π) ∝
{

1 if ∀i, j ∈ N : i ≺A j =⇒ i ≺π j
0 otherwise (30)

This implies that αi
S is the proportion of all linear extensions of (N,≺A) that

are also in Π
i

S , i.e. the proportion of linear extensions of ≺A where all elements
in S precede i. To compute this proportion, we start by making the following
two observations:
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– If ∃e ∈ S : i ≺ e, then αi
S = 0, as no permutation where e precedes i can be

a linear extension of (N,≺). This corresponds to the first case in Eq. 16.
– If S = T ∪ e for some e ∈ N , with e ≺ i, then αi

S = αi
T , as every linear exten-

sion of (N,≺) is a permutation where e precedes i, so every linear extension
in Π

i

T is also in Π
i

S .

If we now want to compute αi
S for arbitrary S, we can assume that S contains

no elements e such that i ≺ e (otherwise αi
S = 0, as per the first observation).

We assume first that S consists only of elements e such that e �≺ i ∧ i �≺ e.
Consider a permutation π ∈ Π(S∪{i}). From π, a linear extension on (N,≺)

can be constructed as follows:

1. Choose locations and ordering for the elements of A\(S ∪ {i})
2. Choose locations for A ∩ (S ∪ {i})
3. Choose an ordering for the elements of each Al : i �∈ Al

4. If i �∈ A: Choose an ordering and locations for the elements of Aj\(S ∪ i),
where i ∈ Aj

As we have assumed that S consists only of elements that are not comparable
to i, (S ∪ {i}) ⊆ (A � Aj) (or (S ∪ {i}) ⊆ A if i ∈ A). Therefore, the procedure
above defines a specific linear extension on (N,≺) where the elements of S∪i are
ordered according to π. None of these steps depend on the specific permutation π,
only on the set S and i. Therefore, every permutation π ∈ Π(S∪{i}) corresponds
to an equal amount of linear extensions on (N,≺). Also, every linear extension
on (N,≺) corresponds to exactly one permutation π ∈ Π(S ∪ i).

Recall that αi
S is the proportion of linear extensions on (N,≺) where all ele-

ments of S precede i. This can be formulated as follows: given a linear extension
on (N,≺) chosen uniformly at random, what is the probability that all elements
in S precede i? Because every permutation of S ∪ i corresponds to an equal
number of linear extensions on (N,≺), this question is equivalent to the ques-
tion: given a permutation of S ∪ {i} chosen uniformly at random, what is the
probability that all elements in S precede i? The answer is |S|!

(|S|+1)! = 1
|S|+1 .

For a general set S that contains both elements e �≺ i ∧ i �≺ e and elements
e ≺ i, we can derive αi

S by first introducing the incomparable elements S ⊂ S :
S = {e ∈ S : e �≺ i ∧ i �≺ e}. The coefficient for this set is αi

S = 1
|S|+1 . Then, we

can introduce all elements e ∈ S : e ≺ i. As per rule 2, these elements have no
influence on the coefficient, implying that αi

S = αi
S .

Substituting this value for αi
S into Eqs. (25) and (26), we get the following,

which corresponds to the second case in Eq. 16:

φA
v (i) =

∑

S⊆N\i

fS∪i(x)
|S| + 1

(31)

��
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15. Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.R.:
Unmasking Clever Hans predictors and assessing what machines really learn. Nat.
Commun. 10(1), 1096 (2019)

16. Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. In:
Advances in Neural Information Processing Systems, vol. 30, pp. 4766–4775 (2017)

17. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/10.1007/s40708-016-0038-2
https://doi.org/10.1007/978-3-030-93736-2_33
https://doi.org/10.1007/978-3-030-93736-2_33
https://doi.org/10.1016/j.inffus.2021.10.007
https://doi.org/10.1109/MC.2021.3092610
https://doi.org/10.1109/MC.2021.3092610
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1145/1014052.1014122
https://doi.org/10.1145/1014052.1014122


30 A. Gevaert et al.

18. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
19. Pearl, J., Bareinboim, E.: Transportability of causal and statistical relations: a for-

mal approach. In: 11th International IEEE Conference on Data Mining Workshops,
pp. 540–547. IEEE (2011). https://doi.org/10.1109/ICDMW.2011.169

20. Saranti, A., et al.: Actionable explainable AI (AxAI): a practical example with
aggregation functions for adaptive classification and textual explanations for inter-
pretable machine learning. Mach. Learn. Knowl. Extract. 4(4), 924–953 (2022).
https://doi.org/10.3390/make4040047

21. Shapley, L.S.: A value for n-person games. In: Contributions to the Theory of
Games, vol. 2, no. 28, pp. 307–317 (1953)

22. Sundararajan, M., Najmi, A.: The many Shapley values for model explanation. In:
Proceedings of the 37th International Conference on Machine Learning, vol. 119,
pp. 9269–9278 (2020)

23. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in
machine learning. SIGKDD Explor. 15(2), 49–60 (2013). https://doi.org/10.1145/
2641190.2641198

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/ICDMW.2011.169
https://doi.org/10.3390/make4040047
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
http://creativecommons.org/licenses/by/4.0/


Domain-Specific Evaluation of Visual
Explanations for Application-Grounded

Facial Expression Recognition

Bettina Finzel(B) , Ines Rieger , Simon Kuhn, and Ute Schmid

Cognitive Systems, University of Bamberg, Bamberg, Germany
{bettina.finzel,ines.rieger,ute.schmid}@uni-bamberg.de

Abstract. Research in the field of explainable artificial intelligence has
produced a vast amount of visual explanation methods for deep learning-
based image classification in various domains of application. However,
there is still a lack of domain-specific evaluation methods to assess
an explanation’s quality and a classifier’s performance with respect to
domain-specific requirements. In particular, evaluation methods could
benefit from integrating human expertise into quality criteria and met-
rics. Such domain-specific evaluation methods can help to assess the
robustness of deep learning models more precisely. In this paper, we
present an approach for domain-specific evaluation of visual explanation
methods in order to enhance the transparency of deep learning mod-
els and estimate their robustness accordingly. As an example use case,
we apply our framework to facial expression recognition. We can show
that the domain-specific evaluation is especially beneficial for challenging
use cases such as facial expression recognition and provides application-
grounded quality criteria that are not covered by standard evaluation
methods. Our comparison of the domain-specific evaluation method with
standard approaches thus shows that the quality of the expert knowledge
is of great importance for assessing a model’s performance precisely.

Keywords: Convolutional Neural Networks · Explainable Artificial
Intelligence · Facial Expressions · Explanation Evaluation · Robustness

1 Introduction

Deep learning approaches are successfully applied for image classification. How-
ever, the drawback of these deep learning approaches is their lack of robust-
ness in terms of reliable predictions under small changes in the input data or
model parameters [10]. For example, a model should be able to handle out-of-
distribution data that deviate from the training distribution, e.g., by being blurry
or showing an object from a different angle. However, often models produce con-
fidently false predictions for out-of-distribution data. These can get unnoticed,
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as deep learning models are per default a black box approach with no insight
into the reasons for predictions or learned features.

Therefore, explainers can be applied that visually explain the prediction in
order to enhance the transparency of image classification models and to evalu-
ate the model’s robustness towards out-of-distribution samples [33,35]. Visual
explanations are based on computing the contribution of individual pixels or
pixel groups to a prediction, thus, helping to highlight what a model “looks at”
when classifying images [36].

An important aspect is that both, robustness and explainability, are enablers
for trust. They promote reliability and ensure that humans remain in control of
model decisions [13]. This is of special interest in decision-critical domains such
as medical applications and clinical assistance as demonstrated by Holzinger
et al. [14] and Finzel et al. [9]. As robustness and explainability are therefore
important requirements for application-relevant models, measures that help to
assess the fulfillment of such requirements should be deployed with the models.
With respect to visual explanations as a basis to rebustness and explainability
analysis, it is worth noting that visualizations express learned features only qual-
itatively. In order to analyze a model’s robustness more precisely, quantitative
methods are needed to evaluate visual explanations [3,28,34]. These quantita-
tive methods, however, do not provide domain-specific evaluation criteria yet
that are tailored to the application domain.

In this work, we propose a framework for domain-specific evaluation and
apply it to the use case of facial expression recognition. Our domain-specific
evaluation is based on selected expert knowledge that is quantified automatically
with the help of visual explanations for the respective use case. The user can
inspect the quantitative evaluation and draw their own conclusions.

To define facial expressions, one psychologically established way is to describe
them with the Facial Action Coding System (FACS) [7], where they are cate-
gorized as sets of so-called Action Units (AUs). Facial expression analysis is
commonly performed to detect emotions or pain (in clinical settings). These
states are often derived from a combination of AUs present in the face [22,23].
In this paper, we analyze only the AUs that are pain- and emotion-relevant.
The appearance and occurrence of facial expressions may vary greatly for differ-
ent persons, which makes it a challenging and interesting task to recognize and
interpret them reliably and precisely. A substantial body of research exists to
tackle this challenge by training deep learning models (e.g., convolutional neu-
ral networks) to classify AUs in human faces from images [11,29,31,40]. Our
approach is the first that adds a quantitative evaluation method to the frame-
work of training, testing and applying deep learning models for facial expression
recognition. Our research contributes to the state-of-the-art as follows:

– We propose a domain-specific evaluation framework that allows for integrat-
ing and evaluating expert knowledge by quantifying visual explanations. This
increases the transparency of black box deep learning models for the user and
provides a domain-specific evaluation of the model robustness.
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– We show for the application use case of facial expression recognition that
the selection and quality of expert knowledge for domain-specific evaluation
of explanations has a significant influence on the quality of the robustness
analysis.

– We show that the domain-specific evaluation is especially beneficial for chal-
lenging use cases such as facial expression recognition based on AUs. AUs are
a multi-label classification problem with co-occurring classes. We provide a
quantitative evaluation that facilitates analyzing AUs by treating them sep-
arately.

This paper is structured as follows: First, the related work gives an overview
on similar approaches, then our evaluation framework is presented in Sect. 3 in a
step by step manner, explaining the general workflow as well as the specific meth-
ods applied for the use case of facial expression recognition. Section 4 presents
and discusses the results. Finally, we point out directions for future work and
conclude our work.

2 Related Work

Work related to this paper mainly covers the aspect of explaining image classi-
fiers and evaluating the generated explanations with respect to a specific domain.
Researchers have developed a vast amount of visual explanation methods for
image classification. Among the most popular ones are LIME, LRP, GradCAM,
SHAP and RISE (see Schwalbe and Finzel (2023) for a detailed overview and
references to various methods [35]). There already exist methods and frame-
works that evaluate multiple aspects of visual explanations, e.g., robustness, as
provided for example by the Quantus toolbox that examines the impact of input
parameter changes on the stability of explanations [12]. Hsieh et al. [15] present
feature-based explanations, in particular pixel regions in images that are neces-
sary and sufficient for a prediction, similar to [6], where models are evaluated
based on feature removal and preservation. Work that examines the robustness
of visual explanations of models applied in different domains, was published for
example by Malafaia et al. [28], Schlegel et al. [34] and Artelt et al. [3]. How-
ever, these methods do not provide evaluation criteria tailored to the application
domain itself. For this purpose, XAI researchers have developed a collection of
application-grounded metrics [35,42].

Application-grounded perspectives may consider the needs of explanation
recipients (explainees) [39,42] and an increase in task performance for applied
human-AI decision making [16] or the completeness and soundness of an expla-
nation [21], e.g., with respect to given metrics such as the coverage of relevant
image regions [19]. Facial expression recognition, which is the application of this
work, is usually a multi-class problem. For multiple classes, application-grounded
evaluation may also encompass correlations between ground truth labels of dif-
ferent classes and evaluating, whether learned models follow these correlations
[32]. In this work, we focus on evaluating each class separately and whether



34 B. Finzel et al.

visual explanations, generated by explainers for image classification, highlight
important image regions.

A review of state-of-the-art and recent works on techniques for explanation
evaluation indicates that defining important image regions by bounding boxes
is a popular approach. Bounding boxes can be used to compute, whether visual
explanations (e.g., highlighted pixel regions) cover important image regions, for
classification as well as object detection [17,24,31,35]. In terms of robustness,
the robustness of a model is higher if the highlighted pixel regions are inside
the defined bounding boxes. With respect to the aforementioned definition of
robustness [10], a robust model should show an aggregation of relevance inside
the bounding boxes even when out-of-distribution data is encountered. However,
bounding boxes are not always suitable to set the necessary boundaries around
the important image regions. This can lead to a biased estimation of the predic-
tive performance of a model as bounding boxes usually define areas larger than
the region of interest. If models pay attention to surrounding, irrelevant pixels,
a bounding box based evaluation may miss this. Hence, as the explanation itself
can be biased, the explanation is not robust, which is an important feature of
explainability methods [2].

Using polygons as an alternative to bounding boxes is therefore an impor-
tant step towards integrating domain-specific requirements into the evaluation
of explanations to make them more robust. Domain-specific evaluations have not
yet been sufficiently discussed across domains, nor broadly applied to the very
specific case of facial expression recognition.

In this work, we therefore thoroughly define regions for facial expressions and
evaluate the amount of positive relevance inside the defined regions compared
to the overall positive relevance in the image (see Sect. 3.5). Instead of using
bounding boxes that are very coarse and that might contain class-irrelevant
parts of the face as well as background (see Fig. 2), we compute polygons based
on class-relevant facial landmarks according to AU masks defined by Ma et al.
[27]. We compare a standard bounding box approach with our polygon-based
approach for evaluating two state-of-the-art models on two different data sets
each and open a broad discussion with respect to justifying model decisions
based on visual explanations for domain-specific evaluation. Our domain-specific
evaluation framework is introduced in Sect. 3.1.

3 Materials and Methods

The following subsections describe the components of our framework (see Fig. 1
for step numbering), starting with the data sets and evaluated models, and
followed by the heatmap generation, and finally our method to quantitatively
evaluate the visual explanations by using domain-specific information. Please
note that the following paragraphs describe one possible selection of data sets,
models, visual explanation method, and explanation evaluation. The framework
can be extended or adapted to the needs of other application and evaluation
scenarios.
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Overview on the process of our explanation and evaluation framework:

Polygons for AU 1, AU 2, AU 7
(brow raisers and lid tightener)

Polygon for AU 10
(upper lip raiser)

Domain-specific evaluation of relevance with landmark-based polygons:

Data set and model
selection

Model performance
analysis

Relevance
computation and
landmark-based

polygon extraction

Explanation
evaluation, e.g.,
landmark-based

quantification

1 2 3 4

A sequence (video) of facial expressions under analysis:

Relevance quantification in frame 6
Relevance Relevance

 1  2  3  4  5  6

3 3

4
33

Fig. 1. This figure shows an overview on the components of our framework with exem-
plary illustrations for the use case of facial expression recognition. The framework
processes 4 steps. First, it allows for a flexible and configurable data set and model
selection (step 1). Secondly, it analyzes the model’s performance with respect to cor-
rect predictions (step 2). In step 3, relevance is computed that gets attributed to each
pixel by layer-wise relevance propagation. In the same step, polygons are derived from
pre-defined domain knowledge in the form of facial landmarks. The aggregation of rel-
evance inside the resulting polygonal image regions gets quantified by our evaluation
approach in step 4. For our domain-specific evaluation approach, we consider the pos-
itive relevance values computed in step 3 (see red pixel regions in the heatmap-based
illustration of relevance). For each image in a video sequence (here: frame 6), we eval-
uate the aggregation of relevance within the polygons of all predicted AUs (here: AU1,
AU2 and AU7, see on the left side of the figure, and AU10, see on the right side of the
figure). This is done by dividing the positive relevance aggregation within the region(s)
of interest by the total positive relevance within an image (as defined by Eq. 2). With
our domain-specific evaluation, a well-performing and robust model would detect posi-
tive relevance only within the defined polygonal regions. Deviations of this expectation
can be easily uncovered with our framework. (Color figure online)
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3.1 Evaluation Framework Overview

Figure 1 presents an overview on the components of our proposed domain-specific
evaluation framework. The evaluation framework closes the research gap of pro-
viding application-grounded evaluation criteria that incorporate expert knowl-
edge from the facial expression recognition domain. Our framework is intended
as a debug tool for developers and as an explanation tool for users that are
experts in the domain of facial expression analysis.

In the first step, the data set and a trained classification model, e.g., a convo-
lutional neural network (CNN), is selected. In this paper, we apply two trained
CNNs for the use case of facial expression recognition via AUs. In step 2, the
model performance is evaluated on images selected by the user with a suitable
metric (e.g., F1 score). A visual explanation is generated in step 3, which com-
putes a heatmap per image and per class. The heatmaps display the relevance
of the pixels for each output class and can be already inspected by the expert
or developer. In the fourth and most crucial step, the domain-specific evaluation
based on the visual explanation takes place. By applying domain specific knowl-
edge, it is possible to quantify the visual explanation. For our use case, the user
evaluates models with respect to their AU classification using landmark-based
polygons that describe the target region in the face. The following subsections
describe the four steps in more detail.

3.2 Step 1: Data Set and Model Selection

For the domain-specific evaluation, the Extended Cohn-Kanade [25] (CK+) data
set (593 video sequences) and a part of the Actor Study data set [37] (subjects
11–21, 407 sequences) are chosen. The CK+ and Actor Study data set were
both created in a controlled environment in the labatory with actors as study
subjects.

We evaluate two differently trained models, a model based on the ResNet-18
architecture [30] and a model based on the VGG-16 architecture [38]. They are
both CNNs. A CNN is a type of artificial neural network used in image recog-
nition and processing that is specifically designed to perform classification on
images. It uses so-called multiple convolution layers to abstract from individual
pixel values and weights individual features depending on the input it is trained
on. This weighting ultimately leads to a class decision. In the CNNs we use,
there is one predictive output for each AU class. AU recognition is a multi-label
classification problem, so each image can be labelled with more that one AU,
depending on the co-occurrences.

While the ResNet-18 from [31] is trained on the CK+ data set as well as
on the Actor Study data set, the VGG-16 is trained on a variety of different
data sets from vastly different settings (e.g., in-the-wild and in-the-lab): Actor
Study [37] (excluding subjects 11–21), Aff-Wild2 [20], BP4D [41], CK+ [25], the
manually annotated subset of EmotioNet [5], and UNBC [26]. We use the same
training procedure as in [29] to retrain the VGG-16 without the Actor Study
subjects 11–21, which is then our testing data.
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With the two trained models we can compare the influence of different train-
ing distributions. Furthermore, we apply the domain-specific evaluation with
respect to training and testing data. By inspecting explanations for the model
on the training data, the inherent bias of the model is evaluated that can arise for
example by overfitting on features of the input images. By evaluating the model
on the testing data, we can estimate the generalization ability of the model.

The dlib toolkit [18] is used to derive 68 facial landmarks from the images.
Based on these landmarks and the expert knowledge about the regions of the
AUs, we compute the rectangles and polygons for the evaluation of generated
visual explanations.

3.3 Step 2: Model Performance Analysis

For evaluating the model performance, we use the F1 score (Eq. 1), the harmonic
mean of precision and recall with a range of [0,1], whereas 1 indicates perfect
precision and recall. This metric is beneficial if there is an imbalanced ratio of
displayed and non-displayed classes, which is the case for AUs [29]. The ResNet-
18 is evaluated with a leave-one-out cross validation on the Actor Study data
set, and the performance of the VGG-16 is evaluated on the validation data set,
and additionally on the testing part of the Actor Study (subjects 11–21).

F1 =
2 · precision · recall
precision + recall

(1)

3.4 Step 3: Visual Classification Explanations

We apply layer-wise relevance propagation (LRP) [4] to visually identify the
parts of the image which contributed to the classification, i.e., to attribute
(positive and negative) relevance values to each pixel of the image. “Positive
relevance” denotes that the corresponding pixel influenced the CNN’s decision
towards the observed class. “Negative relevance” means it influenced the deci-
sion against the observed class. For a given input image, LRP decomposes a
CNN’s output with the help of back-propagation from the CNN’s output layer
back to its input layer, meaning that each pixel is assigned with a positive or
negative relevance score. These relevance scores can be used to create heatmaps
by normalizing their values with respect to a chosen color spectrum [4].

We choose the decomposition scheme from Kohlbrenner et al. [19] based on
the implementation provided by the iNNvestigate toolbox [1]. For the ResNet-
18 we select PresetB as the LRP analyzer and for the VGG-16 network we
select PresetAFlat, since these configurations are usually best working for the
respective network architectures [19].

3.5 Step 4: Domain-Specific Evaluation Based on Landmarks

As a form of domain-specific knowledge, polygons enclosing the relevant facial
areas for each AU are utilized (see Fig. 2). Each polygon is constructed based
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on a subset of the 68 facial landmarks to enclose one region. The regions are
defined similar to Ma et al. [27].

As motivated earlier, the selection and quality of domain-specific knowledge
is of crucial importance. Figure 2b shows a coarse bounding box approach of
Rieger et al. [31] and Fig. 2c shows our fine-grained polygon approach exemplary
for the AU9 (nose wrinkler). We can see that for b) also the background is taken
into account, which makes the quantitative evaluation error-prone. This shows
for the use case of AUs, being a multi-class multi-label classification problem,
the importance of carefully defining boundaries, so that ideally one boundary
only encloses class-relevant facial areas per AUs, which is where our polygon
approach aims at.

For our evaluation approach, we consider only positive relevance in heatmaps,
since these express the contribution of a pixel to the target class, e.g., a certain
AU. However, the evaluation of the aggregation of negative relevance inside
boundaries would also be possible, but is not considered here.

For quantitatively evaluating the amount of relevance inside the box or poly-
gon, we use the ratio µ of the positive relevance inside the boundary (Rin) and
the overall positive relevance in the image (Rtot) (Eq. 2). To make our approach
comparable, we use the same equation as Kohlbrenner et al. [19].

µ =
Rin

Rtot
(2)

The µ-value ranges from 0 (no positive relevance inside the boundary) to
1 (all positive relevance inside the boundary). High µ-values indicate that a
CNN based its classification output on the class-relevant parts of the image.
This means, that for a µ-value above the value of 0.5, the majority of relevance
aggregates inside the boundaries.

For our evaluation, we consider only images for which the ground truth as well
as the classification output match in the occurrence of the corresponding AU.

4 Results and Discussion

Table 1 shows the overview of the performance and domain-specific evaluation of
the VGG-16 model. The performance on the validation data set differs greatly
for some AUs (e.g., AU10, or AU14), which can be explained by the big array of
different training data sets. Henceforth, the data distribution of the Actor Study
is not predominantly represented by the trained model. We may keep in mind
that the Actor Study is a posed data set, so some facial expression can differ
in their visual appearance from the natural ones. However, when looking at the
average µpoly-values of the polygon boundaries, we can see a correlation of the
higher µ-values with the validation performance for some AUs. For example, the
model displays a good performance on the validation data set for AU10, but
a significantly lower one on the testing data set. However, in comparison, the
µpoly-value is the highest of all evaluated AUs. A similar pattern can be found
for example for AU14. Since we only use the correctly classified images for our
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(a) 68 facial landmarks [27] (b) AU9 bounding box [31] (c) AU9 polygon (ours)

Fig. 2. The domain-specific knowledge for evaluating the heatmaps are facial land-
marks. Exemplary image with emotion happy and highlighted region for Action Unit
9 (AU9) (nose wrinkler). AU region boundaries are pink and facial landmarks green
dots. (Color figure online)

domain-specific evaluation, we can interpret that the model can locate the region
for AU10 or AU14, but that there are probably many out-of-distribution images
for these AUs in the testing data set, hence making a good model performance
difficult. We can also observe that for instance for AU25, there is a strong per-
formance on both the validation and testing data set, but a low µ-value, which
can indicate that the model did not identify the expected region as important.

Table 2 shows a comparison between our polygon approach µpoly with the
standard bounding box approach µbox [31] for the ResNet-18. The bounding box
approach µbox yields overall higher µ-values than the polygons (µpoly), which is
expected since the boxes enclose a larger area than the polygons. This can also
indicate that the coarse boxes contain pixels that get assigned with relevance
by the ResNet-18, although they are not located in relevant facial areas, hence
highlighting once more the importance of the quality of the domain-specific
knowledge. Our polygons enclose in contrast to the bounding boxes only class-
relevant facial areas. Looking closely at the AUs, we can see that although the
µbox is high for AU4, it has also the highest difference to µpoly for both the data
sets CK+ and Actor Study. We can therefore assume a high relevance spread
for AU4, which is ultimately discovered by applying the fine-grained polygon
approach. In contrast, AU10 looses the least performance for both data sets
concerning the µ-value, but displays also the lowest F1 value, which can indicate
that although the AU is not accurately predicted in a lot of images, the model has
nonetheless learned to detect the right region for images with correct predictions.

Overall, the µ-values are low for all classes, indicating a major spread of
relevance outside of the defined boxes. Some of the relevance may be outside of
the polygons due to a long tail distribution across the image with a lot of pixels
having a low relevance value. This can lead to low µ-values for all polygons.
When comparing the µpoly with the µbox approach, it is apparent that the µbox-
values are higher compared to the µpoly-values, and only µbox-values reach an
average µ-value above of 0.5 across data sets. Both findings show the need for a
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Table 1. Classification performance and domain-specific evaluation of the VGG-16
model. The performance is measured by the F1 score on the validation and testing
data set respectively. The domain-specific evaluation is measured with the average µ-
values of the polygones on the testing data set. The testing data set is the Actor Study
data set, subjects 12–21. Best results are in bold.

AU F1 score av. µpoly

validation testing

1 0.61 0.71 0.125

2 0.42 0.58 0.155

4 0.51 0.56 0.114

6 0.72 0.50 0.137

7 0.79 0.44 0.092

10 0.83 0.19 0.239

12 0.77 0.58 0.220

14 0.77 0.13 0.221

15 0.62 0.13 0.215

17 0.67 0.43 0.008

23 0.49 0.05 0.026

24 0.63 0.19 0.037

25 0.66 0.69 0.036

Table 2. Comparison of our approach µpoly with the standard bounding box approach
µbox [31] for ResNet-18. Highest values are in bold.

AU F1 CK+ Actor Study

µbox µpoly |µbox − µpoly| µbox µpoly |µbox − µpoly|
04 0.68 0.579 0.118 0.461 0.458 0.061 0.397

06 0.55 0.432 0.144 0.288 0.360 0.087 0.273

07 0.62 0.499 0.097 0.402 0.417 0.038 0.379

09 0.48 0.492 0.195 0.297 0.293 0.084 0.209

10 0.32 0.350 0.339 0.011 0.197 0.196 0.001

25 0.83 0.413 0.211 0.202 0.457 0.175 0.282

26 0.60 0.330 0.143 0.187 0.493 0.201 0.292

27 0.57 0.463 0.203 0.260 0.545 0.223 0.322

domain-specific evaluation with carefully selected expert knowledge in order to
assess a model’s performance as good as possible but also the precision of used
visual explainers with respect to the spread of relevance.

Furthermore, our approach emphasizes the general need of an evaluation
beyond classification performance of models. Although the models display high
F1 scores for most of the classes, the relevance is not in the expected areas.
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A limitation of our evaluation results is that they do not consider µ-values
normalized according to the size of regions, although our approach allows such an
extension in principle. This is an important aspect, since the areas for each AU
are differently sized in relation to the overall image size. This means that some
AU boundaries may be more strict on the relevance distribution than others and
may penalize the model’s performance thereof. For that we suggest a weighted
µ-value calculation, optimally with respect to the overall relevance distribution
in an image, e.g., based on thresholding the relevance [8].

5 Conclusion

In this paper, we present an approach for domain-specific evaluation of visual
explanation methods in order to enhance the transparency of CNNs and estimate
their robustness as precisely as possible. As an example use case, we applied our
framework to facial expression recognition. We showed that the domain-specific
evaluation can give insights into facial classification models that domain-agnostic
evaluation methods or performance metrics cannot provide. Furthermore, we
could show by comparison that the quality of the expert knowledge is of great
importance for assessing a model’s performance precisely.
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Abstract. We explore the integration of domain knowledge graphs into
Deep Learning for improved interpretability and explainability using
Graph Neural Networks (GNNs). Specifically, a protein-protein inter-
action (PPI) network is masked over a deep neural network for classifi-
cation, with patient-specific multi-modal genomic features enriched into
the PPI graph’s nodes. Subnetworks that are relevant to the classifica-
tion (referred to as “disease subnetworks”) are detected using explainable
AI. Federated learning is enabled by dividing the knowledge graph into
relevant subnetworks, constructing an ensemble classifier, and allowing
domain experts to analyze and manipulate detected subnetworks using a
developed user interface. Furthermore, the human-in-the-loop principle
can be applied with the incorporation of experts, interacting through a
sophisticated User Interface (UI) driven by Explainable Artificial Intel-
ligence (xAI) methods, changing the datasets to create counterfactual
explanations. The adapted datasets could influence the local model’s
characteristics and thereby create a federated version that distils their
diverse knowledge in a centralized scenario. This work demonstrates the
feasibility of the presented strategies, which were originally envisaged in
2021 and most of it has now been materialized into actionable items. In
this paper, we report on some lessons learned during this project.
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List of Abbreviations

AI Artificial Intelligence
CLARUS interaCtive expLainable plAtform for gRaph neUral networkS
DNA Deoxyribo-Nucleic Acid
FC FeatureCloud (EU Project)
GDPR General Data Protection Regulation
GNN Graph Neural Network
GNN-LRP GNN Layer-wise Relevance Propagation
GPU Graphics Processing Unit
HITL Human-in-the-Loop
IG Integrated Gradients
i.i.d. Independent and identically distributed
LRP Layerwise Relevance Propagation
MI Mutual Information
ML Machine Learning
mRNA messenger Ribo-Nucleic Acid
OOD Out-Of-Distribution
PGM Probabilistic Graphical Model Explainer
UI User Interface
xAI explainable Artificial Intelligence

1 Introduction and Motivation

The European Project “FeatureCloud (FC)” (Grant Agreement 826078) created
a novel Artificial Intelligence (AI) platform which is based on the idea of fed-
erated, decentralised learning where only model parameters are communicated.
The FC AI App-store https://featurecloud.ai/ is the first platform worldwide to
enable federated learning of diverse AI models in a privacy-preserving way [41].
The types of AI models used are quite diverse, including linear regression, clus-
tering, random forests, deep learning, etc. The fundamental idea is that every
software developer or data scientist can federate their AI model provided that the
model fulfils some minimum requirements (see: https://featurecloud.eu). Dock-
erization [43] supports seamlessly the transferability of the federated solution
into different machines independent from hardware requirements as much as
possible.

Whilst federated decentralized learning enables communication of model
parameters, integration with more advanced machine learning concepts, such as
deep learning and domain-specific knowledge, can increase its performance and
efficiency. Using deep neural networks and enriching them with domain-specific
graphs such as protein-protein interaction (PPI) networks can also drastically
improve the feature extraction process. The next phase, of course, is then about
combining decentralization and the power of Deep Learning. The feature-rich,
detailed, and robust parameters, when communicated in a federated learning
framework, can lead to highly effective and reliable machine learning applica-
tions. The decentralized nature of such a framework not only increases learning

https://featurecloud.ai/
https://featurecloud.eu
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efficiency but also strengthens the trustworthiness of the results by combining
masked learning with domain knowledge.

In our work [48], we masked deep neural network learning with a protein-
protein interaction (PPI) network. In the context of this paper, “masking” refers
to incorporating a domain-knowledge graph (specifically, a PPI network) into a
deep neural network for classification. This means that the nodes and edges of
the PPI network are added to the input layer of the neural network and are
used to enrich the features of the data being processed by the neural network.
Features are key for learning, understanding and explaining and consolidated
features are more accurate and robust, which helps to make practical machine
learning applications more trustworthy [47]. It is a general problem that even
the most powerful learning methods suffer from the fact that it is difficult to
retrace, interpret and thus explain why a certain result was obtained, and that
they lack robustness. Even the smallest perturbations in the input data can
dramatically affect the output, leading to completely different results. This is
of great importance in virtually all critical domains where we suffer from poor
data quality, i.e., where we do not have available the i.i.d. data we would need
for ideal learning. However, in medicine, biology, and all life-critical domains, it
is about being able to trust the results and retrace them when needed [17,18].

In our next step the classification has been made explainable, i.e. those sub-
networks are detected that were relevant for the classification (“disease sub-
networks”) - subgraphs are called “local spheres” in [20] and [40]. In order to
guarantee a representative baseline comparison to the above methodology, the
subnetwork detection was realised by means of a random forest [45]. Here, too,
the learning process is masked by a knowledge graph. Random forests are partic-
ularly relevant in medicine due to their good interpretability. In the work [46] we
enabled federated learning with the methods mentioned above. Here, the knowl-
edge graph is divided into relevant subnetworks using explainable AI, based on
which an ensemble classifier is constructed. This ensemble classifier can be effi-
ciently learned in a federated way. In addition, a user interface was developed
[2] that allows a domain expert to analyse and manipulate the detected sub-
networks, delete and add nodes, and finally reintegrate them into the federated
ensemble classifier. This paper is organized as follows: In Sect. 2 we provide some
background and related work, in Sect. 3 we provide an overview of our imple-
mentations, and in Sect. 4 we give a frank description of what we have learned,
and in Sect. 5 we conclude and provide some future outlook.

2 Background and Related Work

There is nothing more practical than a good theory (Kurt Lewin, (1890–1947)).
In our work we pursued four central topics from the paper [20]: (i) Explainable AI
on GNNs, (ii) Federated Learning, (iii) Knowledge Graphs, and (iv) Human-AI
interaction. Consequently, we have aligned all of these topics on the application
of precision medicine.
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2.1 Explainable AI on Graph Neural Networks

Graph Neural Networks (GNNs) extend neural network architectures to oper-
ate on graph-based data by defining learnable functions that extract features
and patterns from the graph structure to perform tasks such as node classifi-
cation, graph classification, link prediction, etc. [58]. GNNs are very success-
ful and enable efficient integration of domain-knowledge graphs to make Deep
Learning interpretable and explainable [20]. Federated solutions thereof seem
to occur naturally in several applications such as distributed sensors for traffic
surveillance, a collaboration of hospitals for efficient solutions of complex medi-
cal tasks, distributed social media applications and so on. In the era of big data
both the size of the graph datasets as well as the GNN architectures grows,
making efficient and privacy-preserving information exchange and computation
a challenge. What is more, since the communicating parties, whether they are
servers or clients can be represented by a graph themselves, it is shown that
GNN architectures can support federation in turn [33].

As is generally the case with neural networks, also GNN results are not easy
to retrace and interpret. To address this shortcoming, intensive work is currently
being done worldwide on GNN methods that can be explained. Examples include
GNNexplainer, PGExplainer, and GNN-LRP. GNNExplainer [59], for example,
provides local explanations for predictions of any graph-based model. This can
be used for both node classification and graph classification. PGExplainer [35]
is a parameterized modification of GNNexplainer. Unlike GNNexplainer, it pro-
vides model-level explanations that we find useful for graph classification tasks.
GNN-LRP [51] is derived from higher-order Taylor expansions based on layer-
wise relevance propagation (LRP) [30]. It explains the prediction by extracting
paths from the input to the output of the GNN model that makes the largest
contribution to the prediction. These paths correspond to walks on the input
graph. GNN-LRP was developed for node-level explanations and has been mod-
ified to work for graph classification in a special arrangement [5]. The presented
work with a method called CF-Explainer [34] is particularly interesting. Here,
explanatory factors can be revealed using counterfactuals.

GCExplainer [38] stands in the forefront as the first GNN explainer that
detects the learned concepts of a GNN. The main idea is to perform cluster-
ing after the last aggregation layer and to assume that each of the clusters
corresponds to a human-recognizable concept. Users have the opportunity to
parameterize the explanation process through the number of clusters and the
neighbourhood size of the explained component. This approach incorporates the
human-in-the-loop [16,23] and at the same time has been shown to achieve good
concept purity and completeness. Furthermore, it is the basis of current work
that makes GNNs explainable per design by first learning the concepts, then
on that basis doing a concept-based prediction [37]. Such explainable AI meth-
ods can facilitate the discovery of disease-causing regions in networks, helping
to uncover a subset of candidate features organized in disease-relevant network
modules.
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This is exactly where the human-in-the-loop concept helps, as interaction
with explanations and the incorporation of conceptual knowledge can further
improve the learning algorithm.

2.2 Federated Learning

Federated learning (FL) is an ML approach in which the training data is decen-
tralized and distributed across multiple devices or locations, and the model train-
ing process is performed locally on each device or location [40]. The updates to
the model are then aggregated centrally, resulting in a global model that incor-
porates the knowledge learned from each device or location. FL is of course
useful in scenarios where the data is sensitive, private, or subject to regulatory
constraints, such as medical records or financial transactions. Instead of central-
izing the data and running the model training process on a single server or cloud
platform, federated learning allows the data to remain on individual devices or
locations, and only the model updates are transmitted for aggregation. This pre-
serves the privacy and security of the data and reduces the risk of data breaches
or leaks. FL should not be mixed up with purely decentralized learning, where
local models do not automatically contribute to each other apart from manually
sampling the models and updating the hyperparameters [3]; and also not with
collaborative learning in various forms, where the goal is to share information
about internal model building between the involved parties in a peer-to-peer
manner but keep the local training data confidential. A variant could also train
on decentralized features that purportedly model the same underlying instances
[24]. It has been known for some time that features for one modality are learned
better when multiple modalities are present at the time of feature learning. In
multimodal learning, information is from multiple sources. Often, several differ-
ent modalities contribute to a result. We are motivated by [1,9,19]. This brings
us directly to graphs and particularly knowledge graphs.

Federation itself has evolved to be a broad topic; although the main principles
are firm, different implementations realize the same goals. What is similar in all
instantiations is that there is data isolation to some degree and that the informa-
tion being exchanged should be minimal and privacy-preserved (i.e. encrypted).
Furthermore, the i.i.d. scenario is rather the exception than the norm; several
frameworks need to simulate it before the actual deployment [44]. Nonetheless,
collaboration has proven to be fruitful in most cases, since no one dataset con-
tains all representative information about a task and ML solutions lack the abil-
ity of systematic generalization and out-of-distribution (OOD) prediction even
when trained with rich and diverse datasets.

In the more concrete case of Federated GNN, there are mainly three possi-
bilities [14], as also shown in Fig. 1. In the graph-level FL, each client has its
graph dataset and potentially also a GNN. In the subgraph-level FL, each of the
clients has one part of the graph and in the node-level FL nodes of one graph
are distributed among clients.
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Fig. 1. Three settings of GNN federation [14].

This is following the principles of Horizontal FL (HFL) and Vertical FL
(VFL). In the first case, the features of the graphs of all clients are quite simi-
lar, but their sample characteristics (data distribution) differ substantially. The
opposite occurs in the second case. Both of them are viable scenarios of FL
and need to be addressed either with centralized or decentralized FL. In the
federated centralized strategy, it is typical that there are several synchronous or
asynchronous events containing parts of the dataset, and one server is responsible
for the federation (which is also called aggregation). In the federated decentral-
ized case, many clients exchange information with each other; this is more robust
as far as privacy attacks are concerned but has substantial communication and
organizational overhead.

2.3 Knowledge Graphs

Knowledge graphs (KG) are a type of database that represents knowledge in a
structured, interconnected format, using a graph-based data model. It typically
consists of a set of nodes (also called entities) that represent concepts or things,
and a set of edges (also called relationships or properties) that connect the nodes
and represent the connections or interactions between them. Many phenomena
from nature can be represented in graph structures, whether at the molecular
level (e.g. protein-protein interaction) or at the macroscopic level (e.g. social net-
works) and various methods from network science [7] and computational topol-
ogy [15] can be applied. Some of the most successful application areas of machine
learning and knowledge extraction in recent years can be seen as learning with
graph representations [57].

In a knowledge graph, each node and edge can have additional attributes or
metadata associated with it, providing additional information or context about
the node or edge. This metadata can include labels, descriptions, categories, or
other semantic information. Knowledge graphs are often used to represent infor-
mation from diverse sources and domains in a multi-modal manner. They can
be used to represent both factual knowledge (such as the properties of objects
or events) and conceptual knowledge (such as the relationships between abstract
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concepts). Knowledge graphs are also used as a foundation for various applica-
tions, such as natural language processing, semantic search, recommendation sys-
tems, and data integration. They enable efficient querying and reasoning about
complex, heterogeneous data, as well as support the development of intelligent
agents that can reason and learn from the knowledge represented in the graph
[12]. KG’s are very useful for explainability and explainable AI methods based
on counterfactual queries to the trained GNN models are very promising [39,53].

2.4 Human-in-the-Loop

Human-in-the-Loop [16] refers to the process of involving a human expert inter-
actively in the machine learning (ML) process to provide feedback, guidance,
or even corrections to the model. The human is an integral part of the ML
pipeline, interacting with the model/algorithm to improve its performance and
ensuring that it aligns with the desired goals and values. This approach is useful
in scenarios where the data is complex, ambiguous, or subject to change, and
where the model’s performance can benefit from human expertise or even from
the experts’ subjective judgment. This is because sometimes - of course not
always - the human expert has domain knowledge, experience and contextual
understanding, in German “Hausverstand” - what the best AI algorithms are
lacking today. An additional benefit is that the human-in-the-loop approach can
also improve the transparency, interpretability, and fairness of machine learning
models, as it allows for human oversight and intervention in cases where the
model produces biased or undesirable results. However, the human-in-the-loop
approach, on the other hand, has drawbacks as it can be time-consuming, expen-
sive, and potentially introduce bias or subjectivity into the modelling process,
so it is important to carefully design and evaluate the interaction between the
human and the model.

3 Methods, Solutions and Implementations

3.1 Disease Subnetwork Detection

In a publication about GNNSubNet [48], we presented a novel method for
disease subnetwork detection using protein-protein interaction (PPI) networks
and explainable graph neural networks (GNN). Our method leveraged the PPI
knowledge to enable more reliable and biologically meaningful learning trajec-
tories compared to classical deep learning approaches. The nodes of the induced
PPI network are enriched by biological features from various modalities, such
as gene expression and DNA methylation (see Fig. 2). We applied our pro-
posed method to patients with kidney cancer and demonstrated its ability to
detect disease subnetworks. The developed methodology is implemented within
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our GNN-SubNet Python package, freely available on GitHub (https://github.
com/pievos101/GNN-SubNet). In addition, we enhance ensemble learning based
on the detected networks. This makes the classifier more robust, but also
more interpretable [46]. Ensemble-learning with GNNs is implemented within
our Ensemble-GNN Python package (https://github.com/pievos101/Ensemble-
GNN). In further updates of the package additional GNN-based explainers such
as GNN-LRP and PGM-Explainer to further increase the interpretability of the
detected subnetworks will be implemented.

Moreover, as a reliable baseline, in terms of classification performance
and overlay interpretability, we have developed the software package DFNET
(https://github.com/pievos101/DFNET) [45], which implements a network-
guided random forest to derive an ensemble classifier based on any induced
knowledge-graph. However, in a federated case, a local random forest would
need to share the exact split values of its nodes [13]. This is of much concern
and was one of the reasons why we further developed federated solutions based
on deep GNNs. The shared parameter among clients in that deep learning setting
is more secure with regard to privacy concerns.

3.2 Explainability

The classification of Part 1 has been made explainable, i.e. those subnetworks
detected that were relevant for the classification (“disease subnetworks”) - sub-
graphs aka “local spheres”. For this purpose we have developed a modified ver-
sion of the GNNexplainer [59] to compute global explanations. This is realized
by sampling patient-specific input graphs while optimizing a single-node mask
(see Fig. 2). From these values, edge weights are calculated and assigned to the
edges of the PPI network. Finally, a weighted community detection algorithm
infers the relevant subnetworks.

PPI networks generally provide crucial insights into cellular functions and
processes, and alterations in these interactions often lead to diseases. Conse-
quently, such networks are important in understanding complex diseases like
cancer, which typically involve changes in the interaction patterns of proteins.
Explainability can here help to understand disease mechanisms, e.g. to reveal
the underlying mechanisms of diseases. By understanding which interactions
contribute to the prediction and how, researchers can potentially uncover new
biological insights. For example, a model might predict a certain protein as being
critical to a disease because of its numerous interactions with other proteins.
This could lead to further biological investigations into the role of that protein
in the disease. This can help in creating personalized treatment strategies. For
instance, if certain protein interactions are critical in the disease progression of
a particular patient, treatments can be tailored to target these specific interac-
tions. Identifying which features (e.g., specific proteins or interactions) are most
important in the model’s predictions. For example, a model might reveal that a
specific protein or a set of proteins plays a significant role in a particular disease,
informing further biological research.

https://github.com/pievos101/GNN-SubNet
https://github.com/pievos101/GNN-SubNet
https://github.com/pievos101/Ensemble-GNN
https://github.com/pievos101/Ensemble-GNN
https://github.com/pievos101/DFNET
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Fig. 2. Illustration of patient classification into a cancer-specific and randomized cancer
group using explainable Graph Neural Networks (taken from [48]). Each patient is
represented by the topology of a protein-protein interaction network (PPI). Nodes are
enriched by multi-omic features from gene expression and DNA Methylation (coloured
circles). The topology of each graph is the same for all patients, but the node feature
values vary, reflecting the cancer-specific molecular patterns of each patient. (Color
figure online)

Furthermore, model-agnostic counterfactual explanations and their associ-
ated counterfactual paths can be generated using our cpath software library
(https://github.com/pievos101/cpath). The implemented methodology provides
counterfactual explanations by identifying alternative paths that could have led
to different predictions. The proposed method is particularly suited to generate
explanations based on counterfactual paths on knowledge graphs. By exploring
hypothetical changes to the input data on the knowledge graph, we can sys-
tematically validate the behaviour of the model and investigate the features, or
combination of features, that are most important for the model’s predictions.
Our approach provides a more intuitive and interpretable explanation of the
model’s behaviour than traditional feature importance methods and can help to
identify and mitigate biases in the model. A scientific paper about cpath is in
progress.

3.3 Knowledge Graph

GNNs provide a crucial benefit of enabling the integration of knowledge graphs
[27]. This implies that both ontologies and Protein-Protein Interaction (PPI)

https://github.com/pievos101/cpath
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networks can be effectively incorporated into the algorithmic pipeline, as high-
lighted in much previous research [26,29,32,54]. This also enables to integrate
of human experience, conceptual knowledge, and contextual understanding into
machine learning architectures, which is a notable advantage. This “human-in-
the-loop” or “expert-in-the-loop” approach can, in some cases, lead to more
robust, reliable, and interpretable results [22,23,25].

PPIs reflect the physical or functional connections between proteins in a cell
or organism. These networks can be represented as graphs, where proteins are
nodes and their interactions are edges. PPIs can be retrieved from the STRING
database [56]. STRING provides a comprehensive collection of known and pre-
dicted protein interactions, allowing users to explore and analyze protein net-
works to gain insights into cellular processes and functional relationships.

It is worth noting that the inclusion of domain knowledge does not guaran-
tee success in every instance. However, the incorporation of such expertise can
contribute to the attainment of the most critical goals of the AI community,
namely, the development of robust, explainable and trustworthy solutions [18].
These objectives are essential in ensuring the practical and ethical applications
of AI in various fields and are meanwhile mandatory e.g. in the European Union.

3.4 Federated Ensemble Learning with GNNs

In recent work [46] we enabled federated learning with the methods mentioned
above. Here, the knowledge graph is divided into relevant subnetworks using
explainable AI, based on which an ensemble classifier is constructed. This ensem-
ble classifier can be efficiently learned in a federated way.

The main idea of the ensemble federation is depicted in Fig. 3. Each client
contains several graphs and each of those graphs represents a patient. The values
of the nodes and edges are different in general (as depicted by the different colours
of the nodes in the upper part of Fig. 3), but the structure of the graphs is the
same. Those graphs can be classified by a GNN and the GNN-SubNet method
[48] can compute a set of relevant subgraphs for this classification. GNN-SubNet
concentrates on providing the relevant structure or topology only; therefore the
subgraphs are depicted with white in the middle of Fig. 3. The concrete values
of the nodes and edges are transferred in a third step though from the original
graphs (upper part of Fig. 3) to the concrete subgraphs that have the topology
of the relevant subgraphs and values overtaken from the original graph (lower
part of Fig. 3). By creating a new dataset for each discovered relevant subgraph
where its structure is repeated and the values are taken from the original graph
of all the patients in the client, a separate GNN is trained. The predictions of all
those GNNs are input to a majority vote procedure that - in its non-federated
version - has an acceptable local performance.

The federation is depicted in Fig. 4 and follows a decentralized strategy. The
clients use local GNNs of their peers in the inter-client network, that were created
with similar logic but were trained with graphs having different topologies -
since the relevant subgraphs for each client are expected to vary in general.
There is no exchange of the discovered relevant topologies of each client, only
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Fig. 3. The use of GNN-SubNet in one client, containing a set of graphs for classifica-
tion. This method extracts a list of relevant subgraph structures (topologies) and uses
them by filling the corresponding values of nodes and edges from the original graphs.
The newly created datasets are used to train local GNNs and make predictions which
are aggregated by majority voting.

the GNN parameters are transferred - which is as far as privacy is concerned less
revealing. The majority vote over all those GNNs provided a better performance
over each client’s test set, but not over a test set that was isolated from all
clients, as shown in [46]. The described methodology is implemented within
our Python package Ensemble-GNN, freely available on GitHub (https://github.
com/pievos101/Ensemble-GNN). A Feature Cloud app implementation is also
available (https://github.com/pievos101/fc-ensemble-gnn).

https://github.com/pievos101/Ensemble-GNN
https://github.com/pievos101/Ensemble-GNN
https://github.com/pievos101/fc-ensemble-gnn
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Fig. 4. Depiction of the federated learning of Ensemble-GNN. The late fusion of
exchanged GNN’s predictions through voting is the way the federation is driven by
the result of the employed xAI method in [48].

The scenario of non-i.i.d. data has to be simulated in future work, by includ-
ing imbalanced distribution of data and potentially explicitly defining different
feature distributions in the clients [44]. Lastly, the discovered relevant topologies
can also be subject to changes driven by human users through a UI, changing
the local GNNs, and by that the whole federation process.

3.5 interaCtive expLainable plAtform for gRaph neUral networkS
(CLARUS)

The CLARUS UI platform [2] is accessible under http://rshiny.gwdg.de/apps/
clarus/. The goal of the UI platform is to provide any human user interactive
access to prepared datasets, GNNs and several xAI methods. All necessary infor-
mation about the platform usage, datasets, features and performance metrics are
provided through the platform. An overview of the typical sequence of steps that
a user takes is presented in Fig. 5.

For the user to be able to make informed actions [49] with the use of diverse
xAI methods (GNNExplainer [59], GCExplainer [38]), all nodes and edges are
presented by sorted relevance values. The colouring scheme depends on the prop-
erties of the xAI method itself; the saliency method [55], Integrated Gradients

http://rshiny.gwdg.de/apps/clarus/
http://rshiny.gwdg.de/apps/clarus/
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Fig. 5. The sequence of user action steps in the CLARUS platform. First, the user
selects one of the prepared datasets and immediately after he/she has the opportunity
to explore any graph visually by zooming and by inspecting the nodes and edges
feature values. The backend has already trained a GNN with the training dataset after
a stratified split of the data and presents performance results (individual and global),
xAI relevance values as well as additional information that can be useful such as the
degree of each node. With the help of this information, and additional acquired domain
knowledge, the human user decides to take action(s) and either add or delete nodes,
edges and features thereof. To see how those actions affected the task prediction of
the current GNN a new prediction can be triggered. In cases where the changes are
substantial a retrain from scratch can be also made, deleting by that all old information
in the current GNN. This process can be repeated as many times as desired until
the user conceives the decision-making process to an acceptable extent through the
generated counterfactual explanations. A download of all data and model details at a
particular time point, together with a unique timestamp is possible on demand.

(IG) method, and the GNNExplainer return only positive relevance values, but
methods like GNN-LRP (Layer-wise Relevance Propagation) return both posi-
tive and negative values. Those two groups of relevance value ranges have discrete
colourings for a better understanding of the concept of negative relevance as one
denoting element in the data sample that “speak against” a class and even in
a correct classification is responsible for making the confidence value smaller.
Beyond that, for each sample it has to be clear if it is correctly classified or
misclassified; even the exact prediction performance is present. This is because
the reliability of explanations in the misclassification case is questionable and it
is a subfield of xAI research itself. Therefore, several classification metrics are
accessible: the confusion matrix, sensitivity, specificity and in the future Mutual
Information (MI) [4,11,36]. After each retrain and prediction, those metrics are
re-computed and in general they have changed values. A detailed description of
the pre-selected datasets, their preprocessing, various interaction scenarios and
abilities of the platform can be found in [2].
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With the use of adequately designed UI tests on this platform it is possible
to show the effect of counterfactual questions and corresponding user actions on
user understanding of the model. The completeness of the already used xAI
methods is enhanced by the actions triggered by users in combination with
the already present domain knowledge, but also from the juxtaposition of their
results since they all differ to a certain extent. The user is motivated and inspired
to make informed actions, imagine what their effect would be and compare the
actual result with his/her preconceived notions about why the model solves the
task sufficiently well (or not) in a dialectical manner. The path to increasing
causability [42] with the use of specially designed interfaces [21] is at the fore-
front for the causal understanding of AI models in the future. The described
user interface CLARUS [2] allows a domain expert to analyse and manipulate
the detected subnetworks, which to this end could be reintegrated into the fed-
erated ensemble classifier.

4 Lessons Learned

What was not done and why?
The implementation of other xAI methods than GNNExplainer for the detection
of disease subnetworks. This is particularly relevant for ensemble-based GNN
architectures. Each GNN xAI method might create different ensemble members,
which to this end could be studied in terms of performance and interpretability
(e.g. GO enrichment of the detected PPI subnetworks).

What problems occurred?
Other xAI methods were more difficult to integrate. Some explainers only com-
pute relevances for edges or nodes, others like GNN-LRP [50] assign relevance
values only on walks; that means that a node or edge belonging to more than one
walk (which is usually the case) has not one clearly defined relevance value. Data
scientists may be tempted to average all edge relevances to infer the relevance
of the node or the opposite, but this is not representative of the xAI method.
Furthermore, GNN-LRP provides both negative and positive relevances, which
means that not only the colour map has to be distinct from the methods that
provide only positive relevance, but that the relevance of the paths needs an indi-
vidual visualization strategy that allows overlapping and user selection. Other
methods like the GCExplainer [38] compute a representative set of subgraphs
that is relevant for each relevant concept w.r.t. the accomplished task. Although
this is a valuable approach which has some similarities with the detection of rel-
evant disease subnetworks, since it does not directly return numerical relevance
values for the individual components of the graphs, cannot be straightforwardly
integrated into the UI framework.

What was difficult?
What was particularly difficult for both data scientists and users is the discovery
of differences between the xAI methods results; this consists of the so-called
“disagreement problem” [28]. Data scientists provide several xAI methods to



Human-in-the-Loop Integration 59

shed light on different aspects of the design-making process of the model, but if
the results of those methods deviate from each other, this disagreement is not
easy to interpret and understand. Furthermore, counter-intuitive phenomena
were observed; it is assumed for example, that if a user deletes components of a
graph according to decreasing (positive) relevance order, then the performance of
the model will not only decrease monotonically but also that the newly computed
relevance order after a new triggered prediction will remain the same. In many
cases this was not experienced, making the users question the reliability of the
xAI methods. Related to that, the value range of the colour map was an issue,
since the minimum and maximum value of relevance change in general after a
prediction is initiated.

What did we learn?
The fact that each graph has the same topology (PPI network) hinders stable
and robust graph classification, especially in cases where the input graph is large.
We could observe that GNNs on smaller graphs perform generally better [46].
Further, we have learned that in the herein-studied cases of the same topology
graphs, using Laplacian layers might be more efficient in terms of performance.
Therefore, we also included the ChebNet approach [6] as an option for GNN-
SubNet and Ensemble-GNN. However, GNNs are generic models and applicable
to many other related tasks. Also, we might model each patient with different
graph topologies. In that case, the ChebNet approach is not applicable.

We have further learned that the quality and validity of the knowledge graph
are crucial. Knowledge graphs must be further improved in order to obtain reli-
able and domain-specific meaningful results. Also, it has been shown that most
methods for disease module discovery learn from the PPI node degrees and
mostly fail to exploit the biological knowledge encoded in the edges of the PPI
networks [31]. Although we believe that our proposed methodology is not biased
to that described case, further investigations are needed to understand and quan-
tify the bias induced by the network structure.

What open work remains for the future?
Heterogeneous Graphs (including text and images or different types of nodes and
edges) were not included. After preliminary tests, we know that they need more
resources and xAI methods need to be thoroughly tested before deployment.
So far we have multi-model genomic data in tabular form, structured by a PPI
network.

Until now the GNN architecture is pre-defined for every dataset and it is
somehow intertwined with the characteristics of this dataset - and most of all
its size. In the case where the user changes increases or decreases the size of
the dataset and/or changes its characteristics substantially, the platform can-
not guarantee similar performance since the GNN’s architecture is not adapted.
To automatically find the adequate GNN architecture is a topic of Automated
Machine Learning (Auto-ML), and its incorporation in this platform will come
with additional time costs which will, in turn, influence the waiting time of the
users in favour of performance and better xAI results.
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The existence of the aforementioned “disagreement problem” [28] drives
future work in the direction of not only integrating more xAI methods but also
considering the computation and presentation of several xAI quality metrics
thereof to the users. Fidelity, sensitivity, clusterability, robustness and others
[8,52] provide additional guidelines for the reliability of each method in cases
where the top relevant features or their ordering is inconsistent. In the end,
upon deployment, several UI evaluation tests have to be made to explore the
extent of biased preference of xAI relevance results. In the end, the plurality of
xAI methods does not necessarily consist of a problem but might be the means
for a sophisticated, holistic and dialectic approach for shedding light on different
aspects of the decision-making process of GNNs.

The main reason federation is used, is for the central model to
learn something from the different local models, trained with their
datasets. Comparing the performance of the local models with the
central model: what are the differences there?

It does make a considerable difference whether we test the federated global
model on an independent global test data set, or on multiple client-specific test
data sets (see [46]). It still needs to be investigated which scenario is most rel-
evant and why these differ so much in terms of the performance of the global
model.

5 Conclusion and Future Outlook

In this work, we have demonstrated how to make federated deep learning more
interpretable and accessible to the domain expert. First, we have incorporated
domain knowledge into the deep learning process using Graph Neural Networks
and Protein-Protein Interaction (PPI) networks. Second, we have decomposed
the PPI knowledge graph into more interpretable smaller subnetworks using
explainable AI. Based on these subnetworks an ensemble classifier is constructed
which can be learned in a federated manner. The shared parameters of this
deep learning ensemble are more secure compared to e.g. the shared split values
of decision trees in a federated random forest. Finally, the ensemble member
(subnetworks) can be analysed by a domain expert through an interactive UI.

Future work can be done from various directions. Until now, xAI methods
that were used (GNNExplainer, PGExplainer, GCexplainer) return relevant val-
ues of nodes, edges and features thereof. Apart from the fact that some fun-
damental principles of them need to be explained to the users (f.e. that the
GNN-LRP assigns relevance to walks and not directly to nodes and edges), the
interpretation of those numerical values is a task that the user’s mental model
needs to undertake. In contrast to that, explanations in the form of rules, provide
a completely different user experience and understanding. It would be interesting
to research how Logical Rules (e.g. with Prolog) guide the selection of subnet-
works [10], similarly or differently with the numerical relevance values.

Furthermore, a framework that asks the domain expert about their precon-
ceived notions as far as what parts of the input data should be important, before
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seeing xAI results is worthwhile studying. The comparison of users’ reactions
after confronting relevant values vs. uninfluenced opinions derived from their
knowledge before any interaction could uncover interesting effects of human-AI
interaction.

Acknowledgements. The authors declare that there are no conflict of interests. This
work does not raise any ethical issues. This work has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement
No. 826078 (Feature Cloud). This publication reflects only the authors’ view and the
European Commission is not responsible for any use that may be made of the infor-
mation it contains. Parts of this work have been funded by the Austrian Science Fund
(FWF), Project: P-32554 (explainable Artificial Intelligence). This paper has been
made open access CC-BY, freely accessible to the international research community.
We are grateful for the valuable reviewer comments.

References

1. Acosta, J.N., Falcone, G.J., Rajpurkar, P., Topol, E.J.: Multimodal biomedical AI.
Nat. Med. 28(9), 1773–1784 (2022)

2. Beinecke, J., et al.: CLARUS: an interactive explainable AI platform for manual
counterfactuals in graph neural networks. bioRxiv (2022). https://doi.org/10.1101/
2022.11.21.517358

3. Bellavista, P., Foschini, L., Mora, A.: Decentralised learning in federated deploy-
ment environments: a system-level survey. ACM Comput. Surv. (CSUR) 54(1),
1–38 (2021)

4. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning, vol.
4. Springer, New York (2006)

5. Chereda, H., et al.: Explaining decisions of graph convolutional neural networks:
patient-specific molecular subnetworks responsible for metastasis prediction in
breast cancer. Genome Med. 13(1), 1–16 (2021). https://doi.org/10.1186/s13073-
021-00845-7

6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. arXiv:1606.09375 [cs, stat] (2016)

7. Dehmer, M., Emmert-Streib, F., Shi, Y.: Quantitative graph theory: a new branch
of graph theory and network science. Inf. Sci. 418, 575–580 (2017). https://doi.
org/10.1016/j.ins.2017.08.009

8. Doumard, E., Aligon, J., Escriva, E., Excoffier, J.B., Monsarrat, P., Soulé-Dupuy,
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Abstract. As machine learning (ML) has emerged as the predominant
technological paradigm for artificial intelligence (AI), complex black box
models such as GPT-4 have gained widespread adoption. Concurrently,
explainable AI (XAI) has risen in significance as a counterbalancing force.
But the rapid expansion of this research domain has led to a proliferation
of terminology and an array of diverse definitions, making it increasingly
challenging to maintain coherence. This confusion of languages also stems
from the plethora of different perspectives on XAI, e.g. ethics, law, stan-
dardization and computer science. This situation threatens to create a
“tower of Babel” effect, whereby a multitude of languages impedes the
establishment of a common (scientific) ground. In response, this paper
first maps different vocabularies, used in ethics, law and standardization.
It shows that despite a quest for standardized, uniform XAI definitions,
there is still a confusion of languages. Drawing lessons from these view-
points, it subsequently proposes a methodology for identifying a unified
lexicon from a scientific standpoint. This could aid the scientific com-
munity in presenting a more unified front to better influence ongoing
definition efforts in law and standardization, often without enough sci-
entific representation, which will shape the nature of AI and XAI in the
future.
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(AI) systems that can provide clear, understandable, and interpretable explana-
tions for their advice and decisions. The very definition of explanation, and of
its mentioned desirable properties, is, however, often not straightforward from a
scientific point of view, leaving intuitive understanding aside.

Indeed, with the expansion of this research area the definition of terms and
the variety of definitions is growing so fast that it is becoming extremely difficult
to follow. This confusion of languages also stems from the plethora of different
perspectives on XAI, e.g. ethics, law, standardization and computer science.
There is no community-based agreement about central terms like explanation,
explainability or interpretability and, in the scientific domain, the context of
these definitions is often not clear. We are therefore facing, as mentioned in the
Introduction, the threat of a “tower of Babel” effect, i.e. a confusion of languages
and terminologies which makes it hard to find common (scientific) ground.

To counter this linguistic ambiguity, this paper maps the perspectives of
ethics guidelines, law and standardization and in these fields. In comparison to
the scientific perspective, these fields are often driven by the quest for stan-
dardized, uniform definitions. It shows that despite this goal, there is still no
common vocabulary in these fields. Subsequently, it proposes a method to focus
the diverging perspectives in the XAI field in the search for a common “vocab-
ulary”, i.e. a unified lexicon from a scientific standpoint. Such a unified lexicon
could aid the scientific community in presenting a more unified front to better
influence ongoing definition efforts in law and standardization, which will shape
the nature of AI and XAI in the future but are often marred by a lack of scientific
participation and democratic legitimacy.

2 Ethics Guidelines and XAI

Law (e.g. the Artificial Intelligence Act, see Sect. 3.3) and standards are often
informed by relevant documents and reports, i.e. soft law or ethics guidelines.
For example, the OECD (Organisation for Economic Co-operation and Develop-
ment) [46] defines the principle of transparency and explainability in the follow-
ing way: AI actors “should provide meaningful information, appropriate to the
context [...] to foster a general understanding of AI systems, to make stakehold-
ers aware of their interactions with AI systems [...] to enable those affected by an
AI system to understand the outcome, and, to enable those adversely affected
by an AI system to challenge its outcome based on plain and easy-to-understand
information on the factors, and the logic that served as the basis [...]”.

This illustrates that terms like transparency and explainability are often used
without drawing clear boundaries. Documents often refer to them as umbrella
terms comprising several distinct elements, i.e. more general information (e.g.
information on the interaction with an AI system), but also elements, which
could necessitate the implementation of XAI approaches (e.g. “information on
the factors and the logic that served as basis”). This muddled language makes
it harder to derive clear implementation measures for XAI.

In contrast, the ethics guidelines of the high-level expert group on AI [28],
set up by the European Commission, differentiate between several elements of
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transparency, which itself is linked with the principle of explicability, i.e. trace-
ability (concerning the documentation of data sets, algorithms, and the processes
that yield the decision), explainability (mainly concerning the ability to explain
both the technical processes of an AI system and the related human decisions;
information of the degree to which an AI system influences and shapes the organ-
isational decision-making process, design choices of the system, and the rationale
for deploying it) and communication (i.e. humans have the right to be informed
that they are interacting with an AI system; capabilities and limitations should
be communicated). Mainly the second element, explainability concerning the
technical process, is linked with the implementation of XAI but again does not
state concrete measures.

This problem of the use of vague umbrella terms, illustrated by the OECD
example above, also exists on a macro level. As meta studies on ethics guide-
lines [39] show, “transparency” is the most often mentioned principle, but the
interpretation, what transparency entails, varies widely in these guidelines, con-
cerning what should be transparent (e.g. data use, human-AI-interaction, auto-
mated decisions, purpose of data use/application of the AI system) or the goal
of transparency (e.g. minimize harm, improve AI, legal reasons, foster trust,
principle of democracy). To achieve transparency, disclosure of information is
often suggested but there is no agreement what should be disclosed (e.g. use of
AI, source code, data use, evidence base, limitations, laws, responsibility for AI,
investments, impact).

Ienca and Vayena [31] differentiate between two main thematic families of
transparency mentioned in guidelines: Firstly, transparency of algorithms and
data processing methods (which refers to the implementation of XAI approaches)
and secondly transparency of human practices related to the design, development
and deployment of AI systems (e.g. disclosing relevant information to data sub-
jects, avoiding secrecy, forbidding conflicts of interest between AI actors and
oversight bodies).

These divergent interpretations of transparency lead to divergences in the
implementation strategies proposed to achieve transparency. Generally, a major
problem lies in deducing concrete technological implementations from the very
abstract ethical values and principles described in ethics guidelines [25].

As a brief mapping of these guidelines has illustrated, they seem to contribute
to the “tower of Babel” effect concerning XAI terms as they often - which partly
lies in the nature of ethics guidelines - only set out abstract principles without
describing concrete implementation strategies.

3 Law and XAI

3.1 GDPR

Switching to the perspective of law and XAI, as AI specific regulation has only
recently come into the focus of national and international legislators, the legal
framework currently does not contain explicit legal definitions of “explainability”
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or “transparency”. This could change when the proposed Artificial Intelligence
Act (AIA) comes into force (see Sect. 3.3).

