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Abstract. With the increasing diversity of heterogeneous architecture
in the HPC industry, porting a legacy application to run on different
architectures is a tough challenge. In this paper, we present OpenMP
Advisor, a novel compiler tool that enables code offloading to a GPU
with OpenMP using Machine Learning. Although the tool is currently
limited to GPUs, it can be extended to support other OpenMP-capable
devices. The tool has two modes: Training and Prediction. It analyzes
benchmark codes, generates every possible code variant on the target
device, runs and gathers data to train an ML-based cost model in the
training mode, which predicts the runtime of every code variant in the
prediction mode. The main objective behind this tool is to maintain the
portability aspect of OpenMP. Our Advisor produced code for several
applications on seven architectures with four compilers, and accurately
anticipated the top ten options for each application on every architecture.
Initial results suggest that this tool can help compiler developers and
HPC researchers migrate their legacy codes to the new heterogeneous
computing environment.
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1 Introduction

General Purpose Graphics Processing Units (GPGPUs), initially designed for
graphics tasks, have become integral to HPC platforms and general-purpose
computing over the last decade, combining their capacity for efficient data par-
allelism with low power consumption. The vast majority of HPC systems in use
today are heterogeneous, with AMD or NVIDIA GPUs delivering high perfor-
mance per unit of energy consumed. Programming updates are needed to enable
efficient utilization of diverse hardware resources, such as GPUs and specialized
processors, in order to cater to the rapid change in heterogeneous architecture
in the HPC industry.

Many programmers are adapting their code to take advantage of GPUs.
Unfortunately, it can be time-consuming and require extensive re-engineering
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to maximize a GPU’s computational power while minimizing overheads. It will
be much harder to develop code for systems with extreme heterogeneity and a
large number of devices. Therefore, it is essential to create tools that will relieve
the application scientists of the burden of such development. Despite the variety
of programming models available, it is still quite challenging to optimize large
scale applications consisting of tens-to-hundreds of thousands lines of code. Even
when using a directive based programming model such as OpenMP [6], pragma-
tizing each kernel is a repetitive and complex task. OpenMP offers a variety
of options for offloading a kernel to GPUs. However, the application scientist
must still figure out all the intricate GPU configurations. To demonstrate the
complexity of porting a kernel to emerging exascale hardwares, we use a kernel
from the Lattice Quantum Chromodynamics (LQCD) [2] application, which is
a computer-friendly numerical framework for QCD. One of LQCD’s key compu-
tational kernels is the Wilson Dslash operator [15], which is essentially a finite
difference operator, to describe the interaction of quarks with gluons. The Wilson
Dslash operator, D, in four space-time dimensions is defined by Eq. 1.

Dij
αβ(x, y) =

4∑

μ=1

[((1 − γμ))αβU ij
μ (x)δx+μ̂,y + (1 + γμ)αβU†ij

μ (x + μ̂)δx−μ̂,y)]

(1)
Here x and y are the coordinates of the lattice sites, α, β are spin indices, and

i, j are color indices. Uμ(x) is the gluon field variable and is an SU(3) matrix. γμ’s
are 4×4 Dirac matrices that are fixed. The complex fermion fields are represented
as one-dimensional arrays of size LX ×LY ×LZ ×LT ×SPINS ×COLORS ×2
for the unpreconditioned Dirac operator, where LX , LY , LZ and LT are the
numbers of lattice sites in the x, y, z and t directions, respectively. The spin
and color degrees of freedom, which are commonly 4 and 3, are denoted by the
variables SPINS and COLORS.

When we express Eq. 1 in C++, it has four nested for loops iterating over
LT , LZ , LY , and LX (as shown in Code 1.1). When we keep the values of
LT , LZ , LY , and LX at 16 each, the COMPUTE section of the code has over
5 million variable definitions, 1.2 billion variable references, over 150 million
addition/subtraction, 163 million multiplication, and so on. Additionally, this
function is called several times throughout the LQCD application. It is a her-
culean task for an application scientist to understand the physics, transform it

#pragma omp target

for(int i=0; i<N_i; i++) {

for(int j=0; j<N_j; j++) {

for(int k=0; k<N_k; k++) {

for(int l=0; l<N_l; l++) {

/* ... COMPUTE ... */

}}}}

Code 1.1. Loops of Wilson Dslash Operator
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into computer program, analyze the offloadable kernel, and then consider how
to parallelize it to execute efficiently on an HPC cluster. To get the best perfor-
mance out of a GPU, an application scientist needs a thorough understanding
of the underlying architecture, algorithm, and interface programming model.
Alternately, they could test out various GPU transformations until they find the
most effective one. However, none of these strategies is very efficient.

