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Abstract. Memory resources are an important aspect to consider when
designing high performing programs. This is especially true for programs
running on graphical processing units, GPUs, yet this is not something
trivially done using current OpenMP target offloading. In this paper, we
examine methods for implementing parallel programs running on GPUs,
which rely on locally shared memory resources and intricate synchro-
nization. Employing the methods, we show you can achieve between 1.5
to 9 relative speedup over a range of compilers. We evaluate portability
by running experiments on two systems, utilizing different GPU tech-
nologies and vendors. We further investigate scheduling, synchronization
and execution time of our experiments, to better understand the over-
head associated with using OpenMP, compared to architecture specific
languages. Lastly, we argue that improved GPU scheduling could yield
a potential speedup of 3.

Keywords: GPGPU Programming + OpenMP Target Offloading -
Shared Memory - Fine-Grained Parallelism

1 Introduction

As supercomputers advance towards exascale levels of performance, there is an
increasing trend of incorporating accelerators such as Graphics Processing Units,
GPUs, to enhance computational density and efficiency. However, the integra-
tion of GPUs into supercomputing systems introduces additional complexity for
developers, necessitating the evolution of parallel programming models to keep
pace with this trend. While architecture-specific languages and tools such as the
Compute Unified Device Architecture, CUDA [17], provides lower-level control
of the GPU hardware often allowing higher performing programs through hard-
ware intrinsic functions, they also place a greater burden on developers, requiring
them to invest more effort and time in development.

Open Multi-Processing, OpenMP [19], is an application programming inter-
face, API, which has long been a popular choice for shared memory parallelism
within the realm of High Performance Computing, HPC. OpenMP provides
developers with a range of library routines and compiler directives that help
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manage the low-level details of parallelization, allowing developers to focus on
high-level logic. An important addition in OpenMP 4.0 [20] is the introduction
of target offload, which allow developers to offload part of programs to GPUs
using a similar syntax to traditional OpenMP parallelization, bringing the high
portability of OpenMP to GPU programming.

Target offload in OpenMP is still in an early stage of development across
many compilers, including different implementations of the standard. This can
often lead to a significant difference in behavior and performance, for the same
lines of code when using different compilers. Additionally, GPUs provide fast
local memory resources, which is shared between groups of threads providing
very fast access. This locally shared memory is important to consider for high
performing GPU applications, as it enables fast data sharing and pre-fetching.
Yet this area of controlling locally shared memory is not fully mature and can
result in a high degree of variation in performance across compilers.

This paper aims to analyze the practical aspects of implementing portable
programs with effective utilization of GPU shared memory with OpenMP, specif-
ically focusing on block/chunk algorithms by conducting experiments on two
different system, employing both NVIDIA and AMD hardware.

Furthermore, we compare the performance of compiler generated code and
performance portability across different compilers. Lastly, we will profile the
resulting GPU kernels, to further investigate the underlying scheduling and syn-
chronization of the target regions.

The main contributions of this paper are as follows. We:

— examine the effectiveness of manual parallelization and automatic loop-based
work-sharing constructs in OpenMP target offloading for fine-grained control
of parallelization and evaluate their suitability for algorithms reliant on GPU
shared memory and blocking.

— compare performance and usability of target offloading for blocking algo-
rithms depending on local synchronization and memory resource sharing for
the most common compilers on modern hardware.

— identify areas where OpenMP target offloading lags behind, compared to a
equivalent program written in CUDA.

In Sect. 2, this paper provides an overview of OpenMP target offloading and
introduces the two algorithms used for experimentation. Section 3 presents our
experimental results, both considering methods of parallelization, compiler capa-
bilities and in-depth profiling of GPU scheduling. Section 4 gives a brief summary
of related works and Sect. 5 concludes the paper by summarizing key findings.

2 Background

GPUs are highly parallel processors, which excel especially at handling large
workloads and processing where similar work is required for a large number
of elements. They can typically run thousands of threads at the same time,
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spread across hundreds of cores, making it crucial to consider ways to maximize
parallelization in one’s programs.

GPUs are typically structured in many physical groups of tightly packed
cores, utilizing a Single Instruction Multiple Data, SIMD, architecture, for max-
imizing the density of cores, allowing significantly higher core count compared
to conventional CPUs. NVIDIA refer to these groups as Streaming Multiproces-
sors, SMs, containing 32 cores, while AMD designates them as Compute Units,
CUs, containing 64 cores. Each of these SM/CU will process the same instruc-
tion across all cores and through smart hardware and software mapping enable
execution of multiple threads at the same time, all executing the same instruc-
tions in lockstep. This results in great performance when the flow of execution
is identical across all threads, but when a branch is encountered the efficiency
will decrease as some cores will remain idle, while the neighbors are executing
other branches.

