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Abstract. This is the companion paper for the ICPR 2022 Paper “Deep
Saliency Map Generators for Multispectral Video Classification”, that
investigates the applicability of three saliency map generators on multi-
spectral video input data. In addition to implementation details of modi-
fications for the investigated methods and the used neural network imple-
mentations, the influence of the parameters and a more detailed insight
in the training and evaluation process is given.
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1 Introduction

Providing the source code not only gives a better understanding of the state-
ments, it also helps to verify the outcomes of the examined experiments.
Nonetheless, even the best-documented source code can still leave questions
unanswered, such as how a specific parameterization changes the results or why a
selected metric was chosen. In the following, a more detailed view on the exam-
ined saliency map generators (Sect. 2) of the addressed Paper [1] is given. In
addition, the influence of the methods’ parameters regarding the deletion and
insertion metric is shown. Afterwards, the used network implementations are
described (Sect. 3). The last section covers the evaluation with the used metrics
(Sect. 4).

Our source code can be found at GitHub1 and requires Python 3.9, PyTorch
1.8.2 LTS, and torchvision 0.9.

2 Deep Saliency Map Generators

The three investigated methods are Grad-CAM [4], Randomized Input Sampling
for Explanation (RISE) [3] and the similarity difference and uniqueness method
(SIDU) [2]. Since they are usually applied to ordinary images, some adjustments
have been made, that are explained in the following. For Table 1 and Table 2, ↑
(↓) indicates, that a higher (lower) value is better.
1 https://github.com/JensBayer/ICPR2022.
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2.1 Grad-CAM

While Grad-CAM not only outperforms its competitors, it is also the simplest
to implement. Grad-CAM generates a saliency map by calculating a weighted
sum of the forward features of the last convolutional layer. The weights are
determined by the gradient of the target class. Grad-CAM requires a forward
and backward pass of the input through the network. We therefore register a
forward and backward hook at the target layer of our model, to extract the
forward features F and the gradient Gc = ∂yc

∂Fk
for the score yc of the target class

c. Here, k equals the number of forward feature maps, generated by the network.
The gradient is summed to obtain the neuron importance weights

αc
k =

∑

i,j

Gc
kij (1)

as described by [4]. The forward features are multiplied with the neuron impor-
tance weights and activated via ReLU. The final saliency map

Sc = upscale(ReLU(
∑

k

αc
kFk)) (2)

is given by the upscaled weighted sum of the features. Since 3D ResNet generates
three-dimensional forward features, the temporal dimension must also be taken
into account in Eq. 1. Additionally, the bilinear interpolation in Eq. 2 changes to
a trilinear interpolation.

2.2 RISE

RISE is a Monte Carlo approach that masks the input and calculates a weighted
sum of the masks according to the output of the masked input to retrieve a
saliency map. For RISE, we largely stick to the official implementation2: First,
n = 1000 random binary grids of size s = 2 × 8 × 8 are sampled in such a way,
that the value of a tile of the grid equals one with a probability of p = 0.1. Each
grid is either bilinear or trilinear, upscaled to a slightly larger size than the input.
The resulting grids are randomly cropped to match the input size. After this, the
input data is multiplied elementwise with these masks and propagated through
the network. The resulting network output P is then used as a weighting term
in the calculation of the final saliency map:

Sc =
n∑

k

P c
k · crop(upscale(Gk)), Gk ∈ {0, 1}s , P (Gkij = 1) = p (3)

As it can be seen in Table 1, the usage of more masks lead to slightly better
Deletion and Insertion scores, but comes at the cost of a significant higher com-
putation time. Furthermore, the temporal mask resolution with s = 2 × 8 × 8
leads in almost all cases to the best or tied to the best scores. The increased
probability of p = 0.25 for a grid tile to be nonzero, has also a positive influence
and leads to slightly better scores.
2 https://github.com/eclique/RISE.

https://github.com/eclique/RISE
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Table 1. Deletion and Insertion score for different parameters for RISE, using the
IRTV trained network. Only a single parameter is modified, while the remaining two
are set to the default values, described in Subsect. 2.2.