1.1 Our Contribution

This paper presents OpenMP Advisor, a first-of-its-kind compiler tool that
advises application scientists on various OpenMP code offloading strategies. This
tool performs the following tasks to successfully address the challenges of effec-
tively transforming an OpenMP code:

1. detect potentially offloadable kernel;
2. identify data access and modification in kernel;
3. recommend potential OpenMP variants for offloading that kernel to the GPU;
4. evaluate the profitability of each kernel variant via an adaptive cost model;
5. insert pertinent OpenMP directives to perform offloading.

Although the tool is currently limited to GPUs, it is extensible to other
OpenMP-capable devices. In the rest of the paper, we first discuss state of the
art work that is related to and precedes our work in Sect. 2. Then we define
our OpenMP Advisor in Sect. 3. The experiments conducted for this paper are
covered in Sect. 4 along with their analysis, and Sect. 5 concludes our work with
discussions of our future goals.

2 Related Work

Many studies have looked into how to best manage GPU memory when data
movement must be explicitly managed. For instance, Jablin et al. [10] provide a
fully automatic system for managing and optimizing CPU-GPU communication
for CUDA programs. Also OMPSan [1] performs static analysis on explicit data
transfers are already inserted in OpenMP code. However, these studies do not
address the issue of data transfer and the use of data reuse on GPU for implicitly
managed data between different kernels. In one of our previous work [18] we
proposed a technique for statically identifying data used by each kernel and
automatically recognizing data reuse opportunities across kernels. In this tool,
we make use of this method for data identification and management between the
CPU and the GPU.

HPC applications are getting extremely heterogeneous, complicated, and
increasingly expensive to analyze. Because of heterogeneity, a tool like OpenMP
Advisor is required to help application scientists offload their code to GPUs.
Other related research on automatic GPU offloading by Mendonça et.al. [16]
and Poesia et.al. [22] can benefit from our tool by including our technique of
data optimization and cost model in their framework, further reducing the chal-
lenges of using GPUs for scientific computing. However, developing a cost model
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is time-consuming, and almost all modern compilers adopt a simple “one-size-
fits-all” cost function that does not perform optimally in the situation of extreme
heterogeneous architecture. In order to create a portable static cost model for
our OpenMP Advisor tool, we utilize our ML based cost model, COMPOFF [17]
which offers a new portable cost model that statically estimates the cost of
OpenMP offloading on various architectures.

3 OpenMP Advisor

We design and develop the OpenMP Advisor, a compiler tool which transforms
an OpenMP code to effectively offload to a GPU. This tool detects OpenMP
kernels, proposes several GPU offloading OpenMP variants, and predicts the
runtime of each kernel using a machine learning based cost model. Although
the Advisor’s initial implementation, as described in this paper, assists applica-
tion scientists in programming for accelerators like GPUs, it can be expanded
to support all OpenMP-capable devices. The tool has two modes: Training and
Prediction mode. In the training mode, the Advisor makes use of data collected
from multiple devices and compilers. It takes all benchmark codes as input and
generates all possible code variants to run on the target device. Then it collects
data from all generated codes to train an ML-based cost model for use in pre-
diction mode. In prediction mode the tool does not need any interaction with
the target device. It accepts C/C++ code as input and returns the best code
variant that can be used to offload the code to the specified device. The tool
can determine the kernels that are best suited for offloading by predicting their
runtime using a machine learning-based cost model as defined in Sect. 3.2. The
following are the key attributes of the OpenMP Advisor.

1. Portable – The Advisor’s key feature is its portability across compilers and
HPC clusters, as demonstrated in Sect. 4, which included four different com-
pilers and seven HPC clusters with different GPUs.

2. Static – Since HPC GPUs are not always available during development, the
Advisor performs all of its analysis at compile time and does not require
runtime profiling in the prediction mode.

3. Minimalistic – The Advisor generates different kernel variants by adding
OpenMP directives and clauses to the application’s “omp target” regions
without changing the kernel’s body.