The cores are not only densely clustered in groups, but is also tightly inter-
connected in the groups, sharing the same registers, .1 cache, and locally shared
memory, enabling significantly faster data sharing and synchronization within
a group compared to outside [16]. It is therefore important to structure pro-
grams in such a way, that most communication is happening within one group,
to best utilize the local interconnection. This is already deeply embedded in the
architecture-specific languages, such as CUDA and OpenCL, where GPU work
is organized in blocks or workgroups respectively, representing a block/group
of threads which work together within the same SM/CU. This organization
enables efficient sharing and synchronization between the threads, as they all
remain within the same group. Beyond the blocks/workgroup, synchronization
becomes limited, although some data sharing can still be accomplished through
the use of atomic operations and global memory access. If global synchronization
is required, it becomes necessary to wait for all blocks/groups to complete before
continuing.

There are several approaches to writing GPU programs using OpenMP target
offloading. Section 2.1 discusses the available parallel constructs in OpenMP and
Sect. 2.2 discusses the example applications being used for the experiments.

2.1 OpenMP Target Parallelism for GPUs

The analogous concept to blocks and workgroups in OpenMP is the teams con-
struct, which similarly represents a group of threads working tightly together.
We consider two main methods for organizing work into blocks. The first is man-
ually defining the work-sharing and the number of teams in the target teams
region, using the num_teams directive, with the intention of starting a team for
each block. The number of teams created is a higher bound for OpenMP 5.0 and
will be defined by the implementation, but both a lower and higher bound have
later been introduced, making this methods more portable for newer versions of
OpenMP. The second method is using the distribute work-sharing construct
to parallelize a for-loop across all available teams, and then let the implemen-
tation decide how many actual teams are used, see Listing 1.1. This has the
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advantage of being independent of the actual number of teams created, making
the methods much more portable. The negative side to this method is that it can
introduce an additional overhead of managing an outer loop iterating over the
blocks, depending on how the implementation decides to handle the distribution.
This effect will be examined further in Sect. 3.3.

To fully utilize the hardware a second level of parallelism must be created
using a parallel region. Similarly, to the teams construct, the parallel region
can either be created by directly by specifying the number of threads, or by
distributing a loop using the parallel for construct. The number of threads
in a team can be specified using the thread limit clause, but this also defines
an upper limit in OpenMP 5.0, meaning that the actual number of threads in
the team is implementation specific, but similarly this clause also received a
lower bound in a later version of OpenMP, see Listing 1.2. Using the parallel
for work-sharing construct is again the more portable solution but might add
additional overhead from handling the loop logic and automatic work-sharing.

The main reason we have for separating the team and thread parallelization
in OpenMP is to enable allocation of shared memory, which is done by handling
array and variable initialization before starting the thread parallelization. A
second reason is synchronization, which can be managed using either barrier
constructs within parallel regions or by ending a loop parallelization for the
work-sharing constructs. It is important to note that forking and joining of the
loop parallelization can incur a significant overhead, depending on how the work-
sharing is implemented.

In Listings 1.1 and 1.2 are code snippets illustrating the overall struc-
ture of both the manual work-sharing and the automatic distribute and
parallel for based work-sharing. The outer most pragma is responsible
for allocating all blocks and assigning them to the teams and initializ-
ing the shared memory, where the inner most pragma is responsible for
distributing the blocks work across all available threads within the team.

1 #pragma omp target teams distribute thread_limit (BLOCK_SIZE ) nowait depend (...)
2 for (int block_id = 0; block_id < n_blocks ; ++block_id )
3 int temp [BLOCK_SIZE ];
4 #pragma omp parallel for num_threads (BLOCK_SZIE ) shared (tmp )
5 for (int thid = 0; thid < BLOCK_SIZE ; ++thid ) {
6 // Do Someting
Listing 1.1. Worksharing constructs with distribute and parallel for
1 #pragma omp target teams num_teams (num_blocks ) thread_limit (BLOCK_SIZE ) nowait depend (...)
2
3 int temp [BLOCK_SIZE ];
4 #pragma omp parallel num_threads (BLOCK_SZIE ) shared (tmp )
5
6 // Do Someting

Listing 1.2. Manual worksharing using num_teams and thread_limit
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In OpenMP 5.0 the loop construct was introduced with higher restrictions,
allowing potentially better static analysis and mapping to hardware [21]. The
usage is very similar to the distribute and parallel for constructs, but allows
mapping to either teams or parallel regions, based on the bind clause. However,
the loop construct is still not widely supported across compilers and will only
be examined using the NVC compiler.