Image Spectrum Parameters 3D-ResNet 18 PAN

Deletion ↓ Insertion ↑ Deletion ↓ Insertion ↑
TV n = 102 0.18 ± 0.13 0.55 ± 0.23 0.27 ± 0.18 0.51 ± 0.22

n = 103 0.17 ± 0.09 0.60 ± 0.24 0.22 ± 0.18 0.59 ± 0.22

n = 104 0.18 ± 0.08 0.62 ± 0.24 0.22 ± 0.17 0.61 ± 0.24

IR n = 102 0.18 ± 0.13 0.48 ± 0.27 0.17 ± 0.14 0.51 ± 0.23

n = 103 0.16 ± 0.10 0.54 ± 0.26 0.16 ± 0.14 0.54 ± 0.23

n = 104 0.16 ± 0.08 0.57 ± 0.26 0.16 ± 0.13 0.55 ± 0.23

TV s = 2 × 8 × 8 0.18 ± 0.10 0.64 ± 0.20 0.23 ± 0.17 0.58 ± 0.24

s = 4 × 8 × 8 0.18 ± 0.19 0.56 ± 0.22 0.24 ± 0.17 0.50 ± 0.23

s = 8 × 8 × 8 0.16 ± 0.21 0.43 ± 0.30 0.26 ± 0.14 0.45 ± 0.22

IR s = 2 × 8 × 8 0.18 ± 0.10 0.61 ± 0.23 0.17 ± 0.14 0.54 ± 0.22

s = 4 × 8 × 8 0.18 ± 0.12 0.61 ± 0.24 0.18 ± 0.12 0.54 ± 0.24

s = 8 × 8 × 8 0.18 ± 0.16 0.58 ± 0.23 0.22 ± 0.13 0.50 ± 0.23

TV p = 0.10 0.18 ± 0.10 0.61 ± 0.23 0.23 ± 0.18 0.60 ± 0.23

p = 0.25 0.18 ± 0.12 0.61 ± 0.24 0.23 ± 0.19 0.66 ± 0.24

p = 0.50 0.18 ± 0.16 0.58 ± 0.23 0.27 ± 0.21 0.65 ± 0.26

IR p = 0.10 0.18 ± 0.10 0.58 ± 0.23 0.17 ± 0.15 0.53 ± 0.23

p = 0.25 0.17 ± 0.09 0.59 ± 0.23 0.17 ± 0.16 0.62 ± 0.23

p = 0.50 0.18 ± 0.12 0.56 ± 0.24 0.19 ± 0.17 0.60 ± 0.24

2.3 SIDU

SIDU uses the features of the last convolutional layer to mask the input data,
propagates the masked input through the network and calculates the similarity
differences and a uniqueness scores of the output to finally generate a saliency
map. As for RISE, we also stick largely to the official implementation of SIDU3.
To extract the forward features, we register a forward hook at the target layer
of the used model and perform a forward propagation. The network output P̃
and the forward features F are recorded. The masks

M = upscale(M̃), M̃kij =

{
1 if Fkij > τ

0 else
(4)

are the result of the binarization of the forward features with a threshold
(τ = 0.5), followed by a bilinear or trilinear upscaling. Similar to RISE, the
masks are elementwise multiplied with the input data and propagated through
the network. The resulting network output P is used in the calculation of the
similarity difference sd and uniqueness u scores. The resulting saliency map

S = u(Pk) · sd(Pk, P̃ )) · Mk (5)

is the product of those two scores and the corresponding masks.
3 https://github.com/satyamahesh84/SIDU XAI CODE.

https://github.com/satyamahesh84/SIDU_XAI_CODE
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Table 2. Deletion and Insertion scores for different τ values.

Image Spectrum τ 3D-ResNet 18 PAN

Deletion ↓ Insertion ↑ Deletion ↓ Insertion ↑
TV -1 0.35 ± 0.17 0.46 ± 0.19 0.40 ± 0.21 0.49 ± 0.22