4. Correctness – The Advisor ensures that the generated code adheres to the
OpenMP programming model, but it does not alter the kernel body or guar-
antee its correctness. Consequently, despite its ability to predict the optimal
scenario for GPU offloading, it generates the top 10 code variants and lets
the application scientist select which code to utilize.

5. Adaptable – The Advisor is adaptable enough to accept new applications
by training the model on a proxy application if collecting real-time data is
challenging or impractical for the real world application.

We used the LLVM compiler project [14] to develop the OpenMP Advisor.
Despite the fact that LLVM’s strength lies in the LLVM-IRs, our requirement is
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to generate and return C/C++ code to the scientist. To do so, we need to be able
to accurately insert OpenMP directives into a C/C++ file, which the LLVM-IR
cannot guarantee. On the other hand Clang’s AST closely resembles both the
written C++ code and the C++ standard. Clang has a one-to-one mapping of
each token to the AST node and an excellent source location retention for all
AST nodes. Clang’s AST is the best option for accurate source code information
and inserting OpenMP directives into C/C++ files. Hence, we implemented the
Advisor in Clang compiler (ver 14.0.0). Both the Training and Prediction modes
have three major modules, which are explained in the following subsections -
Kernel Analysis, Cost Model and Code Transformation.

3.1 Kernel Analysis

This is the first module which the Advisor calls in both the Prediction and
Training mode. As the name implies, this module analyzes an OpenMP kernel.
Overall, this module takes as input a C/C++ source file, analyzes it, and outputs
all possible GPU offloading variants. This module is responsible for three tasks:
Identifying Kernels, Data Analysis and Variant Generation.

Identifying Kernels − As the project’s scope doesn’t include automatically
parallelizing the code, the user’s input serves to identify a target region. An
application scientist only needs to use the “omp target directive” to mark the
region. We parse the clang AST to search for the OMPTargetDirective node,
which is a subclass of the OMPExecutableDirective class and an instance of the
Stmt class. We override the OMPAdvisorVisitor class’s VisitStmt method and
check each visited Stmt to see if they are the OMPTargetDirective node. Once
a kernel is identified, we assign it a unique id and create an instance of the class
“KernelInformation”, in which we store information like, unique id, start and
end locations of the kernel, function from which the kernel is called, whether the
kernel is called from within a loop and the number of nested for loops.

Data Analysis − The next step is to determine what data the kernel uses.
We need to carefully manage data transfer between the CPU and GPU due to
the high cost of transfers. We reuse our work on Data Reuse Analysis [18] to
identify and utilize GPU data and improve overall execution time, since OpenMP
doesn’t specify how data should be handled in implicit data transfer. We use the
Clang AST to implement “live variable analysis” for each kernel, concentrating
only on variables used within a kernel. Our current approach only maps data
between the CPU and GPU before and after the kernel. Managing data transfer
during kernel execution is a future task. Before the variables are stored in the
KernelInformation object, we classify them into five groups, based on how they
are accessed before, during, or after the kernel:

– alloc: Variables assigned within the kernel for the first time. Data need to be
mapped, but no data transfer is required.

– to: Variables assigned before but were only accessed within the kernel, not
modified. Only host to device transfer of data is required.
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– from : Variables assigned within and accessed after the kernel definition. Only
device to host transfer of data is required.

– tofrom : Variables assigned before, updated within and accessed after the ker-
nel definition. Data must be transferred both to and from the host and device.

– private : Variables that are defined and used only within the kernel. No data
transfer is required.

Data labeled alloc, to, and tofrom are mapped in “omp target enter data”
directives before the kernel, while data labeled from and tofrom are mapped in
“omp target exit data” directives after the kernel.

Variant Generation − Finally, we generate a number of different kernel vari-
ants that can be used to offload the kernel to the GPU. We’ll start by counting
how many nested collapsible for loops are there. In the current implementation,
we can check up to four levels of collapsing the for loops. We chose four nested
loops (similar to Code 1.2) because the Wilson Dslash kernel has four for loops.
Each of these for loops is given a unique Loop number ranging from 0− 3. Loop
0 is always expected to be distributed across all teams on the GPU.