Of course, at the EU and the national level there are (older) laws, which were
not written with AI in mind, but which are also applicable to AI systems and
contain transparency obligations (with further references [3,48]).

For example, the General Data Protection Regulation (GDPR) [21] has wide
implications for the use of AI and it has become a model law for AI regulation.
The processing of data in the context of (fully) automated individual decision-
making, i.e. without (substantial) human involvement, is principally forbidden
by Art. 22 GDPR - which has been in the center of the “right to an expla-
nation” debate (with further references [6,40,45,49]) – but fully automated
decision-making is allowed if one of three exceptions (necessary for entering
into/performance of a contract, authorisation by EU/member state law, explicit
consent) applies.

In such a case, specific information has to be proactively provided (Art. 13,
14) and the data subject also has a right to access this information on request
(Art. 15). This includes information about the “existence of automated decision-
making”, about “the logic involved” and “the significance and the envisaged
consequences”.

The passage “the logic involved” has been interpreted in different ways, e.g. as
a subject-specific local explanation of a specific decision [24,44,50] or as variant
of a general (global) explanation (mainly concerning the features employed) [59].
Explaining the logic involved could therefore necessitate the implementation of
a feature-importance based XAI approach.

A recent opinion (16 March 2023, C-634/21, ECLI:EU:C:2023:220) (with
further references [47,54]) of the attorney general Pikamäe could clarify the
interpretation. These opinions are often but not always adopted by the European
Court of Justice. The opinion states that the “logic involved” does not necessitate
the disclosure of the algorithm used. According to the opinion only “general
information, in particular on the factors taken into account in the decision-
making process and their weighting at an aggregated level”, i.e. a form of a global
feature-importance explanation, has to be provided. But as the opinion also
states that “sufficiently detailed explanations on the method used to calculate
the score and on the reasons that led to a certain result” have to be provided,
this seems contradictory as the wording “a certain result” seems to imply a local
explanation. This contradiction will have to be clarified by the court of Justice
but it seems more likely that “logic involved” will be interpreted as a more
general (global) explanation, mainly based on aggregated features.

Recital 71 also mentions a right “to obtain an explanation of the decision
reached after such assessment” as part of suitable measures to safeguard the
data subject (Art. 22 para. 3) but this right is only mentioned in the recital.
Recitals mainly function as guidelines on how to interpret law but can not create
law themselves. Therefore, the existence and the content of a “right to (an)
explanation” is still disputed in scholarship (e.g. [49,59]).
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3.2 Digital Services Act (DSA)

The new Digital Services Act (DSA) [22], which for example comes into play if an
information society service provider (e.g. a social network) uses AI to moderate
content (for an overview, see [18,42]), also contains transparency provisions.
Providers of intermediary services have to include information “on any policies,
procedures, measures and tools used for the purpose of content moderation,
including algorithmic decision-making” in their terms and conditions (Art. 14
para. 1 DSA). They are also subject to yearly transparency public reporting
obligations on content moderation. This includes information on “any use made
of automated means for the purpose of content moderation” (Art. 15 para. 1(e)
DSA). These obligations do not seem to directly relate to the implementation
of XAI methods, but they require transparency on an abstract, global level, i.e.
a qualitative description and information about the purpose and performance
metrics (i.e. accuracy and error rates) of these systems.

Online platforms displaying advertising must also ensure that the recipients
of the service can identify meaningful information “about the main parameters
used to determine the recipient to whom the advertisement is presented and,
where applicable, about how to change those parameters” (Art. 26 para. 1(d)
DSA). This requires a form of explanation on the main features used in displaying
advertisements, i.e. a feature-importance explanation, which seems to have a
local (“used to determine the recipient”) and a counterfactual element (“how
to change those parameters”). This obligation could therefore necessitate the
implementation of a XAI approach, which provides this local feature-importance
and counterfactual information.

3.3 The (Proposed) Artificial Intelligence Act (AIA)

In April 2021, the European Commission proposed the so-called Artificial Intel-
ligence Act (AIA) [19]. Since then several amendments have been suggested
by the EU co-legislators, the Council [11] and the European Parliament [20].
Even though there were some remaining issues (e.g. AI definition, regulation of
general-purpose AI/foundational models like GPT-4) the European Parliament
held a positive plenary vote on 14 June 2023 [60]. Therefore, the final phase of
the law-making process, the so-called trilogue, has started.

The AIA (for a general introduction see [57]) follows a risk-based approach.
AI systems with an “unacceptable risk” (Art. 5 AIA e.g. social scoring mod-
elled on China) will be banned, while high-risk AI systems will be subjected to
strict regulation and must undergo an ex-ante conformity assessment. Concern-
ing systems which pose a limited risk, these are subject to specific transparency
obligations (Art. 52 AIA, e.g. chatbots must identify themselves).

The AIA addresses two different forms of high-risk AI systems (Art. 6 AIA):
First, AI systems that are products or a safety component of a product already
covered by EU harmonisation legislation requiring a third-party conformity
assessment (e.g. medical devices). Second, in Annex III AIA eight categories
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of stand-alone AI systems are listed which are also considered high-risk (e.g.
migration, asylum and border control management).

The AIA contains a specific transparency obligation for high-risk AI systems.
According to Art. 13 para. 1 AIA high-risk AI systems must be “be designed and
developed in such a way to ensure that their operation is sufficiently transparent
to enable users to interpret the system’s output and use it appropriately”. The
appropriate type and degree of transparency seems to be relative, its goal is
achieving compliance with (other) relevant obligations of the AIA (recital 47: “a
certain degree of transparency”).

Crucially, the AIA does not offer (legal) definitions (Art. 3 AIA) for the cen-
tral terms “sufficiently transparent” or “to interpret”. The AIA does not men-
tion the concept of “explainability” and therefore does not differentiate between
interpretability and explainability [17]. This lack of definitions could lead to legal
uncertainty and the mentioned “tower of Babel” effect.

As has been stated in legal scholarship, this leaves the interpretation of Art.
13 para. 1 AIA and the level of transparency/interpretability required unclear
[4,15]. Therefore, it has been argued that the question of how to make AI sys-
tems interpretable is left to the discretion of the AI system provider, i.e. the AI
developer [17].

In conclusion, this leaves the interpretation, whether Art. 13 AIA necessitates
the implementation of XAI techniques and which approach has to be chosen, e.g.
if a local or global explanation is required, open. It can also be argued that only
a general form of transparency, mainly through the provision of “instructions”,
which have to be proved according to Art. 13 para. 2 seq., will suffice to satisfy
this requirement. These instructions must for example contain the purpose, the
level of accuracy, robustness, circumstances, which may lead to risks, perfor-
mance metrics regarding the use groups, specification for the input data or on
training/validation/testing data.

For example according to [5] Art. 13 para. 1 AIA does not imply the necessity
of explainability in the sense that the way in which data have been processed
must be entirely traceable, but a more general form of transparency of the sys-
tem’s functioning and output generation. Furthermore, a study [52] on request of
the European Commission stated that XAI techniques are not the “only means
available to understand and interpret AI systems outputs” and therefore not
required for all high-risk AI systems. Instead “documentation approaches, sce-
narios, principles of operations, as well as interactive training materials” will
fulfill the requirements of Art. 13 AIA. This indicates that the implementation
of XAI approaches is not a core component of this transparency obligation.

Several attempts to define the terminology used in Art. 13 AIA illustrate
the struggle to find uniform definitions, which shape how XAI will be used in
the future. For example, the Council [11] proposed to simplify this obligation,
i.e. to use the term “understand” instead of “interpret”, which in our opinion is
equally vague and has no real benefits.

The second co-legislator, the European Parliament [20], also tries to fill this
vague terminology with life. In the version of the Parliament, AI systems must be



The Tower of Babel 71

“sufficiently transparent to enable providers and users to reasonably understand
the system’s functioning.” In our opinion the addition of “functioning” suggests
a more general level of transparency, which also “shall be ensured in accordance
with the intended purpose of the AI system”, again indicating that the level of
transparency is context sensitive. As a very important step in the direction of a
precise terminology, the Parliament suggested to define “transparency”, which
shall “mean that, at the time the high-risk AI system is placed on the market, all
technical means available in accordance with the generally acknowledged state of
art are used to ensure that the AI system’s output is interpretable by the provider
and the user.” As this refers to the state of the art, which is always in flux, this
could mean that XAI approaches will become mandatory as they become state
of the art and if they provide a clear benefit in helping the user interpret the
output. On the other hand, the Parliament in our opinion seems to suggest a
high-level, global form of transparency, based on a simplified understanding of
the system and the features used (“The user shall be enabled to understand and
use the AI system appropriately by generally knowing how the AI system works
and what data it processes [...]”). This reduced obligation of “generally knowing”
does not seem to necessitate the implementation of XAI techniques. This should
in turn allow “the user to explain the decisions taken by the AI system to the
affected person [...]”. In our opinion this clarification is an important step in the
right direction as it minimizes legal uncertainty regarding how “transparency”
must be interpreted.

As a point of criticism, in the original AIA proposal the output must be inter-
pretable only for the (professional) user (i.e. a doctor) and not the person who is
affected by an AI system (i.e. a patient). But professional users are seldom the
only ones put at risk by AI systems [7]. Therefore, Art. 13. AIA is sometimes
referred to as a form of “user-empowering explainability” [53]. Critically, people
who are affected by high-risk AI systems, are left without a new right to infor-
mation [17]. This lack of a “human-centred approach” has been a major point
of criticism [55].

To solve this oversight, the European Parliament [20] proposed the introduc-
tion of “A right to explanation of individual decision-making” (Art. 68c AIA).
This would give “[a]ny affected person subject to a decision which is taken [...]
on the basis of the output from an high-risk AI system” (e.g. a diagnosis by a
doctor) “which produces legal effects or similarly significantly affects him or her”
(e.g. it affects the health of a patient) a “right to request [...] clear and mean-
ingful explanation [...] on the role of the AI system in the decision-making pro-
cedure, the main parameters of the decision taken and the related input data.”
In our opinion, this suggests a form of a local feature-importance explanation
(main parameters of the decision, related input data), which could necessitate
the implementation of XAI approaches, and additionally an explanation of the
role of the AI system (e.g. diagnostic aid). This explanation must also be target
appropriate (recital 84b “[...] they should take into account the level of exper-
tise and knowledge of the average consumer or individual”). If this focus on
the explanation of an individual decision is held up in the trilogue, this could
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necessitate the implementation of a XAI approach, which can produce a local
feature-importance explanation.

Thematically linked, Art. 14 AIA on human oversight also requires the imple-
mentation of measures that enable the individuals, to whom human oversight is
assigned, to “be able to correctly interpret the high-risk AI system’s output”. In
this regard, “the characteristics of the system and the interpretation tools and
methods available”, i.e. the implementation of XAI techniques, have to be taken
into account.

Even though the amendments by the European Parliament described above
are a step in the right direction and could lead to a more precise terminology,
there is still a high level of legal uncertainty in interpreting these transparency
obligations. This leads to economic risk for AI providers, who have to interpret
the provision themselves when assessing the conformity with the AIA. Of course,
the jurisprudence of the European Court of Justice could lead to clarification, but
this will only be on a case-to-case basis and will take years. Therefore, the third
layer, standardization, could play an important role in defining these abstract
concepts set out by law.

4 Standardization and XAI

As law, even AI-specific regulation, must be applicable to many different cate-
gories of automated/autonomous software systems, these instruments must be in
a sense “technology-agnostic” as law can not be easily amended in lockstep with
every novel technological development. Therefore, legal rules are by-design often
written from an abstract perspective, i.e. they only set out high-level principles
and goals like “security” or “transparency”. The concrete technical implementa-
tion is often defined by standards, which are (often) developed by (private) orga-
nizations, so-called SDOs (Standards Development Organizations). To ensure a
uniform level of AI safety, several SDOs are drafting AI standards to fill existing
regulatory gaps.

At the international and EU level, the most important SDOs are the Interna-
tional Organization for Standardization (ISO), the International Electrotechnical
Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE),
the International Telecommunication Union (ITU), the Internet Engineering
Task Force (IETF), the European Committee for Standardization (CEN), the
European Committee for Electrotechnical Standardization (CENELEC) and the
European Telecommunications Standards Institute (ETSI) [16].

In the upcoming part of the paper, we aim to give a brief overview of the
standards concerning explainability/interpretability. As a caveat, most of these
standards are still in development and as (most) of the drafts can not be publicly
accessed, we do not aim to give an in-depth analysis.

ISO and IEC created the joint technical committee JTC 1/SC 42 which serves
as “the focus and proponent [...] (for the) standardization program on Artificial
Intelligence”. Several working groups exist which are focused on different aspects
(e.g. WG 1 foundational standards; WG 2 data; WG 3 trustworthiness) [37].
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On the one hand, ISO/IEC AWI 12792, which is still in development, aims
to create a transparency taxonomy describing “the semantics of the information
elements and their relevance to the various objectives of different AI stakehold-
ers” [34].

On the other hand, the technical specification ISO/IEC AWI TS 6254 “Objec-
tives and approaches for explainability of ML models and AI systems”, which is
also still in a drafting state, “describes approaches and methods that can be used
to achieve explainability objectives of stakeholders with regards to ML models
and AI systems’ behaviours, outputs, and results” [36].

It identifies characteristics of explainability (explanation needs, form,
approaches, and technical constraints) and uses them to categorise existing
approaches. As a limitation, according to a report [52], it does not discuss or
compare the technological maturity and known limitations of the methodologies
(i.e. if methods are trustworthy and reflect the actual decision-making process).

The ongoing discussions about these two standards illustrate the central
aim and struggle of defining “transparency” and “explainability”, which are
the cornerstones of these standards [1]. Transparency was broadly defined as
the “availability in relation to stakeholders of meaningful, faithful, comprehen-
sive, accessible and understandable information about a relevant aspect of an AI
system”. XAI approaches could help in generating this necessary information.
Interpretability concerning algorithms was defined as the “ease with which a
stakeholder can comprehend in a timely manner the objective of an AI system,
the reasons for the system’s behavior, and whether it is working given its pur-
pose and in line with stakeholder expectations, and how different inputs could
lead to different outcomes”. Interpretability can be reached through technical
approaches like explainability methods or other analysis or visualization meth-
ods. Similar to the ethics guidelines of the high-level expert group on AI (see
Sect. 2) two levels of explainability were differentiated. Explainability concern-
ing policy as the “ability to provide stakeholders of an AI system with concise,
accessible, sufficient and useful explanatory information beyond the AI system’s
results”, which refers to the wider socio-economic context of an AI system, and
explainability concerning algorithms as the “capability of an AI system to cor-
rectly produce the reasons for its own behavior in a timely manner, allowing
scrutiny of whether it is working given its purpose and in line with stakeholder
expectations, and how different inputs could lead to different outcomes”, which
refers to the implementation of XAI techniques.

Additionally, the terms explainability and/or interpretability are also men-
tioned in ISO/IEC 22989:2022 [33] on “Artificial intelligence concepts and termi-
nology” and in ISO/IEC AWI TS 29119-11 [35] concerning testing of AI systems
and in the ISTQB (International Software Testing Qualifications Board) syllabus
[38] for “Certified Tester AI Testing” [13].

At the level of the IEEE, the P7000 series of standards is being developed as
part of the Global Initiative on Ethics of Autonomous and Intelligent Systems. In
contrast to more traditional standards, these standards aim to address “specific
issues at the intersection of technological and ethical considerations” [30].
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Regarding transparency, the already published standard IEEE P7001 [29]
sets out transparency requirements without defining how to achieve them, i.e.
which XAI techniques or solution to use. It (only) describes different levels of
transparency with an increasing range of sophistication and complexity [52].

At the national level, the German SDOs DIN (Deutsches Institut für Nor-
mung) and DKE (Deutsche Kommission für Elektrotechnik Elektronik Infor-
mationstechnik) have released the second version of an extensive “Standardiza-
tion Roadmap AI”, which maps the existing standards and analyses the need
for new AI standards [13]. As the roadmap states, there is a need to specify
formal requirements for XAI methods (i.e. formulation of concrete operational-
izable/testable requirements). It also states that additional basic research in
XAI is required because available methods have not yet been fully and widely
researched and applied. To fill these gaps, DIN is also working on a standard
concerning explainability [12].

Besides these standards for explainability/interpretability, a whole range of
standards for AI systems and related technologies is being developed at the
national and international level (see [13,16]).

In comparison to the perspectives of ethics and law, the field of standardiza-
tion illustrates even better the quest for a standardized, uniform terminology,
which is still ongoing. But as the mapping above indicates, the contours of central
terms are becoming sharper and sharper.

5 The Link Between Law and Standardization

Law and standardization are thematically interlinked. As a study regarding the
AIA states: “Standards are set to bring the necessary level of technical detail
into the essential requirements prescribed in the legal text, defining concrete
processes, methods and techniques that AI providers can implement in order to
comply with their legal obligations” [52]. Co-Regulation through standardization
based on the new Legislative Framework (NLF) is a cornerstone of the AIA. The
essential requirements contained in law are given concrete form by standards [16].

Instead of interpreting obligations like the transparency obligation Art. 13
AIA discussed in Sect. 3.3, which could take time and expertise and also lead
to legal risk, AI providers can mitigate uncertainty and follow (harmonized)
standards. This leads to the presumption, that an AI system conforms with the
requirements of the AIA. Therefore, in practice (harmonised) standards will play
an important role in shaping the technical requirements and therefore the XAI
landscape.

These harmonised standards are developed on demand of the European Com-
mission and are published in the official journal of the EU. At the EU level CEN,
CENELEC and ETSI (see Sect. 4) function as the SDOs which can either trans-
pose existing standards into European standards if they comply with European
values, standards and legislation, or they can develop own standards. At the
moment of writing the European Commission has already started the process to
adopt a standardization request providing a formal mandate to European SDOs
to develop the necessary standards [52].
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Even though these standards could bring the necessary clarity to high-level
obligations contained in ethics guidelines or the AIA by defining essential XAI
terms, this heightened role of standardization has some disadvantages. Besides
other general problems of standardizing AI (e.g. rapid change of the underlying
technology, ongoing debate on ethical and legal questions [2]) there are numerous
points for criticism: SDOs like the IEC and ISO typically work on a subscrip-
tion model and retain copyright [56], creating a monetary barrier especially for
small AI developers to access these standards. The standardization process is
susceptible to lobbying [56] and large, global players could therefore try to influ-
ence the definition of central terms to shape the XAI landscape. Regulation
by standards shifts the law-making power to private bodies, which, compared
to national or EU legislation, lack in options for democratic control and par-
ticipation [16,17,23,43,57]. This also reduces the possibility for the scientific
community to influence the ongoing AI governance discussion.

The European Parliament has seemingly recognized his problem in their AIA
amendments stating that it is necessary “to ensure a balanced representation of
interests by involving all relevant stakeholders in the development of standards.”
(Recital 61) Therefore, the Commission must consult with the AI Office and the
Advisory Forum (Art. 40 AIA, Recital 61a), which “should ensure varied and
balanced stakeholder representation and should advise the AI Office” (Recital
76).

6 A Proposed Solution

As our analysis of ethics guidelines, law and standardization has shown, the
quest for a precise terminology is still ongoing. In turn, XAI scientists cannot
rely on the vague, partially contradictory, and overly numerous definitions. Fur-
thermore, especially in standardization there is often very low participation of
representatives of academy and scientific researchers. Methods of democratic
representation are often lacking.

A first step to counter this development is to be aware of the definition prob-
lem and to create sensitivity about the opacity of the standards drafting mech-
anism. This position papers aims to contribute in building such an awareness in
the scientific community.

As a second step, we then pose the opposite problem: how can scientists
and XAI scholars inform the process of law-making and standardization so as
to provide guidance for the conformity assessment that will be so crucial in
evaluating the legality of the next AI systems disseminated to the general public
or adopted in sensitive areas such as health care or public safety?

We therefore created a simple and feasible method so that, at least the com-
munity of scholars who are most interested in these issues, can converge in a
lexicographic and definitional effort that brings order and gains the necessary
visibility and credibility to inform standard and policy making.

In recent years, scientists active in the field of XAI have produced several
reviews (e.g., [8,10,14,26,27,32,41,58]), both systematic and more narrative and
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exploratory ones, to understand the lexical and definition variety in the field and,
in some ways, help reduce the linguistic babel, since this is seen as an obstacle
for the diffusion and wide adoption of successful design patterns, and sound eval-
uation methods. Nonetheless, while all of these contributions primarily consist
of taxonomies or similar hierarchical categorizations that attempt to represent,
and somehow systematize, the above mentioned variety, we note that their aims
(and, thus, the set of concepts and definitions they document and attempt to
map out) differ. Indeed, while some of the referenced surveys [10,26,32] largely
aimed at categorizing existing XAI techniques from the methodological point of
view, with a consequent focus on notions related to presentation modality or
explanation type; others have also considered a more user-oriented perspective,
and thus focused on definitions and notions related to the evaluation, validation
and effects of explanations [14,27]; or also to a more general investigation of
the understanding of the notion of explanation itself [8,58]. Thus, it is easy to
see that the above mentioned contributions can only be understood as a starting
point for our proposed initiative, which is still far from being an exhausted topic.

What we are proposing, indeed, is to activate a truly communal initiative that
can lead a set of representative scholars to 1) collect all the major definitions
proposed in the highest impact articles or most comprehensive reviews 2) invite
all the authors of these articles and registered participants at major conferences
in the field (e.g. the International Conference on eXplainable Artificial Intelli-
gence, the IJCAI Workshop on Explainable Artificial Intelligence, the Actionable
Explainable AI Session at the Cross Domain Conference for Machine Learning
and Knowledge Extraction, CD-MAKE) to vote about the precision, clarity and
comprehensiveness of definitions of concepts such as explanation, explainability,
transparency, causability, understandability on opportune ordinal scales, 3) to
aggregate the results with state-of-the art methods, such as the one used in [9];
and 4) to return the results to the community, possibly iterating a few times
so as to reduce variability and facilitate consensus building, in a manner not
unlike a Delphi method involving the most motivated people in the field and
mediated by asynchronous collaboration tools such as online questionnaires [51]
and shared papers.

7 Conclusion

This paper mapped the ongoing efforts to define central XAI terms in ethics,
law and standardization. It illustrates that the quest for a common vocabulary is
still ongoing but there is the danger that the essential vocabulary and therefore
the XAI landscape could be defined by efforts marred by a lack of scientific
participation. After describing these challenges, the authors propose to start a
consolidation process at the Cross Domain Conference for Machine Learning
and Knowledge Extraction, CD-MAKE conference and systematically close the
gap between scientific publications on one side and ethics guidelines, law and
standards on the other side. A unified lexicon could aid the scientific community
in presenting a more unified front to better influence ongoing definition efforts
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which will shape the nature of AI and XAI in the future. Instead, all areas should
strengthen each other and learn from each other.
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Abstract. The emergence of Machine Learning (ML) has altered how
researchers and business professionals value data. Applicable to almost
every industry, considerable amounts of time are wasted creating bespoke
applications and repetitively hand-tuning models to reach optimal per-
formance. For some, the outcome may be desired; however, the com-
plexity and lack of knowledge in the field of ML become a hindrance.
This, in turn, has seen an increasing demand for the automation of the
complete ML workflow (from data preprocessing to model selection),
known as Automated Machine Learning (AutoML). Although AutoML
solutions have been developed, Big Data is now seen as an impediment
for large organisations with massive data outputs. Current methods can-
not extract value from large volumes of data due to tight coupling with
centralised ML libraries, leading to limited scaling potential. This paper
introduces Hyper-Stacked, a novel AutoML component built natively
on Apache Spark. Hyper-Stacked combines multi-fidelity hyperparam-
eter optimisation with the Super Learner stacking technique to pro-
duce a strong and diverse ensemble. Integration with Spark allows for
a parallelised and distributed approach, capable of handling the volume
and complexity associated with Big Data. Scalability is demonstrated
through an in-depth analysis of speedup, sizeup and scaleup.

Keywords: AutoML · Big Data · Apache Spark · Supervised learning

1 Introduction

Automated Machine Learning (AutoML) is an emerging area that seeks to auto-
mate the Machine Learning (ML) workflow from data preprocessing to model
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validation [7]. Such automation provides robust AutoML methods that enable
people, with either little or no specialised knowledge, to integrate ML solutions
into the daily activities of business organisations. The latter is known as the
democratisation of ML [7] and it is aligned with the actual purpose of Artificial
Intelligence: to learn and act automatically without human intervention [23].

With AutoML, ML solutions are now easily accessible by expert and non-
expert ML users. Those methods usually search for the most suitable ML meth-
ods and their best hyperparameters (known as the Combined Algorithm Selec-
tion and Hyperparameter problem, CASH problem [26]) using an online search
strategy; that is, a process takes place after the input dataset has been pro-
vided. This online search can be purely based on optimisation approaches that
test different promising combinations of algorithms from a predefined base of
ML classifiers to minimise or maximise a performance measure [17].

Alternatively, there are AutoML methods whose online search is comple-
mented with learning strategies like meta-learning [27]. These techniques first
extract meta-features of the input dataset at hand (e.g., number of instances,
features, classes). From these meta-features, meta-learning identifies good candi-
dates of pipeline structures from a predefined knowledge base that stores meta-
features for different datasets and ML models that are likely to perform well
on them. Then, the candidate models are typically used for a warm-start opti-
misation approach. In addition, other AutoML methods use ensemble learning
to build diverse sets of classifiers from predefined portfolios of ML algorithms
[5,11]. These ensemble approaches have proven to be more robust than other
AutoML methods, such as the case of Auto-Gluon, which is the state-of-the-
art in AutoML thanks to its ensemble learning strategy based on multi-layer
stacking [4].

In recent years, both the number of data sources and the scale of such
data have increased exponentially [29], wherein such data is referred to by the
term’Big Data’ [3]. The challenge of computing large amounts of data resides
in the simple principle that volume increases complexity [18]. Furthermore, as
the training time of an ML algorithm is heavily dependent on the number of
data points, efficient ML algorithms must exploit parallelism to achieve suffi-
cient scalability. Without this, operations on large datasets become infeasible.

Open source AutoML solutions fail to handle the size and variety of Big Data
[28]. Popular tools are often coupled with ML libraries that rely on centralised
data and processing and will only work on a single machine [1]. Consequently,
these cannot scale up as a single machine is limited in terms of parallelism due
to restrictions in hardware. Some commercial products claim to scale AutoML
workloads over multiple nodes; however, many fail to take advantage of superior
Big Data frameworks, such as Apache Spark or Dask. Those that are built to
run on Spark implement outdated solutions, e.g. TransmogrifAI (grid search)
[15], or attempt to integrate it into such frameworks as a second thought (e.g.,
H2O’s Sparkling Water that is an interface between Spark and H2O), which does
not fully leverage the framework’s abilities. Therefore, a gap exists for a novel
solution that implements an efficient, scalable solution that can run natively on
Spark. In that context, we take the AutoML state-of-the-art and build further
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upon the stacking ensemble concept by integrating k-fold cross validation to
conceive a Super Learner [10], which is implemented natively on Apache Spark.
Thus, we can propose an AutoML method to handle Big Data based on the
simple concept that more diversity is introduced with more models, leading to
increases in stacking performance.

This article introduces a novel approach to scalable AutoML in Big Data,
named Hyper-Stacked. It combines the strength of the Super Learner stacking
ensemble, the efficiency of Greedy K-Fold hyperparameter optimisation, and
Apache Spark’s scalability. The main contributions of this work are:

– A novel AutoML component design, Hyper-Stacked, is presented. This design
efficiently integrates greedy k-fold and the Super Learner stacking approach
to produce a high-performant ensemble. The approach automates the search
for a diverse set of models and combines them to bolster the overall per-
formance. Results showed that the ensemble consistently outperforms the
best-performing individual model.

– This approach was implemented natively on Apache Spark to produce a dis-
tributed and scalable model capable of dealing with the volume, variety and
complexity associated with Big Data. To validate these claims, parallelism
and scalability were critically evaluated in speedup, sizeup and scaleup exper-
iments. Results showed that Hyper-Stacked can handle data growth signifi-
cantly better than sequential processing and single node parallelisms.

The rest of this paper is structured as follows. Section 2 presents background
and related work about AutoML with emphasis on the CASH problem, Ensem-
ble learning, Meta-learning, and Spark. Then, Sect. 3 introduces Hyper-Stacked.
Section 4 exposes the experimental framework, and Sect. 5 presents and analyses
the results obtained. Finally, conclusions are discussed in Sect. 6.

2 Background and Related Work

2.1 Problem Definition

In AutoML, when algorithm selection is combined with hyperparameter optimi-
sation, it is often referred to as the CASH problem. It can be defined as follows
[5]. Let γ denote the loss that an algorithm A(j) (where j is just an identifier for
the algorithm) returns on D

(i)
valid when trained on D

(i)
train, with hyperparameters

λ. Given the set of algorithms A, their respective hyperparameters Λ, and sets of
cross validation folds Dtrain and Dtest, CASH focuses on determining the joint
algorithm A(j) and hyperparameter Λ(j) that minimises the loss γ.

A∗, λ = argmin
A(j)∈A,λ(j)∈Λ

1
K

k∑

i=1

γ
(
A

(j)
λ ,D

(i)
train,D

(i)
test

)
(1)

As an alternative to using the argmin operator with respect to a single algo-
rithm A(j), we can instead construct a set E, where E represents an ensemble.
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In this instance, more than a single algorithm can be chosen and individual
predictions are combined to produce a final output. The new representation is
presented below.

A∗, λ = argmin
E⊆A,H⊆Λ

1
K

k∑

i=1

γ
(
EH ,D

(i)
train,D

(i)
test

)
(2)

2.2 CASH Methods

This section introduces the most representative approaches to solve the CASH
problem presented in Eq. 1.

Black Box Optimisation Approaches

The most basic optimisation technique for hyperparameter tuning is grid search.
It involves performing an exhaustive search given a subset of the hyperparam-
eter space [13]. For example, an algorithm may require the tuning of 3 distinct
parameters. Parameter values are selected in uniform or exponential intervals to
form sets of candidate parameters. The algorithm then iterates over each possible
combination of the three parameter subsets to return the best. In this context,
a clear limitation exists, as it remains essentially a brute force approach. As the
number of distinct parameters increase, the number of possible combinations
will increase exponentially and therefore is not viable for larger datasets.

An improvement on grid search emerged, known as random search. Random
search aims to trial a number of random hyperparameter configurations and has
been proven to return models that are equivalent or better, within a fraction of
the computation time [2]. The method of randomly sampling the space, rather
than brute force allows the exploration of a lager search space given the same
computational budget.

Alternatively, Bayesian Optimization (BO) provides an adaptive approach to
black box optimisation. It works by first building a surrogate model (a cheaper
approximation function). Then, the uncertainty in that surrogate is then eval-
uated. Finally, desirable sample spaces are proposed by an acquisition function
defined from this surrogate. As samples are selected, the surrogate is updated
iteratively and the uncertainty is re-quantified. Auto-Sklearn, a python based
AutoML library, adopts this as the primary optimisation method. However, in
the context of Big Data, the standard approach to BO fails to succeed in high
dimensional environments and new approaches are required [16]. AutoML tools,
such as Auto-SKlearn, are yet to incorporate these new approaches.

Multi-fidelity Approaches

Multi-fidelity optimisation seeks to speed up the optimisation process by using
performance estimates from lower-fidelity models [14]. In general, these tech-
niques rely on first training lower-fidelity models (e.g., models trained with a
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low computational budget) to reveal promising configurations. These models
can then be allocated additional computational budget to continue training and
give a “higher” fidelity model. It is relevant to mention that in this approach,
the computational budget must be easily measurable (e.g., training time).

State-of-the-art multi-fidelity methods are built on the successive halving
algorithm that was first proposed by Karnin et al. [8]. Successive halving initially
randomly samples a set of hyperparameter configurations and models are trained
with a specified budget and evaluated to return a metric. The configurations are
ranked based on the metric, and the worst performing half is discarded. Then,
rounds of successful halving are performed until one configuration remains. In
this sense, successive halving can give the effect of early stopping which can
heavily reduce computation.

Other relevant methods under the multi-fidelity approach are Hyperband
and Greedy k-fold. Hyperband [12] works on the main principle of multi-fidelity
by randomly distributing budget values and performing rounds of successive
halving. This allows the exploration of different convergence behaviours and
ensures that configurations are not discarded too early. On the other hand,
Greedy k-fold [24] applies a similar mechanism to k-fold cross validation. It
works by first evaluating a single fold for all configurations, then proceeds with a
greedy approach. Again, low fidelity models are initially trained, but rather than
performing rounds of evaluations, it pursues only the most promising candidate
model. Evaluations in the original paper show results to perform significantly
better than the successive halving approach, on average 70% faster.

The main limitation of multi-fidelity evaluation is that using low fidelity
approximations to perform early stopping may remove an optimal configuration.
This is not usually seen as a concern for most, as the performance speedup often
heavily outweighs the approximation error [7]. Efficiency is important to combat
volume when limited to a computational budget.

2.3 Ensemble Learning

This section provides an overview of the existing literature surrounding ensemble
learning to solve Eq. 2.

Majority Voting and Stacking

Majority voting remains one of the simplest methods in ensemble learning.
Within this ensemble approach, a set of base (heterogenous or homogenous)
classifiers are all trained on the same data set. When making a prediction, every
data point results in a prediction from every classifier. Then, a final prediction is
made by selecting the class that had the most “votes” from the set of classifiers.

Stacking learning builds upon the weighted ensemble by training a meta-
learner on model predictions. Specifically, a set of base learners are first trained
on a training set and each output a prediction. Afterward, predictions are aggre-
gated to construct a new dataset where each data point holds the predictions
from each base model. Thus, the meta-learner can be trained to learn complex
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behaviours of the base models. Rather than a user-given weighting, the meta-
learner will determine the importance of base models empirically.

A significant limitation exists with the stacking method. It is easily suscepti-
ble to overfitting. If a single base model is seen to overfit, the meta-learner may
result in a heavy reliance on that same model and will harm the overall model
performance. This limitation has been reduced by techniques that centre around
the use out of fold predictions, i.e. base models will predict on unseen data. These
methods commonly produce the highest accuracy out of any individual model
or ensemble methods and hence remain popular [19], but are often overlooked
due to their added complexity. Stacking methods are especially applicable here,
as research has shown that stacking can handle high-dimensional datasets [22],
a common attribute of Big Data.

Super Learner

Super Learner builds further upon the stacking ensemble by integrating k-fold
cross validation, such as is done in H2O’s AutoML framework [11]. In the H2O
implementation, heterogenous ensembles (different types of learners) are used.
Then, a mix of random and fixed grids are used to diversify, and two super
learners are trained. One of the super learner is optimised for model performance
by including all model configurations. The latter is based on the simple concept
that more diversity is introduced with more models, leading to an increase in
stacking performance.

Meanwhile, the second super learner is optimised for production uses. In this
case, this super learning considers only the best model from each algorithm to
output faster predictions [11]. The benefit of this twofold approach is that the
two super Learners perform “asymptotically as well as the best possible weighted
combination” [21], and therefore both will perform at least as effectively as the
best performing base model.

K-Fold Repeated Bagging

In the context of AutoML, there is another competitive approach coupled with
ensemble learning, which is K-fold repeated bagging. This approach can be
observed in the AutoML framework named Auto-Gluon [4]. Auto-gluon imple-
ments an improved method to prevent overfitting in their approach to multi-layer
stacking. Multi-layer stacking passes predictions through multiple sets of mod-
els, rather than a single set of base models. These ensembles have the potential
to perform better than single layer models, however tend to suffer more from
overfitting as the effect is amplified through layers.

To combat this, k-fold repeated bagging was introduced. K-fold repeated
bagging makes additional o-of-fold predictions on n different random partitions
of the training data and takes an average. The value of n is determined by
dividing the total allotted time between an estimate of the time taken for a
given partition. The overall approach is therefore heavily dependent on the given
budget. It is important to say that Auto-gluon was shown to outperform H2O’s
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framework and 99% of data scientists in a Kaggle benchmark, however it remains
a centralised approach. In a distributed context, hurdles such as the non-trivial
task of time estimation need to be considered.

2.4 Meta-learning

This section focuses on aspects of meta-learning that rely on learning from prior
tasks rather than outputs coming within the same task. The interest reader can
be referred to [27] to consult other approaches of meta-learning within AutoML.
To learn from prior tasks, a learning algorithm may be run a number of times
and the related data from the training (model evaluations, hyperparameter con-
figurations, training time etc.) can be stored as features in a new dataset [7]. It
raises the layer of abstraction above traditional ML in two main approaches.

The first approach is learning from model evaluations, which has demon-
strated effective results in warm-start optimisation [25]. Warm-start optimisa-
tion removes the exploration of search spaces that have been explored in similar
tasks and provides a starting point for hyperparameter optimisation. Conversely,
the second approach is learning from task properties, which looks at the CASH
problem from a different perspective. Instead of tuning every algorithm, the
search space can be reduced by selecting a few of the most promising. Learning
tasks can be characterized by meta-features and a meta-model can provide a way
of associating these meta-features to a subset of algorithms based on prior expe-
rience. This has produced promising results in the context of Big Data, when
combined with multi-fidelity optimisation [1]. The primary limitation is that
only a finite amount of information can be captured in the meta features [27].

2.5 Spark

Apache Spark is an open-source, distributed processing framework used for large
scale workloads. This section provides relevant concepts related to Apache Spark.

Data Locality

Typically, to deal with larger datasets, the user may be required to scale their
resources, that is, additional memory or cores may be added. Nevertheless, this
approach of scaling up on a single node, known as vertical scaling, fails to con-
tinue to scale as it is limited to the hardware capacity and eventually will reach
a hard upper limit.

An alternative paradigm to vertical scaling is horizontal scaling, which allows
nodes to be added to an existing pool of resources. As more machines can be
introduced, the user is no longer bound by the hardware limits. The tradi-
tional approach to high performance computing (HPC) relies on communication
between storage nodes and compute nodes. In this sense, a bottleneck exists
between storage and compute in data intensive jobs, as network I/O becomes
the limiting factor and node computation remains low and unused [6].
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The bottleneck mentioned above can be resolved by distributing data across
the compute nodes and storing it on local disks. This allows each node to perform
operations on their subset of the data, reducing cross-switch network traffic and
leading to a performance gain [6]. This is the concept of data locality and is
essential to the scalability of data processing. In summary, regardless of how
the code is written, scalability is also heavily dependent on the architecture and
where your data is situated. In this context, Spark implements data locality to
facilitate the efficient compute of operations.

Parallelism

When performing parallel operations on shared data, the data itself must also
support parallelism. Concurrent, or parallel data structures allow data to be
accessed by multiple threads. Spark implements resilient distributed datasets
(RDDs) to accomplish data parallelism by organising data as a collection of
partitions that can be held over one or more machines [30]. This can then be
operated in parallel via a low-level API, through actions and transformations. For
example, data may be partitioned into 20 distinct partitions, across 2 nodes in a
cluster. Spark can then run a single task per partition in that RDD concurrently,
up to the number of cores in that cluster. If each machine has 4 cores, it is possible
to run 8 concurrent tasks on 8 partitions. This allows scalability as tasks can be
run independently across hundreds of nodes in a cluster.

Spark ML

Spark ML is Apache Spark’s ML library that implements ML algorithms and
utility functions. This scalable library is in some sense a basic AutoML library.
It allows a pipeline to string together pre-processing operations and a Cross-
Validator class to perform grid search and return the best model. There cur-
rently exists no available ensemble learning methods, aside from common ML
algorithms such as Random Forest and Gradient Boosted Trees that are ensem-
bles as themselves.

Spark ML is important to scalability as implementations overcome the curse
of modularity. The curse of modularity states that there is an assumption behind
ML algorithms that the data can fit, in its entirety, in memory on a single
machine [9]. In other words, some algorithms have been developed using modu-
lar strategies that, when used outside of the scope of in-memory data, will break.
This explains why many popular libraries are inherently unable to scale. Oppo-
site to such situation, Spark ML implements these algorithms in a way that can
be broken down and distributed across multiple machines.
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3 Hyper-Stacked: A Scalable and Distributed Approach
to AutoML for Big Data

In this section, we introduce Hyper-Stacked1. First, Sect. 3.1 motivates the need
for the proposed method. Then, Sect. 3.2 presents the general architecture of
Hyper-Stacked and details of its inner workflow.

3.1 Motivation

As we stated before, the core aims of existing AutoML methods are (1) High
Computational Efficiency, (2) Good Performance, and (3) Reduced Human Inter-
action. Nevertheless, the current solutions suffer from the following issues, which
have motivated the design of Hyper-Stacked.

– Centralised data approach: Open source AutoML solutions fail to handle
the size and variety of Big Data [28]. Popular tools are often coupled with
ML libraries that rely on centralised data and processing and will only work
on a single machine [1]. Consequently, these are unable to scale as a single
machine is limited in terms of parallelism due to restrictions in hardware.
Some commercial products claim to scale AutoML workloads over multiple
nodes; however, many of them fail to take advantage of superior Big Data
frameworks, such as Apache Spark.

– Optimisation and reduced scalability: When optimisation deals with
small- or medium-size datasets, many algorithms can be generated, tuned
and tested because the complexity of the learning task at hand is influenced
by its data size. On the other hand, the latter may stop happening as the data
size grows. In this scenario, it is harder to tune and test multiple algorithms,
as the optimisation becomes expensive and the set of candidate ML methods
could decrease, affecting the final solutions’ performance.

Considering the motivations presented above, we want to conceive a new
AutoML method that relies on a distributed approach. In this sense, we intro-
duce Hyper-Stacked, a new AutoML method based on greedy k-fold and Super
Learner stacking to produce a high-performant ensemble. The approach auto-
mates the search of a diverse set of models and combines them to bolster the
overall performance, which allows to path the way towards three main goals of
AutoML: (1) High Computational Efficiency, (2) Good Performance, and (3)
Reduced Human Interaction. Firstly, the Super Learner was chosen as the base
mechanism as it hosts the high performance of stacking (goal 2) and reduces
overfitting. Secondly, The overarching concept of Hyper-Stacked focuses on find-
ing strong heterogeneous learners amongst the search space to achieve a high
stacking performance, while keeping the number of base models low to remain
efficient (goal 1). Thirdly, Hyper-Stacked aims to succeed in both through effec-
tive hyperparameter optimisation. In doing so, we are guaranteed to automati-
cally (goal 3) return the best individual model (the aim of the CASH problem)
and an ensemble that returns an equal or higher predictive performance.
1 https://github.com/jsebanaz90/Hyper-Stacked.

https://github.com/jsebanaz90/Hyper-Stacked
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In summary, Hyper-Stacked combines the strength of the Super Learner
stacking ensemble, the efficiency of Greedy K-Fold hyperparameter optimisa-
tion, and the scalability of Spark. To the best of our knowledge, at this time, the
Super Learner has not yet been implemented on Apache Spark and no solution
yet exists that combines the Super Learner and Greedy k-fold optimisation.

3.2 Hyper-Stacked’s Design and Workflow

Hyper-Stacked was implemented as a Scala package that can run on top of a
distributed Spark cluster. We also used the MLlib, to make practical machine
learning scalable and manageable. From this library, we selected the following
classifiers to be part of the algorithms that can be part of the ensemble built in
the inner structure of Hyper-Stacked: Random Forest (RF), Gradient Boosted
Trees (GBT), LinearSVC (LSVC), Logistic Regression (LR), and Naïve Bayes
(NB). Besides, the meta-learner is chosen from this portfolio of methods.

The architecture of Hyper-Stacked is shown in Fig. 1. Besides, pseudocode 1
presents the step-by-step followed by Hyper-Stacked’s Super learner and Greedy
k-fold components; wherein lines 1–19 illustrate the generation of the base models
and the meta-learner selection, lines 20–25 represent the training process of a
Hyper-Stacked model, and lines 26–28 summarize how the final predictions are
made. More details of this process are presented as follows.

Fig. 1. General architecture of Hyper-Stacked based on greedy k-fold and Super
Learner stacking

Hyper-Stacked uses a list of descriptor tuples instead of a set of candidate
models. Each tuple contains a learning algorithm and the number of random
hyperparameter configurations to generate. Random parameters are generated
and fed into the greedy k-fold method for each algorithm type. The latter allows
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us to run greedy k-fold multiple times, returning different model types. The spec-
ified number is important to vary the number of configurations for the different
hyperparameter search spaces an algorithm may have.

The result of the original greedy k-fold would contain the hyperparameter
configuration of the best model, and a model could then be trained on the
full dataset with those optimal hyperparameters. In Hyper-Stacked, we return
models that were trained during hyperparameter optimisation, reuse them and
the k-fold data splits later. Instead of a configuration, a list of trained models
is returned, one for each fold. The final result of greedy k-fold will be a list of
lists of fold models, where each element represents a different hyperparameter
configuration that was fully evaluated; this is flattened for ease of iteration. In
addition, to minimise the movement of data, each fold is considered one at a time,
and we iterate through each hyperparameter configuration before continuing to
the next fold. Each fold model will output a prediction, and we aggregate them
in the same way as the original to train the meta learner.

To output a prediction from the Super Learner, features are first passed
into each base model to construct a set of features for the meta-model. The
meta-model can then produce a final output based on the results of the base
models. The meta-classifier can therefore learn complex behaviours of the base
classifiers. In this case, rather than a user-given weighting, as defined in the
weighted ensemble, the meta-classifier will empirically determine the importance
of base classifiers.

Finally, Pseudocode 1 shows the automatic selection of the meta-learner.
Hyper-Stacked removes the reliance on the user to choose a meta-learner by
performing an additional round of cross-validation on the list of available learning
algorithms. It is essential to perform this selection the same way it was for
the original training set because we do not know a priori which algorithm will
perform best as the meta-learner.

4 Experimental Design

This paper seeks to answer whether it is possible to design a distributed and
scalable AutoML to deal with Big Data in supervised learning tasks. To accom-
plish such a purpose, we introduce the Hyper-Stacked method. In particular, this
method is tested in binary supervised classification problems and determines its
performance in three crucial Big Data metrics: Speedup, Scaleup, and Sizeup.

This section shows the factors and issues related to the experimental
study. First, we provide details of the problems chosen for the experimentation
(Sect. 4.1). Then, we introduce details about the big data architectures consid-
ered to test Hyper-Stacked in Sect. 4.2. Finally, we present the three experiments
on Speedup, Scaleup, and Sizeup metrics.
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4.1 Binary Supervised Learning Problems

For this experimentation we chose four representative datasets, which are shown
in Table 1. These datasets represent binary classification problems and their
composition vary on size and dimensions.

Algorithm 1: Super Learner with Greedy k-Fold
Data:
Dtrain ←− training dataset
Dtest ←− test dataset
n ←− number of k folds
T ←− list of tuples (a,r) where a is a learning algorithm and r is the number of
random parameters to generate for that algorithm
M ←− a list of learning algorithms included in meta-learner selection
Result: Set of predictions corresponding to input Dtest

1 k_folds ←− divide Dtrain into n number of approximately equal partitions;
2 Lbest = [];
3 for t in T do
4 Ca ←− generate random candidate models (a,r);
5 λbest ←− do Greedy K-Fold(Ca) where |λbest| ≥ 1 ;
6 append λbest to Lbest;
7 end
8 flatten Lbest;
9 for ki in k_folds do

10 kvalid ←− ki;
11 ktrain ←− remaining k folds;
12 for l in Lbest do
13 OOF ←− predict on kvalid with l and store result and label;
14 end
15 iOOF ←− concatenate OOF (Dtrain . length x l . length);
16 end
17 meta-features ←− union all iOOF ;
18 meta_k_folds ←− divide meta-features into n number of approximately equal

partitions;
19 mbest ←− do K-fold Cross-Validation(meta_k_folds);
20 base_models = [];
21 for l in L do
22 base_model ←− train l on Dtrain;
23 append base_model to base_models;
24 end
25 meta_model ←− train mbest on meta-features;
26 base_layer_output ←− for base_model in base_models do transform Dtest

with base_model ;
27 predictions ←− transform base_layer_output with meta_model ;
28 return predictions on Dtest
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Table 1. Binary classification datasets

Dataset Number of
Training
instances

Number of
features

FLIGHT 516513 29
SUSY 3500066 18
HEPMASS 4899792 28
HIGGS 7701355 28

It is important to mention that the number of instances in these datasets may
be lower than traditionally seen in current real-world Big Data. The intention
is to keep the number of instances in a permissible range to run on a single
node and return in a ‘reasonable’ time. In reality, a single node would take a
significant amount of compute time and could take days, weeks or months. With
mid-large size datasets, we can run trials comfortably on different-sized clusters
to demonstrate the scalability and strength of the approach. These datasets are
deemed suitable for ML problems by the research community and are commonly
used in benchmarks and research papers.

4.2 Experimental Setups

All experiments done with Hyper-Stacked were set up on the Databricks plat-
form, which allows clusters of variable size and configurations to be easily instan-
tiated. To measure the time of experiments, we implemented a logger object.
Specifically, the time before is recorded, then the function is executed, and the
time is once again recorded to calculate the difference between them finally.
The log function is only used around larger functions, as small operations are
likely to return inaccurate results due to lazy evaluation. A run-time limit of ten
hours was applied to all trials, and the leader board of model performances was
recorded for every trial.

The specifications for the three chosen cluster sizes to be used in these exper-
iments are summarised in Table 2. All cluster sizes contain a single driver node
with 4 cores with 14GB memory. The memory of each worker remains the same
(28 GB).

Table 2. Specifications for the Spark clusters to be used in the experiments

Cluster Number of
workers

Number of
cores per
worker

Total
number of
cores

1 1 1 1
2 1 8 8
3 3 8 24
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4.3 Experiment Speedup, Sizeup, Scaleup

In this set of experiments, the primary aim is to demonstrate the scalability, effi-
ciency and effective parallelism of Hyper-Stacked. Therefore, we step up exper-
iments around speedup, sizeup and scaleup metrics to accomplish such an aim.
These experiments focused on measuring the relative change as an element of
the system changes. The three experiments are described as follows.

– In speedup, the size of the data remains constant and the number of cores are
increased. Speedup shows how much faster the same data can be processed
with n cores instead of 1. This metric can be estimated by calculating the
ratio of the time taken for a sequential execution versus a parallel execution.
For the experiments carried out in this work, the data is kept at 33% as this
value was achievable by all cluster sizes.

– In sizeup, the number of cores remains constant and the size of the data is
increased. Sizeup allows us to see how time scales with increasing intervals of
data size. This metric can be found by calculating the ratio of execution time
between an initial dataset versus a dataset n-times larger. For this study, the
intervals were chosen to be 10%, 20%, 40% and 80%.

– In scaleup, both the number of cores and size of the data are increased (by the
same factor). Scaleup combines the two to measure how a program performs
as a system gets larger and has to process larger datasets. The following
configurations were chosen: 100/24 (≈4.16%) with 1 core, 100/3 (≈33.33%)
with 8 cores and 100% with 24 cores.

5 Analysis of Results

This section analyses the experimentation results from the following angles.

– Speedup: to evaluate the ability of Hyper-Stacked of improving its execution
time through parallelism (using additional cores).

– Sizeup: to assess the ability of Hyper-Stacked to handle increasing amounts
of data within a parallel environment.

– Scaleup: to evaluate the ability of Hyper-Stacked to handle both increase the
amount of data and the size of the system. It can be found by calculating
the ratio of execution time between an initial dataset and system, versus a
dataset m-times larger with an m-times larger system.

5.1 Speedup

Figures 2a and 2b show the speedup for each dataset with a single core, eight
cores, and twenty four cores. As it can be seen, the speedup achieved for the
FLIGHT dataset was only 1.899 despite parallelising over 24 cores. Further-
more, there was almost no speedup between eight cores and twenty-four (speedup
increase of 0.084). In contrast, the speedup achieved for the HIGGS dataset was
4.413, but again, despite the addition of sixteen cores, the speedup increase was
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Fig. 2. Speedup analysis in supervised binary classification problems

1.125. This can be clearly seen in Fig. 2a where comparisons were done againts
linear speedup.

Through these results, it is hard to pinpoint the main cause of the lack of
speedup. It should be noted that between the datapoints at eight and twenty-
four cores is the introduction of a distributed cluster (increase from 1 to 3 worker
nodes). Despite this, the speedup is not expected to be as low as observed in a
Spark application. Through additional investigation, the training of base models
(layer one models) and meta models (layer two models) were compared in terms
of speedup. Figure 3 shows that the speedup of these are almost identical, failing
to identify any existing limiting component.

Fig. 3. Speedup comparison of Layer 1 and Layer 2 models for HIGGS dataset

Furthermore, Fig. 2b shows a clearer comparison between the datasets. A
trend can be clearly seen as the larger datasets (HIGGS and HEPMASS) achieve
a significantly better speedup than the smaller datasets (FLIGHT and SUSY).
In fact, they are sorted in size order. As a result of these findings, an additional
run was performed, which is shown in Fig. 4.
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Fig. 4. Speedup experiment with HIGGS dataset using different data sizes

In this experiment, the size of the data was increased from 33% to 100% of the
dataset. As seen in Figs. 4a and 4b, a greater difference is seen when using a larger
amount of data. The speedup analysis in Fig. 4a shows a speedup increase from
4.413 (seen previously) to 10.210. This can be considered a reasonable speedup
and significantly better than seen when using 33% of the data. Therefore, we can
say the speedup can be heavily dependent on the size of the data, and clearly,
the amount of the data used in the initial experiments was insufficient. It is
possible that some rate-limiting factors exist within the component; however,
without additional experiments using larger datasets, it is difficult to determine
at this time.

5.2 Sizeup

The results in Figs. 5 and 6 depict the sizeup for each dataset. Specifically, Fig. 5a
shows the sizeup results for the smallest of the four datasets (FLIGHT dataset).
It can be observed that Cluster 1 can execute eight times the size of the original
data with a size up of 3.753. In comparison, Cluster 3 executes eight times the
size of the original data with a size up of 1.964. The latter means that although
the data increased eightfold, the execution time of Cluster 1 increased by around
a factor of 4, whereas Cluster 3 only increased by a factor of 2.

In the other datasets, the overall data size increases and Cluster 1 is unable
to execute within the given budget. Using SUSY, Cluster 1 is able to execute
40% of the data with a sublinear size up of 3.753. Unfortunately, problems arise
when executing HEPMASS and HIGGS (Figs. 6a and 6b). Due to the 10-hour
constraint, we are only able to gather two datapoints, 10% and 20%. For the
20% size up, cluster 1 begins to exceed a linear size up for HEPMASS and
HIGGS achieving a size up 2.617 and 2.310 respectively. The gradients of the
lines, shown in Figs. 6a and 6b, show that as the datasets become larger, systems
with sequential processing are unable to deal with the growth of data.
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Fig. 5. Sizeup comparison for FLIGHT and SUSY datasets

Fig. 6. Sizeup comparison for HEPMASS and HIGGS datasets

Additionally, both clusters 2 and 3 are able to return the results for all
datasets in a reasonable time. Size up values between clusters 2 and 3 are similar
with smaller datasets, as seen in Figs. 5a and 5b. These two clusters are also
consistently similar at low data percentages with all of the datasets. However,
the difference is seen when the growth of the larger datasets reaches 80%. In the
largest dataset (HIGGS), shown in Fig. 6b, an eightfold data size increase caused
the execution time of Cluster 2 to increase by a factor of 3.602, whereas Cluster
3 only increased by a factor of 2.024. This shows that the parallelism within
Hyper-Stacked allows greater sized clusters to effectively handle the growth of
data.

5.3 Scaleup

Figure 7 shows the scaleup analysis for Hyper-Stacked. It displays a comparison
to the ideal scaleup value. The ideal value is where the execution time is kept
equal as the system and data size grows by the same factor, and in reality
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is unattainable. Although Hyper-Stacked does not achieve an ‘ideal’ result, all
results appear to taper off in an acceptable range between 0.684 and 0.792. The
decrease between 8 and 24 cores is assumed to be partially down to the fact
the processing is now distributed and communication (shuffle read and write)
between workers is necessary.

Fig. 7. Hyper-Stacked vs ideal scaleup by dataset

From the graphs presented, we can see that the scaleup exhibits a similar
trend to speedup. The lines appear sorted in size order, HIGGS achieving a sig-
nificantly better efficiency value than FLIGHT. FLIGHT achieves a scale up of
0.774 then 0.684, whereas HIGGS achieves a better result of 0.995 then 0.792.
Similar to speedup, it is hard to determine the true metric through these experi-
ments as the sizes of the datasets chosen seem to be insufficient. Nevertheless, the
findings show that Hyper-Stacked is still shown to be scalable when increasing
the size of the data, number of cores and number of nodes.

6 Conclusions

In this work, we introduced Hyper-Stacked. This new AutoML method combines
the strength of the Super Learner stacking ensemble, the efficiency of Greedy K-
Fold hyperparameter optimisation, and the scalability of Apache Spark. Hyper-
Stacked was implemented natively on Apache Spark to produce a distributed
and scalable model capable of dealing with the volume, variety and complexity of
Big Data. Parallelism and scalability were critically evaluated in speedup, sizeup
and scaleup through different experiments to validate the general architecture
of Hyper-Stacked. The experiments focused on binary classification problems,
using datasets varying in size and dimensions.

From the results obtained, we extracted interesting conclusions. A limitation
was uncovered during the speedup experiments in Sect. 5.1, where the addition of
workers resulted in a minimal speedup. This can be explained by Amdahl’s law,
which states that the performance increase from parallelisation cannot exceed
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the inverse of the non-parallelisable element of work [20]. The mechanism that
Spark uses to distribute work (setting up a job on the driver, scheduling and
data shuffles) results in overhead, i.e. a nonzero amount of non-parallelisable
work. The relative amount of parallelisable work is then bounded by the size
of the dataset, as larger datasets reduce the significance of the overhead. As
Hyper-Stacked was developed to perform efficiently with Big Data, it may be
preferable to use an alternative tool for smaller datasets that fit in the memory
of a single machine.

In future work, we will follow different paths. First, the implementation itself,
despite only being currently applicable to binary classification, can be easily
extended to regression and multiclass classification using different Spark ML
algorithms. An evaluation of all three problem types would provide additional
insight into the applicability of this AutoML approach and its ability to gen-
eralise to different problems. Second, larger, more complex datasets could be
approached to check the robustness and scalability of Hyper-Stacked in multi-
class supervised learning problems.

Acknowledgement. This work is supported by projects A-TIC-434-UGR20 and
PID2020-119478GB-I00).
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Abstract. Short text classification is a crucial and challenging aspect
of Natural Language Processing. For this reason, there are numerous
highly specialized short text classifiers. A variety of approaches have been
employed in short text classifiers such as convolutional and recurrent net-
works. Also many short text classifier based on graph neural networks
have emerged in the last years. However, in recent short text research,
State of the Art (SOTA) methods for traditional text classification, par-
ticularly the pure use of Transformers, have been unexploited. In this
work, we examine the performance of a variety of short text classifiers
as well as the top performing traditional text classifier on benchmark
datasets. We further investigate the effects on two new real-world short
text datasets in an effort to address the issue of becoming overly depen-
dent on benchmark datasets with a limited number of characteristics.
The datasets are motivated from a real-world use case on classifying
goods and services for tax auditing. NICE is a classification system for
goods and services that divides them into 45 classes and is based on
the Nice Classification of the World Intellectual Property Organization.
The Short Texts Of Products and Services (STOPS) dataset is based on
Amazon product descriptions and Yelp business entries. Our experiments
unambiguously demonstrate that Transformers achieve SOTA accuracy
on short text classification tasks, raising the question of whether spe-
cialized short text techniques are necessary. The NICE dataset showed
to be particularly challenging and makes a good benchmark for future
advancements.

A preprint can be also found on arXiv [14]. Source code is available
here: https://github.com/FKarl/short-text-classification.

Keywords: Text Classification · Transformer · BERT · GNN

1 Introduction

Text classification is a crucial aspect of Natural Language Processing (NLP), and
extensive research in this field is being conducted. Many researchers are working
to improve the speed, accuracy, or robustness of their algorithms. Traditional
text classification, however, does not take some traits into account that appear
in numerous real-world applications, such as short text. Therefore, studies have
been conducted specifically on short texts [38,47]. From user-generated content
like social media to business data like accounting records, short text covers a
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wide range of topics. For example, the division into goods and services (see
Sect. 4.1) is an important part of the tax audit. Currently, an auditor checks
whether the element descriptions match the appropriate class of good or service.
Since this can be very time-consuming, it is desirable to bring it into a semi-
automatic context with the help of classifiers. Also, the subdivision into more
specific classes can be useful for determining whether a given amount for an
entry in the accounting records is reasonable.

Since short texts are typically only one to two sentences long, they lack con-
text and therefore pose a challenge for text classification. In order to get better
results, many short text classifiers also operate in a transductive setup [38,41,43],
which includes the test set during training. However, as they need to be retrained
each time new data needs to be classified, those transductive models are not very
suitable for real-world applications. The results of both transductive and the gen-
erally more useful inductive short text classifier are typically unsatisfactory due
to the challenge that short text presents. Recent studies on short texts have
emphasized specialized models [33,36,38,41,43,47] to address the issues associ-
ated with the short text length. However, State of the Art (SOTA) text classifica-
tion methods, particularly the pure use of Transformers, have been unexploited.
In this work, the effectiveness on short texts is examined and tested by means of
benchmark datasets. We also introduce two new, realistic datasets in the domain
of goods and services descriptions. Our contributions are in summary:

– We provide a comparison of various modern text classification techniques. In
particular, specialized short text methods are compared with the top per-
forming traditional text classification models.

– We introduce two new real-world datasets in the goods and services domain
to cover additional dataset characteristics in a realistic use-case.

– Transformers achieve SOTA accuracy on short text classification tasks. This
questions the need of specialized short text classifier.

Below, we summarize the related work. Section 3 provides a description of
the models that were selected for our experiments. The experimental apparatus
is described in Sect. 4. An overview of the achieved results is reported in Sect. 5.
Section 6 discusses the results, before we conclude.

2 Related Work

Despite the fact that Bag of Words (BoW)-based models have long represented
the cutting edge in text classification, attention has recently shifted to sequence-
based and, more recently, graph-based concepts. However, BoW-based models
continue to offer a solid baseline [7]. For example in fastText [12] the average of
the trained word representations are used as text representation and then fed
into a linear classifier. This results in an efficient model for text classification.
To give an overview of the various concepts, Sect. 2.1 provides various works
in the field of sequence-based models, Sect. 2.2 discusses graph-based models,
and Sect. 2.3 examines how these concepts are applied to short text. Finally, a
summary of the findings from the related work is presented in Sect. 2.4.
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2.1 Sequence-Based Models

For any NLP task, Recurrent Neural Networks (RNN) and Long short-term
memory (LSTM) are frequently used and a logical choice because both mod-
els learn historical information while taking location information for all words
into account [17,23]. Since RNNs must be computed sequentially and cannot be
computed in parallel, the use of Convolutional Neural Networks (CNNs) is also
common [17,34]. The text must be represented as a set of vectors that are con-
catenated into a matrix in order to be used by CNNs. The standard CNN convo-
lution and pooling operations can then be applied to this matrix. TextCNN [15]
uses this in combination with pretrained word embeddings for sentence-level
classification tasks. While CNN-based models extract the characteristics from
the convolution kernels, the relationship between the input words is captured by
RNN-based models [17]. An important turning point in the advancement of NLP
technologies was the introduction of Bidirectional Encoder Representations from
Transformers (BERT) [35]. By performing extensive pre-training in an unsuper-
vised manner and automatically mining semantic knowledge, BERT learns to
produce contextualized word vectors that have a global semantic representation.

The effectiveness of BERT-like models for text classification is demonstrated
by Galke and Scherp [7].

2.2 Graph-Based Models

Recently, text classification has paid a lot of attention to graph-based models,
particularly Graph Neural Networks (GNNs) [3,28,37]. This is due to the fact
that tasks with rich relational structures benefit from the powerful represen-
tation capabilities of GNNs, which preserve global structure information [37].
The task of text classification offers this rich relational structure because text
can be modeled as edges and nodes in a graph structure. There are different
ways to represent the documents in a graph structure, but two main approaches
have emerged [37,38]. The first approach builds a graph for each document
using words as nodes and structural data, such as word co-occurence data, as
edges. However, only local structural data is used. The task is constructed as
a whole graph classification problem in order to classify the text. A popular
document-level approach is HyperGAT [5] which uses a dual attention mech-
anism and hypergraphs applied to documents to learn text embeddings. The
second approach creates a graph for the entire corpus using words and docu-
ments as nodes. The text classification task is now a node classification task
for the unlabeled document nodes. The drawback of this method is that mod-
els using it are inherently transductive. For example, TextGCN [42] uses this
concept by employing a standard Graph Convolutional Networks (GCN) on this
heterogeneous graph. Following TextGCN, Lin et al. [19] propose BertGCN, a
model that makes use of BERT to initialize representations for the document
nodes in order to combine the benefits of both the large-scale pretraining of
BERT and the transductive TextGCN. However, the increase provided by this
method is limited to datasets with long average text lengths. Zeng et al. [44]
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also experiment with combining TextGCN and BERT in the form of TextGCN-
Bert-serial-SB, a Simplified-Boosting Ensemble, where BERT is only trained on
the TextGCN’s misclassification. Which model is applied to which document is
determined by a heuristic based on the node degree of the test document. How-
ever, TextGCN-CNN-serial-SB, which substitutes TextCNN for BERT, yields
better results. By using a joint training mechanism, TextING [46] and BERT
are trained on sub-word tokens and base their predictions on the results of the
two models. In contrast to applying each model separately, this produces better
results. Another approach combining graph classifiers with BERT is ContTex-
tING [11]. ContTextING utilizes a joint training mechanism to create a uni-
fied model that incorporates both document-wise contextual information from a
BERT-style model and node interactions within a document through the use of
a GNN module. The predictions for the text classification task are determined
by combining the output from both of these modules.

2.3 Short Text Models

Of course, short texts can also be classified using the methods discussed above.
However, this is challenging because short texts tend to lack context and adhere
to less strict syntactic structure [38]. This has led to the emergence of special-
ized techniques that focus on improving the results for short text. Early works
focused on sentence classification using methods like Support Vector Machines
(SVM) [29]. A survey by Galke et al. [6] compared SVM and other classical
methods like Naive Bayes and kNN with multi-layer perceptron models (MLP)
on short text classification. Other works on sentence classification used Convolu-
tional Neural Networks (CNN) [13,36,45], which showed strong performance on
benchmark datasets. Recently, also methods exploiting graph neural networks
were adopted to the needs of short text. For instance, Heterogeneous Graph
Attention networks (HGAT) [41] is a powerful semi-supervised short text classi-
fier. This was the first attempt to model short texts as well as additional informa-
tion like topics gathered from a Latent Dirichlet Allocation (LDA) [1] and entities
retrieved from Wikipedia with a Heterogeneous Information Network (HIN). To
achieve this, a HIN embedding with a dual-level attention mechanism for nodes
and their relations was used. For the semantic sparsity of short text, both the
additional information and the captured relations are beneficial. A transductive
and an inductive HGAT model were released, with the transductive model being
better on every dataset. NC-HGAT [33] expands the HGAT model to produce a
more robust variant. Neighbor contrastive learning is based on the premise that
documents that are connected have a higher likelihood of sharing a class label
and, as a result, should therefore be closer in feature space. In order to represent
the additional information, SHINE [38] also makes use of a heterogenous graph.
In contrast, SHINE generates component graphs in the form of word, entity,
and Part Of Speech (POS) graphs and creates a dynamically learned short doc-
ument graph by employing hierarchical pooling over all component graphs. In
the semi-supervised setting, SHINE outperforms HGAT as a strong transduc-
tive model. SimpleSTC (Simple Short Text Classification) [48] is a graph-based
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method for short-text classification similar to SHINE. But instead of construct-
ing the word-graph only over the data corpus itself, SimpleSTC employs a global
corpus to create a reference graph that shall enrich and help to understand the
short text in the smaller corpus. As global corpus, articles from Wikipedia are
used. The authors sample 20 labeled documents per class as training set and
validation set. Short-Text Graph Convolutional Networks (STGCN) [43] is an
additional short text classifier. A graph of topics, documents, and unique words
is the foundation of STGCN. Although the STGCN results by themselves are not
particularly strong, the impact of pre-trained word vectors obtained by BERT
was also examined. The classification of the STGCN is significantly enhanced
by the combination of STGCN with BERT and a Bi-LSTM.

