
Simon McIntosh-Smith
Michael Klemm
Bronis R. de Supinski
Tom Deakin
Jannis Klinkenberg (Eds.)

LN
CS

 1
41

14

OpenMP: Advanced Task-Based,
Device and Compiler Programming
19th International Workshop on OpenMP, IWOMP 2023
Bristol, UK, September 13–15, 2023
Proceedings

Lecture Notes in Computer Science 14114
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Simon McIntosh-Smith · Michael Klemm ·
Bronis R. de Supinski · Tom Deakin ·
Jannis Klinkenberg
Editors

OpenMP: Advanced Task-Based,
Device and Compiler Programming
19th International Workshop on OpenMP, IWOMP 2023
Bristol, UK, September 13–15, 2023
Proceedings

Editors
Simon McIntosh-Smith
University of Bristol
Bristol, UK

Bronis R. de Supinski
Lawrence Livermore National Laboratory
Livermore, CA, USA

Jannis Klinkenberg
RWTH Aachen University
Aachen, Germany

Michael Klemm
OpenMP ARB
Beaverton, OR, USA

Tom Deakin
University of Bristol
Bristol, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-40743-7 ISBN 978-3-031-40744-4 (eBook)
https://doi.org/10.1007/978-3-031-40744-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5312-0378
https://orcid.org/0000-0002-0339-1006
https://orcid.org/0000-0002-5518-7904
https://orcid.org/0000-0002-8634-4634
https://orcid.org/0000-0002-6439-4171
https://doi.org/10.1007/978-3-031-40744-4

Preface

The OpenMP API is a widely used application programming interface (API) for high-
level parallel programming in Fortran, C, andC++. TheOpenMPAPI has been supported
in most high-performance compilers and by hardware vendors since it was introduced
in 1997. Under the guidance of the OpenMP Architecture Review Board (ARB) and
the diligent work of the OpenMP Language Committee, the OpenMP specification has
evolved to version 5.2, which was released in November 2021. It supports parallelism
at several levels: offloading in heterogeneous systems; task-based processing across
processors; and vectorization in SIMD units. It also goes beyond parallel computing by
support for processor affinity and through policies and mechanisms for using memory
and for matching directives and functions to computing environments.

Many of these advances were realized through major new features in version 5.0:
context selectors and the declare variant construct and metadirectives that use them; the
requires directive; memory allocators and support for deep copy of pointer-based data
structures; acquire and release semantics; task (memory) affinity; the descriptive loop
construct; reverse offloading; affinity display; and first and third-party tools interfaces.
OpenMP version 5.0 also significantly enhanced many existing features, such as implicit
declare target semantics, support for task reductions, discontiguous array shaping in
target updates, and imperfectly nested loop collapsing. Versions 5.1 and 5.2 refined
these capabilities and augmented them for increased expressiveness and improved ease
of use.

With version 5.2 of the OpenMP API specification, the OpenMP ARB undertook a
great effort to regularizeOpenMPdirective syntax.While this effort involved deprecation
of existing syntax, it makes the OpenMPAPI easier to understand and to apply. The new
features that OpenMP API version 5.2 introduced include: the ompx/omx sentinel and
API prefix for OpenMP extensions; extensions to metadirectives for Fortran programs;
improvements to memory allocators; and additions to the OpenMP tools interface.

While these changes are small advancements, work has already well advanced for
the definition of the OpenMP API specification version 6.0 and has been documented in
Technical Report 11, published in November 2022. It contains previews of new loop
transformations (reverse and interchange directives, and the apply clause); memory
scopes for atomic and flush operations; extensions to memory allocators; device selec-
tion via traits; and further refinements of the OpenMP language. The OpenMPLanguage
Committee hasmade great progress in defining the feature for threads to create tasks to be
executed by threads in a different parallel teamand to enable free-agent threads to execute
tasks in addition to the threads explicitly created for that team. For heterogeneous pro-
gramming, the OpenMP Language Committee continues to explore worksharing across
target devices.

The OpenMP API remains important both as a stand-alone parallel programming
model and as part of a hybrid programming model for massively parallel, distributed

vi Preface

memory systems with homogeneous manycore nodes and heterogeneous node archi-
tectures, as found in leading supercomputers. As much of the increased parallelism in
exascale systems is within a node, OpenMP will become even more widely used in
top-end systems. Importantly, the features in OpenMP versions 5.0 through 5.2 support
applications on such systems in addition to facilitating portable exploitation of specific
system attributes.

After the first meeting in 2005, in Eugene, Oregon, USA, meetings have been held
each year, in Reims, France; Beijing, China; West Lafayette, USA; Dresden, Germany;
Tsukuba, Japan; Chicago, USA; Rome, Italy; Canberra, Australia; Salvador, Brazil;
Aachen, Germany; Nara, Japan; Stony Brook, USA; Barcelona, Spain, and Auckland,
New Zealand. In 2020 and 2021, IWOMP continued the series with technical papers and
tutorials presented in a virtual conference setting, due to the SARS-CoV-2 pandemic.
Each workshop draws participants from research and development groups and industry
throughout the world. After hosting a hybrid event in Chattanooga, TN, USA, we are
delighted to resume an in-person IWOMP at University of Bristol, UK. We are grateful
for the generous support of sponsors that helps make these meetings successful; they are
cited on the conference pages (present and archived) at the IWOMP website.

The evolution of the specification would be impossible without active research in
OpenMP compilers, runtime systems, tools, and environments. The many additions in
the OpenMP versions 5.0 through 5.2 reflect the contribution by a vibrant and dedi-
cated user, research, and implementation community that is committed to supporting the
OpenMP API. As we move beyond the present needs, and adapt and evolve OpenMP to
the expanding parallelism in new architectures, the OpenMP research community will
continue to play a vital role. The papers in this volume demonstrate the use and eval-
uation of new features found in the OpenMP API. These papers also demonstrate the
forward thinking of the research community, and highlight potential OpenMP directions
and further improvements for systems on the horizon.

The IWOMPwebsite (https://www.iwomp.org/) has the latestworkshop information,
as well as links to archived events. This publication contains the proceedings of the 19th
International Workshop on OpenMP, IWOMP 2023. The workshop program included
fifteen technical papers, two keynote talks, and tutorials related to the OpenMP API. All
technical papers were peer reviewed by at least three different members of the Program
Committee. The work evidenced by these authors and the committee demonstrates that
the OpenMP API will remain a key technology well into the future.

September 2023 Simon McIntosh-Smith
Michael Klemm

Tom Deakin
Bronis R. de Supinski

Jannis Klinkenberg

https://www.iwomp.org/

Organization

General Chairs

Simon McIntosh-Smith University of Bristol, UK
Michael Klemm AMD & OpenMP ARB, Germany

Program Committee Chairs

Bronis R. de Supinski Lawrence Livermore National Laboratory, USA
Tom Deakin University of Bristol, UK

Publication Chair

Jannis Klinkenberg RWTH Aachen University, Germany

Local Arrangements and Registrations Chairs

Tim Lewis Croftedge Marketing, UK

Steering Committee

Matthias S. Müller (Chair) RWTH Aachen University, Germany
Eduard Ayguadé BSC, Universitat Politècnica de Catalunya, Spain
Mark Bull EPCC, University of Edinburgh, UK
Barbara Chapman Stony Brook University, USA
Bronis R. de Supinski Lawrence Livermore National Laboratory, USA
Rudolf Eigenmann University of Delaware, USA
William Gropp University of Illinois, USA
Michael Klemm AMD, Germany
Kalyan Kumaran Argonne National Laboratory, USA
Simon McIntosh-Smith University of Bristol, UK
Kent Milfeld TACC, USA
Stephen L. Olivier Sandia National Laboratories, USA
Ruud van der Pas Oracle, USA

viii Organization

Alistair Rendell Flinders University, Australia
Mitsuhisa Sato RIKEN Center for Computational Science, Japan
Sanjiv Shah Intel, USA
Oliver Sinnen University of Auckland, New Zealand
Josemar Rodrigues de Souza SENAI Unidade CIMATEC, Brazil
Christian Terboven RWTH Aachen University, Germany
Matthijs van Waveren OpenMP ARB & CS Group, France

Program Committee

Eduard Ayguadé Technical University of Catalunya, Spain
Mark Bull University of Edinburgh, UK
Ludovic Capelli EPCC, UK
Sunita Chandrasekaran University of Delaware, USA
Florina M. Ciorba University of Basel, Switzerland
Tom Deakin University of Bristol, UK
Johannes Doerfert Argonne National Laboratory, USA
Alex Duran Intel Iberia, Spain
Deepak Eachempati HPE, USA
Jini George AMD, USA
Mary Hall University of Utah, USA
Joachim Jenke RWTH Aachen University, Germany
Jannis Klinkenberg RWTH Aachen University, Germany
Michael Kruse Argonne National Laboratory, USA
Kelvin Li IBM, USA
Chunhua Liao Lawrence Livermore National Laboratory, USA
Stephen Olivier Sandia National Laboratories, USA
Swaroop Pophale Oak Ridge National Laboratory, USA
Mitsuhisa Sato RIKEN Center for Computational Science, Japan
Thomas Scogland Lawrence Livermore National Laboratory, USA
Xavier Teruel Barcelona Supercomputing Center, Spain

Contents

OpenMP and AI

Advising OpenMP Parallelization via A Graph-Based Approach
with Transformers . 3

Tal Kadosh, Nadav Schneider, Niranjan Hasabnis, Timothy Mattson,
Yuval Pinter, and Gal Oren

LM4HPC: Towards Effective Language Model Application
in High-Performance Computing . 18

Le Chen, Pei-Hung Lin, Tristan Vanderbruggen, Chunhua Liao,
Murali Emani, and Bronis de Supinski

OpenMP Advisor: A Compiler Tool for Heterogeneous Architectures 34
Alok Mishra, Abid M. Malik, Meifeng Lin, and Barbara Chapman

Tasking Extensions

Introducing Moldable Tasks in OpenMP . 51
Pierre-Étienne Polet, Ramy Fantar, and Thierry Gautier

Suspending OpenMP Tasks on Asynchronous Events: Extending
the Taskwait Construct . 66

Romain Pereira, Maël Martin, Adrien Roussel, Patrick Carribault,
and Thierry Gautier

How to Efficiently Parallelize Irregular DOACROSS Loops Using Fine
Granularity and OpenMP Tasks: The SPEC mcf Case . 81

Juan Salamanca and Alexandro Baldassin

OpenMP Offload Experiences

The Kokkos OpenMPTarget Backend: Implementation and Lessons
Learned . 99

Rahulkumar Gayatri, Stephen L. Olivier, Christian R. Trott,
Johannes Doerfert, Jan Ciesko, and Damien Lebrun-Grandie

OpenMP Target Offload Utilizing GPU Shared Memory . 114
Mathias Gammelmark, Anton Rydahl, and Sven Karlsson

x Contents

Improving a Multigrid Poisson Solver with Peer-to-Peer Communication
and Task Dependencies . 129

Anton Rydahl and Sven Karlsson

Beyond Explicit GPU Support

Multipurpose Cacheing to Accelerate OpenMP Target Regions on FPGAs 147
Julian Brandner, Florian Mayer, and Michael Philippsen

Generalizing Hierarchical Parallelism . 163
Michael Kruse

Exploring the Limits of Generic Code Execution on GPUs via Direct
(OpenMP) Offload . 179

Shilei Tian, Barbara Chapman, and Johannes Doerfert

OpenMP Infrastructure and Evaluation

Improving Simulations of Task-Based Applications on Complex NUMA
Architectures . 195

Idriss Daoudi, Thierry Gautier, Samuel Thibault, and Swann Perarnau

Experimental Characterization of OpenMP Offloading Memory
Operations and Unified Shared Memory Support . 210

Wael Elwasif

OpenMP Reverse Offloading Using Shared Memory Remote Procedure
Calls . 226

Joseph Huber and Jon Chesterfield

Author Index . 239

OpenMP and AI

Advising OpenMP Parallelization via
A Graph-Based Approach with

Transformers
Tal Kadosh1,2, Nadav Schneider2,3, Niranjan Hasabnis4, Timothy Mattson4,

Yuval Pinter1, and Gal Oren5,6(B)

1 Computer Science Department, Ben-Gurion University of the Negev,
Beersheba, Israel
uvp@cs.bgu.ac.il

2 Israel Atomic Energy Commission, Tel-Aviv, Israel
{talkad,nadavsch}@post.bgu.ac.il

3 Electrical & Computer Engineering Department, Ben-Gurion University
of the Negev, Beersheba, Israel
4 Intel Labs, Hillsboro, USA

{niranjan.hasabnis,timothy.g.mattson}@intel.com
5 Scientific Computing Center, Nuclear Research Center – Negev, Negev, Israel

6 Computer Science Department, Technion – Israel Institute of Technology,
Haifa, Israel

galoren@cs.technion.ac.il

Abstract. There is an ever-present need for shared memory paralleliza-
tion schemes to exploit the full potential of multi-core architectures.
The most common parallelization API addressing this need today is
OpenMP. Nevertheless, writing parallel code manually is complex and
effort-intensive. Thus, many deterministic source-to-source (S2S) com-
pilers have emerged, intending to automate the process of translating
serial to parallel code. However, recent studies have shown that these
compilers are impractical in many scenarios. In this work, we combine
the latest advancements in the field of AI and natural language pro-
cessing (NLP) with the vast amount of open-source code to address the
problem of automatic parallelization. Specifically, we propose a novel
approach, called OMPify, to detect and predict the OpenMP pragmas
and shared-memory attributes in parallel code, given its serial version.
OMPify is based on a Transformer-based model that leverages a graph-
based representation of source code that exploits the inherent structure
of code. We evaluated our tool by predicting the parallelization pragmas
and attributes of a large corpus of (over 54,000) snippets of serial code
written in C and C++ languages (Open-OMP-Plus). Our results demon-
strate that OMPify outperforms existing approaches — the general-
purposed and popular ChatGPT and targeted PragFormer models —
in terms of F1 score and accuracy. Specifically, OMPify achieves up
to 90% accuracy on commonly-used OpenMP benchmark tests such as
NAS, SPEC, and PolyBench. Additionally, we performed an ablation
study to assess the impact of different model components and present
interesting insights derived from the study. Lastly, we also explored the
potential of using data augmentation and curriculum learning techniques
to improve the model’s robustness and generalization capabilities. The
dataset and source code necessary for reproducing our results are avail-
able at https://github.com/Scientific-Computing-Lab-NRCN/OMPify.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 3–17, 2023.
https://doi.org/10.1007/978-3-031-40744-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_1&domain=pdf
https://github.com/Scientific-Computing-Lab-NRCN/OMPify
https://doi.org/10.1007/978-3-031-40744-4_1

4 T. Kadosh et al.

Keywords: NLP · Code Completion · OpenMP · Shared Memory
Parallelism · Transformers · S2S Compilers · Code Representations

1 Introduction

There is an ever-growing need to develop parallel applications these days. The
ever-growing demand for computing power is leading to various types of complex
architectures, including shared-memory multi-core architectures. A part of the
demand arises from the recent HPC as a service (HPCaaS) paradigm that has
become widespread and available to a broader community of developers [3].
The services offered as HPCaaS usually depend on the CPU core count and the
duration of compute usage. Furthermore, the number of cores per CPU node has
increased over the years — for example, from dozens of physical cores available
in GCP’s C2 family [2] to hundreds of physical cores available in GCP’s future
C3 family [8].

Despite the growing need to write parallel programs, introducing shared-
memory parallelization into code remains challenging due to numerous pitfalls.
Besides the fact that parallelizing serial code requires extensive knowledge of the
code structure and semantics, it also requires the programmer to avoid paral-
lelization pitfalls, such as the need to synchronize simultaneous reads and writes
to the same variables (leading to race conditions), as well as making sure that
the workload is distributed evenly across the threads and the system resources
(load balancing). In addition, it also requires a high degree of human exper-
tise to comprehend fine details and abstract correlations between variables and
different code segments [1]. It is then unsurprising that the number of parallel
programming experts is relatively tiny compared to the growing community of
users who can benefit from parallel programs.

The complexity of writing parallel programs is partly addressed by source-
to-source (S2S) compilers [13–15], which are compilers that translate code from
one programming language to another while preserving the code semantics.
These compilers analyze the code for data dependencies that could prevent
parallelization and automatically insert appropriate parallelization APIs (such
as OpenMP pragmas) into it. Nevertheless, these compilers have several major
drawbacks [22,33,34], such as long execution times and limited robustness to the
input, even when optimized on runtime [27]. More importantly, these compilers
require manual development and maintenance efforts, for instance, to support
a new programming language or a new specification of parallel programming
APIs.

Recent advances in deep-learning-based Natural Language Processing (NLP)
models, like the Transformer architecture [38], offer potential solutions to the
limitations of S2S compilers. These models, known as large language mod-
els (LLMs), have been successfully applied in programming-related tasks. For
instance, Codex (based on GPT) [12] and Google’s ML-enhanced code com-
pletion tool [4], demonstrate the ability to generate code from natural lan-
guage prompts and predict the completion of code fragments, respectively. These
technologies, commonly integrated into programming editors and IDEs, show
promise in reducing programming efforts.

Advising OpenMP Parallelization with Transformers 5

Although AI-based programmer assistance tools already exist, to our knowl-
edge, PragFormer [21] is the only AI-based programmer assistance tool
that can advise programmers in parallel programming. PragFormer uses a
Transformer-based architecture to predict if a given serial code could be paral-
lelized (using OpenMP pragma) and if a private or a reduction clause could be
applied to it. Specifically, it formulates this problem as multiple binary classifi-
cation problems, where one problem tackles the need of determining if OpenMP
pragma could be applied, while the other two tackle the need of determining the
need for private and reduction clauses respectively.

While PragFormer has shown an interesting perspective toward automated
parallel programming, in our experiments with PragFormer, we identified sev-
eral of its limitations. One of its key limitations is the problem formulation;
conceptually, if a serial code cannot be parallelized, then there is no need of
determining a private/reduction clause. As such, we found that these three are
not independent problems, and rather formulating the problem as a multi-label
classification problem seems much more intuitive. We address this and a few
other limitations in PragFormer to propose a new model, named OMPify,
that improves upon PragFormer on several fronts. Our experimental evalua-
tion on a corpus of 54,000 for-loops mined from GitHub revealed that OMPify

outperforms PragFormer and several state-of-the-art AI models for codes in
assisting programmers in parallel programming.

The rest of this article is organized as follows. Section 2 describes related
work and provides the necessary background of our work. Section 3 presents
the research objectives. Section 4 describes OMPify and illustrates our pro-
posed method. Section 5 evaluates our method against previous methods. Finally,
Sect. 6 concludes this article and suggests possible extensions of this work.

2 Related Work

Initially, the approaches for translating serial code into parallel heavily relied
on rule-based methods, which often had limited capabilities and robust-
ness (Sect. 2.1). However, with the rapid advancement of deep learning tech-
niques in the field of NLP, along with the easy availability of open-source code,
there have been some approaches to apply deep learning techniques to source
code (Sect. 2.2). These approaches, however, process source code as text (sim-
ilar to NLP) and fail to fully exploit the potential of other code representa-
tions (Sect. 2.3). By incorporating multiple code representations that capture
different aspects of source code, multimodal learning techniques can overcome
the limitations of these approaches.

2.1 Rule-Based Methods

Several S2S compilers, including Cetus [14] and Par4All [13], have emerged in
the last decade or so to insert OpenMP pragmas into code automatically. These
tools rely on program analysis-based techniques to analyze and identify potential

6 T. Kadosh et al.

constraints (e.g., loop-carried dependencies) that may restrict the code from
being parallelized. The general workflow of S2S compilers can be summarized as
follows:

1. Create an abstract syntax tree (AST) [28], which is a tree representation
of the code’s syntactic structure. ASTs are constructed using source code
parsers, such as ANother Tool for Language Recognition (ANTLR) [31] or
pycparser [11], etc.

2. Apply data dependence algorithms [17] to ASTs.
3. Produce appropriate OpenMP directives based on the data dependence graph.

There are multiple drawbacks associated with the approach of generating
ASTs and applying data dependence algorithms. Firstly, creating an AST with
a parser can be a challenging task with limited robustness to input due to each
programming language’s unique syntactic structures that have evolved over the
years. Thus, many S2S compilers cannot handle the diverse syntax of program-
ming languages. Moreover, not all parsers are publicly available. As a result,
some S2S compilers may fail to produce an AST and analyze the input code.
Secondly, data-dependence algorithms can be time-consuming, particularly for
large-scale code, since these algorithms are strongly dependent on the size of
the AST, which in turn is influenced by the length of the code. Additionally,
the static analysis, including the analysis of C/C++ pointers, array sections,
virtual function calls, and other related factors, is inherently limited. Studies by
Harel et al. [22] and Prema et al. [33] have demonstrated that S2S compilers may
produce sub-optimal results and even degrade program performance in certain
cases. Therefore, it is crucial to consider this major limitation in the application
of data dependence algorithms.

2.2 Unimodal Machine-Learning Driven Methods

Rule-based methods also suffer from another important limitation – tools rely-
ing on these methods require manual programming efforts to add new rules to
maintain and update them. However, recent AI-based programming assistance
tools have demonstrated that it is possible to reduce manual effort by instead
learning the rules from data. Specifically, with the powerful computing devices
and vast availability of open-source code as data, these AI-based tools can learn
programming rules such as syntax, typing rules [23], etc. Continuing this trend,
in recent years, several Transformer-based models have been proposed for vari-
ous programming-related tasks [19,29]. Typically, these models are pre-trained
on massive code corpora containing multiple programming languages (PLs) and
then applied to various programming problems [30], such as program comple-
tion, code search, bug finding, etc., as downstream tasks. One of the common
pre-training tasks is masked language modeling (MLM) [16].

Previous work by Harel et al. [21] showed the possibility of applying
Attention-based models (Transformer) to determine if code can be parallelized

Advising OpenMP Parallelization with Transformers 7

with OpenMP. In their work, they introduced PragFormer, which is a trans-
former model based on DeepSCC [40], which itself is a RoBERTa model fine-
tuned on a corpus of 225k code snippets written in 21 programming languages
(such as Java, Python, C, and C++) collected from Stack Overflow.

In the parlance of AI-based models, PragFormer formulates the parallel
programming assistance problem as Code Language Processing for Paralleliza-
tion (CLPP) task. Specifically, it breaks this task down into three sub-problems:
given a serial code (for-loop), determine (1) if it can be parallelized (using
OpenMP pragma), (2) if private clause (specifying a variable to be private to
each thread in a parallel region) would be applicable to OpenMP pragma, and
(3) if reduction clause (specifying an operator and a variable to reduce across
all threads in a parallel region) would be applicable to OpenMP pragma. It
then approaches these three sub-problems independently and formulates them
as three separate binary classification problems.

Although PragFormer shows great potential in using Transformer architec-
ture to solve the shared-memory parallelization task, it still suffers from several
deficiencies. Primarily, PragFormer is based on RoBERTa, which is essentially
a model for Natural Language (NL) understanding. Applying an NL model to
a code-related task is sub-optimal compared to models pre-trained directly on
code [30]. Additionally, PragFormer regards source code as a sequence of
tokens, ignoring the inherent structure of the code. Intuitively, structural infor-
mation of code, such as variable dependence information, etc., should provide
crucial code semantic information that could improve the code understanding
process. Furthermore, the approach of separating the classifications is unintuitive
since the tasks of predicting the need for OpenMP pragmas and data-sharing
attribute clauses are highly correlated — there will not be a private or reduction
clause if there is no need for OpenMP pragma at all.

2.3 Multimodal Machine-Learning Driven Methods

While the unimodal ML methods accept source code in only one representa-
tion (most commonly as a sequence of tokens), multimodal ML methods realize
that other code representations may offer richer semantic information that could
improve the accuracy of the models on programming-related tasks. Specifically,
multimodel ML models also accept source code in other representations such
as AST, control-flow graph (CFG), data-flow graph (DFG), etc. Consequently,
many pre-trained machine learning models have been developed, with each model
incorporating different code formats into the training process.

Feng et al. introduced CodeBERT [18], a bimodal Transformer model
trained on programming languages and natural languages. They compared
CodeBERT trained on samples from both representations, CodeBERT trained
only on code, and RoBERTa, using the CodeSearchNet dataset [25]. Their
results demonstrated the superior performance of CodeBERT trained on both
language types for various programming-related tasks. Guo et al. developed
GraphCodeBERT [19], a multimodal Transformer model trained on the Code-
SearchNet dataset, incorporating input programs as natural language text, pro-

8 T. Kadosh et al.

S2
S

Pa
ra

lle
l C

om
pi

le
r

Pr
ag

Fo
rm

er

Partial/Invalid Code Classification Models OpenMP Pragma Classification

%

% %

Complete Code Compilation Full/No OpenMP Pragma

O
M

Pi
fy

Complete/Partial/Invalid Code + DFG Generation Model OpenMP Pragma Classification

%

% %

Fig. 1. Differences between S2S compilers, PragFormer and OMPify.

gramming languages, and DFG. They showed that incorporating DFG improves
code understanding compared to CodeBERT. Niu et al. proposed SPT-

Code [29], another multimodal model trained on natural language, program-
ming language, and AST from the CodeSearchNet dataset. While CodeBERT

and GraphCodeBERT utilize Transformer encoders, SPT-Code employs a
Transformer encoder-decoder architecture. Experimental results demonstrated
the superior performance of SPT-Code in code generation tasks.

Drawing inspiration from some of the design choices of multimodal models,
we have designed the OMPify model also as a multimodal model. Figure 1
summarizes the difference between OMPify and related works.

3 Research Objectives

This paper draws inspiration from PragFormer and approaches the paral-
lel programming assistance problem as a Code Language Processing for Paral-
lelization (CLPP) task. Nevertheless, we improve upon PragFormer by posing
the following research questions that are designed to evaluate the limitations of
PragFormer discussed earlier in Related Work (Sect. 2.2).

RQ1: Which code representations impact the CLPP task?

Given the discussion of different code representations, this question focuses on
assessing the influence of various code modalities on code comprehension, par-
ticularly in CLPP tasks. We will evaluate the effectiveness of the previously
mentioned multimodal models on our dataset.

Advising OpenMP Parallelization with Transformers 9

RQ2: Does the scope of the for-loop from input serial code matter for
performance on CLPP task?

Conceptually, the semantics of a for-loop from serial code heavily relies on its
context. This question assesses the impact of different context lengths on the
performance of various multimodal models on CLPP tasks.

RQ3: Can code augmentation improve model’s performance on CLPP task?

We will investigate the potential of code augmentation techniques, specifically
variable name replacement, to improve the performance of existing models on
CLPP tasks.

RQ4:Will multi-label classification based formulation for solving CLPP task per-
form better than PragFormer’s multiple binary-classification based formula-
tion?

While PragFormer employed three binary classification-based models to
predict the requirement for an OpenMP pragma and whether it should include a
work-sharing construct, we hypothesize that these predictions are interdependent
and potentially benefit each other. We evaluate this hypothesis by formulating
a multi-label classification problem and developing a single generative model for
the CLPP task. We then compare our model against PragFormer and other
state-of-the-art multimodel models.

4 OMPify

This section describes the model architecture, its input, the code representa-
tions, and the fine-tuning process. OMPify predicts the need for both OpenMP
pragma and shared-memory attributes (private and reduction) simultaneously,
allowing the model to learn inter-dependencies between these tasks.

4.1 Model

OMPify (Fig. 2) is a Transformer-based, multimodal model that utilizes a
graph-based representation of source code. OMPify is based on GraphCode-

BERT [19], a pre-trained model for programming languages that considers the
inherent structure of the code by accepting source code along with its DFG.
OMPify is composed of GraphCodeBERT and a fully connected layer. This
architecture allows OMPify to perform multi-label classification, where each
task is individually classified.

Repositories

Parse

Code
Snippets

Directives
Extract

Extract Code

DFG

Labels

OMPifier

Evaluate

Input

pragma

private

reduction

CodeSearchNet

Pretrain

Dataset Preprocess

Fig. 2. Overview of OMPify training process.

10 T. Kadosh et al.

4.2 Model Input

The model’s inputs are two code modalities: the actual source code as a sequence
of tokens and the serialized DFG.