2.2 Applications

The different parallel patterns are considered for two algorithms utilizing block-
ing and GPU shared memory. The first algorithm is the parallel scan based on
the Blelloch algorithm [2], which computes the sum of all previous elements in an
array. Scan, or also called prefix sums is widely used, eg. for binning and stream
compaction in the AMReX framework [28], enabling large scale dynamic particle
simulations on GPUs or for list compaction in tree construction algorithms as pre-
sented by Wu et al. [26]. Multiple variations of this algorithm exists, with current
state of the art based on decoupled look-back [15]. However, for the context of this
paper a more simplistic approach is taken, following the presented implementation
by Harris et al. in GPU gems 8 [11]. The overall idea of the algorithm is to calcu-
late the prefix sum locally within a block using the Blelloch algorithm and writes
out the total sums of the blocks to an auxiliary array, which then recursively have
the prefix sum calculated, until the auxiliary array can fit into a single block. The
prefix sum of the blocksums, then corresponds to the sum off all previous blocks,
which then can be used to find the global prefix sum.

The second application considered is the parallel four-way LSB radix sorting
algorithm, which additionally utilizes the parallel scan for iteratively sorting
elements 2 bits at a time, from the lowest bit to the highest bits. A simplified
version of the four-way radix sort as described by Linh Ha et al. [10] is used
for the experiments, which is omitting the parallel order checking and is using a
direct mapping instead of the coalesced block mapping presented. This is done
to keep the complexity low, as the focus is held on how to best control the
parallelism. Other versions of the parallel radix sort exist, such as 16-way radix
sort, sorting by 4 bits at a time, or current state algorithms such as one-sweep
radix sorting [1] using the previously mentioned single pass prefix sum, with
decoupled look-back.

Both applications are heavily using blocking iteration, where data is pro-
cessed in blocks and are heavily relying on shared memory. For this reason, we
are forced to use separated teams and thread parallel regions, as described in
Sect. 2.1.

3 Results

The applications are evaluated using multiple compilers, on two different HPC
systems, using GPUs from both AMD and NVIDIA. Before reviewing the exper-
imental results, we’ll provide a short description of the two systems in Sect. 3.1
and the compilers in Sect. 3.2.
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Table 1. Architecture information for the nodes used in the two systems. The infor-
mation in la has been gathered from the A100 white-paper [16] for the GPU and CPU
info have been reported with 1scpu within the batch jobs. The information in 1b has
been gathered from the LUMI documentation [4].

CPU Information CPU Information
Intel Xeon Gold AMD EPYC
Model name G226G Model name 7A53
GPU count 2 GPU count 4 (8 logical)
Sockets 2 Sockets 1
Cores per socket 16 Cores per socket 64
L1d cache 32KiB L1d cache 32 KiB
L1i cache 32KiB L1i cache 32 KiB
L2 cache 1024KiB L2 cache 512 KiB
L3 cache 22528KiB L3 cache 256 MiB
GPU Information GPU Information
Model name Ampere A100 Model name Instinct MI250X
RAM 40 GiB RAM 128 GiB (per module)
SM count 108 CU count 110 (per chip)
Shared mem / L1 192 KiB (per SM) || Shared mem 64 KiB (per CU)
L1 cache 16 KiB (per CU)
L2 cache 40 MiB L2 cache 8 MiB (per chip)
(a) Ampere Node (b) LUMI Node

3.1 HPC System

The first system is a local cluster at the Technical University of Denmark,
managed by DCC [9], which provides access to NVIDIA’s A100 PCIE 40GB
GPUs [16]. Only a single GPU is utilized for the experiments, with exclusive
access to the node to minimize external contributors to noise and overhead.

The second system is the LUMI-G supercomputer [4], which is equipped with
four AMD MI250X GPUs, each with a total of 128GB memory. The MI250X
GPU is a multi-chip module containing two GPU dies, meaning that each node
contain 8 logical GPU partitions where each pair, shares the 128 GB memory. As
we are using a single GPU for our experiments, this effectively means that only
half of one MI250X is utilized.