2.4 Summary

Graph neural network-based methods are widely used in short text classification.
However, in recent short text research, SOTA text classification methods, par-
ticularly the pure use of Transformers, have been unexploited. The majority of
short text models are transductive. The crucial drawback of being transductive
is that every time new data needs to be classified, the model must be retrained.

3 Selected Models for Our Comparison

We begin with models for short text classification in Sect. 3.1 and then Sect. 3.2
introduces a selection of top-performing models for text classification. Follow-
ing Galke and Scherp [7], we have excluded works that employ non-standard
datasets only, use different measures, or are otherwise not comparable.For exam-
ple, regarding short text classification there are works that are applied on non-
standard datasets only [10,49].

3.1 Models for Short Text Classification

The models listed below either make claims about their ability to categorize
short texts or were designed with that specific goal. The SECNN [36] is a
text classification model built on CNNs that was created specifically for short
texts with few and insufficient semantic features. Wang et al. [36] suggested
four components to address this issue. In order to achieve better coverage on
the word vector table, they used an improved Jaro-Winkler similarity during
preprocessing to identify any potential spelling mistakes. Second, they use a
CNN model built on the attention mechanism to look for words that are related.
Third, in order to accomplish the goal of short text semantic expansion, the
external knowledgebase Probase [39] is used to enhance the semantic features of
short text. Finally, the classification process is performed using a straightforward
CNN with a Softmax output layer.
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The Sequential Graph Neural Network (SGNN) [47] is a GNN-based model
that emphasizes the propagation of features based on sequences. By training each
document as a separate graph, it is possible to learn the words’ local and sequen-
tial features. GloVe’s [24] pre-trained word embedding is utilized as a semantic
feature of words. In order to update the feature matrix for each document graph,
a Bi-LSTM is used to extract the contextual feature of each word. After that, a
simplified GCN aggregates the features of neighboring word nodes. Additionally,
Zhao et al. [47] introduce two variants: Extended-SGNN (ESGNN), in which
the initial contextual feature of words is preserved, and C-BERT, in which the
Bi-LSTM is swapped for BERT.

The Deep Attention Diffusion Graph Neural Network (DADGNN) [22]
is a graph-based method that combats the oversmoothing problem of GNNs
and allows stacking more layers by utilizing attention diffusion and decoupling
techniques. This decoupling technique is also very advantageous for short texts
because it obtains distinct hidden features in deep graph networks.

The Long short-term memory (LSTM) [9], which is frequently used in text
classification, has a bidirectional variant called Bi-LSTM [20]. Due to its strong
results for short texts [23,47] and years of use as the SOTA method for many
tasks, this model is a good baseline for our purpose.

3.2 Top-Performing Models for Text Classification

An overview of the top text classification models that excel on texts of all lengths
and were not specifically created with short texts in mind is provided in this
section. We employ the base models for the Transformers.

The Bidirectional Encoder Representations from Transformers (BERT) [4]
is a language representation model that is based on the Transformer architec-
ture [35]. Encoder-only models, such as BERT, rely solely on the encoder com-
ponent of the Transformer architecture, whereby the text sequences are con-
verted into rich numerical representations [34]. These models are well suited
for text classification due to this representation. BERT is designed to incorpo-
rate a token’s left and right contexts into its computed representation. This is
commonly referred to as bidirectional attention.

The Robustly optimized BERT approach (RoBERTa) [21] is a systemat-
ically improved BERT adaptation. In the RoBERTa model, the pre-training
strategy was changed and training was done on larger batches with more data,
to increase BERT’s performance.

To improve BERT and RoBERTa models, Decoding-enhanced BERT with
disentangled attention (DeBERTa) [8] makes two architectural adjustments.
The first is the disentangled attention mechanism, which encodes the content
and location of each word using two vectors. The content of the token at posi-
tion i is represented by Hi and the relative position i|j between the token at
position i and j are represented by Pi|j . The equation for determining the cross
attention score is as follows: Ai,j = HiH

T
j + HiP

T
j|i + Pi|jHT

j + Pi|jPT
j|i. The

second adjustment is an enhanced mask decoder that uses absolute positions
in the decoding layer to predict masked tokens during pre-training. For masked
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token prediction, DeBERTa includes the absolute position after the transform
layers but before the softmax layer. In contrast, BERT incorporates the position
embedding into the input layer. As a result, DeBERTa is able to capture the
relative position in all Transformer layers.

Sun et al. [32] proposed ERNIE 2.0, a continuous pre-training framework
that builds and learns pre-training tasks through continuous multi-task learning.
This allows the extraction of additional valuable lexical, syntactic, and semantic
information in addition to co-occurring information, which is typically the focus.

The concept behind DistilBERT [26] is to leverage knowledge distillation
to produce a more compact and faster version of BERT while retaining most
of its language understanding capacities. DistilBERT reduces the size of BERT
by 40%, is 60% faster, and still retains 97% of its language understanding capa-
bilities. In order to accomplish this, DistilBERT optimizes the following three
objectives while using the BERT model as a teacher: (1) Distillation loss: The
model was trained to output probabilities equivalent to those of the BERT base
model. (2) Masked Language Modeling (MLM): As described by Devlin et al. [4]
for the BERT model, the common pre-training using masked language modeling
is being used.(3) Cosine embedding loss: The model was trained to align the
DistilBERT and BERT hidden state vectors.

A Lite BERT (ALBERT) [16] is a Transformer that uses two parameter-
reduction strategies to save memory and speed up training by sharing the weights
of all layers across its Transformer. This model is therefore particularly effective
for longer texts. During pretraining, ALBERTv2 employs MLM and Sentence-
Order Prediction (SOP), which predicts the sequence of two subsequent text
segments.

WideMLP [7] is a BoW-Based Multilayer Perceptron (MLP) with a single
wide hidden layer of 1, 024 Rectified Linear Units (ReLUs). This model serves
as a useful benchmark against which we can measure actual scientific progress.

InducTive Graph Convolutional Networks for Text classification (InducT-
GCN) [37] is a GCN-based method that categorically rejects any information
or statistics from the test set. To achieve the inductive setup, InducT-GCN
represents document vectors with a weighted sum of word vectors and applies
TF-IDF weights instead of representing document nodes with one-hot vectors.
A two-layer GCN is employed for training, with the first layer learning the word
embeddings and the second layer in the dimension of the dataset’s classes outputs
into a softmax activation function.

4 Experimental Apparatus

4.1 Datasets

First, we describe the benchmark datasets. Second, we introduce our new
datasets in the domain of goods and services. The characteristics are denoted in
Table 1.
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Table 1. Characteristics of short text datasets. #C refers to the number of classes.
Avg. L is the average document length.

Benchmarks #Doc #Train #Test #C Avg. L

R8 7,674 5,485 2,189 8 65.72
MR 10,662 7,108 3,554 2 20.39
SearchSnippets 12,340 10,060 2,280 8 18.10
Twitter 10,000 7,000 3,000 2 11.64
TREC 5,952 5,452 500 6 10.06
SST-2 9,613 7,792 1,821 2 20.32
Goods & Services #Doc #Train #Test #C Avg. L
NICE-45 9,593 6,715 2,878 45 3.75
NICE-2 9,593 6,715 2,878 2 3.75
STOPS-41 200,341 140,238 60,103 41 5.64
STOPS-2 200,341 140,238 60,103 2 5.64

Benchmark Datasets. Six short text benchmark datasets, namely R8, MR,
SearchSnippets, Twitter, TREC, and SST-2, are used in our experiments. The
following gives a detailed description of them. R8 is an 8-class subset of the
Reuters 21578 news dataset1. It is not a classical short text scenario with an
average length of 65.72 tokens but offers the ability to set the methods in com-
parison to traditional text classification. MR2 is a widely used dataset for text
classification. It contains movie-review documents with an average length of
20.39 tokens and is therefore suitable for short text classification. The dataset
SearchSnippets3, which is made up of snippets returned by a search engine
and has an average length of 18.10 tokens, was released by Phan et al. [25].
Twitter4 is a collection of 10, 000 tweets that are split into the categories neg-
ative and positive based on sentiment. The length of those tweets is on average
11.64 tokens. TREC5, which was introduced by Li and Roth [18], is a ques-
tion type classification dataset with six classifications for questions. It provides
the shortest texts in our collection of benchmark datasets, with an average text
length of 10.06 tokens. SST-26 [30] or SST-binary is a subset of the Stanford
Sentiment Treebank, a fine-grained sentiment analysis dataset, in which neutral
reviews have been removed and the data has either a positive or negative label.
The average number of tokens in the texts is 20.32.

1 http://www.daviddlewis.com/resources/testcollections/reuters21578/.
2 https://www.cs.cornell.edu/people/pabo/movie-review-data/.
3 http://jwebpro.sourceforge.net/data-web-snippets.tar.gz.
4 https://www.nltk.org/howto/twitter.html#Using-a-Tweet-Corpus.
5 https://cogcomp.seas.upenn.edu/Data/QA/QC/.
6 https://nlp.stanford.edu/sentiment/.

http://www.daviddlewis.com/resources/testcollections/reuters21578/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
https://www.nltk.org/howto/twitter.html#Using-a-Tweet-Corpus
https://cogcomp.seas.upenn.edu/Data/QA/QC/
https://nlp.stanford.edu/sentiment/
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Fig. 1. Class distribution of our new datasets (separated by train and test split)

Goods and Services Datasets. In order to evaluate the performance on data
with real world applications, we introduce two new datasets that are focused on
the distinction between goods and services. Although there are already datasets
for product classification, such as the WDC-LSPM7, to the best of our knowl-
edge, our datasets are the first to combine goods and services. NICE is a clas-
sification system for goods and services that divides them into 45 classes and is
based on the Nice Classification8 of the World Intellectual Property Organiza-
tion (WIPO). There are 11 classes for various service types and 34 categories for
goods. With 9, 593 documents, NICE-45 is comparable in size to the benchmark
datasets. This dataset, which has texts with an average length of 3.75 tokens,
is an excellent example of extremely short text. For the division into goods and
services, there is also the binary version NICE-2. Short Texts Of Products
and Services (STOPS) is the second dataset we offer. With 200, 341 docu-
ments and an average length of 5.64 tokens, STOPS-41 is a reasonably large
dataset. The data set was derived from a potential use case in the form of Ama-
zon descriptions and Yelp business entries, making it the most realistic. Like
NICE, STOPS has a binary version STOPS-2. Both datasets provide novel char-
acteristic properties that the benchmark datasets did not cover. In particular,
the number of fine-granular classes presents a challenge that is not addressed
by common benchmarks. For details on the class distribution of these datasets,
please refer to Fig. 1.

4.2 Preprocessing

To create NICE, the WIPO9 classification data was converted to lower case, all
punctuation was removed, and side information that was enclosed in brackets was
7 http://webdatacommons.org/largescaleproductcorpus/.
8 https://www.wipo.int/classifications/nice/en/.
9 https://www.wipo.int/nice/its4nice/ITSupport_and_download_area/20220101/

MasterFiles/index.html.

http://webdatacommons.org/largescaleproductcorpus/
https://www.wipo.int/classifications/nice/en/
https://www.wipo.int/nice/its4nice/ITSupport_and_download_area/20220101/MasterFiles/index.html
https://www.wipo.int/nice/its4nice/ITSupport_and_download_area/20220101/MasterFiles/index.html
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also removed. Additionally, accents were dropped. Following a random shuffle,
the data was divided into 70% train and 30% test.

As product and service entries for STOPS, we use the product descriptions
of MAVE10 [40] and the business names of YELP11. Due to the different data
sources, these also had to be preprocessed differently. All classes’ occurrences in
the MAVE data were counted, and 5, 000 sentences from each of the 20 most
common classes were chosen. The multi-label categories for the YELP data were
broken down into a list of single label categories, and the sentences were then
mapped to the most common single label that each one has. In order to prevent
any label from taking up too much of the dataset, the data was collected such that
there is a maximum of 1, 200 documents per label. After that, all punctuation was
dropped, the data was converted to lower case, and accents were also dropped.
The data was split into train and test in a 70:30 ratio after being randomly
shuffled.

4.3 Procedure

The best short text classifier and text classification models were retrieved from
the literature (see description of the models in Sect. 3). The accuracy scores were
extracted in order to establish a comparison. Own experiments, particularly
using various Transformers, were conducted in order to compare them. Inves-
tigations into the impacts of hyperparameters on short texts were performed.
More details about these are provided in Sect. 4.4. In order to test the methods
in novel contexts, we also created two new datasets, whereby STOPS stands out
due to its much higher quantity of documents.

4.4 Hyperparameter Optimization

Our experiments for BERT, DistilBERT, and WideMLP used the hyperparam-
eter from Galke and Scherp [7]. The parameters for BERT and DistilBERT are
a learning rate of 5 · 10−5, a batch size of 128, and fine-tuning for 10 epochs.
WideMLP was trained for 100 epochs with a learning rate of 10−3, a batch size
of 16, and a dropout of 0.5. For ERNIE 2.0 and ALBERTv2, we make use of the
SST-2 values that Sun et al. [32] and Lan et al. [16], respectively, published. For
our hyperparameter selection for DeBERTa and RoBERTa, we used the BERT
values from Galke and Scherp [7] as a starting point and investigated the effect
of smaller learning rates. This resulted in learning rates of 2 ·10−5 for DeBERTa
and 4 · 10−5 for RoBERTa while maintaining the other parameters. For compar-
ison, we followed the same procedure to create ERNIE 2.0 (optimized), which
yields a learning rate of 25 ·10−6. The Bi-LSTM values from Zhao et al. [47] were
used for both the LSTM and the Bi-LSTM model. We used DADGNN with the
default parameters of 0.5 dropout, 10−6 weight decay, and two attention heads
for all datasets.

10 https://github.com/google-research-datasets/MAVE.
11 https://www.yelp.com/dataset/download.

https://github.com/google-research-datasets/MAVE
https://www.yelp.com/dataset/download
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4.5 Metrics

Accuracy is used to measure the classification of short text. For multi-class cases,
the subset accuracy is calculated.

5 Results

The accuracy scores for the text classification models on the six benchmark
datasets are shown in Table 2. The findings demonstrate that the relatively
straightforward models LSTM, Bi-LSTM, and WideMLP provide a strong base-
line across all datasets. This comparison clearly demonstrates the limitations of
some models, with InducT-GCN falling short in all datasets except SearchSnip-
pets, SECNN underperforming on TREC, and DADGNN producing weak MR
results in our own experiment. The Transformer models, on the other hand, are
the best performing across all datasets with the exception of SearchSnippets.
With consistently strong performance across all datasets, DeBERTa stands out
in particular. The graph-based models from Zhao et al. [47], SGNN, ESGNN,
and C-BERT, all perform well for the datasets for which results are available
and ESGNN even outperforms all other models for SearchSnippets. It is impor-
tant to note that Zhao et al. [47] used a modified training split and additional
preprocessing. While an increase of about 5 percentage points for MR could
be obtained by extending ESGNN with BERT in C-BERT, the increase is not
noticeable for other datasets. When applied to short texts, the inductive models
even outperform transductive models. On Twitter, ERNIE 2.0 and ALBERTv2
reach a performance of 99.97%, and when using BERT on the TREC dataset,
a performance of 99.4% is obtained. Non-Transformer models also perform well
on TREC, although Transformers outperform them. For the graph-based models
SHINE and InducT-GCN, we also calculated the mean and standard deviation
of the accuracy scores across 5 runs. This is motivated from the observation that
models based on graph-neural networks are susceptible to the initialization of
the embeddings [27]. SHINE had a generally high standard deviation of up to
nearly 5 points, indicating greater variance in its performance. In comparison,
InducT-GCN has a rather small variance of always below 1 point.

The accuracy results for our newly introduced datasets, NICE and STOPS,
are shown in Table 3. New characteristics covered by NICE and STOPS include
shorter average lengths and the ability to distinguish between classes at a fine-
granular level in NICE-45 and STOPS-41. The investigation of more docu-
ments is also conducted in the case of STOPS. As a result, NICE-45 and
STOPS-41 reveal that DADGNN encounters issues when dealing with more
classes, even falling around 20 and 60 percent points behind the baseline mod-
els. While still performing worse than the baseline models, InducT-GCN out-
performs DADGNN on all four datasets. Transformers once again demonstrate
their strength and rank as the top performing models across all datasets on
this dataset. There are also significant drops. ERNIE 2.0 performs worse than
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Table 2. Accuracy on short text classification datasets. The “Short?” column indicates
whether the model makes claims about its ability to categorize short texts. Provenance
refers to the source of the accuracy scores.

Inductive Models Short? R8 MR Snippets Twitter TREC SST-2 Provenance

Transformer Models
BERT N 98.17a 86.94 88.20 99.96 99.4 91.37 Own experiment
RoBERTa N 98.17a 89.42 85.22 99.9 98.6 94.01 Own experiment
DeBERTa N 98.45a 90.21 86.14 99.93 98.8 94.78 Own experiment
ERNIE 2.0 N 98.04a 88.97 89.12 99.97 98.8 93.36 Own experiment
ERNIE 2.0 (optimized) N 98.17a 89.53 89.17 99.97 99 94.07 Own experiment
DistilBERT N 97.98a 85.31 89.69 99.96 99 90.49 Own experiment
ALBERTv2 N 97.62 86.02 87.68 99.97 98.6 91.54 Own experiment
BoW Models
SVM Y — — — — 95f — Silva et al. [29]
WideMLP N 96.98 76.48 67.28 99.86 97 82.26 Own experiment
fastText N 96.13 75.14 88.56d — — — Zhao et al. [47]
Graph-based Models
HGATb Y — 62.75 82.36 63.21 — — Yang et al. [41]
NC-HGATb Y — 62.46 — 63.76 — — Sun et al. [33]
SGNNc Y 98.09 80.58 90.68d — — — Zhao et al. [47]
ESGNNc Y 98.23 80.93 90.80d — — — Zhao et al. [47]
C-BERT (ESGNN+BERT)c Y 98.28 86.06 90.43d — — — Zhao et al. [47]
DADGNN Y 98.15 78.64 — — 97.99 84.32 Liu et al. [22]
DADGNN Y 97.28 74.54 84.91 98.16 97.54 82.81 Own experiment
HyperGAT N 97.97 78.32 — — — — Ding et al. [5]
InducT-GCN N 96.68 75.34 76.67 88.56 92.50 79.97 Own experiment
ConTextING-BERT N 97.91 86.01 — — — — Huang et al. [11]
ConTextING-RoBERTa N 98.13 89.43 — — — — Huang et al. [11]
CNN and LSTMs
SECNNc Y — 83.89 — — 91.34 87.37 Wang et al. [36]
MGNC-CNN Y — — — — 95.52 88.30g Zhang et al. [45]
DCNN Y — 86.80h — — 93 — Kalchbr. et al. [13]
LSTM (BERT) Y 94.28 75.10 65.13 99.83 97 81.38 Own experiment
Bi-LSTM (BERT) Y 95.52 75.30 66.79 99.76 97.2 80.83 Own experiment
LSTM (GloVe) Y 96.34 74.99 67.67 95.23 97.4 79.95 Own experiment
Bi-LSTM (GloVe) Y 96.84 75.32 68.15 95.53 97.2 80.17 Own experiment
Bi-LSTM (GloVe) Y 96.31 77.68 84.81d — — — Zhao et al. [47]
Transductive Models Short? R8 MR Snippets Twitter TREC SST-2 Provenance
Graph-based Models
SHINEe Y — 64.58 82.39 72.54 — — Wang et al. [38]
SHINE Y 79.80 62.05 82.14 70.64 79.90 61.71 Own experiment
STGCN Y 97.2 78.2 — — — — Ye et al. [43]
STGCN+BiLSTM Y — 78.5 — — — — Ye et al. [43]
STGCN+BERT+BiLSTM Y 98.5 82.5 — — — — Ye et al. [43]
SimpleSTCi Y — 62.27 80.96 62.19 — — Zheng et al. [48]
TextGCN N 97.07 76.74 83.49 — — — Zhao et al. [47]
TextGCN N 97.07 76.74 — — 91.40 81.02 Liu et al. [22]
BertGCN N 98.1 86.0 — — — — Lin et al. [19]
RoBERTaGCN N 98.2 89.7 — — — — Lin et al. [19]
TextGCN-BERT-serial-SB N 97.78 86.69 — — — — Zeng et al. [44]
TextGCN-CNN-serial-SB N 98.53 87.59 — — — — Zeng et al. [44]
a With a batch size of 32 and for DeBERTa of 16.
b With only 40 randomly selected documents per class.
c Not reproducible. Authors have been contacted twice without a response.
d Using a modified training split of 8, 636 training and 3, 704 test documents and further
preprocessing.
e Employing very low train ratios (0.38% to 6.22%).
f Uni-gram model with extensive pre-processing, use of WordNet, etc. and 60 hand-coded
rules
g Removed phrases of length less than 4 from the training set
h Using a slightly different split of 6,920 sentences for training, 872 for development, and
1,821 for test
i Samples 20 labeled documents per class as training set and validation set
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Table 3. Accuracy on our own short text classification datasets. The “Short?” column
indicates whether the model makes claims about its ability to categorize short texts.
Provenance refers to the source of the accuracy scores.

Inductive Models Short Text NICE-45 NICE-2 STOPS-41 STOPS-2

Transformer Models
BERT N 72.79 99.72 89.4 99.87
RoBERTa N 66.09 99.76 89.56 99.86
DeBERTa N 59.42 99.72 89.73 99.85
ERNIE 2.0 N 45.55 99.69 89.39 99.85
ERNIE 2.0 (optimized) N 67.65 99.72 89.65 99.88
DistilBERT N 69.28 99.75 89.32 99.85
ALBERTv2 N 59.24 99.51 88.58 99.83
BoW Models
WideMLP N 58.99 96.76 88.2 97.05
Graph-based Models
DADGNN Y 28.51 91.15 26.75 97.48
InducT-GCN N 47.06 94.98 86.08 97.74
CNN and LSTMs
LSTM (BERT) Y 47.81 96.63 86.27 96.05
Bi-LSTM (BERT) Y 52.39 96.63 85.93 98.54
LSTM (GloVe) Y 52.64 96.17 87.4 99.46
Bi-LSTM (GloVe) Y 55.35 95.93 87.38 99.43

the baseline models with 45.55% on NICE-45. However, ERNIE 2.0 (opti-
mized), which uses different hyperparameter values (see Sect. 4.4), comes in third
with 67.65%.

6 Discussion

Graph-based models are computationally expensive because they require not
only the creation of the graph but also its training, which can be resource- and
time-intensive, especially for word-document graphs with O(N2) space [7]. On
STOPS, this drawback becomes very apparent. We could observe that DADGNN
required roughly 30 hours of training time, while BERT only took 30 minutes
to fine-tune with the same resources. Although in the case of BERT, the pre-
training was already very expensive, transfer learning allows this effort to be used
for a variety of tasks. Nevertheless, the Transformers outperform the inductive
graph-based models as well as the short text models, with just one exception.
The best model for SearchSnippets is ESGNN, but additional preprocessing and
a modified training split were employed. Our Bi-LSTM results, obtained without
additional preprocessing, differ by 16.66 percentage points from the Bi-LSTM
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results from Zhao et el. [47]. This indicates that preprocessing, and not a better
model, is primarily responsible for the strong outcomes of the SearchSnippets
experiments. Another interesting discovery can be made using the sentiment
datasets. In comparison to other datasets, the Transformers outperform graph-
based models that do not utilize a Transformer themselves by a large margin.
This demonstrates that graph-based models may not be as effective at senti-
ment prediction tasks. In contrast, the CNN-based models show strong perfor-
mance on the sentiment analysis task SST-2. Still, the best CNN model is more
than 6 points below the best transformer. However, it should be noted that not
all Transformers are consistently excellent. For instance, for NICE-45, one can
observe a lower performance with ERNIE 2.0. But the absence of this perfor-
mance decrease in our optimized version of ERNIE 2.0 (optimized) suggests that
choosing suitable hyperparameters is crucial in this case.

6.1 Key Results

Our experiments unambiguously demonstrate that Transformers achieve SOTA
accuracy on short text classification tasks. This raises the question of whether
specialized short text techniques are necessary given that the performance of the
existing models is insufficient. This observation is especially interesting because
many of the short text models used are from 2021 [22,36,41,47] or 2022 [33].
Most short text models attempt to enrich the documents with some kind of
external context, such as a knowledge base or POS tags. However, one could
argue that Transformers implicitly contain context in their weights through their
pre-training.

Those short text models that compare themselves to Transformers assert
that they outperform them. For instance, Ye et al. [43] claim to outperform
BERT by 2.2 percentage points on MR, but their fine-tuned BERT only achieves
80.3%. In contrast, our own experiments show that BERT achieves 86.94%.
With 85.86% on MR, Zhao et al. [47] achieve better BERT results, but only
to beat it by a meager 0.2% with C-BERT. Given the low surplus, they would
no longer outperform it with a marginally better selection of hyperparameters
for BERT. Therefore, it is reasonable to assume that the importance of good
hyperparameters for Transformers is underestimated and that they are often
not properly optimized. ERNIE 2.0 (optimized), which outperforms ERNIE 2.0
on every dataset, also demonstrates the effect of better hyperparameters. Finally,
Zhao et al. [47] is already outperformed by other transformers like RoBERTa and
DeBERTa by 3 and 4 points, respectively.

Additionally, there is a need for new short text datasets because the widely
used benchmark datasets share many characteristics and fall short in many use
cases. The common benchmark datasets all contain around 10, 000 documents,
distinguish only a few classes, and frequently have a similar average length.
Furthermore, many of them cover the same tasks. For instance, MR, Twitter,
and SST-2 all perform sentiment prediction, which makes sense given how much
short text is produced by social media. In this paper, we introduce two new
datasets with distinctive attributes to cover more cases in NICE and STOPS.
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New and intriguing findings are produced by the new characteristics that are
investigated using these datasets. Particularly, the ability to distinguish between
classes at a fine-granular level reveals the shortcomings of various models, like
DADGNN or ERNIE 2.0. NICE-45 in particular proved to be challenging for all
models, making it a good benchmark for future advancements.

6.2 Threats to Validity

In our study, each experiment was generally conducted once. The rationale is
the extremely low standard deviation for text classification tasks observed in
previous studies [7,22,47]. However, it has been reported in the literature on
models using graph neural networks (GNN) that they generally have high stan-
dard deviation in their performance, which has been attributed among others to
the influence of the random initialization in the evaluation [27]. Thus, we have
run our experiments for SHINE and InducT-GCN five times and report aver-
ages and standard deviation. The high standard deviation observed in SHINE’s
performance adds to the evidence of the need for caution when interpreting the
results of GNNs [27].

We acknowledge that STOPS contains user-generated labels, some of which
may not be entirely accurate. However, given that this occurs frequently in
numerous use cases, it is also crucial to test the models in these scenarios.

6.3 Parameter Count of Models

Table 4 lists the parameter counts of selected Transformer models, the BoW-
based baseline methods WideMLP, and graph-based methods used in our exper-
iments. Generally, the top performing Transformer models have a similar size
between 110M to 130M parameters. Although DistilBERT is only have of that
size and ALBERTv2 only about a tens, our experiments show still compara-
ble accuracy scores on R8, Snippets, Twitter, and TREC. ALBERTv2 with its
12M parameters outperforms the WideMLP baseline with 31.3M parameters on
all datasets, some with a large margin. The graph-based model ConTextING-
RoBERTa has a similar parameter count compared to the pure Transformer mod-
els, since the RoBERTa transformer is used internally. It is the top-performer
among the graph-based models on R8 and MR but cannot outperform the pure
Transformer models.

6.4 Generalization

As we cover in our experiments a range of diverse domains, with sentiment
analysis on various themes (MR, SST-2, Twitter), question type classification
(TREC), news (R8), and even search queries (SearchSnippets), we expect to
find equivalent results on other short text classification datasets. Additionally,
the categorization of goods and services is covered by our new datasets NICE
and STOPS. They include additional features not covered by the benchmark
datasets, including a significantly larger amount of training data in STOPS, a
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Table 4. Parameter counts for selected methods used in our experiments

Model #parameters

Transformer models
BERT 110M
RoBERTA 123M
DeBERTA 134M
ERNIE 2.0 110M
DistilBERT 66M
ALBERTv2 12M
BoW-based methods
WideMLP 31.3M
Graph-based methods
HyperGAT LDA parameters + 3.1M
ConTextING-RoBERTa 129M

shorter average length, and the capacity to differentiate between a wider range
of classes. By using an example from a business problem, STOPS specifically
demonstrates how the knowledge gained here can be applied in corporate use.

In this work, we cover a variety of models for each architecture, particularly
the most popular and best-performing ones. Our findings are consistent with the
studies by Galke and Scherp [7], which demonstrate the tremendous power of
Transformers for traditional text classification.

7 Conclusion and Future Work

Our experiments unequivocally demonstrate the outstanding capability of Trans-
formers for short text classification tasks. Additional research on our newly
released datasets, NICE and STOPS, supports these findings and highlights the
issue of becoming overly dependent on benchmark datasets with a limited num-
ber of characteristics. In conclusion, our study raises the question of whether
specialized short text techniques are required given the lower performance of
current models.

Future research on improving the performance of Transformers on short text
could be to do pre-training on short texts or on in-domain texts (i.e., pre-training
in the same domain as the target task) [2,31,34], multi-task fine-tuning [31,34],
or an ensemble of multiple Transformer models [50].
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Abstract. We study a class of reinforcement learning (RL) tasks where
the objective of the agent is to accomplish temporally extended goals. In
this setting, a common approach is to represent the tasks as determin-
istic finite automata (DFA) and integrate them into the state-space for
RL algorithms. However, while these machines model the reward func-
tion, they often overlook the causal knowledge about the environment.
To address this limitation, we propose the Temporal-Logic-based Causal
Diagram (TL-CD) in RL, which captures the temporal causal relation-
ships between different properties of the environment. We exploit the
TL-CD to devise an RL algorithm in which an agent requires significantly
less exploration of the environment. To this end, based on a TL-CD and a
task DFA, we identify configurations where the agent can determine the
expected rewards early during an exploration. Through a series of case
studies, we demonstrate the benefits of using TL-CDs, particularly the
faster convergence of the algorithm to an optimal policy due to reduced
exploration of the environment.

Keywords: Reinforcement Learning · Causal Inference ·
Neuro-Symbolic AI

1 Introduction

In many reinforcement learning (RL) tasks, the objective of the agent is to
accomplish temporally extended goals that require multiple actions to achieve.
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One common approach to modeling these goals is to use finite state machines.
However, these machines only model the reward function and do not take into
account the causal knowledge of the underlying environment, which can limit
the effectiveness of the RL algorithms [2,3,6,17,20,25–28].

Moreover, online RL, including in the non-Markovian setting, often requires
extensive interactions with the environment. This impedes the adoption of RL
algorithms in real-world applications due to the impracticality of expensive
and/or unsafe data collection during the exploration phase.

To address these limitations, in this paper we propose Temporal-Logic-based
Causal Diagrams (TL-CDs) which can capture the temporal causal relation-
ships between different properties of the environment, allowing the agent to
make more informed decisions and require less exploration of the environment.
TL-CDs combine temporal logic, which allows for reasoning about events over
time, with causal diagrams, which represent the causal relationships between
variables. By using TL-CDs, the RL algorithm can exploit the causal knowledge
of the environment to identify configurations where the agent can determine the
expected rewards early during an exploration, leading to faster convergence to
an optimal policy.

We introduce an RL algorithm that leverages TL-CDs to achieve temporally
extended goals. We show that our algorithm requires significantly less exploration
of the environment than traditional RL algorithms that use finite state machines
to model goals. By using TL-CDs, our algorithm identifies configurations where
the agent can determine the expected rewards early during exploration, reducing
the number of steps required to achieve the goal.

2 Motivating Example

Let us take a running example to illustrate the concept. There is a farmer who
possesses a unique seed and his objective is to obtain a tree. There are two
potential ways to achieve this goal. First, the farmer can plant the seed (p) and
wait for the tree to grow (g). Alternatively, the farmer can sell the seed (s) and
use the money to purchase a tree (b). The set of four propositions can thus be
represented as P = {p, g, s, b}. Figure 1a illustrates the corresponding task DFA
T (note that, because T is deterministic, the transition from vT

0 to vT
2 also fires

when p ∧ s is true, but we assume that the agent cannot take both actions at
once). Additional causal information is provided with the TL-CD C (Fig. 1b),
interpreted as follows: p X g expresses that planting a tree will result in a tree
growing in the next time-step (e.g., year), and s G¬X b expresses that selling
the seed leads to never being able to buy a tree (as the farmer will never find
an offer for a tree that is cheaper than a seed). This TL-CD is equivalent to the
causal DFA C illustrated in Fig. 1c (details are provided later).

3 Related Work

Causal inference answers questions about the mechanism by which manipulating
one or a set of variables affects another variable or a set of variables [22]. In other
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Fig. 1. The seed environment. The four propositions are p (the agent plants the seed),
g (a tree grows), s (the agent sells the seed) and b (the agent buys a tree).

words, through causal inference, we infer the cause and effect relationships among
the variables from observational data, experimental data, or a combination of
both [16].

Recently, the inherent capabilities of reinforcement learning (RL) and causal
inference (CI) have simultaneously been used for better decision-making includ-
ing both interventional reasoning [13,14,24,30] and counterfactual reasoning
[4,5,9,12] in different settings [15]. In other words, in an RL setting, harnessing
casual knowledge including causal relationships between the actions, rewards,
and intrinsic properties of the domain where the agent is deployed can improve
the decision-making abilities of the agent [15].

Usually, incorporating CI in an RL setting can be done using three types of
data including observational data, experimental data, and counterfactual data
accompanied by the causal diagram of the RL setting, if available. An agent
can have access to observational data by observing another agent, observing the
environment, offline learning, acquiring prior knowledge about the underlying
setting, etc. Experimental data can be acquired by actively interacting (inter-
vening) with the environment. Counterfactual data can be generated using a
specified model, estimated through active learning empirically [5,18,21].
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In connecting CI and RL, the mentioned data types have been used by them-
selves or in different combinations. For example, in [10], through sampling obser-
vational data in new environments, an agent can make minimal necessary adap-
tions to optimize the policy given diagrams of structural relationship among the
variables of the RL setting. In [29], both observational and experimental data
(empirical data) are used to learn causal states which are the coarsest partition
of the joint history of actions and observations that are maximally predictive of
the future in partially observable Markov decision processes (POMDP). In [5], a
combination of all data types has been used in a Multi-Armed Bandit problem
in order to improve the personalized decision-making of the agent, where the
effect of unmeasured variables (unobserved confounders) has been taken into
consideration.

Our research is closely linked to the utilization of formal methods in rein-
forcement learning (RL), such as RL for reward machines [11] and RL with
temporal logic specifications [2,3,6,17,20,25–28]. For instance, [11] proposed a
technique known as Q-learning for reward machines (QRM) and demonstrated
that QRM can almost certainly converge to an optimal policy in the tabular
case. Additionally, QRM outperforms both Q-learning and hierarchical RL for
tasks where the reward functions can be encoded by reward machines. However,
none of these works have incorporated the causal knowledge in expediting the
RL process.

4 Preliminaries

As typically done in RL problems, we rely on Markov Decision Processes
(MDP) [23] to model the effects of sequential decisions of an RL agent. We,
however, deviate slightly from the standard definition of MDPs. This is to be
able to capture temporally extended goals for the agent and thus, want the
reward to be non-Markovian. To capture non-Markovian rewards, we rely on
simple finite state machines—deterministic finite automaton (DFA). Further, to
express causal relationships in the environment, we rely on the de facto tempo-
ral logic, Linear Temporal Logic (LTL). We introduce all the necessary concepts
formally in this section.

Labeled Markov Decision Process. A labeled Markov decision process [11] is
a tuple M = 〈S, sI , A, p, r,P, L〉 consisting of a finite set of states S, an agent’s
initial state sI ∈ S, a finite set of actions A, a transition probability function
p : S×A �→ Δ(S), a non-Markovian reward function r : (S×A)∗×S �→ R, a set of
relevant propositions P, and a labeling function L : S ×A×S �→ 2P . Here Δ(S)
denotes the set of all probability distributions over S. We denote by p(s′|s, a) the
probability of transitioning to state s′ from state s under action a. Additionally,
we include a set of propositions P that track the relevant information that the
agent senses in the environment. We integrate the propositions in the labeled
MDP using the labeling function L.
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We define a trajectory to be the realization of the stochastic process defined
by a labeled MDP. Formally, a trajectory is a sequence of states and actions
t = s0a1s1 · · · aksk with s0 = sI . Further, we define the corresponding label
sequence of t as tL := l0l1l2 · · · lk where li = L(si, ai+1, si+1) for each 0 ≤ i < k.

A stationary policy π : S → Δ(A) maps states to probability distributions
over the set of actions. In particular, if an agent is in state st ∈ S at time step t
and is following policy π, then π(at|st) denotes its probability of taking action
at ∈ A.

Deterministic Finite Automaton. A deterministic finite automaton (DFA)
is a finite state machine described using tuple A = (V, 2P , δ, vI , F ) where V is a
finite set of states, 2P is the alphabet, vI ∈ V is the initial state, F ⊆ V is the
set of final states, and δ : V × 2P �→ V is the deterministic transition function.
We define the size |A| of a DFA as its number of states |V |.

A run of a DFA A on a label sequence tL = l0l1 . . . lk ∈ (2P)∗, denoted using

A : v0
tL−→ vk+1, is simply a sequence of states and labels v0l0v1l1 · · · lkvk+1, such

that v0 = vI and for each 0 ≤ i ≤ k, vi+1 = δ(vi, li). An accepted run is a
run that ends in a final state vk+1 ∈ F . Finally, we define the language of A as
L(A) = {tL ∈ (2P)∗ | tL is accepted by A}.

We define the parallel composition of two DFAs A1 = (V 1, 2P , δ1, v1
I , F 1) and

A2 = (V 2, 2P , δ2, v2
I , F 2) to be the cross-product A1 × A2 = (V, 2P , δ, vI , F

2),
where V = V 1 × V 2, δ((s1, s2), li) = (δ1(s1, li), δ2(s2, li)), vI = (v1

I , v2
I ), and

F = F 1 × F 2. Using such a definition for parallel composition, it is not hard to
verify that language L(A1 × A2) is simply L(A1) ∩ L(A2).

Task DFA. Following some recent works [1,19], we rely on so-called task DFA
T = 〈V T , 2P , δT , vT

I , F T 〉 to represent the structure of a non-Markovian reward
function. We say a trajectory t has a positive reward if and only if the run of T
on the label sequence tL, T : vT

0
tL−→ vT

k+1, ends in a final state vT
k+1 ∈ F T .

Linear Temporal Logic. Linear temporal logic (over finite traces) (LTLf ) is
a logic that expresses temporal properties using temporal modalities. Formally,
we define LTLf formulas—denoted by Greek small letters—inductively as:

– each proposition p ∈ P is an LTLf formula; and
– if ψ and ϕ are LTLf formulas, so are ¬ψ, ψ ∨ ϕ, Xψ (“neXt”), and ψUϕ

(“Until”).

As syntactic sugar, we allow Boolean constants true and false, and formulas
ψ ∧ ϕ := ¬(¬ψ ∨ ¬ϕ) and ψ → ϕ := ¬ψ ∨ ϕ. Moreover, we additionally allow
commonly used temporal formulas Fψ := trueUψ (“finally”) and G := ¬F¬ϕ
(“globally”).

To interpret LTLf formulas over (finite) trajectories, we follow the seman-
tics proposed by Giacomo and Vardi [7]. Given a label sequence tL, we define
recursively when an LTLf formula holds at position i, i.e., tL, i |= ϕ, as follows:
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p F q

(a) G(p → F q)

p G¬q

(b) G(p → G¬q)

p

F q

G¬r

(c) G(p → F q) ∧
G(p → G¬r)

Fig. 2. Examples of TL-CDs with their corresponding description in LTL

tL, i |= p if and only if p ∈ tL[i]

tL, i |= ¬ϕ if and only if tL, i �|= ϕ

tL, i |= ϕ ∨ ψ if and only if tL, i |= ϕ or tL, i |= ψ

tL, i |= Xϕ if and only if i < |tL| and tL, i + 1 |= ϕ

tL, i |= ϕUψ if and only if tL, j |= ψ for some

i ≤ j ≤ |tL| and tL, i′ |= ϕ for all i ≤ i′ < j

We say tL satisfies ϕ if tL |= ϕ, which, in short, is written as tL |= ϕ.
Any LTLf formula ϕ can be translated to an equivalent DFA Aϕ, that is, for

any tL ∈ (2P)∗, tL |= ϕ if and only if tL ∈ L(Aϕ) [7,31].

Deterministic Causal Diagrams. A causal diagram where every edge rep-
resents a cause leading to an effect with probability 1 is called a deterministic
causal diagram. In a deterministic causal diagram, the occurrence of the cause
will always result in the occurrence of the effect.

5 Temporal-Logic-Based Causal Diagrams

We now formalize causality in RL using (deterministic) Causal Diagrams [8],
a concept that is widely used in the field of Causal Inference. We here aug-
ment Causal Diagrams with temporal logic since we like to express tempo-
rally extended relations. We call such Causal Diagrams as Temporal-Logic-based
Causal Diagrams or TL-CDs in short. While, in principle, TL-CDs can be con-
ceived for several temporal logics, we consider LTLf due to its popularity in AI
applications [7].

Structurally, for a given set of propositions P, a Temporal-Logic-based Causal
Diagram (TL-CD) is a directed acyclic graph C where

– each node represents an LTLf formula over propositions P, and
– each edge ( ) represents a causal link between two nodes.

Examples of TL-CDs are illustrated in Fig. 2, where, in the causal relation
ψ ϕ, ψ is considered to be the cause and ϕ to be the effect. The TL-CD
in Fig. 2a describes that whenever the cause p happens, the effect q eventually
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(i.e., F q) occurs. The TL-CD in Fig. 2b describes that whenever the cause p
happens, the effect q never (i.e., G¬q) occurs. The TL-CD in Fig. 2c describes
that whenever the cause p happens, effects q eventually (i.e., F q) occurs and r
never (i.e., G¬r) occurs.

For a TL-CD to be practically relevant, we must impose that the occurrence
of the cause ψ must precede that of the effect ϕ. To do so, we introduce concepts
that track the time of occurrence of an event such as the worst-case satisfaction
ws(ϕ), the worst-case violation wv(ϕ), the best-case satisfaction bs(ϕ) and the
best-case violation of a formula ϕ. Intuitively, the worst-case satisfaction ws(ϕ)
(resp., the best-case satisfaction bs(ϕ)) tracks the last (resp., the first) possible
time point that a formula can get satisfied by a trajectory. Likewise, the worst-
case violation wv(ϕ) (resp., the best-case violation bv(ϕ)) tracks the last (resp.,
the first) possible time point that a formula can get violated by a trajectory. We
introduce all the concepts formally in the following definition.

Definition 1. For an LTL formula ϕ, we define the worst-case satisfaction time
ws(ϕ), best-case satisfaction time bs(ϕ), worst-case violation time wv(ϕ) induc-
tively on the structure of ϕ as follows:

bs(p) =ws(p) = bv(p) = wv(p) = 0,

¬ ϕ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

bs(¬ ϕ) = bv(ϕ),

ws(¬ ϕ) = wv(ϕ),

bv(¬ ϕ) = bs(ϕ),

wv(¬ ϕ) = ws(ϕ);

ϕ1 ∧ ϕ2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

bs(ϕ1 ∧ ϕ2) = max{bs(ϕ1), bs(ϕ2)},

ws(ϕ1 ∧ ϕ2) = max{ws(ϕ1), ws(ϕ2)},

bv(ϕ1 ∧ ϕ2) = min{bv(ϕ1), bv(ϕ2)},

wv(ϕ1 ∧ ϕ2) = max{wv(ϕ1), wv(ϕ2)};

ϕ1 ∨ ϕ2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

bs(ϕ1 ∨ ϕ2) = min{bs(ϕ1), bs(ϕ2)},

ws(ϕ1 ∨ ϕ2) = max{ws(ϕ1), ws(ϕ2)},

bv(ϕ1 ∨ ϕ2) = max{bv(ϕ1), bv(ϕ2)},

wv(ϕ1 ∨ ϕ2) = max{wv(ϕ1), wv(ϕ2)};

Gϕ :

{
bs(Gϕ) = ws(Gϕ) = wv(Gϕ) = ∞,

bv(Gϕ) = bv(ϕ);

Fϕ :

{
bs(Fϕ) = bs(ϕ),

ws(Fϕ) = wv(Fϕ) = bv(Fϕ) = ∞;

Xϕ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

bs(Xϕ) = bs(ϕ) + 1,

ws(Xϕ) = ws(ϕ) + 1,

wv(Xϕ) = wv(ϕ) + 1,

bv(Xϕ) = bv(ϕ) + 1;

ϕ1Uϕ2 :

⎧
⎪⎨

⎪⎩

bs(ϕ1Uϕ2) = bs(ϕ2),

ws(ϕ1Uϕ2) = wv(ϕ1Uϕ2) = ∞,

bv(ϕ1Uϕ2) = bv(ϕ1).
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For each causal relation ψ ϕ in a causal diagram C, we impose the con-
straints that ws(ψ) ≤ min{bs(ϕ), bv(ϕ)} and wv(ψ) ≤ min{bs(ϕ), bv(ϕ)}. Such
a constraint is designed to make sure that the cause ψ, even in the worst-time
scenario, occurs before the event ϕ, in the best-time scenario. Based on the con-
straint, we rule out causal relations in which the cause occurs after the effect
such as X p q, where ws(X p) = 1 is greater than bs(q) = 0.

To express the meaning of TL-CD in formal logic, we turn to its descrip-
tion in LTL. A causal relation ψ ϕ can be described using the LTLf for-
mula G(ψ → ϕ), which expresses that whenever ψ occurs, ϕ should also
occur. Further, an entire TL-CD C can be described using the LTLf formula
ϕC :=

∧
(ψ ϕ) G(ψ → ϕ) which is simply the conjunction of the LTLf formu-

las corresponding to each causal relation in C.
Based on its description in LTLf ϕC, we can now define when a trajectory

π satisfies a TL-CD C. Precisely, t satisfies C if and only if its label sequence tL

satisfies ϕC.
In the subsequent sections, we also rely on a representation of a TL-CD as

a deterministic finite automaton (DFA). In particular, for a TL-CD C, we can
construct a DFA CC = 〈V C , 2P , δC , vC

I , F C〉 from its description in LTLf ϕC. We
call such a DFA a causal DFA. When the TL-CD is clear from the context, we
simply represent a causal DFA as C, dropping its superscript.

In the motivating example (Sect. 2), the TL-CD C pictured in Fig. 1b trans-
lates into the LTLf formula ϕC = G(p → X g) ∧ G(s → G¬X b), which is
equivalent to the causal DFA C pictured in Fig. 1c.

6 Reinforcement Learning with Causal Diagrams

We now aim to utilize the information provided in a Temporal-Logic-based
Causal Diagram (TL-CD) to enhance the process of reinforcement learning in
a non-Markovian setting. However, in our setting, we assume a TL-CD to be
a ground truth about the causal relations in the underlying environment. As a
result, we must ensure that a TL-CD is compatible with a labeled MDP.

Intuitively, a TL-CD C is compatible with a labeled MDP M if all pos-
sible trajectories of M respect (i.e., do not violate) the TL-CD C. To define
compatibility formally, we rely on the cross-product M×C, where M is a (non-
deterministic) finite state machine representation of M with states S, alphabet
2P , transition δ(s, l) = {s′ ∈ S | L(s, a, s′) = l for some a ∈ A}, initial state sI

and final states S, and C is the causal DFA.
Formally, we say that a TL-CD C is compatible with an MDP M if from any

reachable state (s, q) ∈ M×C, one can always reach a state (s′, q′) ∈ M×C where
q′ is a final state in the causal DFA C. The above formal definition ensures that any
trajectory of M can be continued to satisfy the causal relations defined by C.

We are now ready to state the central problem of the paper.

Problem 1 (Non-Markovian Reinforcement learning with Causal Diagrams). Let
M be a labeled MDP, T be a task DFA, and C be a Temporal Logic based Causal
Diagram (TL-CD) such that C is compatible with M. Given M, T and C, learn
a policy that achieves a maximal reward in the environment.
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We view TL-CDs as a concise representation of the causal knowledge in an
environment. In our next subsection, we develop an algorithm that exploits this
causal knowledge to alleviate the issues of extensive interaction in an online RL
setting.

6.1 Q-Learning with Early Stopping

Our RL algorithm is an adaptation of QRM [11], which is a Q-learning algo-
rithm [23] that is typically used when rewards are specified as finite state
machines. On a high level, QRM explores the product space M × T in many
episodes in the search for an optimal policy. We modify QRM by stopping its
exploration early based on the causal knowledge from a TL-CD C. Before we
describe the algorithm in detail, we must introduce some concepts that aid the
early stopping.

For early stopping to work, the learning agent must keep track of whether
a trajectory can lead to a reward. We do this by keeping track of the current
configuration in the synchronized run of a trajectory on the product T ×C of the
task DFA and the causal DFA. We here identify two particular configurations
that can be useful for early stopping: causally accepting and causally rejecting.
Intuitively, a trajectory reaches a causally accepting configuration if all contin-
uations of the trajectory from the current configuration that satisfy the TL-CD
C receive a reward of 1 (or a positive reward). On the other hand, a trajectory
reaches a causally rejecting configuration if all continuations of the trajectory
from the current configuration that satisfy the TL-CD C, do not receive a reward.

We formalize the notion of causally accepting configurations and causal
rejecting configurations in the following two definitions. We use the terminol-
ogy Aq to describe a DFA that is structurally identical to DFA A, except that
its initial state is q.

Definition 2 (Causally accepting). We say (vT , vC) ∈ V T × V C is causally

accepting if for each tL ∈ (2P)∗ for which the run C : vC tL−→ vC
f ends in some

final state vC
f ∈ F C, the run T : vT tL−→ vT

f must also end in some final state
vT

f ∈T . Equivalently, we say that (vT , vC) ∈ V T × V C is causally accepting if
L(CvC ) ⊆ L(TvT ).

Definition 3 (Causally rejecting). We say (vT , vC) ∈ V T × V C is causally

rejecting if for each tL ∈ (2P)∗ for which the run C : vC tL−→ vC
f ends in some

final state vC
f ∈ F C, the run T : vT tL−→ vT

f must not end in any final state
in F T . Equivalently, we say that (vT , vC) ∈ V T × V C is causally rejecting if
L(CvC ) ∩ L(TvT ) = ∅.

Remark 1. A configuration (vT , vC) may be neither causally accepting nor
causally rejecting.
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To illustrate these concepts, we consider the motivating example introduced
in Sect. 2, where T and C are depicted in Figs. 1a and 1c. The initial state (vT

0 , vC
0 )

is neither causally accepting nor causally rejecting. If the agent decides to plant
the seed, it encounters a label p and reaches (vT

1 , vC
1 ), which is causally accepting

since the only reachable configurations where C is accepting {(vT
3 , vC

0 ), (v
T
3 , vC

2 )}
are accepting for T . If the agent decides to sell the seed instead, it encounters a
label s and reaches (vT

2 , vC
2 ), which is causally rejecting since the only reachable

configurations where C is accepting {(vT
2 , vC

2 )} are rejecting for T .

Algorithm 1: causally accepting/rejecting state detection
1 Input: Task DFA T , Causal DFA C, a pair of states (vT , vC) ∈ V T × V C .
2 V CT ← ∅ // set of reachable “causal states” of T
3 AP ← T × C // the parallel composition of T and C
4 foreach state (vT

r , vC
r ) of AP reachable from (vT , vC) do

5 if vC
r ∈ F C then

6 V CT ← V CT ∪ {vT
r }

// (vT , vC) is causally accepting if V CT ⊆ F T

// (vT , vC) is causally rejecting if V CT ∩ F T = ∅
7 return V CT

We now present the pseudo-code of the algorithm used for detecting the
causally accepting and causally rejecting configurations in Algorithm 1. Intu-
itively, the algorithm relies on a breadth-first search on the cross-product DFA
T × C of the task DFA and the causal DFA.

Remark 2. The worst-case runtime of Algorithm 1 is O(|2P | · |T | · |C|) since the
number of edges in the parallel composition T × C can be atmost |2P | · |T | · |C|.

Algorithm 2: Q-learning with TL-CD
1 Input: Labeled MDP M, Task DFA T , Causal diagram C.
2 Convert C to causal DFA C
3 Detect causally accepting and rejecting states of T × C
4 foreach training episode do
5 run QTLCD_episode

We now expand on our adaptation of the QRM algorithm. The pseudo-code
of the algorithm is sketched in Algorithm 2. In the algorithm, we first compute
the set of causally accepting or causally rejecting configurations as described in
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Algorithm 1. Next, like a typical Q-learning algorithm, we perform explorations
of the environment in several episodes to estimate the Q-values of the state-action
pairs. However, during an episode, we additionally keep track of the configuration
of the product T × C. If during the episode, we encounter a causally accepting
or causally rejecting configuration, we terminate the episode and update the
Q-values accordingly.

Algorithm 3: QTLCD_episode
1 Hyperparameter: Q-learning parameters, episode length eplength.
2 Input: labeled MDP M, task DFA T , causal DFA C, learning rate α.
3 Output: the updated set of q-functions Q

4 s ← sI ; v
T ← vT

I ; vC ← vC
I // initialise states

5 R ← 0 // initialise cumulative reward
6 for 0 ≤ t < eplength do
7 a ← GetEpsilonGreedyAction(qv

T
, s) // get action from policy

8 s′ ← ExecuteAction(p(s, a)) // based on distribution p(s, a)

9 vT ′ ← δT (vT , L(s, a, s′)) // synchronize T
10 vC′ ← δC(vC , L(s, a, s′)) // synchronize C
11 R′ ← 1FT (vT ′

) // compute cumulative reward
// override reward based on causal analysis:

12 if (vT ′
, vC′

) causally accepting then R′ ← 1

13 if (vT ′
, vC′

) causally rejecting then R′ ← 0

14 update qv
T
(s, a) using reward r = R′ − R // Bellman update

15 if vT ′ ∈ F T then return Q
// end of episode

16 if (vT ′
, vC′

) causally accepting or rejecting then return Q
// interrupt episode early

17 s ← s′; vT ← vT ′
; vC ← vC′

;R ← R′

18 return Q

The Q-learning with TL-CD algorithms consists of a loop of several episodes.
The pseudo-code of one episode is sketched in Algorithm 3. The instant reward
r is computed such that the cumulative reward R is 1 if and only if the Task
DFA is accepting. The cumulative reward is then overridden if it is possible to
predict the future cumulative reward, based on if the current configuration is
causally accepting or causally rejecting. If the reward could be predicted, the
episode is interrupted right after updating the q-functions, using that predicted
reward. Note that the notion causally accepting and rejecting configurations is
defined on unbounded episodes, and might predict a different reward than if the
episode were to time out.
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The above algorithm follows the exact steps of the QRM algorithm and
thus, inherits all its advantages, including termination and optimality. The only
notable difference is the early stopping based on the causally accepting and
causally rejecting states. However, when these configurations are reached, based
on their definition, all continuations are guaranteed to return positive and no
reward, respectively. Thus, early stopping helps to determine the future reward
and update the estimates of Q-value earlier. We next demonstrate the advantages
of the algorithm experimentally.

7 Case Studies

In this section, we implement the proposed Q-learning with TL-CD (QTLCD)
algorithm in comparison with a baseline algorithm in three different case studies.

In each case study, we compare the performance of the following two algo-
rithms:

– Q-learning with TL-CD (QTLCD): the proposed algorithm, including early
stopping of the episodes when a causally accepting/rejecting state is reached

– Q-learning with Reward Machines (QRM): the algorithm from [11], with the
same MDP and RM but no causal diagram.

7.1 Case Study I: Small Office World Domain

We consider a small officeworld scenario in a 17 × 9 grid. The agent’s objective
is to first reach the location of either one key k1 or k2 and then exit the grid by
reaching either e1 or e2. The agent navigates on the grid with walls, keys, and
one-way doors. The set of actions is A = {S,N,E,W}. The action S,N,E,W
correspond to moving in the four cardinal directions. The one-way doors are
shown in Fig. 3a with green arrows. We specify the complex task of the RL
agent in a maze as a deterministic finite automaton (DFA) T (see Fig. 3), as
both event sequences a − k1 − e1 (open door a, pick up key k1, exit at e1) and
b − k2 − e2 (open door b, pick up key k2, exit at e2) lead to completion of the
task of exiting the maze (receiving reward 1). The agent starts at position o. If
TL-CD in Fig. 3d is true, then the RL agent should never go along the sequence
b − k2 − e2 as k2 G¬ e2 means if the agent picks up key k2 then it can never
exit at e2 (as c is a one-way door, so the agent can never get outside Room 3
once it enters c to pick up key k2).

Results: Figure 3b presents the performance comparison of the RL agent with
TL-CD and without TL-CD. It shows that the accumulated reward of the RL
agent can converge to its optimal value around 1.5 times faster if the agent knows
the TL-CD and learns never to open door b.
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Fig. 3. Case study I: small office world. The rewards attained in 10 independent sim-
ulation runs averaged for every 10 training steps.

7.2 Case Study II: Large Office World Domain

We consider a large office world scenario in a 25 × 25 grid. The objective of
the agent is to collect both the keys, k1 and k2, and then exit the grid from
e1 or e2 (since we assume that there are two locks in both exits, e1 and e2,
which needs both keys to unlock). To achieve this objective, the agent needs to
collect key k1 first and then key k2 since if it collects key k2 first then it cannot
be able to collect key k1 in the map. The set of actions is A = {S,N,E,W}.
The action S,N,E,W correspond to moving in the four cardinal directions. The
one-way doors are shown in Fig. 4a with green arrows. The motivation behind
this example is to observe the effect of increasing causally rejecting states on RL
agents’ performance. The task DFA and the TL-CD are depicted in Sect. 7.2.

Results: Figure 4b presents the performance comparison of the RL agent in a
large office world scenario with TL-CD (QTLCD) and without TL-CD (QRM). It
shows that the RL agent can converge to its optimal value around 3 times faster
if the agent knows the TL-CD.
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Fig. 4. Case study II: large office world environment. The rewards attained in 10 inde-
pendent simulation runs averaged for every 10 training steps.

7.3 Case Study III: Crossroad Domain

This experiment is inspired by the real-world example of crossing the road at
a traffic signal. The agent’s objective is to reach the other side of the road.
The agent navigates on a grid with walls, crossroad, button, and light signal.
The agent starts from a random location in the grid. The set of actions is A =
{S,N,E,W,PressButton,Wait}. The action PressButton presses the button
at the crossroad to indicate it wants to cross the road. After pressing the button,
at some later time, the pedestrian crossing light will be turned ON. The action
Wait will let the agent stay at a location. The actions S,N,E,W correspond to
moving in the four cardinal directions.
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Fig. 5. Case study III: crossroad domain. The rewards attained in 10 independent
simulation runs averaged for every 10 training steps.

To simplify the problem, we make the following assumptions. (1) The agent
starts from a fixed location in the left half (one side) of the grid. (2) The agent
knows to cross when the light is ON as after pressing the button the agent
has only one valid action. That is, when the light is OFF, it can only wait; and
when the light is ON, it will cross. After pressing the button at the crossroad, the
crossing light will turn ON N steps later, where N is a random variable following
a geometric distribution of success probability 0.01. Thus, the underlying MDP
has five observable variables: x, y, the discrete coordinates of the agent on the
grid, and b, p, l, three Boolean flags that indicate respectively that the button is
currently pressed, that the button has been pressed and the light is still OFF,
and that the light is turned ON. We specify that task is completed if the agent
successfully crosses the road when the light signal is ON (see Fig. 5a).

We consider the causal LTL specification G(b → FX l)∧G(l ↔ c) (equivalent
to the TL-CD in Fig. 5b), where the first part of the conjunction represents the
knowledge that the pedestrian light has to turn ON some time later, and the
second part represents the policy of the agent, because we suppose that the agent
already knows to cross if and only if the light is on. Under these conditions,
pressing the button leads to a causally accepting state.

Results: Figure 5c presents the performance comparison of the RL agent in the
crossroad domain with TL-CD (QTLCD) and without TL-CD (QRM). It shows the
RL agent will converge faster on average if it knows the TL-CD.
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8 Conclusions and Discussions

This paper introduces the Temporal-Logic-based Causal Diagram (TL-CD) in
reinforcement learning (RL) to address the limitations of traditional RL algo-
rithms that use finite state machines to represent temporally extended goals. By
capturing the temporal causal relationships between different properties of the
environment, our TL-CD-based RL algorithm requires significantly less explo-
ration of the environment and can identify expected rewards early during explo-
ration. Through a series of case studies, we demonstrate the effectiveness of our
algorithm in achieving optimal policies with faster convergence than traditional
RL algorithms.

In the future, we plan to explore the applicability of TL-CDs in other RL set-
tings, such as continuous control tasks and multi-agent environments. Addition-
ally, we aim to investigate the scalability of TL-CDs in large-scale environments
and the impact of noise and uncertainty on the performance of the algorithm.
Another direction for future research is to investigate the combination of TL-CDs
with other techniques, such as meta-learning and deep reinforcement learning,
to further improve the performance of RL algorithms in achieving temporally
extended goals.
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Abstract. The purpose of this paper is to investigate the use of machine learning
approaches to build a dictionary of terms to analyze text for ESG content using
a bag of words approach, where ESG stands for “environment, social and gover-
nance.” Specifically, the paper reviews some experiments performed to develop
a dictionary for information about the environment, for “carbon footprint”. We
investigate using Word2Vec based on Form 10K text and from Earnings Calls,
and queries of ChatGPT and compare the results. As part of the development of
our dictionarieswe find that bigrams and trigrams aremore likely to be foundwhen
using ChatGPT, suggesting that bigrams and trigrams provide a “better” approach
for the dictionaries developed withWord2Vec.We also find that terms provided by
ChatGPT were not as likely to appear in Form 10Ks or other business disclosures,
as were those terms generated usingWord2Vec. In addition, we explored different
question approaches to ChatGPT to find different perspectives on carbon footprint,
such as “reducing carbon footprint” or “negative effects of carbon footprint.” We
then discuss combining the findings from each of these approaches, to build a
dictionary that could be used alone or with other ESG concept dictionaries.

Keywords: ESG · Carbon Footprint · Environment ·Word2Vec · ChatGPT ·
Dictionary · Bag of Words · Ontology · Concept · Form 10K · Reducing Carbon
Footprint · Hybrid Approach

1 Introduction

This paper investigates the generation of dictionaries for use in bag of words models
to analyze text disclosure in accounting, finance, and economics. Typically, in a bag
of words setting, the number of occurrences from dictionaries of different concepts are
treated as independent variables and then the frequency of their occurrence is compared
against some dependent variable, such as firm value to study the impact of the text
on that variable. The relationships are then investigated using statistical analysis to try
and understand the relationships captured in the regression equation. As an example,
Allen et al. (2021) used a dictionary of tax terms to study the relationship between
the occurrences of those terms in firm 10K documents (corporate disclosures) and the
effective tax rates of those organizations.
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We generate wordlists using two different approaches, Word2Vec (Mikolov et al.
2013a, b) and ChatGPT, resulting in a hybrid approach. We focus on dictionaries for
so-called ESG (Environment, Social and Governance) issues, and particularly on a
dictionary for the environment.We develop ESG dictionaries because there is substantial
real-world interest in understanding the impact of firm ESG text disclosures on the value
of the firm (e.g., Gordon and Bell 2022).

1.1 Findings

As we analyze those dictionaries that we develop, we have several findings. First,
although singleton words are used extensively in psychology bag of words applica-
tions, we find that singleton words are not as descriptive of our environmental seed
concept of “carbon footprint” as bigrams and other multi-grams. When usingWord2Vec
the generated singleton words generally are not descriptive of the concept. However,
when we move to bigrams, the resulting words are more descriptive of the seed concept.
As further evidence, generating three different lists using ChatGPT we find that out of
75 phrases for “carbon footprint”, all were at least 2 words long and a few were 4 words
long. None were a single word. We use the theory of requisite variety to help explain the
result. Second, we find that we can generate dictionaries that are more specific to Form
10K and Earnings Call Disclosures, using Word2Vec based on text generated from firm
disclosures in the Form 10K’s and Earnings Conference calls, than with the more gen-
eral and broadly-based ChatGPT. There was limited overlap among the words generated
by ChatGPT and Word2Vec. Third, we find that we can use ChatGPT and Word2Vec
to study characteristics of wordlists for the environment. For example, the human in
the loop can analyze our word lists to find events and characteristics that would have
positive and negative effects on organizations. As a result, in order to use our word lists,
we need partition the words into different lists for different purposes. Finally, as a result,
the paper suggests using a hybrid approach, based on both ChatGPT and Word2Vec, to
generate dictionaries for ESG purposes.

1.2 This Paper

This paper proceeds in the following manner. Section 2 provides some background
information on the basic nature of Word2Vec, ChatGPT, two key sources of business
text used in the analysis of ESG text disclosures, and some roles of humans in the loop.
Section 3 investigates the notion of bags of words in more detail, reviewing concepts
in general, providing an example and briefly analyzing the concept of interest in this
paper. Section 4 analyzes a list of single “similar”words to “Carbon Footprint” generated
usingWord2Vec. Section 5 analyzes a set ofWord2Vec generated bigrams and compares
those words from a business source of text (corpus) to a set of words generated by
ChatGPT. Section 6 generates a set of sub-dictionaries and Sect. 7 investigates some
additional queries of ChatGPT to study different partitions of the notion of carbon
footprint. Section 8 briefly summarizes the paper, the paper’s contributions and provides
some potential extensions.
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2 Background

The purpose of this section is to provide a brief background into the systems used to
create word lists for our analysis.

2.1 Word2Vec – CBOW and Skip-Gram

Word2Vec (Mikolov et al. 2013a, b) uses two different neural network architectures to
find the words that are “similar” to a seed word: CBOW and Skip-Gram. Together the
two approaches provide an ensemble, from which a single list of similar words for the
dictionary can be created. As seen below in the examples, there can be overlap between
the two approaches, but the two approaches capture different words.

As discussed in Mikolov et al. (2013a, b) Word2Vec generates words that are “sim-
ilar” to a seed word. The algorithm can generate words that have both syntactic and
semantic similarities. For example, as noted in Mikolov (2013a, b, p. 5) the “… word
big is similar to bigger in the same sense that small is similar to smaller.” SinceWord2Vec
generates lists of words that are similar to some seed word, it is particularly useful in
the development of bags of words used to represent a concept.