N = 10000;
array = (int) c a l l o c (N, s izeof (int)) ;

for (i = 0 ; i < N; i++)
{

array [i] = pow(i , 2) ;
}

Plain Code
1 2

3 4

5 6 7 8 9

10 11 12 13

Variable

Relation

Data Flow Graph

100002 N1 N4 array3

N8

06 i5 i7 i9

i11

i12 213

array10

Lexicalization Serialization

CLS N = 10000 ; array = ... SEP N 10000 array ...

Fig. 3. The input format for a C code snippet.

– Code Tokens. As shown in Fig. 3, the first part of the input to OMPify

consists of a sequence of code tokens. To generate a sequence of token IDs
from code, we utilized the tokenizer provided by GraphCodeBERT.

– Serialized DFG. The second part of the input, which is the serialized DFG,
is created by converting the code into an AST using TreeSitter parser1. We
extract variables and their data dependence relationships from an AST to
generate a DFG. The DFG nodes are serialized in the program ordered and
serve as the model input.

– Attention Mask. Figure 3 provides an overview of the token connections,
showcasing the interconnections between the tokens. Whereas the code tokens
attend to each other during the self-attention mechanism [37], when dealing
with DFG, we aim to disregard attention between variables that are not con-
nected. To achieve this, we employed the masked attention approach described
by Guo et al. [19].

4.3 Fine Tuning

Many studies have demonstrated the advantages of implementing data augmen-
tation techniques to enhance the performance of deep learning models [36,39].
Data augmentation techniques are typically applied to the training set to increase
the diversity of input. Commonly-used augmentation techniques include variable
renaming, dead store, and constant replacement.

Despite the effectiveness of data augmentations, several studies [24,35]
showed that deep learning models are vulnerable to adversarial examples, i.e.,
minor changes to code can result in significant performance degradation. To
1 https://github.com/tree-sitter/tree-sitter.

https://github.com/tree-sitter/tree-sitter

Advising OpenMP Parallelization with Transformers 11

address this issue, as many studies have suggested [20,32,39] leveraging a cur-
riculum learning (CL) technique that involves the gradual introduction of data
augmentation techniques. Specifically, we applied variable renaming as a data
augmentation technique. We followed a gradual approach, starting with the orig-
inal data without any augmentation during the first epoch. In each subsequent
epoch, we augmented the original data by progressively increasing the propor-
tion of renamed variables. Specifically, we applied a variable renaming strategy
that gradually increased over epochs. In the second epoch, we renamed 10% of
the variables per sample. This percentage increased to 20% in the third epoch,
30% in the fourth epoch, and 40% from the fifth epoch onwards.

5 Experimental Results

To evaluate the effectiveness of our proposed model, OMPify, we conducted
several experiments to answer our research questions. All experiments were con-
ducted on an NVIDIA A100 40 GB GPU. Furthermore, for the sake of consis-
tency, we utilized the original implementations of the models as presented in
their respective papers.

5.1 Dataset & Preprocessing

In our work, we developed a novel dataset, named Open-OMP-Plus, comprising
more than 54,000 code snippets from C and C++ for OpenMP analysis (Table 1).
The dataset was collected from https://github.com using the github-clone-all2

script, which enables searching for repositories that satisfy specific criteria. We
used this tool to locate all repositories that include C or C++ files and also
feature the term “OpenMP” in their title, description, or README.

To minimize the noise in our dataset, we employed inclusion and exclusion
criteria inspired by Harel et al. [21]. Specifically, we included only C/C++ files
that contained OpenMP pragmas in their code. This criteria operates on the
assumption that the developers were aware of OpenMP parallelization and that
any non-parallelized loops intentionally have not been parallelized. We excluded
duplicates, empty loops, and loops that used barrier, critical, or atomic pragmas,
which can be bottlenecks on code execution and are not optimal samples.

Table 1. The distribution of each class for each programming language.
Description C C++

With OpenMP 14,906 8,241

Without OpenMP 17,193 14,323

Total 32,099 22,564

(a) Number of loops paralleled
with OpenMP for each
programming language.

Clauses Amount

private 6,758

reduction 3,267

Total 10,025

(b) Number of common
OpenMP shared memory
attributes.

Lines Amount

< 15 40,745

16-50 10,607

> 50 3,311

(c) Code snippet
length in
Open-OMP-Plus.

2 http://github.com/rhysd/github-clone-all.

https://github.com
http://github.com/rhysd/github-clone-all

12 T. Kadosh et al.

Once we identified files that contained OpenMP pragmas, we parsed them
using pycparser [11] parser, which converts the code into an AST format. Each
sample in the dataset comprises several fields, such as the plain for-loop code, its
corresponding pragma (if any), the AST of the for-loop, the AST of the functions
called within the for-loop, the declaration of each variable used in the for-loop,
all the assignment instructions from the context of the loop that involves each
of the variables used in the loop, and the DFG of the for-loop and its extended
scope. By analyzing the AST, we can extract code structures such as loops and
identify the relevant functions and variables from its outer scope.

To evaluate the performance of our model, we divided the dataset into three
sets: train, validation, and test, using standard 80-10-10 split. Additionally, we
collected three benchmarks that were known to use OpenMP correctly, namely
NAS [10], PolyBench [6], and SPEC [7], and used them to further test our model.
To avoid fair evaluation, we removed from the training set any samples that could
be found in the benchmarks.

5.2 Results

We now present the results of our experiments to answer the research questions.
Note that the abbreviations used in this section represent specific metrics: P for
Precision, R for Recall, and Acc for Accuracy.

Table 2. Effect of different code
modalities on the task of pragma
classification.

Model Name
Metrics

P R Acc
PragFormer 0.826 0.780 0.830
CodeBERT 0.848 0.813 0.852
SPT-Code 0.812 0.784 0.831
SPT-Code (w/o AST) 0.792 0.786 0.820
GraphCodeBERT 0.836 0.835 0.862
GraphCodeBERT (w/o DFG) 0.834 0.833 0.861

RQ1: Code Modalities. To compare the
various code modalities, we utilized three dis-
tinct models. CodeBERT was pre-trained
on natural language (NL) and programming
language (PL), SPT-Code was pre-trained
on PL and AST, and GraphCodeBERT

was pre-trained on PL and DFG. To apply
these models to pragma classification task,
we added a fully connected layer of size two
and a SoftMax layer at the end of these mod-
els and fine-tuned them using our corpus, Open-OMP-Plus. Additionally, during
the fine-tuning process, we trained SPT-Code and GraphCodeBERT using
two different settings: one with code alone and another with enhanced input
that included code along with AST and DFG, respectively. Based on the results
presented in Table 2, it can be inferred that the use of multimodal models, which
combine code representations such as AST or DFG with the original code, has
a positive impact on the performance of the model in the pragma classification
task. However, despite being trained on the same dataset, i.e., CodeSearchNet,
CodeBERT, SPT-Code, and GraphCodeBERT achieved significantly differ-
ent performance, with GraphCodeBERT outperforming others. This indicates
that the DFG representation and pretraining tasks proposed by Guo et al. [19]
were more beneficial this task. It is worth noting that while the use of AST in
SPT-Code improves performance compared to using only the code, the DFG
in GraphCodeBERT has only a minimal impact on performance. This could

Advising OpenMP Parallelization with Transformers 13

be due to the DFG representation’s inability to effectively capture the relation-
ship between arrays and their indexing. As shown in Fig. 3, there is no direct
connection between the array and the index variable i11. In scientific codes, the
relationship between the array and the index is often critical as it determines
the feasibility of parallelization.

RQ2: Extended Scope. In this experiment, we aimed to investigate the impact
of extended scope on the performance of OMPify in solving the CLPP task. To
achieve this, we trainedOMPify on two distinct corpora: one comprising only the
for-loop structured block, and the other consisting of the extended version that
includes the surrounding scope of the for-loop, incorporating assignments to vari-
ables used within the loop (Fig. 4). The results, as presented in Table 5, demon-
strate the effect of including the outside scope in determining the necessity of
OpenMP pragma. The observed increase in recall indicates that the model exhibits
improved identification of for-loops requiring OpenMP pragma, resulting in fewer
false negatives. This finding suggests that considering the outside scope provides
valuable information for accurately identifying the need for pragma in for-loops.

Table 3. Effect of context.

Data Type P R Acc

No Scope 0.833 0.831 0.860

With Scope 0.829 0.844 0.863

< 10 11− 50 50− 100 > 100
0

1

2

3
·104

#
L
in
es

Extended Scope
No Scope

Fig. 4. Code length comparison.

Table 4. Effect of data augmenta-
tion techniques.

Model
Augmen- Metrics
tation P R Acc

PragFormer
original 0.793 0.847 0.841
curriculum 0.825 0.815 0.848
replaced 0.727 0.826 0.794

GraphCode-
BERT

original 0.851 0.841 0.870
curriculum 0.849 0.846 0.872
replaced 0.838 0.781 0.843

RQ3: Data Augmentation. Through eval-
uating the impact of data augmentation tech-
niques on performance, we investigated the
effectiveness of PragFormer and Graph-

CodeBERT in the binary classification
task of OpenMP pragma classification. The
results of this experiment are presented in
Table 4. We employed the variable renam-
ing augmentation, where each variable was
replaced with var, concatenated with a ran-
dom index number. This augmentation is referred as replaced in the table. The
results reveal the vulnerability of these models to adversarial examples created
by fully replacing variable names, leading to degraded performance compared
to the unmodified variables. However, by gradually introducing code augmenta-
tions using the curriculum learning method (referred as curriculum in the table),
we observed improved accuracy.

14 T. Kadosh et al.

Table 5. Effect of multi-label classi-
fication problem formulation.

Model Task
Metrics
P R Acc

PragFormer
pragma 0.793 0.847 0.841
private 0.716 0.663 0.924
reduction 0.632 0.598 0.953

GraphCode-
BERT

(Separated)

pragma 0.850 0.841 0.870
private 0.768 0.684 0.937
reduction 0.690 0.688 0.963

OMPify
pragma 0.849 0.848 0.872
private 0.755 0.689 0.938
reduction 0.690 0.700 0.966

RQ4: Multi-label Classification. Table 5
shows the results of PragFormer, Graph-

CodeBERT, and OMPify when applied
to all the three tasks of pragma clas-
sification, classification of private clause,
and reduction clause. Note that OMPify

approaches all three tasks together as
a multi-label classification problem, while
PragFormer approach each task indepen-
dently. In the table, we present the result of
OMPify for the combined task but split
the results according to labels. The results
convey that OMPify achieves significantly better performance compared to
PragFormer, with an improvement of 3.1% in pragma classification, under-
scoring the hypothesis that these three tasks are not independent. In addition,
our model slightly outperforms the GraphCodeBERT model. The results show
a significant improvement in recall for OMPify for all three tasks, with a major
decrease in the number of false negative predictions. In our context, a false
negative prediction means that a sample is incorrectly classified as not requir-
ing pragma, private, or reduction. Therefore, the unified prediction strategy of
OMPify can better identify samples that require pragma, private, or reduction.
This suggests that the understanding of each task contributes to the overall
prediction. For instance, if OMPify predicts the need for pragma, it will also
influence the prediction of shared-memory attributes, which may also appear in
the pragma.

Table 6. Benchmark statistics

Bench-
mark

With
OMP

Without
OMP

priv-
ate

reduc-
tion

NAS 166 146 12 2
PolyBench 63 85 36 0
SPEC 157 1,000 1 0

Table 7. Comparison on different bench-
marks.

Bench-
mark

Model
Metrics
P R Acc

SPEC PragFormer 0.445 0.802 0.837
OMPify 0.572 0.854 0.894

PolyBench PragFormer 0.703 0.301 0.648
OMPify 0.836 0.810 0.851

NAS PragFormer 0.635 0.734 0.634
OMPify 0.731 0.886 0.766

2500
examples

ChatGPT 0.401 0.913 0.401
PragFormer 0.815 0.721 0.817
OMPify 0.839 0.818 0.860

Real-World Benchmarks. In order
to test the performance of OMPify

on real-world programs, we obtained
C/C++ programs that were using
OpenMP pragma from three scien-
tific code benchmarks, namely, NAS,
SPEC, and PolyBench. Table 6 shows
the statistics of the collected programs.
These benchmarks are manually-written
as parallel programs using OpenMP,
so they serve as a good test case for
OMPify. As a comparison, we applied
PragFormer to the same test. Our
model exhibited a significant increase in
performance when compared to Prag-

Former (Table 7).
Moreover, given the recent popular-

ity of ChatGPT [9] in programming-
related tasks, we decided to evaluate it

Advising OpenMP Parallelization with Transformers 15

on our CLPP task. For this evaluation, we randomly sampled 2500 test inputs
from our test dataset. We then fed those test programs to ChatGPT (based
on GPT-3.5) one by one and then used the prompt “Generate the optimal
OpenMP pragma if possible” to check if ChatGPT’s response matches with the
expected label for the test program. Although ChatGPT performs well on vari-
ous NLP tasks, it performed poorly in our specific task, often suggesting the use
of OpenMP pragma even when it was not applicable.

6 Conclusions and Future Work

This paper aims to investigate the potential of multimodal models in accurately
predicting the need for shared-memory parallelization in code. Our research
discovered that incorporating additional code representations, such as ASTs
and DFGs, significantly improves their performance compared to models that
rely solely on the original code. Building upon this knowledge, we introduced
a novel model called OMPify, based on GraphCodeBERT. OMPify takes
advantage of the inter-dependencies between the task of predicting the need
for parallelization and the prediction of shared-memory attributes, such as pri-
vate and reduction variables. By leveraging these relationships, OMPify demon-
strates enhanced accuracy and robustness in determining the need for shared-
memory parallelization. In addition to developing the OMPify model, we also
constructed a comprehensive database called Open-OMP-Plus. This database
includes the for-loop itself and extends its scope to include assignment state-
ments of variables found within the for-loop. By incorporating this extended
scope, we demonstrate that OMPify can effectively utilize this additional infor-
mation to improve its predictions further.

For future research, we aim to address several areas of improvement. Firstly,
since the multimodal models analyzed in RQ1 were not pre-trained on C/C++
programming languages, there is a potential for enhancing their performance
by pretraining them on datasets that include C/C++ code. This approach can
contribute to better code understanding and comprehension. Additionally, in
RQ4, we observed improvements in multi-label prediction. To further enhance
this aspect, we intend to explore the conversion of the multi-label prediction
problem into pragma generation. By generating pragmas directly, we can achieve
more precise and fine-grained control over parallelization tasks. Furthermore, an
important question arises regarding the correctness of the generated pragmas.
To address this concern, we plan to investigate techniques and approaches for
evaluating the accuracy and correctness of the generated pragmas.

Acknowledgments. This research was supported by the Israeli Council for Higher
Education (CHE) via the Data Science Research Center, Ben-Gurion University of the
Negev, Israel; Intel Corporation (oneAPI CoE program); and the Lynn and William
Frankel Center for Computer Science. Computational support was provided by the
NegevHPC project [5] and Intel Developer Cloud [26]. The authors thank Re’em Harel,
Israel Hen, and Gabi Dadush for their help and support.

16 T. Kadosh et al.

References

1. Automatic Parallelism and Data Dependency. https://web.archive.org/web/
20140714111836/http://blitzprog.org/posts/automatic-parallelism-and-data-
dependency

2. Compute-optimized machine family. https://cloud.google.com/compute/docs/
compute-optimized-machines

3. High performance computing as a service market forecast. https://www.alliedmar
ketresearch.com/high-performance-computing-as-a-service-market

4. Ml-enhanced code completion improves developer productivity. https://ai.google
blog.com/2022/07/ml-enhanced-code-completion-improves.html

5. NegevHPC Project. https://www.negevhpc.com
6. PolyBench Benchmarks. https://web.cse.ohio-state.edu/pouchet.2/software/poly

bench/
7. SPEC-OMP2012 website. https://www.spec.org/omp2012/
8. The next wave of Google Cloud infrastructure innovation: New C3 VM and Hyper-

disk. https://cloud.google.com/blog/products/compute/introducing-c3-machines-
with-googles-custom-intel-ipu

9. ChatGPT. https://chat.openai.com/ (2023)
10. Bailey, D.H., et al.: The NAS parallel benchmarks. Int. J. Supercomput. Appl.

5(3), 63–73 (1991)
11. Bendersky, E., et al.: Pycparser (2010)
12. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint

arXiv:2107.03374 (2021)
13. Creusillet, B., et al.: Par4all: Auto-parallelizing C and Fortran for the CUDA

architecture (2009)
14. Dave, C., et al.: Cetus: a source-to-source compiler infrastructure for multicores.

Computer 42(12), 36–42 (2009)
15. Dever, M.: AutoPar: automating the parallelization of functional programs, Ph.D.

thesis, Dublin City University (2015)
16. Devlin, J., et al.: BERT: pre-training of deep bidirectional transformers for lan-

guage understanding. In: Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association
for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/
10.18653/v1/N19-1423. https://aclanthology.org/N19-1423

17. Fagin, R., et al.: The theory of data dependencies: a survey. IBM Thomas J. Watson
Research Division (1984)

18. Feng, Z., et al.: CodeBERT: a pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155 (2020)

19. Guo, D., et al.: GraphcodeBERT: pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366 (2020)

20. Guo, S., et al.: CurriculumNet: weakly supervised learning from large-scale web
images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018.
LNCS, vol. 11214, pp. 139–154. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01249-6 9

21. Harel, R., et al.: Learning to parallelize in a shared-memory environment with
transformers. In: Proceedings of the 28th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming, pp. 450–452 (2023)

https://web.archive.org/web/20140714111836/http://blitzprog.org/posts/automatic-parallelism-and-data-dependency
https://web.archive.org/web/20140714111836/http://blitzprog.org/posts/automatic-parallelism-and-data-dependency
https://web.archive.org/web/20140714111836/http://blitzprog.org/posts/automatic-parallelism-and-data-dependency
https://cloud.google.com/compute/docs/compute-optimized-machines
https://cloud.google.com/compute/docs/compute-optimized-machines
https://www.alliedmarketresearch.com/high-performance-computing-as-a-service-market
https://www.alliedmarketresearch.com/high-performance-computing-as-a-service-market
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
https://www.negevhpc.com
https://web.cse.ohio-state.edu/pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/pouchet.2/software/polybench/
https://www.spec.org/omp2012/
https://cloud.google.com/blog/products/compute/introducing-c3-machines-with-googles-custom-intel-ipu
https://cloud.google.com/blog/products/compute/introducing-c3-machines-with-googles-custom-intel-ipu
https://chat.openai.com/
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2009.08366
https://doi.org/10.1007/978-3-030-01249-6_9
https://doi.org/10.1007/978-3-030-01249-6_9

Advising OpenMP Parallelization with Transformers 17

22. Harel, R., et al.: Source-to-source parallelization compilers for scientific shared-
memory multi-core and accelerated multiprocessing: analysis, pitfalls, enhancement
and potential. Int. J. Parallel Prog. 48(1), 1–31 (2020)

23. Hasabnis, N., et al.: ControlFlag: a self-supervised idiosyncratic pattern detection
system for software control structures. In: Proceedings of the 5th ACM SIGPLAN
International Symposium on Machine Programming, pp. 32–42. MAPS 2021, Asso-
ciation for Computing Machinery, New York, NY, USA (2021). https://doi.org/
10.1145/3460945.3464954

24. Henke, J., et al.: Semantic robustness of models of source code. In: 2022 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 526–537. IEEE (2022)

25. Husain, H., et al.: CodeSearchNet challenge: evaluating the state of semantic code
search. arXiv preprint arXiv:1909.09436 (2019)

26. Intel: Intel Developer Cloud. https://www.intel.com/content/www/us/en/
developer/tools/devcloud/overview.html (2023)

27. Mosseri, I., Alon, L.-O., Harel, R.E., Oren, G.: ComPar: optimized multi-compiler
for automatic openMP S2S parallelization. In: Milfeld, K., de Supinski, B.R.,
Koesterke, L., Klinkenberg, J. (eds.) IWOMP 2020. LNCS, vol. 12295, pp. 247–262.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58144-2 16

28. Neamtiu, I., et al.: Understanding source code evolution using abstract syntax tree
matching. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–5 (2005)

29. Niu, C., et al.: SPT-Code: Sequence-to-sequence pre-training for learning the rep-
resentation of source code. arXiv preprint arXiv:2201.01549 (2022)

30. Niu, C., et al.: An empirical comparison of pre-trained models of source code. arXiv
preprint arXiv:2302.04026 (2023)

31. Parr, T.: The definitive ANTLR 4 reference. Pragmatic Bookshelf (2013)
32. Platanios, E.A., et al.: Competence-based curriculum learning for neural machine

translation. arXiv preprint arXiv:1903.09848 (2019)
33. Prema, S., et al.: Identifying pitfalls in automatic parallelization of NAS parallel

benchmarks. In: 2017 National Conference on Parallel Computing Technologies
(PARCOMPTECH), pp. 1–6. IEEE (2017)

34. Prema, S., et al.: A study on popular auto-parallelization frameworks. Concurr.
Comput. Pract. Exper. 31(17), e5168 (2019)

35. Quiring, E., et al.: Misleading authorship attribution of source code using adver-
sarial learning. In: USENIX Security Symposium, pp. 479–496 (2019)

36. Rebuffi, S.A., et al.: Data augmentation can improve robustness. Adv. Neural. Inf.
Process. Syst. 34, 29935–29948 (2021)

37. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017). http://
arxiv.org/abs/1706.03762

38. Vaswani, A., et al.: Attention is all you need. Advances in Neural Information
Processing Systems 30 (2017)

39. Wang, D., et al.: Bridging pre-trained models and downstream tasks for source code
understanding. In: Proceedings of the 44th International Conference on Software
Engineering, pp. 287–298 (2022)

40. Yang, G., Zhou, Y., Yu, C., Chen, X.: DeepSCC: source code classification based on
fine-tuned roBERTa. CoRR abs/2110.00914 (2021). https://arxiv.org/abs/2110.
00914

https://doi.org/10.1145/3460945.3464954
https://doi.org/10.1145/3460945.3464954
http://arxiv.org/abs/1909.09436
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://doi.org/10.1007/978-3-030-58144-2_16
http://arxiv.org/abs/2201.01549
http://arxiv.org/abs/2302.04026
http://arxiv.org/abs/1903.09848
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2110.00914
https://arxiv.org/abs/2110.00914

LM4HPC: Towards Effective Language
Model Application in High-Performance

Computing

Le Chen1,2 , Pei-Hung Lin1 , Tristan Vanderbruggen1, Chunhua Liao1(B) ,
Murali Emani3, and Bronis de Supinski1

1 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
liao6@llnl.gov

2 Iowa State University, Ames, IA 50010, USA
3 Argonne National Laboratory, Lemont, IL 60439, USA

Abstract. In recent years, language models (LMs), such as GPT-4, have
been widely used in multiple domains, including natural language pro-
cessing, visualization, and so on. However, applying them for analyzing
and optimizing high-performance computing (HPC) software is still chal-
lenging due to the lack of HPC-specific support. In this paper, we design
the LM4HPC framework to facilitate the research and development of
HPC software analyses and optimizations using LMs. Tailored for sup-
porting HPC datasets, AI models, and pipelines, our framework is built
on top of a range of components from different levels of the machine
learning software stack, with Hugging Face-compatible APIs. Using three
representative tasks, we evaluated the prototype of our framework. The
results show that LM4HPC can help users quickly evaluate a set of state-
of-the-art models and generate insightful leaderboards.

Keywords: Language model · Programming language processing ·
High-performance computing

1 Introduction

Language models (LMs) are models designed to understand and generate human
language. In recent years, large language models (LLMs) trained on large
amounts of text data have demonstrated stunning capabilities in various nat-
ural language processing and visualization tasks. They have also been widely
used to process programming languages due to the similarities between natu-
ral languages and programming languages. For example, GPT-4 [1] shows early
signs of artificial general intelligence. Based on a large language model trained
on code [2], GitHub provides an AI assistant for developing software.

Given the rise of LLMs, it is natural for researchers and developers in the
high-performance computing community to start exploiting LMs for addressing
various challenges in HPC, including code analysis, code generation, performance
optimization, question answering, and so on. However, mainstream frameworks

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 18–33, 2023.
https://doi.org/10.1007/978-3-031-40744-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_2&domain=pdf
http://orcid.org/0000-0003-3847-4108
http://orcid.org/0000-0003-4977-814X
http://orcid.org/0000-0001-6477-0547
http://orcid.org/0000-0002-0339-1006
https://doi.org/10.1007/978-3-031-40744-4_2

LM4HPC: Towards Effective LM Application in HPC 19

of LMs were originally designed to serve natural language processing. It is dif-
ficult for newcomers in HPC to quickly access HPC-specific datasets, models,
and pipelines. For example, the current popular Hugging Face platform does not
include dedicated pipelines for software analyses and optimizations. Another
challenge is the entire field is evolving quickly, with new techniques emerging
almost weekly, making it challenging for HPC users to keep up with the latest
techniques and find relevant ones. Last but not least, there is a lack of stan-
dard, reproducible evaluation processes for LMs focusing on HPC-specific tasks.
Therefore, it is difficult to have a fair comparison among different models for a
given HPC task.

In this paper, we propose a framework (named LM4HPC) designed to serve
HPC users as first-class citizens by including internal components and external
APIs relevant to HPC-specific tasks. LM4HPC’s components include models,
datasets, pipelines, and so on, while the APIs allow users to interact with these
components to finish given HPC tasks. We highlight the contributions of our
work as follows:

– We design an extensible framework for including and exposing relevant
machine learning components to facilitate the adoption of large language
models for HPC-specific tasks.

– The framework provides a set of APIs to facilitate essential operations, includ-
ing code preprocessing, tokenization, integration with new data, and evalua-
tion.

– A set of pipelines have been developed to support common HPC tasks, includ-
ing code similarity analysis, parallelism detection, question answering, and so
on.

– We provide HPC-specific datasets such as DRB-ML, OMP4Par, and OMPQA
to support various HPC pipelines.

– Our work introduces standardized workflows and metrics to enable fair and
reproducible evaluation of LLMs for HPC-specific tasks.

– Using three representative tasks, we demonstrated how the framework can be
used to test a set of language models and generate leaderboards.

2 Background

Language models (LMs) are machine learning models designed to comprehend
and generate human language. They can be used to facilitate natural and intu-
itive interactions between humans and machines. Early generations of LMs, using
recurrent neural networks (RNNs), showed inspiring results for various natu-
ral language processing (NLP) tasks. A transformative evolution by the Trans-
former [3] reveals remarkable potentials of LMs. Introduced by Vaswani et al.,
transformer models utilize the attention mechanism to capture the dependencies
between all words in an input sentence, irrespective of their positions. Compared
to RNNs, transformers process data in parallel rather than sequentially and sig-
nificantly improve the efficiency of model training and inference. Transformers

20 L. Chen et al.

further enables the inauguration of the large language models (LLMs). Com-
pared to LMs, LLMs are trained on a vast amount of data and possess parameter
counts on the order of billions or more, allowing them to generate more detailed
and nuanced responses. Examples of LLMs include OpenAI’s GPT-3, GPT-4
and Google’s BARD. Nowadays, LLMs have shown remarkable capabilities in
NLP tasks like translation, question answering, and text generation.

Table 1. Language models, associated training data and tasks

Model Training data Token

Limit

Avail.

Name Released Size Type Size

BERT 2018/10 340M Text 3.5B words 512 Weights

CodeBERT 2020/11 125M Mixed 2.1M(bimodal)

6.4M (unimodal)

512 Weights

Megatron 2021/04 1T Text 174 GB 512 Weights

GraphCodeBERT 2021/05 110M Code 2.3M functions 512 Weights

CodeT5 2021/11 770M Code 8.35M instances 512 Weights

GPT-3 2022/03/15 175B Mixed 500B tokens 4096 Weights

LLaMA 2023/02/24 7–65B Mixed 1.4T tokens 4096 Weights*

GPT-4 2023/03/14 1T Mixed undisclosed 8k/32k API*

BARD 2023/03/21 1.6B Mixed 1.56T words 1000 API

Cerebras-GPT 2023/03/28 0.11–13B Text 800 GB 2048 Weights

Dolly 2.0 2023/04/12 3–12B Text 15k instr./resp 2048 Weights

StarCoder 2023/05/4 15B Code 1T tokens 8192 Weights

StarChat-Alpha 2023/05/4 16B Code 31k instr./resp 8192 Weights

Table 1 shows some example language models and their release dates, sizes,
training data, input token length limits, and availability. LLaMA [4]’s weights
can be obtained after filling out some form. GPT-4 has a waiting list to use its
API. At the time of writing this paper, we have not yet obtained its access.