#pragma omp target teams distribute collapse(1)
for (int i = 0; i < N i; i++) { ¡= Loop 0

#pragma omp parallel for collapse(3) schedule(static)
for (int j = 0; j < N j; j++) { ¡= Loop 1

for (int k = 0; k < N k; k++) { ¡= Loop 2
for (int l = 0; l < N l; l++) { ¡= Loop 3
/∗ ... COMPUTE ... ∗/

}}}}

Code 1.2. A variant of four nested “for” loops for GPU offloading

The variants are generated based on the collapse values used in distribute
and parallel for directive, position of the parallel for directive, loop iter-
ation’s scheduling type and host-device data transfer. The total number of for
loops and the position of the parallel for directive determine the maximum
value of collapse that can be used in the teams distribute and parallel for
directives. Suppose there are four for loops, as in Code 1.2. If the parallel for
directive is at Loop 0, the “teams distribute parallel for” directive will be
combined and thus the collapse clause for distribute directive doesn’t exist.
If the parallel for directive is located on Loop x (where 1 ≤ x ≤ 3 ), then the
maximum possible value of collapse for the teams distribute directive is x.
While the maximum possible value of collapse for the parallel for directive
is (NUM − x), where NUM is the total number of for loops. The scheduling
type of the loop iteration could be one of static, dynamic or guided. Using
different permutations of these parameters, we could generate a variety of GPU
offloading code variants. Once all of the variants have been generated, we use
our static cost model to predict the runtime of each of these generated kernels.
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3.2 Cost Model

A compile-time cost model is required to select the best option from all the vari-
ants generated by the Kernel Analysis module. Most modern compilers employ
analytical models to calculate the cost of executing the original code as well as
the various offloading code variants. Building such an analytical model for com-
pilers is a difficult task that necessitates a lot of effort on the part of a compiler
engineer. Recently, machine learning techniques have been successfully applied
to build cost models for a variety of compiler optimization problems. For our
tool we extended our previous work on COMPOFF [17] to be used as our cost
model. COMPOFF is a machine learning based compiler cost model that stati-
cally estimates the cost of OpenMP offloading using an artificial neural network
model. Their results show that this model can predict offloading costs with an
average accuracy greater than 95%. The major limitation of COMPOFF was
that they had to train a separate model for each variant. In our work, we add
more training data and extend it to train a single cost model for all variants.

As soon as we know the prediction for the generated variant, we store it
in the instance of the KernelInformation class so that the Kernel Transfor-
mation module can use it. But the biggest challenge in implementing an ML
based cost model is the lack of available training data. To overcome this prob-
lem, we wrote additional benchmark applications (like the Pearson’s Correlation
Coefficient (correlation), Covariance (covariance), Laplace’s Equation (laplace),
Matrix-Matrix Multiplication (mm), Matrix-Vector Multiplication (mv), Matrix
Transpose (mt)) and adopted some benchmarks from the Rodinia benchmark
suite [4] (like the Breadth First Search (bfs), Gaussian Elimination (gauss), K-
Nearest Neighbor (knn) and Particle Filter (particle)). The goal is to include a
broader class of benchmarks that would cover the spectrum of statistical simu-
lation, linear algebra, data mining, etc. We also developed a proxy app that has
same number of loops and performs similar computation to our target app, the
Wilson Dslash operator. Whenever it is difficult to collect data on real appli-
cations, proxy apps help us collect more data. More applications from various
other domains will be added to this repository in the future.

3.3 Kernel Transformation

In the Kernel Transformation module we need to actually transform the original
source code based on the analysis and predictions from the previous modules.
For the given kernel, we generate every possible code variation in the Training
mode. However, before we can generate code in Prediction mode, we must first
address another crucial question. Which code should we generate? Should we
only generated code for the fastest kernel? Regrettably, once the directives are
in place, neither the Advisor nor OpenMP validate the kernel’s correctness. This
is in line with the OpenMP philosophy as well. As a result, we can only guarantee
the correctness of the generated OpenMP directive in our framework.

So how can we overcome this problem? We could generate code for every
possible variation, as we do during training, and let the user choose which one
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0: // Predicted Runtime: 1.2 s
1: #pragma omp target enter data map(...)
2: #pragma omp target teams distribute collapse(2)

for (int i = 0; i < N i; i++) {
3:

for ( int j = 0; j < N j; j++) {
4: #pragma omp parallel for schedule(dynamic)

for ( int k = 0; k < N k; k++) {
5:

for (int l = 0; l < N l; l++) {
/∗ ... COMPUTE ... ∗/

}}}}
6: #pragma omp target exit data map(...)