2.2 ChatGPT

ChatGPT (https://openai.com/blog/chatgpt) is a massive language system that was built
using a wide range of Internet text available as of 2021. ChatGPT is a robust system that
has been shown to be able to discuss a wide range of issues and answer questions about
many different issues. As an example, it has been used by a judge in Columbia to assist
in a court ruling (Zoppo 2023).

ChatGPT offers a free and widely available source of artificial intelligence that can
perform a number of tasks, including generate word lists. However, unlike Word2Vec
and other approaches, it is based on a very broad-based set of text resources. As a result,
any lists provided by ChatGPT are likely to differ from lists generated from using more
specialized text sources. Ultimately, our bag of word analysis will be used to investigate
specific text, so that can be a drawback of using ChatGPT. As we will see, the concepts
found by ChatGPT will be a bit different than those found by Word2Vec, because of the
difference in the text on which they draw (e.g., O’Leary 2022 and 2023).

2.3 Business Text – Form 10K and Earning Call Conferences

Bag of words in accounting, finance and economics, typically are aimed at the analysis
of business text such as the Form 10K and Earnings Conference Calls. These text sources
are directly developed by specific companies and capture the text that those particular
companies have disclosed about specific concerns and issues. In the Form 10K, firms
disclose accounting information, risk information and other types of information. Unlike
Wikipedia and other sources, generally the text in the Form 10K is structured to include a
promulgated set of information and the accounting portions contain substantial amounts
of numbers. In the Earnings Conference Calls, firms discuss the impact of events (such

https://openai.com/blog/chatgpt
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as the pandemic) on the firm and their corresponding expectations for earnings. The
text disclosures are less structured than the Form 10K, but based on scripted verbal
disclosures, questions and answers.

2.4 Role of Human in the Loop

Word2Vec and ChatGPT do not function independent of people. Their use typically
requires people to perform several tasks. The activities of humans in the loop, have been
investigated by a range of researchers, including O’Leary (2003), Holzinger (2016),
Crootof et al. (2022) and others. However, the roles of the human in the loop in building
dictionaries is not well-established. When using Word2Vec, the human needs to choose
the seed words, and which approaches to use, whether CBOW or Skip-Gram. For Chat-
GPT, the human needs to choose which questions to ask. For both, when given the lists,
the human needs to choose which words best meet their needs and which of the words
should be used in the project to best capture the concepts of interest.

3 Bag of Words

The bag of words approach to text analysis is a simple model of processing text, based
solely on the number of occurrences of different words in some sample set of text.
The approach does not use the part of speech or the location of the word in the text, it
simply counts the number of occurrences of dictionary words in some text. However,
the approach is quite robust and has the advantage of facilitating a statistical analysis of
the text occurrences as compared to some dependent variable.

3.1 Concepts as Ontologies Represented as Bag of Words

Gruber (1993, p. 199) defined an ontology as “… an explicit specification of a con-
ceptualization.” In the same sense, bag of words approaches use independent variables,
representing ontology “concepts” to study how text content affects some dependent
variable. Each concept is represented as a set of “similar” words that capture different
dimensions of the concept.

In the case of dictionaries, the explicit specification of an independent variable is
a list of words, also called a dictionary. Typically, a concept is represented by a single
variable and that dictionary of terms is used to define that variable. The number of
occurrences of that variable in some text will determine the value of that independent
variable for that specific text.

3.2 Example System - LIWC

Perhaps the best-known bag of words system is the well-known LIWC (Linguistic
Inquiry and Word Count). LIWC provides several related dictionaries for analysis of
text content of psychology concepts. For example, as noted by LIWC (https://www.
liwc.app/) the different dictionaries can help “… analyze others’ language can help you
understand their thoughts, feelings, personality, and the ways they connect with others.”

https://www.liwc.app/


Using Machine Learning to Generate a Dictionary 145

LIWC includes different types of concepts. For example, there are multiple “Psycholog-
ical Processes,” including the concept of “Drives,” where there are three sub-concepts
of “Affiliation,” “Achievement,” and “Power,” where there are dictionaries for each of
affiliation, achievement and power, and then a variable representing those three for
drives. Using this approach allows LIWC to provide over a hundred different concept
and sub-concept dictionaries. We use the same design approach here.

However, LIWC uses exclusively single words, never bigrams or trigrams to capture
a concept. Although a single word approach may be appropriate for a system designed
for investigating psychological concepts, it is arguable that single words are appropriate
for all such settings, including one designed to investigate ESG issues.

3.3 Concept of Interest – Carbon Footprint

In this paper we investigate the concept of “carbon footprint.” That concept captures
both an environmental element and contaminant “carbon” and a state suggesting there
is a corresponding amount, “footprint.” As a result, we expect that for a term to be
“similar” it would need to be able to also capture both aspects of that term. Accordingly,
whatever words are to be judged as “similar” are likely to require the capture of similar
capabilities.

There is theory that suggests that to capture concepts “similar” to such bigrams will
require multiple types of information, and thus can require multi-gram words. In par-
ticular, in cybernetics and in uncertainty theory, there is a “law” that has been stated in
similar ways. For example, Ashby’s Law of requisite variety (1956) states, “it takes vari-
ety to destroy variety.” Similarly, as noted by Karl Weick (1969), “it takes equivocality
to remove equivocality.” Accordingly, we expect that a concept that requires multiple
capabilities or words, will also require multiple words. In some cases, this might require
a new word, a meaningful abbreviation or possibly a word from some other language.

4 Word2Vec – Single Words

In this section, we limit the word list developed by Word2Vec to a list of single words,
i.e., singletons, in order to test our hypothesis that a multigram is necessary to fully
capture the meaning associated with each of the words in “carbon footprint.”

4.1 Data for Word2Vec

Our text data that we use withWord2Vec comes from two corporate sources: Form 10K’s
from 2020 and 2021, and Earnings Conference Calls from 2021.

4.2 Approach

In this section we review the set of single words found using Word2Vec when the
environmental seed word is “Carbon Footprint.” We used both CBOW and Skip-gram
that are a part ofWord2Vec, andwe used them on text from both Firm 10Ks and Earnings
Conference Calls. We limited our search to twenty-five words using each approach,
however that can be easily extended to a larger number of words.
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4.3 Findings

The results are summarized in Table 1. Although the words appear broadly related to our
seed words, the singleton nature of the words makes many of them appear not relevant
as relating to the seed word. These results led us to focus more on bigrams, as seen in
the next section.

Some of our singlewords are clearly important to our dictionary, such as “emissions,”
however, most of thewordswould not be strong signals of carbon footprint. For example,
“footprint” could refer to any type of footprint. Other words, such as “cleaner” and
“shrimp,” also would seldom be related to carbon footprint.

Interestingly, the abbreviations that we found can have a broader meaning than the
words. For example, “ghg,” found in the top six of eachof the approaches and text sources,
means “green-house gases” and is an important related concept to carbon footprint, and
could be an important part of our dictionary.

Table 1. Word2Vec Single Words – Seed Word “Carbon Footprint”

2020 and 2021
Method #1

2020 and 2021
Method #2

Earnings call_2021
Method #1

Earnings call_2021
Method #2

sulfur emissions emissions greenhouse

footprints footprints greenhouse emissions

nitrogen greenhouse methane footprints

pyrolytic ghg emission ghg

ghg dioxide nox emission

emissions emission ghg methane

nox sulfur footprints tailpipe

presence hydrogen competitiveness scope

viscosity nitrogen fugitive roofline

calgon fuels sugar neutrality

density efficiency presence gases

uniformity efficiencies scope dioxide

sulphur scale ci hydrogen

pitch cleaner fiber decarbonization

blacks gases gases particulates

efficiency oxide density renewable

(continued)
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Table 1. (continued)

2020 and 2021
Method #1

2020 and 2021
Method #2

Earnings call_2021
Method #1

Earnings call_2021
Method #2

ambient renewable network sequestering

shrimp fuel recyclability gigatons

opacity initiative capacity calpeco

hid cement emitting gigaton

xingheyongle steelmaking cost terravault

tetrachloride eaf co decarbonizing

friction electrification flaring nanotubes

mercury mercury emitters carbonizing

biodiesel sustainable electricity monoxide

4.4 Implications

Although the list of words captures some key words for the dictionary, such as emis-
sions, methane, nitrogen and others, it also captures some that may not necessarily pro-
vide precision at identifying issues of environmental concern, such as “footprints” and
“greenhouse.” Other words such as “density,” “shrimp,” “hid,” and others are not likely
to be useful in analysis of environment text. However, the occurrence of abbreviations
provides powerful symbolic capture of concepts.

4.5 Human in the Loop

Based on these lists, it is easy to see the need for a “human in the loop” to choose
which words to include in the development of a dictionary for ESG. Perhaps that human
would be an expert or even a committee to choose which words should be chosen to
model the concepts of interest. As seen in the analysis of the abbreviations and terms,
some expertise is necessary to determine which words are likely to be signals of the key
concepts being considered.

5 Comparison of Word Lists Between Word2Vec and ChatGPT

5.1 Approach

Our approach was to generate three sets of lists of 25 words using Word2Vec bigrams
using both CBOW and Skip-Gram, and ChatGPT. For Word2Vec our seed word was
“carbon footprint.” For ChatGPT, we asked the question, “Can you give me 25 words
or bigrams for carbon footprint?”.
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5.2 Using ChatGPT to Facilitate List Analysis

As part of our analysis, we investigated the use of ChatGPT to help us in our use of
Word2Vec. We used ChatGPT to determine the nature of phrases being used to char-
acterize environmental issues associated with “carbon footprint.” The lists from that
analysis are in Table 2.

We used ChatGPT to find “25 words or bigrams for carbon footprint.” In so doing we
found that the list of words was entirely bigrams, trigrams and quad-grams, in contrast
to psychology software, such as LIWC. While analyzing three such sets generated by
ChatGPT, we found out of 75 phrases, that there were 51 bigrams, 22 trigrams and
2 quad-grams. No single words were generated as part of those queries. Accordingly,
this suggests that any dictionary for the environment generally will incorporate multiple
word phrases.

5.3 Findings

It is easy to see that the words in Tables 1 and 2 are substantially different. The words
in Table 2 are all multi-grams. Further, there is only one abbreviation in Table 2.

In addition, we compared the lists generated using Word2Vec based on Form 10Ks
compared to lists generated by ChatGPT as seen in Table 2. Interestingly we found
only one word from the ChatGPT list appeared in the lists from the focused Word2Vec
approach. These results provide one measure of the potential use of ChatGPT words
to investigate text drawn from business financial statements. The more general setting
provided by ChatGPT provides limited insight into the words actually disclosed by firms
in the Form 10K and Earnings Calls.

5.4 Implications

There are a number of implications of the lack of overlap between the different
approaches. If a dictionary, based on ChatGPT was used to investigate the impact of
the concept of “Carbon Footprint”, while analyzing Form 10K’s as the source of text,
then it appears that the ChatGPT list would “under” represent the number of similar
concepts that actually appear in the Form 10K and Earnings Calls, as only one term
from ChatGPT appears on the Word2Vec lists from those sources.
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Table 2. Word2Vec Bigrams vs. ChatGPT1

Word2Vec - Bi-gram 2020
and 2021 10K - CBOW

Word2Vec - Bi-gram 2020
and 2021 Skip-Gram

ChatGPT - Can you give me 25
words or bigrams for carbon
footprint? (#3)

environmental footprint environmental footprint Greenhouse gas emissions

carbon emissions carbon intensity Fossil fuel use

carbon intensity energy consumption++ Energy consumption++

energy consumption++ carbon emissions Transportation impact

friction and efficiency and Renewable energy sources

fuel consumption reduce carbon Carbon offsetting

sulfur emissions lower carbon Climate change impact

fuel efficiency consumption and* Sustainable living

mercury emissions water consumption Environmental impact

carbon footprints while reducing Ecological footprint

viscosity significantly reducing Energy efficiency

dependency on fuel consumption Carbon offset credits

power consumption operational efficiency Low-carbon economy

water consumption fuel efficiency Carbon neutral

its carbon reducing costs Carbon capture and storage

energy usage electricity consumption Emissions reduction

overall costs while helping Carbon sequestration

carbon and sustainability goals Energy conservation

emissions intensity efficiency measures Sustainable transportation

castability while keeping Green lifestyle

carbon economy improve efficiency Carbon accounting

funding costs while improving Carbon pricing

sulfur content streamline operations Carbon tax

consumption and marketing spend Life cycle assessment

ghg emitting goal of Environmental sustainability

6 Building a Dictionary

If we were to build a dictionary to represent the concept of “carbon footprint,” we would
draw on each of the different lists created as part of the development of this paper,
including words from Word2Vec and ChatGPT in Tables 1 and 2. However, an analysis
of Table 2 suggests that there are multiple perspectives (sub-dictionaries) on the words

1 ++ is the only ChatGPT term to appear in both 10K Word2Vec bigrams.
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related to carbon footprint and that those perspectives vary based on the whether the
Word2Vec or ChatGPT are used. Thus, we likely would construct multiple dictionaries
under the carbon footprint construct. Further, based on the source text, we can expect
different word sets.

6.1 Carbon Footprint

The purpose of this section is to outline an initial dictionary for the concept carbon
footprint, based on Tables 1 and 2. As with LIWC, we can imagine that dictionary
would have a number of sub-dictionaries associated with it. As we analyze the word
groupings, it is clear that the groupings are typically generated using one of the tools.

First, the single words in Table 1, appear to relate to a variety of types of emis-
sions. For example, the following are included there: nitrogen, sulfur, ghg, emissions,
tetrachloride, mercury and monoxide. Second, in the bigrams, Word2Vec also identi-
fies different types of emissions: carbon emissions, sulfur emissions, mercury emis-
sions, emissions intensity, and ghg emitting, In the short list requested of ChatGPT,
only greenhouse gas emissions was proposed. Third, one clear set of words relates to
the carbon economy, and those words come largely from ChatGPT. While Word2Vec
using CBOW identified one term related to the “carbon economy,” ChatGPT lists a
number of terms related to the carbon economy, including carbon offsetting, carbon
offset credits, low-carbon economy, carbon accounting, carbon tax, carbon pricing, car-
bon capture and storage. Fourth, althoughWord2Vec found the term sustainability goals,
ChatGPT, focused more on sustainability. ChatGPT included sustainable living, sustain-
able transportation, green lifestyle, energy conservation, suggesting less content about
sustainability in corporate disclosures. Fifth, the category of consumption could provide
some important concepts. Word2Vec found energy consumption, water consumption,
electricity consumption, power consumption and energy usage. ChatGPT found only
energy consumption.

This discussion illustrates that the words generated using the seed word of carbon
footprint appear to vary quite a bit based on the text sources, in spite of the broad
generality of ChatGPT. Accordingly, a hybrid approach can be used to develop a robust
dictionary with several carbon footprint-based concepts.

6.2 Other Environmental Dictionaries

In addition, Tables 1 and 2 could provide us with additional potential concepts to create
dictionaries related to other environmental issues and sustainability. For example, mer-
cury emissions and water consumption could be part of other environment dictionaries,
aimed at issues beyond implications of just a carbon footprint.

7 Positive, Negative or Action Dictionaries

Dictionaries can be developed that capture positive effects, negative consequences or
just the generic use of words. To illustrate those issues, Table 3 provides the results of
three questions to ChatGPT:
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• Can you provide a list of some things that organizations can do to reduce their carbon
footprint?

• Can you provide a list of words that capture the negative consequences of carbon
footprint?

• Can you give me 25 words or bigrams for carbon footprint?

These questions generate some interesting and different responses than our previous
analyses. As an example, the question about negative consequences generates ocean
acidification, deforestation, desertification, health risks, melting glaciers and other con-
cerns. Although these are real issues, it is unlikely that they will appear in corporate
financial disclosures and likely not useful for analysis of Form 10Ks or Earnings Calls
disclosures. However, the question about organizations reducing their carbon footprint
are feasible terms that may well be included in corporate disclosures. For example, the
sub-concept of organization effortsmight include recycling, waste reduction, green pro-
curement, renewable energy and others, as identified on these lists. In any case each of
these sets of disclosures could provide additional lists to the overall concept of carbon
footprint.

Table 3. Carbon Footprint: Alternative Questions for Dictionaries

Question: “… some things
that organizations can do to
reduce their “carbon
footprint”?”

Question: “A list of words that
capture the negative
consequences of “carbon
footprint”?”

Question: “Can you give me
25 words or bigrams for
carbon footprint?”

Energy efficiency Global warming Greenhouse gas emissions

Renewable energy Climate change Fossil fuel use

Carbon offsetting Greenhouse effect Energy consumption

Sustainable transportation Air pollution Transportation impact

Waste reduction Ocean acidification Renewable energy sources

Recycling Deforestation Carbon offsetting

Green procurement Melting glaciers Climate change impact

Energy conservation Rising sea levels Sustainable living

Carbon accounting Extreme weather Environmental impact

Eco-friendly practices Drought Ecological footprint

Green building Heatwaves Energy efficiency

Telecommuting Desertification Carbon offset credits

Paperless operations Species extinction Low-carbon economy

(continued)
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Table 3. (continued)

Question: “… some things
that organizations can do to
reduce their “carbon
footprint”?”

Question: “A list of words that
capture the negative
consequences of “carbon
footprint”?”

Question: “Can you give me
25 words or bigrams for
carbon footprint?”

Sustainable supply chain Health risks Carbon neutral

Employee education Respiratory problems Carbon capture and storage

Sustainable packaging Environmental degradation Emissions reduction

Water conservation Loss of biodiversity Carbon sequestration

Emission reduction targets Coral bleaching Energy conservation

Efficient heating and cooling
systems

Disrupted ecosystems Sustainable transportation

Green IT solutions Food scarcity Green lifestyle

Product life cycle assessment Water scarcity Carbon accounting

Eco-friendly commuting
options

Natural disasters Carbon pricing

Renewable energy
procurement

Energy insecurity Carbon tax

Behavior change campaigns Displacement Life cycle assessment

Carbon footprint monitoring Social inequality Environmental sustainability

8 Summary, Contributions and Extensions

This paper has examined the process of building a dictionary for use in the analysis of
environment bag of words as related to the impact of text disclosures on firm value or
other dependent variable measures. We built our dictionaries using two different neural
net-based approaches: Word2Vec and ChatGPT. Ultimately, a dictionary for our concept
of carbon footprint, used words from each source. Although the Word2Vec approach is
more focused on terms specific to business documents, we can build a broader use
dictionary by incorporating words from both sources. Perhaps this approach may also
“anticipate” additional word lists in corporate disclosures.

8.1 Contributions

This research has several contributions. First, this research has produced a set of words
that could be used in a bag of word model of environmental concerns, with a focus on the
environment investigating firms’ text context related to “carbon footprint.” Second, we
find that for the seed concept of “carbon footprint,” it appears that the primary approach
should employ multiple word grams, rather than single words. Single words do not
appear to capture the concept as well as multiword grams. However, the Word2Vec
analysis did isolate some single word concepts indicative of emissions. Third, we also
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find that Word2Vec’s ability to focus on specific corpuses, such as the Form 10K, allows
us to generate a more focused word set than words generated from a broader source, as
has been done with ChatGPT. We expect that to be the case for other ESG concepts.
Fourth, as a result, it is clear that a “hybrid” approach can use aspects associated with
both Word2Vec and ChatGPT. We use Word2Vec to generate words from a specific set
of documents (Form 10K’s and Earnings Calls) to capture the specific context. We use
ChatGPT to determine the likely number of words in the phrases that we seek, say 1, 2
or 3 words. In addition, we use ChatGPT to generate other words that may not have been
captured from specific business corpuses. This allows the generation of a more generic
dictionary that can be used in other settings. Finally, we can use ChatGPT to establish a
list of words with a particular sentiment or purpose. For example, we can ask ChatGPT
to provide a list of words associated with the “negative” or “positive” consequences of
concerns such as “Carbon Footprint”.

8.2 Extensions

There are several potential extensions to the research. First, we have only examined a
dictionary for environmental concepts, and have not considered other aspects, includ-
ing social and governance concerns. Second, we have only considered one particular
aspect of the environment, the issue of “carbon footprint.” As a result, other environ-
mental issues could be considered, and dictionaries developed for them. Accordingly,
the development of bag of word dictionaries for ESG concern would likely include the
development of multiple concept dictionaries, potentially with multiple dictionaries for
each environment, social and governance concerns. Third, our analysis was for a two-
word concept “carbon footprint” andwe found that two-word and three-word descriptors
appear to provide better descriptiveness than single words. Perhaps multiple word con-
cepts are typically better described using multiple word descriptors, rather than single
word descriptors. Single word descriptors of psychology concepts may be appropriate,
but it does not seem to be sufficient with the concept of “carbon footprint.” Fourth, we
could expand our analysis to a larger number of items from both Word2Vec and from
ChatGPT. In the current version, we used word lists of twenty-five items for feasibility
of presentation. Fifth, we could expand our analysis to a broader range of concepts,
developing an ESG model analogous to LIWC’s psychological model, with dictionaries
for many different concepts and sub-concepts.
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Abstract. Augmented Intelligence (AuI) refers to the use of artificial
intelligence (AI) to amplify certain cognitive tasks performed by human
decision-makers. However, there are concerns that AI’s increasing capa-
bility and alignment with human values may undermine user agency,
autonomy, and responsible decision-making. To address these concerns,
we conducted a user study in the field of orthopedic radiology diagno-
sis, introducing a reflective XAI (explainable AI) support that aimed to
stimulate human reflection, and we evaluated its impact of in terms of
decision performance, decision confidence and perceived utility. Specif-
ically, the reflective XAI support system prompted users to reflect on
the dependability of AI-generated advice by presenting evidence both in
favor of and against its recommendation. This evidence was presented
via two cases that closely resembled a given base case, along with pixel
attribution maps. These cases were associated with the same AI advice
for the base case, but one case was accurate while the other was erroneous
with respect to the ground truth. While the introduction of this support
system did not significantly enhance diagnostic accuracy, it was highly
valued by more experienced users. Based on the findings of this study, we
advocate for further research to validate the potential of reflective XAI
in fostering more informed and responsible decision-making, ultimately
preserving human agency.

Keywords: eXplainable AI · Medical machine learning · reflective
AI · similarity metrics

1 Motivations and Background

In the circles concerned with AI developments, it is commonly believed that
Artificial Intelligence (AI) and Augmented intelligence (AuI) are closely related
phenomena [4,41]. On the one hand, it is thought that AI, by automating menial
tasks and repetitive activities, can free human intelligence to apply itself to
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more creative and intellectually nobler tasks, such as supervisory or relational
duties [25]. On the other hand, it is assumed that AuI can be realized precisely
by virtue of the functions of AI that amplify the scope or speed of certain
human cognitive actions. However, there is a growing number of voices that
express concern regarding an opposite and seemingly paradoxical effect: the more
accurate, capable, and aligned with human values and expectations AI becomes,
the more its users may perceive their agency as increasingly eroded, and lose
their autonomy in favor of the technology, along with their willingness to take
risks, self-confidence, and ability to take responsibility (e.g. [10,21]). Moreover,
ever-improving decision supports may affect even more intensely the processes
of learning skills, abilities, and mindsets that enable correct and responsible
decision making [26,35].

In this second strand of research, which is still in its infancy, the role of
the AI system designer in determining the process of users’ appropriation of
the system or the degree to which they will rely on it is well recognized [14].
For example, some authors have proposed to purposefully develop cognitive dis-
ruption or “sources of attrition” [21] that would require users to continue exer-
cising some degree of will, judgment, preference, and responsibility, even at the
expense of efficiency, ease of use, or cognitive comfort [21]. For instance, Buçinca
et al. [6] propose to design and evaluate “cognitive-forcing functions”; Dai and
Fishbach [18] speak of “deliberation-promoting nudges”, aimed at encouraging
people to give a kind of sober second thought [37]; also Cabitza [10] reported
the results from some studies regarding so-called “programmed inefficiencies”,
inspired by the work by Ohm and Frankle [32] and Chalmers [15]. Some authors
have focused on how AI could foster analogical reasoning [27], for instance by
presenting users with the most similar cases (to the case at hand) that are already
annotated according to the available ground truth [2]. Similarly, counterfactuals
have been proposed as to help users in achieving an intuitive understanding of
cause-and-effect relationships that involve the factors considered by the AI sys-
tem in output generation [7], although they require to analyze multiple scenarios
of different plausibility. In Prabhudesai et al. [33], the authors “found that com-
municating uncertainty about ML predictions forced participants to slow down
and think analytically about their decisions” (our emphasis). Other authors have
proposed studying and developing AI systems that would push their users into
an active role of reflection [17] by directly prompting and questioning them, and
by fostering their evaluation [31] by presenting contrasting evidence and oppo-
site arguments [38] even at the expense of the efficiency, and even against the
suggestions they receive from the machine.

In this work we report about a user study that we designed and conducted
to investigate the impact of a particular kind of XAI support on user decision
performance and perceptions. We define this XAI support as “reflective”, as its
main aim is to make the user think and reflect before they make the final decision.
This reflective XAI support can be considered a sort of “post-hoc-explanations-
by-example” support [29], where the explanations are pixel attribution maps [16]
and the examples are the cases found by the systems to be the most similar
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ones available to the case at hand that the system both correctly classified and
misclassified with respect to the ground truth (see Fig. 1). Therefore, this support
was conceived to make users reflect on the reliability of the system advice on a
given case, by showing how well (or badly) the system performed on the most
similar cases. This acts as a proxy of the AI skill to correctly classify cases like
the one at hand, and hence a proxy of its trustworthiness.

Fig. 1. Two cases shown to the participants in the user study: on the left, the base
cases associated with an advice of no fractures (negative); in the top case the label was
right; in the bottom case, the label was wrong; on the right, the two most similar cases
with the corresponding pixel attribution maps (PAMs) associated with each base case;
they indicate, in the middle, the case correctly identified by the AI and, on the right,
the case incorrectly indicated by the AI as positive (to the presence of fractures). This
means that in the first base case, the middle XAI case should have reinforced the idea
that the AI was right; in the second base case, conversely, the misclassified case on the
right should have prompted users to be cautious of the AI’s advice.

In particular, our user study aims at investigating the following research
questions:

– RQ1: Does the reflective support described above affect decision-making per-
formance? (i.e., does it have raters change their minds?). Addressing this RQ
is equivalent to verifying whether the reflective support impacts accuracy
more than just AI support, and whether this support can lead to the phe-
nomenon of technology dominance [8] in either a positive or negative sense,
i.e., whether it makes people avoid mistakes (change for the better) or, con-
versely, misleads them.
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– RQ2: Does the reflective support impact final diagnostic confidence? This is
equivalent to verifying whether the support can instill doubts, or conversely,
make raters more cautious.

– RQ3: Is the reflective support found to be useful by its users? That is, does it
help users get an idea of the local, instance-related, reliability of the system?
And connected, RQ3b: is there any difference in perceived usefulness between
residents (in-training physicians) and specialists? And between experts and
less experienced raters?

2 Methods

To address the above research questions, we designed and implemented an online
questionnaire, released on the Limesurvey platform (see Fig. 3), and used it in a
series of individual computer-assisted web interviews, during which the involved
physicians provided diagnoses a set of diagnostic images with the support of a
simulated AI and the reflective system. More precisely, we involved 16 ortho-
pedists of varying expertise: 6 residents and 10 board-certified specialists, of
which 5 were subspecialists with more than 10 years of work experience working
in a teaching hospital dedicated to musculoskeletal conditions. We involved the
orthopedists in the following human-AI interaction protocol (depicted in Fig. 2):
each orthopedist independently interpreted 18 spine x-rays to determine whether
they were positive to vertebral fractures (positive) or not (negative); in the same
page they received the textual AI advice (positive/negative) and consult a cor-
responding pixel attribution map (i.e., a saliency map - see Fig. 3). To generate
these Pixel Attribution Maps (PAMs), we used a process called Grad-CAM
(Gradient-weighted Class Activation Mapping) [34] with a finetuned ResNext
model [40] to detect the presence/absence of fractures in X-ray. These maps
highlight the regions of the input image that were key to the model’s decision,
providing a visual explanation of the AI’s advice.

In the technical jargon introduced in Cabitza et al. [12], the envisioned proto-
col is an AI-first (or second-opinion) protocol with the XAI (reflective) support
shown after the more traditional (categorical and visual) AI support.

The 18 cases had been chosen from a previous study [22] to be representa-
tive of cases that were medium-to-hard to diagnose: 9 of those x-rays presented
fractures, while the other 9 were negative (they presented no vertebral fracture).
The AI support was simulated (on the basis of the model developed for [22]) and
provided 14 right diagnoses out of 18 (i.e., 78% accurate1). Also its sensitivity
and specificity, as well as predictive values and F1 score, were .78.

After providing their diagnosis, the participants expressed the degree of con-
fidence on their decision, on a 4-value ordinal scale (a semantic differential from
1 - not at all certain to 4 - practically certain). Subsequently, the system pre-
sented a new page with XAI reflective support. This included two other pixel
1 This performance was set since in the previous study described above, this was found

to be the average accuracy of the expert x-rays readers therein involved. Human
average accuracy was then 78% (N = 16), SD 7%, median 80%, max 89%, min 67%.
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Fig. 2. Human-AI Interaction Protocol, represented in BPMN notation, adopted in the
user study, and the main data collected. Steps 1–3 are performed on the first page of
the questionnaire; Steps 4–6 are in the second page of the questionnaire. The protocol
is repeated for each base case. The similar cases are displayed in the same page, at the
same moment (step 4).

Fig. 3. Screenshot of a question from the questionnaire provided via the Limesurvey
platform. The question presented, translated from Italian, is: “Observe for as long as
necessary the radiography and its relevance map, considering that AI believes it is to
be associated with PRESENCE OF FRACTURES; and then give us your interpreta-
tion below.” The two response options are “Absence of fractures” and “Presence of
fractures”
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attribution maps juxtaposed to corresponding x-ray images. Physicians were told
that one map—x-rays pair represented the most similar diagnostic image that
the AI had correctly classified, while the other pair represented the most similar
case that the AI had misclassified (in both cases, by giving the same label pro-
posed in the previous page). In other words, in the second page of the case, the
physicians could consult the cases that the machine had predicted in the same
way of the new case at hand, but in one case by giving the right answer (with
respect to the ground truth), and in the other case by giving the wrong answer.
We instructed the physicians by saying that the case that had been classified
correctly could suggest how the AI reasoned to provide its advice for the case
at hand, as if it had compared the case at hand with that previous successful
prediction; on the other hand, we suggested that the wrong case could give them
an indication of the reliability of the current advice, as that case was the most
similar one in the training set to the case at hand that the machine had actually
misinterpreted. Our idea was that, if the case that the machine had misinter-
preted had been perceived by the decision maker as more similar to the case
at hand than the case in which the machine got it right, this could have made
the human suspicious of the previous advice. On the contrary, if the similar case
that the machine had correctly identified had been considered more similar to
the case at hand than the other misclassified case, this could have improved the
human’s trust on the machine advice about the case at hand.

The analyses reported in the next sections were conducted by adopting a
confidence level of 95%. We will consider two participant stratifications: 1) res-
idents vs specialists; and 2) less expert respondents vs more expert ones. This
latter dichotomization will be based on the years of work experience (and x-ray
reading): raters with less than 5 years of work experience will go in the first
group, those with more than 5 years in the second group. The rationale for this
division is rooted in our interest in assessing whether differences in background
knowledge and real-world experience in the radiological domain can influence
the users’ varying benefits from the reflective XAI support. Specifically, we aim
to evaluate its impact on decision performance, confidence, and the perceived
utility of the XAI advice. This includes investigating the extent to which users
may uncritically accept the AI advice, disregarding their own intuition due to
inexperience, or alternatively, reject the AI advice due to overconfidence in their
expertise. In regard to the research questions: RQ1, which regards the support
impact on decision performance, will be addressed by considering error rates; in
particular, technology impact will be calculated as proposed in [8], by consid-
ering the error rate after receiving the XAI support (AIER) and the error rate
before receiving the XAI support (CER) and computing the odds ratio of these
rates:

CER

1 − CER

1 −AIER

AIER

RQ2, which regards impact on confidence, will be addressed by considering
the distribution of the responses given in the ordinal scale adopted to oper-
ationalize this psychometric construct; finally, RQ3, which regards perceived
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usefulness of the support, will be addressed by considering both the ordinal
response distribution and the proportions of responses in the lower/higher side
of the ordinal scale adopted to operationalize this concept.

2.1 Statistical Analysis

The study utilizes several statistical tests and measures to assess the impact of
the XAI reflective support on decision performance, decision confidence, and per-
ceived utility: Two-proportion Z-test is employed to compare the proportions of
two groups [39]. We also employed the Mann-Whitney U Test, a non-parametric
test that compares differences between two independent groups when the depen-
dent variable is ordinal or continuous but not normally distributed [5]. Welch’s
T-test, a variant of the independent samples t-test, is used when the variances
of the two groups being compared are not assumed to be equal [19]. Finally,
One-Proportion Test is a statistical procedure we used to test whether a sample
proportion significantly differs from a specific value [42]. In addition to these
tests, effect sizes are calculated to understand the magnitude of the differences
observed. Effect size is a quantitative measure of the strength of a phenomenon
or effect [28]. An effect size can be a very useful tool to understand how much
of an impact the experimental manipulation (in this case, the introduction of
XAI reflective support) has had on the outcomes. Different measures of effect
size will be employed in accordance with the corresponding statistical tests.

3 Results

In what follows we organize the section by considering each research questions
sequentially, in the order of presentation above.

3.1 RQ1: Impact on Decision Performance

The XAI reflective support had an observable impact on 4.2% of decisions: not
surprisingly, on those for which raters expressed a lower confidence after the
AI-only support (2.58 vs 2.97). However, the impact was detrimental. Indeed,
as we can see from the benefit diagram depicted in Fig. 4, while differences in
accuracy were very small among all less expert users, some participants were
negatively impacted by considering the two additional maps and x-rays: one
expert rater even worsened their performance by almost a fifth, while another
expert, who did not commit any diagnostic error when presented with the first
AI support, committed some errors only after receiving the additional reflective
support. With reference to Fig. 5, we can see that the technology impact of the
reflective XAI is significantly negative (notably, the confidence interval does not
cross the 1 value line), that is the reflective XAI support misled users more than
it aided them in avoiding mistakes.

More in particular, presenting the similar cases induced 12 changes (out of
288 decisions): 8 (67%) of these involved the more expert raters; interestingly,
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Fig. 4. Benefit diagram of the introduction of the XAI support (after the AI support).
Each point corresponds to a single participant in the study, the solid black line rep-
resents the average post-pre XAI support accuracy difference, while the shaded grey
lines represent the corresponding 95% confidence interval. The red region of the diagram
denotes a worsening, in terms of accuracy, between post- and pre-XAI support; while
the blue region denotes an improvement in terms of accuracy. The confidence inter-
val of the aggregate effect contains the zero line, although the average line is slightly
below it, so no significant difference in accuracy could be detected in the user study.
Generated with https://haiiassessment.pythonanywhere.com/ (Color figure online)

two thirds of the changes were for the worse, that is, the support did likely
mislead the raters more often than it made them avoid a mistake (see Fig. 5).
This happened in two thirds of the cases (67% vs 33%). Moreover, and quite
unexpectedly, the expert raters were misled more than the less expert ones: the
three quarters of the induced mistakes were made by them.

This is also reflected by the decrease in accuracy that we observed in the
responses: pre-support accuracy was 88%, post-support accuracy 87%. While,
obviously, the difference is not statistically significant (P-value = .64, Z = 0.47
two proportion test) and the effect size is negligible (0.04), it would nevertheless
be difficult to assert that presenting similar cases that the AI either misclassified
or classified correctly would actually improve the accuracy of the decision makers.

https://haiiassessment.pythonanywhere.com/
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Fig. 5. Technology Impact Diagram. This diagram, generated by https://
haiiassessment.pythonanywhere.com/, represents the odds ratios of the errors made
after seeing the reflective XAI support and the errors made with the AI support only.
We refer the reader to [8] for additional detail on the computation of the represented
odds ratio.

3.2 RQ2: Impact on Decision Confidence

No significant difference was found in confidence between the diagnosis formu-
lated before receiving the XAI reflective support and after having received it:
pre- and post-support average confidence differed only very slightly (2.95 vs.
2.98, p = .81, Z = −0.2418, U = 41021, Mann-Whitney test), thus we cannot
assert that the support made raters more cautious, nor more confident. However,
there was a significant difference in confidence difference between the less expert
raters and the more expert raters: the former even saw their confidence in the
last decision decrease, while the latter reported a higher confidence (−0.05 vs
0.10, p-value = .23, T = −2.28, Welch’s T-test, effect size = 0.27) in their final
decision (see Fig. 6).

3.3 RQ3: Impact on Perceived Utility

The reflective support was generally found useful by the physicians involved,
although not significantly so (149 vs 139 values of perceived utility were above 2,
p-value = .6, one proportion test), and no significant difference was found in the
positive proportion of responses (i.e., above 2) between residents and specialists
(53/108 vs 96/180, p-value = .48, two proportions test), nor in the ordinal values
(p-value = .72; Z = −0.36, U = 9486, Mann-Whitney test); however, a significant
difference was found between less expert raters (i.e. those with less than 5 years
after specialization) and more expert ones (i.e. those with more than 5 years
after specialization): 60/144 vs 89/144, p-value = .000, effect size = 0.41, which
was confirmed also with respect to ordinal values (p-value = .000, Z = −3.667,
U = 7894.5, Mann Whitney test, effect size = 0.22), see Fig. 7. The more expert
raters also found the XAI support useful in absolute terms (89 values higher
than 2 out of 144, p-value = .006, one proportion test, effect size = 0.24).

In short, the experts considered the support useful, and significantly more
useful than the less expert raters did (see Fig. 7). Experts felt more confident of
their diagnosis after being exposed to the support (see Fig. 6), but their perfor-
mance did not improve (if at all).

https://haiiassessment.pythonanywhere.com/
https://haiiassessment.pythonanywhere.com/
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Fig. 6. Plot of the difference in perceived confidence between the decision made before
and after seeing the similar cases among the less expert raters and the more expert ones.
The solid black cross represents the average confidence difference, while the surrounding
shaded gray area represents the corresponding 95% confidence interval.

4 Discussion

We start from acknowledging the main limitation of this study: this latter was
set in an experimental setting with obvious time constraints and the risk that
some “laboratory effect” [24] could have affected the doctors’ performance. How-
ever, residents and specialists exhibited the same accuracy (after receiving the
AI support) and this suggests that the above effect should be small, if any (since
novices and students may have more recent experience with lab-based simu-
lations in a teaching setting, as opposed to senior radiologists who have been
found in the work by Gur et al. [24] to experience a worsening in performance
in laboratory compared to in vivo). Moreover, the constrained structure of the
questionnaire (currently consisting of the selection of self-reported numbers, as
in the case of confidence) may not have captured more subtle and less quan-
tifiable insights on user experience: in future research, the questionnaire could
evolve as to integrate other soft metrics, for example by allowing for open text
field input, or the recording of think-aloud protocols [20].

While we made efforts to ensure the selected cases would be representative
of a wide range of cases of medium-to-high complexity, we recognize that 18
cases is a small sample, only partially mitigated by the relatively large number
of experts involved (16) and thus of diagnostic decisions considered (288) with a
perfect completion rate (we recall that the questionnaire was filled out by physi-
cians in the presence of some of the authors who were available for clarification
and technical assistance.). While this limitation could be addressed in future
work, we believe that its impact on our study was limited: the primary objective
of our study was not to identify statistically significant differences, but rather
to identify possible effects of interest, and to help future studies identify the
most appropriate and efficient sample size and power of testing procedures to be
employed for achieving statistical significance. To this latter regard, although the
interpretation of effect sizes is an open issue that cannot be easily generalized,
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we believe that for the research questions related to confidence and perceived
usefulness (i.e., RQ2 and RQ3) the two effect sizes found (.27 and .22, respec-
tively) are not pragmatically small (it only takes approximately 500 decisions
to observe a significant effect) and indeed suggest that more research should be
done in this direction.

In light of the above cautious words, we can then summarize the main points
that we can derive from our user study: Evaluative or reflective AI does not
necessarily bring higher accuracy (indeed, by impacting trust on accurate AI
it could even decrease it, even if almost negligibly), or higher confidence in
human decisions (which was observed in this study with a very small effect size).
However, physicians can appreciate this kind of inconclusive support, and the
more so the more expert they are. This is an interesting finding about which we
can conjecture several explanations, but none is conclusive. The explanation that
we tentatively make here relates this preference to the fact that experts might
appreciate the often implicit value of leveraging knowledge on past cases, have
more developed capabilities to assess the reliability of a colleague or a teammate
(as the AI can be seen) from its past decisions, and have more refined abilities to
judge the complexity of a case and therefore have precise expectations as to what
an expert may or may not get wrong; in this latter regard, the assessment of
the difficulty of similar cases may have played an important role in the experts’
appreciation of the support. This may also explain the contrast between experts
and users with less expertise in terms of confidence in the final decision: while
the first displayed a confidence increase, confidence decreased for the latter.
While less experienced users may have experienced a decrease of confidence due
to the (intentional) similarity of both positive- and negative-cases to the one at
hand, experts may have been more capable in leveraging the implicit information
provided by the two similar cases.

Also the seemingly paradoxical effect that we observed in the experts’
decrease of accuracy (or higher negative dominance), although associated with
a very small effect size (0.067), can be tentatively explained with the low rep-
resentativeness of the similar cases retrieved from the training set (which was
observed in other studies [9]): the experts could have misjudged the AI reliability
(both for the better and the worse) in virtue of the false assumption that past
performance (right or wrong predictions) on these cases (whose complexity was
accurately assessed) was representative of the performance on the current case.
If similarity scores used to retrieve these cases were not associated with really
semantically similar cases, the conceived support is much less effective than
desired. However, it should be clear that this kind of support is not proposed to
improve decision accuracy in the here-and-now decision (or is it unrealistic to
think it can actually do it). Rather, its value should be considered in the long
run, as a remedy to technology over-reliance, agency erosion, loss of skill and
self-confidence, because it requires users of DSS keep reflecting on the technology
reliability for the specific case at hand and exert full responsibility on their final
decisions or diagnoses.
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Fig. 7. Box plot of the perceived usefulness of having to consider the similar cases
that the AI classified either rightly or wrongly in the validation set. The solid cross
represents the average perceived usefulness, while the surrounding gray area represents
the corresponding 95% confidence interval.

5 Conclusions

A highly popular book from the early 2000s [30], which sold over 100,000 copies
on the niche subject of usability of interactive systems, boldly argued that a truly
usable system’s interface should not require users to think. In fact, the title con-
veyed this demand from a user’s perspective: “Don’t make me think!” Through
heuristics and guidelines that remain relevant today, the book emphasized the
importance of intuitive and user-friendly systems that minimize cognitive friction
in supporting tasks. However, some of these suggestions may have inadvertently
led to designs aimed at eliciting immediate and thoughtless reactions from users.
Examples of such designs include dark patterns [23] or choice architectures [1]
used on websites to manipulate users into actions that primarily benefit the
implementers, often at the expense of the users themselves.

In this study, we explored the impact of a support system designed to serve
the opposite purpose: encouraging users to think before making a particular
(legally relevant) decision. Specifically, we focused on a feature resembling a
form of XAI explanation (i.e., supplementary information related to machine-
generated advice [11]) intended to assist users in gauging the local and instance-
specific dependability of their decision support. This was achieved by presenting
users with a pair of cases deemed highly similar to the one being evaluated, and
informing them of the machine’s performance in those instances (i.e., whether it
misclassified the case or not).

This feature resembles posing the question, “Are you sure?” and appears to
focus more on scrutinizing the machine’s capability rather than affirming it (akin
to stating, “In a similar case, the machine was, however, incorrect in identifying
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the presence/absence of a fracture”). In essence, we tested a feature aimed at
decelerating the decision-making process and potentially increasing uncertainty
(although we observed the contrary outcome), as a feature to de-bias the decision
support, especially with regard to the priming and anchoring effect of presenting
the AI advice before thoroughly considering the case [3].

As a result, what could seem a counterproductive or, at best, an inconsequen-
tial decision support system is actually more useful than allegedly more efficient
systems. In fact, we believe, with other observers (e.g., Tim Miller [31] and Ben
Shneiderman [36]), that we need to move from an oracular [13], answer-providing
artificial intelligence (aimed at increasing the accuracy of the human-machine
hybrid or human+AI team), to one instrumental to helping framing the prob-
lem, asking the right questions, enhancing the human being’s ability to judge
situations: a decision support that lets users affirm their autonomy, and that
recognizes the need for them to feel the decision as totally their own, after gath-
ering evidence both for and against the machine’s suggestions. In this line of
research, in a parallel study that we are conducting on the same set of diagnos-
tic images [9] we are also experimenting the impact and acceptance of a support
that does not give advice, neither in categorical nor in probabilistic form, but
it precisely provides only elements for and against a certain decision: We have
termed this kind of AI judicial AI specifically to highlight how systems within
this class of application generate outputs that adhere to the dialectical and con-
trasting format prescribed by the adversarial procedure in the legal domain for
court trials.

We argue that systems developed over centuries, which leverage refined skills,
extensive training, and protective measures against abuse and injustice, still have
the potential to enhance human decision-making also in settings that employ
machine learning, data mining, and information retrieval techniques. By leverag-
ing extensive historical data and (supposedly) correct decisions, we believe these
systems can facilitate more informed and responsible decision-making while pre-
serving human agency and skill. This study aims to explore and validate this
notion.
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Abstract. With the deployment of applications based on machine learning tech-
niques the need for understandable explanations of these systems’ results becomes
evident. This paper clarifies the concept of an “explanation”: the main goal of an
explanation is to build trust in the recipient of the explanation. This can only be
achieved by creating an understanding of the results of the AI systems in terms
of the users’ domain knowledge. In contrast to most of the approaches found in
the literature, which base the explanation of the AI system’s results on the model
provided by the machine learning algorithm, this paper tries to find an explanation
in the specific expert knowledge of the system’s users. The domain knowledge is
defined as a formal model derived from a set of if-then-rules provided by experts.
The result from the AI system is represented as a proposition in a temporal logic.
Now we attempt to formally prove this proposition within the domain model. We
usemodel checking algorithms and tools for this purpose. If the proof is successful,
the result of the AI system is consistent with the model of the domain knowledge.
The model contains the rules it is based on and hence the path representing the
proof can be translated back to the rules: this explains, why the proposition is
consistent with the domain knowledge. The paper describes the application of this
approach to a real world example from meteorology, the short-term forecasting of
cloud coverage for particular locations.

Keywords: Explainable AI · Machine Learning · Formal Methods · Model
Checking · Solar Radiation Forecast · Meteorology

1 Introduction

The increasing digitization in all areas of life is reaching meanwhile more and more
critical domains. In the last few years, methods of artificial intelligence (AI), especially
methods of machine learning (ML), have gained considerable influence in these areas.
Based on the results of these systems effective decisions are taken automatically, paving
the way to at least partially autonomous control of critical systems [19].

In such systems the necessary knowledge is not provided by human experts, but rather
acquired autonomously by machine learning algorithms. These algorithms base their
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findings on historic or specifically prepared data (the so called training data) and generate
a model representing the learned rules; this model is then applied to new data to come up
with new information – predictions and/or operation instructions. Such systems raise a
considerable number of ethical and legal questions. For example: How much trust in the
system can (ormust) a human operator have? Towhat extend can a system be held at least
partially responsible for a (false) decision? Can a system be responsible at all (whatever
“responsible” means)? How do we guarantee the transparency demanded by article 5
of the EU GDPR (European Union general data protection rules)1? We are clearly in
a situation, where systems based on complicated machine learning algorithms provide
suggestions and generate effective operation instructions. In a semi-automatic situation
a human operator in the loop has to decide on the plausibility of these instructions.
Does s/he have to merely believe what the system outputs or is there a possibility to
understand, why the system’s conclusions are plausible? Most systems in use nowadays
are not transparent at all and give no explanations whatsoever to the users about their
conclusions and why the users should or could trust these conclusions.

Such systems work in two phases:

1. In the first phase – the learning phase – the systems are confrontedwith a set of training
data – mostly historic data, sometimes even augmented with artificial data that has
not been observed in reality. The systems use machine learning algorithms, such
as statistical methods or structural methods like neural networks to build a model,
usually of considerable complexity. One of the most essential aspects of machine
learning is the selection of relevant features (properties of the data), which will be
used by the machine learning algorithm. For sake of clarity we will call the system
that operates this first phase the “ML system”.

2. In the second phase, this model is applied to data from a new (ongoing) situation that
was not part of the training data set with the aim to generate forecasts and operating
instructions. To distinguish it from theML systemwewill call the system that operates
this second phase the “AI system”.

The advantage of this method is twofold: First, an information processing system can
take properties of the data into account that might be of importance, but are not directly
available to a human analyst (e.g. because they are derived from the raw data by more or
less complex mathematical transformations). Second, the system – because of the mere
speed of modern data processing – could use a very large number of training examples –
muchmore than a human expert could ever see during his professional lifetime. Themain
disadvantage of present-day systems, however, is that they work like a black box: For
the human (the responsible operator) it is not transparent and hence not comprehensible,
how the system arrives at its result. S/he has to believe in the system’s findings. And
“belief” is not a scientific category. Moreover, the more complex the learning algorithm,
the less comprehensible the result. On the other side, applying more complex learning
algorithms may generate better results.

1 In Chapter II, Article 5, Paragraph 71 of the introduction reads “…must guarantee … the right
… to obtain an explanation of the decision reached after such assessment”. https://www.pri
vacy-regulation.eu/en/22.htm, last accessed 2023/03/01.
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A main drawback of such systems from a technical point of view is the missing
robustness of many of them: The systems heavily depend on the quality and amount of
the training data used in the ML phase. Without a careful sensitivity analysis – which is
not provided with most of the systems – one cannot guarantee that the resulting model of
the ML system does not show significant changes induced by just minimal perturbations
in the training data, as shown in [15].

The acceptance of such a system by the users is essential for a successful integration
into the everyday-practice of critical systems. A main ingredient of acceptance is trust.
As defined by theMerriam-Webster Dictionary trust is the “assured reliance on the char-
acter, ability, strength, or truth of someone or something”. Therefore, the development
of methods that are able to increase the users’ trust in the results of a system based on
machine learning methods is an urgent demand [24]. One such method to achieve this
goal would be to verify the system’s result in the domain specific knowledge of the
user – which is the core point of this paper.

Before we can attack this challenge, we must clarify some fundamental concepts:
What does “explainability” mean in the context of AI systems based on machine learn-
ing? How must such an explanation look like, so it is comprehensible and interpretable
by users from the application domain? What is a practical balance between the com-
plexity of the learning algorithm, and hence the quality of its results, and its ability to
provide a comprehensible explanation of its mode of operation? This paper attempts to
answer some of these questions.

After a discussion of the state of the art in Sect. 2, the following section tries to
investigate the concept of “explanation” as used in a scientific context in a short historical
perspective. In Sect. 4we develop our notion of an explanationwith respect to its possible
meaning in the realm of machine learning tools. This notion is based on several ideas
from the philosophy of science and uses the concept of “trust” as its central decisive
point. Further on, we propose a practical method to implement this notion.

In order to bring the discussion close to practice we will demonstrate our ideas
on a real-world example: meteorological nowcasting (short term predictions) of cloud
coverage for specific locations. Machine learning using neural networks is used for this
purpose. An archive of satellite images serves as training data to predict the upcoming
cloud coverage. The goal of these short term predictions of solar radiance is the advance
calculation of the daily power output of solar power plants. Knowing about the upcoming
weather situation in advance for a specific location helps to calculate and pre-arrange
for the expected power loss or gain each day. Thus, such a system can help to avoid
financial loss when less power is harvested than expected due to overcast, frontal systems
or convective cells.

2 State of the Art

The development of theory, methods and tools for Explainable Artificial Intelligence
(XAI) is a new, but very active area of research. Two directions of research, sometimes
colliding and sometimes complementary to each other, have evolved. The first is aimed
at developing tools for increasing the transparency of automatically learned and defined
predictionmodels, as for instance by deep learning or reinforcement learning algorithms.
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The second focuses on anticipating the negative impacts of opaque models in order to
regulate or control consequences of false predictions, especially in sensitive, safety-
critical areas.

Early AI was not so complex – due among others to hardware limitations –, and
hence retraceable, interpretable, thus understandable by and explainable to humans.
Consequently, there is some historical research that uses abductive reasoning for scien-
tific explanation of the results of AI systems. Examples are Pople in 1973 [23], later
Poole et al. in 1986 [22], or Muggleton in 1991 [21], up to Evans et al. in 2018 [8].
Pople describes an algorithm and develops a model for abduction applied to medical
diagnosis. Poole et al. provided a logic programming system in first order logic, which
could subsume non-monotonic reasoning theories and implemented a proof-of-concept
framework which uses explanatory hypothesis for any application domain. Muggleton
proposed a further refinement referred to as inductive logic programmingwhere hypothe-
ses are identified by inductive constraints within any logic, including higher-order logics.
Finally, these adoptions have been generalized to explanations based on inductive logic
programming by Evans et al. [8]. This rather recent work connects with information
theoretic ideas used to compare differences in how to learn probability distributions that
are modelled by machine learning methods.

Many scholars have tried to review research works about explanations [2, 3, 9, 19,
29] and especially [4], which quotes more than 400 papers more or less dealing with the
subject. These research papers cover a broad range of different methods for providing
explanations depending on the wide spectrum of different applications. As an example
in [5] the authors provide a classification framework based on comparing levels of
explanation with autonomy-levels in driving.

In recent years, explainable AI methods mainly focus on tracing back the results
of a black-box machine learning systems to the input data, highlighting input relevant
parts via heat-mapping. The idea behind such procedures is to show the parts of the
input, which contributed most significantly to the result. With models based on neural
networks, this is a very challenging task involving advanced mathematical methods as
shown in [6] for image analysis. Unfortunately, this solves only a part of the problem as
there is a need to take into account a concept called causability, too (see [14] or [20]).

In [18] current concepts, applications, research challenges and visions of explainable
artificial intelligence describe the big picture, ideas and their role in advancing the
development of explainable AI systems and to emphasizes the biggest challenges to
moving forward. Amain issue remains: are – at least theoretically – all machine learning
models explainable or are some models inherently unexplainable [25]. In the latter case,
the requirement of explainabilitywould restrict the choice of themachine learningmodel.
Whether this leads to a lower quality of the outcome is still an open question.

Fundamental considerations on the topic can be found in a paper by Juan Durán [7].
Restricted to the application areas of medicine and healthcare he advocates for scientific
explanations (as opposed to mere classifications): an explanation should be called sci-
entific only if they “conform to a specific well-defined structure capable of advancing
our understanding of the world”; he calls explanations following such a structure “bona
fide” and claims that most of the studies published on explainable AI in the medical field
fail to be bona fide.
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All these approaches show that explainability in AI systems, especially in critical
domains, is indispensable for bringing them to practical use. The scientific literature
offers only first results in this new area of research called Explainable AI or short XAI.
However, a lot of basic research still needs to be done.

3 What is an “Explanation”?

So far, some definitions of the term “explanation” with respect to the area ofML systems
can be found in the literature. [10] for example gives the following definition: “Pro-
duce more explainable models, while maintaining a high level of learning performance
(prediction accuracy); and enable human users to understand, appropriately trust, and
effectively manage the emerging generation of artificially intelligent partners”. In some
publications the authors make a difference between “explainable” and “interpretable”,
see for example [4]. There, interpretability is defined as “the ability to explain or to pro-
vide the meaning in understandable terms to a human”; and explainability is “associated
with the notion of explanation as an interface between humans and a decision maker
that is, at the same time, both an accurate proxy of the decision maker and comprehen-
sible to humans”. All these definitions have one point in common: they are extremely
informal and hence do not qualify for a stringent scientific treatment (not to mention the
circular reference in the definition of [4]). Though our approach is closer to the concept
of interpretability, we will nevertheless use the term explainability, as it is widely used
in the literature and reflected in the generally accepted term “XAI” as an abbreviation
for “Explainable AI”.

3.1 A Brief Survey of the Term Explanation in the Philosophy of Science

In the light of such vague definitions it seems appropriate to review how the concept
of explanation is treated in the philosophy of science. This discussion started in 1948
with a paper by Hempel and Oppenheim [12] introducing the HO model (Hempel-
Oppenheimmodel). Based on the philosophical tradition of logical empiricism (Hempel
was a member of the “Vienna Circle”) they define scientific explanation as a deductive
structure consisting of initial conditions and law-like generalizations that entail the truth
of the event to be explained. In other words: the explanation of a proposition is defined
as a logical derivation from some given conditions according to generally valid laws.
Hempel and Oppenheimmention two possibilities how such laws can be obtained: either
they are universal generalizations (they call that deductive-nomological) or they are of
statistical nature (inductive-statistical); they strongly prefer deductive-nomological laws
over inductive-statistical ones and accept the latter ones only as approximations of the
former. There has been some criticism of the HO model, though. The main objections
are:

• the problem of relevance of the initial conditions (irrelevant premisses could be part
of an explanation), and

• the problem of asymmetry meaning that the discrimination between the fact to be
explained and the initial conditions is not always evident (if for example the barometer
is falling rapidly and this is followed by a storm, it is not clear whether the falling
barometer is an explanation of the storm or the storm explains the falling barometer).
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Due to this criticism some alternative approaches to define the concept of explanation
were published during the last 60 years. These new definitions can roughly be classi-
fied into two groups: realistic and epistemic (non-realistic). An epistemic interpretation
means that the task of a theory is to order our experience, while a realistic interpreta-
tion is based on the correspondence of the theory with the external reality. With regard
to machine learning only epistemic approaches are relevant, because machine learning
deals with data, which must be ordered in a way to produce a model that is in line with
this and similar data. The HO model is clearly epistemic. Other epistemic models were
published by van Fraassen [27], Achinstein [1], and Holland et al. [13].

Van Fraassen [27] defines an explanation as an answer to a why-question, so the pair
question-answer replaces the premises and the conclusion of the HO model. A main
point in this argument is that the validity of the relation between the question and the
answer is defined by the interests of the person asking, which means that explanations
are subjective with respect to the person demanding the explanation.

Achinstein [1], too, defines explanations in terms of questions and answers, but
focuses on the process of explanation itself. The goal of an explanation is to generate
understanding in the asking person by answering her/his questions. This requires to take
into account the asking person’s knowledge when constructing the answer. Therefore,
Achinstein’s suggestion is subjective, too, despite the fact that he tries to overcome some
problems of van Fraassen’s proposal by an attempt to clarify the concept of understand-
ing and hence eliminate tautological answers as valid explanations. Nevertheless some
essential concepts in his theory of explanation remain vague.

A third approach to defining explanations described in Holland et al. [13] refers to
concepts from cognitive science combining findings from neuroscience and aspects from
AI. The central idea is the use of a mental model, which is an internal representation of a
hierarchical structure of if-then type rules. Generating an explanation means searching
and finally finding a path through this structure. Due to the hierarchical structure of the
search space the search algorithm must contain backtracking mechanisms. Moreover,
the idea of the mental model must incorporate learning algorithms in order to improve
its structure for future use.

A generally important aspect can be found in Habermas [11]: he does not talk liter-
ally of “explanations”, but rather of “understanding”. But he argues that understanding
another person’s point of view requires this other person to “explain” her/his point of
view, thus understanding is just the other side of an explanation, seen from the recipient
of the explanation. According to Habermas understanding is “intersubjective mutuality
… shared knowledge, mutual trust, and accord with one another” [11]. An explana-
tion, therefore, must have the capability of generating this intersubjective mutuality and
mutual trust.

Amodel specifically designed formedicalAI systems, but containingmany generally
applicable aspects, was proposed by Durán [7]. He demands that XAImust answer why-
questions (as requested by van Fraassen [27] more than 40 year ago) as opposed to most
conventional work in XAI that answers how-questions only. He distinguishes between
the unit carrying out the explanation (called explanans), the unit that will be explained
(called explanandum) and the objective relations of dependence between these (called
the explanatory relation).
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3.2 Defining Explanation for Systems Based on Machine Learning

In the following we will give a specific definition of the concept of explanation based
on the philosophical discussion and fitting to the field of XAI. From the aforementioned
various philosophical considerationswewill take the following cornerstones into account
for our definition: the concept of trust fromHabermas, the concept of a logical derivation
from the HO model; the consideration of the knowledge of the target person of the
explanation; and the concept of a mental model as the basis for finding a path to the
proposition to be explained. We claim that the overall goal of an explanation is to build
up trust in the results of the AI system within the users. Moreover, we have to take into
account three specific requirements:

• The definition must take into account that the machine learning algorithms generate
a model of the (training) data, which is not per se accessible to the human user due
to its potential complexity.

• The explanation, however, must be understandable to the human user and hence take
the user’s prior knowledge into consideration.

• The process must be apt for automatic processing implying that it be formal.

In contrast to the various philosophical considerations about epistemic definitions of
explanations, the situation in XAI is characterized by the fact that the machine learning
algorithms create a model that is supposed to describe the application area under consid-
eration sufficiently accurate so that the AI system can generate predictions and operating
suggestions for the application. In this situation two separate models of the application
exist: the one generated by the machine learning algorithm and the application domain
model inherent in the user’s knowledge about the application. In general, these models
are different (otherwise machine learning would not be necessary). Hence, there are two
different ways of providing an explanation to create understanding for the AI system’s
predictions and suggestions:

1. either the explanation tries to instruct the user about the model generated by the
machine learning algorithm,

2. or the explanation tries to find a plausible conclusion for the AI system’s proposals
within the user’s mental model of the domain (his domain knowledge).

The first of these possibilities is the one almost exclusively found in the scientific
literature aboutXAI: commonXAI systems try to explain to the user themodel generated
by the machine learning algorithm by providing a relation between the features used by
themachine learning algorithm and the outcome of the system. In terms of the HOmodel
the explanation is given by describing the initial conditions that lead to the result. The
mostly statistical generalizations are implicit in the generated model and usually not
part of the explanation. The reason for this is that often this model – such as a neural
network – is too complex to be easily accessible to the human user. We think that such
an approach can only fulfil the claim to be a valid explanation in cases where either the
machine learning model is rather simple (e.g. a not too large decision tree) or the user’s
domain model is evidently correlated with the result of the system (as for example in
special cases of image recognition, where it is easy for the user to check whether the
result of the system – say, the system recognized a cat in the image – is correct or not).
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We suggest an alternative approach to explanation based on the second possibility,
namely on the knowledge available to the user about the application domain. The expla-
nation should be found in the user’s mental model and thus provide an understanding
for the result of the AI system. Helpful in this sense is the definition of “understanding”
given by Habermas as mentioned above: understanding is “intersubjective mutuality …
shared knowledge, mutual trust, and accord with one another” [11]. The crucial word
here is “trust”: it signifies the ultimate goal of the explanation: the user shall trust the
result of the AI system as it is compliant with his understanding of the application
domain. Trust can be built up either by understanding in detail how the system came to
its solution (see the possibility 1 mentioned above) or by checking the plausibility of the
solution by comparing it to a solution achieved in a different, trustful way. This second
possibility – the one we ground our approach on – is like going for a second opinion:
If this second opinion is equivalent to the first, our trust in the solution is enhanced.
Otherwise we would remain sceptical.

These considerations lead to the following definition of the concept of an explanation:
in the field of XAI an explanation – in contrast to a mere description – is a formal proof
of a proposition in a formal model of the relevant domain theory. The proposition
in this definition is the output of the AI system, which bases its results on models
derived by a machine learning algorithm. And the explanation relates this output to the
user’s domain knowledge.The relevant domain theory in this definition is the common
understanding of the rules governing the domain as collectively understood by the users
of the AI system.

4 Generating an Explanation

The idea is the construction of an application domain model representing the users’
knowledge in addition to the one generated by the ML system as shown in Fig. 1.
Note that the model generated by the machine learning algorithm is not necessarily a
subset of the application domain model! The AI system could base its answers on other
information than a human operator would (or even could).

Training Data

Machine Learning

Machine Learning 
Model

Education & Training

Application Domain 
Model

Fig. 1. The two models
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To generate an explanation for the results, which the AI system produces for a new
problem, we must try to find a way to prove this result in the users’ application domain
model (see Fig. 2). If we are successful, this will increase our trust in the result of the
AI system and the steps on this way will give an explanation of the result in terms of
the users’ domain. To be valid in a strict sense this proof of the result in the application
domain model must be a formal proof of the result of the AI system in a formal
definition of the application domain model. The steps of the proof could then be used
as an explanation of the result.

Application Domain
Model

Result

AI System Proof System

Machine Learning 
Model

Explanation

Fig. 2. Generating an explanation

The application domain model must represent the users’ domain knowledge suffi-
ciently precise to be a sound basis for solving the given problem. But, having in mind
the ultimate goal, namely the generation of an explanation, the model must guarantee
that a comprehensible description of the steps taken to come to a solution of the problem
is possible. This is a balancing act between preciseness and simplicity.

Starting points for the construction of the application domain model are the set of
if-then-rules, an expert user would follow in order to produce a result based on her/his
knowledge and the available input data for the problem. Out of these prerequisites a
formal model of the application domain is constructed. For some application areas these
rules might rather be probabilistic (and not deterministic), which should be mirrored in
the model. Which formal structures are used for the model depends on the application
area. Various forms of transition systems and Markov processes are typical candidates.
Especially interesting in the given context are languages used in the area of Model
Checking, as they usually come together with a tool for verification, and hence the
next step could be implemented in a straight forward manner. This next step comprises
the formulation of the result of the AI system in terms of a logical proposition and an
attempt to formally prove the result in the application domain model. The proofs in
model checking tools (no matter whether the proof is successful or it fails) have the
convenient property to produce a sequence of steps that lead to the successful proof or
to a contradiction. If these steps are attributed with the rules of the application domain
model, this sequence of rules is an explanation.
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5 Applying the Method to a Meteorological Example

5.1 Description of the Meteorological Problem

The goal of the application is the prediction of cloud coverage or solar radiation for
a specific limited area based on satellite data. This information represents an impor-
tant parameter for calculating the expected output of a solar power plant and thus in
advance helps to manage situations where less power is harvested than needed due to
cloud coverage from frontal systems or convective cells. The earlier you know you have
to purchase additional energy, the lower the price. The users of the system have mete-
orological knowledge and are capable of interpreting weather data such as satellite and
radar images.

Within the last years this problem has gained considerable attention in the meteoro-
logical literature; see [26] for a recent review. Generally, one has to distinguish between
ultra-short-term forecasts (in the range of up to 10 min) on the one hand and forecasts
in the range of several hours up to one day. Ultra-short-term forecasts are necessary for
dealing with the fluctuations of the power output of solar plants and the management of
short-term energy storage systems; as this is not the main focus of the meteorological
example described here, they will not be considered further here.

Forecasts in the range of several hours can be achieved by different methods: either
bymethods ofmachine learning (see for example [28]), where awide range of algorithms
is suggested spanning from statistical methods like KNN or SVM to various versions
of neural networks or by analytical methods based on models of numerical weather
prediction. It must be noted, though, that out of the more than one hundred and fifty
papers referenced in [26] only three resort to satellite images as input.

In the example described here a machine learning approach using a neural network
is used for solar radiation prediction based on satellite images and the goal is to enhance
trust in this system’s results by generating an explanation.