LMs are trained mainly by text data with a focus on NLP. The sources of
the training data mainly come from books, web content, newspapers, scientific
articles, and other text data in various natural languages. Latest LLMs have
demonstrated rich skill sets in NLP including text prediction, common sense
reasoning, reading comprehension, translation and question answering.

There has been a keen interest in deploying NLP techniques to programming
language processing (PLP) tasks, such as code summarization, code generation,
and code similarity analysis [5,6]. Previous studies have demonstrated successful
applications of traditional language models to PLP tasks, showing the feasibility
of this approach [7]. CodeBERT [8], for example, is a transformer-based model
trained with a diverse range of programming languages and can be used for a vari-
ety of programming-related tasks. Similarly, CodeT5 [9] is a variant of Google’s
T5 language model, trained specifically on code datasets to perform advanced
programming tasks like code completion, bug detection, and code summariza-
tion. Lately, StarCoder [10], a 15B parameter model trained with 1 trillion tokens
sourced from a large collection of permissively licensed GitHub repositories, is

LM4HPC: Towards Effective LM Application in HPC 21

developed to be a Large Language Model mainly for code generation or com-
pletion. StarChat-Alpha is a GPT-like chat model fine-tuned from StarCoder to
act as a helpful coding assistant.

2.1 LMs for HPC

With the recent breakthroughs in Generative Pretrained Transformer (GPT)
large language models [11], it has become increasingly intriguing to explore the
application of large language models (LLMs) for HPC tasks. However, their
deployment in the HPC domain is still relatively unexplored. This venture comes
with various challenges, including:

1. Pipelines: Traditional language model frameworks like Hugging Face were
designed to support natural language processing or compute vision problems.
Expanding LMs to any new domain, including HPC, requires the addition of
new pipelines designed to finish domain-specific tasks.

2. Datasets: The HPC domain encompasses an extensive amount of code span-
ning various fields, including biology and climate modeling. However, prepar-
ing this data for machine learning training, such as labeling parallelizable
loops in HPC programs for parallelism detection, presents significant chal-
lenges. The scarcity of ready-to-use, pre-labeled HPC datasets poses a partic-
ular obstacle for training language models, especially large ones, highlighting
the need for more shared resources in the community.

3. Pre-processing: Pre-processing in the context of LMs for HPC typically
involves the conversion of source files into a sequence of tokens. However, the
direct application of NLP tokenizers to code can be sub-optimal. For instance,
an NLP tokenizer might split a variable name into two tokens, a scenario that
is not desirable for PLP analysis. Also, models designed for processing source
code may use graph representations, such as abstract syntax trees, to have
better performance.

4. Input size limit: Language models often have limited input token lengths
(such as 512 to a few thousand of tokens). HPC tasks often involve processing
large-scale software packages with millions of lines of source code.

5. Evaluation: There is a pressing need for standardized and reproducible eval-
uation of different models in the context of various HPC tasks, using metrics
suitable for domain-specific requirements.

3 Approach

To address the challenges discussed in Sect. 2, we introduce LM4HPC, a com-
prehensive framework that encapsulates a suite of machine learning components
within user-friendly APIs. This framework is tailored for HPC users, simplifying
the implementation process and making the robust capabilities of language mod-
els more accessible and user-friendly within the HPC community. The primary
goal of LM4HPC is to reduce the complexities inherent in employing language
models, thus enabling HPC users to leverage their powerful capabilities more
effectively and efficiently.

22 L. Chen et al.

3.1 LM4HPC Design Overview

Figure 1 provides the overview of the LM4HPC framework. It is built on top of
multiple internal machine learning components with Hugging Face-compatible
APIs. Higher-level components provide concepts and interfaces to users, while
middle or lower-level components provide implementation support. Table 2 shows
the example classes and functions in LM4HPC API, including those supporting
HPC-specific language models, tokenizers for programming languages, datasets,
inference pipelines, and evaluation. We elaborate on some essential components
in the following subsections.

Code Similarity Analysis Parallelism Detection OMP Q&A

datasets

Hugging Face LangChain

PyTorch Tensorflow …onnx

CPU GPU Cluster

High-Level
Components

&API

Runtime
Library

ML
Framework

Hardware

LMs

…

pipelines

MetricsEvaluation Harness Code Processing Tools

code2seq code2tree code2graphtokenization

…vector stores

Fig. 1. Overview of the LM4HPC framework

3.2 HPC Tasks and Inference Pipelines

HPC users are interested in a wide range of tasks related to programming lan-
guage processing. Table 3 outlines one way to categorize HPC-specific tasks. The
purpose here is not to provide a comprehensive taxonomy of all tasks but a start-
ing point for common tasks we are interested in supporting in our framework.
Most tasks are self-explanatory by names and each may have further sub-tasks.
For example, clone detection can be viewed as a specialized sub-task under code
similarity analysis.

In the context of machine learning, a pipeline represents a sequence of data
processing stages to complete a task. Our LM4HPC framework extends the
pipeline function provided by Hugging Face, adapting it for HPC tasks. We have
developed three inference pipelines: code similarity analysis, parallelism detec-
tion, and OpenMP question answering. Code similarity analysis determines the

LM4HPC: Towards Effective LM Application in HPC 23

Table 2. LM4HPC API: example classes and functions. Each class can be imported
using “from lm4hpc import *” in Python.

LM4HPC

classes

Description Example API functions

hpcmodel Fine-tune text-based

(HF, OpenAI) and

graph-based models,

including local private

ones, for HPC tasks

hpcmodel.from pretrained(model name or path:
Optional[str], *model args, **kwargs)

hpcmodel.save pretrained(model name or path: str,
*model args, **kwargs)

hpcmodel.finetune()

hpctokenizer APIs to represent code

in either tokenized text,

trees, or graphs

hpctokenizer.from pretrained(model name or path:
Optional[str], *model args, **kwargs)

hpctokenizer.addtokens(contentsingle word=False,
strip=False, normalized=True)

hpctokenizer.encoding()

hpcdatasets Load and process HPC

datasets

hpcdatasets.load(path: str, data files: Union[str,
List, Dict, None], **kwargs)

hpcdatasets.split(dataset: hpcdatasets, partition:
[float, float, float], **kwargs)

hpcdatasets.shuffle(dataset: hpcdatasets, **kwargs)

hpcdatasets.sort(dataset: hpcdatasets, **kwargs)

hpcpipeline Pre-built pipelines for
common PLP tasks

hpcpipeline(task: str, model name or path: str,
*model args, **kwargs)

hpceval Evaluate the results of

various models

hpceval.compute(task: str, models name or path:
[[str]], data files: Union[str, List, Dict, None],
*model args, **kwargs)

hpceval.plot(shape: str)

Table 3. HPC Tasks for Programming Language Processing: Categories and Examples

Code Analysis Code Generation Others

Compiler Analysis Code Completion Test Case Generation

Algorithm Classification Natural Language-to-Code Code Search

Code Similarity Analysis Code Translation Question Answering

Documentation Generation Code Repair Code Review

Parallelism Detection Code Migration Decompilation

Defect Detection Compilation IR-to-Source Translation

similarity between a pair of code snippets. Parallel detection is defined to check
if an input code snippet can be parallelized or not using OpenMP. The OpenMP
question answering pipeline is designed to use models to generate answers to
OpenMP-related questions.

Tokenizers are responsible for preprocessing input into an array of numbers
as inputs to a model. They are essential components used by pipelines. Most LM
tokenizers are primarily designed for NLP tasks. For instance, given a function

24 L. Chen et al.

name my_func, a typical NLP tokenizer like BERT might split it into separate
tokens (such as 'my', '_', and 'func') while a code-aware tokenizer may treat
the function name as a single entity to ensure a more meaningful representation.

To overcome this, we developed the LM4HPC tokenizer, leveraging the
treesitter [12] and programl [13] library. Our tokenizer is specifically designed to
handle the pre-processing of code data required for a language model. It includes
tokenizers such as the ast-tokenizer. As a result, LM4HPC can accommodate
models (such as augAST [14]) that require AST as input in the pipeline.

3.3 Datasets

Datasets are crucial for any machine learning application. Within the LM4HPC
framework, we contribute HPC-specific datasets either by converting existing
ones into Hugging Face-compatible formats or by creating new ones from scratch.

We have converted three existing datasets to be compatible with Hugging
Face dataset API: POJ-104 [15], DRB-ML [16], and OMP4Par [14]. POJ-104
is derived from a pedagogical programming open judge (OJ) system that auto-
matically evaluates the validity of submitted source code for specific problems
by executing the code. This dataset is particularly useful for the code similarity
task. The DRB-ML dataset contains 658 C/C++ OpenMP kernels derived from
DataRaceBench [17]. We extended it to have labels indicating if a kernel is paral-
lelizable or not. The OMP4Par dataset is an open-source benchmark composed
of data from three resources: code crawled from GitHub, OpenMP benchmarks
such as Nas Parallel Benchmarks [18] and Rodinia [19], and synthetic code. This
dataset contains loops with labels indicating whether a loop is parallel and, if
parallelizable, the corresponding OpenMP directive associated with the loop.

Furthermore, we have manually created a new OpenMP question answering
dataset called OMPQA in order to probe the capabilities of language models
in single-turn interactions with users. Similar to other QA datasets, we include
some request-response pairs which are not strictly question-answering pairs. The
categories and examples of questions in the OMPQA dataset can be found in
Table 4.

Table 4. OMPQA: categories and examples of questions

Category Count Example Questions

Basics 40 What is a worksharing construct in OpenMP?

Examples 20 Give an example OpenMP C code for computing PI using
numerical integration.

Compilers 24 In what language is LLVM written?
How is a parallel region represented in Clang?

Benchmarks 23 What are the NAS Parallel benchmarks?
Which benchmark assesses data race detection tools?

LM4HPC: Towards Effective LM Application in HPC 25

3.4 Integration with New Data

Language models derive knowledge from training datasets and store this knowl-
edge in internal weights within the model’s neural network architecture. How-
ever, incorporating new information into a trained model presents a challenge.
Traditionally, one might fine-tune pre-trained models with their own data for
specific tasks, but this approach requires substantial relevant data and can be
resource-intensive. An alternative approach involves integrating new data as con-
text information into a user prompt, but this is constrained by the limited input
token lengths of current models.

To address this challenge, LM4HPC leverages the LangChain framework [20]
to easily integrate new data. LangChain aggregates a wide variety of components
to build applications using LLMs. Particularly, it provides APIs allowing LLM
applications to store large amounts of text in semantic databases called vector
stores. The way to integrate new data can be done in two steps. First, text data
is chunked and embedded with an LLM before being saved into a vector store.
Later, user prompts are matched with relevant chunks in the vector store using
similarity analysis. The top-matched chunks are then injected into the original
prompts to form a new prompt with relevant context information. By employing
this new prompt, language models can generate answers that incorporate new
and relevant user data while still staying within the token length limits.

3.5 Evaluation

An easily accessible harness for evaluating different language models on HPC
tasks is crucial. Standard and reproducible results from such evaluations can
provide researchers and developers with insightful starting points, helping them
select suitable models for their specific needs and identify research opportunities.

In response to this need, we developed an evaluator API in LM4HPC. One
challenge we encountered is the lack of standardized metrics for code evalu-
ation. Unlike natural language tasks, where metrics such as BLEU, ROUGE,
and METEOR are commonly used, the domain of code lacks such universally
accepted measures of quality. We are adding various LLM metrics such as Code-
BLEU [21] for code output. Another challenge is that language models may
generate different answers for the same input in different inference runs. Eval-
uation should consider consistent sampling settings (such as temperatures) and
control over random seeds to improve reproducibility.

Ultimately, many users are interested in seeing leaderboards that showcase
mainstream models competing on common HPC tasks. To satisfy this interest,
we create and release a set of test harnesses scripts to enable standard and
reproducible evaluation for supported HPC tasks.

4 Preliminary Results

In this section, we evaluate the current prototype implementation of LM4HPC
through experiments designed to generate leaderboards for three representative

26 L. Chen et al.

tasks: Code Similarity Analysis, Parallelism Detection, and OpenMP Question
Answering. LM4HPC utilizes LangChain v0.0.174, Hugging Face’s transformers
v4.29.0 and datasets v2.12.0 as our runtime libraries. Details of the models and
datasets will be discussed in subsequent subsections.

Our experiments were conducted on two machines: 1) a Google Colab VM
with a 6-core Xeon processor operating at 2.20GHz, 83.5 GB main memory,
166GB HDD drive, and an NVIDIA A100 GPU with 40 GB memory. 2) a Dell
workstation equipped with a dual Intel Xeon 6238 CPU operating at 2.10GHz,
128 GB main memory, 1TB SSD drive, and an NVIDIA Quadro RTX 6000 GPU
with 24GB memory. The majority of our experiments were run on the Google
Colab machine to leverage its superior GPU memory. However, we encountered
difficulties running Cerebras-GPT on the Colab machine and were compelled to
use the Dell workstation with larger CPU memory instead.

4.1 Code Similarity Analysis

The code similarity task is designed to measure the syntactic and/or semantic
similarity between two code snippets. Such analysis information can be beneficial
in various scenarios such as plagiarism detection, code reuse and refactoring, bug
detection and repair, licensing compliance, malware detection, and so on.

Preparing Datasets and Ground Truth. Two datasets introduced in
Sect. 3.3, POJ-104 and DRB-ML, are loaded through LM4HPC’s datasets API
for this experiment. For each pair of code snippets in the POJ-104 dataset, we
assign a binary similarity label based on their functional labels. A similarity
label of 1 signifies that the snippet pair shares the same functional label and
we assign a similarity score of 1. Otherwise, the label is 0. We have processed
the DRB-ML dataset using a similar methodology to generate code pairs and
labels. The main difference is that the similarity ground truth for DRB-ML is
derived from its own similarity score table [22], providing a precise and reliable
similarity measurement between code snippets in the dataset.

Inference Experiments and Evaluation. We employ LM4HPC’s code sim-
ilarity pipeline to test various models. The default model for this pipeline is
CodeBERT. We additionally select four models from Table for evaluation:
GraphCodeBERT, gpt-3.5-turbo, Dolly 2.0 (12B), and Cerebras-GPT (13B).
We set the maximum token length for the model output to 256. This limits
the verbosity of the model and keeps its responses concise. Additionally, we set
the temperature parameter to 0 when applicable. For models like Dolly 2.0 that
require positive temperature, we set the temperature to be 1×10−6. This setting
ensures that the model’s responses are consistent and deterministic, minimizing
variability and uncertainty in its output.

Within LM4HPC, the approach of processing input code pairs depends on
the type of the model employed. Models like CodeBert and GraphCodeBert
are specifically devised and trained on a variety of programming languages. We

LM4HPC: Towards Effective LM Application in HPC 27

directly feed a pair of code snippets to generate a similarity prediction. On the
other hand, large language models like gpt-3.5-turbo, Dolly 2.0, and Cerebras-
GPT are evaluated using the following prompt template: “Code 1: {...} Code 2:
{...} Determine whether the two code snippets are similar. If the code snippets
are similar, output 1; otherwise, output 0.”.

Results. The Code Similarity Analysis leaderboards generated using the two
datasets are shown in Table 5. Notably, gpt-3.5-turbo demonstrates superior
performance. Two other models, StarChat-Alpha and Dolly 2.0, also exhibit
commendable performance. Most large language models outperform traditional
models (GraphCodeBERT and CodeBERT) that were specifically trained for
code analysis. However, Cerebras-GPT struggled to comprehend the code and
mostly returned arbitrary word tokens, indicating a lack of effective code under-
standing since it is mostly designed for natural language processing.

Table 5. Code Similarity Analysis Leaderboard: POJ-104 (left) and DRB-ML (right)

Model Precision Recall F1 Model Precision Recall F1

gpt-3.5-turbo 78.4 74.2 76.2 gpt-3.5-turbo 82.4 81.3 81.8

Dolly 2.0 12B 61.9 61.3 61.6 StarChat-Alpha 79.6 77.4 78.5

StarChat-Alpha 59.4 56.2 57.8 Dolly 2.0 12B 74.3 73.2 73.7

GraphCodeBERT 52.7 60.3 56.3 GraphCodeBERT 79.4 77.9 78.6

CodeBERT 51.5 59.4 55.2 CodeBERT 76.9 74.5 75.7

Cerebras-GPT 13B 0 0 0 Cerebras-GPT 13B 0 0 0

4.2 Parallelism Detection

The parallelism detection task aims to identify parallelism opportunities within
a given code snippet. We utilized two datasets, OMP4Par and DRB-ML intro-
duced in Sect. 3.3, for the experiment.

Preparing Datasets and Ground Truth. The OMP4Par dataset is specifi-
cally designed for parallelism detection. Its existing labeling scheme allows us to
prepare the data for binary classification models. Similarly, we prepared DRB-
ML dataset with a label indicating whether each code snippet is parallelizable
using OpenMP or not.

It is worth noting that both datasets have undergone source code pre-
processing steps, including comment removal and code snippet extraction. These
steps are common practice [14] to ensure that code snippets are small enough to
be fed into language models with limited input token sequence sizes. However,
the resulting code snippets may lose their context information, such as variable
declarations. This is a serious limitation of language models with limited input
sizes when applied to process large source files.

28 L. Chen et al.

Inference Experiments and Results. We selected six models to generate
parallelism detection leaderboards. Four of them are introduced in Sect. . They
take the code snippets in a prompt template: “As an OpenMP expert, you will
analyze the given code snippet to determine if it can be parallelized. Code: {...}.
Answer yes or no first:”. The other two are augAST [14] and DeepSCC-based [23],
which are pre-trained models using OMP4Par’s training dataset. We fed code
snippets to these two models to directly obtain predicted labels.

Table 6 presents the resulting leaderboards. The highest F1 score reaches
93.9, indicating that LMs can be very effective for detecting parallelism. How-
ever, the datasets contain small-scale code snippets that are significantly sim-
pler than real HPC codes. Again, gpt-3.5-turbo outperforms all other models
overall, including specially trained models like augAST and DeepSCC. AugAST
performs better than gpt-3.5-turbo in terms of precision, suggesting it’s more
effective in predicting a positive class, which, in this case, is parallelizable code.
Finally, Cerebras-GPT did not perform well in this code analysis task.

Table 6. Parallelism Detection Leaderboards: OMP4Par (left) and DRB-ML(right)

Model Precision Recall F1 Model Precision Recall F1

gpt-3.5-turbo 90.6 89.3 89.9 gpt-3.5-turbo 90.0 98.9 94.2

augAST 92.1 82.4 87.0 augAST 91.4 72.3 80.7

DeepSCC 82.7 81.4 82.0 DeepSCC 80.4 79.5 79.9

StarChat-Alpha 85.7 68.2 75.9 StarChat-Alpha 81.9 20.3 32.5

Dolly 2.0 12B 64.2 63.7 63.9 Dolly 2.0 12B 40.0 11.2 2.17

Cerebras-GPT 13B 0 0 0 Cerebras-GPT 13B 0 0 0

4.3 OpenMP Q and A

In this experiment, we utilized LM4HPC to evaluate the capabilities of several
language models in answering questions related to OpenMP. This evaluation was
conducted using the OMPQA dataset, introduced in Sect. 3.3.

Experiment Settings. Each model receives the question in the following
prompt template: “You are an OpenMP expert. Please answer this question.
Question: {question}”. Two metrics are selected to evaluate the quality of
answers: the Bilingual Evaluation Understudy (BLEU) and ROUGE-L metrics.
BLEU is a precision-oriented metric measuring the overlap of n-grams between
the generated text and a set of reference texts. ROUGE-L (Recall-Oriented
Understudy for Gisting Evaluation - Longest Common Subsequence) calculates
the longest common subsequence (LCS) that appears in a left-to-right sequence
in both the system-generated and reference summaries, thus providing a measure
of the coherence and fluidity of the generated text.

LM4HPC: Towards Effective LM Application in HPC 29

Results. Table 7 displays the Q&A leaderboard of several selected models. We
additionally include the memory and execution time information. The exper-
iments using gpt-3.5-turbo do not consume any local GPU memory since the
model is invoked remotely through OpenAI’s API.

Again, gpt-3.5-turbo unsurprisingly outperforms other LLMs. However, the
highest average ROUGE-L F1 score of 0.259 indicates that all models have room
for improvement in answering OpenMP questions. One reason is that many
questions in OMPQA are open-ended and do not necessarily have a single correct
answer. Also, the two metrics used do not sufficiently consider semantics.

Table 7. Q&A Leaderboard using the OMPQA dataset. The arrow indicates the per-
formance changes when augmenting external knowledge base by LangChain.

Model CPU

Mem. (GB)

GPU

Mem. (GB)

Time(s) BLEU ROUGE-L (AVG)

Recall Prescision F1

gpt-3.5-turbo+ LangChain 4.1 0 21.452 0.147↑ 0.347↓ 0.262↑ 0.259↑
gpt-3.5-turbo 4.2 0 12.749 0.139 0.446 0.231 0.257

StarChat-Alpha 6.8 18.9 29.732 0.082 0.322 0.149 0.172

Dolly 2.0 12B + LangChain 27.4 39.8 7.217 0.084↑ 0.228↑ 0.232↓ 0.182↑
Dolly 2.0 12B 27.1 39.2 8.147 0.06 0.208 0.312 0.148

Cerebras-GPT 13B 52.6 11.7 590.763 0.071 0.319 0.089 0.112

To enhance the capacity of large language models (LLMs) in accurately
responding to OpenMP queries, we integrate the official OpenMP documenta-
tion into our process. We employ LangChain, a mechanism designed to efficiently
store and retrieve language model embeddings, enabling us to accommodate large
volumes of new data. To assess the efficacy of using LangChain to incorporate
additional user data, we leverage its API to create a vector store. This vector
store holds embeddings of text chunks derived from the OpenMP API Specifi-
cation v5.2 (669 pages) and the OpenMP Application Programming Interface
Examples v5.2.1 (575 pages). We then select two LangChain-supported models,
GPT-3.5 and Dolly 2.0, to utilize the vector store as an additional resource for
answering queries, thereby demonstrating the practical utility of our approach.
The results indicate slight improvements in both the BLEU and ROUGE-L F1
scores, increasing from 0.139 to 0.147 and from 0.257 to 0.259, respectively. How-
ever, there are mixed results for recall and precision metrics. gpt-3.5-turbo has
a better recall, 0.446, compared to 0.347 of the Langchain approach.

Further, we examine the effectiveness of the LangChain approach across dif-
ferent question categories. When addressing ‘Basic’ questions, the BLEU scores
rise by 20.7% and 9.8% for gpt-3.5-turbo and Dolly 2.0, respectively. Addition-
ally, we assess the LangChain performance using the CodeBLEU metric [21]
for the ‘Examples’ category, observing a score increase of 6.1% and 12.2% for
gpt-3.5-turbo and Dolly 2.0, respectively. These observations indicate that aug-
menting LLMs with documentation via LangChain improves performance for

30 L. Chen et al.

‘Basic’ and ‘Examples’ categories. However, for ‘Compilers’ and ‘Benchmarks’
categories, the performance of gpt-3.5-turbo and Dolly 2.0 diminishes when uti-
lizing LangChain, recording an average BLEU score drop of 8.0% and 7.9%,
respectively. This drop is likely because our documentation does not include
information relevant to compiler and benchmark topics.

We also manually investigated the answers generated by the models. Overall,
StarChat-Alpha delivers competitive results compared to GPT-3.5. It seems to
be a good choice for people who want to use open-source language models based
on our experiments. Research has indicated that GPT-4 surpasses GPT-3.5 in
a variety of domains. However, as of now, API accessibility for GPT-4 has not
been made publicly available. We plan to assess GPT-4’s performance as soon
as it becomes accessible and incorporate it into our framework if it benefits HPC
tasks.

5 Related Work

PyTorch and TensorFlow are the most popular frameworks, backed by Meta AI
and Google, respectively. Both frameworks are similar in many respects, includ-
ing 1) providing low-level APIs for development, 2) supporting a rich collection
of libraries, and 3) maintaining dedicated hubs - PyTorch Hub and TensorFlow
Hub - for providing pre-trained ML models. Hugging Face is a large open-source
community that builds tools to enable users to build, train, and deploy machine
learning models based on open-source code and technologies. Hugging Face is
best known for its Transformers library, which exposes a collection of Python
APIs to leverage state-of-the-art deep learning architectures for NLP tasks. With
the goal to simplify end-to-end NLP tasks, Hugging Face Transformers offers a
pipeline that performs all pre- and post-processing steps on the given input text
data. The overall process of the model inference is encapsulated within these
pipelines. With the pipeline, users only need to provide the input texts and the
model for the task. The remaining connections among a model and required pre-
and post-processing steps are hidden within the pipeline implementation.

There were various research works and developments to improve the ML
ecosystem to be Findable, Accessible, Interoperable, and Reproducible (FAIR).
These existing frameworks aim to make the models, datasets, or both FAIR.
Among these frameworks, HPCFAIR [24] focuses on supporting model interop-
erability, search capabilities for datasets and models, and seamless integration
into HPC workflows. The work in [25] extended this work to include support for
interoperability across different framework implementations using ONNX and
provision to retrain a model with transfer learning. However, HPCFAIR frame-
work relies on users to handle data pre- and post-processing. In comparison,
LM4HPC is equipped to manage data processing within the pipeline design and
generate leaderboards for supported HPC tasks.

General LLMs are trained with data covering general knowledge and informa-
tion that is usually collected from public domains. Domain-specific datasets can

LM4HPC: Towards Effective LM Application in HPC 31

be collected for the training of a specialized model or the fine-tuning of a general-
purpose model. MedQA [26] is an example of domain-specific datasets collect-
ing question-answer pairs and textbooks from professional medical board exams.
ExeBench [27], another domain-specific dataset for tasks in compilation and soft-
ware engineering, contains millions of runnable and representative C functions
collected from GitHub. In addition to collecting existing data, ML research has
started automating dataset creation with LLMs’ assistance. The developers of
LaMini-LM [28] develop a large set of 2.58M instruction and response pairs based
on both existing and newly-generated instructions. A handful of seed exam-
ples from the existing LLM prompts and 2.2M categories from Wikipedia from
existing are submitted to the gpt-3.5-turbo to generate relevant instructions.
Similarly, the responses for the generated instructions are also generated by the
gpt-3.5-turbo.

6 Conclusion

In this paper, we presented our efforts to facilitate the application of language
models for tasks specific to High-Performance Computing. We have developed
the LM4HPC framework to encompass and expose relevant machine learning
components via corresponding APIs. Our experimental findings suggest that
GPT-3 performs competitively, despite not being specifically designed for HPC
tasks. However, there is significant room for improvement in answering OpenMP
questions. Furthermore, the input size limitation of language models adds com-
plexity to certain tasks, such as parallelism detection. Finally, an obstacle to
advancing the application of language models for HPC tasks is the absence of
HPC-specific training and evaluation datasets.

Looking ahead, our future work will explore automated approaches to gen-
erating HPC-specific datasets. We intend to enhance LM4HPC’s capabilities to
support the fine-tuning of models for HPC-related tasks, including those related
to the Message Passing Interface (MPI), and to provide performance analysis
and optimization suggestions.

Acknowledgement. Prepared by LLNL under Contract DE-AC52-07NA27344 (LL
NL-CONF-849438) and supported by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research.