Code 1.3. Location of the seven generated code.

to use. But this means that users will be overwhelmed with information. Alter-
natively, we could ask the user to provide a number for the maximum number
of codes to generate. The predicted runtime can be put as a comment before
the kernel in every piece of code. The application scientist will then have more
power to accept or reject the generated code. We will be able to produce a sin-
gle code and provide it to the user once the issue of validating an OpenMP
code for correctness is resolved. Until then, our Advisor will be able to generate
the top best variants as specified by the application scientist. Regardless, we
need to write a module to modify the existing source code and generate a new
code. Clang provides the Rewriter [5] interface, whose primary function is to
route high-level requests to the involved low-level RewriteBuffers. A Rewriter
assists us in managing the code rewriting task. In the Rewriter interface we
can set the SourceManager object which handles loading and caching of source
files into memory. The SourceManager can be queried to obtain information
about SourceLocation objects, which can then be converted into spelling or
expansion locations. The Rewriter is a critical component of our plugin’s kernel
transformation module. The strategy used here is to meticulously alter the origi-
nal code at crucial locations to carry out the transformation rather than handling
every possible AST node to spit back code from the AST. For this we use the
Rewriter interface, an advanced buffer manager that effectively manipulates the
source using a rope data structure. For each SourceManager, the Rewriter also
stores the low-level RewriteBuffer. Together with Clang’s excellent retention
of source location for all AST nodes, Rewriter makes it possible to remove and
insert code very precisely in the RewriteBuffer. When the update is finished,
we can dump the RewriteBuffer into a file to obtain the updated source code.

Finally, we create a vector of seven strings. The location of these seven strings
are shown in Code 1.3. The first string (at #0) is always the comment that main-
tains the text − “Predicted Runtime: ## s”. As the text suggests ## is the pre-
dicted runtime for this particular kernel variant. This string is always placed before
the kernel’s start location. Then comes the target enter data construct (at #1).
This directive handles what memory on the GPU needs to be created for the ker-
nel and what data needs to be sent to the GPU before execution. This string is
always placed right after the comments string. The next string (at #2) contains
the OpenMP directive which specifies that this is the kernel to offload to the tar-
get. To gain maximum performance out of the GPU, we should always distribute
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Table 1. Clusters and Compilers used in experiments

Cluster GPU Compiler Version

Summit [20] NVIDIA Tesla V100 LLVM/clang (nvptx) 13.0.0

GNU/gcc (nvptx-none) 9.1.0

Corona [13] AMD Radeon Instinct MI50 LLVM/clang (rocm-5.3) 15.0.0

Ookami [3] NVIDIA Tesla V100 LLVM/clang (nvptx) 14.0.0

Wombat [21] NVIDIA Tesla A100 LLVM/clang (nvptx) 15.0.0

Seawulf [23] NVIDIA Tesla K80 LLVM/clang (nvptx) 12.0.0

NVIDIA/NVC 21.7

Intel DevCloud [9] Intel Xeon E-2176 P630 Intel/icpx 2021.1.2

Exxact NVIDIA GeForce RTX 2080 LLVM/clang (nvptx) 14.0.0

the kernel across all the teams available in the GPU. Hence this string always con-
tain the directive − “#pragma omp target teams distribute”. The variant deter-
mines whether this directive contains any other clauses such as collapse or map,
and what will be the values of the clause. This string is always placed immedi-
ately before the kernel’s start location, but after the target enter data string.
The remaining strings (#3, #4 and #5 if required by the variant) are placed just
before the start location of their nested for loop. If these strings are not needed
by a variant, they are left empty and no code is inserted in their location. The
last string (at #6) is the target exit data construct, which identifies the data
that must be released from the GPU or returned to the CPU. If not empty, each
of these strings is always terminated by a new line. Once these seven strings are in
their proper location, the code is dumped into a new C++ file and returned to the
application scientists, who can choose to accept or reject the best code based on
the kernel runtime provided in the comment.

4 Experiments and Evaluations

We used several clusters (on each using a single GPU) and compilers, as shown in
Table 1, to perform multiple experiments and evaluate our tool. For the purposes
of this study, we only use one GPU per node on the cluster. The management of
multiple GPUs is left for future research. The three modules explained in Sect. 3
need different experiments.