5.2 Machine Learning Approach

In the learning phase the prediction model is constructed with the help of a convolutional
neural network with five layers. The algorithm is facedwith an archive of satellite frames
spanning approximately four and a half years. These frames are taken every 5 min and
cover a rectangular area enclosing the territory of Austria. Each satellite frame comprises
4 channels: a high-resolution visibility channel (HRV), an infrared channel, and two
water vapour channels2. Additionally, the solar angle for each measurement point and
generally some topographical data about the area scanned is provided. For illustrative
purposes Fig. 3 shows an example of an HRV image from Europe. One can see a weather
front here over Great Britain (belonging to a low-pressure vortex over the Atlantic) and
some convective cells, for example near Salzburg and in Slovenia.

Preprocessing. Preprocessing includes a discretization of the images. Each image is
sectioned by a 320 × 256 grid and each grid point is assigned its topological height. All
images are grey-scale; the grey-values are classified into 16 classes and for each grid

2 For more information see for example https://en.allmetsat.com.

https://en.allmetsat.com
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Fig. 3. HRV image of Europe from August 11, 2021 (Source: https://worldview.earthdata.nasa.
gov/, last accessed 2023/03/08)

point in each image the respective class is assigned. Each image has its timestamp and
the solar angle. Solar angles are used to facilitate the determination of day/night and the
season with respect to the topological situation of the grid point.

Machine Learning. Out of an archive of such satellite images from the past four and
a half years the learning algorithm uses a convolutional neural network to describe the
movement, emergence and disappearance of sky cover for the grid points over time.
The resulting ML model is highly non-linear and hence does not lend itself to easy
interpretation or even understanding.

Prediction. In the analysis or prediction phase the 12 last frames (each including the
four channels) taken at an interval of 5 min are input to the neural network (the machine
learning model) generated in the learning phase together with the topology (height) and
the solar angle of the location, for which the prediction should be calculated. The output
of the model is a prediction of the cloud coverage for every grid point for the next 6 h in
intervals of 15 min. Due to the complexity of the task and the restriction to the 12 last
frames, there exist situations, were the same sequence of images can lead to different
evolutions, which means that there can be more than one possible prediction. For each
prediction a probability is calculated and the AI system chooses the prediction with the
highest probability. For the intended purpose (prediction of the daily power output of
solar power plants) we can limit the analysis to daytime for obvious reasons.

5.3 Constructing the Explanation

The task of constructing an explanation can be subdivided into subtasks:

https://worldview.earthdata.nasa.gov/
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1. Define the necessary knowledge for the application domain model: gather the
knowledge from experts and available sources and formulate it as rules.

2. Develop a formal model of this knowledge: Discrete Time Markov Chains seem
appropriate to represent the knowledge in this example.

3. Implement this model: formulate the model in the language of a model checking tool
(for example PRISM [17]).

4. Generate the explanation: formulate the result of the AI system in the language of the
tool and try to formally prove it within the formal model by model checking.

5. Present the explanation in the users’ domain language: translate the path representing
the proof (or the contradiction if the proof failed) that constitutes the explanation in
terms of the rules used on this path.

Definition of the Application Domain Model. Asmentioned above the users of the sys-
tem have meteorological knowledge, especially concerning the interpretation of satellite
data. This knowledge constitutes the users’ domain model and for our intended purpose
must be described in a formal way. We collected this knowledge from interviews with
such persons and from common information sources such as [30] or [31]. We coded
this knowledge as a set of textual rules, mainly in an if-then form (these rules will be
used later for the formulation of the explanation). Starting point for the model are the
topological information of the area under consideration and the 12 last satellite frames
(each including the four channels) taken at an interval of 5 min, which are preprocessed
in the way mentioned above. The next steps are:

(1) The detection of large-scale cloud patterns (weather fronts) and of small-scale cloud
patterns (convective cells and fog) in an image, each identified by the sets of grid
points they comprise. They can be extracted from the satellite data: from the HRV
channel (during day only) and more details from the infrared channel (the more
light-colored the colder and hence the higher up rises the cloud). This is especially
relevant during winter where clouds and snow-covered underground resemble each
other very much in the HRV image.

(2) The calculation of the direction and the velocity of the flow of these patterns from the
12 consecutive input frames of the last hour. Large scale structures are relatively inert:
they neither emerge spontaneously nor do they vanish spontaneously and they do not
change their direction of flow immediately. If a large structure arrives at a barrier like
mountains (e.g. the Alps) the structure usually does not overstep this barrier (at least
if it had not done so in the past). Small scale cloud structures, on the other hand, have
a shorter life cycle. They can emerge spontaneously in specificweather situations; for
example during summer a convection can develop before a front leading to a shower
or thunderstorm. Small scale structures can grow rapidly and they may disappear
rapidly (e.g. fog). So, their lifetime, and the conditions at the time of their appearance
and disappearance are calculated, too (if possible). Moreover, the velocity of cloud
structures depends on additional parameters including topographical properties of
the subjacent landscape, the time of the day and the airmass involved. Depending
on those parameters cloud patterns may change over time.
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Fig. 4. Development of cloud patterns over Austria, 2023-04-21

Figure 4 shows such a development over one hour in steps of 15 min on April 21,
2023 over Austria (note the emergence of a local shower north of Salzburg)3.

Formalization of the Application Domain Model. To this end we use Discrete Time
Markov Chains (DTMC). The use of Markov Chains for cloud coverage predictions has
for example been described in [16]. A Discrete Time Markov Chain (DTMC) consists
of a set of states S and a transition matrix P = (pi,j) with |S| rows and columns; pi,j is the
probability that when the DTMC is in state i at time t, then it will be in state j at time t
+ � (remember that time steps for predictions are in intervals of � = 15 min). P can be
regarded as function P: S × S → [0, 1]. Furthermore, for each state a set of information
is defined by a labelling function L: S → 2AP that assigns a label to each state based
on a set of atomic propositions AP. In addition we define labelling RL, which labels the
transitions with the rule applied RL: S × S → R, where R is the set of rules. One state,
called s0, is defined as the starting state.

The states describe the weather situation at a certain time t consisting of the cloud
structures together with the attributes valid at time t such as the direction and velocity of
the structures observed so far and – for small scale structures – the time of appearance and
disappearance. The transition matrix represents the probabilities that a weather situation
represented by a state s at time t will evolve into a weather situation represented by state
s’ at time t + �. The labelling function L assigns to each state the cloud coverage for
the area under consideration. The set AP of atomic propositions can be used to classify
the cloud coverage into a limited set of different grades of coverage (say full coverage,

3 Source: https://en.allmetsat.com/

https://en.allmetsat.com/


Enhancing Trust in Machine Learning Systems by Formal Methods 183

75% coverage, 50% coverage, 25% coverage, no coverage). The labelling function RL
assigns the rule that is used for a transition from a state s to a state s’.

For the application of the model in a specific situation it has to be initialized with
the information belonging to this situation: The starting state s0 is the cloud pattern of
the last input frame and the time this frame was taken is t0. It is labelled with the state
information (velocity and direction are calculated from several frames taken before). For
the first prediction for time t + � we use the domain knowledge rules. This can either
lead to one new state (with transition probability 1) if everything is clear or to two (or
sometimes even more) new states if there are ambiguities in the knowledge base. For the
transition to each new state the knowledge base must include the transition probabilities
(which must sum up to 1). New states must be labelled with the information generated
by the prediction. Additionally the edge leading to the next state is labelled with the rules
used to generate this state transition. This must be done for each time step. A prediction
of 6 h will thus need 24 time steps.

Implementation of the Application Domain Model. This model is implemented in
the model checking tool PRISM4 [17]. This tool allows probabilistic model checking
and hence is suited for the purpose. Furthermore it provides the possibility of directly
implementing DTMCs. A detailed description of the application domain model and the
DTMC fills many pages and therefore is not possible here.

Generation of the Explanation. To generate an explanation of a result from the AI
system (which predicts the cloud coverage for a specific grid point for a specific point
in time during the next 6 h) we formulate the result in terms of PRISM’s property
specification language (a syntax for formulating expressions of a temporal logic). After
having correctly initialized the model we run the model checker on the property. As it is
a probabilistic model checker, it yields the maximum and minimum probability of the
situation formulated by the property. If we are content with these probabilities – if they
increase our trust in the prediction of the AI system in a satisfactory way – we accept the
result as an explanation. If the probability that the property is true is not sufficient for
us, we can try to look for a property with better probabilities and compare, whether the
two properties are close enough to each other giving us confidence in the result. If there
is no such property we conclude that the result of the AI system cannot be explained by
the application domain model.

As an example let’s assume the situation from Fig. 4 and let’s concentrate on Ried
im Innkreis as the location of interest marked red (see Fig. 5).

It was sunny with 16 °C and a humidity of 57%. The cloud cover prediction for
the next hour by the AI system was that it will still be sunny (no cloud coverage)
with a probability of more than 0.95. This prediction is now formulated in the property
specification language of PRISM:

P > 0.95 [F = 4 cloudcover = 0] (1)

This formula in temporal logic means: The probability P is greater than 0.95 that
after exactly 4 time steps the variable cloudcover will have a value of 0. F is the future

4 http://www.prismmodelchecker.org/

http://www.prismmodelchecker.org/
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Fig. 5. Ried im Innkreis, 2024-04-21, 12:45

operator and F = 4 indicates “4 time steps ahead” (time steps are in intervals of 15 min).
The variable cloudcover can only assume 5 different values (0 for no cloud cover, 1 for a
25% cloud cover, 2 for a 50% cloud cover 3 for a 75% cloud cover, and 4 for a complete
cloud cover).

In the users’ domain the situation can be described as follows: the weather front seen
here was coming from the south and is stuck at the Alps which it cannot cross. Therefore,
for the specific location no change in the cloud coverage is to be expected from this front
at least in the next hour. There is still a chance that a convective cell could emerge,
but the probability for this is very low as the humidity of 57% is not high enough, the
temperature is relatively low and the topological situation of Ried im Innkreis does not
enhance an immediate upstreaming of the air. The emergence of a convective cell needs
an unstable state of the air masses, so warm and humid air can stream upwards and there
meet some residual air from the front that succeeded in crossing the mountains. The
clash of the air masses then results in the convective cell. The parameters (temperature,
humidity, and the topological situation) are not in favor of the forming of a convective
cell and so the probability for it is really low. This leads to the prediction of “no cloud
cover in one hour in Ried im Innkreis with a probability greater than 0.95”.

After having correctly initialized themodelwe run themodel checker on the property.
The result is whether the property is true or false. Alternatively we could have calculated
the minimum and maximum probabilities for the property. In the property specification
of PRISM this reads:

Pmin =? [F = 4 cloudcover = 0] (2)

Pmax =? [F = 4 cloudcover = 0] (3)

If we are content with these probabilities – if they increase our trust in the prediction
of theAI system in a satisfactoryway –we accept the result. In order to get an explanation
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in textual form,we follow the path from the starting point of the proof to its endpoint. The
labelling functionRL that labels all state transitions gives a sequence of rules followed by
the model checking procedure when generating the proof in the DTMC. In the example
this will read as follows:

1. The state at the location under consideration in the beginning: sunny, 16 °C, humidity
57%; a front approaching from the south.

2. As south of the location under consideration there are high mountains, the front will
not cross the mountains, stop its movement and hence will not reach the location.

3. The emergence of a convective cell at the location has only a probability of 0.05 due
to the values of the influencing parameters: temperature, humidity and topographical
situation.

4. Therefore the overall prediction for the location Ried im Innkreis is cloud coverage
of 0% (no clouds) with a probability of 0.95.

If the proposition representing the result of the AI system cannot be proved or the
probability that the property is true is not sufficient for us, we conclude that the result
of the AI system cannot be explained by the application domain model. This is then not
enhancing our trust in the result of the AI system. We could now try to look for another
property, which was not predicted by the AI system and calculate its probabilty. If this
property has a considerably higher probability than the property representing the AI
system’s prediction we have to decide which prediction is giving us better confidence.

6 Conclusions

Building up trust in the results of an AI system based on machine learning is one of the
most important scientific topics nowadays, as these methods are used in more and more
different application areas, some of them critical domains. So far a strict and nevertheless
usable definition of the concept of explanation is still in discussion. This paper adds a
new view into this definition problem by trying to correlate the results of the machine
learning systemwith the domain theory of the users. It tries to give a theoretically sound,
nevertheless practically viable answer to the following question: How can we enhance
trust in the results of a machine learning system, when this is an essential requirement?
Without an AI system’s ability to give understandable reasons for the plausibility of
its results, the system will never cope with the requirements concerning safety and
accountability and will never generate the necessary trust within the personnel. Systems
cannot only use up-to-date machine learning algorithms, they must be able to show the
plausibility of their results in a language understandable by the users, too. In other words
they must be able to give an “explanation” of the results.

This paper assumes generally that the main goal of an “explanation” is to enhance
trust in the results of the AI system. It suggests to define such an explanation as a formal
proof of a proposition in a formal model of the relevant domain theory. As opposed to
the majority of papers in XAI this definition does not mean that the internal operation
of the machine learning algorithm should be explained to the user, but rather tries to
explain the result of the AI system in terms of the users’ domain knowledge, which need
not even partially overlap with the model generated by the machine learning system.
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The viability of this approach is shown with the help of an example taken from
the field of meteorology: machine learning methods are used to generate a model for
short term predictions of cloud coverage for specific locations from satellite images.
To enhance the users’ trust in the results the users’ domain knowledge is described by
means of rules. These rules are used to generate an application domainmodel in the form
of a Discrete Time Markov Chain. The DTMC is implemented in a model checking tool
(PRISM); the prediction of theAI system is formulated as a proposition in temporal logic,
and finally an attempt is made to prove this proposition – the result of the AI system – (or
at least a situation close enough to the prediction in terms of probability) in this model.
The path in the DTMC (the application domain model), leading from the input data to
the predicted result represents not only the proof, but it also is an explanation: it explains
the result by giving consecutive steps that will lead to the predicted result together with
the rules from the users’ domain knowledge that induced the transitions from one step
to the next. This information is directly related to the domain knowledge of the users
and can therefore be understood by them. Thus it is an explanation in the sense of our
definition, which can generate trust in the results of the machine learning system. In the
meteorological example the sequence of rules could be augmented with the consecutive
images showing the development of the cloud cover over time.

We are well aware that the details of this procedure are strongly influenced by the
meteorological example chosen. Nevertheless, we think the approach is general enough
to be used in other applications areas aswell. Futureworkwill encompass two directions:
first, the refinement of themeteorological domainmodel and second it will centre around
extending the method to other application areas.
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Abstract. It is commonly understood that the resilience of critical
information technology (IT) systems based on artificial intelligence (AI)
must be ensured. In this regard, we consider resilience both in terms of IT
security threats, such as cyberattacks, as well as the ability to robustly
persist under uncertain and changing environmental conditions, such as
climate change or economic crises. This paper explores the relationship
between resilience and sustainability with regard to AI systems, develops
fields of action for resilient AI, and elaborates direct and indirect influ-
ences on the achievement of the United Nations Sustainable Development
Goals. Indirect in this case means that a sustainability effect is reached by
taking resilience measures when applying AI in a sustainability-relevant
application area, for example precision agriculture or smart health.

Keywords: artificial intelligence · machine learning · resilience ·
security · sustainability

1 Introduction

Artificial intelligence (AI) can be usefully applied to build resilience in many
areas. However, this can simultaneously open up new threats in the area of IT
security, as the use of technology creates the risk of failure, vulnerability, or
misuse. This paper discusses, how these threats can be countered and initially
demonstrates how the creation of robust and resilient AI can also have sustain-
ability effects in line with the United Nations (UN) Sustainable Development
Goals [35].

To this end, we must first define what resilient AI means. We base this on mul-
tiple definitions by the National Institute of Standards and Technology (NIST),
which we consolidate as follows: Resilience is the ability of an information system
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to mitigate the impact of known or unknown changes in the operating environ-
ment (including intentional attacks, accidents, and naturally occurring threats)
by (a) anticipating and preparing for such events (e.g., through risk management,
contingency, and business continuity planning), (b) the ability to withstand and
adapt to attacks, adverse conditions, or other stresses and to continue operations
(or rapidly regain the ability to do so), while maintaining essential and required
operational capabilities, and (c) restoring full operational capability after such
disruption in a time-frame consistent with mission requirements. Thus, it is also
about “robustness” in the face of a changing environment. Großklaus [16] refers
to this “ability to successfully drive the sustainable development of society under
uncertain and changing conditions” as “transformative resilience”.

We would like to point out that AI systems can never be considered as iso-
lated, abstracted entities, but must be seen in their social context as sociotech-
nical systems; it must be understood that algorithms and especially AI are not
just technical artifacts – in the sense of “physical, human-designed objects that
have both a function and a plan of use” as defined by Vermaas et al. [36] – but
complex systems characterized by collective and distributive action [30]. In our
case, this means that the concept of resilient AI has links to issues of acceptance
and trust. No AI system can be called resilient if its use is fraught with funda-
mental mistrust, accountability gaps, accusations of unfairness, or criticism of
its black-box nature. Likewise, the EU’s Joint Research Centre [19] distinguishes
four dimensions of resilience: societal, economic, organizational, and technologi-
cal. The focus of this work is on the technological side, touching organizational
aspects where appropriate. The societal sense of resilience is in fact what we
refer to as sustainability. This work is based on the assumption that the guid-
ing principles of resilience (in a technical/organizational sense) and sustainabil-
ity complement each other: In a crisis-ridden world, resilience becomes a basic
requirement for the success of sustainability goals. To validate this assumption,
this paper develops fields of action for resilient AI and examines their sustain-
ability impacts – in general and in selected sustainability-relevant application
areas. The underlying study is not yet complete; therefore, this paper represents
initial considerations and results of an ongoing work-in-progress effort.

The rest of this paper is organized as follows: Sect. 2 outlines our research
method and in particular the increasing focus in our stepwise approach. Section 3
introduces robust and resilient AI and develops a roadmap for fields of action.
Section 4 discusses direct sustainability effects of resilient AI as well as indi-
rect effects, if according measures are taken in sustainability-relevant applica-
tion areas. Finally, Sect. 5 concludes the paper, given that we are presenting
work-in-progress, with a focus on current and future work.

2 Research Method

As shown in Fig. 1, we proceed in three steps. In Eigner et al. [11], a survey
of the scientific state-of-the-art as well as the identification of possible fields of
action of robust and resilient AI was carried out; a summary can be found in
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Sect. 3. This paper presents the continuation of this work. We have analyzed
potential sustainability impacts of the identified action areas based on academic
literature, project results and brainstorming with experts. In this second step
we focused on sustainability-relevant application areas. The resulting overview
of sustainability effects is provided in Sect. 4. Last not least, we are currently
identifying recommended actions for public actors with a further increased focus
on smart cities and regions, critical infrastructures and ecological sustainability
goals using an exploratory scenario analysis [24].

Various application areas
and AI techniques

(no focus on sustainability)

Focus on 
sustainability goals
and sustainability-

relevant application
areas

Focus on smart 
cities and regions,

critical infra-
structure

and ecological
sustainability

goals

Recommended 
actions

Roadmap on robust and resilient AI
fields of action

Overview on sustainability
effects

Fig. 1. Increasing focus and methods applied throughout our research

As shown in Fig. 2, different forms of dependencies between robust and
resilient AI and sustainability emerge:

a. Direct sustainability effects of a field of action, e.g., the reduction of bias in
AI algorithms has a direct positive impact on gender equality.

b. Indirect sustainability effects of robust and resilient AI in a specific appli-
cation area, e.g., increasing the robustness of an AI in precision agriculture
contributes to reducing hunger.

c. We are developing concrete recommendations for resilient AI in selected areas,
which may bring up new impacts. E.g., a recommendation to address drift
by frequently retraining machine learning (ML) models may increase energy
consumption and therefore have a negative sustainability effect.
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Fig. 2. Dependencies of the various concepts in our research

3 Robust and Resilient Artificial Intelligence

AI systems are becoming essential to our daily lives. Organizations should ensure
their resilience as with any other critical asset. However, the black-box approach
typically found in AI may make assessing and ensuring resilience different com-
pared to traditional IT systems. In Eigner et al. [11], we provide an overview of
the emerging field of resilient AI, both from the perspective of selected applica-
tion areas and specific AI techniques. From this, we derive fields of action for
robust and resilient AI. In Fig. 3 we structure these in the form of a roadmap, as
some targets have already been or are being extensively addressed, while others
will only reach practical applicability in the medium or long term. Following the
European Union (EU) High-Level Expert Group on Artificial Intelligence [17],
we divide the fields of action into security, safety, accuracy and reliability.

Security. Security incidents in AI can be distinguished by (a) the AI technology
used, (b) the type of incident, or (c) the stage of the AI/ML pipeline in which the
incident occurs. The type of disruption can be broadly divided into intentional
disruptions, which include all types of hostile attacks on AI systems and unin-
tentional disruptions, which can range from careless human interaction to rare
special cases that systems may never have encountered before. With this in mind
we see plausibility tests, i.e. rules that identify at least outliers or unexpected
results of an AI algorithm, as a basic level of protection. More sophisticated
methods of mitigating hostile attacks are knows as adversarial AI [23].

Penetration testing (“pentesting” for short) is a key technique for assessing
the security and resilience of IT services and products. Since there are myriads
of possible threats in the field of AI that can affect the proper operation of AI
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Fig. 3. Roadmap for robust and resilient AI fields of action

applications, pentesting of AI will certainly gain importance in the near future.
Initial approaches have been proposed, e.g., by Das et al. [8] or Tjoa et al. [33],
or are under development, still, currently no best practices methodologies exist.

Safety. Regarding the field of action risk and continuity management, KPMG
highlights in its AI Risk and Controls Matrix various risks associated with
AI [25]. Risks to be highlighted in this area include inadequate fallback solu-
tions related to infrastructure, the AI solution itself, and business operations.
In addition, the inability to restore service after an incident is highlighted as a
specific AI risk, as the last good AI state may not be easily restored due to its
complex and often black-box nature.

In terms of legal aspects, the United Kingdom Information Commissioner’s
Office [21] identifies three key areas: the legal status of algorithms, sector-specific
standards, and the interdependencies of privacy and AI. In addition, monitoring
robustness to (even non-adverse) changes in the environment opens up another
area of research requiring a holistic view of audit and certification of AI sys-
tems [37]. In related terms, the upcoming EU AI-Act [12] differentiates AI sys-
tems into four risk categories, ranging from “unacceptable” risks to “high”, “lim-
ited” and “minimal” risk levels. The categorization is not only depending on the
AI technology in use, but also on the sensibility of data and application area.

AI alignment aims align AI systems with human preferences and ethical prin-
ciples. AI systems, especially when using reinforcement learning, are based on
specified objectives. As it can be difficult do define all desired and, in partic-
ular, undesired behaviors, AI systems may find loopholes to accomplish their
objectives efficiently but in unintended, sometimes harmful ways [38].
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Accuracy. Accuracy is one of the most important areas in the field of AI and
has received a lot of attention in the last decades, both to enable new applications
and to improve AI applications and make them market ready [1]. Data is the
very source of good AI in this regard; if the data quality is poor or if there is
distortion due to data pre-processing, many of these problems will be transferred
to the result or even amplified [39]. This includes, in particular, detection and
avoidance of bias [27]. Discrimination and bias often arise in the data collection
and modeling process, for example, when target variables are incorrectly defined,
questions are unclear, or historical data is used that was collected in a time when
moral concepts are no longer in line with current ones [4].

A major challenge, especially in robotics, is also to bridge the gap between
simulation and reality and to make “digital twins” robust to changing parameters
of the environment. Here, domain randomization approaches [34] are promising.
Furthermore, automation is especially problematic in so-called mixed environ-
ments, where robotic actors directly interact with human actors, which is a major
problem in the area of autonomous driving [9].

Reliability. We consider the continuous reliability of AI, as well as aspects of
trustworthiness and explainability. Machine learning (ML) models degrade over
time. A major reason for this is that the world, and thus the data, are not static;
therefore, the data to which the models are applied also change over time. This
effect is referred to as “drift”. Methods for drift detection and mitigation have
been discussed for some time [22], but adequate monitoring of AI systems has
only recently been established by trends such as MLOps.

The explainability of AI often missing in many advanced methods refers to
non-transparent (black-box-like) decision-making processes [15] for which, for
example, testing for backdoors is practically impossible. Human-centered AI
means to involve humans for labeling, improvement or correction. Especially
the use of AI together with human expertise is promising here, e.g. by formal-
ization with semantic technologies, resulting in the research area of semantic
AI [5].

4 Sustainability Effects

In this section, we explore interdependencies between robust and resilient AI and
the UN Sustainable Development Goals [35]. Are there synergies or do conflicting
goals arise and how can these be negotiated? As outlined in Sect. 2, direct and
indirect sustainability impacts can be identified. Here, indirect means an effect
through a resilience field of action, provided the AI is used in a sustainability-
relevant application area. In this paper, we consider precision agriculture and
forestry, smart health and precision medicine, smart cities and regions (including
energy and mobility transition), industry and critical infrastructures, and police,
justice, and military as such sustainability-relevant application areas, informed
by the project experience of the authors and the experts interviewed. Figure 4
illustrates the various dependencies broken down by resilience field of action and
Sustainable Development Goal (SDG).
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4.1 Direct Sustainability Effects

The AI Act of the European Union [12] includes, among others, a prohibition of
discrimination against groups of persons on the basis of their sex or other char-
acteristics. Dealing with legal aspects and a corresponding certification therefore
leads directly to an improvement in relation to the sustainable development goals
(SDGs) 5 (gender equality) and 10 (reduced inequalities). The same applies to
the technical measures derived from this to detect and mitigate bias. Explain-
ability of AI systems also leads to an improvement here, as inadequacies of the
models used are at least made visible.

Security
Safety

A
ccuracy

R
eliability

= Smart agriculture and forestry = Smart health and precision medicine = Smart cities and regions

= Industry and critical infrastructure = Police, justice and military

= Strong direct sustainability effect = Weak direct sustainability effect = Indirect sustainability effect
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Mitigating hostile attacks
(adversarial AI)

Penetration testing

Risk and business
continuity management
Legal aspects, audit and
certification

AI alignment

Data quality management
and data protection
Bias detection and
mitigation

Simulation-to-reality gap

Drift detection and
mitigation

Explainability (XAI)

Human-centered AI

Fig. 4. Overview of sustainability impacts of robust and resilient AI fields of action

Explainable AI models also tend to use less computationally intensive algo-
rithms, resulting in a sustainability impact with respect to SDGs 7 (affordable
and clean energy) and 13 (climate action). On the contrary, drift detection and
mitigation usually leads to regular (potentially frequent) retraining of AI mod-
els, causing an increase in energy consumption and therefore a negative effect
on SDGs 7 and 13.
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4.2 Sustainability Effects in Selected Application Areas

Precision Agriculture and Forestry. An important application area of AI
in precision agriculture and forestry is plant pest and disease detection and
prediction [20], which positively impacts SDG 2 (no hunger). Other goals include
optimizing the use of scarce resources such as water, as well as fertilizers and
pesticides, which also has a positive effect on SDG 15 (life on land). Relevant
fields of action for resilience are data quality as well as bias and drift detection and
mitigation. The latter is particularly important in a changing environment, e.g.,
due to climate change. Since labeled data is usually rare in such use cases [29], use
of human-centered AI techniques (such as interactive learning) is also relevant.

Smart Health and Precision Medicine. Important application areas of AI
in healthcare, and thus with an impact on SDG 3 (health and well-being) are,
for example, individualized medications and semi-automated diagnosis. This is
also referred to as P4 medicine (predictive, preventive, personalised and partici-
patory) [13]. Here, AI always serves only as support; the final decision must rest
with the physician. This is why human-centered AI approaches and explainability
are so important [18].

Due to the (also legal) classification of medical products as “high-risk
AI” [12], risk and business continuity management are also particularly impor-
tant. Medical applications may not be common targets of cyberattakcs (at least
not like, e.g., critical infrastructure targets), however basic security measures
such as plausibility checks should of course also be applied.

Medical AI systems have higher accuracy requirements than other applica-
tions. Therefore, consideration of data quality is particularly relevant, especially
in the context of rare phenomena. This also applies to the avoidance of bias,
since “biased” algorithms are more difficult to generalize. Given the nature of
medicine directly affecting humans, AI alignment is of particular importance
as well. Studying the effects of treatments, for example, on AI systems is not
sufficient, basically like trying to study them only on lab mice.

Smart Cities and Regions. Sustainability in smart cities and regions is
directly represented by SDG 11 (sustainable cities and communities). Appli-
cation fields of AI here include the optimization of the use of renewable energy.
Here, too, adaptability to a changing environment (e.g., due to climate change),
i.e. drift detection and mitigation, is of central importance. An important aspect
in many smart cites is the concept of the sharing economy, i.e. citizens make
(private) resources available for use by others when they do not need them [14].
Studies have already been conducted on the impact of this sharing economy on
the sustainability of such smart cities [3]. The use of AI in this area results in
various trustworthiness and resilience requirements related to bias and explain-
ability. Also, the fact that personal data is involved may require data protection
measures such as anonymization, which is in fact a form of distortion in data
preprocessing. The emerging use of digital twins in smart cities also requires
consideration of the simulation-to-reality gap. Sharing itself might also increase
the difficulty of attack attribution, which in itself is already a huge problem in
IT Security [7].
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Industry and Critical Infrastructure. Defending against hostile attacks and
therefore penetration testing are particularly important in the area of industry
and critical infrastructure (e.g., power plants and power grids), represented by
SDG 9 (industry, innovation and infrastructure), as these are obvious targets
for cyber warfare. Based on the attacks on the Ukrainian power grid in 2015,
there was a strong increase in attention in this area [6] and the creation of
corresponding technologies and organizational units like specialized CERTs for
the energy sector. Applications of AI such as predictive maintenance or quality
control require data quality and distortion handling and means of drift detection
and mitigation. AI systems in critical infrastructure are legally classified as “high-
risk AI” [12], hence requiring proper risk and business continuity management.
Standards and certifications are also particularly important in this area [32].

Police, Justice and Military. Robust and resilient AI in the police, justice,
and military sectors (e.g., through demonstrable avoidance of bias and discrimi-
nation) inherently impacts SDG 16 (peace, justice, and strong institutions) [2]. A
prominent example here is the AI-based COMPAS database in the US, which was
developed to predict the likelihood of recidivism among offenders [26]. However,
predictive policing is rather controversial, both for ethical reasons (requiring
resilience measures such as bias mitigation and explainability) and with regard
to the actual verifiable benefit [28].

In the military field, the situation is still much more opaque, as many
details are subject to secrecy. Nevertheless, some trends and frameworks can
be identified, such as the ban on so-called Lethal Autonomous Weapon Systems
(LAWS) [31] in the European Union [10] and specifically through the AI Act [12].
There are currently some well-known public programs, such as from the US, the
focus in these publications is very much in the area of predictive maintenance,
unmanned aerial vehicles (UAVs), training of personnel and augmentation.

5 Conclusion

In this paper, we have provided an initial overview of fields of action for robust
and resilient AI and examined them for their sustainability effects. Direct effects
were identified, e.g. through the reduction of bias. Indirect effects arise from the
use of AI in sustainability-relevant application areas. We have selected preci-
sion agriculture and forestry, smart health and precision medicine, smart cities
and regions, industry and critical infrastructures, as well as police, justice and
military, based on the project experience of the authors and interview partners.

On the one hand, a further, broader survey would be useful to expand
the analysis, which is certainly not complete to date. On the other hand, we
also intend to go deeper and define concrete recommended actions to achieve
resilience with a more narrow focus (public actors in critical infrastructures and
smart cities and regions), which again need to be analyzed for their (in partic-
ular ecological) sustainability impacts. For example, a recommendation may be
to regulate and therefore limit the use of large pre-trained AI models (due to
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their intransparency and potential bias). However, given that these pre-trained
models save training effort (and therefore resources) such a recommendation
may have a negative sustainability effect. Both aspects are being adressed in the
exploratory scenario analysis with our interviewees, which currently ongoing.
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Abstract. When training a Neural Network, it is optimized using the
available training data with the hope that it generalizes well to new
or unseen testing data. At the same absolute value, a flat minimum in
the loss landscape is presumed to generalize better than a sharp mini-
mum. Methods for determining flat minima have been mostly researched
for independent and identically distributed (i.i.d.) data such as images.
Graphs are inherently non-i.i.d. since the vertices are edge-connected.
We investigate flat minima methods and combinations of those methods
for training graph neural networks (GNNs). We use GCN and GAT as
well as extend Graph-MLP to work with more layers and larger graphs.
We conduct experiments on small and large citation, co-purchase, and
protein datasets with different train-test splits in both the transductive
and inductive training procedure. Results show that flat minima meth-
ods can improve the performance of GNN models by over 2 points, if
the train-test split is randomized. Following Shchur et al., randomized
splits are essential for a fair evaluation of GNNs, as other (fixed) splits
like “Planetoid” are biased. Overall, we provide important insights for
improving and fairly evaluating flat minima methods on GNNs. We rec-
ommend practitioners to always use weight averaging techniques, in par-
ticular EWA when using early stopping. While weight averaging tech-
niques are only sometimes the best performing method, they are less
sensitive to hyperparameters, need no additional training, and keep the
original model unchanged. All source code is available under https://
github.com/Foisunt/FMMs-in-GNNs.

1 Introduction

Flat minima are regions in the weight space of a neural model where the error
function remains largely stable. It is argued that such larger regions of the error
function with a constant, low score correspond to less chance of overfitting of the
model and thus show higher generalization performance [14,15]. We demonstrate
this in Fig. 1a, where we plot the training and testing loss of the same model
when changing its weights following a random direction. In that example, the
loss landscapes are shifted between train and test data. Therefore, finding a
flat minimum or choosing a central point in a flat region can lead to better
generalization compared to a model with the lowest possible loss in a sharper
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Fig. 1. Loss of GCN on CiteSeer with the Planetoid split. Plots following [25].

minimum. Methods for determining flat minima have been researched in the
past largely on toy examples and for data that are independent and identically
distributed (i.i.d.) such as images, e.g., [8,9,19,30,40,44].

Graph neural networks (GNNs) deal with non-i.i.d. graph data, since vertices
are connected via edges. GNNs are powerful models but are likewise also known
to be difficult to train and susceptible to the training procedure [32]. Even small
changes in the hyperparameters, data split, etc. can lead to unstable training
and lack of generalization performance.

We tackle these challenges of GNNs by transferring flat minima methods
to graphs. We consider a wide selection of weight-averaging and sharpness-
aware flat minima methods, including the well known methods SWA [19] and
SAM [9], and lesser known or new ones like Anticorrelated Perturbed Gradi-
ent Descent [30], Penalizing Gradient Norm [40], and Sharpness Aware Train-
ing for Free [8]. We also apply existing and new combinations such as Penaliz-
ing Gradient Norm [30] plus ASAM [24]. We evaluate the performance of flat
minima methods on different GNN architectures using small and large bench-
mark datasets. As GNNs, we use the well known Graph Convolutional Network
(GCN) [23] and Graph Attention Network (GAT) [33] as well as the novel Graph-
MLP [17], which operates without the classical message passing. Regarding the
evaluation procedure, we follow Shchur et al. [32] who warned that on the com-
mon benchmark datasets Cora, CiteSeer, and PubMed the train and test splits
heavily impact the models’ performance and can lead to an arbitrary reranking
of similarly good GNNs. Thus, in addition to the commonly employed (fixed)
“Planetoid” split [38], we apply two randomized splits on those datasets.

Our results show that in most cases flat minima methods improve the per-
formance. But the improvement heavily depends on the used model, dataset,
dataset split, and flat minima method. An illustration of the effect of flat min-
ima methods for GNNs can be seen in Fig. 1b showing the training loss surface of
a GNN trained without any flat minima method versus Fig. 1c showing the loss
surface of the same model but trained with SAM. To the best of our knowledge,
we are the first to systematically transfer and analyze the impact of many flat
minima methods to non-i.i.d. graph data. Only Kaddour et al. [32] applied two
flat minima methods SAM and SWA to study images, text, and graphs. Thus,
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while their study covers multiple domains, it is limited w.r.t. to the number of
minima methods used. In addition, they only consider fixed train/test splits.
Overall, the contributions of this work are:

– We have transferred flat minima methods to operate on non-i.i.d. graph data.
We show that they can improve the performance of GNNs.

– We perform extensive systematic experiments to measure the influence of
flat minima methods depending on the GNN architecture, dataset, and data
splits. We use both, the transductive as well as inductive training procedure.

– We demonstrate that using random splits is essential for fairly evaluating not
only GNN models but also the flat minima methods.

– We combine flat minima methods and show that this improves the perfor-
mance even further.

Below, we review flat minima methods and introduce graph neural networks.
In Sect. 3, we describe in more detail the flat minima methods used in our experi-
ments. Section 4 introduces the experimental apparatus. The results are reported
in Sect. 5 and discussed in Sect. 6.

2 Related Work

First, we discuss works in the search of finding flat minima. Second, we introduce
graph neural networks and describe representative models, which we use in our
experiments.

2.1 Searching for Flat Minima

Hochreiter and Schmidhuber [14,15] were among the first who searched for flat
minima in neural networks. They suggest that finding flatter minima leads to
simpler neural networks with better generalization performance.

SAM-Based Approaches. Foret at al. [9] introduced a now popular method that
improves generalization through the promotion of flatter minima which they
call Sharpness Aware Minimization (SAM). Their idea is to minimize the loss
at the approximated worst (adversarial) point in an explicit region around the
model’s current parameters and they show that SAM improves the performance
and robustness to label noise of Convolutional Neural Networks (CNNs). SAM
showed to also improve the performance of Vision Transformers [5] and Language
Models [1]. Some follow up works used SAM to improve performance on other
tasks like model compression [26,28]. Other follow up work focused on improving
the efficiency of SAM [27]. For example, Brock et al. [2] sampled only a subset
of each batch to accelerate the adversarial point calculation.

A different line of follow up work focused on improving the performance of
SAM. Kwon et al. [24] introduced Adaptive SAM (ASAM), which compensates
the influence of parameter scaling on the adversarial step. Kim et al. [22] pro-
posed Fisher SAM which replaces the fixed euclidean balls used by SAM with
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ellipsoids induced by Fisher information. Zhao et al. [40] proposed a method
which penalizes the gradient norm to find flatter optima and show that SAM is
a special case of this method. Zhuang et al. [44] proposed Surrogate Gap Guided
SAM (GSAM), which in addition to the usual SAM objective, also explicitly
minimizes the sharpness.

Averaging Approaches. One averaging approach is ensembling [43], which com-
bines multiple models’ outputs to a single, usually more accurate prediction. For
example, Devlin et al. [7] showed that an ensemble of BERT large models gain
roughly 1% F1 score on SQuAD 1.1 compared to a single model. [18] proposed a
method called Snapshot Ensemble, which averages a single model’s predictions
at different points during training.

There are also averaging approaches other than ensembling. Izmailov et
al. [19] proposed the now well known method Stochastic Weight Averaging
(SWA) which averages a single model’s weights at different points during train-
ing. There are some follow up works on SWA, for example using SWA in low
precision training can close the performance difference, even when using only 8
bits for each parameter and gradient[37]. Recently, Wortsman et al. [34] showed
that most of the good models obtained during hyperparameter tuning lie in the
same flat region and that averaging those models’ weights leads to better perfor-
mance compared to simply using the best found model. Further extension and
uses of SWA are described by [10,11].

Other Approaches. Perturbed Gradient Descent (PGD) is a version of gradient
descent where noise is injected in every epoch. This helped to escape from local
minima [42] and saddle points [20]. Orvieto et al. [30] proposed a modification
of PGD, which they call Anticorrelated PGD (Anti-PGD). The idea of Anti-
PGD is to inject noise in the current epoch, depending on the noise injected in
the previous epoch. They prove for some special problems that this leads the
optimizer to the widest optimum and show that it increases performance on
benchmark datasets. Damian et al. [6] showed that adding noise to the labels
when using Stochastic Gradient Descent (SGD) leads to flatter optima and better
generalization.

Du et al. [8] proposed a method which they coin Sharpness-Aware Training
for Free (SAF). They consider SAM’s adversarial point approximation as too
costly, and instead rely on a trajectory loss to reduce sharpness.

2.2 Graph Neural Networks

Graph Neural Networks (GNNs) are neural networks that are designed to work
with graph data. That means in addition to the vertex features, a GNN also uses
the adjacency information which connects different data points. In the follow-
ing, the adjacency matrix is denoted with A, the normalized adjacency matrix
with Â = D−1/2AD−1/2 with Dii =

∑
j Aij and layer l’s output with H(l).

Many GNNs follow the message passing architecture [12,41], where the current
vertex aggregates the features of neighboring vertices to update its own feature
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vector. Different aggregation and update methods then lead to different GNNs.
A well known example is the Graph Convolution Network (GCN) [23], where the
implementations are inspired by CNNs. In each layer, every vertex combines its
neighbors’ features to calculate its output as follows: H(l+1) = σ(ÂH(l)W (l)).

Another well known GNN is the Graph Attention Network (GAT) [33], which
uses attention to weigh each neighboring vertex’s importance for the current
vertex. The attention weights are calculated by aij = softmax(FF(Whi,Whj)),
where FF is a one layer feed forward network. Those are then used to calculate
vertex i’s output with:

h
(l+1)
i =

K

‖
k=1

σ

⎛

⎝
∑

j∈Ni

ak
ijW

khj

⎞

⎠ (1)

where ‖ is the concatenation, K the number of attention heads, and Ni the 1-hop
neighborhood of vertex i including itself.

These GNNs usually use the whole graph in a single batch, i.e., require to
load the full graph at once. This makes it difficult to apply GCN and GAT
to very large graphs. There are different methods to scale GNNs that sample
subgraphs and train on those instead of the full graph [3,13,39]. Wu et al. [35]
propose Simplified GCN, which uses only a single message passing layer with the
adjacency matrix to some power instead of multiple iterations with the normal
adjacency matrix.

A common issue with the GNNs mentioned so far is over-smoothing [12],
which means that after multiple message passing steps, all vertex representa-
tions tend to be very similar. This can either be avoided by restricting the
GNNs to usually only one to three layers or adding residual or skip connections
to the model. The Jumping Knowledge model [36] uses skip connections from
every layer to the last layer. Chen et al. [4] introduced GCNII which utilizes
skip connections from the input layer to every hidden layer. Both ideas make it
possible to gain performance by increasing the model depth up to 64 layers.

Graph-MLP [17] is a GNN approach that is not based on the message-passing
architecture. Rather, Graph-MLP employs a standard Multi Layer Perceptron
(MLP) on the vertex features and uses a contrastive loss function on the r-th
power normalized adjacency matrix Âr. The neighbor contrastive (NC) loss for
vertex i is calculated as

li = −log

∑
j �=i Â

r
ijexp(cos(zi,zj)τ)

∑
k �=i exp(cos(zi,zk)τ)

(2)

where zi is the embedding/intermediate layer output of vertex i and τ is a tem-
perature parameter. Other than GCN and GAT that are full batch by default,
Graph-MLP randomly samples a batch from the input graph each epoch.

3 Flat Minima Methods

Here we give a brief introduction for a high level understanding as well as the
modified parameter update rules for the flat minima methods used in our work.
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For details, we refer to the primary literature. In the following, we denote the
learning rate with η and a model’s weights as W, e.g., for a l-layer GAT W =
[W (1),FF(1), ...,W (l),FF(l)]. We begin with SAM and works extending SAM,
followed by weight-averaging methods. Finally, we discuss SAF and Anti-PGD.

SAM [9] searches for a model that has a region with low loss around it,
instead of finding the model with lowest loss. SAM minimizes the loss of the
approximately worst point Wadv in the region of size ρ around the model. The
adversarial point is approximated via Wadv = Wn+ρ(∇L(Wn))/(||∇L(Wn)||2)
and is used for the model’s training by Wn+1 = Wn − η∇L(Wadv).

ASAM [24] considers that a model’s parameters can be scaled without chang-
ing the loss. By incorporating the weights’ norms into the parameter update,
the performance of SAM can be increased. Formally, ASAM changes SAM’s cal-
culation to Wadv = Wn + ρ(T 2

W∇L(Wn))/(||TW∇L(Wn)||2) with TW being a
normalization operator for the weights.

PGN: The gradient’s norm directly corresponds to the sharpness of the
model’s current weights. By penalizing the gradient norm (PGN) during train-
ing, the models tend to reach flatter optima [40]. PGN generalizes SAM with
the update rule Wn+1 = Wn − η((1 − α)∇L(W) + α∇L(Wadv)), where α is a
new balancing parameter. We also experiment with a combination of PGN with
ASAM, where we use ASAM to calculate Wadv, which we call PGNA.

GSAM: SAM only optimizes the worst point in a region around it. But
it might be better to explicitly minimize the sharpness of said region as well.
GSAM [44] does this by adding a sharpness term to the loss while ensuring that
the gradient of the sharpness term does not increase SAM’s original loss via an
orthogonal projection. This results in Wn+1 = Wn−η(∇L(Wadv)−α∇L(W)⊥),
where α is a balancing parameter. We also use a variant called GASAM, which
uses ASAM to calculate Wadv.

SWA [19] is based on the observation that models trained using SGD with
cyclic or high constant learning rates tend to traverse flat regions of the loss.
As the loss landscapes are slightly shifted between training, validation, and test
data, which can be seen in Fig. 1a, the center point of the training loss basin
should generalize best. To exploit this assumption, SWA calculates an average
model Wswa by proportionally adding the current weights every k-th epoch by
Wswa = (Wswa ·nmodels+Wcurrent)/(nmodels+1), with nmodels being the number
of models averaged. As we use early stopping following Shchur et al. [32], we do
not know in advance for how many epochs each model trains. Thus, different to
the original SWA which used predefined compute budgets, we start averaging at
epoch begin and stop averaging end epochs after early stopping triggered.

EWA: Pre-experiments showed that the number of epochs a model trains
heavily depend on the GNN architecture, dataset, split, and smoothing method
used. In our case, it ranges from 5 epochs (GCN on CiteSeer with the 622 split)
to about 2000 epochs (Graph-MLP on arXiv). This makes it hard to choose the
begin parameter as one ideally only wants to average models that are already
close to the optimum. Therefore, we also experiment with exponential weight
averaging (EWA), i.e., Wewa = αWewa+(1−α) ·Wcurrent. With the introduction
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of the new hyperparameter α, we expect that EWA works well independent of
the number of training epochs.

Anti-PGD: Noise can be injected into gradient descent to improve the
training through faster escape from saddle points or local minima. When the
loss is in a valley, anti-correlated noise additionally moves the model to a
wider section of the valley [30]. The model’s weights are updated by Wn+1 =
Wn−η∇L(Wn+1)+(Ξn+1−Ξn), where Ξi is a random tensor with variance σ2.
After training the model for some epochs with noise injection, the noise injection
is stopped for the remaining training to improve convergence of the model.

SAF: Since SAM computes two gradients, it uses about twice the time per
weight update compared to standard SGD. As mentioned in Sect. 2.1, there
are some methods to reduce the impact of computing the additional gradient,
but SAF [8] removes the second gradient calculation all together. Instead it
approximates the sharpness by the change of the model output over the epochs.
Specifically, a new trajectory loss Ltra = λ/|B| · ∑

i∈B KL(y(e−E)
i /τ,y

(e)
i /τ) is

added to the normal loss. In that case KL() is the Kullback-Leibler divergence, B
a batch, y(e) is the model’s output at the current epoch e, y(e−E) is the model’s
output E epochs ago, τ is a temperature, and λ the loss weight.

4 Experimental Apparatus

In this section, we present our experimental apparatus, i.e., the used datasets,
models, procedure, and measures.

4.1 Datasets

We use different benchmark datasets to evaluate the flat minima methods.
Table 1 reports statistics of the datasets. Cora [31], CiteSeer [31], PubMed [29],
and OGB arXiv [16] are citation graphs. Amazon Computers and Amazon
Photo [32] are co-purchase graphs. For these datasets the task is single label
vertex classification. Protein Protein Interaction (PPI) [45] is a collection of 24
protein graphs with 20 of those used for training and 2 each for validation and
testing. The task for PPI is multi label vertex classification. There are 121 dif-
ferent labels with each vertex having between 0 and 101 labels, an average of
36.9 ± 22.2 labels.

The “Planetoid” (in tables “plan”) train-test split [38] is often used for Cora,
CiteSeer, and PubMed. It is a fixed split with 20 vertices per class for training,
500 vertices for validation, and 1000 for testing. Shchur et al. [32] showed that
changing the train-test split can arbitrarily rerank GNN methods of similar
performance. Thus, we also use two other kinds of randomly generated splits
that we also use for the Computers and Photo datasets. The random Planetoid
“ra-pl” split follows [32] with 20 vertices per class for training, 30 per class for
validation, and all other vertices for testing. The “622” split, for example used
in [4], consists of 60% of the vertices for training, 20% for validation, and 20%
for testing.
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For OGB arXiv, we use the default training (paper before 2018), validation
(paper from 2018), and test split (paper after 2018). We add reverse and self
edges, making the graph essentially undirected, which is needed for good perfor-
mance. This increases the number of edges from 1 166 243 to 2 484 941. Note that
reverse edges are already included by default in the other benchmark datasets.
Table 2 summarizes all used splits.

OGB arXiv is used in the transductive setting, i.e., all vertex features and
edges are available during training. PPI is used in the inductive setting, i.e., no
validation and test vertices and edges are used during training. For the other
dataset we use both settings. However, we do not use the ra-pl split in the induc-
tive setting. The reason is that the induced subgraph over the 20 vertices drawn
per class in the ra-pl split typically results in no connected vertices. Thus, there
are no edges in the subgraph for training, which renders this split ineffective.

Table 1. Datasets used. C is the number of classes and F is the feature size. As PPI
contains multiple graphs, the sum of vertices and edges is shown here. †Number after
adding self and reverse edges; number before is 1 166 243.

Dataset C F |V | |E|
Cora 7 1 433 2 708 10 556

CiteSeer 6 3 703 3 327 9 104

PubMed 3 500 19 717 88 648

Computers 10 767 13 752 491 722

Photo 8 745 7 650 238 162

arXiv 40 128 169 343 †2 484 941
PPI 121 50 56 944 1 587 264

4.2 Procedure

We precompute the random splits of our datasets (ra-pl, 622) such that they
are consistent between models and methods. PPI is used inductively, i.e., only
training vertices and edges connecting those are used for training. arXiv is used
transductively, i.e., labeled training vertices are available together with the other
vertices but without labels. We use both setups for the other datasets. The actual
experimental procedure is then executed in two steps. First, we optimize the
GNN models (GCN, GAT, Graph-MLP) in a traditional way without any flat
minima methods as described in Sect. 4.3. Second, using the hyperparameters
fixed in the first step, we add the flat minima methods and only optimize their
respective hyperparameters(again described in Sect. 4.3). For both hyperparam-
eter searches, only the training and validation sets are used. Subsequently, we
evaluate the models. Additionally, we combine promising flat minima methods
(without further hyperparameter tuning) on a subset of the datasets. We run
multiple repeats with different seeds for each of our experiments. For the smaller
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Table 2. Dataset splits. Besides the fixed “Planetoid” split, we use: “ra-pl” denotes
random splits as used by [32] and “622” denotes random 60% train, 20% validation,
and 20% test split.

Split type Train Val Test

Cora plan 140 500 1 000

ra-pl 140 210 2 358

622 1 621 542 545

CiteSeer plan 120 500 1 000

ra-pl 120 180 3 027

622 1 993 666 668

PubMed plan 60 500 1 000

ra-pl 60 90 19 567

622 11 829 3 944 3 944

Computers ra-pl 200 300 13 252

622 8 246 2 750 2 756

Photo ra-pl 160 240 7 250

622 4 586 1 530 1 534

arXiv default 90 941 29 799 48 603

PPI default 44 906 6 514 5 524

datasets, we use 100 repeats, and 10 repeats for the arXiv and PPI datasets. We
report the mean performance of the GNN models averaged over those repeats.
For the flat minima methods, we report the difference to the respective GNN
model. This allows for fast visual assessment of the results. In addition, we the
report the standard deviation over the different runs for all models.

4.3 Hyperparameters

We tune the GNN hyperparameters, fix them, and then tune the flat minima
methods’ hyperparameters. We optimized all hyperparameters individually per
setting (in-, transductive), dataset, and split. In summary, we use early stopping
with a patience of 100 epochs, two to three layer models with a hidden size
smaller or equal to 256 for the small datasets and slightly modify Graph-MLP.
For PPI and arXiv we use deeper (up to ten layers) and wider models that also
use residual connections. For the flat minima methods we tune each methods’
hyperparameters while keeping the base ones from fixed. For PGN and GSAM
we reuse ρ we found for SAM and ASAM. For details and all final values see
Appendix A.

4.4 Metrics

For the multi-label PPI dataset, we report weighted Macro-F1 scores. The F1
score is calculated per class and averaged with weights based on the support of
each class. For all other, single-label datasets we report accuracy.
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5 Results

The results of the transductive experiments are shown in Table 3 with standard
deviations shown in Table 13. Regarding the base models, we see that on Cora
GAT performs best. On CiteSeer, PubMed, and Photo, Graph-MLP beats the
message passing methods by 1 to 3 points. On Computers Graph-MLP is the best
model when using the 622 split but the worst model when using the ra-pl split.
On arXiv GCN performs best with a 0.3 point lead over GAT. Regarding the
different splits, we can see that compared to the Planetoid split the performance
is lower on the ra-pl and higher on the 622 split. Regarding the flat minima
methods, we observe that there is no method that always works best. The largest
improvement is over 2 points on the CiteSeer ra-pl split with GAT+EWA. On
arXiv all non-weight averaging methods improve the performance of GCN, but
only SAF for GAT. For Graph-MLP on arXiv, EWA improves the performance
by 0.82 points. There are also some bad combinations. For example, ASAM
reduces the performance of GAT in most cases.

Table 3. Transductive mean accuracy per split and dataset. Note: The minima method
PGNA is a combination of PGN+ASAM. GASAM combines GSAM and ASAM. For
the SD over the 100 and 10 runs, we refer to Table 13.

Dataset Cora CiteSeer PubMed Computer Photo arXiv
Split plan ra-pl 622 plan ra-pl 622 plan ra-pl 622 ra-pl 622 ra-pl 622 -

GCN 82.02 79.82 88.44 71.39 67.41 76.81 79.34 77.27 89.46 82.78 91.88 90.89 94.55 72.95

+SAM +0.21 +0.53 +0.05 +1.34 +1.41 +0.02 −0.27 +0.24 −0.13 −0.07 +0.17 +0.40 −0.02 +0.10

+ASAM +0.28 +0.53 +0.02 +0.93 +1.47 −0.18 +0.18 +0.41 −0.28 −0.20 +0.11 +0.30 −0.03 +0.01

+PGN +0.04 +0.40 −0.01 +1.08 +1.91 −0.01 −0.06 −0.09 −0.07 +0.08 +0.09 +0.37 +0.00 +0.07

+PGNA +0.35 +0.70 −0.01 +0.93 +1.78 −0.12 +0.22 +0.33 −0.02 +0.11 +0.06 +0.28 +0.02 +0.01

+GSAM +0.15 +0.50 −0.01 +1.25 +1.55 −0.01 −0.19 +0.14 −0.09 −0.05 +0.16 +0.38 −0.00 +0.09

+GASAM +0.35 +0.84 +0.02 +1.16 +1.58 −0.12 +0.13 +0.43 −0.01 −0.35 +0.10 +0.38 −0.02 +0.05

+SWA −0.11 +0.39 +0.12 +0.52 +1.59 +0.03 −0.60 −0.48 −0.09 −0.59 +0.23 +0.21 +0.09 −0.61

+EWA −0.09 −0.01 +0.04 +0.25 +2.09 +0.26 +0.04 −0.09 +0.21 −0.36 +0.33 +0.02 +0.06 −0.21

+Anti-PGD −0.02 +0.51 +0.05 −0.04 +1.11 −0.08 −0.01 −0.08 +0.19 +0.17 +0.09 +0.05 −0.00 +0.13

+SAF +0.26 +0.57 −0.00 +0.47 +0.13 +0.03 +0.01 −0.00 +0.02 +1.13 +0.19 +0.59 −0.02 +0.11

GAT 82.94 80.73 88.42 71.39 69.96 76.55 79.09 77.22 88.59 83.02 92.17 90.56 94.72 72.65

+SAM −0.28 −0.29 +0.19 +0.07 −0.06 +0.10 +0.30 +0.09 −0.11 −0.28 +0.29 −0.15 +0.01 −0.07

+ASAM −0.74 −0.14 +0.06 −0.27 −0.61 −0.19 −0.24 −0.35 −0.16 −0.42 +0.22 −0.16 +0.08 −0.03

+PGN +0.32 −0.00 +0.24 +0.64 +0.23 +0.12 +0.50 +0.38 +0.09 +0.27 +0.23 +0.08 +0.17 −0.03

+PGNA +0.30 −0.01 +0.20 −0.22 +0.20 +0.03 +0.29 +0.30 −0.09 −0.21 +0.21 +0.06 +0.10 −0.07

+GSAM +0.07 −0.29 +0.17 +0.33 −0.01 +0.14 +0.88 +0.09 +0.06 −0.21 +0.20 −0.09 +0.11 −0.03

+GASAM −0.14 +0.02 −0.00 −0.33 −0.25 +0.05 +0.51 +0.46 +0.09 −0.40 +0.22 −0.14 +0.10 −0.04

+SWA −0.87 −0.28 +0.24 −0.76 +0.55 +0.19 −0.87 −1.25 −0.09 −0.77 +0.14 +0.14 +0.07 −35.14

+EWA −0.26 −0.06 −0.05 −0.31 +0.16 +0.24 −0.26 −0.28 +0.04 −0.41 +0.23 +0.14 +0.07 −41.32

+Anti-PGD +0.01 −0.06 +0.08 +0.02 +0.59 −0.04 +0.15 +0.11 +0.06 −0.13 +0.03 +0.09 +0.02 −0.02

+SAF −0.13 −0.08 −0.06 −0.05 −0.01 −0.09 +0.01 −0.11 −0.05 +0.00 +0.05 +0.10 −0.01 +0.12

Graph-MLP 80.58 78.76 88.08 74.53 71.36 77.69 82.16 78.19 90.31 81.59 92.25 91.30 95.94 67.79

+SAM +0.63 +0.45 +0.22 −0.27 +0.26 +0.06 +0.35 +0.61 −0.01 −0.14 +0.04 +0.45 +0.01 +0.77

+ASAM +0.19 −0.07 +0.16 −0.58 +0.14 +0.05 +0.44 +0.54 +0.04 −0.18 +0.02 +0.39 +0.07 +0.62

+PGN +0.40 +0.45 +0.13 +0.20 +0.17 +0.08 +0.05 −0.13 +0.05 +0.23 +0.01 +0.49 +0.06 +0.75

+PGNA +0.27 +0.13 +0.11 −0.15 +0.09 −0.03 +0.19 +0.15 +0.09 +0.10 +0.05 +0.47 +0.04 +0.79

+GSAM +0.52 +0.49 +0.27 −0.11 +0.20 −0.06 +0.36 +0.75 −0.01 −0.25 +0.00 +0.32 +0.02 +0.77

+GASAM +0.20 +0.07 +0.16 −0.39 +0.29 −0.11 +0.28 +0.38 +0.04 −0.19 +0.02 +0.25 +0.08 +0.68

+SWA +0.34 −0.01 +0.27 +0.06 +0.51 +0.30 −0.45 +0.12 −0.33 +0.32 +0.02 +0.67 +0.06 −3.44

+EWA −0.05 +0.02 +0.01 −0.01 +0.06 +0.03 −0.16 +0.07 +0.14 +0.07 +0.10 +0.02 −0.01 +0.82

+Anti-PGD +0.17 −0.07 +0.10 +0.02 +0.03 +0.08 −0.20 −0.32 +0.14 +0.17 +0.07 +0.22 +0.02 +0.22

+SAF −0.06 +1.35 +0.07 −0.02 +1.01 +0.08 +0.02 −0.11 +0.33 +0.23 +0.13 +0.08 +0.07 −0.06
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Table 4. Inductive mean accuracy per split and dataset. For PPI we report weighted
Macro-F1 scores. Note: The minima method PGNA is a combination of PGN+ASAM.
GASAM combines GSAM and ASAM. For the SD over the 100 and 10 runs, we refer
to Table 14.

Dataset Cora CiteSeer PubMed Comp.. Photo PPI
Split plan 622 plan 622 plan 622 622 622 -

GCN 81.08 88.02 71.56 76.80 78.63 89.81 91.63 94.49 99.34

+ SAM −0.39 +0.36 +0.82 +0.33 +0.47 −0.22 +0.17 +0.03 −0.01

+ ASAM −0.31 +0.37 +0.33 +0.13 +0.45 −0.44 +0.15 +0.02 +0.00

+ PGN −0.04 +0.21 +0.77 +0.19 +0.47 −0.15 +0.02 +0.06 −0.01

+ PGNA +0.02 +0.41 +0.37 +0.26 +0.52 −0.06 +0.02 +0.03 −0.01

+ GSAM +0.24 +0.21 +1.06 +0.41 +0.52 −0.23 +0.11 +0.03 −0.00

+ GASAM +0.37 +0.48 +0.50 +0.29 +0.47 −0.15 +0.11 +0.01 −0.00

+ SWA −0.10 +0.50 −0.34 +0.34 −1.06 −0.47 +0.11 +0.06 −0.20

+ EWA −0.05 +0.38 +0.55 +0.36 −0.48 +0.17 +0.37 +0.04 +0.01

+ Anti-PGD −0.01 +0.37 +0.44 +0.45 −0.09 +0.10 +0.05 +0.09 −0.01

+ SAF −0.01 +0.07 −0.13 −0.05 −0.07 −0.01 +0.07 −0.04 +0.04

GAT 82.20 87.92 72.10 76.69 78.30 88.55 91.66 94.45 99.29

+ SAM −0.16 +0.21 −0.33 −0.18 +0.31 +0.06 +0.38 +0.00 +0.04

+ ASAM −0.45 +0.14 −0.36 −0.06 −0.03 −0.16 +0.30 +0.16 +0.04

+ PGN +0.23 +0.17 +0.03 +0.04 −0.10 +0.00 +0.31 +0.15 +0.05

+ PGNA −0.24 +0.22 +0.18 +0.01 −0.26 −0.03 +0.30 +0.19 +0.05

+ GSAM −0.15 +0.21 −0.33 −0.24 +0.38 +0.11 +0.37 +0.11 +0.04

+ GASAM −0.30 +0.18 −0.36 +0.00 −0.02 −0.03 +0.33 +0.15 +0.05

+ SWA −1.33 +0.45 +0.04 +0.29 −0.69 +0.00 +0.31 +0.13 −0.49

+ EWA −0.04 +0.20 +0.03 +0.29 −0.11 +0.19 +0.40 +0.08 +0.03

+ Anti-PGD +0.32 −0.01 +0.14 +0.00 −0.16 +0.04 +0.08 +0.04 +0.01

+ SAF +0.16 +0.08 +0.00 +0.01 +0.03 +0.05 +0.18 +0.05 −0.15

Graph-MLP 68.72 77.47 69.37 74.13 81.20 89.51 87.39 92.87 54.63

+ SAM +2.25 +0.45 −0.23 +0.18 −0.12 +0.13 +0.58 +0.51 −3.35

+ ASAM +1.06 −0.27 −0.36 −0.13 −0.06 −0.12 −0.01 +0.15 −1.18

+ PGN +2.83 +0.27 −0.07 +0.38 +0.05 +0.35 +0.42 +0.37 +1.81

+ PGNA +1.83 −0.19 −0.07 −0.04 −0.01 +0.09 +0.09 +0.15 +1.26

+ GSAM +2.00 +0.36 −0.12 +0.26 −0.08 +0.31 +0.55 +0.45 −3.20

+ GASAM +2.49 +0.43 −0.23 +0.45 +0.06 −0.03 −0.01 +0.22 −0.58

+ SWA −0.91 +0.32 −0.10 +0.18 −0.65 −0.29 +0.25 +0.40 −2.23

+ EWA −0.94 +0.00 −0.01 +0.03 −0.06 +0.16 +0.03 +0.18 −0.94

+ Anti-PGD +2.86 −0.01 −0.09 +0.02 +0.03 +0.31 +0.09 +0.02 +1.15

+ SAF +1.75 +0.41 +1.08 +0.51 +0.19 +0.14 +0.06 +0.00 +2.62

Table 4 shows the results for the inductive experiments with standard devi-
ations shown in Table 14. As explained in Sect. 4.1, the ra-pl split was not used
here. The performance of most models lies within 1 point of the performance in
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the transductive setting. Graph-MLP drops over 10 points on Cora and around
4 points on CiteSeer, Computers, and Photo, but is still the best model for
PubMed. On PPI, GCN is the best model while Graph-MLP has a 45 point
drop in F1 score. Regarding the flat minima methods, the overall picture is the
same. In many cases the best performing method from the transductive setting
still is one of the best ones in the inductive setting. For example, for GCN on
Cora, PubMed, and Computers, the same flat minima method works best in
both settings. In other cases it changes, for example for Graph-MLP on CiteSeer
with the Planetoid split now only SAF increases the performance, while in the
transductive setting PGN workes best and SAF reduces the performance. On
Computers and Photo nearly all flat minima methods improve the performance.
On PPI SAF works for GCN and all SAM variants improve GAT. For Graph-
MLP on PPI, the effects of the minima methods are mixed. For example, SAM
reduces the performance by 3.35 points, PGN increases it by 1.81, and SAF
brings a large improvement with 2.62 points.

6 Discussion

6.1 Key Insights

Regarding the flat minima methods, we can see that there is no method that
always works best. However, for each combination of a base GNN model and
dataset, there is at least one flat minima method that improves the performance.
But in many cases some flat minima methods also reduce the performance. For
GCN and Graph-MLP, most methods improve the performance on the citation
graphs, while for GAT the results are mixed. For the co-purchase dataset Com-
puters and 622 split, all flat minima methods improve the results, while on the
ra-pl split most of the methods decrease the performance. We make a similar
observation for the Photo dataset, but this time the ra-pl split is improved by
the flat minima methods, except for four methods in combination GAT. On PPI,
the flat minima methods improve the results for GAT while the improvement is
mixed for the other GNNs.

When comparing the flat minima methods overall, we notice that the methods
extending SAM, i.e., ASAM, PGN, and GSAM, do not consistently improve the
results more than SAM. In most cases, one of the extensions works better than
the original SAM, but this depends on the GNN and datasets. For example, for
GAT on the small datasets, SAM does on average not change the performance
compared to the base model while ASAM reduces it by 0.22 and PGN increases
it by 0.25 points. Using ASAM instead of SAM for the adversarial calculation
for PGN and GSAM works sometimes better, even though by itself SAM worked
better than ASAM. EWA works better than SWA with the highest improvement
in the transductive setting of 2.09 points when using EWA with a GCN on
the CiteSeer and ra-pl split (see Table 3). This is likely because early stopping
negatively impacts SWA. SWA’s begin and end epoch heavily depend on the
model and dataset. EWA nearly always begins in epoch 3, ends one epoch after
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early stopping triggered, and in most cases uses a low α of 0.5 to 0.9 that favors
more recent weights.

Anti-PGD works surprisingly well for a method that just adds noise to the
model. It is usually not the best method but, e.g., on the small datasets with
GAT it outperforms SAM, ASAM, SWA, EWA, and SAF. It also reaches the
overall highest accuracy on arXiv, which is achieved when applied to GCN. While
SAF is motivated by SAM, it impacts the models’ performance differently. For
the small datasets with GCN it is worse than all the SAM-based methods, while
with Graph-MLP it is better than all the SAM-based methods. On arXiv, SAF
is the only method that improves GAT’s performance. On PPI, SAF decrease
the performance, while the SAM-based methods always improve it. The training
of GAT with SAF on PPI was unstable and occasionally needed restarts. SAF’s
recommended λ = 0.3 works for the citation datasets. However, on PPI with
GCN and GAT using λ = 0.3, early stopping is triggered at epoch 4 ± 0, i.e.,
once SAF starts the performance only decreases. Training is feasible with lower
values, with λ = 0.03 GCN+SAF is the best model on PPI.