References

1. Bubeck, S., et al.: Sparks of artificial general intelligence: early experiments with
GPT-4. arXiv preprint arXiv:2303.12712 (2023)

2. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021)

3. Vaswani, A., et al.: Attention is all you need. Advances in Neural Information
Processing Systems 30 (2017)

4. Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023)

http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2302.13971

32 L. Chen et al.

5. Chen, L., Mahmud, Q.I., Jannesari, A.: Multi-view learning for parallelism discov-
ery of sequential programs. In: 2022 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 295–303. IEEE (2022)

6. Flynn, P., Vanderbruggen, T., Liao, C., Lin, P.H., Emani, M., Shen, X.: Finding
Reusable Machine Learning Components to Build Programming Language Pro-
cessing Pipelines. arXiv preprint arXiv:2208.05596 (2022)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

8. Feng, Z., et al.: CodeBERT: a pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155 (2020)

9. Wang, Y., Wang, W., Joty, S., Hoi, S.C.: CodeT5: identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. arXiv
preprint arXiv:2109.00859 (2021)

10. Li, R., et al.: StarCoder: may the source be with you! arXiv preprint
arXiv:2305.06161 (2023)

11. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process.
Syst. 33, 1877–1901 (2020)

12. The PY-tree-sitter project (2023). https://pypi.org/project/tree-sitter-builds/.
Accessed 15 May 2023

13. ProGraML: program Graphs for Machine Learning (2022). https://pypi.org/
project/programl/. Accessed 15 May 2023

14. Chen, L., Mahmud, Q.I., Phan, H., Ahmed, N.K., Jannesari, A.: Learning to
parallelize with openMP by augmented heterogeneous AST representation. arXiv
preprint arXiv:2305.05779 (2023)

15. Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z.: Convolutional neural networks over
tree structures for programming language processing. In: Proceedings of the AAAI
Conference On Artificial Intelligence, vol. 30 (2016)

16. Lin, P.H., Liao, C.: DRB-ML-dataset (2022). https://doi.org/10.11579/1958879
17. Liao, C., Lin, P.H., Asplund, J., Schordan, M., Karlin, I.: DataRaceBench: a bench-

mark suite for systematic evaluation of data race detection tools. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–14 (2017)

18. Jin, H.Q., Frumkin, M., Yan, J.: The OpenMP implementation of NAS parallel
benchmarks and its performance (1999)

19. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: 2009
IEEE international symposium on workload characterization (IISWC), pp. 44–54.
IEEE (2009)

20. Chase, H.: LangChain: next Generation Language Processing (2023). https://
langchain.com/. Accessed 15 May 2023

21. Ren, S., et al.: CodeBLEU: a method for automatic evaluation of code synthesis.
arXiv preprint arXiv:2009.10297 (2020)

22. Chen, W., Vanderbruggen, T., Lin, P.H., Liao, C., Emani, M.: Early experi-
ence with transformer-based similarity analysis for DataRaceBench. In: 2022
IEEE/ACM Sixth International Workshop on Software Correctness for HPC Appli-
cations (Correctness), pp. 45–53. IEEE (2022)

23. Harel, R., Pinter, Y., Oren, G.: Learning to parallelize in a shared-memory environ-
ment with transformers. In: Proceedings of the 28th ACM SIGPLAN Annual Sym-
posium on Principles and Practice of Parallel Programming, pp. 450–452 (2023)

http://arxiv.org/abs/2208.05596
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2305.06161
https://pypi.org/project/tree-sitter-builds/
https://pypi.org/project/programl/
https://pypi.org/project/programl/
http://arxiv.org/abs/2305.05779
https://doi.org/10.11579/1958879
https://langchain.com/
https://langchain.com/
http://arxiv.org/abs/2009.10297

LM4HPC: Towards Effective LM Application in HPC 33

24. Verma, G., et al.: HPCFAIR: Enabling FAIR AI for HPC Applications. In: 2021
IEEE/ACM Workshop on Machine Learning in High Performance Computing
Environments (MLHPC), pp. 58–68. IEEE (2021)

25. Yu, S., et al.: Towards seamless management of AI models in high-performance
computing (2022)

26. Jin, D., Pan, E., Oufattole, N., Weng, W.H., Fang, H., Szolovits, P.: What disease
does this patient have? A large-scale open domain question answering dataset from
medical exams. arXiv preprint arXiv:2009.13081 (2020)

27. Armengol-Estapé, J., Woodruff, J., Brauckmann, A., Magalhães, J.W.d.S.,
O’Boyle, M.F.: ExeBench: an ML-scale dataset of executable C functions. In: Pro-
ceedings of the 6th ACM SIGPLAN International Symposium on Machine Pro-
gramming, pp. 50–59 (2022)

28. Wu, M., Waheed, A., Zhang, C., Abdul-Mageed, M., Aji, A.F.: LaMini-LM:
a diverse herd of distilled models from large-scale instructions. arXiv preprint
arXiv:2304.14402 (2023)

http://arxiv.org/abs/2009.13081
http://arxiv.org/abs/2304.14402

OpenMP Advisor: A Compiler Tool
for Heterogeneous Architectures

Alok Mishra1,3(B), Abid M. Malik2, Meifeng Lin2, and Barbara Chapman1,3

1 Stony Brook University, Stony Brook, NY 11794, USA
almishra@cs.stonybrook.edu, barbara.chapman@stonybrook.edu

2 Brookhaven National Laboratory, Upton, NY 11973, USA
{amalik,mlin}@bnl.gov

3 Hewlett Packard Enterprise, Spring, TX 77389, USA
{alok.mishra,barbara.chapman}@hpe.com

Abstract. With the increasing diversity of heterogeneous architecture
in the HPC industry, porting a legacy application to run on different
architectures is a tough challenge. In this paper, we present OpenMP
Advisor, a novel compiler tool that enables code offloading to a GPU
with OpenMP using Machine Learning. Although the tool is currently
limited to GPUs, it can be extended to support other OpenMP-capable
devices. The tool has two modes: Training and Prediction. It analyzes
benchmark codes, generates every possible code variant on the target
device, runs and gathers data to train an ML-based cost model in the
training mode, which predicts the runtime of every code variant in the
prediction mode. The main objective behind this tool is to maintain the
portability aspect of OpenMP. Our Advisor produced code for several
applications on seven architectures with four compilers, and accurately
anticipated the top ten options for each application on every architecture.
Initial results suggest that this tool can help compiler developers and
HPC researchers migrate their legacy codes to the new heterogeneous
computing environment.

Keywords: openmp · gpu · machine learning · cost model · compiler

1 Introduction

General Purpose Graphics Processing Units (GPGPUs), initially designed for
graphics tasks, have become integral to HPC platforms and general-purpose
computing over the last decade, combining their capacity for efficient data par-
allelism with low power consumption. The vast majority of HPC systems in use
today are heterogeneous, with AMD or NVIDIA GPUs delivering high perfor-
mance per unit of energy consumed. Programming updates are needed to enable
efficient utilization of diverse hardware resources, such as GPUs and specialized
processors, in order to cater to the rapid change in heterogeneous architecture
in the HPC industry.

Many programmers are adapting their code to take advantage of GPUs.
Unfortunately, it can be time-consuming and require extensive re-engineering
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 34–48, 2023.
https://doi.org/10.1007/978-3-031-40744-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_3&domain=pdf
https://doi.org/10.1007/978-3-031-40744-4_3

OpenMP Advisor 35

to maximize a GPU’s computational power while minimizing overheads. It will
be much harder to develop code for systems with extreme heterogeneity and a
large number of devices. Therefore, it is essential to create tools that will relieve
the application scientists of the burden of such development. Despite the variety
of programming models available, it is still quite challenging to optimize large
scale applications consisting of tens-to-hundreds of thousands lines of code. Even
when using a directive based programming model such as OpenMP [6], pragma-
tizing each kernel is a repetitive and complex task. OpenMP offers a variety
of options for offloading a kernel to GPUs. However, the application scientist
must still figure out all the intricate GPU configurations. To demonstrate the
complexity of porting a kernel to emerging exascale hardwares, we use a kernel
from the Lattice Quantum Chromodynamics (LQCD) [2] application, which is
a computer-friendly numerical framework for QCD. One of LQCD’s key compu-
tational kernels is the Wilson Dslash operator [15], which is essentially a finite
difference operator, to describe the interaction of quarks with gluons. The Wilson
Dslash operator, D, in four space-time dimensions is defined by Eq. 1.

Dij
αβ(x, y) =

4∑

μ=1

[((1 − γμ))αβU ij
μ (x)δx+μ̂,y + (1 + γμ)αβU†ij

μ (x + μ̂)δx−μ̂,y)]

(1)
Here x and y are the coordinates of the lattice sites, α, β are spin indices, and

i, j are color indices. Uμ(x) is the gluon field variable and is an SU(3) matrix. γμ’s
are 4×4 Dirac matrices that are fixed. The complex fermion fields are represented
as one-dimensional arrays of size LX ×LY ×LZ ×LT ×SPINS ×COLORS ×2
for the unpreconditioned Dirac operator, where LX , LY , LZ and LT are the
numbers of lattice sites in the x, y, z and t directions, respectively. The spin
and color degrees of freedom, which are commonly 4 and 3, are denoted by the
variables SPINS and COLORS.

When we express Eq. 1 in C++, it has four nested for loops iterating over
LT , LZ , LY , and LX (as shown in Code 1.1). When we keep the values of
LT , LZ , LY , and LX at 16 each, the COMPUTE section of the code has over
5 million variable definitions, 1.2 billion variable references, over 150 million
addition/subtraction, 163 million multiplication, and so on. Additionally, this
function is called several times throughout the LQCD application. It is a her-
culean task for an application scientist to understand the physics, transform it

#pragma omp target

for(int i=0; i<N_i; i++) {

for(int j=0; j<N_j; j++) {

for(int k=0; k<N_k; k++) {

for(int l=0; l<N_l; l++) {

/* ... COMPUTE ... */

}}}}

Code 1.1. Loops of Wilson Dslash Operator

36 A. Mishra et al.

into computer program, analyze the offloadable kernel, and then consider how
to parallelize it to execute efficiently on an HPC cluster. To get the best perfor-
mance out of a GPU, an application scientist needs a thorough understanding
of the underlying architecture, algorithm, and interface programming model.
Alternately, they could test out various GPU transformations until they find the
most effective one. However, none of these strategies is very efficient.

1.1 Our Contribution

This paper presents OpenMP Advisor, a first-of-its-kind compiler tool that
advises application scientists on various OpenMP code offloading strategies. This
tool performs the following tasks to successfully address the challenges of effec-
tively transforming an OpenMP code:

1. detect potentially offloadable kernel;
2. identify data access and modification in kernel;
3. recommend potential OpenMP variants for offloading that kernel to the GPU;
4. evaluate the profitability of each kernel variant via an adaptive cost model;
5. insert pertinent OpenMP directives to perform offloading.

Although the tool is currently limited to GPUs, it is extensible to other
OpenMP-capable devices. In the rest of the paper, we first discuss state of the
art work that is related to and precedes our work in Sect. 2. Then we define
our OpenMP Advisor in Sect. 3. The experiments conducted for this paper are
covered in Sect. 4 along with their analysis, and Sect. 5 concludes our work with
discussions of our future goals.

2 Related Work

Many studies have looked into how to best manage GPU memory when data
movement must be explicitly managed. For instance, Jablin et al. [10] provide a
fully automatic system for managing and optimizing CPU-GPU communication
for CUDA programs. Also OMPSan [1] performs static analysis on explicit data
transfers are already inserted in OpenMP code. However, these studies do not
address the issue of data transfer and the use of data reuse on GPU for implicitly
managed data between different kernels. In one of our previous work [18] we
proposed a technique for statically identifying data used by each kernel and
automatically recognizing data reuse opportunities across kernels. In this tool,
we make use of this method for data identification and management between the
CPU and the GPU.

HPC applications are getting extremely heterogeneous, complicated, and
increasingly expensive to analyze. Because of heterogeneity, a tool like OpenMP
Advisor is required to help application scientists offload their code to GPUs.
Other related research on automatic GPU offloading by Mendonça et.al. [16]
and Poesia et.al. [22] can benefit from our tool by including our technique of
data optimization and cost model in their framework, further reducing the chal-
lenges of using GPUs for scientific computing. However, developing a cost model

OpenMP Advisor 37

is time-consuming, and almost all modern compilers adopt a simple “one-size-
fits-all” cost function that does not perform optimally in the situation of extreme
heterogeneous architecture. In order to create a portable static cost model for
our OpenMP Advisor tool, we utilize our ML based cost model, COMPOFF [17]
which offers a new portable cost model that statically estimates the cost of
OpenMP offloading on various architectures.

3 OpenMP Advisor

We design and develop the OpenMP Advisor, a compiler tool which transforms
an OpenMP code to effectively offload to a GPU. This tool detects OpenMP
kernels, proposes several GPU offloading OpenMP variants, and predicts the
runtime of each kernel using a machine learning based cost model. Although
the Advisor’s initial implementation, as described in this paper, assists applica-
tion scientists in programming for accelerators like GPUs, it can be expanded
to support all OpenMP-capable devices. The tool has two modes: Training and
Prediction mode. In the training mode, the Advisor makes use of data collected
from multiple devices and compilers. It takes all benchmark codes as input and
generates all possible code variants to run on the target device. Then it collects
data from all generated codes to train an ML-based cost model for use in pre-
diction mode. In prediction mode the tool does not need any interaction with
the target device. It accepts C/C++ code as input and returns the best code
variant that can be used to offload the code to the specified device. The tool
can determine the kernels that are best suited for offloading by predicting their
runtime using a machine learning-based cost model as defined in Sect. 3.2. The
following are the key attributes of the OpenMP Advisor.

1. Portable – The Advisor’s key feature is its portability across compilers and
HPC clusters, as demonstrated in Sect. 4, which included four different com-
pilers and seven HPC clusters with different GPUs.

2. Static – Since HPC GPUs are not always available during development, the
Advisor performs all of its analysis at compile time and does not require
runtime profiling in the prediction mode.

3. Minimalistic – The Advisor generates different kernel variants by adding
OpenMP directives and clauses to the application’s “omp target” regions
without changing the kernel’s body.

4. Correctness – The Advisor ensures that the generated code adheres to the
OpenMP programming model, but it does not alter the kernel body or guar-
antee its correctness. Consequently, despite its ability to predict the optimal
scenario for GPU offloading, it generates the top 10 code variants and lets
the application scientist select which code to utilize.

5. Adaptable – The Advisor is adaptable enough to accept new applications
by training the model on a proxy application if collecting real-time data is
challenging or impractical for the real world application.

We used the LLVM compiler project [14] to develop the OpenMP Advisor.
Despite the fact that LLVM’s strength lies in the LLVM-IRs, our requirement is

38 A. Mishra et al.

to generate and return C/C++ code to the scientist. To do so, we need to be able
to accurately insert OpenMP directives into a C/C++ file, which the LLVM-IR
cannot guarantee. On the other hand Clang’s AST closely resembles both the
written C++ code and the C++ standard. Clang has a one-to-one mapping of
each token to the AST node and an excellent source location retention for all
AST nodes. Clang’s AST is the best option for accurate source code information
and inserting OpenMP directives into C/C++ files. Hence, we implemented the
Advisor in Clang compiler (ver 14.0.0). Both the Training and Prediction modes
have three major modules, which are explained in the following subsections -
Kernel Analysis, Cost Model and Code Transformation.

3.1 Kernel Analysis

This is the first module which the Advisor calls in both the Prediction and
Training mode. As the name implies, this module analyzes an OpenMP kernel.
Overall, this module takes as input a C/C++ source file, analyzes it, and outputs
all possible GPU offloading variants. This module is responsible for three tasks:
Identifying Kernels, Data Analysis and Variant Generation.

Identifying Kernels − As the project’s scope doesn’t include automatically
parallelizing the code, the user’s input serves to identify a target region. An
application scientist only needs to use the “omp target directive” to mark the
region. We parse the clang AST to search for the OMPTargetDirective node,
which is a subclass of the OMPExecutableDirective class and an instance of the
Stmt class. We override the OMPAdvisorVisitor class’s VisitStmt method and
check each visited Stmt to see if they are the OMPTargetDirective node. Once
a kernel is identified, we assign it a unique id and create an instance of the class
“KernelInformation”, in which we store information like, unique id, start and
end locations of the kernel, function from which the kernel is called, whether the
kernel is called from within a loop and the number of nested for loops.

Data Analysis − The next step is to determine what data the kernel uses.
We need to carefully manage data transfer between the CPU and GPU due to
the high cost of transfers. We reuse our work on Data Reuse Analysis [18] to
identify and utilize GPU data and improve overall execution time, since OpenMP
doesn’t specify how data should be handled in implicit data transfer. We use the
Clang AST to implement “live variable analysis” for each kernel, concentrating
only on variables used within a kernel. Our current approach only maps data
between the CPU and GPU before and after the kernel. Managing data transfer
during kernel execution is a future task. Before the variables are stored in the
KernelInformation object, we classify them into five groups, based on how they
are accessed before, during, or after the kernel:

– alloc: Variables assigned within the kernel for the first time. Data need to be
mapped, but no data transfer is required.

– to: Variables assigned before but were only accessed within the kernel, not
modified. Only host to device transfer of data is required.

OpenMP Advisor 39

– from : Variables assigned within and accessed after the kernel definition. Only
device to host transfer of data is required.

– tofrom : Variables assigned before, updated within and accessed after the ker-
nel definition. Data must be transferred both to and from the host and device.

– private : Variables that are defined and used only within the kernel. No data
transfer is required.

Data labeled alloc, to, and tofrom are mapped in “omp target enter data”
directives before the kernel, while data labeled from and tofrom are mapped in
“omp target exit data” directives after the kernel.

Variant Generation − Finally, we generate a number of different kernel vari-
ants that can be used to offload the kernel to the GPU. We’ll start by counting
how many nested collapsible for loops are there. In the current implementation,
we can check up to four levels of collapsing the for loops. We chose four nested
loops (similar to Code 1.2) because the Wilson Dslash kernel has four for loops.
Each of these for loops is given a unique Loop number ranging from 0− 3. Loop
0 is always expected to be distributed across all teams on the GPU.

#pragma omp target teams distribute collapse(1)
for (int i = 0; i < N i; i++) { ¡= Loop 0

#pragma omp parallel for collapse(3) schedule(static)
for (int j = 0; j < N j; j++) { ¡= Loop 1

for (int k = 0; k < N k; k++) { ¡= Loop 2
for (int l = 0; l < N l; l++) { ¡= Loop 3
/∗ ... COMPUTE ... ∗/

}}}}

Code 1.2. A variant of four nested “for” loops for GPU offloading

The variants are generated based on the collapse values used in distribute
and parallel for directive, position of the parallel for directive, loop iter-
ation’s scheduling type and host-device data transfer. The total number of for
loops and the position of the parallel for directive determine the maximum
value of collapse that can be used in the teams distribute and parallel for
directives. Suppose there are four for loops, as in Code 1.2. If the parallel for
directive is at Loop 0, the “teams distribute parallel for” directive will be
combined and thus the collapse clause for distribute directive doesn’t exist.
If the parallel for directive is located on Loop x (where 1 ≤ x ≤ 3), then the
maximum possible value of collapse for the teams distribute directive is x.
While the maximum possible value of collapse for the parallel for directive
is (NUM − x), where NUM is the total number of for loops. The scheduling
type of the loop iteration could be one of static, dynamic or guided. Using
different permutations of these parameters, we could generate a variety of GPU
offloading code variants. Once all of the variants have been generated, we use
our static cost model to predict the runtime of each of these generated kernels.

40 A. Mishra et al.

3.2 Cost Model

A compile-time cost model is required to select the best option from all the vari-
ants generated by the Kernel Analysis module. Most modern compilers employ
analytical models to calculate the cost of executing the original code as well as
the various offloading code variants. Building such an analytical model for com-
pilers is a difficult task that necessitates a lot of effort on the part of a compiler
engineer. Recently, machine learning techniques have been successfully applied
to build cost models for a variety of compiler optimization problems. For our
tool we extended our previous work on COMPOFF [17] to be used as our cost
model. COMPOFF is a machine learning based compiler cost model that stati-
cally estimates the cost of OpenMP offloading using an artificial neural network
model. Their results show that this model can predict offloading costs with an
average accuracy greater than 95%. The major limitation of COMPOFF was
that they had to train a separate model for each variant. In our work, we add
more training data and extend it to train a single cost model for all variants.

As soon as we know the prediction for the generated variant, we store it
in the instance of the KernelInformation class so that the Kernel Transfor-
mation module can use it. But the biggest challenge in implementing an ML
based cost model is the lack of available training data. To overcome this prob-
lem, we wrote additional benchmark applications (like the Pearson’s Correlation
Coefficient (correlation), Covariance (covariance), Laplace’s Equation (laplace),
Matrix-Matrix Multiplication (mm), Matrix-Vector Multiplication (mv), Matrix
Transpose (mt)) and adopted some benchmarks from the Rodinia benchmark
suite [4] (like the Breadth First Search (bfs), Gaussian Elimination (gauss), K-
Nearest Neighbor (knn) and Particle Filter (particle)). The goal is to include a
broader class of benchmarks that would cover the spectrum of statistical simu-
lation, linear algebra, data mining, etc. We also developed a proxy app that has
same number of loops and performs similar computation to our target app, the
Wilson Dslash operator. Whenever it is difficult to collect data on real appli-
cations, proxy apps help us collect more data. More applications from various
other domains will be added to this repository in the future.

3.3 Kernel Transformation

In the Kernel Transformation module we need to actually transform the original
source code based on the analysis and predictions from the previous modules.
For the given kernel, we generate every possible code variation in the Training
mode. However, before we can generate code in Prediction mode, we must first
address another crucial question. Which code should we generate? Should we
only generated code for the fastest kernel? Regrettably, once the directives are
in place, neither the Advisor nor OpenMP validate the kernel’s correctness. This
is in line with the OpenMP philosophy as well. As a result, we can only guarantee
the correctness of the generated OpenMP directive in our framework.

So how can we overcome this problem? We could generate code for every
possible variation, as we do during training, and let the user choose which one

OpenMP Advisor 41

0: // Predicted Runtime: 1.2 s
1: #pragma omp target enter data map(...)
2: #pragma omp target teams distribute collapse(2)

for (int i = 0; i < N i; i++) {
3:

for (int j = 0; j < N j; j++) {
4: #pragma omp parallel for schedule(dynamic)

for (int k = 0; k < N k; k++) {
5:

for (int l = 0; l < N l; l++) {
/∗ ... COMPUTE ... ∗/

}}}}
6: #pragma omp target exit data map(...)

Code 1.3. Location of the seven generated code.

to use. But this means that users will be overwhelmed with information. Alter-
natively, we could ask the user to provide a number for the maximum number
of codes to generate. The predicted runtime can be put as a comment before
the kernel in every piece of code. The application scientist will then have more
power to accept or reject the generated code. We will be able to produce a sin-
gle code and provide it to the user once the issue of validating an OpenMP
code for correctness is resolved. Until then, our Advisor will be able to generate
the top best variants as specified by the application scientist. Regardless, we
need to write a module to modify the existing source code and generate a new
code. Clang provides the Rewriter [5] interface, whose primary function is to
route high-level requests to the involved low-level RewriteBuffers. A Rewriter
assists us in managing the code rewriting task. In the Rewriter interface we
can set the SourceManager object which handles loading and caching of source
files into memory. The SourceManager can be queried to obtain information
about SourceLocation objects, which can then be converted into spelling or
expansion locations. The Rewriter is a critical component of our plugin’s kernel
transformation module. The strategy used here is to meticulously alter the origi-
nal code at crucial locations to carry out the transformation rather than handling
every possible AST node to spit back code from the AST. For this we use the
Rewriter interface, an advanced buffer manager that effectively manipulates the
source using a rope data structure. For each SourceManager, the Rewriter also
stores the low-level RewriteBuffer. Together with Clang’s excellent retention
of source location for all AST nodes, Rewriter makes it possible to remove and
insert code very precisely in the RewriteBuffer. When the update is finished,
we can dump the RewriteBuffer into a file to obtain the updated source code.

Finally, we create a vector of seven strings. The location of these seven strings
are shown in Code 1.3. The first string (at #0) is always the comment that main-
tains the text − “Predicted Runtime: ## s”. As the text suggests ## is the pre-
dicted runtime for this particular kernel variant. This string is always placed before
the kernel’s start location. Then comes the target enter data construct (at #1).
This directive handles what memory on the GPU needs to be created for the ker-
nel and what data needs to be sent to the GPU before execution. This string is
always placed right after the comments string. The next string (at #2) contains
the OpenMP directive which specifies that this is the kernel to offload to the tar-
get. To gain maximum performance out of the GPU, we should always distribute

42 A. Mishra et al.

Table 1. Clusters and Compilers used in experiments

Cluster GPU Compiler Version

Summit [20] NVIDIA Tesla V100 LLVM/clang (nvptx) 13.0.0

GNU/gcc (nvptx-none) 9.1.0

Corona [13] AMD Radeon Instinct MI50 LLVM/clang (rocm-5.3) 15.0.0

Ookami [3] NVIDIA Tesla V100 LLVM/clang (nvptx) 14.0.0

Wombat [21] NVIDIA Tesla A100 LLVM/clang (nvptx) 15.0.0

Seawulf [23] NVIDIA Tesla K80 LLVM/clang (nvptx) 12.0.0

NVIDIA/NVC 21.7

Intel DevCloud [9] Intel Xeon E-2176 P630 Intel/icpx 2021.1.2

Exxact NVIDIA GeForce RTX 2080 LLVM/clang (nvptx) 14.0.0

the kernel across all the teams available in the GPU. Hence this string always con-
tain the directive − “#pragma omp target teams distribute”. The variant deter-
mines whether this directive contains any other clauses such as collapse or map,
and what will be the values of the clause. This string is always placed immedi-
ately before the kernel’s start location, but after the target enter data string.
The remaining strings (#3, #4 and #5 if required by the variant) are placed just
before the start location of their nested for loop. If these strings are not needed
by a variant, they are left empty and no code is inserted in their location. The
last string (at #6) is the target exit data construct, which identifies the data
that must be released from the GPU or returned to the CPU. If not empty, each
of these strings is always terminated by a new line. Once these seven strings are in
their proper location, the code is dumped into a new C++ file and returned to the
application scientists, who can choose to accept or reject the best code based on
the kernel runtime provided in the comment.

4 Experiments and Evaluations

We used several clusters (on each using a single GPU) and compilers, as shown in
Table 1, to perform multiple experiments and evaluate our tool. For the purposes
of this study, we only use one GPU per node on the cluster. The management of
multiple GPUs is left for future research. The three modules explained in Sect. 3
need different experiments.

4.1 Experiment 1 - Data Analysis

First, we test our Advisor against all benchmark applications to determine
whether or not data is correctly identified and generated. In order to conduct
this experiment, we made use of our Advisor to generate code that used the
correct data between the host and the device. Additionally, we manually altered
each benchmark algorithm to map all data to and from the GPU. We executed

OpenMP Advisor 43

0 2 4 6

Data Transfer (GB)

0 2 4 6

bfs
correlation
covariance

gauss
laplace

knn
mm
mv
mt

particle
proxy app

wilson dslash

(a) Total Data transfer for all Benchmarks

Before and After Data Analysis

Su
mmit

Cor
on

a

Ook
am

i

W
om

ba
t

Se
aw

ulfInt
el

Exx
ac

t

D
a
ta

T
r
a
n
s
fe

r
T

im
e

(m
s
)

0

200

400

600

(b) Data Transfer Time (ms) for Wilson Dslash

Operator across different clusters

Before Transform After Transform

Fig. 1. Data transfer Before and After Code Transformation

all the codes on each cluster, from Table 1, and collected data about the volume
and the duration of the data transfer. We found that the Advisor improved the
data management in all cases. Figure 1(a) shows the amount of data transferred
(in GB) between the CPU and the GPU before and after transformation for all
benchmark applications. After applying our transformation, we can clearly see
that the amount of data transfer has indeed been considerably reduced. Reduced
data transfer has an impact on all applications’ data transfer times. Along with
reduced data transfer, the interconnecting bus between CPU and GPU (its ver-
sion and number of lanes), affects the data transfer times of all applications.
On all the available clusters, we ran these applications and collected the data
transfer times. Figure 1(b) shows the data transfer time for the Wilson Dslash
Operator across different clusters.

4.2 Experiment 2 - Code Generation

In the second experiment, we use our Advisor to generate every possible code
combination using each of the Benchmark applications, as discussed in Sect. 3.1.
We used the compilers listed in Table 1 to compile all of these codes for vari-
ous clusters. Some compilers (NVIDIA/nvc on Seawulf and LLVM/Clang 15 on
Wombat) do not support dynamic or guided scheduling on a GPU, resulting in
compilation failure. Apart from that, all of the codes successfully compiled and
ran on their respective clusters. We collected the runtime of each of the kernels
in this experiment, to be used by our cost model. We collected the data for the
Intel architecture a while ago, and we don’t currently have access to the cluster
to conduct new experiments. As a result we had very limited data for Wilson
Dslash Operator and no data for our proxy app on the Intel architecture. We
were unable to gather many data points for the Exxact machine (with NVIDIA
GeForce GPUs) due to the unavailability of compute nodes. Both these clus-
ters has only around 2, 000 data points each. Seawulf has NVIDIA K80 GPUs,
which is the slowest of the GPUs we’re using in our experiment. So each kernel
runs longer on Seawulf than it would on any other cluster. On the other hand,
most variants of kernels failed to compile on Wombat due to their compilers not

44 A. Mishra et al.

supporting dynamic and guided scheduling on GPUs. Due to these reasons, we
could only collect around 3, 000 data points on Seawulf and Wombat. All our
kernels compiled and ran successfully on Summit, Corona and Ookami and we
were able to collect over 10, 000 data points on each of these architectures.