A more detailed description of both systems is found in Table 1.

3.2 Compilers

The applications are developed using C+417 and are compiled with the -03 flag
for all experiments. The specific version of each compiler is listed in Table 2.
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Table 2. Compilers used on the compute nodes from Tables 1a and b. No commit is
present for the NVC compiler as it has not been installed from Git. Additionally, both
clang and cray are mapping to HIP rocm version 5.2.21153.

Compiler | Version | Commit
clang DCC |16.0.0 710a834c4c822c5c444£c9715785d23959f5c645
clang LUMI | 16.0.0 710a834c4c822c5c444£c9715785d23959f5c645

nvc 22.5 -
cray clang|15.0.0 324a8e7de6a18594c06a0eebd8cOeda2109c6ac6
gcc 13.0.0 44baa34157c£81306be23eacece751aa020985d4

The first compiler is the C language family front-end for the LLVM project
Clang [12], which we use across both systems. We have compiled Clang to sup-
port target offloading according to the LLVM compile guide for OpenMP [13].
The second compiler is the nvc++ compiler from NVIDIA, which is part of
NVIDIA’s HPC SDK [18] and is provided on the DCC system. We will refer
to this compiler as NVC. The third compiler used is the cray clang++ com-
piler, which is provided by the LUMI system as part of their Cray Compiling
Environment CCE [14], which we will refer to as Cray. The last compiler used
is the GNU Compiler Collection GCC' [24]. GCC is also compiled to support
target offloading, where we followed the guide Offloading Support in GCC [3].

3.3 Parallel Scan

In this section we will compare the manual work-sharing with the automatic
loop based work-sharing on the DCC system. The two methods will be com-
pared using the parallel scan algorithm, presented in Sect.2.2. Additionally, an
equivalent CUDA implementation is used to compare similar levels of complex-
ity with an explicit kernel definition. Figure 1 illustrates the execution time for
both the manual work-sharing, automatic work-sharing with parallel for and
the loop construct based work-sharing introduced in OpenMP 5.0.

Manual work-sharing demonstrates substantially better performance for both
the Clang and NVC compilers, and we see that Clang deliverers comparable
results to the pure CUDA implementation for large arrays. Additionally, it is
noteworthy that NVC achieves a speedup of approximately 7 with manual work-
sharing for large arrays compared to the parallel for constructs. For small
arrays, Clang exhibits decreased performance, potentially attributed to overhead
between kernels, which we will further investigate in Sect. 3.5.

We encountered difficulties with the GCC compiler, as it did not allocate
more than 28-32 threads per team. To prevent errors, we had to reduce the block-
size to 16 for GCC, alternative to 256 used for the remaining compilers. However,
as mentioned in Sect. 2 this behavior is still compliant with the standard.
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Programming pattern timings for scan algorithm, GPU=A100
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Fig. 1. Execution time for the 3 different parallelization methods across multiple com-
pilers, including the equivalent CUDA implementation. All tests are performed on the
DCC system, with A100 GPUs, and execution times include 95 percentile intervals for
200 runs.

The automatic work-sharing using distribute and parallel for yields
lower performance across all array sizes for both NVC and Clang but demon-
strates an improvement for GCC while also allowing the block-size to remain
at 256. During the debugging process, it was found that GCC utilizes only 32
threads per team, deviating from the more ideal number of 128 threads used
by both NVC and Clang. This clearly indicates improved performance stabil-
ity when utilizing the work-sharing constructs, which further enables the use of
much larger blocks which cannot be supported with the manual work-sharing or
CUDA, without additional code complexity. However, the performance stability
also comes with added overhead, which is indicated by the previously mentioned
decreased performance for both NVC and Clang.

The OpenMP 5.0 loop construct demonstrates performance close to CUDA
across all array sizes, and generally outperforms other patterns for NVC, with a
speedup of almost 8 compared to the manual work-sharing. As earlier mentioned
we only have support for this work-sharing construct in NVC, which limits fur-
ther usage, but does show promise for future implementations of OpenMP target
offloading.