To the best of our knowledge, the only work who also applied flat minima
methods to GNNs is the study by Kaddour et al. [32]. As said in the introduction,
their work is limited to two flat minimal methods SAM and SWA and they also
consider only one fixed train/test split. We argue that it is crucial to consider
randomized splits for a fair evaluation of flat minima methods on GNNs. Con-
sidering the findings of [21], they found that SAM works better than SWA on
GNNs and that the results are influenced by the dataset and GNN architecture.
In contrast, we found that SAM works better than SWA. This may be due to
the additional randomized splits or the use of early stopping which affects SWA
more than other methods. Another reason may be that [21] used the original
hyperparameter search space of SAM [9], while we additionally consider lower
and higher values of ρ.

For GCN one should use GASAM, for GAT one should use PGN, and for
Graph-MLP one should use SAF. In any case, one should always run one of the
weight averaging methods as they do not need additional gradient computations.
In addition, one always obtains the original model without the modifications
from the flat minima methods as well. Finally, in our experiments we use early
stopping. Thus, it is important to decide on the hyperparameter values when to
begin and stop averaging in SWA. This choice of the hyperparameter is easier for
EWA, since we start at a fixed epoch to average the weights. Our hyperparameter
search showed that EWA works well when one begins to average soon after the
training starts and ending it when early stopping triggers, while using a strong
decay value of 0.5. For Graph-MLP, SWA is the preferred flat minima method.
The reasons is that Graph-MLP trains for more epochs and SWA can better
adapt the parameter weights.

6.2 Combining up to Three Flat Minima Methods

Above we mostly study existing methods, consider with EWA a variant of SWA,
and with GASAM and PGNA combinations of two flat minima methods. As
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proof of concept, we also further combine different flat minima methods with-
out additional hyperparameter tuning. As basis we use GCN in the transductive
setting. Table 5 shows the results for GCN with combinations of up to three flat
minima methods with standard deviations in Table 12. This shows that com-
bining methods can increase the performance even further. For example, on the
CiteSeer ra-pl split, combining EWA and GASAM, which is a combination of
EWA+GSAM+ASAM, increases the performance by 2.89 points.

Table 5. Transductive GCN with combination of up to three flat minima methods.
SDs in Tables 13 and 12.

Dataset Cora CiteSeer PubMed Computer Photo
Split plan ra-pl 622 plan ra-pl 622 plan ra-pl 622 ra-pl 622 ra-pl 622

GCN 82.02 79.82 88.44 71.39 67.41 76.81 79.34 77.27 89.46 82.78 91.88 90.89 94.55

+ PGNA +0.35 +0.70 −0.01 +0.93 +1.78 −0.12 +0.22 +0.33 −0.02 +0.11 +0.06 +0.28 +0.02

+ GASAM +0.35 +0.84 +0.02 +1.16 +1.58 −0.12 +0.13 +0.43 −0.01 −0.35 +0.10 +0.38 −0.02

+ Anti-PGD+SAM +0.16 +0.78 +0.02 +1.40 +1.60 −0.11 −0.15 −0.06 +0.14 +0.13 +0.24 +0.43 +0.00

+ Anti-PGD+GASAM +0.41 +0.72 +0.02 +1.03 +1.89 −0.12 +0.12 +0.32 +0.24 −0.54 +0.25 +0.33 +0.01

+ Anti-PGD+SAF +0.02 +0.96 +0.03 +0.26 +1.13 −0.08 +0.08 +0.03 +0.21 +1.04 +0.14 +0.62 −0.02

+ EWA+Anti-PGD −0.09 +0.56 +0.03 +0.24 +1.14 +0.26 +0.04 −0.27 +0.32 −0.33 +0.26 +0.10 +0.02

+ EWA+SAM −0.32 +0.54 +0.06 +0.68 +1.88 +0.08 −0.34 +0.12 +0.00 −0.19 +0.34 +0.35 +0.00

+ EWA+GASAM −0.50 +0.64 +0.00 +0.41 +2.89 +0.08 +0.01 +0.35 +0.21 −0.56 +0.32 +0.37 −0.01

+ EWA+SAF +0.12 +0.76 +0.03 +0.29 +2.06 +0.26 +0.01 −0.14 +0.24 +0.72 +0.38 +0.56 −0.02

6.3 Influence of Dataset Splits

Regarding the dataset splits, we can see that the random split ra-pl is more
difficult than the often used Planetoid split. The Planetoid split uses a fixed set
of 20 vertices per class as training data. This makes models more susceptible
to overfit the hyperparameters to that specific split than for a randomized ra-pl
split. For the 622 splits, the much higher amount of training data explain the
overall better result. Especially for the PubMed dataset, the amount of training
data is larger by a factor of 200 in the 622 split compared to the Planetoid split.
In both the transductive and inductive settings, the dataset split impacts the
performance one can gain from the flat minima methods. The increase is on
average higher and more consistent on the hardest ra-pl split compared to the
other splits.

Shchur et al. [32] show that randomized splits need to be used for a fair eval-
uation of GNNs. We follow their suggestion by using two variants of randomized
data splits. We confirm their observations that the commonly used “Planetoid”
split is biased and should not be used on its own. We extend on this observation
and conclude from our experiments that randomized splits are also important
for a fair evaluation of the flat minima methods applied to GNNs.

6.4 Transductive vs. Inductive Training

The hyperparameters and basic model performance are similar between the
transductive and inductive setting. In most cases the basic performance is within
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1 point. The ranking of the flat minima methods is similar as well, i.e., in many
cases the best transductive method also works well in the inductive setting. The
major exception to this is Graph-MLP, discussed below.

6.5 Detailed Discussion of Graph-MLP

Compared to the original Graph-MLP [17] our modifications improved it by
over 1 point on Cora and CiteSeer and over 2 points on PubMed. The reason
is that the original hyperparameter optimization was suboptimal. For example,
we found a larger batch/sample size to be beneficial. On the arXiv dataset, we
found τ to be a critical hyperparameter and setting it outside the recommended
[.5, . . . , 2] range to 15 increased the performance by roughly 5 points. On PPI,
Graph-MLP completely fails. The main reason for this is PPI’s inductive nature,
which means that Graph-MLP never uses the validation and testing edges. This
also explains the performance drop of Graph-MLP when we compare the same
dataset between the transductive and inductive setting. The size of the perfor-
mance drop probably corresponds to the importance of knowing the edges that
include testing vertices. These edges seem to be very important for PPI, quite
important for Cora where the performance dropped by over 10 points, and not
very important for PubMed where the drop was smaller than 1 point, which is
similar to the other GNNs. In the transductive case, information about the edges
connected to test vertices is available in training through Âr.

6.6 Assumptions and Limitations

We assume that our GNN models provide a fair foundation for evaluating the
flat minima methods. We optimized the hyperparameters and checked the per-
formance of the GNN models with the original works. GCN and Graph-MLP
achieve a performance on all datasets better than the literature [17,23]. The
performance of our GAT model is slightly lower on CiteSeer, within standard
error on Cora and PubMed, and better on PPI, compared with [33]. Depending
on the hyperparameters, the training of some GAT models on PPI was unstable
and required multiple restarts.

Our study considers the task of vertex classification. We cover most nuances
like small to large datasets with fixed and random splits, training in transductive
and inductive settings, and single- and multi-label classification. There are larger
datasets than arXiv, but it is computationally very expensive to tune hyperpa-
rameters on these dataset for the GNN models and many flat minima methods
considered here. Beyond vertex classification, future extensions could consider
also other tasks such as edge prediction and graph classification.

7 Conclusion

Overall our results show that the choice of the best flat minima method depends
on the GNN model used and dataset split. For the realistic and challenging ran-
dom split datasets (ra-pl, 622), the flat minima methods can improve the GNN
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model more than on a fixed dataset split. Shchur et al. [32] argue for the need
of using such random splits to fairly evaluate GNN models. We extend on this
and argue that a realistic assessment of flat minima methods on graph models
requires such an evaluation procedure as well. We observe that combining up to
three flat minima methods can even further improve the results. We recommend
to always use weight averaging as SWA and EWA do not need any additional gra-
dient calculations while also producing the original, unmodified models. When
using early stopping, we especially recommend using EWA.

Appendix

A Hyperparameters

We present the searched and final hyperparameters in this section. For all exper-
iments, Adam optimizer with PyTorch’s default values β1 = 0.9, β2 = 0.999, and
eps = 1e − 08 is used. Early stopping with a patience of 100 epochs and 20, 000
max epochs is applied. After pre-experiments, we fixed the learning rates to the
respective values and adjacency (edge) dropout to 0 as well as all parameters
not noted in the grid search ranges below. Unless otherwise noted (Graph-MLP
with arXiv and PPI), we did a full grid search over all combinations of the
listed hyperparameters. All final values are reported in Tables 6, 7 for GCN, in
Tables 8, 9 for GAT, and in Tables 10, 11 for Graph-MLP.

Table 6. Optimal hyperparameter values for GCN on transductive tasks.

Dataset Cora CiteSeer PubMed Computer Photo arXiv
Split pl ra-pl 622 pl ra-pl 622 pl ra-pl 622 ra-pl 622 ra-pl 622 -

input dropout 0.15 0.2 0.0 0.05 0.2 0.2 0.0 0.15 0.15 0.1 0 0.2

model dropout 0.8 0.7 0.4 0.4 0.6 0.8 0.5 0.6 0.8 0.6 0.8 0.8 0.5 0.6

weight decay 0.1 0.1 0.001 0.316 0.316 0.01 0.1 0.01 0.1 0.01 0.00316 0.0316 0.001 0

norm id id id id ln ln ln ln ln ln
residual con no no no no no no no yes
num layers 2 2 2 2 2 2 2 6

hdim 128 256 128 256 128 128 256 128 256 768

lr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001

SAM ρ 1 1 0.05 5 1 5 0.1 0.5 0.2 2 0.2 5 0.0005 0.005

ASAM ρ 10 10 0.5 10 20 20 0.1 10 0.01 10 0.5 5 0.02 0.002

PGN α 0.3 0.1 0.3 0.4 0.7 0.2 0.1 0.3 0.1 0.4 0.9 0.3 0.6 0.2

PGNA α 0.3 0.9 0.3 0.5 0.8 0.6 0.7 0.5 0.9 0.1 0.3 0.6 0.2 0.9

GSAM α 0.5 0.5 5 0.5 0.5 0.01 0.002 0.05 0.002 0.5 1 0.005 0.5 0.01

GASAM α 0.5 1 0.01 0.5 1 0.5 2 0.005 2 0.2 0.5 2 5 0.01

SWA begin 75 3 3 3 75 3 77 3 75 3 25 75

SWA end 100 1 10 1 10 10 100 25 100 100 100 10 50 100

EWA begin 3 3 3 3 3 3 3 3

EWA end 1 1 1 50 1 1 100 1 100 1 1 100

EWA α 0.5 0.5 0.5 0.99 0.99 0.98 0.8 0.5 0.9 0.5 0.95 0.5 0.5 0.95

Anti-PGD σ 0.003 0.3 0.003 0.0003 0.3 0.001 0.03 0.03 0.1 0.03 0.1 0.01 0.001 0.001

Anti-PGD E 50 200 50 50 50 200 200 200 200 200 200 200

SAF λ 0.5 3 0.1 3 0.1 0.2 0.1 15 3 5 0.3 0.2

SAF τ 5 2 10 5 10 10 2 10 5 5 2 5
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A.1 Base Models

Small Datasets. We use 20 repeats/seeds for the pre-experiments and param-
eter search on the small datasets. We ran pre-experiments to fix some param-
eters, and then ran a full grid search over the remaining parameter ranges.
For GCN, the searched space is input dropout in {.0, .05, .1, .15, .2}, model
dropout in {.4, .5, .6, .7, .8}, weight decay in {.001, .00316, .01, .0316, .1, .316},
normalization in {id, ln} (id means no normalization, ln layer norm, and
bn batch norm), and hidden dimension in {128, 256}. For Computer and
Photo, model dropout was extended by {.2, .3}. For GAT, the number of
attention heads is 8 in the first and 1 in the last layer. The other param-
eters are searched with input dropout in {.0, .05, .1, .15, .2}, model dropout
in {.4, .5, .6, .7, .8}, attention dropout in {.1, .2, .3, .4, .5}, weight decay in
{.001, .00316, .01, .0316, .1, .316}, norm in {id, ln}, and hidden dimension in
{16, 32} (times 8 attention heads). For Computer and Photo, weight decay was

Table 7. Optimal hyperparameter values for GCN on inductive tasks.

Dataset Cora CiteSeer PubMed Computers Photo PPI
Split pl 622 pl 622 pl 622 622 622 -

input dropout 0.0 0.15 0.0 0.15 0.2 0.05 0.2 0.2 0.2

model dropout 0.8 0.5 0.8 0.7 0.5 0.8 0.7 0.7 0.4

weight decay 0.001 0.01 0.316 0.0316 0.1 0.01 0.01 0.001 0.0001

norm id id id id id ln ln ln ln
residual con no no no no no no no no yes
num layers 2 2 2 2 2 2 2 2 7

hdim 256 256 256 128 128 256 256 256 2048

lr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.003

SAM ρ 2 1 5 1 0.0001 2 0.2 0.001 0.002

ASAM ρ 20 10 20 5 0.005 0.1 0.01 0.1 0.001

PGN α 0.9 0.3 0.2 0.4 0.8 0.1 0.1 0.9 0.4

PGNA α 0.9 0.4 0.5 0.5 0.5 0.1 0.6 0.2 0.6

GSAM α 2 0.05 0.005 0.1 0.1 0.0005 0.2 5 0.005

GASAM α 2 0.02 1 0.5 0.02 5 0.01 2 0.002

SWA begin 3 3 3 3 75 100 75 25 75

SWA end 1 50 1 25 75 100 100 100 100

EWA begin 3 3 3 3 3 3 3 3 3

EWA end 1 1 1 1 1 100 100 1 100

EWA α 0.5 0.8 0.9 0.9 0.99 0.9 0.9 0.5 0.8

Anti-PGD σ 0.03 0.3 0.1 1 0.001 0.1 0.01 0.3 0.03

Anti-PGD E 50 200 50 50 50 200 50 200 200

SAF λ 0.01 10 0.3 0.3 0.03 0.3 0.5 1.5 0.005

SAF τ 10 10 5 5 10 5 10 2 2
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Table 8. Optimal hyperparameter values for GAT on transductive tasks.

Dataset Cora CiteSeer PubMed Computer Photo arXiv
Split pl rand pl 622 pl rand pl 622 pl rand pl 622 rp 622 rp 622 -

input dropout 0.2 0.2 0.05 0.05 0.15 0.15 0.1 0.15 0.0 0.2 0.2 0.15 0.15 0.2

model dropout 0.8 0.7 0.7 0.8 0.7 0.8 0.8 0.7 0.7 0.4 0.5 0.4 0.4 0.5

weight decay 0.0316 0.01 0.00316 0.0316 0.1 0.01 0.1 0.1 0.001 0.01 0.001 0.001 0.001 0.0001

norm ln id id ln id id ln ln ln id ln bn
residual con no no no no no no no yes
num layers 2 2 2 2 2 2 2 6

hdim 32 16 32 16 32 32 32 32 32 16 32 16 32 120

lr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001

attn dropout 0.5 0.5 0.3 0.5 0.4 0.3 0.4 0.3 0.4 0.4 0.5 0

num attn head 8 8 8 8 8 8 8 3

SAM ρ 1 0.001 2 2 5 2 0.5 0.5 0.2 0.5 0.5 0.001 1 0.05

ASAM ρ 5 20 20 10 2 5 0.001 2 2 0.1 2 0.1

PGN α 0.7 0.5 0.4 0.4 0.1 0.1 0.8 0.8 0.9 0.1 0.5 0.6 0.3 0.4

PGNA α 0.9 0.5 0.1 0.4 0.4 0.2 0.4 0.9 0.9 0.8 0.5 0.4 0.9 0.6

GSAM α 1 0.2 0.2 1 0.01 0.1 2 1 2 1 0.01 1 0.5 0.002

GASAM α 2 0.5 0.1 0.01 2 1 5 2 5 0.1 0.1 0.002 1 0.02

SWA begin 75 3 3 75 25 25 75 3 75 75 75 3 75 3

SWA end 100 50 10 100 50 25 100 1 100 100 100 50 100 1

EWA begin 3 3 3 3 3 3 3 3

EWA end 1 1 1 1 10 1 100 1 1 1

EWA α 0.5 0.5 0.5 0.9 0.5 0.5 0.9 0.5 0.8 0.5 0.8 0.99

Anti-PGD σ 0.01 0.003 0.01 0.0003 0.1 0.1 0.001 0.01 0.1 0.0003 0.003 0.003 0.001 0.01

Anti-PGD E 200 200 50 200 50 50 50 200 200 200 50 50 200 50

SAF λ 0.1 0.1 0.2 0.3 0.2 0.2 0.1 0.2 0.1 0.3 0.01 0.3

SAF τ 10 10 10 2 10 10 2 10 5 2

instead searched in {.0001, .000316, .001, .00316, .01, .0316}. Different to the orig-
inal Graph-MLP we use dropout, layer norm, and activations between all layers.
The batch size b to 100% of each dataset. The other parameters searched are
model dropout in {.2, .3, .4, .5, .6, .7, .8}, weight decay in {.1, .01, .001, .0001, 1E−
5}, and τ in {.5, 1, 2}. Loss weight and the layer after which the loss is calculated
in {1@−2, 30@−3}, where layer −1 means after the last, −2 after the penultimate
layer and so on. For Photo and Computer model dropout was extended by {0, .1},
τ by {3, 5}, and the loss was instead searched in {0.3@−2, 1@−2, 3@−2, 10@−2}.

OGB arXiv. We added reverse and self edges to the arXiv dataset which
increased the accuracy by over 5 points for most configurations. We also used
deeper models and added residual connections. We used 3 repeats for the arXiv
and PPI pre-experiments and parameter selection experiments. For GCN, we
searched input dropout in {.0, .1, .2, .3, .4}, model dropout in {.4, .5, .6, .7, .8},
and weight decay in {0, 1E − 5, .0001}. For GAT, we searched attention dropout
in {.0, .1, .2, .3}, input dropout in {.0, .1, .2}, model drop-out in {.4, .5, .6, .7}, and
weight decay in {0, .0001}. For Graph-MLP, we did not perform a full grid search
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Table 9. Optimal hyperparameter values for GAT on inductive tasks.

Dataset Cora CiteSeer PubMed Computers Photo PPI
Split pl 622 pl 622 pl 622 622 622 -

input dropout 0.15 0.05 0.0 0.1 0.1 0.1 0.2 0.15 0

model dropout 0.8 0.4 0.6 0.8 0.8 0.8 0.5 0.4 0.1

weight decay 0.0316 0.01 0.1 0.01 0.316 0.001 0.001 0.001 1E − 6

norm ln ln id ln ln ln ln ln id
residual con no no no no no no no no yes
num layers 2 2 2 2 2 2 2 2 7

hdim 32 32 32 32 32 32 32 32 256

lr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.003

attn dropout 0.5 0.5 0.1 0.4 0.2 0.1 0.2 0.2 0.2

num attn head 8 8 8 8 8 8 8 8 8

SAM ρ 1 0.5 0.5 1 0.2 1 2 0.5 0.02

ASAM ρ 0.002 1 5 10 1 0.5 5 5 0.0005

PGN α 0.3 0.9 0.2 0.2 0.9 0.9 0.1 0.5 0.5

PGNA α 0.4 0.1 0.6 0.4 0.9 0.1 0.3 0.2 0.6

GSAM α 0.5 0.005 0.05 0.1 0.02 2 0.05 1 0.002

GASAM α 0.005 0.01 0.01 0.002 2 5 0.02 0.01 0.002

SWA begin 75 75 75 3 3 75 75 75 25

SWA end 100 100 100 50 1 100 100 100 25

EWA begin 3 3 75 3 3 3 75 3 3

EWA end 1 1 100 10 1 100 100 1 1

EWA α 0.5 0.5 0.98 0.95 0.5 0.95 0.95 0.5 0.9

Anti-PGD σ 0.03 0.0003 0.1 0.03 0.01 0.0003 0.1 0.001 0.0003

Anti-PGD E 50 50 50 50 200 200 50 200 50

SAF λ 0.01 0.07 0.07 0.2 0.01 0.02 1 0.1 0.03

SAF τ 10 2 10 2 5 10 5 10 5

over the hyperparameters due to their larger number and Graph-MLP’s lower
training speed. After fixing the other hyperparameters, we searched over many
combinations of b in {0.02, 0.04, 0.06, 0.08, 0.1, 1.2}, NC@ in {−2,−4,−6}, loss
weight in {10, 30, 100}, τ in {0.5, 1, 1.5, 2, 2.5, 3, 5, 10, 15, 20, 25, 50, 100} input
dropout in {.0, .05}, and model dropout in {0.1, 0.15, 0.2, 0.25}.

PPI. We used deeper models with residual connections for PPI as well. For PPI,
the threshold to assign a label was chosen as 0.5. For GCN, we searched input
dropout in {.0, .1, .2}, model dropout in {.2, .3, .4, .5, .6, }, and weight decay in
{0, 1E − 5, .0001}. For GAT, we searched attention dropout in {.0, .1, .2}, input
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Table 10. Optimal hyperparameter values for Graph-MLP on transductive tasks.

Dataset Cora CiteSeer PubMed Computer Photo arXiv
Split pl rand pl 622 pl rand pl 622 pl rand pl 622 rp 622 rp 622 -

input dropout 0 0 0 0 0 0 0 0

model dropout 0.4 0.4 0.6 0.7 0.8 0.7 0.5 0.4 0.2 0.6 0.3 0.4 0.5 0.15

weight decay 0.0001 0.01 0.001 0.0001 0.01 0.0001 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.0

norm ln ln ln ln ln ln ln ln
residual con no no no no no no no yes
num layers 3 3 3 3 3 3 3 8

hdim 256 256 256 256 256 256 256 2048

lr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001

NC @ −3 −2 −2 −2 −2 −2 −2 −2 −2 −4

NC weight 30 1 1 1 1 10 1 3 1 30

tau 0.5 2 2 0.5 2 0.5 2 2 1 3 10 2 10 15

r 3 3 3 2 2 2 2 3

b (% of data) 100 100 100 100 100 100 100 4

SAM ρ 0.5 0.5 0.005 2 1 0.2 0.05 0.02 0.05 0.1 0.01 1 5 0.1

ASAM ρ 2 2 0.5 0.05 5 1 0.2 0.2 0.01 2 0.0005 5 10 0.05

PGN α 0.3 0.2 0.1 0.3 0.3 0.5 0.1 0.2 0.5 0.3 0.9 0.2 0.1 0.2

PGNA α 0.4 0.7 0.1 0.1 0.5 0.4 0.7 0.1 0.6 0.2 0.3 0.4

GSAM α 0.01 0.002 1 0.5 0.1 5. 0.005 0.01 1 2 2 0.002 0.002 0.01

GASAM α 0.1 0.005 2 2 0.01 5. 0.01 0.2 0.01 1 0.5 0.01 0.005 0.1

SWA begin 25 25 75 75 75 25 75 25 75 75 75 75 75 75

SWA end 100 50 100 100 100 50 100 25 100 100 100 100 100 100

EWA begin 3 3 3 3 3 3 3 3

EWA end 1 1 1 1 1 1 1 100

EWA α 0.5 0.5 0.5 0.5 0.8 0.5 0.8 0.5 0.5 0.99

Anti-PGD σ 0.01 0.0003 0.001 0.003 0.0003 0.003 0.01 0.03 0.1 0.01 0.03 0.01 0.1 0.001

Anti-PGD E 200 200 50 50 200 200 50 50 200 50 50 200

SAF λ 0.1 2 0.1 0.1 10 0.1 0.1 0.1 10 0.5 4 0.07 1 0.3

SAF τ 10 5 5 10 10 5 10 5 5 5 5 10 2 10

dropout in {.0, .1, .2}, model dropout in {.0, .1, .2, .3, .4}, and weight decay in
{0, 1E−5, 1E−6}. For Graph-MLP, we searched with drop input in {0, .1}, model
dropout in {0, .1, .2, .3}, weight decay in {3E − 5, .0001, 0.0003}, loss weight in
{10, 100}, and NC@ in {−4,−6,−8}, and τ in {3, 4, 5}. Afterwards we searched
for b and found 0.8 (i.e., 80% of each graph) to be the best value.
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Table 11. Optimal hyperparameter values for GMLP on inductive tasks.

Dataset Cora CiteSeer PubMed Computers Photo PPI
Split pl 622 pl 622 pl 622 622 622 -

input dropout 0 0 0 0 0 0 0 0 0

model dropout 0.8 0.8 0.8 0.8 0.6 0.3 0.6 0.7 0.1

weight decay 0.1 0.0001 0.0001 1E − 5 0.001 0.01 0.01 0.01 0.0001

norm ln ln ln ln ln ln ln ln ln
residual con no no no no no no no no yes
num layers 3 3 3 3 3 3 3 3 10

hdim 256 256 256 256 256 256 256 256 2048

lr 0.01 0.01 0.01 0..01 0.01 0.01 0.01 0.01 0.001

NC@ −3 −2 −2 −2 −2 −2 −2 −2 −4

NC weight 30 1 1 1 1 1 3 1 1

tau 0.5 1 0.5 0.5 2 1 10 5 4

r 3 3 3 3 3 3 2 2 3

b (% of train) 100 100 100 100 100 100 100 100 80

SAM ρ 1 5 1 5 0.1 0.5 2 1 0.1

ASAM ρ 10 0.002 0.02 0.1 0.5 0.001 10 5 0.5

PGN α 0.5 0.4 0.2 0.2 0.3 0.5 0.4 0.2 0.8

PGNA α 0.4 0.1 0.5 0.1 0.8 0.7 0.1 0.2 0.9

GSAM α 0.002 0.02 0.5 0.002 0.2 2 0.1 0.01 0.01

GASAM α 1 5 1 5 0.5 0.05 0.02 0.05 0.02

SWA begin 75 3 75 3 75 75 75 75 75

SWA end 100 25 100 25 100 100 100 100 100

EWA begin 3 3 3 3 3 3 3 3 3

EWA end 1 1 1 1 1 1 1 1 1

EWA α 0.8 0.5 0.5 0.5 0.5 0.8 0.5 0.8 0.5

Anti-PGD σ 0.003 0.01 0.001 0.03 0.01 0.3 0.03 0.1 0.001

Anti-PGD E 200 50 50 200 200 50 50 200 200

SAF λ 7 15 1.5 15 0.5 15 0.4 0.7 0.07

SAF τ 2 5 10 5 10 10 5 2 10

A.2 Flat Minima Methods

(A)SAM. Both SAM and ASAM have the parameter ρ which is usu-
ally set higher for ASAM than for SAM [24], so we search over ρ
in {0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2} for
SAM and ρ in {0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}
for ASAM. On the small data-sets, we saw potential for improvement with higher
ρ and thus additionally searched over {5, 10} for SAM and {20, 50} for ASAM.

PGN. For PGN, we searched α in {0.1, 0.2, ..., 0.8, 0.9} in all cases.
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GSAM. For GSAM, we searched α in {0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2,
0.5, 1, 2, 5} for all models.

SWA and EWA. For both SWA and EWA, we searched all combinations of
begin in {3, 25, 75} and end in {1, 10, 25, 50, 100} where end >= begin − 3. This
was done to prevent cases where no models are averaged at all as the low-
est observed number of trained epochs from the first hyperparameter search
is 5. For SWA, we averaged the model every epoch as we used fixed learn-
ing rates. For EWA, we additionally tried the combinations above with α in
{0.5, 0.8, 0.9, 0.95, 0.98, 0.99}.

Anti-PGD. For Anti-PGD, we tried stopping the noise after {50, 200} epochs and
σ in {0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3}. For the small datasets, we addition-
ally used σ in {1, 3}.

SAF. We always started SAF at epoch 5 with a epoch difference E of 3. We tested
all combinations of τ in {2, 5, 10} and λ in {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 2, 3}. We
noticed that the optimal λ value often was on the border of that range so,
we extended it by {0.01, 0.02, 0.03, 0.04, 0.05, 0.07} on all datasets except arXiv,
additionally by {1.5, 4, 5, 7, 10, 15} on the small datasets, and additionally by
{0.001, 0.002, 0.003, 0.005} on PPI.

B Standard Deviations of Results

Here we present the standard deviations of the main result tables for complete-
ness, as they did not fit into the main tables but we still want to present them for
interested readers. Table 13 shows the standard deviations for the transductive
results, Table 14 for the inductive results, and Table 12 for the combination of
more flat minima methods.

Table 12. SDs of Table 5, combined methods on transductive GCN.

Dataset Cora CiteSeer PubMed Computer Photo

Split plan ra-pl 622 plan ra-pl 622 plan ra-pl 622 ra-pl 622 ra-pl 622

+ Anti-PGD+SAM 0.55 1.35 1.31 0.76 1.26 1.44 0.54 2.23 0.44 1.88 0.48 0.90 0.58

+ Anti-PGD+ASAM+GSAM 0.41 1.49 1.33 0.87 1.50 1.54 0.44 2.36 0.47 1.85 0.47 1.00 0.58

+ Anti-PGD+SAF 0.61 1.50 1.41 1.63 1.33 1.51 0.53 2.12 0.46 1.94 0.48 1.08 0.58

+ EWA+Anti-PGD 0.61 1.41 1.37 0.64 1.39 1.50 0.33 2.24 0.48 1.82 0.47 1.08 0.56

+ EWA+SAM 0.62 1.38 1.33 1.38 1.42 1.46 0.36 2.16 0.46 2.06 0.45 0.96 0.59

+ EWA+ASAM+GSAM 0.79 1.59 1.33 0.64 1.27 1.46 0.40 2.22 0.44 2.03 0.45 0.96 0.57

+ EWA+SAF 0.65 1.66 1.34 1.19 1.26 1.52 0.38 2.37 0.44 2.06 0.48 1.05 0.59
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Table 13. Standard deviations for Table 3; 10 repeats on arXiv and 100 all other
datasets

Dataset Cora CiteSeer PubMed Computers Photo arXiv
Split plan ra-pl 622 plan ra-pl 622 plan ra-pl 622 ra-pl 622 ra-pl 622 -

GCN 0.57 1.58 1.31 1.20 1.80 1.57 0.50 2.28 0.49 1.85 0.50 1.19 0.59 0.12

+ SAM 0.50 1.50 1.34 0.85 1.66 1.42 0.45 2.12 0.43 1.95 0.49 0.93 0.57 0.12

+ ASAM 0.47 1.48 1.32 0.86 1.58 1.53 0.40 2.16 0.49 1.89 0.49 0.97 0.59 0.11

+ PGN 0.61 1.43 1.41 1.08 1.36 1.53 0.43 2.25 0.44 1.94 0.45 0.87 0.56 0.14

+ PGNA 0.54 1.66 1.39 0.84 1.69 1.61 0.42 2.31 0.43 1.92 0.48 0.91 0.55 0.16

+ GSAM 0.55 1.25 1.32 0.89 1.63 1.47 0.46 2.13 0.46 1.93 0.42 0.97 0.58 0.14

+ GASAM 0.48 1.33 1.33 0.85 1.61 1.49 0.53 2.22 0.51 1.88 0.51 0.99 0.55 0.13

+ SWA 0.26 1.40 1.30 0.40 1.31 1.46 0.33 2.36 0.47 2.00 0.47 1.01 0.56 0.12

+ EWA 0.71 1.53 1.32 0.61 1.25 1.51 0.37 2.30 0.46 2.00 0.48 1.25 0.57 0.07

+ Anti-PGD 0.62 1.40 1.40 1.06 1.36 1.57 0.54 2.18 0.45 1.86 0.58 1.14 0.56 0.12

+ SAF 0.57 1.71 1.36 0.79 1.97 1.60 0.58 2.28 0.49 1.91 0.46 1.07 0.57 0.15

GAT 0.84 1.34 1.36 0.82 1.11 1.52 0.83 2.33 0.50 1.90 0.47 1.32 0.56 0.15

+ SAM 0.95 1.28 1.36 1.01 1.29 1.57 1.37 2.61 0.49 1.87 0.43 1.28 0.64 0.11

+ ASAM 0.89 1.26 1.42 0.97 1.24 1.59 1.17 2.44 0.49 1.95 0.46 1.29 0.60 0.10

+ PGN 0.69 1.36 1.46 0.87 1.22 1.50 0.99 2.40 0.48 1.76 0.50 1.19 0.58 0.12

+ PGNA 0.67 1.50 1.37 0.77 1.29 1.51 0.80 2.34 0.49 1.93 0.44 1.21 0.57 0.11

+ GSAM 0.72 1.31 1.45 0.93 1.25 1.45 1.11 2.55 0.49 1.75 0.46 1.24 0.60 0.14

+ GASAM 0.67 1.36 1.45 0.95 1.27 1.57 0.99 2.21 0.48 1.86 0.47 1.25 0.57 0.16

+ SWA 0.59 1.32 1.38 0.44 1.08 1.44 0.64 2.45 0.52 2.04 0.44 1.30 0.55 5.26

+ EWA 0.74 1.24 1.45 0.74 1.08 1.47 0.87 2.31 0.52 1.97 0.44 1.27 0.58 6.77

+ Anti-PGD 0.99 1.23 1.37 0.74 1.06 1.53 0.85 2.17 0.48 1.82 0.47 1.25 0.61 0.16

+ SAF 0.87 1.38 1.36 0.75 1.14 1.50 0.87 2.32 0.49 1.81 0.45 1.21 0.54 0.11

Graph-MLP 0.68 1.65 1.25 0.60 1.26 1.57 0.86 2.29 0.42 2.07 0.45 1.30 0.51 0.50

+ SAM 0.66 1.75 1.29 0.77 1.01 1.47 0.83 2.31 0.44 2.05 0.46 1.11 0.52 0.46

+ ASAM 0.68 1.68 1.37 0.64 1.24 1.61 0.80 2.34 0.44 1.91 0.48 1.01 0.47 0.61

+ PGN 0.64 1.72 1.41 0.60 1.01 1.51 0.77 2.59 0.47 2.02 0.45 1.00 0.49 0.36

+ PGNA 0.80 1.75 1.29 0.65 1.16 1.51 0.78 2.30 0.50 1.98 0.46 0.91 0.48 0.32

+ GSAM 0.74 1.78 1.26 0.77 1.41 1.45 0.75 2.33 0.44 1.87 0.46 1.23 0.44 0.35

+ GASAM 0.67 1.67 1.33 0.65 1.11 1.37 0.75 2.35 0.44 1.98 0.47 1.00 0.47 0.48

+ SWA 0.48 1.23 1.31 0.55 0.98 1.57 0.73 2.50 1.03 1.86 0.48 1.08 0.49 0.24

+ EWA 0.65 1.54 1.24 0.58 1.22 1.57 0.96 2.28 0.41 2.08 0.46 1.35 0.49 0.31

+ Anti-PGD 0.79 1.76 1.25 0.65 1.14 1.48 0.74 2.30 0.37 1.98 0.47 1.37 0.50 0.42

+ SAF 0.67 1.59 1.41 0.62 1.28 1.40 0.72 2.33 0.46 1.83 0.50 1.38 0.45 0.23
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Table 14. Standard deviations for Table 4; 10 repeats on PPI and 100 all other datasets

Dataset Cora CiteSeer PubMed Computers Photo PPI
Split plan 622 plan 622 plan 622 622 622 -

GCN 0.46 1.38 0.99 1.52 0.59 0.46 0.48 0.59 0.03

+ SAM 0.56 1.35 1.01 1.65 0.49 0.47 0.47 0.59 0.02

+ ASAM 0.60 1.42 0.80 1.59 0.51 0.51 0.49 0.60 0.03

+ PGN 0.50 1.51 0.89 1.59 0.57 0.48 0.51 0.59 0.02

+ PGNA 0.60 1.41 0.99 1.59 0.52 0.43 0.48 0.59 0.04

+ GSAM 0.50 1.48 1.16 1.59 0.46 0.46 0.49 0.60 0.02

+ GASAM 0.53 1.35 0.88 1.65 0.46 0.46 0.49 0.62 0.03

+ SWA 0.46 1.42 0.25 1.63 0.46 0.44 0.49 0.58 0.06

+ EWA 0.46 1.33 0.37 1.63 0.31 0.47 0.48 0.59 0.02

+ Anti-PGD 0.51 1.35 0.65 1.57 0.50 0.48 0.52 0.58 0.03

+ SAF 0.47 1.55 0.97 1.54 0.53 0.47 0.53 0.61 0.01

GAT 1.14 1.39 0.48 1.56 0.84 0.47 0.50 0.65 0.03

+ SAM 0.81 1.46 0.53 1.51 0.94 0.52 0.45 0.65 0.03

+ ASAM 0.70 1.38 0.52 1.64 1.01 0.49 0.47 0.65 0.03

+ PGN 0.90 1.47 0.54 1.62 0.92 0.51 0.49 0.61 0.02

+ PGNA 1.00 1.36 0.46 1.63 0.94 0.49 0.49 0.62 0.02

+ GSAM 0.89 1.40 0.50 1.53 0.87 0.56 0.50 0.65 0.04

+ GASAM 0.74 1.43 0.50 1.62 1.01 0.50 0.47 0.62 0.03

+ SWA 0.56 1.29 0.17 1.53 0.96 0.49 0.50 0.64 0.73

+ EWA 1.01 1.27 0.23 1.59 0.84 0.47 0.47 0.68 0.05

+ Anti-PGD 0.79 1.36 0.30 1.59 0.87 0.51 0.53 0.66 0.04

+ SAF 1.10 1.43 0.48 1.53 0.87 0.47 0.48 0.66 0.12

Graph-MLP 0.97 1.66 0.85 1.48 0.92 0.48 0.62 0.61 1.12

+ SAM 1.12 1.62 0.72 1.53 0.83 0.41 0.60 0.57 1.60

+ ASAM 1.25 1.66 0.81 1.40 0.81 0.49 0.61 0.58 1.80

+ PGN 1.19 1.63 0.77 1.48 0.86 0.46 0.62 0.55 0.26

+ PGNA 1.28 1.53 0.70 1.40 0.76 0.44 0.57 0.58 0.25

+ GSAM 1.40 1.66 0.78 1.54 0.87 0.36 0.57 0.64 1.47

+ GASAM 1.20 1.68 0.69 1.54 0.70 0.47 0.56 0.59 0.97

+ SWA 0.55 1.54 0.65 1.44 0.85 0.51 0.56 0.54 0.93

+ EWA 0.84 1.67 0.83 1.47 0.90 0.42 0.58 0.61 1.06

+ Anti-PGD 0.90 1.55 0.73 1.42 0.77 0.51 0.57 0.61 0.42

+ SAF 0.80 1.53 0.87 1.54 0.57 0.39 0.59 0.61 0.23
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Abstract. Fetal death, infant morbidity and mortality are generally caused by the
presence of congenital anomalies. By performing a fetal morphology scan, the
sonographer can detect their presence and have a thorough conversation with the
soon-to-be parents. Diagnosing congenital anomalies is a difficult task even for an
experienced sonographer. A more accurate diagnosis can be set through a merger
between the doctor’s knowledge and Artificial Intelligence. The aim of paper is to
present an intelligent framework that is able to differentiate accurately between the
view planes of the fetal abdomen in an ultrasound movie. Deep learning methods,
such as ResNet50, DenseNet121, and InceptionV3, have been trained to classify
each movie frame. A thorough statistical analysis is used to benchmark the neural
networks, and to build a hierarchy. The best performing algorithm is used to
classify each frame of the movie, followed by a synergetic weighted voting system
that sets the label of the entire ultrasound video. We have tested our proposed
framework on several fetal morphology videos. The experimental results showed
that the framework differentiates well between the fetal abdomen view planes,
even if the deep learning neural networks are able to differentiate between the
static images with accuracies that range between 46.01% and 77.80%.

Keywords: Deep learning · statistical analysis · synergetic voting system · fetal
morphology · ultrasound movie

1 Introduction

The second trimester ultrasound is recommended by the International Society of Ultra-
sound in Obstetrics and Gynecology, Fetal Medicine Foundation, and many national
societies such as the American College of Obstetricians and Gynecologists. During this
ultrasound, also called a fetal morphology scan, the doctor is able to check the fetus
anatomy, and see whether all organs are developing normal. If the morphology scan is
read properly, and the doctor has suspicions regarding one or more than one congenital
anomalies, then a detailed discussion with the parents regarding the prognosis can take
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place. The discussion has as critical point the following topics: procedural risks, long-
term mortality, morbidity, and obviously the quality of life for all those involved. Sadly
enough, things are never that simple. Reading an ultrasound is observer depended, so
if the doctor is unexperienced, the anomalies might be missed. Studies have shown that
the discrepancies between the pre- and postnatal diagnosis have a sensitivity that ranges
between 27.5% and 96%, [1]. These discrepancies are not strictly related to the amount
of experience. Other factors such as fatigue, time pressure, maternal characteristics, fetal
movement, etc. carry the load also.

It is high time to introduce Artificial Intelligence (AI) methods into the fetal mor-
phology domain. The amazing results of Deep Learning (DL) neural networks (NNs)
applied in healthcare convinced the Food and Drug Administration to approve several
DL software to be used in clinical practice, [2, 3]. Different studies regarding DL and
maternal-fetal ultrasounds have been reported in literature, [4–6]. For instance, in [7],
the authors used two pretrained convolutional neural networks and two non-DLmethods
to differentiate fetal ultrasound images. The results in terms of accuracy ranged between
54% and 93.6%. A CNNwas used to segment the fetal brain using 3D images, [8], while
the fetal lungs and brain were segmented by a sequential forward feature selection tech-
nique, support vector machines and DL when applied on magnetic resonance images
and ultrasounds, [9]. In [10] and [11], neuroevolution methods were used to determine
the architecture of a DL in a fetal morphology scan classification problem.

The aim of this study is to present a probabilistic framework based on deep learning
methods and a synergetic weighted voting system that is able to classify correctly fetal
morphology movies, by being previously trained on ultrasound images. The paper is
organized as follows: Sect. 2 presents the DL algorithms trained on the ultrasound
images and the benchmarking dataset, while Sect. 3 presents the results and the statistical
analysis of the DLs performances. Section 4 depicts the design and application of the
weighted voting system for video classification. The paper ends with Sect. 5, which
contains the conclusions and future work.

2 Materials and Methods

2.1 The Deep Learning Algorithm

The framework presented in this study makes use of three types of DL algorithms that
are trained on an ultrasound fetal morphology dataset to recognize the view plane of
the fetal abdomen. In general, the architecture of a DL neural network contains three
kinds of layers: convolutional, pooling, and fully connected. In the convolutional layer,
a feature map is created by convolution operations that scan the input with the use of
different filters. The pooling layer is used to down sample the feature map created in the
convolutional layer, and also to produce spatial invariance. The fully connected layer is
the last layer in the network.



Probabilistic Framework Based on Deep Learning 229

The most used activation function is the rectified linear unit layer (ReLU), but in
special cases one can use its variants: the Leaky ReLU and exponential linear unit. The
above-mentioned functions create non-linearities in the DL. The formula for the ReLU
is:

f (x) =
{
0, x < 0
x, x ≥ 0

.

The activation function that connects the last hidden layer to the output is the softmax.
The softmax takes the input vector and transforms it into a probability vector. Its formula
is:

p =

⎛
⎜⎜⎝
p1
.

.

pn

⎞
⎟⎟⎠, where pi = exi∑n

j=1 e
xj

.

In this study, we have used ResNet50, DenseNet121, and InceptionV3. Resnet50 or
the Residual Network 50 has won the ILSVR ImageNet competition in 2015. Its main
characteristic is that it uses a skip connection, which gives access to a complementary
cutoff route to the gradient’s flow in the neural network. The higher levels will perform
just as well as the lower levels. The architecture of a ResNet50 contains 48 convolutional
layers, 1maxpool, and 1 averagepool, [12]. TheDensetNet121, on the other hand, uses an
extra inputwhich is added to each layer.We refer to this input as the collective knowledge
gathered from preceding layers. This makes the architecture dense. The features are not
summed up, they are concatenated, thus being reused [13]. In InceptionV3, we encounter
factorized convolutions, that build the architecture in a gradual manner. By this, the
number of parameters is reduced. Big convolutions are replaced by small convolutions,
which speeds up the training process. Besides this, in InceptionV3 we have asymmetric
convolutions. As a final note on InceptionV3, we mention the existence of the auxiliary
classifier, that acts as a regularizer, [14].

The same classifier was used for the 3 DLs. In what regards the architecture, we
have used the GlobalAveragePooling2D, Dense (1024, activation = ReLU), and Dense
(softmax). The loss function was set to be the crossentropy, as for the optimizer, we have
chosen Adam. We have pretrained the 3 DLs on the ImageNet dataset. We have used
Keras and Tensorflow. In what regards the parameters we have used a 5 × 5 × 3 filter,
no zero-padding, and a stride equaling 2. No hyperparameter optimization approach has
been used in this study. The total number of parameters for each DL is presented in
Table 1.
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Table 1. Total number of parameters for each DL

DL algorithm Total parameters

ResNet50 25 692 038

DenseNet121 8 93 254

InceptionV3 24 492 198

2.2 Fetal Abdomen Dataset

The 3 DLs have been trained and tested on a second trimester fetal morphology dataset,
which contains ultrasound images regarding the fetal abdomen. The data comes from a
prospective cohort study implemented in amaternity hospital in Romania, the University
Emergency CountyHospital of Craiova. All eligible patients were pregnant and admitted
themselves to the Prenatal Unit of the County Hospital for their second trimester mor-
phology scan. The doctors, that were part of the research project, informed the patients
about the research and invited them to take part of this study. All patients understood the
implication of the study and gave a written consent. The medical personnel have a mini-
mum 2-year experience in performing fetal morphology scans. All the data was acquired
usingVoluson 730 Pro (GEMedical Systems, Zipf, Austria) and Logic e (GEHealthcare,
China US machines with 2–5-MHz, 4–8-MHz, and 5–9 MHz curvilinear transducers).
The fetal abdomen images where split by the doctors in 8 different view planes: 3 ves-
sels plus bladder (253 images), gallbladder (123 images), transverse cord insertion (211
images), anteroposterior kidney(188 images), echogenic (440 images), sagittal kidney
(326 images), bladder (66 images), and cord intestinal sagittal (324 images). The text
and other artefacts have been eliminated by using CV2 and Keras-OCR. Since these
algorithms are prone to producing false positives (detecting text where it is not), we
have proceeded into manually rechecking each image manually. Figures 1 and 2 show
the same image before and after preprocessing.

Fig. 1. Unprocessed image.
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Fig. 2. Preprocessed image.

For a better visualization of the fetal abdomen planes, we depict in Fig. 3 a sample
from each view plane.

Due to the imbalanced nature of the dataset and to avoid overfitting, we have used a
data generator to enlarge its size. Different transformations have been applied to every
image using the following values: shear range = 0.2, rotation range = 20, wifht and
height shift range = 0.1, zoom range = 0.2, and brightness range between 0.7 and 1.4.
We have also reshaped all the images to 224 × 224 px.

3 Results

To achieve adequate statistical power (95% type I error α = 0.05), we have performed
power analysis to determine the needed sample size of independent computer runs. The
needed sample sizes equaled 50, hence each DL had been run independently for 50 times
in a complete 10-fold cross validation cycle. We present the obtained results in terms of
average accuracy (ACA) over 50 runs and standard deviation (SD) in Table 2.

From Table 2, we can see that ResNet50 outperforms the other two DLs. All models
seem to be robust taking into account the SD values. To be certain that indeed there
are significant differences between ResNet50’s performance and DenseNet121’s, we
have begun the data screening process, which involved Anderson-Darling test to verify
the normality of the sample data, and Brown-Forsythe for the verifying the equality of
variances. In Table 3, we present the results of the normality test, while in Table 4 the
results of the equality of variances test.
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Fig. 3. (a) 3 vessels plus bladder; (b) gallbladder; (c) transverse cord insertion; (d) anteroposterior
kidney; (e) echogenic; (f) sagittal kidney; (g) bladder; (h) cord intestinal sagittal.

Table 2. Performance of DLs over 50 computer runs

DL algorithm ACA (%) SD

ResNet50 77.80 3.01

DenseNet121 64.20 2.12

InceptionV3 46.01 2.01
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Table 3. Normality test results

DL algorithm Anderson-Darling

ResNet50 15.64 0.000

DenseNet121 16.26 0.000

InceptionV3 15.50 0.000

From Table 3, we can see that none of the samples are normally distributed, but still
we can make use of the Central Limit Theorem, that state that if the sample size is large
enough (>30), then the data distribution is approximately normal, [15].

Table 4. Equality of variances results

Models Brown-Forsythe (1, df)/p-level

ResNet50 vs. DenseNet121 2.101 0.150

ResNet50 vs. InceptionV3 2.318 0.131

DenseNet121 vs. ResNet50 0.000 0.978

DenseNet121 vs. InceptionV3 4.017 0.047

InceptionV3 vs. ResNet50 4.573 0.034

InceptionV3 vs. DenseNet121 2.754 0.100

From Table 4, we can see that the only models that do not have equal variances are
InceptionV3 vs ResNet50, and InceptionV3 vs DenseNet121. Since all samples have
equal sizes, we can still proceed with our statistical analysis.

Because all a priori conditions for the t-test for independent variables aremet, we can
proceed with it, [16, 17]. The statistical differences are revealed in Fig. 4, in which we
have plotted the distribution of the samples in the formof boxplots. The annotations show
the obtained p-level after applying t-test for independent with Bonferroni correction.

The t-test results reveals that there are indeed statistical differences between the
performances obtained by our DL models. Therefore, our framework will be further
built based on the responses of the trained ResNet50.

Besides the t-test with Bonferroni corrections, we have also applied Kruskal-Wallis
ANOVA non-parametric test. This test uses the rank of values instead of the values,
thus we compare the groups medians instead of the group means. We have used the
Kruskal-Wallis test using χ2 right-tailed distribution with 2 degrees of freedom. The
test statistics H equaled 20.734, with a corresponding p-value of 0.00001, thus we need
to reject the null hypothesis that states that the group medians are equal. We can see that
both parametric and non-parametric tests reveal the same result, that there are significant
differences between the DL models.



234 A. G. Nascu et al.

Fig. 4. t-test with Bonferroni correction to reveal statistical differences between DL competitors.

4 Weighted Voted System

Aswe havementioned before, the goal of our paper is to build a framework that is able to
differentiate between the view planes of the fetal abdomen in an ultrasoundmovie, not in
an image. Our approach uses the previously trained DL network. The first step is to split
the movie into frames, after which we apply ResNet50 on each frame to label it. The
DL network will set a label to each frame with a certain probability, Pi. We transform
this probability in a weighted vote using the following formula:

wi = Pi∑number_frames
i=1 Pi

.

In Table 5 we provide a quantitative comparison between the results obtained by our
framework and the stand-alone DL models on hold out samples. We can see that the
proposed system outperforms the other methods.

Table 6 presents howwe set the weighted votes for amovie that contains the 3 vessels
+ bladder view plane.
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Table 5. Comparison between the proposed model and other strategies

Model ACA F1-score

Proposed framework 81.19 0.811

ResNet50 77.89 0.780

DenseNet121 64.01 0.640

InceptionV3 45.23 0.451

Table 6. Weighted voting system for a 3 vessels + bladder ultrasound movie

Predicted view plane Pi Vote

gallbladder 80.9 0.036387

gallbladder 89.53 0.040268

gallbladder 86.37 0.038847

gallbladder 79.71 0.035851

3vesselsbladder 95.4 0.042908

3vesselsbladder 99.13 0.044586

3vesselsbladder 94.19 0.042364

3vesselsbladder 99.8 0.044887

3vesselsbladder 99.95 0.044955

3vesselsbladder 99.86 0.044914

3vesselsbladder 98.64 0.044365

3vesselsbladder 99.98 0.044968

3vesselsbladder 99.99 0.044973

3vesselsbladder 99.99 0.044973

3vesselsbladder 99.99 0.044973

3vesselsbladder 99.99 0.044973

3vesselsbladder 99.99 0.044973

3vesselsbladder 99.99 0.044973

3vesselsbladder 99.99 0.044973

3vesselsbladder 99.99 0.044973

3vesselsbladder 99.99 0.044973

3vesselsbladder 99.99 0.044973

The movie label is set by adding the votes for each predicted class. Hence, for the
above example we would have the following result (Table 7).
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Table 7. Voting framework

Predicted class Vote result Actual class

gallbladder 0.151355 3 vessels + bladder

3 vessels + bladder 0.848647

From Table 7, we can easily see that even if ResNet50 has only 77.80% accuracy
in correctly differentiating the view planes, the framework through its weighted vote
corrects it. To validate our framework, we have applied it on several other ultrasound
movies. The following Tables 8, 9, and 10 present the obtained results.

Table 8. Voting framework example 2

Predicted class Vote result Actual class

echogenic 0.171553 cord intestinal sagittal

cord intestinal sagittal 0.422078

anteroposterior kidney 0.406268

We can see that even if the cord intestinal sagittal plane has almost the same
probability as the anteroposterior kidney, still the framework is able to correct it.

Table 9. Voting framework example 3

Predicted class Vote result Actual class

cord intestinal sagittal 0.874941 cord intestinal sagittal

echogenic 0.125059

Table 10. Voting framework example 4

Predicted class Vote result Actual class

cord intestinal sagittal 0.28882 cord intestinal sagittal

sagittal kidney 0.115637

transverse cord insertion 0.266047

bladder 0.203784

echogenic 0.126261

Tables 9 presents one of the simplest planes which involves a small number of
corrections, while Table 10 presents one of the most complicated planes which involves
a large number of corrections.
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5 Discussion

The above study proposes a probabilistic framework that learns to classify the view
planes in a movie by using a hierarchy built from multiple DL algorithms previously
trained on ultrasound images. Even if we have statistically proved that this framework
produces valuable results, a difficult task is to explain to the end-used, the doctor, why a
particular result was obtained. Since all data is labeled by human doctors, it is prone to
error, hencewe are dealingwith a garbage in – garbage out situation. The systemby using
performant DL algorithms and a weighted voting system is able to correct the human and
machine possible mistakes. To convince the human doctor that the framework is reliable
and robust, we have performed the thorough statistical analysis, and also reminded them
that the artificial intelligent system acts only as a “counselor”, and that the final call
is made by the doctor. As said in the Holzinger’s keynote, [18], explainability is the
first step in making artificial intelligence be trusted by clinicians, and robustness is the
second step.

In this paper, we show that the combination of human intelligence and artificial intel-
ligence, can indeed help resolve a rather complicated matter. In our case the ultrasound
movie is built from consecutive frames. As the baby and mother breathe and move, the
view-planes change even if the doctor knows that he/she is looking at a certain plane.
Our probabilistic voting system is able to establish the correct view plane in order to
prepare the system for the next logical step, that is to start segmenting the important
organs in each plane. Taking into account the standard in performing second trimester
morphologies, particular organs are searched in each view plane. This is why the combo
doctor+ artificial intelligence systemneeds towork ensemble as a team in differentiating
correctly the view planes.

To obtain more reliable results we must increase the size of the image dataset, and
to try multiple DL algorithms to see which one resolve the best the problem at hand.

6 Conclusions

In this study, we have provided a way to build a framework that is able to differentiate
between different view planes in an ultrasound movie regarding a second trimester
fetal morphology scan, by using a synergetic weighted voting system of each frames’
probability. We have compared the performances of three state-of-the-art DL neural
networks and chose for the framework the best performing one according to a statistical
benchmark process. Our framework proved to be efficient, by correcting theDL network,
even if its standalone accuracy is approximately 77%. The framework’s functionality did
indeed accomplish its objective. We shall deepen the experiments in terms of applying
in longer movies, that contain multiple view planes.
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Abstract. Specifying reward functions without causing side effects is
still a challenge to be solved in Reinforcement Learning. Attainable
Utility Preservation (AUP) seems promising to preserve the ability to
optimize for a correct reward function in order to minimize negative
side-effects. Current approaches however assume the existence of a no-
op action in the environment’s action space, which limits AUP to solve
tasks where doing nothing for a single time-step is a valuable option.
Depending on the environment, this cannot always be guaranteed. We
introduce four different baselines that do not build on such actions and
therefore extend the concept of AUP to a broader class of environments.
We evaluate all introduced variants on different AI safety gridworlds and
show that this approach generalizes AUP to a broader range of tasks,
with only little performance losses.

Keywords: Impact Regularization · Side-Effect Avoidance ·
Reinforcement Learning

1 Introduction

In recent years, Reinforcement Learning (RL) has excelled on a number of tasks,
agents can perform. These range from beating a grand master in Go [16], mas-
tering a variety of Atari games, chess, Shogi and Go with a single agent [14],
mastering complex, long-lasting computer games [12,21], discovering new math-
ematical algorithms [6], up to autonomously navigating stratospheric balloons
[4]. While many impressive applications, that exceed human capabilities, lie in
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an information-centric realm, only a fraction involve agents that interact with
real-world physical objects.

One commonality many such information-centric applications share, is a
rather simple reward function. Take two-player games like chess, Go or Starcraft
2 for example: the agent is often rewarded a 1 for winning, −1 for losing and
0 for resulting in a draw. Such simple reward functions are beneficial, because
they do not include human prior knowledge about the game, that might not be
optimal. In chess for example, punishing the agent for every captured piece by
the opponent induces non-optimal prior knowledge, because sacrificing a piece
is sometimes a necessary condition for winning a game. Therefore, the simple
reward function expresses everything the agent is supposed to care about, namely
winning the game. On the contrary humans in the real world care about many
things at the same time with different priorities.

A result of this misalignment between simple reward functions and ‘many
things humans care about’ in the real world are unintended, negative side-effects.
An agent that is tasked with moving a box, might break a vase along its way,
when using a reward function that does not consider vases [2]. A major challenge
therefore is to consider all aspects humans care about in the reward functions
for a large variety of tasks. Since these aspects are often times not fully known
or too many to be considered for computation, recent research has focused on
implicit approaches for avoiding unintended, negative side-effects [8,9,18,19].

One such approach is attainable utility preservation (AUP) [18,19] which
focuses on minimizing the impact the agent’s actions have on the environment
while simultaneously achieving its initial goal. The general idea is that the actual
reward function the designer wants the agent to optimize for, is unknown or
cannot be expressed explicitly. However if the agent preserves the ability to
optimize for a wide range of reward functions, then it most likely also preserves
the ability to optimize the actual reward function in mind. This is done by
decorating the original reward function with an additional penalty term that
punishes agent behavior if it is valuable for seemingly unrelated goals. This
penalty term can be thought of as a measure of how impactful the action is in
general. Its purpose is to incentivize the agent to select less impactful actions,
except when they are necessary to achieve the designated goal. The penalty
term is defined as the average difference in action-values between the selected
action and a no-operation (no-op) action, where the agent has no influence on
the environment’s dynamics for one time step.

However, not every environment is suitable for containing a no-op action in
the action space. Consider robots on a factory work floor for example, which
are highly optimised for their time-dependent tasks and every step requires an
action. These robots cannot simply ‘stand still’ while performing their tasks,
which would lead to delays in production. Other environments might have secu-
rity restrictions, to not let the agent choose to do nothing. For example con-
trolling the velocity and direction of an already moving object (e.g. car, ship,
air plane, etc.). If an auto-pilot would take over control of a fast moving car on
a curvy highway, choosing to do nothing would likely lead to an accident and
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therefore might already be restricted by an additional safeguarding system. In
such scenarios AUP is not a viable option due to its dependence on the no-op
action.

Nevertheless, agents deployed in environments without a no-op action might
sill unintentionally cause side-effects that negatively impact the environment or
the task at hand. Therefore, there is a need for side-effect avoidance in these
scenarios to ensure that the agent can perform its task while minimizing the
negative impact of its actions. This is particularly important in environments
where the consequences of an agent’s actions can have serious real-world conse-
quences, such as in the case of a fast-moving car or a robot on a factory work
floor. By incorporating side-effect avoidance into the agent’s learning algorithm,
it can learn to avoid actions that could have negative unintended consequences,
and thus better align with correct and robust behaviour.

We contribute to the field in three separate ways:

– We suggest three alternative baselines, to measure the impact of actions, that
do not require a no-op action.

– In order to show that these alternative baselines are an extension of the
original AUP approach, we evaluate these baselines in the same AI Safety
Gridworlds [11] as AUP was evaluated on.

– Additionally, we evaluate these three baselines in variants of the AI Safety
Gridworlds that do not include a no-op action, a scenario the original AUP
approach could not have handled.

The rest of this paper is structured as follows: Sect. 2 elaborates on the bigger
picture of side-effect avoidance, Sect. 3 gives a more detailed introduction about
AUP, Sect. 4 describes our four examined variants in detail, Sect. 5 describes the
experiment setup, Sect. 6 reports on the results, Sect. 7 discusses these results
and gives a brief outlook about potential future work, and Sect. 8 concludes the
paper.

2 Related Work

One of the first implicit side-effect avoiding algorithms was introduced by
Krakovna et al. [8]. It is called relative reachability and uses different base-
lines to penalize side effects of the agent using state reachability measures. The
primary focus of this approach is on irreversible side-effects.

A more recent work by Krakovna et al. [9] builds on the previous approach but
uses auxiliary reward functions of possible future tasks. The introduced approach
punishes the agent if current actions have a negative influence on the ability to
complete these future tasks. To avoid interference with events in the environment
that make future tasks less achievable, a baseline policy is introduced to filter
out future tasks that are not achievable by default. The authors formally define
interference incentives and show that the future task approach with a baseline
policy avoids these incentives in the deterministic case.
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Alamdari et al. [1] propose an agent that takes the impact of its actions
into consideration on the well-being and agency of others in the environment.
The agent’s reward is augmented based on the expectation of future return by
others in the environment, and different criteria are provided for characteriz-
ing this impact. The authors demonstrate through experiments in gridworld
environments that the agent’s behavior can range from self-centered to selfless,
depending on how much it factors in the impact of its actions on others. The
proposed approach addresses the issue of incomplete or underspecified objec-
tives and contributes to AI safety by encouraging agents to act in ways that are
considerate of others in the environment.

Shah et al. [15] propose an algorithm that utilizes implicit preference informa-
tion in the state of the environment to fill in the gaps left out inadvertently in the
reward function of agents. The authors argue that when a robot is deployed in an
environment where humans act, the state of the environment is already optimized
for what humans want, providing a source of implicit preference information. The
proposed algorithm is called Maximum Causal Entropy IRL (Inverse Reinforce-
ment Learning) [7] and is evaluated in a suite of proof-of-concept environments
designed to show its properties. The authors show that information from the
initial state can be used to infer both, side-effects that should be avoided and
preferences for how the environment should be organized. The proposed app-
roach has the potential to alleviate the burden of explicitly specifying all the
preferences and constraints of the environment, making it easier to design safe
and effective RL agents.

Recent work by Turner et al. proves that certain symmetries of environments
are a reason for optimal policies to tend to seek power [20]. While power-seeking
policies are related to the ability to achieve a wide range of goals in this context,
these symmetries however exist in many environments, where the agent can
either be shut down or even destroyed [20]. These miss-aligned agents causing
negative side-effects range from incentivized behavior with dying before entering
difficult video game levels on purpose [13], or exploiting a learned reward function
by volleying a ball indefinitely [5].

3 Attainable Utility Preservation

Intuitively, AUP [18] tries to preserve the ability to optimize a correct objective,
which is (partially) unknown, while a proxy objective is optimized. Thus the
goal of AUP is that an agent selects actions that are mainly relevant for its
main objective and not relevant for seemingly unrelated goals. Because actions
that are highly relevant for seemingly unrelated goals are likely to introduce a
side-effect to the environment. For example spilling paint on a factory floor is
a highly relevant action if the agent is tasked to draw a painting on the floor.
However, painting on the factory floor is a seemingly unrelated task to everyday
factory situations and spilled paint poses as a side-effect. The idea behind AUP
is to additionally penalize an action correspondingly if it is, on average, relevant
to a multitude of such seemingly unrelated tasks.
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Formally, Turner et al. consider a Markov decision process (MDP)
(S,A, T , R, γ), where S is a state space, A is an action space, T : S ×A → Δ(S)
is a transition function mapping state-action pairs to distributions over states,
R : S×A → R is a reward function and γ ∈ R a discounting factor. In the setting
of AUP Turner et al. assume the action space contains a no-op action ∅ ∈ A
where the agent does not influence the environment’s dynamics for one time step.
This no-op action is used for the so called step-wise inaction baseline, where the
value of an action is compared with that of the no-op action, to determine its
impact on the state. Additionally, Turner et al. assume the designer provides
a finite set of auxiliary reward functions R ⊂ R

S×A. QRi
denotes the corre-

sponding action-value function (or Q-function) for an auxiliary reward function
Ri ⊂ R. The AUP reward function is then defined as follows:

RAUP (s, a) := R(s, a) − λ

μ

|R|∑

i=1

|QRi
(s, a) − QRi

(s, ∅)|, (1)

where λ ≥ 0 is a regularization parameter to control the influence of the penalty
on the primary reward function and μ scales the penalty by one of the following
two options:

μ :=

{∑|R|
i=1 QRi

(s, ∅) case 1
|R| case 2

(2)

In the first case the intention is to make the penalty roughly invariant to the
absolute magnitude of auxiliary Q-values, which depend on the auxiliary reward
functions and can be arbitrary. This is achieved by scaling with an action-value
of a ‘mild action’ (e.g. ∅). In the second case the idea is to result in the average
change in action values of the auxiliary reward functions.

To learn the action-value functions QRi
(s, a) of the corresponding auxiliary

sets Ri ∈ R as well as the optimal action-value function QAUP(s, a), AUP uses
Q-learning to perform an AUP update as shown in Algorithm 1.

Algorithm 1: AUP update [18]

begin
for i ∈ |R| do

Q′
Ri

= Ri(s, a) + γ maxa′ QRi(s
′, a′)

QRi(s, a)+ = α(Q′
Ri

− QRi(s, a))

Q′ = RAUP (s, a) + γ maxa′ QAUP (s
′, a′)

QAUP (s, a)+ = α(Q′ − QAUP (s, a))

AUP’s baseline approach is also called the step-wise inaction baseline,
because it uses the action-value of the inaction (no-op action) relative to the
current situation. In contrast, two other baselines are the starting state baseline
[8], which compares the current state to the initial state of the environment at
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the start of the episode and the inaction baseline [3], which compares the current
state to the state of the environment that naturally developed from the initial
state, if the agent had done nothing or were never deployed. Both of these alter-
native baselines have their own drawbacks. The starting state baseline punishes
the agent for changes it didn’t cause, if the environment has inherent dynam-
ics (e.g. flow of water in a river). The inaction baseline on the other hand can
cause an agent behavior called offsetting [9], where the agent undoes a correcting
behavior.

This is because the penalty punishes the agent for its correcting behavior
after the correction happened, because it wouldn’t have happened had the agent
done nothing.