4.3 Experiment 3 - Cost Model

To build our cost model, we extended our COMPOFF cost model from six
variants to all 84 variants. We build our cost model in the testing mode and then
use it to predict the runtime in the prediction mode. Our cost model utilizes
an MLP model with six layers: one input layer, four hidden layers, and one
output layer. We set the number of neurons on multiples of the number of input
features rather than choosing a random number of neurons in each hidden layer
or conducting an exhaustive grid search (number of neurons in the first layer).
As a result, the first, second, third, and fourth hidden layers, with 33 input
features, have 66, 132, 66, and 33 neurons, respectively. The weights of linear
layers are set using the glorot initialization method, which is described in [7].
The bias is set to 0, and the batch size for training data is set to 16 in all runs.

RMSE(ȳ, y) =

√√√√ 1
N

N∑

i=0

(ȳi − yi)2

(2)

NRMSE(ȳ, y) =
RMSE(ȳ, y)
(ymax − ymin)

(3)

As the underlying optimization algorithm, we evaluate SGD (Stochastic Gradi-
ent Descent), Adam [12] and RMSprop [8]. We chose the RMSprop optimization
algorithm as the underlying optimization algorithm, with an initial learning rate
of 0.01 that is stepped down by a factor of 0.1 every 30 epochs and weight decay
of 0.0001 for 150 epochs. We use the Root Mean Square Error (RMSE) loss
function defined in Eq. 2, where ȳi and yi represent the predicted and ground
truth runtimes, respectively.

We split the dataset used by all benchmark applications into two parts: train-
ing (80%) and validation(20%). The validation set do not occur in any learning
for the model. The only augmentation applied to the training and validation
data is Z-score standardization. The model is trained using the training set, and
after that, testing data are given to the model to test its performance. In order
to determine the standard deviation of the prediction errors, we compute the
RMSE. The lower this value, the better our model. However, what constitutes
a good RMSE is determined by the range of data on which we are computing
RMSE. One way to determine whether an RMSE value is “good” is to normal-
ize it using the formula shown in Eq. 3. This yields a value between 0 and 1,
with values closer to 0 indicating better fitting models. Having a model with a
normalized RMSE of less than 0.1 is considered successful in this study.

We observed strong correlation between actual and predicted data in Fig. 2,
indicating that a simple MLP performs admirably in all our applications. It was
anticipated that Intel and Exxact’s model would perform the worst because of
the lack of data. However, the model for Exxact performed better than Intel’s
due to the availability of more data for the proxy app. Both Wombat and Seawulf

OpenMP Advisor 45

0 20 40 60 80 100 120 140 160 180 200 220 240
0

50

100

150

200

250

Actual (sec)

P
re
d
ic
te
d

(s
e
c)

RMSE (sec)
Summit : 0.998

Corona : 0.453

Ookami : 0.588

Wombat : 3.837

Seawulf : 2.753

Intel : 17.699

Exxact : 6.725

Fig. 2. Validation of Cost Model on different clusters

performed moderately well when compared to other models trained on a larger
dataset. It is still an open question that how much data is enough data to train
an ML model. We have observed from Fig. 2, however, that if we have more than
10, 000 data points for our model, we will be able to train a model that is much
more acceptable.

4.4 Experiment 4 - Prediction

Finally, for our final set of experiments we use our Advisor to predict the top
10 best variants for the Wilson Dslash Operator. Once the top 10 variants are
identified we use the Code Transformation module to generate those 10 code
variants and return them back to the user. The Advisor takes as input the base

45

55

Max error for kernels >45s = 3.04s

R
u
n
ti
m

e
(s

e
c
)

”Actual”

”Predicted”

0 20 40 60 80
0
2
4

Variant number

Max error for kernels <2s = 0.76s

Fig. 3. Wilson Dslash operator’s Actual and Predicted Runtimes (in sec) on Summit
for all variants sorted by runtime.

46 A. Mishra et al.

0

0.2

0.4

Normalized
RMSE

Summit
[0 - 49s]

Corona
[0 - 23s]

Ookami
[0 - 53s]

Wombat
[0 - 65s]

Seawulf
[0 - 103s]

Intel Exxact
[0 - 40s]

3

6

9

RMSE(s)

(0.020) (0.008) (0.008) (0.033) (0.066)
(-NA-)

(0.279)

0.998
0.190 0.447

4.273
3.375

-NA-

11.153

Fig. 4. RMSE and Normalized RMSE for runtime prediction of Wilson Dslash operator
on different clusters (runtime range for each cluster is mentioned below their name).

Wilson Dslash kernel, where LX , LY , LZ , LT are set at 32, 32, 32, 16 each, and
generates the top 10 best kernels as predicted by the cost model. As shown
in Fig. 3, we plot the actual and predicted runtimes of all the 84 generated
variants (sorted by actual runtime) of one such kernel when run on the Summit
supercomputer. We can clearly see a strong correlation between the actual and
predicted runtime for all the variants. The same correlation can be found in
almost all kernels across all clusters. In Fig. 4, we display the Wilson Dslash
operator’s RMSE and normalized RMSE for each cluster. The range of runtimes
(in seconds) for each cluster is mentioned below their name in the plot. We
currently do not have access to the Intel cluster to conduct new experiments,
and the Intel dataset contained very few data from the targeted Wilson Dslash
kernel and none from our proxy app. So, even if we make a prediction using
this model, there is no way to validate it. Consequently, we did not conduct this
experiment on the Intel architecture and the result is marked as −NA−. As
expected on Exxact, the target kernel’s RMSE increased significantly (11.153s)
due to less data in its dataset. Even with a normalized RMSE of 0.279, it fell
short of our expectation of 0.1. Nonetheless, this model demonstrated some
correlation between the actual and predicted data. In contrast, Wombat and
Seawulf performed reasonably well and were able to predict the top 10 kernel
variants despite having an RMSE of 4.273s and 3.375s, respectively. However,
with 0.033 and 0.066, respectively, their normalized RMSE was well within our
expectation. As per our observation, their RMSE can also be improved by adding
more data for these clusters. Finally, as shown in Fig. 4, the RMSE rates for
Summit, Corona, and Ookami are less than one second each, and they were able
to accurately predict the top ten kernel variants.

5 Conclusion and Future Work

In this paper, we introduced the OpenMP Advisor, a compiler tool that advises
application scientists on various OpenMP code offloading strategies. Although
the tool is currently restricted to GPUs, it can be extended to support other

OpenMP Advisor 47

OpenMP-capable devices. Using our Advisor, we were able to generate code of
multiple applications for seven different architectures, and correctly predict the
top ten best variants for each application including a real world application (the
Wilson Dslash operator) on every architecture. Preliminary findings indicate that
this tool can assist compiler developers and HPC application scientists in porting
their legacy HPC codes to the upcoming heterogeneous computing environment.
As a next step, we will extend our tool to 1) Data synchronization between host
and device during kernel execution 2) Offload computation to multiple GPUs [11]
via tasks 3) Predict the best variants for a variety of data sizes, and then use
the OpenMP metadirective [19] directive to generate multiple directive variants
for each range and 4) Extend the Advisor to other directive-based models, such
as OpenACC. This tool is a first-of-its-kind attempt to build a framework for
automatic GPU offloading using OpenMP and machine learning; as a result,
there is plenty of room for improvement.

Acknowledgement. This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration. This material is also based upon
work supported by the National Science Foundation under grant no. CCF-2113996.
This research used resources of the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The authors
would like to thank Stony Brook Research Computing and Cyberinfrastructure, and the
Institute for Advanced Computational Science at Stony Brook University for access to
the SeaWulf computing system, which was made possible by a $1.4M National Science
Foundation grant (#1531492).

References

1. Barua, P., Shirako, J., Tsang, W., Paudel, J., Chen, W., Sarkar, V.: OMPSan:
static verification of OpenMP’s data mapping constructs. In: Fan, X., de Supinski,
B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 3–18.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28596-8 1

2. Brower, R., Christ, N., DeTar, C., Edwards, R., Mackenzie, P.: Lattice QCD appli-
cation development within the us doe exascale computing project. EPJ Web Conf.
175, 09010 (2018). https://doi.org/10.1051/epjconf/201817509010

3. Burford, A., et al.: Ookami: deployment and initial experiences. In: Practice and
Experience in Advanced Research Computing, pp. 1–8. ACM, New York (2021)

4. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: 2009
IEEE international symposium on workload characterization (IISWC), pp. 44–54.
IEEE (2009)

5. Clang: Clang Rewriter class reference (2021). https://clang.llvm.org/doxygen/
classclang 1 1Rewriter.html

6. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference
Proceedings (2010)

https://doi.org/10.1007/978-3-030-28596-8_1
https://doi.org/10.1051/epjconf/201817509010
https://clang.llvm.org/doxygen/classclang_1_1Rewriter.html
https://clang.llvm.org/doxygen/classclang_1_1Rewriter.html

48 A. Mishra et al.

8. Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning.
Lecture 6a Overview of Mini-batch Gradient Descent, vol. 14, no. 8, p. 2 (2012)

9. Intel: Intel Developer Cloud (2021). https://www.intel.com/content/www/us/en/
developer/tools/devcloud/overview.html

10. Jablin, T.B., Prabhu, P., Jablin, J.A., Johnson, N.P., Beard, S.R., August, D.I.:
Automatic CPU-GPU communication management and optimization. In: Proceed-
ings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 142–151 (2011)

11. Kale, V., Lu, W., Curtis, A., Malik, A.M., Chapman, B., Hernandez, O.: Toward
supporting multi-GPU targets via taskloop and user-defined schedules. In: Milfeld,
K., de Supinski, B.R., Koesterke, L., Klinkenberg, J. (eds.) IWOMP 2020. LNCS,
vol. 12295, pp. 295–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-58144-2 19

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y.,
LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015).
http://arxiv.org/abs/1412.6980

13. Laboratory, L.L.N.: LLNL - Corona (2019). https://hpc.llnl.gov/hardware/
compute-platforms/corona

14. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: International Symposium on Code Generation and Opti-
mization, 2004. CGO 2004, pp. 75–86. IEEE (2004)

15. Lin, M.: Optimization of the domain wall dslash kernel in columbia physics system,
p. 269 (2016)

16. Mendonça, G., Guimarães, B., Alves, P., Pereira, M., Araújo, G., Pereira, F.M.Q.:
DawnCC: automatic annotation for data parallelism and offloading. ACM Trans.
Archit. Code Optimiz. (TACO) 14(2), 13 (2017)

17. Mishra, A., Chheda, S., Soto, C., Malik, A.M., Lin, M., Chapman, B.: COMPOFF:
a compiler cost model using machine learning to predict the cost of openmp offload-
ing. In: 2022 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 30 May - 3 June 2022. IEEE (2022)

18. Mishra, A., Malik, A.M., Chapman, B.: Data transfer and reuse analysis tool for
GPU-offloading using openMP. In: Milfeld, K., de Supinski, B.R., Koesterke, L.,
Klinkenberg, J. (eds.) IWOMP 2020. LNCS, vol. 12295, pp. 280–294. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58144-2 18

19. Mishra, A., Malik, A.M., Chapman, B.: Extending the LLVM/clang framework for
openMP metadirective support. In: 2020 IEEE/ACM 6th Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarchical Par-
allelism for Exascale Computing (HiPar), pp. 33–44. IEEE (2020)

20. ORNL: Oak Ridge Leadership Computing Facility - Summit supercomputing clus-
ter (2017). https://www.olcf.ornl.gov/summit/

21. ORNL: Oak Ridge Leadership Computing Facility - Wombat cluster (2020).
https://www.olcf.ornl.gov/olcf-resources/compute-systems/wombat/

22. Poesia, G., Guimarães, B., Ferracioli, F., Pereira, F.M.Q.: Static placement of com-
putation on heterogeneous devices. In: Proceedings of the ACM on Programming
Languages 1(OOPSLA), pp. 1–28 (2017)

23. Stony Brook University: Seawulf, computational cluster at stony brook university
(2019). https://it.stonybrook.edu/help/kb/understanding-seawulf

https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://doi.org/10.1007/978-3-030-58144-2_19
https://doi.org/10.1007/978-3-030-58144-2_19
http://arxiv.org/abs/1412.6980
https://hpc.llnl.gov/hardware/compute-platforms/corona
https://hpc.llnl.gov/hardware/compute-platforms/corona
https://doi.org/10.1007/978-3-030-58144-2_18
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/wombat/
https://it.stonybrook.edu/help/kb/understanding-seawulf

Tasking Extensions

Introducing Moldable Tasks in OpenMP

Pierre-Étienne Polet1,2(B), Ramy Fantar2, and Thierry Gautier1

1 Inria, CNRS, ENS de Lyon, UCBL, LIP, Lyon, France
pierre-etienne.polet@inria.fr
2 Thales DMS, 06560 Valbonne, France

Abstract. This paper introduces a new approach to handle implicit
parallelism in library functions. If the library already utilizes a third-
party programming model like OpenMP, it may run in parallel. Other-
wise, if the library remains sequential, OpenMP directives in client code
cannot be used for direct parallelization. To express implicit parallelism
and, in the meanwhile, dynamically adjust the parallel degree of a task
when its starts, we propose to use moldable tasks. We handle this by
introducing a new construct called taskmoldable that generates mul-
tiples tasks from a single function call and an iteration space. For the
Lapack Cholesky factorization algorithm, our taskmoldable directive
allows simple code annotation to express parallelism between tiles and
improves programmability. Performance results on a beamforming appli-
cation indicates that our moldable implementation is slightly faster by
5% in mean, than a parallel execution achieved with Intel MKL.

Keywords: Moldable task · OpenMP Task · Task Dependency

1 Introduction

The task programming model promotes seamless collaboration between applica-
tion programmers and library developers, ensuring functional composition regard-
less of their respective choices during development. A work stealing scheduler from
Cilk [6] has undergone theoretical analysis to provide guarantees for expected par-
allel time and space. A provable OpenMP-3.0 task scheduler should inherit these
same guarantees. Furthermore, task models with dependencies have been subject
to analysis within the same framework [14,30], allowing for the application of sim-
ilar theoretical results to the OpenMP-4.0 dependent task model.

Although theoretical results have provided satisfactory findings, they are
limited to a rigid task model that lacks consideration for the physical par-
allelism of the target machine during task creation. However, task manage-
ment, including creation and scheduling, incurs overhead that significantly affects
application performance. To mitigate this, researchers have proposed solutions
such as lightweight task implementations (e.g., Cilk [6] for independent tasks,
Kaapi [7,15]. for data flow dependencies), task throttling [1], high-performance
work queue data structures for scalability [3,18], and caching task graph con-
struction for multiple iterations [15,33].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 51–65, 2023.
https://doi.org/10.1007/978-3-031-40744-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-40744-4_4

52 P.-É. Polet et al.

Parallel programs typically involve more arithmetic operations and memory
accesses compared to their sequential counterparts. Although these extra over-
heads don’t fundamentally alter the asymptotic number of operations, they do
reduce practical efficiency. To mitigate these additional operations, it is crucial
to align the parallelism level of the application with the hardware’s degree of
parallelism. It is important to note that the aforementioned solutions do not
address these supplementary costs.

OpenMP efficiently adapts application parallelism to hardware through work-
sharing constructs. Parallel worksharing loops are automatically distributed
among the threads in the current parallel region, ensuring balanced iteration
space. The taskloop construct generates the right number of tasks based on the
parallel region’s size, limiting arithmetic overheads.

This paper proposes a new task generating construct for expressing hidden
implicit parallelism in library functions. It allows to define moldable tasks, which
can adapt their parallel degree to available resources, based on established the-
oretical scheduling concepts [20,29].

The following section motivates our proposal, focusing on concrete case stud-
ies. Section 3 provides detailed information about the taskmoldable directive
and its key clauses. We then demonstrate the usage of the new directive in a clas-
sical Cholesky factorization and a beamforming application [16,28], concluding
the presentation.

2 Motivation

A recently proposed linear algebra API [10] defined batched API to process a
set of independent linear algebra subroutine calls on small matrices, with “the
aim of providing more efficient, but portable, implementations of algorithms on
high-performance manycore architectures [10].” They were present in commonly
used APIs such as Nvidia cuBLAS, Magma [17] or Intel MKL.

A call to perform batch_count matrix multiplications on a set of input
data is1:
1 gemm_batch(m,n,k,A,B,C,bc);

where each parameter is an array of size bc, the batch count, of the required
parameter to call the BLAS gemm kernel, i.e. the call is equivalent to:
1 for (int i=0; i<bc; ++i)
2 gemm(m[i],n[i],k[i],A[i],B[i],C[i]);

The gemm_batch operation performs bc independent calls to the gemm
BLAS subroutine where each gemm works with different parameters and data
provided in the effective array parameters. Because the for loop resides inside
the code body of the BLAS batch function it was not accessible to parallelize
calls to gemm_batch using any OpenMP worksharing directives or the taskloop

1 For simplicity, we omit some parameters such as the operations on matrices (trans-
position...), alpha and beta assumed to be 1, the leading dimensions or the info error
parameter which are required to pass arguments to each underlying gemm kernel.

Introducing Moldable Tasks in OpenMP 53

generating task construct. Our proposal aims at providing an OpenMP construct
to expose the implicit loop, and its iterations, as a task generating construct.

The application developer knows that the gemm_batch is equivalent to exe-
cuting the above implicit iteration loop. Thus the iterations may be partitioned
in a disjoint set of N intervals Ik = [bk, ek[such that ∪N−1

k=0 Ik = [0, bc − 1], such
that the batched gemm calls could be rewritten to:
1 for (int i=0; i<N; ++i)
2 gemm_batch(m+b_k[i],n+b_k[i],k+b_k[i],A+b_k[i],B+b_k[i],
3 C+b_k[i], e_k[i]-b_k[i]);

Therefore, the gemm_batch operation can be viewed as a list homomor-
phism [5]. Given a list l, a concatenation operator #, and a function f assumed
to be a list homomorphism, we can transform the call f(l1#l2) into calls to
f(l1) ⊕ f(l2), where ⊕ is a reduction operator. In our case, the function f rep-
resents the structured block outlined following the OpenMP directive.

Overview of Moldable Task. The two main issues are defining the implicit
loop iteration space (e.g. bc) and passing the effective parameters to the sub-
calls. We propose annotating the code with a new directive taskmoldable used
to inform that the following structured block has an implicit loop to partition.
The size of the iteration is specified by the clause batch_count and the trans-
formation of effective parameters to the parameters of the subsequences calls is
specified by the clause access.
1 #pragma omp taskmoldable access(linear: m,n,k,A,B,C) \
2 batch_count(bc)
3 gemm_batch(m,n,k,A,B,C,bc);

In this example, the transformation is of kind linear, that is a default
mapping function, that applies MX : i → X + i to any variable X listed in
the clause access to pass the parameter on the partition i. We called such
transformation a mapping function. It could be defined by the user.

syrk: a list homomorphism with reduction. The proposed clause can be
applied to list homomorphisms that involve reduction. Figure 1 illustrates a com-
mon call to the syrk subroutine in the left-looking Cholesky factorization [25],
as seen in the Lapack netlib potrf. syrk computes T = T − A × AT with T
symmetric. The moldable task has dependence types in on A and inout on T.
The computation T = T − A × AT is equal to T = T − ∑

i Ai × AT
i where Ai is

the i-th tile of size nb × nb (except the last tile) as depicted in Fig. 1.
The moldable task in Fig. 1 expresses the fact that the call to syrk is a list

homomorphism with respect to matrix Ai starting at position A+i*nb from A:
This is an access strided{nb} with our proposal. Matrix T is fully accessed by
all calls to syrk. It was possible to keep the original inout dependence-type,
but to keep the possibility to reorder the accumulation depending on the prede-
cessor tasks releasing the matrix bloc Ai the clause specifies that the dependence

54 P.-É. Polet et al.

Fig. 1. Left: SYRK T = T−A×AT in left looking version of the Cholesky factorization.
Right: annotation with taskmoldable.

type on T expressed by generated task is mutexinoutset. Thus by accumu-
lating the sequence of syrk calls on each Ai to the matrice T , we obtain the
result.

The code that generates the explicit tasks from Fig. 1 is equivalent to the
following, where bc is the batch count generated from the clause batch_count.
1 for (int i=0; i< bc; ++i)
2 #pragma omp task depend(in: A+i*nb) depend(mutexinoutset: T)
3 dsyrk(nb,n,-1,A+i*nb,lda,1,T,ldT);

The taskmoldable directive enables the expression of internal parallelism
within library functions, including batched or non-BLAS subroutines. By reduc-
ing programming efforts, code annotations can result in highly parallel task-
based programs. The next section focuses on presenting the taskmoldable
directive and its associated clauses, which facilitates the extraction of more par-
allelism. Section 4 provides detailed accounts of three comprehensive case studies:
the application of taskmoldable to matrix-matrix multiplication (gemm), the
sequential Lapack left-looking Cholesky factorization [25] and a beamforming
application [16,28].

3 A New Directive: Taskmoldable

As the taskloop directive [22,31], the taskmoldable directive is a task generating
construct. It enhances the functionality of the taskloop directive by allowing the
capturing of (implicit) parallel loops within any structured block through user
annotations and parameter passing rules to generated tasks.

3.1 General Structure
The general structure of the directive is the following:
1 #pragma omp taskmoldable batch_count(<counter-list>) \
2 access(<data-mapping> [{args}] [<dependence-type>] : \
3 <list-item>)\
4 depend(<dependence-type> : <list-item>)\
5 <data-sharing attribute>\
6 num_tasks(<integer-list>) | grainsize(grain-size-list)
7 {<structured block>}

When a thread encounters a taskmoldable construct, it creates an explicit
task that partitions the implicit iterations defined by batch_count into chunks,
each of which is assigned to an explicit task for parallel execution. Each chunk
has an identifier from 0 to the maximal number of chunks - 1. The size of the

Introducing Moldable Tasks in OpenMP 55

chunk is computed before creating the explicit task. The data environment of
each generated task is created according to the data-sharing attribute clauses
on the taskmoldable construct, per-data environment ICVs.

The clause access is used to translate the variables to be passed to each
explicit task. The effect is as if each variable in the list-item appearing in
the structured block is rewritten by applying the data mapping function on
the chunk id. The data-mapping is either a predefined identifier: linear,
strided{<integer expr>} or full; or a user-defined identifier. Section 3.3
presents the data mapping function. Optionally, the clause access can specify
the dependence-type of the generated tasks expressed on the variable.

Clause batch_count accepts a list of integers that are associated to an
implicit nested iteration loops. For instance, batch_count(C0, C1, ..., Ck−1)
is associated with the implicit nested loops generating the tasks as illus-
trated in the following code. As for the taskloop directive, clauses num_tasks
and grainsize limit the number of tasks generated at runtime. For
taskmoldable directive, their parameters are a list of values applied on each
loop of the nest.

3.2 Compilation

The compiler rewrites the taskmoldable directive to a code equivalent to the
following skeleton:
1 #pragma omp task depend(weak-dependency-type: <list-item>)
2 {
3 _kmpc_omp_taskmoldable_size(C0, .., Ck−1,
4 num_tasks, grainsize, S0, .., Sk−1);
5 for (int i0=0; i0<C0; i0+ = S0)
6 for (int i1=0; i1<C1;i1+ = S1)
7 ...
8 for (int ik−1=0; ik−1<Ck−1; ik−1+ = Sk−1)
9 #pragma omp task depend(<inherited>)

10 {<structured block. Variables of the ’access’ list-item
11 have been replaced by the mapping function called with
12 (i0, i1, ..., ik−1, S0, S1, ..., Sk−1) as effective parameters>}
13 }

The moldable task is created with dependencies using the weak variant [14,
24] of the dependency type used in the depend clauses: e.g. a depend(inout:
A) in the taskmoldable definition is translated to depend(weak-inout:
A). The objective is to postpone real dependencies on the child tasks (because
those are making real memory accesses and computation) rather than to the
moldable task which only creates tasks.

Then, the task calls the runtime function _kmpc_omp_taskmoldable_
size to compute the size of the tasks in each dimension S0, S1 ..., Sk−1 from the
sizes of the batch_count clause (dimension C0, C1, ..., Ck−1) and the values
passed in clause num_tasks or grainsize.

3.3 Data Mapping Functions

A data mapping function is associated with an item using the access clause of
the taskmoldable directive:

56 P.-É. Polet et al.

access(mapping_id [{<args>}] [<dependence-type>]: list-item)

The optional dependence-type argument is presented in the next section
dealing with the expression of dependencies on generated tasks. The runtime
defines the subset of the initial workload for each task. It provides a tuple
start = (i0,i1,...,ik−1) that defines the beginning of the sub-iteration space
it should process. The access clauses provide information to get the right data
for each task. To do so the user provides a function called mapping_id where
the declaration is defined as follows:

F(item,batch_count,start,args...)

which is used to replace items from item-list each time it appear in the
structured block.

We propose three basic mappings, strided{args} that take as argument a
stride on each dimension, linear that assumes the data are linearly spaced and
full that assume all task work on the same data. They are defined as follows:

strided(A,bc,start,strides) -> A +
∑|bc|−1

u=0 iu * strides[u]

linear(A,bc,start) -> A +
∑|bc|−1

u=0 iu *
∏u−1

v=0 bc[v]
full(A,bc,start) -> A

Items from list-item are expected to be pointers of types that allow
pointer arithmetic.

An implementation of the linear mapping_id could be the following:
template<T> T* linear(T* A, int* bc, int* starts, int dim_count)
{

int pos = 0; int size = 1;
for(int u = 0; u < dim_count; u++)
{

pos += starts[u];
size *= bc[u]

}
return A+pos;

}

The runtime tries to decompose the computation into N tasks where N
is either provided by the clause num_tasks, or by default, computed auto-
matically: The dimensions of the split are even and computed by the runtime
function _kmpc_omp_taskmoldable_size. Preliminary experimental results
reported in Sect. 4.3 show that our proposition of compilation of moldable tasks
could be applied to heterogeneous architectures.

3.4 Data Dependencies

Task generating constructs often require implicit synchronization to ensure
the correctness of parallel executions. However, relaxing these synchronization
requirements can enable better utilization of hardware resources. Sharing this
goal, a recent proposal to enhance OpenMP, as described in [22], suggests extend-
ing the depend clause to include the taskloop construct.

Introducing Moldable Tasks in OpenMP 57

The same issue appears with the taskmoldable directive. The main differ-
ence is that iteration loops are hidden from the annotation thus the expression of
dependencies on generated task is different. Thanks to the data mapping func-
tion we are able to replace the item and the mapped item through the function,
as defined in the above section. In that way, the generated task inherits the
dependencies from the depend clause in the taskmoldable directive but on
items rewritten by the data mapping function.

However, the programmer may optionally refine the way generated tasks
declare dependencies through the access clause. This is illustrated in Fig. 1
where the generated tasks declare mutexinoutset dependencies on item T
while the moldable task has declared dependency type inout on it. The interest
here is to allows commutativity on the reduction operated by syrk in case of
faster resolution of dependencies on the Ai.

We assume the availability of the weak-dependencies [24] to postpone real
dependencies on the moldable task to the generated tasks. Without them, it
is possible to inline the execution of the moldable task creation of the task
generating tasks: at runtime, the taskmoldable directive is translated to the
code that directly generates the explicit tasks in place of creating the task (that
will generate the explicit tasks).

3.5 Implementation

We have created a customized runtime specifically designed to handle moldable
tasks, allowing us to validate a prototype before integrating it into the LLVM
OpenMP runtime. Thanks to our previous development work in the LLVM run-
time, we have taken care to ensure an easier merge process.