In general, the manual work-sharing achieves better performance in our
experiments, compared to the automatic based on the distribute and parallel
for constructs. However, its effectiveness heavily relies on the implementation,

leading to decreased portability across systems and compilers, as shown for the
GCC compiler.
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3.4 Radix Sort

Next, we examine the manual work-sharing using the four-way parallel radix
sorting algorithm. The experiments will both run on the DCC and LUMI system.
GCC is omitted due to problems related to the available number of threads in
a teams region. The goal of the experiment is to give a better understanding of
the expected performance for the tested compilers when using separated team
and thread parallelism, to utilize the locally shared GPU memory.

The experiment consists of sorting an array of random numbers, with number
of elements ranging from 100 to 10%. Time is measured from the first target
region is called, until the last target region completes and synchronizes. The
sorting algorithm is run once as a warm-up to ensure that the run-time is fully
initialized, before starting to measure the time. The resulting data is additionally
verified after completion, to ensure correct behavior. Timings do not include
allocation of data, as all allocations are handled before sorting is started.

Figure 2, illustrates the total execution time, using multiple compilers on both
the A100 and MI250X GPUs. Similarly to the previous experiment we have an
equivalent CUDA implementation measured on the same A100 GPUs, hinting
to what execution time can ideally be expected from a very simple code without
using any advanced features.

Clang still shows significant variation in performance for smaller arrays and
shows an execution time that approaches the pure CUDA implementation for
large arrays. Investigating the percentile interval of the Clang time, shows a
relatively constant difference between the 0.01 percentile and 0.99 percentile,
ranging from 0.010s to 0.012s over all sizes of the array larger than the block-
size. The constant range of the variation indicates that it is not originating from
the kernels themselves, but rather an overhead applied to each executed target
region. We will investigate this further in the next section.

On LUMI, we see increased performance for Clang and similar performance
for Cray. Clang show significantly reduced statistical variation between runs,
compared to equivalent runs on the DCC system, with more than 30 times less
variation for most array sizes. Whether the slightly better average performance
for Clang on LUMI is due to the hardware, or due to a more efficient OpenMP
run-time, is not possible to say from these experiments and is not examined
further in this paper. However, it is still worth mentioning that Clang achieves
better and clearer results on AMD, than on NVIDIA hardware.

NVC shows better performance with smaller arrays compared to Clang on
A100, but falls behind around 10° elements, indicating a less efficient paral-
lelization and mapping to the hardware. Similarly to the previous experiment,
NVC does not show any large variation between runs and maintains a steady 10
times slowdown compared to the CUDA implementation across all array sizes.
NVC could potentially achieve better performance using the loop construct, as
observed in Fig. 1, where similar performance to CUDA is observed for some
sizes.
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Radix-sort execution time for both A100 and MI250X GPUs
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Fig. 2. Execution time of the radix sort implementation across a range of number of
elements from 100 to 10® elements, with 95 percentile intervals for 200 runs. Experi-

ments are conducted on both A100s from the DCC and MI250X on LUMI. The high
variation for the Clang generated code is examined further in Sect. 3.5.

3.5 Profiling

In this section we perform a more in-depth examination of the kernel execution
using profiling tools, to get a better understanding of the observed difference
between NVC, Clang and CUDA on the DCC system.

The experiment have a similar setup as the previous experiment, where sort-
ing of an array random numbers is performed, but here we fix the size to 10° ele-
ments for all tests. Profiling has been performed using NVIDIA Nsight Systems
version 2021.3.3.2-b99c4d6, which is shipped with CUDA 11.5' and is using
nsys profile --trace=cuda <program><args> for all tests.

Figure 3 illustrates the average execution time for each kernel included in the
radix sorting algorithm, which also includes all the kernels from the scan algo-
rithm. A significant increase in kernel execution time is measured for NVC, across
all kernels which utilize the separated team and thread parallelization for utiliz-
ing the shared memory, with slowdowns of between 5 to 10 compared to Clang
and CUDA. However, we measure better performance for the AddBlockSums
kernel, achieving similar results to Clang and CUDA, indicating that the lost
performance is due to the separated team and thread parallelization. Clangs ker-
nel execution achieves similar result to the CUDA implementation, indicating

1 CUDA version 11.5 is the highest version still fully supported by the version of Clang
used.
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Fig. 3. Profiling kernel execution time for NVC, Clang and CUDA, using A100, with
5 runs per test, with each kernel being executed multiple times per run.

that the manual work-sharing is working ideally for Clang and that the varia-
tion observed in earlier experiments is not contributed to by the kernel execution
itself.