-0.5 0.35 ± 0.17 0.46 ± 0.19 0.40 ± 0.21 0.49 ± 0.22

0 0.18 ± 0.08 0.67 ± 0.18 0.26 ± 0.14 0.62 ± 0.25

0.5 0.18 ± 0.09 0.67 ± 0.18 0.23 ± 0.16 0.68 ± 0.22

1 0.18 ± 0.09 0.67 ± 0.19 0.23 ± 0.15 0.68 ± 0.22

IR -1 0.29 ± 0.15 0.42 ± 0.19 0.36 ± 0.18 0.48 ± 0.23

-0.5 0.29 ± 0.15 0.42 ± 0.19 0.36 ± 0.18 0.48 ± 0.23

0 0.17 ± 0.08 0.64 ± 0.20 0.21 ± 0.12 0.59 ± 0.24

0.5 0.17 ± 0.08 0.64 ± 0.20 0.18 ± 0.12 0.63 ± 0.21

1 0.17 ± 0.08 0.63 ± 0.20 0.18 ± 0.12 0.63 ± 0.21

Table 2 shows the influence of τ on the Deletion and Insertion scores. For
τ ≥ 0, the Deletion and Insertion scores are quite similar.

3 Networks

The investigated network families are 3D-ResNets and the Persistent Appearance
Networks (PAN). Since the Multispectral Action Dataset is comparably small,
we used the 3D-ResNet 18 provided by torchvision and the official PAN-Lite
network implementation4.

3.1 3D-ResNet

The target layer for the forward feature extraction of Grad-CAM and RISE,
when used with 3D-ResNets, is the output of the last convolutional layer right
before the pooling layer. The upscaling for all three investigated methods is
trilinear.

3.2 Persistent Appearance Network

Since we use PAN with a ResNet 50 backbone, the forward features are also
extracted at the last convolutional layer right before the pooling layer. The
upscaling, however, is bilinear for Grad-CAM and SIDU and trilinear for RISE.
The trilinear upscaling provides a more temporally stable mask.

4 https://github.com/zhang-can/PAN-PyTorch.

https://github.com/zhang-can/PAN-PyTorch
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4 Evaluation

The experiments are evaluated with the Deletion and Insertion metric on
sequences of the Multispectral Action Dataset. The fixed train and test split
can be found in the git repository, while the dataset can be freely requested.

4.1 Deletion Metric

Given a saliency map S ∈ R
t×h×w and an input sequence I ∈ R

t×c×h×w, the Dele-
tion metric (see Algorithm 1) first sorts the indices of the entries of S in descend-
ing order, according to their values. Afterwards, the sorted indices are separated
in n coherent parts and the values of S are successively replaced with a fixed value
v = 0, according to the partition order. After each part, the classifier f computes
the class probability for the target class t of the modified input. The class proba-
bility after the ith part is recorded in pi. Finally, the area under the curve of the
entries of p and the linear spaced values from 0 to 1 in n steps is returned.

Algorithm 1. Deletion score calculation.
1: function deletionscore(f,S, I, n, v, t)
2: sorted idx ← argsort(S)
3: parts ← split(sorted idx, n)
4: p ← 0n

5: for i = 0, . . . , n do
6: for all j ∈ partsi do
7: Ij ← v
8: end for
9: pi ← σ(f(I))t � σ is the softmax function

10: end for
11: score ← AreaUnderCurve(p)
12: return score
13: end function

Algorithm 2. Insertion score calculation.
1: function insertionscore(f,S, I, n, t)
2: sorted idx ← argsort(S)
3: parts ← split(sorted idx, n)
4: Ĩ ← blur(I)
5: p ← 0n

6: for i = 0, . . . , n do
7: for all j ∈ partsi do
8: Ĩj ← Ij
9: end for

10: pi ← σ(f(Ĩ))t
11: end for
12: score ← AreaUnderCurve(p)
13: return score
14: end function
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4.2 Insertion Metric

Similar to the Deletion metric, the Insertion metric (see Algorithm 2) succes-
sively unblurs a blurred version Ĩ of the input data I, according to the importance
score of the given saliency map S.

5 Conclusion

This paper shows the impact of different parameter choices for already existing
methods, namely Grad-CAM, RISE and SIDU, when applied not to ordinary
images but rather video input data in the visual and long-wave infrared spec-
trum. To quantify the results, the Deletion and Insertion metric are used. While
for RISE, a higher number of generated masks seems to improve the scores, a
higher temporal mask resolution seems to be counterproductive. The probability
parameter used by RISE seems not to have a big impact. For SIDU, the default
value for the threshold τ = 0.5 results in most cases in the best or close to the
best scores.

Acknowledgements. This work was developed in Fraunhofer Cluster of Excellence
“Cognitive Internet Technologies”.
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