The task entry point follows the code outlined in Sect. 3.2. To create a
moldable task, we utilize the runtime function __kmpc_omp_task_moldable,
which extends __kmpc_omp_task_withdeps to include task dependencies
and additional mapping functions. These are stored in supplementary fields of
the task data structure kmp_task_t.

We have also incorporated support for partitioning moldable tasks between
CPUs and GPUs. If the user provides a GPU version of the list homomorphism
function, the runtime divides the implicit iteration between CPUs and GPUs.
Initial experiments regarding this feature are reported in Sect. 4.3. We briefly
discuss how to integrate moldable tasks with targets in the following perspective.

The runtime should select a granularity for each moldable task, our imple-
mentation relies on previous executions of similar functions to compute an
expected performance for each worker, then it creates one task for each worker
that handles a subset of the moldable task proportional to its performance. Tasks
running on GPU targets may be further split by the runtime to fit the memory
constraints of the co-processor.

4 Evaluation

The two next sections illustrate our taskmoldable directive with two decom-
positions of the gemm matrix product, and how to produce a highly parallel

58 P.-É. Polet et al.

(a) Row/Column decomposition (b) Block decomposition

Fig. 2. GEMM block decomposition.

Cholesky factorization from the sequential code of the Lapack netlib library.
Then we present a beamforming application with performance evaluation.

4.1 Gemm Decomposition

The strided{<optional-args>} mapping function is well-suited when all
data are stored in an array by spacing each consecutive partition with a constant
stride. As an example, we will show how to generate two classical decomposition
of gemm with the taskmoldable directive:
1 #pragma omp taskmoldable batch_count(m,n)\
2 access(strided{lda,0}:A)\
3 access(strided{0,1}:B)\
4 access(strided{ldc,1}:C)\
5 depend(inout:C) depend(in:A,B)
6 gemm(m, n, k, A, B, C);

The result of this decomposition, in case of even split, is presented as Fig. 2a.
It can generate up to m×n independent tasks. In this case, the block decomposi-
tion only works with two dimensions thus the input matrices are split by row or
by column but not in blocks. To allows full block decomposition we should han-
dle dependencies between tasks and work on the third dimension of the gemm.
The following code result in decomposition Fig. 2b. We describe dependency
management in Sect. 3.4.
1 #pragma omp taskmoldable batch_count(m,n,k)\
2 access(strided{lda,0,1}:A)\
3 access(strided{0,1,ldb}:B)\
4 access(strided{ldc,1,0}[mutexinoutset]:C)\
5 depend(inout:C) depend(in:A,B)
6 gemm(m, n, k, A, B, C);

4.2 Lapack Cholesky Factorization

The Cholesky factorization algorithm is used in signal processing algorithms
such as adaptive beamforming [13], it is also commonly studied in dependency
graph generation. We worked on the block left-looking version of the algorithm
which is implemented in the subroutine portf in Lapack2, the associated code
is sketched below3:

2 https://netlib.org/lapack/.
3 Code is rewritten in C to follow the guideline of the paper.

https://netlib.org/lapack/

Introducing Moldable Tasks in OpenMP 59

Fig. 3. Left looking Cholesky task graph with N/NB = 4

1 cholesky(N, NB, A, lda):
2 for(j = 0; j < N; j += NB)
3 {
4 #pragma omp task depend(in:A[0][j]) depend(inout:A[j][j])
5 syrk(NB, j, -1, A[0][j], lda, 1 A[j][j], lda)
6 #pragma omp task depend(inout:A[j][j])
7 potrf(NB, A[j][j], lda)
8 if(j + NB < N)
9 {

10 #pragma omp task depend(in:A[0][j],A[0][j+NB])\
11 depend(inout:A[j][j+NB])
12 gemm(NB, N - j - NB, j, -1, A[0][j], lda, A[0][j+NB],
13 lda, 1, A[j][j+NB], lda)
14 #pragma omp task depend(in:A[j][j])\
15 depend(inout:A[j][j+NB])
16 trsm(NB, N - j - NB, 1, A[j][j], lda, A[j][j+NB], lda)
17 }
18 }

At each iteration, it updates a group of NB columns with their definitive
values. A graph of tasks generated with this code is provided as Fig. 3a. Whereas
the code is elegant and relatively simple, it does not express a lot of parallelism.

By seeing the calls to syrk, gemm and trsm as moldable tasks and adapt-
ing the granularity of the split we can achieve the same level of parallelism as
a right-looking implementation, the dependency graph is provided as Fig. 3b.
Furthermore, if we make the granularity finer, as presented in Sect. 4.1, more
parallelism can be generated on gemm and trsm function calls. The code is
provided below:

60 P.-É. Polet et al.

1 cholesky(N, NB, A, lda):
2 for(j = 0; j < N; j += NB)
3 {
4 #pragma omp taskmoldable batch_count(j) depend(in:A[0][j])
5 depend(inout:A[j][j]) access(strided{1}:A[0][j]) \
6 access(full[mutexinoutset]:A[j][j])
7 syrk(NB, j, -1, A[0][j], lda, 1 A[j][j], lda)
8 #pragma omp task depend(inout: A[j][j])
9 potrf(NB, A[j][j], lda)

10
11 if(j + NB < N)
12 {
13 #pragma omp taskmoldable batch_count((NB,N-j-NB,j))\
14 depend(in:A,B) depend(inout:C) \
15 access(strided{0,1,lda}:A[0][j])\
16 access(strided{0,1,lda}:A[0][j+NB])\
17 access(strided{lda,1,0}[mutexinoutset]:A[j][j+NB])
18 gemm(NB, N-j-NB, j, -1, A[0][j], lda, A[0][j+NB], lda,
19 1, A[j][j+NB], lda)
20 #pragma omp taskmoldable batch_count(N-j-NB)\
21 depend(in:A[j][j]) depend(inout:A[j][j+NB])\
22 access(strided{1}:A[j][j+NB])
23 trsm(NB, N - j - NB, 1, A[j][j], lda, A[j][j+NB], lda)
24 }
25 }

The key point here is that original code can be annotated with OpenMP
directives4 for parallelizing compared to restructuring algorithms to exploit par-
allelism between tiles [9]. This was possible thanks to advanced features such as
dependencies between arrays [8,23].

4.3 Case of Study: Beamforming

We implement a beamforming algorithm design to work on rectangular arrays
of sensors using only moldable tasks, the algorithm is composed of three main
parts. First sensor data are converted from the temporal domain to the frequency
domain with FFT1D. Then we apply dephasing coefficients to each input to
compute the beams, thanks to the shape of the array we can decompose this step
in two consecutive matrix multiplications. The final step is to convert complex
values to energy by computing the absolute value of each element. Due to data
pattern restrictions in the used libraries, we insert a transposition step between
the FFT and the matrices multiplications. The pseudo-code is provided below,
the values of parameters stride_x are user-defined, constant and depend on
the in-memory representation of each array.
1 beamforming():
2 #pragma omp taskmoldable batch_count(fft_count) \
3 depend(in:Sensor_t) depend(out:Sensor_f)\
4 access(strided{fft_stize}:Sensor_t,Sensor_f)
5 fft1DExecBatch(fft_size, Sensor_t, Sensor_f, fft_count)
6
7 #pragma omp taskmoldable batch_count(fft_count)\
8 depend(in:Sensor_f) depend(out:Sensor_f2)\
9 access(strided{fft_size}:Sensor_f)\

10 access(strided{1}:Sensor_f2)
11 transpose(Sensor_f, Sensor_f2)
12
13 #pragma omp taskmoldable batch_count(gemm_0_count)\

4 Here we have presented C pragma directive - we also assume Fortran compatible
directive.

Introducing Moldable Tasks in OpenMP 61

14 depend(in:Sensor_f2,Dephase_x) depend(out:Pseudo_beam)\
15 access(strided{stride_S},Sensor_f2)\
16 access(strided{stride_X},Dephase_x)\
17 access(strided{stride_P},Pseudo_beam)
18 gemmStrideBatch(Sensor_f2, Dephase_x, Pseudo_beam, gemm_0_count)
19
20 #pragma omp taskmoldable batch_count(gemm_1_count)\
21 depend(in:Pseudo_beam,Dephase_y) depend(Beam)\
22 access(strided{stride_P}:Pseudo_beam)\
23 access(strided{stride_Y}:Dephase_y)\
24 access(strided{stride_B}:Beam)
25 gemmStrideBatch(Pseudo_beam, Dephase_y, Beam, gemm_1_count)
26
27 #pragma omp taskmoldable batch_count(abs_count)\
28 depend(in:Beam) depend(out:Energy)\
29 access(strided{1}:Beam,Energy)
30 abs(Beam, Energy, abs_count)

This code was executed on our custom runtime, it ran on a workstation with
Intel Xeon 8253, 16 cores processor. It ran about 1M FFT of size 4K, 4K square
GEMM of size 1024 and 256M abs values at each iteration. The implementation
uses Intel MKL sequential on Intel CPU and OpenBlas on AMD ones, cuBlas
and cuFFT are used for Nvidia GPUs.

Overhead of task managements : On this beamforming benchmark, at each iter-
ation of the time step loop, the code generates 40 taskmoldable constructs
decomposed into 4062 tasks. The number of dependencies is 103086 between all
the tasks. We measure a mean creation cost of 360µs per moldable task; 4µs
per task; and 140ns per dependency. Our moldable task runtime does not fit
well with the analysis in [27] because the task granularity is not a free execution
parameter: It is fixed by the runtime according to available resources and their
performances. When more resources are used for the execution, the moldable
tasks are decomposed into more finer tasks.

Moreover, we compare the performances of the moldable implementation
using MKL sequential and a classical one using MKL parallel library. We find
out that the moldable implementation is 5% faster, in mean, than the classical
one, thus the overhead implied by the moldability and our runtime is negligible
for this workload. Mean execution times over 100 iterations for different core
count are provided in Table 1.

Table 1. Beamforming execution times

#core: 1 2 4 8 12 16
MKL parallel: (s) 15.9 8.7 4.4 2.3 1.7 1.3
Moldable (s): 15.3 7.8 4.0 2.0 1.7 1.2
Delta (%): 4 10 9 13 0 8

By adding two different RTX GPUs to the workstation, we show that the
same code can scale on heterogeneous platforms, it implies to allow a task to
execute different code for each target and to handle memory with the runtime.

62 P.-É. Polet et al.

Results of executions speed by adding GPUs are provided in Fig. 4 with results
on a DGXA100 server. On the RTX platform, CPU-only execution ran in 28s,
it was 14.7 times faster than sequential execution and 2.89 times slower than
heterogeneous execution. On the DGXA100, CPU-only execution ran in 9s, we
reach a speedup of 4.5 by adding GPUs.

(a) DGX A100 (b) RTX workstation

Fig. 4. Beam-forming speedups

5 Related Work

Tasks based runtimes are used to schedule tasks on the fly. There are multiple
runtimes available as OpenMP [12], StarPU [4], OMPSS [11], Kaapi [15] or
PaRSEC [19]. Those runtimes aim to schedule dependent tasks with a lack of
knowledge about task computational cost and without knowing tasks that will
be scheduled in the future. None of them offer a moldable task concept that
allows the expression of functions as a set of tasks. This criterion is absent
in the classification of [32]. In [2] the authors theoretically analyze the upper
bound on performance using an assumption that tasks are moldable without
support in StarPU used by their application. Several moldable task schedulers
are proposed and analyzed in scheduling literature [20,29] with ad hoc simulation
or experimentation without any runtime support of moldable tasks.

The OpenMP task concept exists and had been extended to provide task
creation from loop structures using taskloop [31], moreover, recent contribu-
tions open the path to data dependencies between tasks from different taskloops
without the need for a global synchronization [22]. Furthermore, [21] provides
a structure that allows OpenMP tasks to run inner loops as worksharing con-
structs, and [26] extensions allow more control over the parallelism generated
inside a task that calls library code that uses openMP tasks. OpenMP does not
provide a syntax to exploit the implicit parallel structure of library functions.

taskmoldable is a task generating directive. At runtime, it creates an
explicit task that postpones real dependencies to its child tasks. Athapascan-
1 runtime [14] allows this passing rule with the postponed access mode. Similar
features are recently proposed under the term weak-dependencies in OMPSS [24].
With the absence of weak-dependencies it is always possible to directly create
child tasks with an anticipated decision to decompose the moldable task.

Introducing Moldable Tasks in OpenMP 63

6 Conclusion and Perspectives

The taskmoldable directive provides a means for users to leverage hidden
parallelism in a function without sacrificing the performance of library-specific
implementations or requiring an extensive restructuring of the function’s internal
design. Our evaluation and examples demonstrate how this directive enables the
extraction of parallelism from a sequential Cholesky implementation. Further-
more, we achieve minimal overhead when handling moldable tasks in domain-
specific workloads like beamforming, allowing us to compete with an MKL imple-
mentation.

Our ongoing research aims to expand the scope of our preliminary experi-
mental results, encompassing CPUs and GPUs. This extension will enable users
to annotate code, constructing performance models that guide the sizing of par-
titions. Additionally, we are exploring the integration of target clauses into the
directive, facilitating heterogeneous computations based on moldable tasks.

Another future direction involves exploring how to express the moldability of
more complex moldable code structures beyond nested loops. For instance, we
aim to enable the perception of the entire Cholesky factorization as a moldable
task.

Acknowledgements. Experiments presented in this paper were carried out using
the Grid’5000 testbed (see https://www.grid5000.fr), supported by a scientific interest
group hosted by Inria and including CNRS, RENATER and several Universities as well
as other organizations.

References

1. Agathos, S.N., Kallimanis, N.D., Dimakopoulos, V.V.: Speeding up openMP task-
ing. In: European Conference on Parallel Processing (2012)

2. Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., Takahashi, T.:
Task-based FMM for heterogeneous architectures. Concurr. Comput. Pract. Exper.
28(9), 2608–2629 (2016)

3. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. Theory Comput. Syst. 34(2), 115–144 (2001)

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03869-3_80

5. Bird, R.S.: An introduction to the theory of lists. In: Broy, M. (ed.) Logic of
Programming and Calculi of Discrete Design. NATO ASI Series, vol. 36, pp. 5–42.
Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-87374-4_1

6. Blumofe, R.D., Leiserson, C.E.: Space-efficient scheduling of multithreaded com-
putations. SIAM J. Comput. 27, 202–229 (1998)

7. Broquedis, F., Gautier, T., Danjean, V.: LibKOMP, an efficient openMP runtime
system for both fork-join and data flow paradigms. In: Chapman, B.M., Massaioli,
F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 102–115.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30961-8_8

https://www.grid5000.fr
https://doi.org/10.1007/978-3-642-03869-3_80
https://doi.org/10.1007/978-3-642-87374-4_1
https://doi.org/10.1007/978-3-642-30961-8_8

64 P.-É. Polet et al.

8. Bueno, J., Martorell, X., Badia, R.M., Ayguadé, E., Labarta, J.: Implementing
ompSs support for regions of data in architectures with multiple address spaces.
In: Proceedings of the 27th International ACM Conference on International Con-
ference on Supercomputing, pp. 359–368. ICS 2013, Association for Computing
Machinery, New York, NY, USA (2013)

9. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled lin-
ear algebra algorithms for multicore architectures. Parallel Comput. 35(1), 38–53
(2009)

10. Dongarra, J., et al.: A proposed API for batched basic linear algebra subprograms
(2016)

11. Duran, A., et al.: OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel processing letters 21(02), 173–193 (2011)

12. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of openMP task scheduling
strategies. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS,
vol. 5004, pp. 100–110. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-79561-2_9

13. Fuhrmann, D.R., San Antonio, G.: Transmit beamforming for MIMO radar sys-
tems using partial signal correlation. In: Conference Record of the Thirty-Eighth
Asilomar Conference on Signals, Systems and Computers, 2004, vol. 1, pp. 295–299.
IEEE (2004)

14. Galilée, F., Roch, J.L., Cavalheiro, G.G.H., Doreille, M.: Athapascan-1: on-line
building data flow graph in a parallel language. In: Proceedings of the 1998 Inter-
national Conference on Parallel Architectures and Compilation Techniques, p. 88.
PACT 1998, IEEE Computer Society, USA (1998)

15. Gautier, T., Besseron, X., Pigeon, L.: KAAPI: a thread scheduling runtime sys-
tem for data flow computations on cluster of multi-processors. In: Proceedings of
the 2007 International Workshop on Parallel Symbolic Computation, pp. 15–23.
PASCO 2007, Association for Computing Machinery, New York, NY, USA (2007)

16. Guerreiro, A.M.G., Neto, A.D.D., Lisboa, F.: Beamforming applied to an adap-
tive planar array. In: Proceedings RAWCON 98. 1998 IEEE Radio and Wireless
Conference (Cat. No. 98EX194), pp. 209–212. IEEE (1998)

17. Haidar, A., Dong, T.T., Tomov, S., Luszczek, P., Dongarra, J.: A framework for
batched and GPU-resident factorization algorithms applied to block householder
transformations. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Performance 2015.
LNCS, vol. 9137, pp. 31–47. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-20119-1_3

18. Hendler, D., Shavit, N.: Non-blocking steal-half work queues. In: Proceedings of
the Twenty-First Annual Symposium on Principles of Distributed Computing, pp.
280–289. Association for Computing Machinery, New York, NY, USA (2002)

19. Hoque, R., Herault, T., Bosilca, G., Dongarra, J.: Dynamic task discovery in parsec:
a data-flow task-based runtime. In: Proceedings of the 8th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems. ScalA 2017, Association
for Computing Machinery, New York, NY, USA (2017)

20. Marchal, L., Simon, B., Sinnen, O., Vivien, F.: Malleable task-graph scheduling
with a practical speed-up model. IEEE Trans. Parallel Distrib. Syst. 29(6), 1357–
1370 (2018)

21. Maronas, M., Sala, K., Mateo, S., Ayguade, E., Beltran, V.: Worksharing tasks:
an efficient way to exploit irregular and fine-grained loop parallelism. In: 2019
IEEE 26th International Conference on High Performance Computing, Data, and
Analytics (HiPC), pp. 383–394. IEEE (2019)

https://doi.org/10.1007/978-3-540-79561-2_9
https://doi.org/10.1007/978-3-540-79561-2_9
https://doi.org/10.1007/978-3-319-20119-1_3
https://doi.org/10.1007/978-3-319-20119-1_3

Introducing Moldable Tasks in OpenMP 65

22. Maroñas, M., Teruel, X., Beltran, V.: OpenMP taskloop dependences. In:
McIntosh-Smith, S., de Supinski, B.R., Klinkenberg, J. (eds.) IWOMP 2021. LNCS,
vol. 12870, pp. 50–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
85262-7_4

23. Paek, Y., Hoeflinger, J., Padua, D.: Efficient and precise array access analysis.
ACM Trans. Program. Lang. Syst. 24(1), 65–109 (2002)

24. Perez, J.M., Beltran, V., Labarta, J., Ayguadé, E.: Improving the integration of
task nesting and dependencies in openMP. In: 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 809–818 (2017)

25. Rothberg, E.E., Gupta, A.: An evaluation of left-looking, right-looking and mul-
tifrontal approaches to sparse Cholesky factorization on hierarchical-memory
machines. Int. J. High Speed Comput. 5, 537–593 (1991)

26. Scogland, T.R.W., Sunderland, D., Olivier, S.L., Hollman, D.S., Evans, N., de
Supinski, B.R.: Making openmp ready for C++ executors. In: Fan, X., de Supinski,
B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 320–
332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28596-8_22

27. Slaughter, E., et al.: Task bench: a parameterized benchmark for evaluating parallel
runtime performance. In: SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–15. IEEE (2020)

28. Somasundaram, S.D.: Wideband robust capon beamforming for passive sonar.
IEEE J. Oceanic Eng. 38(2), 308–322 (2012)

29. Sun, H., Elghazi, R., Gainaru, A., Aupy, G., Raghavan, P.: Scheduling parallel
tasks under multiple resources: list scheduling vs. pack scheduling. In: 2018 IEEE
International Parallel and Distributed Processing Symposium, pp. 194–203 (2018)

30. Tchiboukdjian, M., Gast, N., Trystram, D.: Decentralized list scheduling. Ann.
Oper. Res. 207(1), 237–259 (2013)

31. Teruel, X., Klemm, M., Li, K., Martorell, X., Olivier, S.L., Terboven, C.: A proposal
for task-generating loops in OpenMP*. In: Rendell, A.P., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 1–14. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40698-0_1

32. Thoman, P., Dichev, K., Heller, T., Iakymchuk, R., Aguilar, X., Hasanov, K., et al.:
A taxonomy of task-based parallel programming technologies for high-performance
computing. J. Supercomput. 74(4), 1422–1434 (2018)

33. Yu, C., Royuela, S., Quiñones, E.: Enhancing openMP tasking model: performance
and portability. In: McIntosh-Smith, S., de Supinski, B.R., Klinkenberg, J. (eds.)
IWOMP 2021. LNCS, vol. 12870, pp. 35–49. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-85262-7_3

https://doi.org/10.1007/978-3-030-85262-7_4
https://doi.org/10.1007/978-3-030-85262-7_4
https://doi.org/10.1007/978-3-030-28596-8_22
https://doi.org/10.1007/978-3-642-40698-0_1
https://doi.org/10.1007/978-3-030-85262-7_3
https://doi.org/10.1007/978-3-030-85262-7_3

Suspending OpenMP Tasks
on Asynchronous Events: Extending

the Taskwait Construct

Romain Pereira1,3(B), Maël Martin1,2, Adrien Roussel1,2, Patrick Carribault1,2,
and Thierry Gautier3

1 CEA, DAM, DIF, 91297 Arpajon, France
{romain.pereira,manuel.ferat,mael.martin,adrien.roussel,

patrick.carribault}@cea.fr
2 Université Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance

pour le Calcul et la simulation, 91680 Bruyères-le-Châtel, France
3 Project Team AVALON INRIA, LIP, ENS-Lyon, Lyon, France

thierry.gautier@inrialpes.fr

Abstract. Many-core and heterogeneous architectures now require pro-
grammers to compose multiple asynchronous programming model to
fully exploit hardware capabilities. As a shared-memory parallel pro-
gramming model, OpenMP has the responsibility of orchestrating the
suspension and progression of asynchronous operations occurring on a
compute node, such as MPI communications or CUDA/HIP streams.
Yet, specifications only come with the task detach(event) API to sus-
pend tasks until an asynchronous operation is completed, which presents
a few drawbacks. In this paper, we introduce the design and implementa-
tion of an extension on the taskwait construct to suspend a task until an
asynchronous event completion. It aims to reduce runtime costs induced
by the current solution, and to provide a standard API to automate
portable task suspension solutions. The results show twice less overheads
compared to the existing task detach clause.

Keywords: OpenMP · MPI · Asynchronous Programming ·
Dependent Task

1 Introduction

To increase computational power evermore, supercomputer nodes evolved
towards many-cores and heterogeneous architectures. Currently, 2 out of the
3 most powerful supercomputers nodes are made of 64-core processors, 4 GPUs
and NICs1. In the future, nodes may even become more complex with other accel-
erators such as FPGAs for their energy efficiency [25]. Programming portable
and efficient scientific simulation on such architecture is challenging. Ven-
dors, research laboratory and programmers built programming models such as
OpenMP, MPI, CUDA, leading users to compose multiple programming models
to fully exploit compute resources.
1 https://www.top500.org/lists/top500.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 66–80, 2023.
https://doi.org/10.1007/978-3-031-40744-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_5&domain=pdf
https://www.top500.org/lists/top500
https://doi.org/10.1007/978-3-031-40744-4_5

Suspending OpenMP Tasks on Asynchronous Events 67

Recent work on interoperability with MPI [16,18,20,21] and multi-GPU
offload through target tasks [3,6,23] shows that OpenMP dependent task model
is promising to overlap computation using multiple heterogeneous and asyn-
chronous programming model. However, porting existing applications to an asyn-
chronous dependent task-based model creates more difficulties than historical
MPI+OpenMP parallel-for programming.

The objective of this paper is to propose standard extensions to suspend
tasks until the completion of an asynchronous event. Our contributions are

– (1) A proposal on extending the taskwait construct with the detach(event)
clause, with a standard API, to wait until the completion of an external event,

– (2) Proof-of-concept implementations into LLVM and MPC-OMP available
online2,

– (3) Evaluations showing 2x less runtime overheads over existing solutions in
case of low-concurrency (a synchronization followed by a continuation task).

The extension is further-motivated in Sect. 2. A definition is proposed in Sect. 3
and evaluations are conducted in Sect. 4. Related works are reviewed in Sect. 5
and we conclude this work in Sect. 6.

2 Motivations

OpenMP tasking model is a portable solution for composing multiple program-
ming models and their asynchronous operations, such as MPI requests, CUDA
streams, FPGAs offloads or even disk I/O. Yet, specifications mostly come with
the task detach(event) clause and the interop construct for standard interop-
erability. We propose to extend the taskwait construct with the detach clause
as an alternative interoperability building block to suspend a task until an asyn-
chronous event completion.

Porting HPC Applications using OpenMP Tasks. Early porting of applications
to task-based OpenMP showed difficulties in handling asynchronous operations
synchronization within tasks. Using the taskyield construct in [14], program-
mers assumed that the thread necessarily switches to another task if one is ready:
this is not the case, the standard only specifies it at a scheduling-point, and the
implementation decides whether to actually switch tasks. In two other examples,
the porting of a Cholesky factorization [22] and a plasma simulation [19] had to
sequentialize MPI communications, potentially at the expense of performance,
as the standard was not providing any guarantees on suspending tasks when
synchronizing on MPI requests.

2 https://gitlab.inria.fr/ropereir/iwomp23.

https://gitlab.inria.fr/ropereir/iwomp23

68 R. Pereira et al.

A Lack of Interoperability. These issues lead the community to develop
interoperability interfaces between OpenMP and MPI. The Task-Aware MPI
(TAMPI) [20] library was proposed as an extra layer above MPI, to overlap
MPI request synchronization with useful computation through task-switches.
This library must be used by programmers adapting their code to replace MPI
with TAMPI calls. MPICH+BOLT [5,12] through Argobots, or MPC [16], pro-
posed to automate this interoperability through the threading library, so that
OpenMP tasks can perform blocking MPI calls and suspend seamlessly. While all
these approaches enable working code, OpenMP and MPI standards provided no
guarantees on it requiring programmers to manage an additional interoperability
layer, and ensure its correct implementation from both runtimes.

Providing Guarantees. OpenMP specifications adopted the detach clause which
provides guarantees to programmers, and enables the overlap of asynchronous
operation progression with useful computation through task scheduling, as dis-
cussed in [1]. Though, the detach clause also impacted other asynchronous pro-
gramming models. For instance, proposals were made to the MPI specifications
to register a callback on request completion [18,21] which are being standard-
ized34. This would be used in codes as depicted in Listing 1.1 which we retrieved
from [18,20] as follows:

1 omp_event_handle_t ev_handle;
2 # pragma omp task detach(ev_handle) depend(out: data)
3 {
4 MPI_Request req;
5 MPI_Irecv(data, ..., &req);
6 MPIX_Detach(&req, omp_fulfill_event, ev_handle);
7 }
8 # pragma omp task depend(in: data)
9 {

10 work_with(data);
11 }

Listing 1.1. task detach(event) approach retrieved from [18,20,21]

With the task detach(event) approach, application programmers express two
dependent tasks for managing asynchronous operations: the launch (line 2)
and its continuation after completion (line 8). MPIX_Detach (line 6) registers
the omp_fulfill_event(ev_handle) callback on the MPI request completion,
which raises an allow-completion event to the OpenMP runtime. This approach
does provide guarantees for asynchronous operation overlapping expected by
programmers, as opposed to the test-and-yield approach.

Limits of ‘Task Detach’. Nevertheless, we argue the task detach(event) clause
has three drawbacks on the minimal example presented: (a) it implies unneces-

3 https://github.com/mpiwg-hybrid/hybrid-issues/issues/6.
4 https://github.com/devreal/ompi/tree/mpi-continue-master.

https://github.com/mpiwg-hybrid/hybrid-issues/issues/6
https://github.com/devreal/ompi/tree/mpi-continue-master

Suspending OpenMP Tasks on Asynchronous Events 69

sary costs on programming and execution, (b) it is error-prone and (c) it discards
the interoperability responsibility to the programmer.

Regarding (a), creating two dependent tasks does not provide more paral-
lelism in this case. Our evaluation Sect. 4.1 shows that our proposal can remove
some task management costs by following the C sequential order of execution,
and synchronizing at some point in the execution without spawning a new task.