4.1 Experiment 1 - Data Analysis

First, we test our Advisor against all benchmark applications to determine
whether or not data is correctly identified and generated. In order to conduct
this experiment, we made use of our Advisor to generate code that used the
correct data between the host and the device. Additionally, we manually altered
each benchmark algorithm to map all data to and from the GPU. We executed
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all the codes on each cluster, from Table 1, and collected data about the volume
and the duration of the data transfer. We found that the Advisor improved the
data management in all cases. Figure 1(a) shows the amount of data transferred
(in GB) between the CPU and the GPU before and after transformation for all
benchmark applications. After applying our transformation, we can clearly see
that the amount of data transfer has indeed been considerably reduced. Reduced
data transfer has an impact on all applications’ data transfer times. Along with
reduced data transfer, the interconnecting bus between CPU and GPU (its ver-
sion and number of lanes), affects the data transfer times of all applications.
On all the available clusters, we ran these applications and collected the data
transfer times. Figure 1(b) shows the data transfer time for the Wilson Dslash
Operator across different clusters.

4.2 Experiment 2 - Code Generation

In the second experiment, we use our Advisor to generate every possible code
combination using each of the Benchmark applications, as discussed in Sect. 3.1.
We used the compilers listed in Table 1 to compile all of these codes for vari-
ous clusters. Some compilers (NVIDIA/nvc on Seawulf and LLVM/Clang 15 on
Wombat) do not support dynamic or guided scheduling on a GPU, resulting in
compilation failure. Apart from that, all of the codes successfully compiled and
ran on their respective clusters. We collected the runtime of each of the kernels
in this experiment, to be used by our cost model. We collected the data for the
Intel architecture a while ago, and we don’t currently have access to the cluster
to conduct new experiments. As a result we had very limited data for Wilson
Dslash Operator and no data for our proxy app on the Intel architecture. We
were unable to gather many data points for the Exxact machine (with NVIDIA
GeForce GPUs) due to the unavailability of compute nodes. Both these clus-
ters has only around 2, 000 data points each. Seawulf has NVIDIA K80 GPUs,
which is the slowest of the GPUs we’re using in our experiment. So each kernel
runs longer on Seawulf than it would on any other cluster. On the other hand,
most variants of kernels failed to compile on Wombat due to their compilers not
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supporting dynamic and guided scheduling on GPUs. Due to these reasons, we
could only collect around 3, 000 data points on Seawulf and Wombat. All our
kernels compiled and ran successfully on Summit, Corona and Ookami and we
were able to collect over 10, 000 data points on each of these architectures.

4.3 Experiment 3 - Cost Model

To build our cost model, we extended our COMPOFF cost model from six
variants to all 84 variants. We build our cost model in the testing mode and then
use it to predict the runtime in the prediction mode. Our cost model utilizes
an MLP model with six layers: one input layer, four hidden layers, and one
output layer. We set the number of neurons on multiples of the number of input
features rather than choosing a random number of neurons in each hidden layer
or conducting an exhaustive grid search (number of neurons in the first layer).
As a result, the first, second, third, and fourth hidden layers, with 33 input
features, have 66, 132, 66, and 33 neurons, respectively. The weights of linear
layers are set using the glorot initialization method, which is described in [7].
The bias is set to 0, and the batch size for training data is set to 16 in all runs.

RMSE(ȳ, y) =

√√√√ 1
N

N∑

i=0

(ȳi − yi)2

(2)

NRMSE(ȳ, y) =
RMSE(ȳ, y)
(ymax − ymin)

(3)

As the underlying optimization algorithm, we evaluate SGD (Stochastic Gradi-
ent Descent), Adam [12] and RMSprop [8]. We chose the RMSprop optimization
algorithm as the underlying optimization algorithm, with an initial learning rate
of 0.01 that is stepped down by a factor of 0.1 every 30 epochs and weight decay
of 0.0001 for 150 epochs. We use the Root Mean Square Error (RMSE) loss
function defined in Eq. 2, where ȳi and yi represent the predicted and ground
truth runtimes, respectively.