By examining the profiling data further, we reveal that Clang utilizes syn-
chronization with the host, resulting in additional latency from the communica-
tion between the host and device. This should not be necessary as the nowait
and depend clauses are used to run the target regions asynchronously. This
does correlate with the increase in time between kernels observed in Fig. 4, and
could explain the large variation in execution time from earlier experiments. In
contrast, both NVC and CUDA launch all kernels asynchronously and handles
scheduling on the device, effectively removing the latency added by the commu-
nication.

Figure4 illustrates this idle-time between kernels and show a significant
amount for Clang with an average of 46.5 us, compared to 9.2 us observed for
NVC and 5.0 us observed for CUDA. As the overall kernel execution time is
significantly better for Clang, compared to NVC, it is with high probability that
the lost performance and large variation can be contributed to the scheduling
and synchronization of the kernels.

We theorize that improving the scheduling in Clang has potential to yield
a significant speedup for the overall run-time. To determine the potential, the
combined execution time of all kernels is calculated while taking into account
an estimated improved idle-time for each kernel. Realistic values for the esti-
mated idle-time can be derived from the average values obtained for NVC or
CUDA. Based on these specific experiments, it is found that Clang could achieve
a speedup of 2.37 with an idle-time similar to NVC, and a 3.24 speedup with
an idle-time similar to CUDA. It is important to note that these results are
highly application-specific. Nonetheless, they highlight the potential for substan-
tial performance enhancement in Clang, despite already achieving impressive
performance without adding much complexity for the GPU target offloading.
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Distribution of idle time between kernels, N = 10%, GPU=A100
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Fig. 4. Profiling idle time between kernels for code generated with NVC, Clang and
CUDA, using A100. The idle time is found by the difference in start-time between the
consecutive kernels, subtracted by the kernel execution time.

4 Related Work

Previous work by Chapman et al, [5,6] and Daley et al, [7] also report poor
performance for distribute and parallel for constructs when using separate
team and thread parallelization, similar to what we observe in Sect. 3.3. Davis
et al. [8] further confirm this behavior and additionally show substantial per-
formance improvement using manual team distribution compared to automatic
distribution with the distribute construct. Chapman et al. [5,6], further show
significant improvement using the OpenMP 5.0 loop directive, which was also
observed in Sect. 3.3.

Rydahl et al. [22] investigated multi-GPU programming using target offload-
ing for stencil operation, similarly performing asynchronous kernel execution
using the nowait clause. Here multiple target regions were running in parallel
allowing overlapping kernel execution, which could help reduce latency related
to host-side synchronization.

Tian et al. [25], suggest extension to OpenMP allowing high performing target
regions, including allocators for shared memory and synchronization intrinsic
within teams. Talaashrafi et al. [23] suggest to automate utilization of shared
memory for pre-fetching of read-only data, which could reduce the need for
blocking in some algorithms.

Lastly, Zegarra et al. [27], propose a new scan clause for OpenMP, with sim-
ilar performance as direct programming in OpenCL, but with much less design
effort, essentially making it possible to implement our first application using a
single OpenMP target construct. Introducing local scanning within teams would
additionally help to significantly reduce the design effort for the radix sorting, as
the majority of the complexity is related to a local Blelloch scan implementation.
Having a local scan clause would additionally allow highly optimized OpenMP
implementations taking full advantage of supported architecture features.
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5 Conclusions

In this paper, we examined manual team and thread work-sharing and auto-
matic work-sharing based on the distribute and parallel for constructs, for
OpenMP target offloading. We ran experiments using two algorithms heavily
relying on shared memory and synchronization within teams. We show larger
speedups than 9 for NVC and 1.5 for Clang, when using manual work-sharing
compared to the automatic work-sharing constructs distribute and parallel
for and more than a speedup of 7, when using the loop construct, compared to
the manual work-sharing for NVC.

For both parallel scan and radix sorting we found that Clang suffers from
significant overhead for all target regions when running on A100 GPUs, which is
revealed to most likely be caused by synchronization through the host, despite
using the nowait and depend clauses, where applications compiled with NVC
were able to launch all kernels from the host and handle execution asyn-
chronously on the GPU. Through profiling we show that Clangs kernel execution
is comparable to the simple pure CUDA implementation, but that a significant
increase in idle-time between kernels is present compared to other compilers.
This results in poor performance when applications consist of many smaller tar-
get regions, but have diminishing impact when the problem-size increase. Lastly,
we estimate a potential speedup of 3 for the profiled applications compiled with
Clang, if a scheduling similar to NVC and CUDA can be achieved.
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