On (b), OpenMP memory model does not mention anything specific on tasks
with a detach clause. When a C variable is declared as such, we believe the
memory model falls back to “[...] the programmer must use synchronization
that ensures that the lifetime of the variable does not end before completion
of the explicit task region sharing it. Any other access by one task to the pri-
vate variables of another task results in unspecified behavior ”. In practice, the
code Listing 1.1 retrieved from [18,20] will execute as follows: the variable req
is pushed onto the executing thread stack (line 4), the asynchronous opera-
tion starts (line 5), a completion callback is registered into the MPI runtime
(line 6) and the task returns (line 7). The thread may then schedule other
tasks until the callback is raised, potentially erasing the req variable onto its
stack that has been passed by address earlier. The MPI_Detach proposal [18]
tackles this risk by dereferencing and copying the MPI_Request pointer5. Note
that MPI_Request copy is not standardized, even though Open MPI, MPICH or
MPC-MPI represents MPI_Request as integers so copies are achieved seamlessly.
The MPI_Continue proposal [21] tackles this risk by consuming the MPI_Request
setting it to MPI_REQUEST_NULL on return.

Finally, for (c), the programmer has to create a continuation task explicitly
and remove the synchronization call (MPI_Wait). On the other hand, runtime
interoperability requiring no user code modification is possible and has been
proposed in [12,16]: as illustrated on Listing 1.2, the MPI runtime will auto-
matically suspend the current OpenMP task so the OpenMP task scheduler can
overlap the synchronization line 4 with other tasks.

1 # pragma omp task untied
2 {
3 MPI_Recv(&req, ...);
4 work_with(data);
5 }

Listing 1.2. MPI and OpenMP runtime interoperability approach

3 Extending Taskwait to Asynchronous Events

We propose to extend the taskwait construct with the existing detach(event)
clause and to provide an omp_taskwait_detach(event) routine. It is depicted
on Listing 1.3 and fixes drawbacks (a) and (b): only one task and no dependency
are needed, and variables pushed to the thread stack may not be erased. The

5 https://github.com/RWTH-HPC/mpi-detach/blob/master/detach.cpp#L66.

https://github.com/RWTH-HPC/mpi-detach/blob/master/detach.cpp#L66

70 R. Pereira et al.

routine is also a first step towards fixing the issue (c) and standardizing run-
time interoperability, which is further discussed in Sect. 4.2. We introduce new
elements to the standard specifications.

1 # pragma omp task
2 {
3 MPI_Request req;
4 MPI_Irecv(data, ..., &req);
5 omp_event_handle_t ev_handle = omp_task_continuation_event();
6 MPIX_Detach(&req, omp_fulfill_event, ev_handle);
7 # pragma omp taskwait detach(ev_handle)
8 work_with(data);
9 }

Listing 1.3. taskwait detach(event) proposal

3.1 Definitions

Taskwait Construct. The taskwait construct is extended as follows:

– Semantics - if a detach clause is present on a taskwait construct, the
current task region is suspended until the current task continuation event is
fulfilled.

– Restrictions - The detach clause may only appear on a taskwait if no
depend or nowait clauses are present.

Combined-clauses restrictions were motivated by the lack of practical exam-
ples. If practical use-cases were to be found, we propose to follow the current
specifications that replicates empty tasks behaviors:

If the detach clause is present on the taskwait construct, one or more
depend clauses are present and the nowait clause is not present, the behavior
is as if these clauses were applied to a task construct with an empty associated
structured block that generates a mergeable and included task. Thus, the cur-
rent task region is suspended until the predecessor tasks of this task complete
execution and its allow-continuation event is fulfilled.

If the detach clause is present, one or more depend clauses are present, and
the nowait clause is present on the taskwait construct, the behavior is as if
these clauses were applied to a task construct with an empty associated struc-
tured block that generates a task for which execution may be deferred, converting
the allow-continuation event to an allow-completion event. Thus, all predecessor
tasks of this task must complete execution, and its allow-completion event
must be fulfilled, before any subsequently generated task that depends on this
task starts its execution.

Omp_taskwait_detach(event). The omp_taskwait_detach(event) rou-
tine behave as if a # pragma omp taskwait detach(event) had been specified.

Suspending OpenMP Tasks on Asynchronous Events 71

Task Continuation (Tasking Terminology) is a condition on a task that is
satisfied when its allow-continuation event is fulfilled.

Allow-Continuation Event. The allow-continuation event into the standard
specifications. Each task is attached an implicit allow-continuation event that is
initially fulfilled.

Omp_task_continuation_event. The omp_task_continuation_event
routine unfulfills and returns the allow-continuation event of the current task.

Omp_fulfill_event(event). The omp_fulfill_event(event) routine can be
extended as follows:

– Constraints on Arguments A program that calls this routine on an event
that was already fulfilled is non-conforming. A program that calls this rou-
tine with an event handle that was not created by the detach clause, or not
returned by the omp_task_continuation_event routine, is non-conforming.

The constraint on argument now also allows the task implicit continuation event
to be passed to the routine. If the multiple clauses restriction on the taskwait
construct were to be relieved as proposed, the omp_fulfill_event(event) could
also be extended as follows:

– Execution Model Events The task-fulfill event occurs in a thread that
executes an omp_fulfill_event region before the event is fulfilled if the
OpenMP event object was created by a detach clause on a task or returned
by the omp_task_continuation_event routine.

3.2 Implementation

We implemented the OpenMP extension in the Clang compiler, LLVM runtime
and MPC runtime. First, we added a new ABI __omp_taskwait_detach, which
fallbacks to the omp_taskwait_detach runtimes implementation. In both imple-
mentations the thread blocking schedule any other ready tasks until the passed
event argument is fulfilled.

Then, we added support for the detach(event) clause to the taskwait con-
struct in the Clang compiler: the pragma omp taskwait detach(event) direc-
tive will result in the new ABI being called.

4 Evaluation

We characterized three drawbacks on the task detach(event) approach and
motivated how the taskwait detach(event) proposal mitigates these when
suspending tasks during an asynchronous operation progression. This section
provides additional evaluations on drawbacks (a) and (c).

72 R. Pereira et al.

Fig. 1. Evaluation of the task/taskwait detach in LLVM, MPC and GCC with N =
1, 000, 000 in a NUMA region of an AMD EPYC CPU

4.1 Task Management Overheads

On (a), we made a microbenchmark to evaluate the tasking overheads of explic-
itly creating the continuation task detach against managing it implicitly using
the taskwait detach proposal6. The microbenchmark has three-steps, it (1)
warms up the runtime, (2) concurrently creates and schedules 2.N independent
empty tasks with N empty dependent continuation tasks declared through the
task detach(event) construct, and (3) concurrently creates and schedules 2.N
independent empty tasks with an implicit sequential continuation task declared
through the taskwait detach(event) construct we proposed. We tested on an
AMD EPYC 7H12 CPU on a single NUMA region with N = 1, 000, 000 as a
parameter, varying the number of threads to observe the impact of runtime con-
tention. Figure 1 presents the execution time of steps (2) and (3) for our patched
LLVM 16.x and MPC implementations, and the execution time of step (2) for
GCC 12.2.0 (median of 5 executions). The x-axis is the number of threads, and
the y-axis is the execution time. No performances could be recorded for 1 and 2
threads on GCC as the runtime was deadlocking.

First, it seems LLVM runtime manages fine-grain tasks more efficiently than
MPC and GCC. Though, we observe that both the LLVM and MPC taskwait
detach implementation always outperforms the task detach implementation.
As predicted in the mentioned in the motivations: the runtime manages twice
as fewer tasks and no dependencies as opposed to the task detach(event)
approach in this minimal example. We also observe that using more than 3

6 https://gitlab.inria.fr/ropereir/iwomp23/-/blob/main/bench/taskwait-detach.c.

https://gitlab.inria.fr/ropereir/iwomp23/-/blob/main/bench/taskwait-detach.c

Suspending OpenMP Tasks on Asynchronous Events 73

threads deteriorates performances on every configuration as runtime contention
on internal task data structure increases (tasks are empty).

In the LLVM implementation, using taskwait detach over task detach
reduces per-task overheads for about 100ns depending on the number of threads.
In applications such as Cholesky or LULESH, few tasks are suspended, so there
is little performance gain to expect from using our proposal over the task
detach(event) solution. For instance on LULESH, tasks suspending could be
those performing MPI communications. It only represents ∼20 tasks per itera-
tion that may suspend, over ∼10, 000 computational tasks that may not suspend.
However, our proposal could also ease application porting, which is the object
of the two following sections.

4.2 Standardizing OpenMP Task Suspension on an Asynchronous
Event

Currently, automatic task suspension when synchronizing on an external asyn-
chronous event could be achieved as shown on Listing 1.4, using pragmas directly
into the library implementation. However, OpenMP does not provide a standard
ABI, and the (CUDA) runtime installation would be hardly dependant of a spe-
cific OpenMP runtime implementation.

1 int cuStreamSynchronize(CUstream hStream) {
2 if (/* within an OpenMP execution context */) {
3 omp_event_handle_t hdl;
4 # pragma omp task detach(hdl) depend(out: hdl)
5 {}
6 [...] /* differ stream synchronization to a progression engine */
7 # pragma omp taskwait depend(in: hdl)
8 } else {
9 [...] /* default implementation */

10 }
11 }

Listing 1.4. Runtime interoperability using task detach(event) approach

Our proposals provide a standard task suspension API/ABI. Using the pro-
posed routines omp_task_continuation_event and omp_taskwait_detach, o-
ther asynchronous programming model runtimes (such as Cuda, MPI, libomp-
target) could suspend OpenMP tasks and allow their continuation on an asyn-
chronous event completion through a standard and portable interfaces across
OpenMP implementations. This is depicted on Listing 1.5 on the CUDA and
MPI runtime implementations; but could be extended to any other asynchronous
programming model.

1 int cuStreamSynchronize(CUstream hStream) {
2 if (/* within an OpenMP execution context */) {
3 omp_event_handle_t hdl = omp_task_continuation_event();
4 [...] /* differ stream synchronization to a progression engine */
5 omp_taskwait_detach(hdl);
6 } else {

74 R. Pereira et al.

7 [...] /* default implementation */
8 }
9 [...]

10 }
11
12 int MPI_Send(...) {
13 if (/* within an OpenMP execution context */) {
14 omp_event_handle_t hdl = omp_task_continuation_event();
15 [...] /* differ request synchronization to a progression engine */
16 omp_taskwait_detach(hdl);
17 } else {
18 [...] /* default implementation */
19 }
20 [...]
21 }
22
23 # pragma omp task untied
24 {
25 [...]
26 cuStreamSynchronize(...);
27 [...]
28 MPI_Send(...);
29 [...]
30 }

Listing 1.5. Runtime interoperability using taskwait detach(event) API

4.3 Effort on Porting Existing MPI Applications

Scientific simulation codes are complex, and synchronizations (MPI, CUDA,
I/O) may be hidden deep into libraries, as in the Arcane framework [4]. Auto-
matic and standard interoperability would ease the porting of existing scientific
applications to a task-based model, relieving programmers from the task sus-
pension interoperability burden in such cases.

1 void CalcForceForNodes(Domain & domain) {
2 MPI_Irecv(comBuf, ..., recvRequest) ;
3 [...] /* computation */
4 MPI_Wait(recvRequest, ...) ;
5 for (Index_t i = 0; i < opCount; ++i)
6 (domain.*dest)(dx*dy*(dz - 1) + i) += comBuf[i] ;
7 }

Listing 1.6. LULESH point-to-point communication pattern

The code Listing 1.6 corresponds to a simplified view of the MPI receive
communications occurring in the LULESH [7] proxy-application. The function
CalcForceForNodes function initiates non-blocking reception to temporary buf-
fers (comBuf) on line 2. Then, it overlaps the reception with some computation
on mesh line 3. Finally, it waits for the reception completion line 4, and unpacks
the temporary buffer to the mesh domain. A similar communication pattern can

Suspending OpenMP Tasks on Asynchronous Events 75

be found in most of the Collaboration of Oak Ridge, Argonne and Livermore
(CORAL) proxy-applications. The continuation (line 4–7) is already explicit,
and porting them with the task detach can be achieved by adding two tasks
(line 2 and 4) as shown on Listing 1.7. Listing 1.8 shows a task-based version
relying on runtime interoperability, that could be achieved using our proposal as
discussed in the previous section. We move the continuation (message unpack-
ing) right after a blocking MPI_Recv that shall suspend the task until the mes-
sage is received, overlapping communication with other computational tasks. In
such applications, our proposal reduces the runtime overheads (1 less task and
dependency), and, likely, makes the code slightly more comprehensible: the con-
tinuation follows the predecessor sequentially, and synchronizations/overlap are
managed implicitly by the task scheduler.

1 void CalcForceForNodes(Domain & domain) {
2 omp_event_handle_t event;
3 # pragma omp task detach(event) depend(out: recvRequest)
4 {
5 MPI_Irecv(comBuf, ..., recvRequest) ;
6 MPIX_Detach(&req, omp_fulfill_event, ev_handle);
7 }
8 [...] /* computation */
9 # pragma omp task depend(in: recvRequest)

10 {
11 for (Index_t i = 0; i < opCount; ++i)
12 (domain.*dest)(dx*dy*(dz - 1) + i) += comBuf[i] ;
13 }
14 }

Listing 1.7. LULESH task-based porting using task detach

1 void CalcForceForNodes(Domain & domain) {
2 # pragma omp task untied
3 {
4 MPI_Recv(comBuf, ...) ;
5 for (Index_t i = 0; i < opCount; ++i)
6 (domain.*dest)(dx*dy*(dz - 1) + i) += comBuf[i] ;
7 }
8 [...] /* computation */
9 }

Listing 1.8. LULESH task-based porting using runtime interfaces

5 Related Works

Weak Dependencies. In cases presenting more concurrency than our minimal
example, the taskwait detach proposal is not sufficient compared to the task
detach. In the example Listing 1.9, T3 depends on T1/T2, and T3/T4 cannot
start until T2 executed and the event is fulfilled.

76 R. Pereira et al.

1 # pragma omp task depend(out: x) // T1
2 [...]
3
4 # pragma omp task depend(out: y) detach(hdl) // T2
5 [...]
6
7 # pragma omp task depend(in: x, y) // T3
8 [...]
9

10 # pragma omp task depend(in: y) // T4
11 [...]

Listing 1.9. Weak dependencies motivating example

In [17], authors introduce weak dependencies for OpenMP tasking. Weak
dependencies could preserve both the concurrency and the task management
costs saving from our proposal, as depicted on Listing 1.10. This code presents
the same concurrency as the previous one, but T4 is executed as part of T2
following the C sequential order of execution, without the need of explicitly
creating the continuation task T4 as previously.

1 # pragma omp task depend(out: x) // T1
2 [...]
3
4 # pragma omp task depend(weakin: x) // T2
5 {
6 [...]
7 # pragma omp taskwait detach(hdl)
8
9 # pragma omp task depend(in: x) // T3

10 [...]
11
12 [...] // T4
13 }

Listing 1.10. Weak dependencies example

Suspending OpenMP Tasks. The current OpenMP specifications on taskyield
construct, and untied clause are fully implementation-dependent. For instance,
in GCC untied tasks will never change threads, and taskyield is implemented
as a no-op but is yet fully standard-compliant. In LLVM, the compiler gen-
erates multiple continuations on each scheduling point appearing in the out-
ermost scope of the task, which are then sent at run-time to the task sched-
uler in a continuation-passing style (CPS). It privatizes untied tasks outermost
scope variables to ensure that the continuations restart in a coherent state. The
taskyield construct is implemented as a continuation task if appearing in the
outermost scope of the task; else, a new task is stacked on the current thread
(stack-algorithm presented in [22]). In the MPC-OMP runtime (implementing
both GCC and LLVM ABI), the LLVM task continuations can be supported. In

Suspending OpenMP Tasks on Asynchronous Events 77

addition, tasks can be annotated to run on their own execution context (fixed-size
stack + registers set). If suspending deep into the task call-stack, the task can
be preempted for later resume on any thread without blocking onto its current
thread. Every approach has its own limits. With GCC, scheduling flexibility is
poor and may even lead to deadlocks when composing with other asynchronous
programming models such as MPI, with threads spinning onto the same blocking
task. With LLVM, scheduling points and variables must be fully known when
compiling the task routine, which cannot be achieved for C Variable-Length
Array (VLA) or Linux alloca routine leading to undefined behaviors7. With
MPC-OMP, annotated tasks execution context may be created unnecessarily if
the task never actually suspends; and statically fixing the stack size is an issue:
too small, execution may stack-overflow; too big, unnecessary memory usage
could impact performances. In [2], authors explore automated verification of
stack size requirements for C programs at compile-time, that could complement
MPC-OMP fixed-size stacks.

As a taskwait extension, our proposal integrates well into LLVM CPS task-
ing: the compiler could generate a continuation upon detecting a taskwait
detach(event) construct on a task’ outter-most scope. In other cases, stack-
ing tasks frame on top of each other as done currently by LLVM/MPC restrict
scheduling decision possibilities.

OpenMP as a Low-Level Parallel Runtime. OpenMP is used as a low-level back-
end runtime for intra-node parallelization of higher-level programming mod-
els such as Kokkos [24], PGAS (XcalableMP [15]), or Domain Specific Lan-
guages/Abstraction (DSL/DSA) (Devito [11,13], Nablab [10]). They provide a
higher abstraction that enables the user to write its code relieving programmers
from low-level parallel implementation details. In the specific case of DSL using
MLIR [9] compilers, OpenMP is easily targetable, and merging/suspending tasks
can be achieved. Our contribution could be used by these programming models
whenever a task must suspend.

Suspending Tasks in Rust. The Rust programming language [8] supports asyn-
chronous programming which, much like OpenMP, allows sequential-looking
code to be run concurrently. A report of the Rust programming language in
2017 showed interest in CPS tasking as it is a lightweight solution that does not
require per-tasks stack8. An experimental implementation was made the same
year9 to suspend tasks using async/await syntax. The authors mention that
“[Rust] coroutines are translated to state machines internally by the compiler ”
which is similar to the LLVM untied tasks implementation. In addition, Rust
is currently implementing a Generator type that is not yet in release builds of
the language, to suspend tasks with the same continuation-passing style10.
7 https://github.com/llvm/llvm-project/issues/61499.
8 https://github.com/rust-lang/rfcs/blob/master/text/0230-remove-runtime.md.
9 https://github.com/rust-lang/rfcs/blob/master/text/2033-experimental-coroutin

es.md.
10 https://doc.rust-lang.org/std/ops/trait.Generator.html.

https://github.com/llvm/llvm-project/issues/61499
https://github.com/rust-lang/rfcs/blob/master/text/0230-remove-runtime.md
https://github.com/rust-lang/rfcs/blob/master/text/2033-experimental-coroutines.md
https://github.com/rust-lang/rfcs/blob/master/text/2033-experimental-coroutines.md
https://doc.rust-lang.org/std/ops/trait.Generator.html

78 R. Pereira et al.

6 Conclusion

Many-core and heterogeneous architectures impose on users to compose mul-
tiple asynchronous programming models. OpenMP managing CPUs resources
is responsible for orchestrating the suspension and progression of each asyn-
chronous operation. In this paper, we proposed to extend the specifications
by adding the detach(event) clause on the taskwait construct and defining
the omp_taskwait_detach(event) API with a standard ABI. These extensions
reduce programming and runtime overhead and are a step towards automating
synchronizations overlap by OpenMP task scheduler when mixing asynchronous
programming models.

In the future, we would like to evaluate OpenMP as an asynchronous progres-
sion operation engine: as depicted on Listing 1.5 line 4, remains the question of
asynchronous progression responsibility. CUDA stream or MPI requests, asyn-
chronous operations need CPU cycles at some point to progress. Most runtimes
currently come with dedicated (p)threads blocking at the kernel level; another
way is possible through cooperative task scheduling via OpenMP.

Acknowledgments. This preprint has not undergone peer review (when applica-
ble) or any post-submission improvements or correction. The Version of Record
of this contribution is published in IWOMP 2023 and is available online at
https://doi.org/<DOI>

References

1. Bak, S., et al.: OpenMP application experiences: porting to accelerated nodes.
Parallel Comput. 109, 102856 (2022). https://doi.org/10.1016/j.parco.2021.102856

2. Carbonneaux, Q., Hoffmann, J., Ramananandro, T., Shao, Z.: End-to-End Verifica-
tion of Stack-Space Bounds for C Programs. In: Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. PLDI
2014, New York, NY, USA, pp. 270–281. Association for Computing Machinery
(2014). https://doi.org/10.1145/2594291.2594301

3. Ferat, M., Pereira, R., Roussel, A., Carribault, P., Steffenel, L.A., Gautier, T.:
Enhancing MPI+OpenMP task based applications for heterogeneous architectures
with GPU Support. In: Klemm, M., de Supinski, B.R., Klinkenberg, J., Neth, B.
(eds.) OpenMP in a Modern World: From Multi-device Support to Meta Program-
ming, pp. 3–16. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15922-
0_1

4. Grospellier, G., Lelandais, B.: The Arcane Development Framework. In: Proceed-
ings of the 8th Workshop on Parallel/High-Performance Object-Oriented Scien-
tific Computing. POOSC 2009, New York, NY, USA. Association for Computing
Machinery (2009). https://doi.org/10.1145/1595655.1595659

5. Iwasaki, S., Amer, A., Taura, K., Seo, S., Balaji, P.: BOLT: optimizing OpenMP
parallel regions with user-level threads. In: 2019 28th International Conference
on Parallel Architectures and Compilation Techniques (PACT), pp. 29–42 (2019).
https://doi.org/10.1109/PACT.2019.00011

https://doi.org/10.1016/j.parco.2021.102856
https://doi.org/10.1145/2594291.2594301
https://doi.org/10.1007/978-3-031-15922-0_1
https://doi.org/10.1007/978-3-031-15922-0_1
https://doi.org/10.1145/1595655.1595659
https://doi.org/10.1109/PACT.2019.00011

Suspending OpenMP Tasks on Asynchronous Events 79

6. Kale, V., Lu, W., Curtis, A., Malik, A.M., Chapman, B., Hernandez, O.: Toward
supporting multi-GPU targets via taskloop and user-defined schedules. In: Milfeld,
K., de Supinski, B.R., Koesterke, L., Klinkenberg, J. (eds.) IWOMP 2020. LNCS,
vol. 12295, pp. 295–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-58144-2_19

7. Karlin, I.: LULESH programming model and performance ports overview. Techni-
cal report, December 2012. https://doi.org/10.2172/1059462

8. Klabnik, S., Nichols, C.: The Rust Programming Language. No Starch Press, USA
(2018)

9. Lattner, C., et al.: MLIR: Scaling compiler infrastructure for domain specific com-
putation. In: 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pp. 2–14 (2021). https://doi.org/10.1109/CGO51591.2021.
9370308

10. Lelandais, B., Oudot, M.P., Combemale, B.: Fostering metamodels and grammars
within a dedicated environment for HPC: the NabLab environment (Tool Demo).
In: Proceedings of the 11th ACM SIGPLAN International Conference on Software
Language Engineering. SLE 2018, New York, NY, USA, pp. 200–204. Association
for Computing Machinery (2018). https://doi.org/10.1145/3276604.3276620

11. Louboutin, M., et al.: Devito (v3.1.0): an embedded domain-specific language for
finite differences and geophysical exploration. Geosci. Model Dev. 12(3), 1165–1187
(2019). https://doi.org/10.5194/gmd-12-1165-2019

12. Lu, H., Seo, S., Balaji, P.: MPI+ULT: overlapping communication and compu-
tation with user-level threads. In: 2015 IEEE 17th International Conference on
High Performance Computing and Communications, 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International
Conference on Embedded Software and Systems, pp. 444–454 (2015). https://doi.
org/10.1109/HPCC-CSS-ICESS.2015.82

13. Luporini, F., et al.: Architecture and performance of devito, a system for automated
stencil computation. ACM Trans. Math. Softw. 46(1) (2020). https://doi.org/10.
1145/3374916

14. Meadows, L., Ishikawa, K.: OpenMP tasking and MPI in a Lattice QCD bench-
mark. In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 77–91. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65578-9_6

15. Murai, H., Nakao, M., Sato, M.: XcalableMP programming model and language.
In: Sato, M. (ed.) XcalableMP PGAS Programming Language, pp. 1–71. Springer,
Singapore (2021). https://doi.org/10.1007/978-981-15-7683-6_1

16. Pereira, R., Roussel, A., Carribault, P., Gautier, T.: Communication-aware task
scheduling strategy in hybrid MPI+OpenMP applications. In: McIntosh-Smith,
S., de Supinski, B.R., Klinkenberg, J. (eds.) IWOMP 2021. LNCS, vol. 12870, pp.
197–210. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85262-7_14

17. Perez, J.M., Beltran, V., Labarta, J., Ayguadé, E.: Improving the integration of
task nesting and dependencies in OpenMP. In: 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 809–818 (2017). https://doi.
org/10.1109/IPDPS.2017.69

18. Protze, J., Hermanns, M.A., Demiralp, A., Müller, M.S., Kuhlen, T.: MPI detach -
asynchronous local completion. In: Proceedings of the 27th European MPI Users’
Group Meeting. EuroMPI/USA 2020, New York, NY, USA, pp. 71–80. Association
for Computing Machinery (2020). https://doi.org/10.1145/3416315.3416323

https://doi.org/10.1007/978-3-030-58144-2_19
https://doi.org/10.1007/978-3-030-58144-2_19
https://doi.org/10.2172/1059462
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/3276604.3276620
https://doi.org/10.5194/gmd-12-1165-2019
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.82
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.82
https://doi.org/10.1145/3374916
https://doi.org/10.1145/3374916
https://doi.org/10.1007/978-3-319-65578-9_6
https://doi.org/10.1007/978-981-15-7683-6_1
https://doi.org/10.1007/978-3-030-85262-7_14
https://doi.org/10.1109/IPDPS.2017.69
https://doi.org/10.1109/IPDPS.2017.69
https://doi.org/10.1145/3416315.3416323

80 R. Pereira et al.

19. Richard, J., Latu, G., Bigot, J., Gautier, T.: Fine-Grained MPI+OpenMP plasma
simulations: communication overlap with dependent tasks. In: Yahyapour, R. (ed.)
Euro-Par 2019. LNCS, vol. 11725, pp. 419–433. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29400-7_30

20. Sala, K., Teruel, X., Perez, J.M., Peña, A.J., Beltran, V., Labarta, J.: Integrating
blocking and non-blocking MPI primitives with task-based programming models.
Parallel Comput. 85, 153–166 (2019). https://doi.org/10.1016/j.parco.2018.12.008

21. Schuchart, J., Samfass, P., Niethammer, C., Gracia, J., Bosilca, G.: Callback-based
completion notification using MPI Continuations. Parallel Comput. 106, 102793
(2021). https://doi.org/10.1016/j.parco.2021.102793

22. Schuchart, J., Tsugane, K., Gracia, J., Sato, M.: The impact of taskyield on the
design of tasks communicating through MPI. In: de Supinski, B.R., Valero-Lara,
P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.) IWOMP 2018. LNCS,
vol. 11128, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98521-3_1

23. Tian, S., Doerfert, J., Chapman, B.: Concurrent execution of deferred OpenMP
target tasks with hidden helper threads. In: Chapman, B., Moreira, J. (eds.) Lan-
guages and Compilers for Parallel Computing, pp. 41–56. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-95953-1_4

24. Trott, C.R., et al.: Kokkos 3: programming model extensions for the exascale
era. IEEE Trans. Parallel Distrib. Syst. 33(4), 805–817 (2022). https://doi.org/
10.1109/TPDS.2021.3097283

25. Véstias, M., Neto, H.: Trends of CPU, GPU and FPGA for high-performance com-
puting. In: 2014 24th International Conference on Field Programmable Logic and
Applications (FPL), pp. 1–6 (2014). https://doi.org/10.1109/FPL.2014.6927483

https://doi.org/10.1007/978-3-030-29400-7_30
https://doi.org/10.1007/978-3-030-29400-7_30
https://doi.org/10.1016/j.parco.2018.12.008
https://doi.org/10.1016/j.parco.2021.102793
https://doi.org/10.1007/978-3-319-98521-3_1
https://doi.org/10.1007/978-3-319-98521-3_1
https://doi.org/10.1007/978-3-030-95953-1_4
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/FPL.2014.6927483

How to Efficiently Parallelize Irregular
DOACROSS Loops Using Fine Granularity
and OpenMP Tasks: The SPEC mcf Case

Juan Salamanca(B) and Alexandro Baldassin

DEMAC/IGCE – Sao Paulo State University (Unesp), Rio Claro, SP, Brazil
{juan,alex}@rc.unesp.br

Abstract. There are certain loops that are considered hard to paral-
lelize. Examples of this type of loops are those that have loop-carried
dependencies (DOACROSS loops) and that are also irregular, that is, the
dependencies between iterations vary depending on the context. Many
techniques have been studied before to be able to parallelize this type
of loops, however in OpenMP standard there is no efficient way to par-
allelize them. From the literature, it is known that many of these loops
can be efficiently parallelized using fine-grained techniques (identifying
strongly connected components). On the other hand, the most efficient
way to parallelize this type of loops using OpenMP tasks has not been
explored. Thus, this paper discusses the various forms of parallelization
of this type of loops using SPEC 429.mcf as a case study; particularly,
how to parallelize mcf using fine granularity in tasks. For that, this paper
proposes new constructs (ste_for and ste) and speculative dependency-
types (spec_in, spec_out, and spec_inout). An initial evaluation using
different implementations to parallelize the mcf hottest loop shows that
it is possible to achieve speed-ups of up to 2.44× with respect to the
task-depend version using Speculative Task Execution.