We split the dataset used by all benchmark applications into two parts: train-
ing (80%) and validation(20%). The validation set do not occur in any learning
for the model. The only augmentation applied to the training and validation
data is Z-score standardization. The model is trained using the training set, and
after that, testing data are given to the model to test its performance. In order
to determine the standard deviation of the prediction errors, we compute the
RMSE. The lower this value, the better our model. However, what constitutes
a good RMSE is determined by the range of data on which we are computing
RMSE. One way to determine whether an RMSE value is “good” is to normal-
ize it using the formula shown in Eq. 3. This yields a value between 0 and 1,
with values closer to 0 indicating better fitting models. Having a model with a
normalized RMSE of less than 0.1 is considered successful in this study.

We observed strong correlation between actual and predicted data in Fig. 2,
indicating that a simple MLP performs admirably in all our applications. It was
anticipated that Intel and Exxact’s model would perform the worst because of
the lack of data. However, the model for Exxact performed better than Intel’s
due to the availability of more data for the proxy app. Both Wombat and Seawulf
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Fig. 2. Validation of Cost Model on different clusters

performed moderately well when compared to other models trained on a larger
dataset. It is still an open question that how much data is enough data to train
an ML model. We have observed from Fig. 2, however, that if we have more than
10, 000 data points for our model, we will be able to train a model that is much
more acceptable.

4.4 Experiment 4 - Prediction

Finally, for our final set of experiments we use our Advisor to predict the top
10 best variants for the Wilson Dslash Operator. Once the top 10 variants are
identified we use the Code Transformation module to generate those 10 code
variants and return them back to the user. The Advisor takes as input the base
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for all variants sorted by runtime.
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Fig. 4. RMSE and Normalized RMSE for runtime prediction of Wilson Dslash operator
on different clusters (runtime range for each cluster is mentioned below their name).

Wilson Dslash kernel, where LX , LY , LZ , LT are set at 32, 32, 32, 16 each, and
generates the top 10 best kernels as predicted by the cost model. As shown
in Fig. 3, we plot the actual and predicted runtimes of all the 84 generated
variants (sorted by actual runtime) of one such kernel when run on the Summit
supercomputer. We can clearly see a strong correlation between the actual and
predicted runtime for all the variants. The same correlation can be found in
almost all kernels across all clusters. In Fig. 4, we display the Wilson Dslash
operator’s RMSE and normalized RMSE for each cluster. The range of runtimes
(in seconds) for each cluster is mentioned below their name in the plot. We
currently do not have access to the Intel cluster to conduct new experiments,
and the Intel dataset contained very few data from the targeted Wilson Dslash
kernel and none from our proxy app. So, even if we make a prediction using
this model, there is no way to validate it. Consequently, we did not conduct this
experiment on the Intel architecture and the result is marked as −NA−. As
expected on Exxact, the target kernel’s RMSE increased significantly (11.153s)
due to less data in its dataset. Even with a normalized RMSE of 0.279, it fell
short of our expectation of 0.1. Nonetheless, this model demonstrated some
correlation between the actual and predicted data. In contrast, Wombat and
Seawulf performed reasonably well and were able to predict the top 10 kernel
variants despite having an RMSE of 4.273s and 3.375s, respectively. However,
with 0.033 and 0.066, respectively, their normalized RMSE was well within our
expectation. As per our observation, their RMSE can also be improved by adding
more data for these clusters. Finally, as shown in Fig. 4, the RMSE rates for
Summit, Corona, and Ookami are less than one second each, and they were able
to accurately predict the top ten kernel variants.

5 Conclusion and Future Work

In this paper, we introduced the OpenMP Advisor, a compiler tool that advises
application scientists on various OpenMP code offloading strategies. Although
the tool is currently restricted to GPUs, it can be extended to support other
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OpenMP-capable devices. Using our Advisor, we were able to generate code of
multiple applications for seven different architectures, and correctly predict the
top ten best variants for each application including a real world application (the
Wilson Dslash operator) on every architecture. Preliminary findings indicate that
this tool can assist compiler developers and HPC application scientists in porting
their legacy HPC codes to the upcoming heterogeneous computing environment.
As a next step, we will extend our tool to 1) Data synchronization between host
and device during kernel execution 2) Offload computation to multiple GPUs [11]
via tasks 3) Predict the best variants for a variety of data sizes, and then use
the OpenMP metadirective [19] directive to generate multiple directive variants
for each range and 4) Extend the Advisor to other directive-based models, such
as OpenACC. This tool is a first-of-its-kind attempt to build a framework for
automatic GPU offloading using OpenMP and machine learning; as a result,
there is plenty of room for improvement.
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