However, the step-wise inaction may suffer from delayed side-effects, which
might not immediately occur after the side-effect causing action was taken. In
order to (slightly) mitigate this weakness, Turner et al. adapted their so far
introduced approach (which is referred to as model-free AUP), by leveraging
a model and virtually executing 8 additional no-op actions in both comparison
cases. This copes for side-effects that originate up to 8 time-steps after the action
has happened, but not beyond. This model-based version is referred to by Turner
et al. as AUP.

4 Methods

We consider the same setting as Turner et al. [18], except that we do not assume
a no-op action ∅ to be part of the action space. In other words, the agent must
always chose an action that influences the environment’s dynamics at every time
step. By removing the no-op action from the action space ∅ /∈ A, we also remove
the only known mild action for scaling the penalty by the first alternative of
Eq. 2. Since we do not assume another mild action in the action space a priori,
we chose the baseline itself also as a proxy. Additionally by removing the no-op
action from the action space, we also remove the possibility to apply additional
no-op actions to prevent delayed side-effects.

With this setting we introduce three different baselines, which were moti-
vated by model-free AUP. These are the average, average-others and advantage
baseline.

Average Baseline. If we do not assume that there is an action, that does not
influence the environment’s dynamics, each action leaves a potential impact on
the environment’s state. Our first baseline therefore uses the absolute change
compared to the average action-value in a given state as one possible impact
measure. We call this version average baseline or in short avg. The reward func-
tion for the average baseline is defined as:

Ravg(s, a) := R(s, a) − λ

|R|
∑

Ri∈R

|QRi
(s, a) −

(
1

|A|
∑

a′∈A(s) QRi
(s, a′)

)
|

1
|A|

∑
a′∈A(s) QRi

(s, a′)
. (3)
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Average-Others Baseline. Since the action-value of the action selected by
the agent contributes to the average over all actions, we compare it to a variant
where this action is excluded from the average. Intuitively this is the absolute
difference between the selected action and the average value of all alternatives.
We call this version average-others baseline or in short oth, which is defined as:

Roth(s, a) := R(s, a) − λ

|R|
∑

Ri∈R

|QRi
(s, a) −

(
1

|A|
∑

a′∈A(s)\{a} QRi
(s, a′)

)
|

1
|A|

∑
a′∈A(s)\{a} QRi

(s, a′)
.

(4)
Advantage Baseline. One idea of AUP is, that if an action has an impact
on the environment, then it contributes to a reward function where this impact
is the agent’s goal in a different setting. One way to measure the contribution
a single action has on the overall expected cumulative reward is the advantage
value A(s, a) := Q(s, a) − V (s). In our third approach, we use the absolute
advantage values of actions, averaged over many reward functions as a measure
of impact and call it advantage baseline or short adv. We do this by exploiting
the equality vπ(s) =

∑
a′∈A π(a′|s) qπ(s, a′) [17], where π : S × A → [0, 1] is

a policy, mapping state-action pairs to probabilities. The reward function with
the advantage baseline is defined as:

Radv(s, a) := R(s, a)− λ

|R|
∑

Ri∈R

|QRi
(s, a) −

∑
a′∈A πQRi

(a′|s) QRi
(s, a′)|

∑
a′∈A πQRi

(a′|s) QRi
(s, a′)

. (5)

Random-Action Baseline. Lastly, we use the action-value of a valid random
action a′ ∈ A \ {a} that is different from the action the agent selected, as a
baseline and call it random-action baseline or in short rand. This baseline allows
to measure the impact of the agent compared to any other random action in the
action space. It is defined as:

Rrand(s, a) := R(s, a) − λ

|R|
∑

Ri∈R

|QRi
(s, a) − QRi

(s, a′)|
QRi

(s, a′)
. (6)

We exclude the chosen action a �= a′ to make sure that the penalty cannot reach
0 and is therefore never neglected. The random-action baseline is used as a
conceptual baseline, additional to Q-Learning, for comparison with the previous
three approaches.

5 Experimental Design

We follow the approach of Turner et al. [18] and evaluate our approaches on a
subset of the AI Safety Gridworlds [11] with the focus on avoiding side-effects,
as well as environments developed during the AI Safety Camp 20181. These

1 https://aisafety.camp/2018/06/05/aisc-1-research-summaries/.

https://aisafety.camp/2018/06/05/aisc-1-research-summaries/
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were also already used by Krakovna et al. [8] and Leech et al. [10]. We con-
duct all experiments on two separate versions of these environments. First, the
original version that includes the no-op action in all environments, in order to
compare our approaches to the original AUP algorithm. Second, we evaluate our
approaches on modified versions of these environments, where the no-op action
is removed from the action space. The code to reproduce the results as well as
the requirements to setup the experiments are published on GitHub2.

5.1 Environments

The AI Safety Gridworlds are grid world environments where the agents main
objective is closely tied to movement in cardinal directions on a 2D plane. In
most environments the goal of the blue agent is to reach the green cell .
Additionally each environment has its own unintended, negative side-effect which
should not appear. Each environment measures the presence of the side-effect
and indicates it with a special negative reward of −2, which is not observed by
the agent. Figure 1 shows the environments used for evaluation.

Fig. 1. Environments with safety properties of side effects [8,10,11,18] (Color figure
online)

The side-effects of the individual environments are the following:

– (Figure a) Options: Irreversibly pushing the brown box into a corner [11]
– (Figure b) Damage: Running into the horizontally pacing pink human [10]
– (Figure c) Correction: Disabling the red off-switch [18]
– (Figure d) Offset: Letting the right-moving black vase fall off the con-

veyor belt [8]
– (Figure e) Interference: Disturbing the left-moving orange pallet reach-

ing the pink human [10]

In each of the environments, the episode ends if the agent reached the goal
cell, 20 time steps passed (not part of the state space and therefore not observed
by the agent) or the agent refused to disable the off-switch in Correction after
two time steps.

Options tests the agents ability to handle irreversible actions. Even though
the agent is capable to push the box back into the center, if it first pushes it from
left to right instead of down, it is not capable to get back to its initial position

2 https://github.com/fkabs/attainable-utility-preservation.

https://github.com/fkabs/attainable-utility-preservation
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(agent being in the top part of the environment and box at the center) after it
moved the box for the first time. Therefore this environment is a representative
where it is necessary to apply irreversible actions, yet unaffected parts of the
environment should still be reversible.

Note that the point of Correction, Offset and Interference is to indicate,
whether or not limitations of previous algorithms or baselines apply for our
approaches. These limitations are specific to these previous algorithms/baselines,
which is why standard Q-Learning (without any impact regularization) according
to Turner et al. [18] performs well on two of them, while it does not perform well
on Options and Damage. The purpose of Correction, is to make sure the agent
does not intervene with the possibility of a human turning it off. The episode
ends if the red off-switch is not disabled in the first two steps, simulating the
agent was turned off by a human using the switch. Reaching the goal is as
good as disabling the off-switch, because it implies the agent has taken measures
to prevent its own off-switching. Not disabling the switch and not completing
the environment is therefore the best outcome without causing a side effect.
Furthermore, a yellow indicator appears one step before the end of the episode
and turns red upon shutdown. In Offset, there is no goal cell present. Instead
the agent’s goal is to rescue the black vase off of the conveyor belt, showing
that the agent is capable of intervening with an environment’s dynamics when
it is rewarded to do so, but also showing that offsetting behavior is not present
(refraining from pushing the vase back on the conveyor belt again). The purpose
of Interference is to show, that the agent is capable of not interfering with the
environment dynamics if it is not rewarded for it.

Action Space. For each environment, the agent is allowed to move in the
four cardinal directions as well as to stand still (no-op action). The original
action space therefore is A = {up,down, left, right, ∅}. In order to evaluate our
approaches without the no-op assumption, we remove the no-op action from
the action space for the second set of evaluations (Subsect. 6.2). On contact
or interference with various objects in the environments, the agent pushes the
crate or vase in the same direction the agent was moving, removes the human
or off-switch, or stops the moving pallet.

Reward Function In all environments, the agent receives a primary reward
of 1 when reaching the goal cell except in Offset, where the primary reward is
observed when pushing the vase off the conveyor belt and therefore rescuing it
from disappearing upon contact with the eastern wall. Each environment also
features an unobserved penalty of −2 for causing a side effect, or 0 otherwise.
This score can be used to evaluate safe behavior of the agents.

5.2 General Settings

All agents are trained on 50 trials, each consisting of 6,000 episodes. All agents
use an ε-greedy policy with ε = 0.8 to explore for the first 4,000 episodes and
switch to ε = 0.1 for the remaining 2,000 episodes to learn their respective
Q-functions.
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For each trial, the auxiliary reward functions are re-initialised and ran-
domly selected from a continuous uniform distribution of the half-open interval
[0.0, 1.0). The default parameters for all agents can be seen in Table 1.

Table 1. Default parameters for all algorithms

Parameter Value Description

α 1 Step-size
γ 0.996 Discount factor
λ 0.667 Regularization parameter of the

penalty term
|R| 30 Number of auxiliary reward

functions

This parameters with their respective values were also chosen by Turner et
al. for AUP [18], which allows us to compare the results with our approaches.

6 Results

Since the purpose of our introduced baselines is to extend AUP to environments
not including a no-op action, we first conduct experiments to see, whether they
show comparable performance with original AUP. Therefore we evaluate our
proposed baselines in the unchanged AI Safety Gridworlds from Turner et al. [18].
Additionally, we conducted experiments in modified versions of the AI Safety
Gridworlds, which do not include a no-op action. Besides original AUP in the first
evaluation setting, we compare our proposed approaches to Q-learning without
any impact regularization, and to the random-baseline approach, where a random
action is used as a dummy baseline.

Additionally, we conduct experiments to evaluate the stability of the hyper-
parameters for all approaches. We investigate how different λ, γ and |R| affect
the performances of the agents. The results of these experiments are shown as
“count plots” in the supplementary material, which show different outcome tallies
across varying parameter settings.

Each episode may have one of four outcomes, depending on the primary
objective and a side-effect:

– No side effect, complete: The agent fulfilled the primary objective and did
not cause a side effect (best outcome for all environments except Correction).
In this case, the agent receives a primary reward of 1 and a hidden reward of
0, resulting in a total reward of 1.

– No side effect, incomplete: The agent did not fulfill the primary objective,
but did not cause a side effect (best outcome for Correction). In this case,
the agent receives a primary reward of 0 and a hidden reward of 0, resulting
in a total reward of 0.
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– Side effect, complete: The agent fulfilled the primary objective, but caused
a side effect. In this case, the agent receives a primary reward of 1 and a hidden
reward of −2 resulting in a total reward of −1.

– Side effect, incomplete: The agent was not able to achieve the primary
goal and also caused a side effect. In this case, the agent receives a primary
reward of 0 and a hidden reward of −2 resulting in a total reward of −2.

6.1 Comparison to AUP

Figures 2, 3, 4, 5 and 6 show the results of the five environments averaging
over 50 trials each. Our proposed baselines are not entirely capable to compete
with model-free AUP in Options, yet the results show an improvement over Q-
Learning and the random-action baseline. In Damage our results seem to be on
par with model-free AUP, moreover all approaches except Q-Learning reach the
best possible outcome. The results also show, that no offsetting-, nor interfering
behavior appears for all proposed baselines. However, all approaches (except the
random-baseline) show correcting behaviour due to its delayed effect. The best
performing, introduced baseline is the advantage baseline. It even slightly out-
performs model-free AUP in Options during the exploration phase and achieves
the best possible outcome in Damage, along with the other approaches, after
the exploration strategy switch. As expected Q-Learning causes side-effects in
Options and Damage, shows correcting behavior and does not show offsetting
nor interfering behavior.

Fig. 2. Average reward for different approaches in the Options environment. The
reward is averaged per time step over 50 trials (∅ ∈ A). Our proposed approaches per-
form distinctly below model-free AUP, yet above Q-Learning and the random-action
baseline. Note that the advantage baseline seemingly outperforms model-free AUP
before the exploration switch at episode 4,000.
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Fig. 3. Average reward for different approaches in the Damage environment. The reward
is averaged per time step over 50 trials (∅ ∈ A). All methods evaluated, except standard
Q-Learning, reach near-optimal performance after the exploration switch.

Fig. 4. Average reward for different approaches in the Correction environment. The
reward is averaged per time step over 50 trials (∅ ∈ A). All methods except the random-
action baseline show correcting behavior (total reward of −1 indicates reaching the goal
but also creating a side-effect), where the agent interferes with the off-switch to prevent
an early end of the episode.
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Fig. 5. Average reward for different approaches in the Offset environment. The reward
is averaged per time step over 50 trials (∅ ∈ A). None of the approaches, except the
random-action baseline, show offsetting behavior, where the box is saved first but then
put on the conveyor belt again.

Fig. 6. Average reward for different approaches in the Interference environment. The
reward is averaged per time step over 50 trials (∅ ∈ A). All of the methods show near-
optimal performance in the end, indicating that the agent does little or not interfere
with the moving orange pallet. (Color figure online)

6.2 Dropping the No-Op Action

Figures 7, 8, 9 and 10 show the results in the modified environments where the
no-op action is excluded from the action space. These results show that Options
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still imposes a challenge to all approaches, while all baselines, except standard
Q-Learning, manage to avoid side-effects in Damage.

None of the approaches show neither offsetting nor interfering behavior, while
all baselines except the random-action baseline, show correcting behavior. Again
this is most likely due to the delayed side-effect in this environment (Fig. 11).

Fig. 7. Average reward for different approaches in the Options environment. The
reward is averaged per time step over 50 trials (∅ /∈ A). All methods show a clear
performance drop after the exploration switch.

Fig. 8. Average reward for different approaches in the Damage environment. The reward
is averaged per time step over 50 trials (∅ /∈ A). All methods, except Q-Learning, show
near-optimal performance after the exploration switch.
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Fig. 9. Average reward for different approaches in the Correction environment. The
reward is averaged per time step over 50 trials (∅ /∈ A). All methods except the random-
action baseline show correcting behavior (total reward of −1 indicates reaching the goal
but also creating a side-effect), where the agent interferes with the off-switch to prevent
an early end of the episode.

Fig. 10. Average reward for different approaches in the Offset environment. The
reward is averaged per time step over 50 trials (∅ /∈ A). None of the approaches show
clear offsetting behavior, where the box is saved first but then put on the conveyor belt
again.



254 S. Eresheim et al.

Fig. 11. Average reward for different approaches in the Interference environment.
The reward is averaged per time step over 50 trials (∅ /∈ A). All of the methods
show near-optimal performance in the end, indicating that the agent does little or not
interfere with the moving orange pallet. (Color figure online)

7 Discussion

The poor performance in Options indicates, that the advantage, average and
average-others baselines struggle with environments that require irreversible
actions to be taken. Especially in comparison with Damage, where each state
can be reached again and all approaches achieve optimal performance. Also a
comparison between Fig. 2 and Fig. 7 shows a visible difference in final per-
formance, indicating that the missing no-op action has a performance impact
when irreversible actions are required to achieve the goal. This suggests that our
approaches are indifferent to which part of the environment is irreversible.

Overall, the average and average-others baselines perform very similarly. This
indicates that it is not relevant whether the selected action is part of the average
in the penalty term or not. This is probably due to the action value of the selected
action not being a particular outlier compared to the average of all action values
in the given state.

The advantage baseline was capable of outperforming model-free AUP in
Options during the first 4,000 episodes with ε = 0.8. Moreover, we find that the
performance of the average and average-others baseline is better compared to the
advantage baseline and model-free AUP in the Damage environment during the
exploration phase. However, all approaches rise to the optimal performance once
the exploration switch is reached. We assume this phenomenon has a connection
to the amount of “free space” available to the agent until it comes in contact with
the side-effect. While in Options this is rather soon, as the side-effect is just one
action away from the initial state and 3 fields around the box are available for
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the agent, in Damage the side-effect is two actions away and the agent has 6 fields
that are uninvolved by the human.

Unsurprisingly, the advantage, average and average-others baselines show
correcting behavior, meaning they intervene with the off-switch in Correction.
The agents using these baselines, have learned that only after this intervention
they are capable of reaching the goal state. Our approaches are incapable of
avoiding this side-effect as it comes with a time-delay (the episode still continuing
after two steps) and by design our approaches cannot handle such side-effects, as
does model-free AUP. AUP is supposed to handle delayed side-effects, however
only side-effects, that are delayed by 8 time steps. Interestingly, the random-
action baseline manages to prevent correcting behavior in Correction, which
requires further investigation.

8 Conclusion

We propose three different, alternative baselines to attainable utility preserva-
tion that do not build upon a no-op action, which induce safer, yet effective
behavior than standard Q-Learning. We evaluate all three baselines on two sep-
arate versions of five AI safety Gridworlds comparing them to model-free AUP,
Q-learning and a random baseline. Our proposed baselines require less assump-
tions and therefore are more broadly usable, but also show less side-effect avoid-
ing potential in environments with irreversible actions and are more sensitivity
to parameters.

8.1 Future Work

We suggest future work on investigating the performance of the proposed base-
lines in larger, more complex and multi-task environments, as well as in environ-
ments with larger action spaces, to determine the extent to which our proposed
baselines induce safe and effective behavior. Also coping with delayed side-effects
in unspecified time frames is still an open challenge to be solved.
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Abstract. Privacy preserving deep learning is an emerging field in
machine learning that aims to mitigate the privacy risks in the use of deep
neural networks. One such risk is training data extraction from language
models that have been trained on datasets, which contain personal and
privacy sensitive information. In our study, we investigate the extent of
named entity memorization in fine-tuned BERT models. We use single-
label text classification as representative downstream task and employ
three different fine-tuning setups in our experiments, including one with
Differentially Privacy (DP). We create a large number of text samples
from the fine-tuned BERT models utilizing a custom sequential sam-
pling strategy with two prompting strategies. We search in these samples
for named entities and check if they are also present in the fine-tuning
datasets. We experiment with two benchmark datasets in the domains of
emails and blogs. We show that the application of DP has a detrimental
effect on the text generation capabilities of BERT. Furthermore, we show
that a fine-tuned BERT does not generate more named entities specific
to the fine-tuning dataset than a BERT model that is pre-trained only.
This suggests that BERT is unlikely to emit personal or privacy sensi-
tive named entities. Overall, our results are important to understand to
what extent BERT-based services are prone to training data extraction
attacks (Source code and datasets are available at: https://github.com/
drndr/bert_ent_attack. An extended version of this paper can be also
found on arXiv [12]).

Keywords: language models · training data extraction · privacy
preserving deep learning

1 Introduction

Deep Neural Networks (DNNs) became the de facto tool for achieving state-
of-the-art performance in many research domains such as computer vision and
natural language processing (NLP). Although utilizing large volumes of train-
ing data is one of the main driving factors behind the great performance of
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DNNs, publishing these models to the public raises some serious privacy concerns
regarding private and confidential information present in the training data [32].
These privacy concerns are especially relevant for large Language Models (LMs)
which form the basis of state-of-the-art technologies in many NLP tasks. Recent
versions of these models are usually first pre-trained in a task-agnostic self-
supervised manner. The latest large LMs use a corpus size ranging from hundreds
of gigabytes to several terabytes of text [6,42] during this self-supervised pro-
cess. The sheer size of these datasets makes it near impossible for researchers to
remove all confidential information which may be present in the corpus. A recent
study has shown that it is possible to extract personal information from some
large LMs, even if that given information has only appeared once in the training
corpus [8]. While the training cost of these large LMs became so prohibitively
expensive that only the biggest tech companies can afford it [48], pre-trained
LMs are commonly used in businesses that work with huge amounts of text
data. These businesses include banks, telecommunications, and insurance com-
panies, which often handle a great amount of personal and privacy sensitive data.
In practice, pre-trained LMs are fine-tuned on a business-specific dataset using
some downstream task (such as text-classification, question-answering, or nat-
ural language inference) before deployment [11]. Although the fine-tuning may
mitigate some of the unintended memorization of the original dataset used in
pre-training, it raises new concerns regarding the personal and privacy sensitive
information in the business-specific dataset used for the fine-tuning process [8].
Privacy Preserving Deep Learning (PPDL) is a common term used for meth-
ods aiming to mitigate general privacy concerns present in the use of DNNs.
Multiple approaches have been proposed to achieve PPDL [37], but there is no
perfect solution to this problem, with each method having its own challenges and
limitations. The most popular techniques include Federated Learning [36], the
application of Differential Privacy (DP) [1], encryption [22], and data anonymiza-
tion [52].

We investigate whether it is possible to extract personal information from
one of the most popular modern LMs, BERT [11]. BERT is an auto-encoder
transformer that is mostly used for natural language understanding tasks. Since
BERT is less adept at generating long, coherent text sequences [57], we focus our
study on the generation and extraction of named entities. We conduct our experi-
ments on three typical fine-tuning setups to understand the privacy risks involved
in using BERT for commercial purposes. We consider fine-tuning all layers of
BERT (Full), fine-tuning only the last encoding layer and the classifier head of
BERT (Partial), and partial fine-tuning but with a privacy preserving optimizer
(Differentially Private, short: DP). As a privacy preserving optimizer, we employ
the established differentially private stochastic gradient descent (DPSGD) algo-
rithm [1], which we discuss in detail in Sect. 3.1. We compare the fine-tuning
setups with a pre-trained only BERT base model. We experiment with two
benchmark datasets in the domains of emails (Enron Email corpus [28]) and
blogs (Blog Authorship Corpus [47]). For triggering entity extraction, we use two
prompting techniques. The naive prompting is based on randomly selected text
from the web, while the informed prompting uses actual text from the datasets’
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test sets. Each experimental setup is assessed with regard to its performance
on the down-stream task, i. e., single-label text classification, and the extent of
named entity memorization. In summary, our experiments show:

– The memorization rate of named entities in the fine-tuned BERT models is
less than 10% in both datasets across all setups. Interestingly, the fine-tuned
models do not emit more entities from the fine-tuning datasets than a pre-
trained only BERT model.

– When comparing the informed prompting versus the naive prompting, the
BERT models consistently generate more named entities when using naive
prompts. Thus a potential attacker does not require prior knowledge about
the training dataset of a model.

– Applying differentially private fine-tuning results in a strong drop in the
amount of memorized entities at the cost of downstream task performance.
It effectively reduces the amount of entity memorization in fine-tuned BERT
models.

Below, we discuss the related work. Our framework and methods for extract-
ing named entities from fine-tuned BERT models are described in Sect. 3.
Section 4 introduces the datasets and the details of the experiments. The results
are described in Sect. 5 and discussed in Sect. 6.

2 Related Work

2.1 Language Models and Text Generation

Modern large LMs rely on two core concepts that led to their dominance in the
NLP field: the focus on the self-attention mechanism in the DNN architecture
and the introduction of large-scale task-agnostic pre-training to learn general
language representations [59]. Self-attention is used for modeling dependencies
between different parts of a sequence. A landmark study in 2017 [55] has shown
that self-attention was the single most important part of the state-of-the-art
NLP models of that time. It introduced a new family of models called trans-
formers, which rely solely on stacked layers of self-attention and feed-forward
layers. Besides the state-of-the-art performances, another great advantage of the
transformer architecture is that unlike a recurrent architecture, it allows for
training parallelization. The ability to parallelize training, alongside the signif-
icant increase in computational power allowed these models to train on larger
datasets than once was possible. Since supervised training requires labeled data,
self-supervised pre-training with supervised fine-tuning became the standard
approach when using these models [35].

State-of-the-art transformers can be divided into three main categories based
on their pre-training approach [64]. Auto-regressive models use the classical lan-
guage modeling pre-training task of next word prediction. Auto-encoding mod-
els are pre-trained by reconstructing sequences that have been corrupted in
some way. Sequence-to-sequence models usually employ objectives of encoding-
decoding models for pre-training, like replacing random sequences in a text with
one special token with the objective of predicting that given sequence [42].
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BERT. A major limitation of the auto-regressive models is that during pre-
training they learn a unidirectional language model. In these models, tokens are
restricted to only attend to other tokens left to them. In contrast, BERT is an
auto-encoder transformer model that uses an attention mechanism on the entire
input sequence [11]. This model utilizes Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP) as pre-training tasks. In MLM, some tokens are
randomly removed from the input sequence and the model is trained to predict
the removed tokens using context from both directions.

Although the parameter count of BERT is greatly surpassed by more recent
large LMs (such as the new GPT models [6,40]), BERT is still one of the most
common baselines in many NLP benchmark tasks. The strong performance cou-
pled with the fact that the model is democratized and has publicly available
pre-trained implementations makes BERT a popular choice of NLP model both
in industry and academia. Since its original release, there have been dozens of
follow-up studies and models published [44]. The most notable variants include
RoBERTa [33], DistilBERT [46], DeBERTa [24], and domain-specific models
such as SciBERT [5] or ClinicalBERT [3].

Natural Language Generation. Natural Language Generation (NLG) is a
subfield of NLP that is focused on producing natural language text that enables
computers to write like humans [64]. Although auto-regressive transformer mod-
els are the standard choice for the task of NLG (since they are already trained
to predict the next token based solely on previous tokens in a sequence), it
has been shown that BERT can also be utilized to generate reasonably coher-
ent text. Wang and Cho [57] designed a generation strategy for BERT based on
Gibbs sampling [20], where given a seed sequence, tokens at random positions are
masked and replaced by new tokens based on the sampling technique. Another
generation strategy developed for auto-encoding transformers [21] is to use a
fully masked sequence as input and predict all tokens at once. Subsequently,
tokens with the lowest probability are iteratively re-masked and replaced with a
newly computed token.

2.2 Privacy Attacks in Machine Learning

Privacy attacks in machine learning denote a specific type of adversarial attack,
which aim to extract information from a trained model. Based on recent surveys
in the field [10,32,43], these attacks can be divided into five main categories.

Training Data Extraction Attacks. Training data extraction attacks aim
to reconstruct training datapoints, but unlike model inversion attacks, the goal
is to retrieve verbatim training examples and not just “fuzzy” class representa-
tives [8]. These attacks are best suited for generative sequence models such as
LMs. Initially these attacks have been designed for small LMs using academic
datasets [7,53,63]. The aim of these studies was to measure the presence of spe-
cific training datapoints in the text samples generated by the models. A common
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approach to measure the extent of this unintended memorization is to insert so-
called “canaries” (artificial datapoints) into the training datasets and quantify
their occurrence during sequence completion [7]. Since these initial studies were
based on smaller models trained with a high number of epochs, it was assumed
that this kind of privacy leakage must be correlated with overfitting [63]. How-
ever, a follow-up study using the GPT-2 model, which is trained on a very large
corpus for only a few epochs, showed that even state-of-the-art large LMs are
susceptible to these kinds of attacks. Using the pre-trained GPT-2 model, Car-
lini et al. [8] were able to generate and select sequence samples which contained
low k-eidetic data-points (data points that occur k times in the training cor-
pus). A study by Lehman et al. [30] on Clinical BERT attempted to extract
patient-condition association using both domain-specific template infilling and
the text generation methods inspired by the text extraction research done on
GPT-2 [8] and the BERT specific text generation technique proposed by Wang
and Cho [57]. Their methods were not successful in reliably extracting privacy
sensitive information (patient-condition associations) from Clinical BERT, but
it remains inconclusive whether it is due to the limitations in their method or in
the linguistic capabilities of BERT.

Membership Inference Attacks. The goal of a membership inference attack
is to determine whether or not an individual data instance is part of the train-
ing dataset for a given model. This attack typically assumes a black-box query
access to the model. The common approach to this type of attack is to use a
shadow training technique to imitate the behavior of a specific target model.
In shadow training, a model (shadow model) is trained on a dataset that has a
disjoint but identically formatted training data as the target model. The trained
inference model is then used to recognize differences on the target model pre-
dictions between inputs used for training and inputs not present in the training
data [49].

Model Extraction Attacks. The adversarial aim of a model extraction attack
is to duplicate (i. e., “steal”) a given machine learning model. It achieves this
by training a function f’ that is approximating the function f of the attacked
model [32]. A shadow training scheme has been shown to successfully extract
popular machine learning models such as logistic regression, decision trees, and
neural networks, using only black-box query access [54]. Other works have pro-
posed methods to extract information about hyperparameters [58] and properties
of the architecture [39] in neural networks.

Model Inversion Attacks. The idea behind model inversion attacks is that
an adversary can infer sensitive information about the input data using a target
model’s output. These attacks can be used to extract input features and/or
reconstruct prototypes of a class (in case the inferred feature characterize an
entire class), given a white-box access to the model and knowledge about the
target labels with some auxiliary information of the training data [17].
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Property Inference Attacks. The goal of property inference attacks is to
infer some hidden property of a training dataset that the owner of the target
model does not intend to share (such as feature distribution or training bias).
Initially, property inference attacks were applied on discriminative models with
white-box access [41]. A more recent work has extended the method to work on
generative models with black-box access [41].

2.3 Privacy Preserving Deep Learning

Based on the literature [10,32,43], PPDL methods can be divided into four main
categories.

Differentially Private Learning. Differential Privacy (DP) is a rigorous
mathematical definition of privacy in the context of statistical and machine
learning analysis. It addresses the challenge of “learning nothing about an indi-
vidual while learning useful information about the population” [16]. In machine
learning, DP algorithms aim to obfuscate either the training data [65] or the
model [45] by adding noise. Since directly adding noise to DNN parameters may
significantly harm its utility, the best and most common place for applying DP in
deep learning is the gradients [66]. Abadi et al. [1] proposed an efficient training
algorithm with a modest privacy budget called Differentially Private Stochas-
tic Gradient Descent (DPSGD). DPSGD ensures DP by cutting the gradients
to a maximum L2 norm for each layer and then adding noise to the gradients.
Although DPSGD comes with increased computational cost and performance
loss, variations of this algorithm [9,14] still belong to the cutting-edge of PPDL
research.

Encryption. Cryptography-based methods can be divided into two subcate-
gories, depending whether the target of the encryption is the training data [22] or
the model [4]. Regardless of the target, most existing approaches use homomor-
phic encryption, which is a special kind of encryption scheme that allows compu-
tations to be performed on encrypted data without decrypting it in advance [2].
Since training a DNN is already computationally expensive, adding homomor-
phic encryption to the process raises major challenges as it increases training
times by at least an order of magnitude [32].

Data Anonymization. Data Anonymization techniques aim to remove all Per-
sonally Identifiable Information (PII) from a dataset. The common approach to
achieve this is to remove attributes that are identifiers and mask quasi-identifier
attributes [60]. The popular k-anonymity algorithm [52] works by suppress-
ing identifiers (i. e., replacing them with an asterisk) and generalizing quasi-
identifiers with a broader category which has a frequency of at least k in the
dataset. Although data anonymization techniques were developed for structured
data, it is possible to adapt them to unstructured text data [23] as well as jointly
anonymizing structured data and unstructured text data [50].
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Aggregation. Aggregation methods are generally used along with distributed
learning, in which multiple parties train on the same machine learning task
while aiming to keep their respective datasets private [32]. Although aggregation
methods can provide data security during distributed training, their privacy
preserving aspects are more limited than other PPDL approaches.

3 Extracting Named Entities from BERT

In order to extract the named entities of the fine-tuning dataset from the BERT
model, we present the experimental pipeline depicted in Fig. 1. The pipeline con-
sists of three phases: fine-tuning (including a privacy preserving approach using
Differential Privacy), text generation from the fine-tuned models, and evaluation
of the named entity memorization.

Private Dataset

BERT

Prompts

 Text Sample

Search 
for 

Matches

List of Named
Entities

Generate

Fine-tune

Named Entity
Recognition

Fig. 1. An illustration of our framework for extracting training data entities from
BERT. First, we fine-tune a pre-trained BERT on a private dataset. Next, we generate
text samples from the fine-tuned model using prompts. Finally, we search the generated
samples for the named entities that occur in the private dataset.

3.1 Fine-Tuning

In the fine-tuning phase, we employ single-label text-classification as the down-
stream task. Our setup consists of three different fine-tuning methods: Full,
Partial, and Differentially Private (DP) fine-tuning. The different fine-tuning
methods are depicted in Fig. 2.

The Full setup follows the standard practices of fine-tuning LMs, where a
classifier head is attached to the base network and all the weights of a pre-trained
network along with the classifier head are retrained on the task-specific dataset
with a low learning rate [27]. Full fine-tuning usually leads to the best results on
the downstream task, but in the case of large LMs, it is not always feasible due to
the size of these networks and the computational costs of retraining them. Due
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to this constraint, researchers have designed alternative fine-tuning strategies
where fine-tuning is employed in a more optimized manner [27,29]. A common
alternative strategy is to freeze most of the layers in a network and only retrain
the last few encoder layers with the task-specific head of the network [34,51].
In our Partial setup, we freeze all layers of the BERT model except for the last
encoding layer. Applying DP in fine-tuning puts additional noise to the gradient
updates, which in the lower layers carries a detrimental effect to the pre-trained
knowledge of the model as the weights of the bottom layers are more sensitive
to noise. For this reason, in the Differentially Private setup we employ the same
layer-freezing approach as in the Partial setup.

Fig. 2. An illustration of the different fine-tuning methods.

In addition, the DP fine-tuning method uses the Adam variant of DPSGD
by Abadi et al. [1]. DPSGD is a modification to the stochastic gradient descent
algorithm that employs (ε, δ) differential privacy [15]. In the formal definition of
(ε, δ) differential privacy, a randomized algorithm M is differentially private if:

Pr[M(x) ∈ S] ≤ exp(ε) · Pr[M(y) ∈ S] + δ

where x and y are neighboring datasets, S denotes all the potential output of
M that can be predicted, ε is the metric of privacy loss (also known as the
privacy budget) at a differential change in the data (e. g., adding or removing
one datapoint), and δ is the probability of an accidental privacy leak. In deep
learning, an ε value is defined as modest when it is below 10 and δ is usually
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set to the reciprocal of the number of training samples [14,62]. In standard data
analytics settings, ε values between 0 and 1 are considered to be highly private,
and values between 2 and 10 are considered somewhat private. However, in deep
learning it is hard to achieve a ε value under 1, since the privacy budget is based
on how much the data affected the model. Everytime the dataset goes through
the model, the ε increases.

The DPSGD algorithm entails two major changes to the gradient descent
algorithm: the introduction of gradient clipping and the addition of Gaussian
noise to the clipped gradients. The clipping limits how much an individual train-
ing point can impact the model parameters, while the addition of the noise ran-
domizes the behavior of the algorithm, making it statistically impossible to know
whether or not a training point was included in the training set. These modi-
fications to the gradients happen on a microbatch level and are aggregated for
the standard batch optimization step.

3.2 Text Generation

Although the standard objective of NLG is to produce text that appears indistin-
guishable from human-written text (see related work in Sect. 2.1), in our study
we are less interested in general text quality in terms of coherence or grammati-
cal correctness. Our primary goal is to trigger the fine-tuned models to generate
named entities found in the training data. To achieve this, we employ two dif-
ferent prompting methods and an efficient generation strategy that produces
diverse text samples.

Prompt Selection. Selecting good prompts is a crucial step in triggering the
model to unveil information about the training data. We employ two different
prompting strategies for text generation.

1. In the first one, we take the strategy shown to achieve the best results in the
experiments of Carlini et al. [8], in which a fixed length substring is randomly
sampled as prompt from the Common Crawl1 dataset. This we refer to as
a naive prompting, since we randomly use text samples scraped from the
internet. The selected prompts likely have no or only very little connection
with the text and named entities from the fine-tuning dataset.

2. In the second strategy, we create the prompts by randomly selecting sequences
of a fixed length from the test set of the fine-tuning data. This setup is
considered as informed prompting given that the prompts come from the
same domain and are generally highly similar to the training data.

Text Generation. Despite the fact that the bidirectional nature of BERT does
not naturally admit to sequential sampling, Wang and Cho [57] have shown that
it is also possible to utilize this strategy for BERT. Although their results suggest

1 http://commoncrawl.org.

http://commoncrawl.org
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that their non-sequential iterative method produces slightly more coherent text
than sequential sampling, it requires multiple iterations for each token. Since text
coherence is not our primary goal, we choose to employ a computationally less
expensive sequential sampling method. In this method, we choose a randomly
selected prompt (see above) as a seed sequence and extend it with a masked
token. For each iteration, we predict the masked token and replace the mask.
We add an additional masked token to the extended sequence until we reach the
defined sequence length.

On top of this generation method, we also employ a combination of beam
search and nucleus sampling as an additional decoding strategy. Beam search is
a commonly used decoding method in machine translation tasks [18]. Compared
to greedy search, where at each iteration only the token with the highest prob-
ability is selected, beam search selects multiple tokens at each iteration. The
number of tokens is defined by the beam width parameter and an additional
conditional probability is used to construct the best combination of these tokens
in a sequence. While both greedy search and beam search select tokens based on
maximum likelihood, sampling from the probability distribution is also a viable
approach. The most popular sampling method is top-k sampling, where in each
iteration a token is sampled from a set of k candidates with the highest proba-
bility. Nucleus sampling (also called top-p sampling) is an alternative strategy to
top-k, where instead of using a set with a fixed length, the smallest possible set
is constructed with tokens whose cumulative probability exceeds the probability
value of parameter p [25]. These sampling methods can be combined with both
search algorithms.

3.3 Evaluating Named Entity Memorization

Named entities refer to objects and instances that identify one item from a
set of other items sharing similar attributes. They usually include entity types
like (person) names, organizations, locations, products, and special temporal or
numerical expressions like dates or amounts of money [38]. In order to evaluate
the extent to which the models have memorized the named entities found in
the fine-tuning dataset, we first extract them from the datasets using Named
Entity Recognition (NER) and create a dictionary with the entities and their
corresponding entity types.

After this, we create three different entity sets from this dictionary. The first
one (All) consists of every entity with a character length greater than 3. In the
second (Private), we do a cross-check of the first entity set with the pre-training
data, and remove all entities also present in the pre-training datasets, leaving
us a set of entities that only appear in the fine-tuning data. For the third and
final set (Private 1-eidetic), we keep all 1-eidetic entities, i. e., entities which
appeared only once in the fine-tuning dataset, of the second set and discard
everything else. Once we have these three sets and the generated samples from
each model set up (including the samples generated from a base model that was
not fine-tuned), we count the number of exact matches in the samples.
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4 Experimental Apparatus

4.1 Datasets

For selecting suitable datasets for the study we had two criteria. First, to avoid
privacy issues and ethical concerns only publicly available datasets were chosen.
Second, to provide a good basis for the measurement of memorization, we were
interested in datasets that contain a large number of named entities. We choose
data which has English as its primary language and kept 20% of each dataset
for testing. The main characteristics of the datasets can be seen in Table 1.

Table 1. Characteristics of the datasets

Dataset N #Train #Test #Classes

Enron 7,501 6,000 1,501 7
BlogAuthorship 430,269 344,215 86,054 39

Enron Email Dataset. The raw Enron Email corpus [28] consists of 619,446
email messages from 158 employees of the Enron corporation. The dataset con-
tains full emails of real users, which include naturally occurring personal infor-
mation such as names, addresses, organizations, social security numbers etc.
Since the original dataset is not fitted to text-classification (as it lacks any offi-
cial labels), we adapted it by labeling the emails by the folder names they are
attached to (i. e., “sent-mail”, “corporate”, “junk”, “proposals” etc.). We selected
seven folder that could be considered as valid classes in an applied setting. The
labels of these seven classes are “logistics”, “personal”, “management”, “deal dis-
crepancies”, “resumes”, “online trading”, and “corporate”. During the preprocess-
ing of the emails, we removed the forward blocks, HTML links, line breaks, and
tabs. The removal of forward blocks and HTML links was especially important
to improve the quality of the generated texts.

Blog Authorship Corpus. The Blog Authorship Corpus [47] contains text
from blogs written until 2004, with each blog being the work of a single user.
The corpus incorporates a total of 681,288 posts from 19,320 users. Alongside the
blogposts, the dataset includes topic labels and demographic information about
the writer, including gender, age, and zodiac sign. Although the blogposts were
written for the public, they contain some PII such as names, organizations and
postal addresses. We adapt the dataset for text classification by labeling the posts
by the blogs’ topics. Posts with the topic label “unknown” were removed. After
the removal, the dataset consists of 430,269 posts with 39 unique labels. Pre-
processing was kept to a minimal: non-printable ASCII characters, non-ASCII
characters (e. g., Korean letters), and URL links were removed, otherwise the
text remained unchanged.
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4.2 Procedure and Implementation

The procedure of our experiments follows the pipeline as illustrated in Fig. 1.
Below, we describe the details of each step. All experiments were conducted on
a NVIDIA A100 HGX GPU with 40 GB of RAM.

Fine-Tuning. The experiments are based on the Hugging Face implementation
of the BERT base uncased model [59]. For single-label classification, a custom
classifier head is attached to the base model consisting of a Dropout and a Linear
layer. In the Full and Partial setup we used the standard Adam optimizer, while
in the Differentially Private fine-tuning, we changed it to the DPAdam optimizer
from the Opacus library [61] with a microbatch size of 1.

Text Generation. For text generation, we first removed the classifier heads
from the fine-tuned models and attached a pre-trained MLM head instead. We
then used the sequential generation method described in Sect. 3, with the addi-
tion of beam search and nucleus sampling combined with a temperature param-
eter. During prompt creation, we sampled a string with a character length of 100
either from the Common Crawl dataset (naive prompting) or from the test set
(informed prompting). We set the sequence length to 256 tokens. We removed
the tokens of the prompt before saving the samples, i. e., if the prompt contained
any entities, they are not considered for the evaluation. In total, we generated
20,000 text samples for each setup.

Named Entity Recognition. For collecting the named entities from the fine-
tuning datasets, we employed the NER system of the spaCy library that utilizes a
custom word embedding strategy, a transformer, and a transition-based approach
to named entity parsing [26]. spaCy distinguishes between a total of 18 different
named entity types. Out of these 18 entity types we selected seven (Person, Orga-
nization, Location, Geo-Political Event, Facility, Money, Cardinal), which have a
high possibility to contain personal or privacy sensitive information. When creat-
ing the Private entity set described in Sect. 3.3, we cross-checked our fine-tuning
entities with the pre-training datasets (the Book Corpus and Wikipedia datasets,
available through the datasets library [31]) to discard the entities present both
in fine-tuning and pre-training. The numbers of named entities per type in each
of the three sets can be seen in Table 2.

4.3 Hyperparameter Optimization

Fine-Tuning. During fine-tuning, we carefully optimized the models on both
datasets using manual tuning based on test accuracy. Dropout rates were fixed
based on the default BERT base implementation of the huggingface library (0.1
for attention dropout and 0.3 for the classifier) [59]. For batch size, learning rate,
and number of epochs a search space was defined based on previous works [13,
19]. Specifically, we chose the batch size from {8, 16, 32}, the learning rate
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Table 2. Number of named entities found in the datasets sorted by type.

Named Entity Type Enron Blog Authorship
All Private Private

1-eidetic
All Private Private

1-eidetic

PERSON 10,712 7,717 4,844 209,434 137,892 113,599

ORG 9,933 7,178 5,001 168,068 107,480 90,594

LOC 316 175 125 10,562 4,902 4,049

GPE 1,551 739 490 37,691 17,781 13,196

FAC 367 230 174 12,824 7,137 6,349

MONEY 1,220 736 585 11,216 7,551 6,343

CARDINAL 2,918 1,924 1,386 24,075 13,020 10,810

Total 27,017 18,726 12,605 473,870 295,763 244,940

from {5e−3, 1e−3, 1e−4, 5e−5, 1e−5}, and the number of epoch from {3, 5,
10}. Across all setups we found that using a batch size of 32 leads to the best
performance. On the Enron dataset the highest accuracy values were achieved
when the number of epochs is set to 10, while the Blog Authorship dataset
required 5 epochs to reach the highest values. In the Full setup a learning of
1e−5 was found to be the best performing on both datasets. In the Partial setup
the best results were found with a 5e−5 learning rate for the Enron dataset and
1e−4 for the Blog Authorship dataset.

In the DP fine-tuning, the best results were achieved with a learning rate
of 1e−3 on both datasets. In this setup two additional hyperparameters had to
be optimized to achieve the highest possible accuracy while keeping the privacy
budget ε single-digit. We set the per-example gradient clipping threshold to 10
based on a previous study using DP with BERT [62], and found the best values
for the noise multiplier to be 0.5 for the Enron and 0.4 for the Blog Authorship
dataset.

Text Generation. For text generation, we studied the effects of the different
sampling parameters. We found the best results in terms of text diversity and
coherence through manual tuning with the following value combinations: number
of beams: 1, beam size: 30, nucleus sampling value: 0.8, temperature: 2.0, and
n-gram repetition limit: 3.

4.4 Measures

To evaluate the performance on the downstream task, we use accuracy. In the DP
setup, we measure privacy preservation with the privacy budget ε. In all models,
the extent of unintended memorization of named entities found in the fine-tuning
dataset is measured by counting their occurrences in generated samples and
checking their k-eidetic value. A data point (or in our case an entity) is k-eidetic
if it appears k times in the training corpus [8].
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5 Results

5.1 Classification

Table 3 shows the singe-label text classification results for each setup. For both
datasets, we observe a similar trend between the different fine-tuning setups: Full
achieved the highest accuracy on the test set, Partial performed slightly worse,
and the DP setup produced the worst results with a 16% point drop compared
to the Partial. In general, the accuracy values are considerably higher on the
Enron dataset. In the DP setup, the privacy budget ε is 9.79 for the Enron and
ε = 7.38 for Blog Authorship.

Table 3. Mean accuracy and standard deviation over five runs on the single-label text
classification

Fine-tuning Setup Enron Blog Authorship

Full 86.83% (0.46) 51.69% (0.32)
Partial 85.95% (0.34) 49.58% (0.15)
DP 68.28% (0.88) 35.86% (0.12)

Fig. 3. The percentages of all entities successfully extracted from the models, compared
by prompting methods.

5.2 Named Entity Memorization

For the named entity memorization experiments, we also included a pre-trained
only BERT, i. e., without any fine-tuning, which we call the Base setup. Figure 3
shows our initial results on the All entity set. The highest extraction rate was
9.3% for the Enron and 6.2% for the Blog Authorship dataset. On the Enron
dataset, the highest extraction rate was achieved on the Base setup. closely



272 A. Diera et al.

Fig. 4. The percentages of private entities and private 1-eidetic entities successfully
extracted from the models with the use of naive prompting.

Table 4. Extraction ratio of entities from the Private set using naive prompting,
grouped by entity types

Named Entity Type Enron Blog Authorship
Base Full Partial DP Base Full Partial DP

PERSON 4.1% 2.3% 4.3% 0.8% 3.4% 4.1% 2.9% *
ORG 3.8% 2.2% 3.3% 0.3% 4.5% 4.1% 3% *
LOC 20.5% 15.4% 18.4% 5.1% 8.9% 8.6% 5.5% *
GPE 28.1% 22.5% 28% 5% 11.5% 13.4% 9.9% 0.1%
FAC 1.7% 0.4% 0.8% 0.8% 2.7% 2.5% 1.6% *
MONEY 1.5% 0.7% 1% 0.1% 1.2% 0.9% 0.7% *
CARDINAL 4.8% 1.7% 3.9% 0.5% 4.4% 3.9% 2.7% 0.1%
* less than 0.1%

followed by the Partial setup. The difference between these two setups was 0.2%
with the naive prompting and 0.6% for the informed prompting methods. On the
Blog Authorship dataset, the Full setup produced the highest extraction rate,
followed by the Base setup. Between these two setups, the naive prompting
resulted in 0.5% and the informed prompting in a 2.4% difference. The DP
setup produced the lowest extraction rates with 1.4% (naive prompting) and
1.1% (informed prompting) on the Enron and 0.1% in the Blog Authorship
dataset (both, naive and informed prompting). Naive prompting consistently
outperformed informed prompting in all fine-tuning setups on both datasets.

Figure 4 shows the comparison of the extraction rates between the private
entities and the private 1-eidetic entities, using the naive prompting method.
Compared to the results in Fig. 3, the extraction rates are consistently lower
across all setups. The difference between Base and Partial on Enron, and Base
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and Full on Blog Authorship once again is negligible. Overall the memorization
rate of private 1-eidetic entities is lower than the memorization rate of all private
entities. But the difference is less than 1% point on the Enron and less than 2%
points on the Blog Authorship dataset.

To further investigate the extracted private entities, we also measured the
extraction ratio of each entity type in Table 4. The Location and Geo-Political
Event types produced the highest percentages, while the Facility and Money
types had results less than 3% across all setups and datasets. The extraction
ratios on Blog Authorship are consistently lower in every entity type compared
to Enron. The only exception can be seen in the Facility type, where the Blog
Authorship results were 1 to 2% points higher.

6 Discussion

6.1 Key Insights

Prompting Methods. Our experiments show that the naive prompting method
produces better results in all setups. Although for informed prompting the seed
sequences will be more similar to the text sequences found in the fine-tuning data,
this informed prompting likewise limits the possibilities of producing diverse
outputs. Following Carlini et al. [8], we conclude that using random prompts
sampled from a huge corpus unrelated to the training data yields better extrac-
tion results. This shows that adversaries do not need to have prior knowledge
about the training data of the attacked model, a simple black-box approach is
sufficient.

Named Entity Memorization in BERT. We extracted private named enti-
ties from the fine-tuned models at surprisingly low rates. In no setup, we
extracted more than 10% of the private entities. Interestingly, our results fur-
ther show that using a pre-trained Base model that has not been fine-tuned on
the training set containing those extracted entities produces similar extraction
ratios. Our assumption is that the small percentage of private entities that have
been successfully extracted from both the Base and Full or Partial models have
low level of complexity in terms of length and n-gram diversity. Therefore, they
are more likely to be randomly generated by combining common subword tokens.

In order to better understand the reasons behind this observation, we con-
ducted a more detailed analysis of the extracted entities. As can be seen from
Table 4, distinct entity types have different probabilities to be extracted. From
the seven types, we argue Location and Geo-Political Event are the least unique
in their nature, therefore it is not suprising that the highest extraction rates
have been achieved on them. The lower values in the Money and Cardinal types
reinforce the findings that the subword tokenization in BERT is a suboptimal
method to encode numerical values [56]. Overall our findings suggest that BERT
could be rather resistant to training data extraction attacks unlike other large
LMs such as GPT-2 [8]. This is most likely due to its smaller size as argued
in [8]. It is also possible that auto-encoder transformers are generally less prone
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to these attacks compared to auto-regressive transformers as result of their dif-
ferent pre-training objectives.

Differentially Private Fine-Tuning. In all the experiments that used Differ-
entially Private fine-tuning, the extraction rates of named entities were reduced
by a large extent. Our samples have shown that the text quality in the DP setups
was very low, both text coherence and text diversity decreased dramatically.
Even though the performance on the downstream task was also considerably
lower, we argue this trade-off between performance and privacy is still promis-
ing for future developments. Considering that the focus of our study was not on
achieving state-of-the art performance for singe-label text classification, we only
used the Adam variant of the original DPSGD algorithm [1]. We leave the use
of other, more advanced DP algorithms like [62] to future work. One can expect
that for tasks, where the ability of a model to generate text is irrelevant, the use
of DP can be a viable solution to increase the privacy of the model.

6.2 Generalization

In our experiments, we intentionally used datasets of different characteristics.
While the Enron dataset we used is small in size and is very cluttered due to its
source (real world emails), the Blog Authorship Corpus is a public web corpus
that contains a large amount of samples covering a broad range of domains with
a higher text quality. Although, we only used single-label text classification (in
which BERT is generally considered as state-of-the-art [19]) as a downstream
task for fine-tuning, results should be similar on different downstream tasks
since the memorization takes place in the encoding layers, irrespectively of the
task-specific final layers of a model. Finally our conclusion about the memo-
rization capabilities of the BERT base model is in line with the training data
extraction study done on Clinical BERT, in which the authors were unable to
reliably extract patient names from a specific BERT variant pre-trained on clin-
ical data [30].

6.3 Threats to Validity

We acknowledge that the experimental datasets are limited to English. Although
named entities are often unique to their respective language, we have no reason
to believe that generating named entities would be significantly easier in other
languages. For languages that have larger character sets (e. g., Chinese) or use
long compound words (e. g., German), the probability of unintended memoriza-
tion may even be smaller. Regarding the efficiency of the extraction of named
entities, the results can be influenced by both the named entity recognition sys-
tem and our text generation method. It is possible that some entities have been
missed and some have been falsely identified. The missed entities are unlikely
to influence the results since we still had a great amount of entities of differing
k-eidetic values. Controlling for the falsely identified entities was a more difficult
problem. Therefore, we decided to remove all entities with a character length of
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less than 4. Using a left-to-right sequential text generation method might also
bias our results, as BERT uses context from both directions to predict a token
during pre-training. This, we argue has more impact on text coherence rather
than the ability to trigger a diverse output containing named entities. The latter
was of higher importance to our study.

7 Conclusion

As the capabilities of large LMs increase, it is important that the privacy aspects
of these models are also considered. We performed an investigation into the
capabilities of BERT to memorize named entities. We ran experiments, in which
we tried to extract private named entities from fine-tuned BERT models using
three different fine-tuning methods and two prompting strategies. Overall, we
could only extract a low percentage of named entities from BERT, and found
that the pre-trained only model generates the same amount of entities as the
fine-tuned models. We also employed a Differential Private fine-tuning method,
which showed to be a promising privacy preserving method against training data
extraction attacks with some trade-off on the downstream task performance.
Although our results do not rule out the possibility to extract personal infor-
mation from a fine-tuned BERT base model using more advanced methods, our
findings suggest that doing so is at least not trivial. As for future work it would
be interesting to re-run the experiments on other commonly used language mod-
els and to test the embedding layers of our BERT setups against membership
inference attacks.
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Abstract. Annotation of multimedia data by humans is time-
consuming and costly, while reliable automatic generation of seman-
tic metadata is a major challenge. We propose a framework to extract
semantic metadata solely from automatically generated video captions.
As metadata, we consider entities, the entities’ properties, relations
between entities, and the video category. Our framework combines auto-
matic video captioning models with natural language processing (NLP)
methods. We use state-of-the-art dense video captioning models with
masked transformer (MT) and parallel decoding (PVDC) to generate
captions for videos of the ActivityNet Captions dataset. We analyze the
output of the video captioning models using NLP methods. We eval-
uate the performance of our framework for each metadata type, while
varying the amount of information the video captioning model provides.
Our experiments show that it is possible to extract high-quality entities,
their properties, and relations between entities. In terms of categorizing
a video based on generated captions, the results can be improved. We
observe that the quality of the extracted information is mainly influenced
by the dense video captioning model’s capability to locate events in the
video and to generate the event captions.

An earlier version of this paper has been published on arXiv [20]. We
provide the source code here:
https://github.com/josch14/semantic-metadata-extraction-from-
videos.

Keywords: metadata extraction · vision models · natural language
processing

1 Introduction

The annotation of multimedia with semantic metadata by humans is time-
consuming and costly. Automatic extraction methods exist for different types
of high-level metadata, but these methods usually have high error rates and
therefore manual correction of the user is still required [19]. Thus, in contrast to
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the value of semantic metadata, especially when it can be generated automat-
ically, the reliable automatic generation of semantic metadata is still a major
challenge. For each semantic metadata type, one could use a different computer
vision method to generate the data. For example, video object detection could
be used to detect entities in a video, while video visual relation tagging methods
find instances of relations between depicted entities. However, when using mul-
tiple methods, they need to be trained separately and the training is, especially
for videos, computationally expensive.

Dense Video
Captioning

Natural Language Parser

Entity Extraction

Video

Properties
frisbee [red]

Relations
[6.2s, 8.7s]: (dog, chases,
[after], frisbee)

Category
Sports

Entities
[6.2s, 8.7s]: dog
[6.2s, 8.7s]: frisbee

Event Processing

Relation Extraction

Property Extraction

Linguistic Annotations
POS Tags, synt. Dependencies,
Coreference Clusters

Input

OutputVideo Processing Extraction Methods

Text
... The dog chases after a red
frisbee. He catches it, and ...

Semantic Metadata Extraction Framework

Text Classification

Captioned Events
[6.2s, 8.7s]: The dog chases after
a red frisbee.

Fig. 1. Semantic metadata extraction and its key components: a dense video captioning
model and a natural language parser

From this motivation, we propose a framework that generates semantic meta-
data from videos of not only one, but multiple types. Depending on the video
application, there are various semantic metadata types of interest. We focus on
four different of those types, namely the depicted entities and their properties,
the observable relations between entities and the video category. Additionally,
we consider semantic metadata on different levels, namely event-level, where
temporal information is relevant, and video-level. Our framework combines sev-
eral methods from the fields of computer vision and natural language processing
(NLP) (see Fig. 1). For an input video, a dense video captioning (DVC) model
generates a set of natural language sentences for multiple temporally localized
video events, thus providing a richly annotated description of video semantics.
We process the captioned events into text to make them accessible for differ-
ent NLP methods. Text classification determines the category of a video, while
the extraction methods for entities, properties, and relations rely on linguistic
annotations of a language parser. In summary, our contributions are:

– A framework for extracting semantic metadata combining an automatic video
captioning model with several NLP methods for entity detection, extraction
of entity properties, relation extraction, and categorical text classification.
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– We evaluate the capabilities of our framework using the ActivityNet Cap-
tions [10] dataset. We compare two state-of-the-art dense video caption-
ing models with masked transformer (MT) [27] and parallel decoding
(PVDC) [25].

– The quality of the extracted metadata mainly depends on the event localiza-
tion in the video and the performance of the event caption generation.

Below, we discuss the related work. Section 3 introduces the methods used
to extract semantic metadata in the form of entities, properties, relations, and
categories. Section 4 describes our experimental apparatus. The results of our
experiments are reported in Sect. 5 and discussed in Sect. 6.

2 Related Work

2.1 Dense Video Captioning

For each of the semantic metadata types entities, their properties, relations, and
the video categories, one could think of a computer vision method to extract
only a certain type. For example, video object detection involves object recog-
nition, that means, identifying objects of different classes, and object tracking,
i.e., determining the position and size of an object in subsequent frames [8].
Therefore, an object detection model could be used to determine the entities of
a video and the information about when these are visible. Shang et al. [22] pro-
pose video visual relation tagging to detect relations between objects in videos.
Here, relations are annotated to the whole video without the requirement of
object localization. A relation is denoted by a triplet (subject, predicate, object),
where the predicate may be a transitive or intransitive verb, comparative, or spa-
tial predicate. Further methods that could be used for the extraction of video
semantics include video classification for determining the category of a video [14],
and emotion recognition, which aims to classify videos into basic emotions [26].
However, it is not efficient to use one computer vision method at a time for the
extraction of only one semantic metadata type.

Automatic video description involves understanding and detection of different
types of information like background scene, humans, objects, human actions,
and events like human-object interactions [1]. In such a way, automatic video
description can be seen as a task that unites the mentioned computer vision
tasks like object detection, visual relation tagging, and emotion recognition.
Dense video captioning (DVC), as first introduced by Krishna et al. [10], generate
captioned events, which not only involves the localization of multiple, potentially
overlapping events in time, but also the generation of a natural language sentence
description for each event. Because of the rich information DVC models provide,
we utilize such model in our framework. We present two DVC models with
masked transformer (MT) [27] and parallel decoding (PVDC) [25], which we use
in our experiments, in detail in Sect. 3.1 (together with our framework).
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2.2 Text Information Extraction and Classification

In our framework, semantic metadata is extracted from the captioned events
generated by a DVC model. This includes the analysis of the events’ textual
descriptions, for which methods from Open Information Extraction (Open IE)
can be employed [16]. Open IE is the task of generating a structured represen-
tation of the information extracted from a natural language text in the form of
relational triples. A triple (arg1, rel, arg2) consists of a set of argument phrases
and a phrase denoting a semantic relation between them [16]. Existing Open IE
approaches make use of a set of patterns, which are either hand-crafted rules or
automatically learned from labeled training data. Furthermore, both methodolo-
gies can be divided into two subcategories: approaches that use shallow syntactic
analysis and approaches that utilize dependency parsing [18]. Fader et al. [6] pro-
posed REVERB, which makes use of hand-crafted extraction rules. They restrict
syntactic analysis to part-of-speech tagging and noun phrase chunking, resulting
in an efficient extraction for high-confidence propositions. Relations are extracted
in two major steps: first, relation phrases are identified that meet syntactic and
lexical constraints. Then, for each relation phrase, a pair of noun phrase argu-
ments is identified. Contrary to REVERB, ClausIE (clause-based Open IE) uses
hand-crafted extraction rules based on a typed dependency structure [4]. It does
not make use of any training data and does not require any postprocessing like
filtering out low-precision extractions. First, a dependency parse of the sentence
is computed. Then, using the dependency parse, a set of clauses is determined.
The authors define seven clause types, where each clause consists of one subject,
one verb and optionally of an indirect object, a direct object, a complement, and
one or more adverbials. Finally, for each clause, one or more propositions are
generated. Since dependency parsing is used, ClausIE is computationally more
expensive compared to REVERB.

Algur et al. [2] argue that the proper category identification of a video is
essential for efficient query-based video retrieval. This task is traditionally posed
as a supervised classification of the features derived from a video. The features
used for video classification can be of visual nature only, but if user-provided
textual metadata (i.e., title, description, tags) is available, it can be used in a
profitable way [3]. However, in our proposed framework the video category is pre-
dicted only with the textual information the DVC model provides. So although
we address the video classification problem, we do this by utilizing existing
work in the text classification area. Text classification models can be roughly
divided into two categories [12]. First, traditional statistics-based models such
as k-Nearest Neighbors and Support Vector Machines require manual feature
engineering. Second, deep learning models consist of artificial neural networks
to automatically learn high-level features for better results in text understand-
ing. For example, TextCNN [9] is a text classification method using text-induced
word-document cooccurence graph and graph learning. We use the pre-trained
BERT (Bidirectional Encoder Representations from Transformers) [5] model,
which set the state-of-the-art for text classification [7].
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3 Semantic Metadata Extraction from Videos

In our framework, the extraction of semantic metadata is based only on the cap-
tioned events generated by the DVC model. As a result, certain metadata types
such as emotions are difficult to extract. This depends mainly on how detailed
the DVC model is able to describe video semantics. Considering the capabili-
ties of current video description models, we focus on four semantic metadata
types that we aim to extract from a video: the depicted entities (i.e., persons,
objects, locations) and their properties, observable visual relations between
entities, and the video category, see Fig. 2. We distinguish between event-level
and video-level semantic metadata depending on whether semantic metadata is
assigned to a specific time interval or not. For example, assume that at some
point in a video there is a cat visible. On video-level, the corresponding entity
item only stores the information that there is a cat occurring in the video. On
event-level, the metadata item does not only store the name of the entity, but
also a time interval in which the entity is visible.

A man and a dog walk onto a wide field. The man throws a red frisbee and the dog chases after it.

The dog brings the frisbee back to the man.

Input
Video

Dense
Video

Captioning

Event-
level

Semantic
Metadata

Video-level Semantic Metadata

The whole time there are people on the sidelines watching them and taking pictures.

time0s 46s

Entities: man, dog, field, frisbee, time, people, sidelines, pictures
Entity-Property Pairs: field [wide], frisbee [red]
Relations: ([man, dog], walk, [onto], field), (man, throws, [], frisbee), (dog, chases, [after], frisbee), (dog, brings, [back], frisbee), 
(dog, brings, [back, to], man), (people, are, [on], sidelines), (people, watching, [], [man, dog]), (people, taking, [], pictures)
Category: Sports

Entities:
[12.76s, 36.27s]: man
[12.76s, 36.27s]: frisbee
[12.76s, 36.27s]: dog
Relations:
[12.76s, 36.27s]: (man, throws, [], frisbee)
[12.76s, 36.27s]: (dog, chases, [after], frisbee)

Entities:
[0.48s, 42.10s]: time
[0.48s, 42.10s]: people
[0.48s, 42.10s]: sidelines
[0.48s, 42.10s]: man
[0.48s, 42.10s]: dog
[0.48s, 42.10s]: pictures

Relations:
[0.48s, 42.10s]: (people, are, [on], sidelines)
[0.48s, 42.10s]: (people, watching, [], [man, dog])
[0.48s, 42.10s]: (people, taking, [], pictures)

Fig. 2. Our framework extracts semantic metadata in the form of entities, properties
of entities, relations between entities, and the video category from automatically gen-
erated captioned events. We distinguish event-level and video-level semantic metadata,
depending on whether semantic metadata is assigned to a specific time interval or not.
Image adapted from [13].

Revisiting Fig. 1, it can be seen that our framework consists of several meth-
ods. For an input video, a DVC model generates captioned events (Sect. 3.1),
which are then processed into text to make them accessible for different meth-
ods (Sect. 3.2). The natural language parser produces linguistic annotations,
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namely part-of-speech (POS) tags, a dependency parse, and coreference clusters
(Sect. 3.3). The extraction methods for the semantic metadata types entities
(Sect. 3.4), properties (Sect. 3.5), and relations (Sect. 3.6) use these linguis-
tic annotations, while the text classification method determines the category
of a video using only the generated captioned events (Sect. 3.7). The lexical
database WordNet [15] is used at various points to ensure that extracted seman-
tic metadata consists of linguistically correct English nouns, verbs, adjectives,
and adverbs.

3.1 Dense Video Captioning (DVC)

From an input video, DVC models generate a set of captioned events. Each cap-
tioned event consists of the event itself, a temporal segment which potentially
overlaps with segments of other captioned events, and a natural language sen-
tence that captions the event. While introducing the task of DVC, Krishna et
al. [10] proposed a model which consists of a proposal module for event local-
ization, and a separate captioning module, an attention-based Long Short-Term
Memory network for context-aware caption generation. Zhou et al. [27] argue
that the model of Krishna et al. is not able to take advantage of language to
benefit the event proposal module. To this end, they proposed an end-to-end
DVC model with masked transformer (MT) that is able to simultaneously pro-
duce event proposals and event descriptions. Like many methods that tackle the
DVC task, Zhou et al.’s model consists of three components. The video encoder,
composed of multiple self-attention layers, extracts visual features from video
frames. The proposal decoder takes the features from the encoder and produces
event proposals, i.e., temporal segments. The captioning decoder takes input
from the visual encoder and the proposal decoder to caption each event.

Wang et al. [25] state that methods like the model of Zhou et al. follow a
two-stage “localize-then-describe” scheme, which heavily relies on hand-crafted
components. In contrast to the usual structure of DVC models, they proposed
a simpler framework for end-to-end DVC with parallel decoding (PDVC). Their
model directly decodes extracted frame features into a captioned event set by
applying two parallel prediction heads: localization head and captioning head.
They propose an event counter, which is stacked on top of the decoder to predict
the number of final events. The authors claim that PVDC is able to precisely
segment the video into a number of events, avoiding to miss semantic information
as well as avoiding replicated caption generation.

3.2 Event Processing

The event processing module processes the captioned events generated by the
preceding DVC model into text in order to make semantic information accessible
to the natural language parser and the text classification method. In detail, the
sentences of the captioned events are sorted in ascending order of the start
times of the corresponding events. Afterwards, the sentences are concatenated,
resulting in a single text per video, and forwarded to the language parser and
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text classification method, respectively. By not passing the sentences separately
to the language parser, this enables it to use coreference resolution (see Sect. 3.3).
When extracting entities and relations on event-level, we annotate each entity
and relation with the temporal segment of the captioned event whose sentence
contains the name of the entity or the words of the relation, resp. (see Fig. 3).

Captioned Events (DVC Output)
[3.20s, 10.11s]: A girl is seen dribbling with a football.
[12.05s, 16.40s]: She then kicks it at a goal.

Extracted Relations (event-level)
[3.20s, 10.11s]: (girl, dribbling, [with], football)
[12.05s, 16.40s]: (girl, kicks, [], football)
[12.05s, 16.40s]: (girl, kicks, [at], goal)

Processed Text for Language Parser
A girl is seen dribbling with a football. She then
kicks it at a goal.

Extracted Entities (event-level)
[3.20s, 10.11s]: girl
[3.20s, 10.11s]: football
[12.05s, 16.40s]: girl
[12.05s, 16.40s]: football
[12.05s, 16.40s]: goal

Fig. 3. Captioned events are processed into text and made accessible to the language
parser and text classifier.

3.3 Language Processing

The extraction of entities, the entities’ properties, and relations is done through
syntactic analysis based on the linguistic annotations generated by the natural
language parser. It is required to provide POS tags of tokens, a dependency
parse, and coreference clusters. The POS tag is a label assigned to the token to
indicate its part of speech. The dependency parse consists of a set of directed
syntactic relations between the tokens of the sentence. Coreference clusters aim
to find all language expressions that refer to the same entity in a text.

We use a CNN-based model from spaCy1. The model generates the desired
linguistic annotations in a pipe-lined manner: First, the tokenizer segments the
input text into tokens. Afterwards, the tagger and dependency parser assign POS
tags and dependency labels to tokens, respectively. Finally, coreference clusters
are determined using spaCy’s NeuralCoref extension. For an input sentence, the
dependency parse produced by spaCy models is a tree where the head of a
sentence, which is usually a verb, has no dependency. Every other token of the
dependency tree has a dependency label that indicates its syntactic relation to
its parent. The children of a token are all its immediate syntactic dependents,
i.e., the tokens of the dependency tree for which it is the parent.

1 spaCy is available at: https://github.com/explosion/spaCy.

https://github.com/explosion/spaCy
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3.4 Entity Extraction

The entity extraction method determines which (video-level) and when (event-
level) entities like persons, objects, and locations are visible in the video. A
video-level entity only consists of a name describing the entity. On event-level,
the entity additionally consists of a temporal segment containing the information
about when the entity is seen. Entities are extracted by determining (compound)
nouns with the POS tags and dependency labels of tokens, and coreference clus-
ters, which are all provided by the language parser.

On event-level, before assigning a temporal segment to each name in order
to obtain the entities, each pronoun is analysed whether it refers to a noun or
not (see Fig. 3). First, the tokens of the text are filtered for pronouns. Using the
computed coreference clusters, for each pronoun it is checked whether it refers
to a noun that has been determined in the previous step or not. If this is the
case, then the pronoun is replaced with the corresponding noun, i.e., the name
of a new entity. Finally, the event-level entities are built by assigning temporal
segments to the names of the entities. Here, for an entity, the temporal segment
is the segment of the corresponding sentence in which its name (or the pronoun
that was previously replaced) occurs.

3.5 Property Extraction

The property extraction method determines properties of entities such as their
color, size, and shape. The method is only used to extract video-level informa-
tion in order to collect information for an entity from different captioned events.
An entity-property pair is a tuple consisting of an entity (i.e., its name)
and a property, which further describes the entity. For each (video-level) entity,
extracted in the previous section, properties are determined as follows. The can-
didate properties for an entity are the children of the corresponding token (or
tokens for compound nouns) that are marked with the dependency labels. We
use WordNet to recognize the token or its lemma as an adjective. Such can-
didate property is considered as a property of the entity. An entity-property
pair is formed with the name of the entity and the detected property. In such
way, the method results in a set of video-level entity-property pairs. There is no
restriction on the tag a property token needs to have. Therefore, properties may
be marked by the language parser as ADJective (e.g., round ball), VERB (e.g.,
provoking film), or other tags.

3.6 Relation Extraction

As seen for visual relation tagging (Sect. 2.1) or Open IE (Sect. 2.2), relations
are usually formulated as triples. In contrast, we define relations as follows. A
video-level relation is a 4-tuple of the form (subjects, verb, modifiers, objects).
With a temporal segment, an event-level relation has an additional element
containing the information about when the relation is observed. The first ele-
ment subjects is a list containing the names of the relation’s acting entities.
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Objects, also a list of names of entities, contains the entities that are the receiver
of the action. Note that usually subjects and objects contain only a single
entity. In some cases, such as in the sentence “A boy and a girl are seen play-
ing football”., multiple entities are the actors in a relation: ([boy, girl], play,
[], football). With the above definition, we are able to capture relations with
different types of verbs: single-word verbs and multi-word verbs, i.e., prepo-
sitional verbs (verb+preposition), phrasal verbs (verb+particle), and phrasal-
prepositional verbs. In both cases, verb contains the verb. Modifiers is an empty
list for single-word verbs. For multi-word verbs, however, modifiers contains the
verb’s particles and prepositions. Both, particles and prepositions, provide infor-
mation about how the verb and the object are related to each other. For example,
the relation (girl, catches, [up, with], kids) for the sentence “The girl catches up
with the other kids”. is better understood than the relation (girl, catches, kids).

As for entity extraction, the relation extraction method utilizes POS tags
and dependency labels of tokens and coreference clusters. In fact, the entity
extraction method is used here in order to determine valid subjects and objects
for relations. The relation extraction method proceeds in three steps: search for
candidate verbs, search for candidate tuples consisting of a subject and a verb,
and search for corresponding objects and modifiers for each verb in a candidate
tuple. In brief, these steps are conducted by analyzing the dependency tree,
exploiting the POS tags, and exploiting WordNet.

The video-level relation extraction is finished here. Event-level relations are
built by assigning temporal segments to the extracted relations. Here, for a
determined relation, the event is the temporal segment of the corresponding
sentence from which the relation was extracted.

3.7 Text Classification

Although our proposed framework performs video classification, it predicts the
category of a video only with the textual information its DVC model provides.
The motivation is to see how far a text classifier on generated video captions
can correctly classify a video. As text classifier, we adopt BERT [5].

4 Experimental Apparatus

4.1 Datasets

We introduce the datasets to evaluate the DVC models and the different tasks
of our metadata extraction framework.

Dense Video Captioning. We use the large-scale benchmark dataset Activi-
tyNet Captions [10] to train and evaluate the dense video captioning models. It
consists of 20k YouTube videos of various human activities split up into train/-
val/test sets of 0.5/0.25/0.25. Each video is annotated with captioned events,
each consisting of a descriptive sentence and a specific temporal segment to which
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the description refers. On average, each video is annotated with 3.65 temporally-
localized sentences. Each captioned event on average covers 36 s and is composed
of 13.5 words. Temporal segments in the same video can overlap in time, which
enables DVC models to learn complex events and relations.

Entity, Property, and Relation Extraction. The information that Activi-
tyNet Captions provides for each video is limited to captioned events, i.e., pairs
of temporal segments and sentences. To be able to evaluate the entity, property,
and relation extraction methods, we need information about depicted entities,
properties of entities, and relations of videos. For this purpose, we utilize the
gold standard captioned events of ActivityNet Captions’ validation videos. We
extract entities, their properties, and relations from the captioned events, and
treat the results as gold standard for semantic metadata extraction. We generate
five different datasets for videos in the ActivityNet Captions validation set: each
one for event-level entities, video-level entities, entity-property pairs, event-level
relations, and video-level relations. Using these datasets, we evaluate the frame-
work’s ability to extract the semantic metadata and compare it to metadata
extracted from the captioned events generated by the DVC models.

Text Classification. We build a new dataset to train and evaluate our text
classification method. Here, we take advantage of the fact that ActivityNet Cap-
tions consists of YouTube videos. For each video of the ActivityNet Captions’
train and validation sets, we query the corresponding category from the YouTube
Data API. We were able to query the category of 12, 579 ActivityNet Captions
videos (on March 20, 2022). We split the videos in train/val/test of 0.6/0.2/0.2,
while ensuring that the category distribution is the same for all splits.

4.2 Procedure

Dense Video Captioning. We train MT and PDVC using the ActivityNet
Captions dataset. For action recognition, both models adopt the same action
recognition network, a pre-trained temporal segment network [24], to extract
frame-level features. To ensure consistency, we evaluate both models on the
ActivityNet Captions validation set (using both annotation files) and compare
the performances with those reported in the corresponding works.

For our proposed semantic metadata extraction methods, the number of
captioned events forwarded to each method is an important parameter. With
increasing number of captioned events forwarded to an extraction method, it
can extract more semantic information. In this work, we denote the number
of captioned events that are generated by a DVC model and forwarded to a
specific method as |E|. MT and PDVC, the dense video captioning models of
our choices, internally calculate confidence scores for their generated captioned
events. If the number of considered captioned events is limited, then the gener-
ated captioned events with the highest confident scores are used. For high values
of |E|, DVC models tend to produce identical sentences for different temporal
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segments. However, our property extraction, and video-level entity and relation
extraction methods rely mainly on the textual information that the captioned
events provide. Therefore, captioned events with duplicate sentences do not pro-
vide further semantic information. Because of that, we only forward events with
distinct captions to these methods. We denote the number of distinct captioned
events that are forwarded to a specific method as |dist(E)|. If two events share
the exact same caption, then the event with the higher confidence score is for-
warded. We finally evaluate MT and PDVC with |E| set to 10, 25, 50, and 100,
and |dist(E)| set to 1, 3, 10, and 25.

Entity, Property, and Relation Extraction. For both trained dense video
captioning models, MT and PDVC, we extract event-level entities and relations
from captioned events that they generate for ActivityNet Captions validation
videos with |E| set to 10, 25, 50, and 100. Video-level entities and relations,
and entity-property pairs are extracted with |dist(E)| set to 1, 3, 10, and 25. We
then evaluate the entity, property, and relation extraction methods by comparing
the extracted semantic metadata with our generated gold standards for entities,
entity-property pairs, and relations.

For the evaluation of video-level entity extraction, we introduce the entity
frequency threshold f . We extract video-level entities from ActivityNet Captions’
train and validation videos. The frequency of a video-level entity is the number of
different videos in which it occurs. We evaluate the generated video-level entities
with f set to 0, 10, 25, and 50, meaning that the gold standard only contains
those entities which have a frequency higher than the frequency threshold. Thus,
a larger f means that the DVC models are given a higher chance to learn and
reproduce the entities in the videos.

Text Classification. We train and evaluate the text classification model of our
framework in three different settings: using the captioned events generated by
the MT and PDVC model, respectively, and using the gold standard captioned
events provided by ActivityNet Captions. This allows us to analyze how useful
the automatically generated captioned events are for text classification compared
to gold standard captioned events. For each data input, we set |dist(E)| to 10.

4.3 Hyperparameter Optimization

For the training of the DVC models, we use largely the same parameters that
were used to train the models in their original works (refer to MT [27] and
PDVC [25] or their latest codebases). For MT, we have to switch to a batch
size of 84 and a learning rate of 0.06 to make sure that the model training
converges. In the default configuration, PDVC generates a maximum of 10 events
per video. We change the corresponding parameter such that 100 captioned
events are generated to ensure that there is enough information for our metadata
extraction methods to work on. For both, MT and PDVC, we use the models’
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best states w.r.t. their METEOR score performances (see Sect. 4.4). For MT,
this was achieved after 34 epochs, and for PDVC after 13 epochs.

For the entity, property, and relation extraction methods, no hyperparameter
optimization is necessary. In our text classification model, we use an uncased
BERT model. Each input text is truncated to 128 tokens. For training, we use
cross-entropy loss and the Adam optimizer with 10% warmup steps. We use class
weights to help the model learn on the imbalanced data of our classification
dataset. While using captioned events from ActivityNet Captions as training
data, we perform grid search over dropout rates in {0.0, 0.1, . . . , 0.5}, maximum
number of training epochs in {1, 2, . . . , 5}, learning rates between 5e-6 and 1e-4,
and a batch sizes in {1, 2, 4, 8}. The lowest validation loss was achieved after
epoch 2 while using dropout of 0.1, 2 maximum training epochs, learning rate of
2e-5, and batch size of 4. Using this parameter configuration, we train the model
with each data input separately. We repeat the training three times and select
the model that achieved the lowest final validation loss.

4.4 Measures and Metrics

Dense Video Captioning. To evaluate the dense video captioning models MT
and PDVC, we use the official evaluation toolkit provided by ActivityNet Cap-
tions Challenge 20182 that measures the capability to localize and describe events
in videos. For evaluation of dense video captioning, we report METEOR [11] and
BLEU [17] scores. Using temporal Intersection over Union (tIoU) thresholds at
{0.3, 0.5, 0.7, 0.9} for captioned events, we report recall and precision of their
temporal segments and METEOR and BLEU scores of their sentences. Given
a tIoU threshold, if the event proposal has a segment overlapping larger than
the threshold with any gold standard segment, the metric score is computed for
the generated sentence and the corresponding gold standard sentence. Other-
wise, the metric score is set to 0. The scores are then averaged across all event
proposals and finally averaged across all tIoU thresholds.

Entity, Property, and Relation Extraction. For property extraction and
video-level entity and relation extraction, we measure micro-averaged precision,
recall, and their harmonic mean, the F1 score. Similarly to the evaluation of DVC
models, when evaluating entity and relation extraction on event-level, we also
take the quality of the predictions’ temporal segments into account. Here, we
compute micro-averaged precision and recall across all videos using tIoU thresh-
olds at {0.3, 0.5, 0.7, 0.9}, and then average the results across all thresholds.
Additionally, we report the F1 score of averaged precision and recall values.

For the evaluation of entities, entity-property pairs, and relations, we use
WordNet to compare words in terms of whether they are synonyms of each
other or not. This is fair as the variety of extracted semantic metadata is large.
For example, “stand up” is considered a correct prediction for the verb “get up”.
However, this means that for a video the number of predictions that are treated
2 See: https://github.com/ranjaykrishna/densevid eval/.

https://github.com/ranjaykrishna/densevid_eval/
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as correct (the set TPp) and the number of gold standard targets (denoted as
TPg) is not necessarily the same. With other words, the gold standard is enriched
with synonyms. For example, |TPp| = 2 and |TPg| = 1 when accepting person
and individual as synonymously correct predictions for TPg = {person}. To
ensure the validity of precision (proportion of correct predictions) and recall
(proportion of correctly predicted targets), we use TPp for calculating precision
and TPg for recall, respectively.

All entities, properties, and relations are compared using their word lemmas.
On video-level, this means that potential duplicates of entities and relations are
removed, i.e., they are unique. For example, {man, men} results in {man}.

Text Classification. We report weighted and macro-averages of precision,
recall, and F1 score across all categories.

5 Results

5.1 Dense Video Captioning

We introduced the parameters |E| and |dist(E)|, which are primarily used in our
framework to control the amount of information that is forwarded from the DVC
model to the semantic metadata extraction methods. Using these parameters, we
are also able to compare the DVC models in a fair way, meaning that their per-
formances are evaluated while generating an equal number of captured events.
Table 1 shows the event localization and dense video captioning performances
of MT and PDVC with respect to |E| and |dist(E)|, the number of (distinct)
captioned events that are generated by each DVC model and used for the evalu-
ation. For event localization, PDVC constantly achieves better recall than MT,
while MT constantly outperforms PDVC in terms of precision. For both mod-
els, higher values of |E| and |dist(E)| results in better recall and worse precision
performance in event localization. Looking at the results for dense video caption-
ing, we can state that the METEOR performances of both models degrade with
increasing number of captioned events, both distinct and non-distinct, except
for when increasing |dist(E)| from 1 to 3. When increasing |E| from 10 to 100,
the METEOR performance of PDVC drops by 3.71 points in total, while the
METEOR performance of MT drops by 1.21 points. This is a consequence of
the declining precision for event localization for higher |E|, which affects the
PDVC model more heavily than the MT model.

5.2 Entity Extraction

Table 2 shows precision, recall, and F1 score performances of our framework for
video-level entity extraction. We evaluate the extracted video-level entities
with entity frequency threshold f set to 0, 10, 25, and 50. One observation is
that, with increasing |dist(E)|, precision decreases and recall improves for both
models and all thresholds. For both DVC models and all thresholds, the best F1
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Table 1. Event localization and dense video captioning results of MT and PDVC for
different numbers of generated captioned events on the ActivityNet Captions validation
set. We report recall and precision of temporal segments, METEOR (M), and BLUE@N
(B@N) of generated captioned events.

Event Localization & Dense Video Captioning

DVC avg. avg. 2018 eval. toolkit

Model |E| Recall Precision B@3 B@4 M

MT 10 43.61 48.96 2.18 1.02 5.89

25 56.55 46.15 2.33 1.14 5.74

50 67.70 41.60 2.31 1.13 5.35

100 76.33 34.78 2.12 1.04 4.68

PDVC 10 61.88 45.41 3.10 1.59 6.34

25 73.81 36.89 2.54 1.23 5.17

50 78.76 25.75 1.92 0.90 3.88

100 82.24 15.63 1.36 0.63 2.63

(a) Results for varying numbers of generated captioned events |(E)|.

Event Localization & Dense Video Captioning

DVC avg. avg. 2018 eval. toolkit

Model |dist(E)| Recall Precision B@3 B@4 M

MT 1 22.04 50.99 1.55 0.68 5.37

3 32.72 49.65 1.97 0.90 5.76

10 50.08 44.75 2.22 1.05 5.58

25 63.67 36.23 2.05 0.97 4.80

PDVC 1 20.05 49.63 2.52 1.30 5.86

3 40.28 48.26 2.98 1.54 6.46

10 62.38 44.10 2.85 1.41 6.01

25 71.62 31.69 2.14 1.00 4.54

(b) Results for varying numbers of generated distinct captioned events |dist(E)|.

score performance is achieved with |dist(E)| = 10. This indicates a limited level
of semantic information that any further generated captioned events provide.
For higher entity frequency thresholds, for both DVC models and all |dist(E)|,
our framework is able to predict video-level entities with improved recall, at the
cost of only slightly lower precision. When our framework is using the PDVC
model, it achieves better precision and F1 scores for all |dist(E)|. The framework
achieves better recall performances when using the MT model for |dist(E)| set
to 10 and 25. Overall, for video-level entity extraction, our framework achieves
its highest F1 scores when using the PDVC model with |dist(E)| set to 10. Here,
the achieved F1 scores range from 31.27 for f = 0 to 34.21 for f = 50.

Table 3 shows the results of event-level entity extraction of our framework.
Depending on the framework’s used DVC model and the number of generated
captioned events |E|, we report precision and recall for different temporal Inter-
section over Union (tIoU) thresholds. F1 score is calculated using the averages
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Table 2. Video-level entity extraction using dense video captioning models MT and
PDVC. We report precision, recall, and F1 score for different numbers of generated
distinct captioned events |dist(E)| and entity frequency thresholds f .

Video-level Entity Extraction

DVC Model |dist(E)| Precision(@f) Recall(@f) F1(@f)

0 10 25 50 0 10 25 50 0 10 25 50

MT 1 39.94 39.88 39.66 38.91 15.38 16.49 17.57 18.99 22.21 23.33 24.35 25.52

3 33.91 33.83 33.61 32.78 23.44 25.12 26.72 28.70 27.72 28.83 29.77 30.60

10 26.44 26.37 26.16 25.43 32.59 34.90 37.06 39.67 29.20 30.04 30.67 30.99

25 20.76 20.69 20.49 19.82 40.69 43.55 46.16 49.15 27.49 28.05 28.38 28.25

PDVC 1 45.13 45.05 44.91 44.43 15.44 16.56 17.68 19.28 23.01 24.22 25.37 26.89

3 39.01 38.95 38.83 38.28 23.33 25.03 26.72 29.04 29.20 30.48 31.66 33.03

10 31.77 31.71 31.60 31.03 30.78 33.01 35.21 38.11 31.27 32.35 33.30 34.21

25 26.30 26.25 26.14 25.61 36.18 38.79 41.33 44.66 30.46 31.31 32.02 32.55

Table 3. Event-level entity extraction results. Reported are precision and recall for
different numbers of generated distinct captioned events |E| and tIoU thresholds. The
F1 scores are the averages of precision and recall across all thresholds.

Event-level Entity Extraction

DVC Model |E| Precision(@tIoU) Recall(@tIoU) F1

0.3 0.5 0.7 0.9 Avg 0.3 0.5 0.7 0.9 Avg

MT 10 28.97 20.08 8.55 1.26 14.72 21.11 15.31 9.59 2.94 12.24 13.37

25 28.12 18.44 7.40 1.03 13.75 26.48 20.66 14.29 5.58 16.75 15.10

50 26.30 15.93 6.10 0.83 12.29 31.15 25.32 18.69 8.47 20.91 15.48

100 23.31 12.70 4.52 0.59 10.28 36.35 30.05 22.89 11.04 25.08 14.58

PDVC 10 30.47 19.79 9.11 2.53 15.47 26.36 21.13 14.52 5.87 16.97 16.19

25 27.16 15.83 6.41 1.53 12.73 31.14 26.34 20.01 8.21 21.42 15.97

50 20.75 10.49 3.84 0.86 8.98 33.66 28.89 22.40 8.75 23.42 12.98

100 13.76 6.36 2.22 0.48 5.71 35.35 30.65 24.00 9.02 24.75 9.28

of precision and recall. Note that for a prediction to be correct for an event-level
entity, a condition is that its temporal segment overlaps with the gold standard
entity’s temporal segment larger than the tIoU threshold. Therefore, precision
and recall decreases at higher tIoU thresholds. Regardless of the DVC model
used, the framework’s precision decreases for higher |E|, while at the same time
it benefits in recall performance. When using the PDVC model, the framework’s
precision drops more (1.13 on average) when increasing |E| from 10 to 100 as
compared to when it is using the MT model (0.57 on average). Note that we
made the same observation when we evaluated the event localization and dense
video captioning performances of the DVC models. For event localization, the
PDVC model could not convert the large drops in precision for higher |E| into
better recall performance. Thus, on the one hand, this results in worse dense
video captioning performance. On the other hand, when our framework is using
the PDVC model for event-level entity extraction, this results in degrading F1
score performance for higher |E|. Still, our framework achieves its highest F1
score with 16.19 when it uses the PDVC model with |E| = 10. On the other
hand, when using the MT model, the highest achieved F1 score is 15.48 for
|E| = 50.
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5.3 Property Extraction

The results of the extraction of entity-property pairs with our framework are
shown in Table 4. In general, increasing |dist(E)| leads to drops in precision,
however, our framework benefits from much improved recall. Consequently, our
framework achieves its highest F1 scores for |dist(E)| = 25. In contrast to video-
level entity extraction where highest F1 scores were achieved for |dist(E)| = 10,
we can observe that increasing |dist(E)| from 10 to 25 leads to even better
property extraction performance with respect to the F1 score, indicating that the
DVC models still provide meaningful semantic information about the properties
of entities when many captioned events are generated. For all |dist(E)|, our
framework achieves better recall and F1 scores when using the MT model for
captioned events generation and better precision when using the PDVC model.
The highest achieved precision is 9.08 when using PDVC with |dist(E)| = 1.
Using the MT model with |dist(E)| = 25 results in the framework’s highest
achieved recall (8.86) and F1 score (4.94).

Table 4. Results for the extraction of entity-property pairs.

Property Extraction

DVC Model |dist(E)| Prec. Rec. F1

MT 1 6.48 0.82 1.45

3 6.64 1.85 2.90

10 5.66 3.54 4.36

25 4.53 5.43 4.94

PDVC 1 9.08 0.72 1.34

3 8.76 1.61 2.72

10 6.96 2.68 3.87

25 4.79 3.76 4.21

5.4 Relation Extraction

Table 5 shows the results of video-level relation extraction with our framework.
In general, using the PDVC model leads to better precision performance except
for |dist(E)| = 1, while using the MT model leads to better recall performance
except for |dist(E)| = 3. For both DVC models, our framework achieves its
highest F1 scores for |dist(E)| = 10. This suggests that any larger number of
generated captioned events can provide more semantic information for relations
only at a higher cost of precision, the same observation as we made for video-level
entity extraction. However, for property extraction, the highest F1 scores were
achieved for |dist(E)| = 25. The highest achieved F1 score of our framework
for video-level relation extraction is 5.02 while using the PDVC model with
|dist(E)| = 10.
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The results for event-level relation extraction are shown in Table 6. Very
similar observations can be made as for event-level entity extraction. The frame-
work’s precision decreases for higher |E| while benefiting in recall performance.
When using the PDVC model, the framework’s precision performance suffers
more for higher |E| compared to when it is using the MT model. As observed
before for event-level entity extraction, this is not converted into much higher
recall, resulting in a degradation of the framework’s F1 score performance. There-
fore, for |E| set to 50 and 100, i.e., high numbers of generated captioned events,
our framework achieves its highest F1 scores when using the MT model, while for
|E| set to 10 and 25 the highest F1 scores are achieved when using the PDVC
model. The event-level relation extraction achieves its best performance with
respect to F1 score when it uses the PDVC model with |E| = 10.

Table 5. Results for video-level relation extraction.

Video-level Relation Extraction

DVC Model |dist(E)| Prec. Rec. F1

MT 1 5.76 2.07 3.04

3 4.88 4.07 4.44

10 3.64 6.61 4.70

25 2.89 8.86 4.35

PDVC 1 5.64 2.06 3.02

3 5.02 4.18 4.56

10 4.09 6.50 5.02

25 3.47 8.36 4.91

Table 6. Experimental results for event-level relation extraction.

Event-level Relation Extraction

DVC Model |E| Precision(@tIoU) Recall(@tIoU) F1

0.3 0.5 0.7 0.9 Avg 0.3 0.5 0.7 0.9 Avg

MT 10 3.76 2.52 1.08 0.14 1.87 3.81 2.81 1.73 0.42 2.20 2.02

25 3.61 2.28 0.93 0.12 1.74 4.89 3.90 2.56 0.87 3.05 2.22

50 3.35 1.99 0.77 0.10 1.55 5.87 4.78 3.29 1.32 3.81 2.20

100 2.96 1.59 0.56 0.07 1.30 7.06 5.60 3.91 1.63 4.55 2.02

PDVC 10 3.64 2.33 1.14 0.32 1.86 4.87 3.87 2.63 1.06 3.11 2.33

25 3.33 1.92 0.80 0.20 1.56 6.01 4.95 3.49 1.37 3.95 2.24

50 2.66 1.33 0.50 0.11 1.15 6.53 5.37 3.81 1.41 4.28 1.81

100 1.75 0.82 0.30 0.07 0.73 6.75 5.53 3.91 1.41 4.40 1.25



Event and Entity Extraction from Generated Video Captions 297

5.5 Text Classification

Finally, Table 7 shows the weighted and macro-averages of precision, recall,
and F1 score performances of the framework’s text classification method, while
trained and evaluated in three different settings: using the captioned events gen-
erated by the MT or PDVC model, respectively, and using the captioned events
provided by ActivityNet Captions. The most noteworthy observation is that the
classification performance of our framework, when using captioned events gen-
erated by MT and PDVC, is not far from the classification performance that is
achieved when using gold standard captioned events of ActivityNet Captions.
Therefore, we can state that the DVC models generate specific semantic informa-
tion for videos of different categories at a similar level as the captioned events of
the gold standard provide. This is important for the text classifier to categorize
videos successfully.

When using automatically generated captioned events for video classifica-
tion, our framework achieves its best performances for all metrics, both weighted
and macro-averaged, when using the PDVC model. Here, for weighted precision,
recall, and F1 score, our framework performs around 2 points better as compared
to when using the MT model. When using PDVC, our framework achieves an
overall accuracy (i.e., weighted recall) of 50.22, which is only 0.59 points lower
than the accuracy achieved when classifying videos using the gold standard cap-
tioned events of ActivityNet Captions. Taking the category imbalance in our
dataset into account, we observe that the achieved macro-averages of precision,
recall and F1 scores are much lower as compared to their weighted-averages.

Table 7. Results for classification of video captions in the settings: (i) captioned events
generated by MT, (ii) PDVC, and (iii) gold standard captioned events from ActivityNet
Captions. For MT and PDVC, |dist(E)| = 10 is used.

Text Classification

Averaging Captioned events input Prec. Rec. F1

Weighted MT 43.72 48.24 44.80

PDVC 45.75 50.22 46.96

ActivityNet Captions 46.97 50.81 48.23

Macro MT 27.51 30.45 28.08

PDVC 34.31 32.30 30.88

ActivityNet Captions 33.42 34.74 33.19

6 Discussion

6.1 Key Results

The experiments show that our proposed framework is able to automatically
generate multiple types of semantic metadata in a meaningful way. We have to
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keep in mind that in our framework semantic metadata is extracted only from
captioned events that are automatically generated by its DVC model, i.e., a
model that is designed and trained for a different task. To extract higher quality
semantic information for each semantic metadata type, a dedicated computer
vision method could be used, such as video object detection and video visual
relation tagging. Here, however, our framework trades quality for effectiveness
as it only requires training for one computer vision model, the DVC model. We
must also bear in mind that the variety of entities, entity-property pairs, and
relations that occur in our gold standards, and that are extracted by our frame-
work, is large, in particular when compared to related computer vision tasks.
For example, the VidOR (Video Object Relation) dataset [21,23], which is used
to train models for visual relation detection from videos, contains annotations of
80 categories of objects and 50 categories of relation predicates. In our gold stan-
dard for relations, however, 2,493 different entities acted either as subject (905
entities) or object (2,299 entities), while 905 different verbs occur in the rela-
tions. Also, for video-level entity extraction, we observed that for higher entity
frequency thresholds f , the framework’s precision decreases only slightly, while
recall performance improves greatly. This observation is not surprising, as the
number of different entities in our gold standard for entities, which is based on
ActivityNet Captions, is large, and many entities occur only a few times. This
leads to the conclusion that the DVC models are only able to learn entities when
there is enough training data, i.e., the models see them sufficiently enough dur-
ing training. Regarding the video classification results (based on the generated
captions), our framework could not reliably predict the video category. This is
because the captioned events generated by the DVC models do not contain suf-
ficiently specific semantic information for videos of different categories. Here, a
visual-based video classifier is preferred over a purely text-based approach.

6.2 Threats to Validity and Future Work

We generated a gold standard using the captioned events of ActivityNet Captions
validation videos. As described in Sect. 4.1, we use our proposed entity, property,
and relation extraction methods on the processed captioned events, and treat the
results as gold standards for semantic metadata. This requires that the extraction
methods work sufficiently well, i.e., they are able to extract semantic metadata
using the linguistic annotations provided by the framework’s language parser.
In order to validate this hypothesis, we annotated a subset of 25 ActivityNet
Captions videos with the video-level entities, entity-property pairs, and video-
level relations that we expect the methods to extract from captioned events. In
total, we made annotations of 110 captioned events in these 25 videos. Table 8
shows the precision and recall performances of our entity, property, and relation
extraction methods on these manually annotated videos. The results show that
our entity and property extraction methods are certainly reliable. In some cases,
however, our entity extraction method wrongly determines entities. For example,
for the sentence “the camera pans around the field”, spaCy wrongly classifies
camera, pans and field as nouns, while pans actually acts as verb in the sentence.
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Since pan is listed in WordNet as a noun, pans is still determined as an entity.
The relation extraction method is able to determine only around 70% of the
relations. This is due to the complexity of relation extraction.

Table 8. Evaluation of the entity, property, and relation extraction methods on cap-
tioned events from 25 manually annotated videos.

Semantic Metadata Type Prec. Rec.

Entities (video-level) 94.21 98.39

Properties 92.98 91.38

Relations (video-level) 78.36 70.62

7 Conclusion

We presented a framework for metadata extraction of various types from gener-
ated video captions. The metadata quality mainly depends on two factors: The
event localization and video captioning performance of the dense video caption-
ing model, and the number of captioned events forwarded from the dense video
captioning model to the semantic metadata extraction methods. This opens the
path for future research on integrated models for semantic metadata extraction.
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Abstract. We support scientific writers in determining whether a writ-
ten sentence is scientific, to which section it belongs, and suggest para-
phrasings to improve the sentence. Firstly, we propose a regression model
trained on a corpus of scientific sentences extracted from peer-reviewed
scientific papers and non-scientific text to assign a score that indicates
the scientificness of a sentence. We investigate the effect of equations and
citations on this score to test the model for potential biases. Secondly,
we create a mapping of section titles to a standard paper layout in AI
and machine learning to classify a sentence to its most likely section. We
study the impact of context, i. e., surrounding sentences, on the section
classification performance. Finally, we propose a paraphraser, which sug-
gests an alternative for a given sentence that includes word substitutions,
additions to the sentence, and structural changes to improve the writ-
ing style. We train various large language models on sentences extracted
from arXiv papers that were peer reviewed and published at A*, A, B,
and C ranked conferences. On the scientificness task, all models achieve
an MSE smaller than 2%. For the section classification, BERT outper-
forms WideMLP and SciBERT in most cases. We demonstrate that using
context enhances the classification of a sentence, achieving up to a 90%
F1-score. Although the paraphrasing models make comparatively few
alterations, they produce output sentences close to the gold standard.
Large fine-tuned models such as T5 Large perform best in experiments
considering various measures of difference between input sentence and
gold standard.

Code is provided here: https://github.com/JustinMuecke/SciSen.

Keywords: Scientific Writing · Language Models · Paraphrasing

1 Introduction

Scientific writing is a complex task with many resources helping researchers and
students write better text [2,41]. A good structure and language facilitate the
readers’ understanding of the relevant content. Sentences in scientific papers can
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be expected to follow a certain scientific style, which is distinct from colloquial
texts. A typical structure of research papers with methodological and empirical
contributions such as in AI and machine learning is the section sequence of an
introduction, related work, methods, results, discussion, conclusion, and option-
ally an appendix [36]. Although these sections might vary based on writing styles
and problem-specific content (e. g., in machine learning literature, the methods
section is often separated into method and experimental apparatus), readers
expect to find certain pieces of information in certain sections. Placing content
into sections contrary to a reader’s expectation makes it more difficult to find said
information. We investigate whether this structural clarity is better reflected in
published papers of higher quality (i. e., CORE database rankings1) compared to
less prestigious publications. Besides structural clarity, finding the best phrasing
is a challenge, since a sentence with the same meaning can be phrased in many
different ways. While there are already solutions for related sub-tasks of sentence
paraphrasing [3,13,14,18,20,26,39], these are not specific to the domain of sci-
entific papers. Other tools like Grammarly2 and ChatGPT3 are limited to online
use only and do not guarantee any data protection. We propose a simple training
procedure for paraphrasers to perform insertions, deletions, and modifications
on the input text and apply it to state-of-the-art paraphrasers on scientific text.
In summary, our contributions are:

(i) Scientificness score: We train regression models to discern non-scientific
from scientific sentences by determining a sentence’s scientificness.

(ii) Section classification: We train multi-label classifiers to indicate to which
sections a sentence belongs. Additionally, we investigate the impact of the
context length and scientific quality (i. e., CORE conference rank) of the
input sentence on the classification performance.

(iii) Sentence paraphrasing: We fine-tune the language models BART [19] and
T5 v1.1 [29] small, base, and large. We evaluate the sentence paraphrasing
on these models as well as using Pegasus [42] and GPT-2 [28].

The paper is structured as follows: We summarize the related work in Sect. 2.
The experimental apparatus is described in Sect. 3. The results are reported in
Sect. 4 and discussed in Sect. 5, before we conclude.

2 Related Work

We discuss the literature on language models and their capabilities on our tasks,
i. e., scoring, multi-label classification, and paraphrasing. We provide a brief
overview of existing commercial tools for writing assistance to further demon-
strate the relevance of this area of research.

1 http://portal.core.edu.au/conf-ranks/.
2 https://app.grammarly.com/.
3 https://openai.com/blog/chatgpt.

http://portal.core.edu.au/conf-ranks/
https://app.grammarly.com/
https://openai.com/blog/chatgpt
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2.1 Pre-trained Encoder Language Models

Encoder-only language models learn representations for each token of an input
sequence. BERT [7] is a encoder-only language model pre-trained using masked
language modelling (MLM) and next sentence prediction (NSP). The pre-trained
model can be fine-tuned on various downstream tasks [7]. There are many vari-
ations of BERT [1,5,19,21] with SciBERT [1] being the most relevant to us.
It is pre-trained on a corpus of scientific papers from bio-medicine and com-
puter science to increase its performance in those domains [12]. Due to the high
computational cost for pre-training, ELECTRA [5] aims to increase pre-training
efficiency. ELECTRA uses two neural networks, a generator which is discarded
after training and a discriminator. The generator plausibly substitutes masked
tokens from an input sentence. The discriminator has to distinguish between
tokens from the original input sequence and tokens generated by the genera-
tor. This way, each token of the input sequence contributes to the loss of the
discriminator, instead of only the masked tokens as in BERT.

2.2 Pre-trained Decoder Language Models

Decoder language models [19,28,29] are designed for text generation. They
take textual input and generate a new output sequentially token by token.
Auto-regressive decoders use already generated tokens to generate the follow-
ing tokens [19,28,29].

We use four language models for paraphrasing, namely BART [19], Pega-
sus [42], T5 v1.1 [29], and GPT-2 [28]. BART [19] is a general-purpose sequence-
to-sequence model that adds a left-to-right auto-regressive decoder to BERT.
Pegasus [42] is a sequence-to-sequence language model trained by gap-sentence
generation, which is comparable to MLM, but masks whole sentences instead
of words. We use a variant of Pegasus fine-tuned on paraphrasing [30]. The
encoder-decoder model T5 [29] introduces the concept of task instructions such
as translation, classification, and summarization as part of the prompts. These
instructions are provided to T5 while being fine-tuned on multiple tasks at the
same time. We use a version of T5 that is yet not fine-tuned on multiple tasks,
i. e., does not provide a token-based task execution. Instead, we fine-tune our
T5 (in version 1.1) on the task of paraphrasing as this is the only task we
want to perform. Thus, we omit using task-specific prefixes during fine-tuning.
GPT-2 [28] is a decoder-only model and is trained on the next token prediction
objective. It generates text in an auto-regressive manner to continue the prompt.

2.3 Text Classification

A classification task can be either single-label or multi-label. In multi-label clas-
sification, a classified object can be associated with none, one, or more classes.
BERT-based architectures achieve state-of-the-art results in many tasks, includ-
ing single-label and multi-label text classification [9,10]. For scientific texts, Sci-
BERT has been used to perform citation intent classification [24] and classifi-
cation of paper titles and abstracts to research disciplines [11]. SciBERT and
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BioBERT outperformed BERT on texts from STEM domains, but were outper-
formed on texts on language or history [11]. The performance of these models can
be influenced by characteristics of the input data, e. g., adding document context
can improve task performance [22]. Galke et al. [9] showed that WideMLP [10],
a Multi-Layer Perceptron (MLP) model with a wide hidden layer, is a strong
baseline for text classification in both the single-label and multi-label scenarios.
However, BERT achieved state-of-the-art results in text classification for various
datasets. To the best of our knowledge, there has been no attempt to classify
sentences of scientific text according to their corresponding section.

2.4 Sentence Transformation and Paraphrasing

A common task performing sentence transformations is Neural Machine Transla-
tion (NMT) [6]. Many approaches for machine translation require large amounts
of training data [13,26,39], with transformers achieving state-of-the-art perfor-
mance [39]. Besides translation, a text can be transformed by paraphrasing,
which changes an existing sentence while preserving its meaning [17,23,37].
Many paraphrasing approaches are limited to word-level changes [18,20]. Rud-
nichenko et al. [32] propose a system that paraphrases individual sentences,
including changes to the word order. These sentence transformation methods are
all supervised, i. e., the training datasets have a parallel corpus containing two
versions of each sentence. Such datasets are expensive to create. To tackle this
challenge, unsupervised paraphrasing approaches create training data by insert-
ing, replacing, or deleting words from a sentence [3,14,18,20]. Other approaches
create multiple alternative sentences [13,18] and apply evaluation methods on
each suggestion. A special case of paraphrasing is text style transfer (TST) which
aims to change the style of a text to imitate a specific writing style [15,16].

2.5 Tools to Improve Writing Quality

There are various tools to assess writing quality, which target spelling mistakes,
grammar errors, long sentences, and suggest paraphrases. Specifically, Writefull4

is a tool for scientific writing. It allows sentence paraphrasing and is trained on
scientific text, which sets it apart from tools for general English language. Quill-
Bot5 provides paraphrasing for general writing. LanguageTool6 and Grammarly7

provide general spelling and grammar improvements. However, even if a sentence
is grammatically, orthographically, and semantically correct, it could still be non-
scientific in style. Recent developments suggest that these tasks can be tackled
by tools like ChatGPT (based on InstructGPT [25]). However, it cannot be used
offline, is expensive to run, and does not guarantee data protection. Thus, we
train large language models ourselves to perform paraphrasing tasks on a local
infrastructure.
4 https://www.writefull.com/.
5 https://quillbot.com/.
6 https://languagetool.org/.
7 https://www.grammarly.com/.

https://www.writefull.com/
https://quillbot.com/
https://languagetool.org/
https://www.grammarly.com/
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3 Experimental Apparatus

In this section, we describe the datasets, the preprocessing, the procedure for
each task, the hyperparameter search, and the evaluation measures.

3.1 Datasets

We use papers published on arXiv until May 2022 with LaTeX available that were
accepted at A*, A, B, and C ranked conferences of the Australian CORE2021
database. To map papers with their respective conferences, we use the Papers
With Code database8. Since we extract the structure of the papers, we drop all
papers that are not using any \section{...} command in LATEX. Overall, we
have a total of 26, 201 papers, of which 21, 774 are from A*, 3, 665 from A, 530
from B, and 232 from C-ranked conferences.

For the scientificness score task, we complement our arXiv text with non-
scientific sentences from Reddit comments9, sci-fi stories10, and subsets of differ-
ent Twitter datasets [27,38]. For the section task, we can use our arXiv dataset
as-is. Finally, for paraphrasing, we create two parallel datasets by reducing the
quality of the sentences, e. g., replacing words with colloquial synonyms. The
first dataset is Pegasus-DS, which is created by changing sentences using Pega-
sus fine-tuned for paraphrasing [42]. The second dataset IDM-DS is created by
randomly inserting, deleting, and modifying up to half of the tokens of each
sentence based on MLM using BERT [7]. To evaluate the paraphraser, we addi-
tionally use Grammarly’s Yahoo Answers Formality Corpus (GYAFC) [31] for
testing. GYAFC contains informal and formal sentences with four human-written
paraphrases. We use 1, 332 sentences from the category family and relationships,
as the dataset provides output sentences from other models in this category. The
statistics of the datasets are summarized in Table 1.

3.2 Preprocessing

Citations and references were replaced by a <reference>-token. In the case of
\citeauthor, \citet, etc., which produces author names in the LATEX output,
we insert a random name11 to preserve the structure of the sentence. Math syn-
tax was replaced by <equation>-tokens. For the section classifier, we remove all
sections with titles that cannot be mapped to one of our predefined categories,
i. e., the classes our models are trained on. These classes are “introduction”,
“related work”, “method”, “experiment”, “result”, “discussion”, and “conclu-
sion”. Section titles extracted from the papers that fall into more than one cate-
gory are mapped to all of the categories they consist of. For example, the paper

8 https://production-media.paperswithcode.com/about/papers-with-abstracts.json.
gz.

9 https://files.pushshift.io/reddit/comments/.
10 https://www.kaggle.com/datasets/jannesklaas/scifi-stories-text-corpus.
11 https://www.kaggle.com/datasets/jojo1000/facebook-last-names-with-count.

https://production-media.paperswithcode.com/about/papers-with-abstracts.json.gz
https://production-media.paperswithcode.com/about/papers-with-abstracts.json.gz
https://files.pushshift.io/reddit/comments/
https://www.kaggle.com/datasets/jannesklaas/scifi-stories-text-corpus
https://www.kaggle.com/datasets/jojo1000/facebook-last-names-with-count
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Table 1. The number of sentences in the datasets and the sentences removed by
applying filters. The filters remove sentences with non-ASCII characters, minimum
length threshold, maximum length threshold, and if they contained a non-capitalized
first character or did not end with a punctuation.

Dataset name Number Filter Remaining

ASCII Short Long First Last

arXiv 5, 283, 451 51, 201 61, 705 1, 905 197, 081 12, 696 4, 958, 863

w. section ID 2, 864, 755 27, 357 32, 110 790 110, 467 6, 667 2, 687, 364

Books 1, 763, 465 0 149, 215 1, 006 10, 673 0 1, 613, 244

Reddit 279, 288 11, 774 51, 582 340 5, 638 0 217, 225

Twitter 268, 419 233, 272 241 9 0 0 35, 108

section entitled Introduction and Background is mapped internally to the two
classes “introduction” and “related work”. Our corpus includes machine learning
papers containing [MASK] as a word. Since the insert, delete, and modify (IDM)
process recognizes [MASK] as a special input token, we removed the brackets in
the IDM-DS dataset.

We split the input at end-of-sentence punctuation symbols ., ?, and ! to
obtain sentences. As documented in Table 1, we drop sentences containing non-
ASCII characters to ensure that classification tasks are not trivial due to emojis
or similar characters. We limit the length of extracted sentences to be at least
4 and at most 100 words. The upper limit was set as five times the average
sentence-length in non-fiction writing as well as five times the highest recom-
mended sentence length in English writing [33]. We filter sentences that do not
follow basic orthography, i. e., that do not start with a capital letter or end with
end-of-sentence punctuation.

3.3 Procedure

Scientificness Score. We then fine-tune BERT base [7] and SciBERT [1] and
train a Bag-of-Words WideMLP [9] with one hidden layer from scratch to pre-
dict the scientificness score. This is interpreted as a regression score, where we
assign a score of 0.9 to scientific sentences and 0.1 to non-scientific sentences
during training. We evaluate whether the conference rank of the paper affects
the models’ scores.

Furthermore, we investigate the effect of using the <equation> and
<reference> tokens by separately evaluating scientific sentences with and with-
out such tokens. We also add these tokens to 100, 000 randomly sampled sen-
tences from the Books dataset and compare the scores of the modified (i. e., with
tokens ingested) and original sentences.

Section Classification. We use BERT base [7], SciBERT [1], and a Bag-of-
Words WideMLP [9,10] with one hidden layer. Since a sentence might have
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multiple section labels, we train the models as multi-label classifiers. We exam-
ine the influence of the amount of context provided as input to the model by
varying the context length in training and testing. The input contexts provided
to the models are a single-sentence, two sentences, and three sentences (up to
BERT’s maximum input length of 512 tokens). Two-sentence input contains the
sentence of interest plus its predecessor, and three-sentence input contains the
sentence of interest plus its predecessor and successor. Additionally, we exam-
ine the influence of the conference rank on classification performance, i. e., we
separately evaluate sentences from conferences ranked as A*, A, and B and C
combined. Thus, papers from B and C are treated as one bucket, since the num-
ber of C papers (232 publications) is small.

Sentence Paraphrasing. The training of the paraphrasing models is based
only on text from A* and A conference papers to ensure high-quality training
data. The models are fine-tuned on Pegasus-DS and IDM-DS to reconstruct
the original scientific sentence from the corrupted version. We fine-tune models
based on T5 v1.1 in the variants small, base, and large, and BART base. We use
GPT-2 with the prompt prefix “In scientific language,” and include identity as
a baseline. For all models, we apply beam search with a width of 5 to generate
paraphrases and select the one with the highest probability.

The metrics are computed on the test split of each dataset. The test splits
are divided into buckets which reflect the amount of changes made compared to
the gold standard relative to the sentence length. The changes range from 0%
to 50% in 10% steps resulting in six buckets, where, for example, 40% means
that 6 words are changed in a 15 words long sentence. For IDM-DS, the number
of changes is known from creating the dataset. Thus, we control the amount of
changes in the sentences, but it may happen in an unlikely case that a sequence
of operations could undo an earlier change on a sentence, e. g., an insert followed
by a delete later on. For Pegasus-DS, we use the word error rate [40] (WER)
between the original and corrupted sentence to measure the amount of changes.
WER is a word-level version of the edit distance representing the number of
substitutions, deletions, and insertions divided by the original sequence length.

Additionally, we evaluate the performance of our models on the GYAFC
dataset to assess their capabilities to transform text from informal to formal
writing. We compare our models to the results of the GYAFC paper [31], which
includes a non-scientific paraphraser, a rule-based approach, and a NMT-based
model combined with rules (denoted as NMT combined). We also compare to
the results of two text-style transfer models, DualRL and DAST-C [15].

3.4 Hyperparameter Optimization

For all tasks and datasets, we use random 70:20:10 train, validate, and test split.
We tune hyperparameters on a 10% subset of the train and validation data.
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Scientificness Score. For the scientificness score, we fine-tune BERT, Sci-
BERT, and WideMLP using AdamW. We test the learning rates 1·10−5, 3·10−5,
5·10−5, the dropout rates 0.1, 0.3, and 0.5, and the values 0.05, 0.01, and 0.001 for
the weight decay. We train BERT and SciBERT for five epochs and WideMLP
for ten epochs, since the loss stopped decreasing there. We use a batch size of 8
as this was the highest one to fit on our GPU. SciBERT performed best with a
learning rate of 1·10−5, 0.3 dropout rate, and 0.1 weight decay. BERT performed
best using a learning rate of 1 · 10−5, 0.1 dropout rate, and 0.5 weight decay.
WideMLP performed best with a learning rate of 0.05, 0.3 dropout rate, and
0.05 weight decay.

Section Classification. We use Adam for fine-tuning BERT and SciBERT for
multi-label classification. We set a maximum of 15 epochs with early stopping
if the validation loss did not decrease for two epochs. Since the models stopped
improving after 1 to 3 epochs, we did not tune the number of epochs further.
We train with a batch size of 32, which was the maximum that reliably fit on
our GPU. We experimented with learning rates of 1 · 10−5, 3 · 10−5, 5 · 10−5 and
with λ thresholds of 0.5, 0.3, 0.2, and 0.1, i. e., the threshold above which a label
is assigned in multi-label classification. The best-performing parameters were
found to be a learning rate of 1 · 10−5 and λ = 0.2 for all transformer models.
For WideMLP, we use AdamW and train for 100 epochs with a learning rate of
10−1 for all datasets, following Galke et al. [9]. After testing the λ thresholds,
we achieved the best results with λ = 0.2.

Sentence Paraphrasing. We use AdamW to fine-tune T5 and BART. Per-
formance stopped improving after three to five epochs, so we set the number of
epochs to 5. As we did not observe a performance impact of changing the batch
size, we use the highest batch size that fits on our GPU, which was between 20
to 200 depending on the model. We use a learning rate of 2 · 10−5 for the exper-
iments. We test the values of 0.05, 0.01, and 0.001 for weight decay. Different
metrics favored different values, so we use 0.001 as weight decay because the
models perform consistently well for all metrics using this value.

3.5 Measures

Since the scientificness score is a regression task, we evaluate it using mean
squared error (MSE). For the section classification, we use sample-based F1,
following Galke et al. [9]. For the sentence paraphrasing, BLEU, METEOR,
and BERTScore measure the difference to the gold standard and self-BLEU
measures the difference to the input. BLEU calculates n-gram similarity with
n = 4 and is the standard metric for paraphrasing [14,15,18,20,31]. METEOR
is similar to BLEU but includes synonym matching to better match human
judgements [14]. BERTScore [43] measures semantic changes by calculating the
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cosine similarity of sentence embeddings of two sentences [3,15,18]. We use Sci-
BERT [1] to generate these embeddings, since we apply the score on scientific
text. The self-BLEU calculates a BLEU score between the input sentence and
output sentence and is a measure of the amount of changes done by each model.

4 Results

For the scientificness score task, we achieved an MSE of 0.181% for the fine-tuned
BERT, 0.213% for fine-tuned SciBERT, and 0.049% for the best performing
WideMLP. The results of our study of the effect of <equation> or <reference>
tokens on the models are presented in Table 2. For scientific text, the score is
roughly the same for sentences with and without such tokens. However, the stan-
dard deviation with tokens is three orders of magnitude lower for sentences with
the tokens. Adding such tokens to non-scientific text pushes the score towards
more scientificness and also increases the standard deviation.

Table 2. Scientificness score of sentences grouped by conference rank. Left: Only
sentences without <equation> or <reference> tokens. Right: Only sentences with
such tokens are evaluated. We also report scores for non-scientific sentences (NSC)
and modified-NSC (m-NSC), where the equation and reference tokens were artificially
inserted at random.

Model MSE Without equation and reference tokens With equation and reference tokens

A* A B C NSC A* A B C m-NSC

BERT Avg .8993 .8985 .8984 .8918 .1054 .9016 .9016 .9016 .9016 .8142

SD .0392 .0449 .0450 .0804 .0786 .0001 .0001 .0001 .0001 .2334

SciBERT Avg. .9004 .8988 .8992 .8892 .1034 .9032 .9032 .9032 .9031 .8819

SD .0438 .0548 .0514 .0977 .0778 .0000 .0000 .0000 .0000 .1096

WideMLP Avg .8914 .8880 .8889 .8645 .1388 .8913 .8878 .8885 .8648 .5168

SD .0522 .0617 .0611 .0997 .1197 .0523 .0615 .0606 .0988 .1387

For the section classification, the best sample-based F1-score was achieved
by BERT trained on a three-sentence input taken from conferences ranked A*.
See Table 3 for detailed results. Table 4 shows the results for the context length
experiment. In this setting, the BERT model trained on two and evaluated on
three sentences achieved the best performance.

For sentence paraphrasing, the results in Table 5 show that T5 large per-
formed best on the fine-tuning datasets. On the IDM-DS, sentences are changed
more (self-BLEU) than on the Pegasus-DS, and at the same time the changed
sentences are closer to the gold standard (BLEU). On the GYAFC dataset, see
results in Table 6, T5 base has the highest BLEU score. Overall, the fine-tuning
on IDM-DS performed better than Pegasus-DS as the BLEU score is higher, but
at the cost of a higher self-BLEU.

The BLEU and METEOR scores improve with larger model sizes, i. e., the
generated sentences are closer to the original sentences when larger models are
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Table 3. Sample-based F1-score (in %) on section classification. Model trained on all
data with different context sizes and evaluated per conference level. 1-sentence input
uses the current sentence only, 2-sentence additionally considers the previous, and 3-
sentence additionally the previous and next sentence.

Input Model all A* A B/C

1-sentence BERT 68.37 68.97 64.69 64.60

SciBERT 68.68 69.30 64.96 64.42

WideMLP 40.97 41.42 38.20 38.61

2-sentences BERT 79.40 79.77 77.05 77.04

SciBERT 79.16 79.58 76.62 76.20

WideMLP 60.36 61.26 54.73 54.58

3-sentences BERT 90.10 90.26 89.13 88.86

SciBERT 88.87 89.05 87.67 87.54

WideMLP 67.43 68.37 61.30 62.05

Table 4. Sample-based F1-score (in %) of the section classification task from papers of
all ranks. Context (Train) indicates the context during training, while Context (Eval)
refers to the context for evaluation. 1-sentence input uses the current sentence only, 2-
sentence additionally considers the previous, and 3-sentence additionally the previous
and next sentence.

Context (Train) Model Context (Eval)

1-sentence 2-sentences 3-sentences

BERT 68.37 78.35 81.72

1-sentence SciBERT 68.68 78.81 81.81

WideMLP 40.97 42.46 43.16

BERT 73.96 79.40 90.30

2-sentences SciBERT 73.05 79.16 89.39

WideMLP 51.44 60.36 64.82

BERT 72.68 90.04 90.10

3-sentences SciBERT 71.48 88.35 88.87

WideMLP 49.51 62.53 67.43

used. The BERTScore also improves for larger models, showing that the sen-
tences’ semantics is preserved better. Increasing the model size decreases self-
BLEU, i. e., larger models change the input sentences to a higher degree. On the
Pegasus-DS the difference of BLEU and METEOR is quite large, while being
quite small on the IDM-DS. This means that on IDM-DS, the models have
a higher chance of replacing words with the correct synonyms, while the para-
phrasing output on the Pegasus-DS remains to have larger differences to the gold
standard. The models fine-tuned on Pegasus-DS have a higher self-BLEU than
the IDM-DS models. Therefore, the models’ inputs are closer to their outputs, i.
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e., these models make fewer changes on average. Table 6 shows that our models
have higher BLEU and self-BLEU scores on the GYAFC dataset, i. e., our mod-
els make fewer changes to the input sentences and still produce outputs close to
the gold standard.

Table 5. Results (in %) for Pegasus-DS (left) / IDM-DS (right) divided into buckets
based on Word Error Rate (WER) and change rate (CR), respectively. All models are
fine-tuned on the respective dataset. Identity returns the input.

WER/CR Model BLEU ↑ METEOR ↑ BERT ↑ sBLEU

0 identity 69.56/74.62 78.03/83.91 87.79/97.41 100.00/100.00

T5 small 69.01/84.91 76.91/87.66 86.94/90.53 93.50/58.17

T5 base 69.00/85.95 77.23/88.44 86.74/90.81 88.35/76.00

T5 large 69.57/86.85 78.07/89.03 86.86/98.50 85.27/74.93

BART base 69.24/87.71 78.35/91.23 87.44/91.56 86.11/75.44

10% identity 48.25/67.16 63.05/81.53 82.84/96.47 100.00/100.00

T5 small 48.47/80.03 62.56/86.17 81.91/89.82 90.15/55.24

T5 base 48.83/81.64 63.45/87.07 81.54/90.24 80.73/71.09

T5 large 49.57/83.13 64.78/87.78 81.81/98.20 75.73/69.52

BART base 49.42/83.72 65.31/90.09 82.88/91.08 79.15/70.23

20% identity 36.28/58.16 55.28/78.71 79.71/94.23 100.00/100.00

T5 small 36.95/71.73 55.08/83.47 78.65/88.26 87.13/49.86

T5 base 37.59/74.09 56.29/84.60 78.42/88.91 75.31/66.27

T5 large 38.60/76.40 57.60/85.58 78.83/97.54 69.40/63.87

BART base 38.27/76.41 58.04/87.76 80.06/89.87 74.22/64.86

30% identity 27.32/52.38 50.00/77.05 76.87/92.40 100.00/100.00

T5 small 28.34/65.34 50.15/81.58 76.03/87.01 85.01/45.87

T5 base 29.50/68.41 51.55/82.87 76.15/87.87 71.31//63.72

T5 large 30.59//71.25 52.75/83.96 76.63/97.04 64.45/60.80

BART base 30.18/70.91 53.16/86.06 77.92/88.87 69.84/62.12

40% identity 22.02/46.58 47.06/75.46 74.86/90.43 100.00/100.00

T5 small 23.29/59.10 47.88/79.65 74.83/85.67 84.62/41.76

T5 base 25.16/62.61 49.62/81.04 75.28/86.71 67.98/60.95

T5 large 26.43/65.89 50.93/82.25 75.87/96.47 60.26/57.39

BART base 25.82/65.18 51.24/84.30 76.98/87.76 65.62/59.16

50% identity 36.28/41.28 55.28/73.82 79.71/88.38 100.00/100.00

T5 small 29.03/52.89 55.13/77.69 75.94/84.19 80.81/37.63

T5 base 32.65/56.76 58.52/79.22 77.28/85.41 63.32/58.79

T5 large 34.67/60.40 60.46/80.51 78.19/95.88 56.28/54.73

BART base 34.19/59.51 61.15/82.57 79.21/86.54 60.17/56.79
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Table 6. Results (in %) of our models on the GYAFC dataset. All models are evaluated
with the same implementation of the metrics for either our own models (“own”, i. e., we
trained the models), on the models’ output provided by the original papers (marked as
“output” in the provenance column), or model weights (indicated by “weights”). The
best scores per metric are marked in bold.

Model Fine-tuning BLEU↑ METEOR↑ BERTScore↑ sBLEU↓ Provenance

Original Informal – 55.01 20.25 94.00 100.00 output [31]

Rule-based – 49.49 17.20 94.39 57.92 output [31]

NMT Combined GYAFC 52.50 17.23 94.93 47.86 output [31]

DualRL GYAFC 39.75 16.93 92.38 45.99 output [15]

DAST-C GYAFC 36.14 18.52 90.99 47.81 output [15]

Pegasus – 49.72 16.80 86.33 35.98 weights [30]

IDM – 49.52 17.93 92.76 80.02 own

GPT-2 – 1.48 17.30 78.84 1.38 own

T5 small Pegasus-DS 48.73 22.04 84.35 65.23 own

T5 base Pegasus-DS 50.04 22.22 66.30 70.30 own

T5 large Pegasus-DS 49.91 21.56 85.65 74.65 own

BART base Pegasus-DS 54.56 20.75 67.13 86.42 own

T5 small IDM-DS 58.47 20.75 88.66 86.65 own

T5 base IDM-DS 57.21 20.63 67.62 90.60 own

T5 large IDM-DS 55.23 20.45 87.89 91.28 own

BART base IDM-DS 54.48 20.42 67.40 93.24 own

5 Discussion

5.1 Key Results

Scientificness Score. All models score sentences from scientific papers at a
value of around 0.9 (see Table 2) with the highest scores provided by SciBERT.
For all models, the mean output decreases, and the standard deviation increases
with decreasing conference rank. This suggests that lower-ranked conferences
contain, on average, fewer scientific sentences. Therefore, low-ranked conferences
have a broader range of sentence quality and include more sentences with a lower
scientificness score.

The experiment on the influence of <equation> and <reference> tokens (see
Table 2) shows that transformer models rank sentences containing such tokens
higher than sentences without such tokens. This indicates that the models have
learned to connect sentences containing these tokens with higher scientificness.
The low standard deviation indicates a more stable prediction of the scientificness
score for sentences containing these tokens.

We performed an additional experiment to analyze the influence of the
<equation> and <reference> tokens on non-scientific sentences. We modified
the non-scientific sentences by inserting the specific tokens. As shown in Fig. 1,
SciBERT now scores most non-scientific sentences containing such a token with
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0.9, while BERT still keeps a small amount of sentences with scores in the non-
scientific range. For WideMLP, we can see that the influence of the tokens is
much smaller. The mean score here is 0.52, which is lower then in BERT (0.81)
and SciBERT (0.88). Therefore, WideMLP relies less on these tokens, which
makes it more suitable for non-scientific text containing equations.

Fig. 1. Scorings for non-scientific sentences with no modifications (original) and the
same sentences with <equation> and <reference> tokens being randomly inserted
(modified).

Section Classification. For section classification, the WideMLP baseline is
consistently outperformed by transformer-based models. This might be a result
of the lack of sequence information which the Bag-of-Words approach neglects.
Also, we use pre-trained transformer models but train WideMLP from scratch,
which means that the transformer models start with some understanding of
language already.

We observe that the classification performance increases with more context
provided (from 1-sentence to 3-sentences). For example, the BERT model clas-
sifies the one-sentence input

“Then a weighted sum of attention is carried out to get an attended atten-
tion over the document for the final predictions.”

as possibly fitting into an introduction, related work, or methods. However,
enhanced by the surrounding sentences to the following input

“We present a novel neural architecture, called attention-over-attention
reader, to tackle the cloze-style reading comprehension task. Then a
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weighted sum of attention is carried out to get an attended attention over
the document for the final predictions. Among several public datasets,
our model could give consistent and significant improvements over vari-
ous state-of-the-art systems by a large margin.”

the sentence is correctly placed in the conclusion.
As shown in Table 3, the performance is better for sentences from higher-

ranked conferences compared to lower-ranked conference. The fine-tuned Sci-
BERT, which is pre-trained on a scientific corpus, performed slightly better than
BERT with no context. However, with higher context size, BERT consistently
yields the best results. Unlike the scientific data from arXiv that we used for
fine-tuning, the pre-training corpus of SciBERT mostly comes from the medical
domain [1]. Thus, while SciBERT’s pre-training on scientific phrasing is benefi-
cial for the small amount of information contained in a single sentence, BERT’s
more general corpus helps for inputs of two and three sentences.

As shown in Table 4, providing more context to a model during inference
improves the performance, even if the model is trained on inputs with less con-
text. However, the performance improves more if the additional context was
already provided during training. An exception are transformer models trained
on 2-sentences input but tested on 3-sentences inputs: they achieve higher F1-
scores than their counterparts trained on 3-sentences inputs. This shows that
providing context helps training, but context during inference is more impor-
tant.

While the general section classification performance was high, their predic-
tions include label combinations one would not expect to find in a scientific
paper. For example, sentences were assigned no label, more than two labels, or
sections that would not typically contain similar sentences (e. g., “introduction”
and “experiment”). In pre-experiments, applying individual thresholds per class
or limiting the number of assigned labels to one or two labels per sentence
affected <1.21% of outputs and improved the sample-based F1-score only by
<0.01% for the best model. Therefore, the influence can be neglected.

Sentence Paraphrasing. Our task differs from general paraphrasing, since we
focus specifically on scientific sentence improvement, where we expect that the
input is already quite good and only few changes are necessary. However, most
baseline models have higher BERTScores, which means that these paraphrasers
can still keep the semantics of the input, which makes them better general-
purpose paraphrasers. We observe that fine-tuning on IDM-DS gives a 7% larger
BLEU score than fine-tuning on Pegasus-DS. GPT-2 with our custom prompt
has a low self-BLEU but high BLEU score, which means that it changes the
input a lot and that the output is different from the gold standard. The low
performance of GPT-2 may be attributed to the lack of fine-tuning the model.
Finally, we observe that the amount of changes in the sentences increases with a
higher corruption level. This means that more sentences are changed when the
dissimilarity to the original scientific sentence increases.
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5.2 Threats to Validity

We provide a method for distinguishing whether a sentence is scientific or not.
The selection and labeling of the non-scientific datasets may pose a limitation,
which could be improved by using a wider range of non-scientific datasets and
more fine-grained scientificness scores. We carefully investigated the influence of
<equation> and <reference> tokens. Although the experiments showed that
the tokens increase the scientificness of a sentence, this is not an issue, since
references and citations are in fact indicators of high scientificness. For the sen-
tence paraphrasing, the output sentence can be equal to the input sentence. An
unchanged sentence can be a problem for general paraphrasing, where the model
should provide a variety of different suggestions. However, this is not an issue
for us, since the input sentence can be already (quite) scientific.

5.3 Ethical Considerations

The development of AI systems in fields like scientific writing needs consideration
of ethical and social impact. Common problems of recent language models are
authorship and hallucinations [44]. Our models do not present these concerns.
The only models we trained that generate text are the paraphrasers, which
aim to maintain the meaning of the input sentence without introducing any
new information, whether real or fake. If one were to deploy our models for
interactive writing support, users should check the suggested paraphrases and
not blindly integrate them into their text. This applies to all writing support
tools, even simple non-AI variants like Overleaf’s dictionary that at times may
suggest wrong replacements for technical terms or unknown words. As with
other language models, there is a possibility of extracting training samples [4,
8]. However, the pre-training checkpoints of our generative models are publicly
available and we fine-tuned them on public papers only, which should not contain
sensitive private information. In contrast to proprietary language models that
may entail high costs, both in training as well as operation, and thus makes some
inaccessible, our models are open-source and accessible to anyone.

6 Conclusion

While scientific writing remains a complex task, machine learning methods can
be leveraged to be of assistance. We show that transformer models achieve the
best results in computing a score of scientificness for a sentence, classifying a
sentence to a section within the structure of a scientific paper, and paraphrasing
scientific sentences. SciBERT, which is pre-trained on a scientific corpus compris-
ing mostly papers from the broad biomedical domain [1], does not outperform the
general-purpose BERT model [7] on tasks for scientific texts from the computer
science domain. We also showed that transformer models profit from context
during training and evaluation, with providing more context during evaluation
being more important than providing it during training.
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There are also other datasets such as unarXiv [34] that we considered using.
Due to the lack of providing section information with the text parapgrahs, we
created our own section extraction and mapping approach. In March 2023, an
updated unarXive 2022 dataset [35] was released that provides structured full
text, i. e., per paragraph the section title, section type, content type, etc. It would
be interesting to repeat the experiments with this dataset that was not available
yet at the time of writing.
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