Keywords: DOACROSS Parallelization · Speculative Tasks ·
OpenMP

1 Introduction

Some loops are hard to parallelize because they can have dependencies between
iterations that are irregular. Many techniques have been studied to parallelize
them such as DOACROSS [3], DSWP [13], HELIX [2,9], and Thread-Level Spec-
ulation (TLS) [14,20]. As a conclusion, it can be stated that a fine-grained
parallelization technique using the strongly connected components of a data
dependency graph (DDG) of the loop is often the best option when the depen-
dencies and components can be identified (generally this is also complicated).
For instance, a very famous representative of such loops is the SPECint 2006

This work is supported by the Sao Paulo Research Foundation (grants 18/07446-8,
20/01665-0, and 18/15519-5).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 81–96, 2023.
https://doi.org/10.1007/978-3-031-40744-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_6&domain=pdf
http://orcid.org/0000-0002-0569-2806
http://orcid.org/0000-0001-8824-3055
https://doi.org/10.1007/978-3-031-40744-4_6

82 J. Salamanca and A. Baldassin

Fig. 1. mcf’s hottest loop

429.mcf benchmark [6] hottest loop (shown in Fig. 1) for which speed-ups can
be obtained using fine-grained TLS [14]. There are other loops of this type such
as the hottest loops of susan_c and bitcount benchmarks from cBench [4].

An important question is how to bring that lesson learned to an implemen-
tation of this type of parallelization with the current OpenMP specification.
The first option that may come to mind is to use the DOACROSS mecha-
nisms that are part of OpenMP such as the ordered clause of the construct
for and the ordered doacross sink/source construct to surround the serial
component [12]. Figure 2 shows the mcf code parallelized using this technique.
Unfortunately, this implementation offers us very large slowdowns which may
be improved by changing the schedule clause of the for construct to auto,
but still the performance is very poor (7.14× of loop slowdown respect to serial
execution).

A second lesson that previous works offer us is that strip mining should be
used in order to improve the locality of data in memory, avoid false sharing,
and reduce synchronization or speculation overhead. However, when carrying
out the transformation, obtaining a single serial component as the body of the
loop, then, as learned, other transformations are necessary, such as loop fission to
separate the components and scalar expansion to communicate them. Then the
OpenMP DOACROSS technique can be applied again as shown in Fig. 3. The
performance of this new implementation improves the performance with respect
to the previous one but still no speed-ups are obtained (0.92 of loop speed-up).

Another lesson learned is that the serial component or stage of a loop does
not always have to be synchronized, since the dependency can be may loop-
carried, that is, it does not exist or is transient for certain contexts (those loops
are called may DOACROSS loops); in those cases the dependency can be spec-
ulated. STL [17] and FOR-TLS [14] were proposed for speculative paralleliza-
tion in OpenMP. However, both STL and FOR-TLS were designed to be coarse
grained, that is, they speculate entire iterations. So they could not be used for
our purpose, that is, to achieve a fine-grained parallelization using strongly con-
nected components, strip mining and only speculating the serial stage1.

1 A stage represents a component of DDG after strip mining, loop fission and scalar
expansion.

DOACROSS Parallelization Using Fine Granularity and OpenMP Tasks 83

Fig. 2. Restructured mcf’s hottest loop
using ordered (DOACROSS-FINE)

Fig. 3. mcf’s loop fine-grained paralleliza-
tion using transformations and ordered
doacross (DOACROSS-TILING)

On the other hand, OpenMP provides tasks as an extremely powerful tool due
to its level of expressiveness [1]. So, one could try to parallelize mcf with fine gran-
ularity using a task for each stage and synchronizing only the serial one using
task dependencies as shown in Fig. 4. However, this implementation is not efficient
because the stages of the same iteration have communication and must be executed
serially since one depends on the other. So, using a task for each stage increases
the communication overhead between threads. For the mcf case, it would be better
to use a single task with all the components of an iteration inside it. However, the
performance is not much better with respect to the previous implementation since
we are synchronizing the entire iteration with task depend and not as we did using
ordered doacross in only the serial stage.

Due to this limitation, this paper proposes the specification of speculative
type-dependencies in tasks, as seen in Fig. 5, where it is also shown the use of
a new construct ste, allowing the stage that will be speculated to be indicated.
Thus, tasks can be used to parallelize DOACROSS loops with fine granularity
and fulfilling all the lessons learned mentioned above. These types of dependen-
cies generate the Speculative Task Execution (STE) mechanism [15]. The key
use of STE is to speculate a task with data or control dependencies but that is
expected to be free of data dependencies at runtime or with a control depen-
dency whose value is probably invariant for many iterations in a while loop.

84 J. Salamanca and A. Baldassin

Fig. 4. mcf parallelization using loop
transformations and a task for each stage
(TASK-FULL)

Fig. 5. mcf fine-grained parallelization
using STE and a task for each strip-mined
iteration (STE-FINE)

STE needs mechanisms that support conflict detection, speculative storage, roll-
back of transactions, and ordered transactions. Current commodity off-the-shelf
microprocessors provide support for speculation by means of hardware trans-
actions [7,8]2. Thus, HTM has been used for implementing other speculative
algorithms different from what it was originally created for [14,18]. In the same
spirit, this work proposes a novel utility for HTM enabling the implementation
of three key features required by STE: (a) conflict detection; (b) speculative
storage; and (c) transaction roll-back.

Speculative tasks of hot-code regions can be generated by the taskloop con-
struct or by the OpenMP task construct in three ways: (a) speculative tasks
generated in a loop parallelized with taskloop where there are possible depen-
dencies between iterations (Speculative Taskloop [17]); (b) speculative tasks gen-
erated within a while where the value of the stop condition depends on the result

2 Intel recently included support for TSX and new instructions for suspend/resume in
its Sapphire Rapids processors.

DOACROSS Parallelization Using Fine Granularity and OpenMP Tasks 85

of the tasks of the current iteration (Speculative While [18]); and (c) speculative
tasks generated by specifying speculative dependencies in OpenMP tasks (the
spec_in, spec_out, and spec_inout dependency-types). In this work we will
focus on the third way to generate speculative tasks: speculative dependencies
in tasks.

In this paper we make the following contributions:

– We propose Speculative Task Execution in OpenMP — the novel ste_for
and ste constructs and the spec_in, spec_out, spec_inout speculative
dependency-types — to parallelize iterations speculating data dependencies
between tasks through HTM’s speculative support in hard-to-parallelize may
DOACROSS loops, such as the mcf hottest loop;

– We describe an algorithm to implement speculative task dependencies using
hardware transactional memory and code transformations, enabling the spec-
ulative execution of tasks from multiple for-loop iterations (Sect. 3.2);

– We evaluate the performance of this technique using the mcf benchmark. We
further compare against the fine-grained parallelization of this benchmark
using the task depend and the depend doacross constructs from standard
OpenMP. The experimental results are promising with an average increase in
the speed-up of 2.44× when compared to the non-speculative version using
OpenMP tasks with dependencies (Sect. 5).

This paper is organized as follows. Section 2 describes the background mate-
rial. Section 3 details the design and implementation of Speculative Task Execu-
tion on HTM. Benchmarks, methodology and settings are described in Sect. 4.
Section 5 presents the experimental evaluation for the implementation of STE
over HTM along with an analysis of the preliminary results. Finally, Sect. 6 con-
cludes the work.

2 Background

This work is in the intersection of four different subjects: Transactional Memory,
DOACROSS Parallelization, Thread-Level Speculation, and Task-based Paral-
lelism. In the rest of this section we provide a background of each of these topics.

2.1 Transactional Memory

Transactional Memory (TM) uses the concept of transactions, borrowed from the
Database community, to provide atomic and isolated updates to volatile memory
(DRAM) [5]. Implementing transactions requires devising a version management
and a conflict detection scheme. Conflict detection determines whether two oper-
ations executed in separate transactions cause a conflict, i.e., if they access a
common memory location and at least one of the operations is a write. A conflict
causes at least one of the transactions involved in the conflict to abort and it
may re-execute.

86 J. Salamanca and A. Baldassin

2.2 DOACROSS Parallelization

DOACROSS (proposed by Cytron et al. [3]) is a parallelizing algorithm for loops
with loop-carried dependencies. The main idea is to distribute the iterations
cyclically among the threads trying to simultaneously execute many iterations.
As the algorithm makes an effort to parallelize loops with loop-carried depen-
dencies, inter-thread communication is required to forward dependencies and
synchronize shared resources.

DOACROSS in OpenMP. DOACROSS support in OpenMP is a variation
of the DOACROSS algorithm [3] and was proposed by Shirako et al. [19] as an
OpenMP construct, which was implemented in OpenMP 4.5 [10]. This construct,
ordered, is used to annotate sequential loop components so as to enable fine-
grained parallelism.

In this paper, we compare the performance of Speculative Task Execution
with DOACROSS in OpenMP because is the main method available in OpenMP
to parallelize loops with loop-carried dependencies of production codes. Nowa-
days, speculation is still not commonly employed for parallelization of loops in
this kind of code.

2.3 Thread-Level Speculation

Thread-Level Speculation is a technique that allows for effectively parallelizing
may DOACROSS loops that have a low probability of materializing their loop-
carried dependencies at runtime. The lower this probability the more likely it is
to achieve a performant parallelization. In the case that the loop is effectively
DOACROSS at runtime, if the fraction of iterations with loop-carried depen-
dencies is low with respect to the total number of iterations, TLS can still be
performant; however, it also depends on the pattern of distribution of these
loop-carried dependencies throughout loop iterations at runtime [14]. For per-
formance, TLS requires hardware mechanisms that support four primary fea-
tures: conflict detection, speculative storage, in-order commit of transactions,
and transaction roll-back. HTM implements three out of the four key features
required by TLS: conflict detection, speculative storage, and transaction roll-
back. Therefore, these architectures have the potential to be used to implement
TLS [14]. Our work is based on this approach but it differs in that we use Task-
based Parallelism and fine-grained speculation instead of using the OpenMP’s
for-loop worksharing construct and coarse-grained speculation.

2.4 Fine-Grained Parallelization

Murphy et al. proposed fine-grained TLS and described an implementation on
emulated hardware for speculative execution [9]. The goal of their fine-grained
approach is to create transactions that surround only segments of a loop iteration
instead of a whole iteration. To accomplish that, they use sequential segments

DOACROSS Parallelization Using Fine Granularity and OpenMP Tasks 87

(a) DDG (b) SCCs

Fig. 6. DDG and SCCs of mcf’s hottest loop.

of HELIX [2] to define the beginning and the end of transactions. Fine-grained
TLS decreases the overhead of speculating a whole iteration in comparison with
coarse-grained speculation and avoids capacity aborts because not all reads and
writes of an iteration are performed within the same transaction. Besides, in
the case of a conflict only a sequential segment is rolled-back and retried (not
the whole iteration). However, the HTM overhead may increase because, with
multiple transactions per iteration, more transactions are started and finished.

Murphy et al.’s implementation of this approach surrounds sequential seg-
ments within transactions and distributes iterations to cores in a round-robin
fashion. Hence they do not use techniques — such as strip mining or loop-
unrolling — to group iterations. Salamanca et al. showed that strip mining is a
code transformation that allows decreasing overhead of starting/finishing trans-
actions, aborts, and false sharing when fine-grained TLS is used with off-the-shelf
speculative support [14].

Figure 1 shows the serial code for the hottest loop of mcf. As explained earlier,
to implement fine-grained parallelization, it is necessary to build the data depen-
dence graph (DDG) of the code and to find the strongly connected components
(SCCs) of the graph (Fig. 6). Each SCC with (may) loop-carried dependencies is
considered a sequential segment, whereas each SCC without loop-carried depen-
dencies is considered a parallel segment. Only sequential segments are speculated
using TLS. In the case of fine-grained DOACROSS, sequential segments are syn-
chronized. Figure 2 shows the SCCs (A, B, etc.) using ordered parallelization.
For the mcf hottest loop, the component D is a sequential segment.

To implement fine-grained TLS with strip mining successfully, it is necessary
to restructure the loop using well-known code-transformation techniques such as
loop fission and scalar expansion [21]. Loop fission is used to separate each SCC
in a loop iterating S_SIZE times. Each one of these loops can be considered a
stage. If scalar variables need be communicated between stages, scalar expansion
is used. Thus, thread-local buffers are created to store dependency variables for
each iteration of a producer stage. The analogous OpenMP implementation for
fine-grained DOACROSS of the mcf’s hottest loop is shown in Fig. 3.

2.5 Task-Based Parallelism

Using tasks, the execution can be modeled as a directed acyclic graph, where
nodes are tasks and edges define data dependencies between tasks. A runtime
system schedules tasks whose dependencies are resolved over available worker
threads, thus enabling load balancing and work stealing [1].

88 J. Salamanca and A. Baldassin

Tasks in OpenMP. Tasks in OpenMP are blocks of code that the compiler
envelops and arranges to be executed in parallel. Tasks were added to OpenMP in
version 3.0 [1]. In OpenMP 4.0, the depend clause and the taskgroup construct
were incorporated and, in OpenMP 4.5, the taskloop construct was proposed
and added to the specification [10]. Like worksharing constructs, tasks are gen-
erally created inside of a parallel region. To spawn each task once, the single
or master constructs are used. The ordering of tasks is not defined, but there
are ways to express it: (a) with directives such as taskgroup or taskwait; or (b)
with task dependencies (depend clause). Variables that are used in tasks can be
specified with data-sharing attribute clauses (private, firstprivate, shared,
etc.) or, by default, data accessed by a task is shared. The depend clause takes a
type (in, out, or inout) followed by a variable or a list of variables. These types
establish an order between sibling tasks. The taskwait clause waits for the child
tasks of the current task. taskgroup is similar to taskwait but it waits for all
descendant tasks created in the block. Moreover, task reduction was introduced
in OpenMP 5.0 [11].

3 Speculative Task Execution

Speculative Task Execution can be used to speculate data dependencies when a
taskloop parallelization takes place (Speculative Taskloop), but the idea can be
generalized to OpenMP tasks with data dependencies where these rarely exist.
Consider the loop of Fig. 7 which shows a code parallelized using OpenMP tasks
with the depend clause. STE can take advantage of the rare execution of B (the
programmer knows that success is true only in 1% of the total executions)
re-specifying the input dependency of the first task (depend(in: state)) as a
speculative input dependency (depend(spec_in:state)). It indicates that the
first task of the example turns into a speculative task but it also implies that
spec_out dependencies on state may be ignored. Thus, some instances of the
first task are not dependent of prior instances of the second task as shown in
Fig. 8b. However, when success is true, it aborts all speculative tasks that are
dependent on the current value of state, being re-executed.

3.1 The ste_for Construct and the Speculative Dependency Types

Speculative Task Execution is implemented over OpenMP using HTM
through the ste_for construct and the spec_in, spec_out, and spec_inout
dependency-types. The design of the ste_for construct is as follows:

#pragma omp ste_for iterator(ind_var)
for-loop

where:

– ind_var is the induction variable of the for loop;

DOACROSS Parallelization Using Fine Granularity and OpenMP Tasks 89

Fig. 7. Loop with a loop-carried dependency parallelized using OpenMP tasks and
speculative dependencies

Fig. 8. Possible execution flows of Fig. 7’s loop

The task-construct specification allows the use of the depend clause, which
enforces additional constraints on the scheduling of tasks. These constraints
establish dependencies only between sibling tasks. Using STE, the constraints
are relaxed because the dependencies are speculated, for that, new dependency
types are specified in the depend clause:

depend(dependency-type : list))

where:

– dependency-type is one of the following: in, out, inout, spec_in, spec_out,
and spec_inout;

– list consists of a collection of one or more list-items separated by commas;
– list-item is a scalar variable.

The ste Construct. For the speculative execution of tasks, a new construct
called ste is also added. This construct allows us to specify the code region of

90 J. Salamanca and A. Baldassin

the task that we want to be speculative thus enabling fine-grained parallelization
by speculating only the serial stages and not the entire iteration. This construct
can only be used inside a task that has some spec_in dependency specified.
The design of the construct is as follows:

#pragma omp ste spec_private(list)
structured-block

where:

– list consists of a collection of one or more list-items separated by commas;
– list-item is a scalar variable.

Figure 5 shows the parallelization of mcf’s loop using the proposed construct
and dependency-types. To improve performance and remove false dependencies,
we reuse code transformations for STL [15], such as spec_private and the tls
construct.

3.2 Implementing Speculative Task Execution on HTM

We implement Speculative Task Execution (STE) using HTM and similar code
transformations as proposed in HTM-TLS [14], FOR-TLS [14], and STL [15,17].
However, an important difference between STE and the techniques mentioned
is that the transactions are started by each task region marked with the ste
construct and no longer by each iteration (or iteration strip) as in HTM-TLS.
For instance, Fig. 9 shows a sketch of the Fig. 5’s code (STE) converted to
standard OpenMP with HTM intrinsics using Algorithm 1.

Each speculative region in a task (marked with the ste construct) has a
BEGIN function inserted at the beginning and an END function inserted at
the end in Fig. 9. The task marked with spec_out or spec_inout updates the
variable next_basket (Line 35 of Fig. 9), which is used to implement ordered
transactions at the END function. The variable next_basket will be used by
all speculative tasks marked with spec_in(basket_size) to validate whether
they have to commit or abort. The method Spec_Private_Scalar_Algorithm
(Line 16 of Algorithm 1) is explained in a previous work [15].

4 Benchmarks, Methodology and Experimental Setup

The performance assessment in this work reports speed-ups and abort/commit
ratios (transaction outcome) for the STL [17] and STE parallelizations (two
versions: (a) using a task for each iteration (STE-FINE); and (b) using a task
for each iteration stage (STE-FULL)), and speed-ups for the task-depend (two
versions like STE) and doacrosss (two versions: using loop transformations and
not) parallelizations of the hottest loop from the 429.mcf application from the
SPEC CPU 2006 [6] benchmark suite running on Intel Core. For all experiments,
the reference input for mcf is used. The baseline for speed-up comparisons is the

DOACROSS Parallelization Using Fine Granularity and OpenMP Tasks 91

Fig. 9. Fig. 5’s code converted to
standard OpenMP

Algorithm 1: Mechanism for STE with
Speculative Dependencies

Data: ste_for construct (directive D and for-loop
L), and induction_var

Result: Transformed code to be parallelized with
STE on HTM

1 Create BEGIN and END functions;
2 Create hashmap map_next ;
3 foreach task ∈ (L.spec_in_list ∪

L.spec_inout_list) do
4 Set induction_var as firstprivate in task;
5 foreach ste_task ∈ task.ste_list do
6 Outside of the construct, create a new

variable next whose identifier is “next"
plus “<ste_task.spec_variable.id>" of the
same type of the induction variable;

7 Insert next into map_next;
8 Initialize the value of next with the initial

value of induction_var;
9 Set next as shared in task;

10 Create a new variable spec whose identifier
is spec of type char;

11 Create a statement st_begin to attribute
to spec the value returned by the call to
the BEGIN function;

12 Insert st_begin before ste_task.body;
13 Insert a call to the END function after

ste_task.body;
14 if ste_task.spec_private_list �= NULL

then
15 foreach scalar var ∈

ste_task.spec_private_list do
16 Run

Spec_Private_Scalar_Algorithm;

17 if (task ∈ L.spec_inout_list) then
18 Create a statement st_next to

increment the value of next by
L.step.value;

19 At the end of ste_task.body, insert
st_next;

20 foreach task ∈ L.spec_out_list do
21 foreach var ∈ task.spec_out_list do
22 next ← map_next[var.id];
23 Create a statement st_next to increment

the value of next by L.step.value;
24 At the end of task.body, insert st_next;

serial execution of the same benchmark program compiled at the same optimiza-
tion level. Loop and whole-program times are used to calculate speed-ups. Each
software thread is bound to a unique core. Each benchmark was run twenty times
and the average time is used. Runtime variations were negligible and are not pre-
sented. We made manual code transformations to the evaluated loops following
the algorithms described in Sect. 3.2, thus obtaining the STE parallelization of
the benchmarks.

429.mcf is a benchmark which is derived from MCF (Minimum-Cost Flow
Problem), a program used for single-depot vehicle scheduling in public mass

92 J. Salamanca and A. Baldassin

Table 1. SPEC mcf Characterization

transportation. The benchmark version uses almost exclusively integer arith-
metic [6]. The first part of the Table 1 lists some features of the 429.mcf hottest
loop: (1) the ID of the loop in this study; (2) the benchmark of the loop; (3) the
file/line of the target loop in the source code; and (4) the number of invocations
of the loop in the entire program.

The programs using tasks were compiled at optimization level -O3 and with
the set of flags specified in each benchmark program. Code compiled with clang
-fopenmp was linked against the modified OpenMP runtime (libomp12) to
enable monotonic scheduling [17]. doacross parallelization was compiled with
Clang 12.0 and linked against libomp12. To guarantee that each software thread
is bound to a unique core, the environment variable KMP_AFFINITY was set to
granularity = fine, balanced. This experimental evaluation was carried out
on an Intel Core i7-6700HQ processor with 4 cores with 2-way SMT, running at
2.6GHz, with 16 GB of memory on Ubuntu 18.04.5 LTS (GNU/Linux 4.15.0-
139-generic x86_64).3 The cache-line prefetcher is enabled by default. Each core
has a 32 KB L1 data cache and a 256 KB L2 unified cache. The four cores share
an 6144KB L3 cache.

The implementations of mcf are the following:

– DOACROSS-FINE uses the OpenMP ordered doacross construct and
fine-grained parallelization as in Fig. 2’s code.

– DOACROS-TILING uses the ordered construct and loop transformations
to implement fine-grained parallelization as in Fig. 3’s code.

– TASK-FINE uses the task depend construct and loop transformations. A
task is used to execute an iteration with three stages.

– TASK-FULL uses the task depend construct and loop transformations as
in Fig. 4’s code. A task is used for each stage.

– STE-FINE uses the proposed ste_for construct, speculative dependencies,
and loop transformations to implement a parallelization with fine granularity.
A task is created for each strip-mined iteration as in Fig. 5

– STE-FULL is similar to STE-FINE but a task is created for each stage.
– STL uses the taskloop construct and speculative execution to parallelize

entire strip-mined iterations as explained in previous works [15,17].

3 It is important to mention that in June 2021 Intel disabled Intel TSX-NI from all
its processors. Kernels newer than the one used in this experimentation disabled
HTM support or allowed it but aborting all transactions, for this reason the used
workstation has not yet been updated and is the only available off-the-shelf hardware
option we have to test our ideas at the moment. Recent Intel processors, such as
the Sapphire Rapids (launched in January 2023), bring back support for hardware
transactional memory.

DOACROSS Parallelization Using Fine Granularity and OpenMP Tasks 93

Table 2. Speed-ups of mcf Parallelizations

Fig. 10. Commit/Abort ratios (4 threads) for STE-FINE, STE-FULL, and STL par-
allelizations of mcf on Intel Core

5 Experimental Results

This section presents results and analysis. The features used to characterize the
mcf hottest loops are shown in the second part of Table 1: (1) %Cov, the fraction
of the total execution time spent in the loop; (2) N , the average number of loop
iterations; (3) %lc, the percentage of iterations that have actual RAW loop-
carried dependencies for the reference input of mcf; and (4) AIS, the average size
in bytes read/written by an iteration. The parameters in the third part of Table 2
describe: (1) if speculative privatization is used (and the clause of tls directive)
used in STE-FINE, STE-FULL, and STL; and (2) S_SIZE, the strip size used for
the experimental evaluation of STE-FINE, STE-FULL, and STL parallelizations.
We assess the STE and STL performance on mcf benchmark using an Intel Core
machine with HTM support. Table 2 shows the average loop and whole-program
speed-ups (four threads) with respect to serial execution for the seven parallel
implementations described in Sect. 4. Analysis of mcf performance using STL is
described in previous works [16,17].

The results show, as mentioned above, that the DOACROSS-FINE paral-
lelization has the worst results since the synchronization cost is very high. This
cost could be reduced using tiling, which would also improve cache and main
memory usage between cores. Thus, this DOACROSS technique improves using
tiling or strip mining (DOACROSS-TILING), in addition to the other transfor-
mations to produce stages. However, even with this improvement, loop speed-ups
cannot be obtained since the cost of synchronization outweighs the gain of the
parallelization.

94 J. Salamanca and A. Baldassin

Regarding the parallelizations using task depend, both have drawbacks. The
main problem with TASK-FINE is that the dependency on basket_size is spec-
ified for the whole task and not only for the stage that actually has the depen-
dency. So, in the presence of a actual dependency, the tasks are completely
serialized obtaining only slowdowns because of the high cost of synchronization.
On the other hand, in the case of TASK-FULL, the dependency can be specified
for the indicated stage. However, the fact of having several tasks for each iter-
ation (one per stage) makes the inter-threads (tasks) synchronization between
stages of the same iteration an overhead when compared to a simple serial execu-
tion of these tasks by the same thread (task). TASK-FINE uses local buffers for
each thread. Even so, the performance of both is similar and worse than serial
execution.

Both STE versions have completely different performance. Figure 10 shows
the aborts/commits ratio for each of the two parallelizations. With respect to
STE-FULL, the abort rate is not so bad, it is even similar to that of STE-FINE.
It can also be observed that the abort ratio due to conflict increases, which
can be explained by the use of shared buffers between the cores. However, the
main problem with this type of parallelization is the one explained for TASK-
FULL: inter-thread synchronization is very high. Regarding STE-FINE, the use
of the speculative dependencies allows to ignore the constraint of having to wait
to execute each task. The buffers created for communication between threads
are local, and the speculation is only done in the region marked by the ste
construct. In this way, it has the best speed-ups and even up to 2.44× compared
to TASK-FINE.

Finally, STE-FINE has even better performance than STL because since the
entire strip-mined iteration is not speculated, but rather the segment marked
by the ste construct, this significantly reduces aborts due to capacity overflow
and other causes (mainly traps caused by the end of the OS quantum). The
abort rate due to conflicts also decreases considerably, since reducing the code
region to be speculated reduces the probability of false conflicts or false sharing.
However, one of the main problems with STE is the high ratio of order-inversion
aborts due to the lack of better mechanisms to implement ordered transactions
using this TSX version.

6 Conclusions

This paper presents Speculative Task Execution (STE), a technique that spec-
ulates data dependencies in tasks of different iterations, in this way, constraints
that most likely will never be carried out and are only placed to be conserva-
tive can be removed, allowing many tasks to be executed in parallel and thus
accelerating the execution of the loop. The implementation of STE using HTM
is proposed through new constructs and task dependency-types in OpenMP. A
first evaluation using various parallelizations of the 429.mcf benchmark shows
promising results for STE, even getting speed-ups of 2.44× over the version using
standard OpenMP tasks and of 1.22× over the serial version.

DOACROSS Parallelization Using Fine Granularity and OpenMP Tasks 95

Acknowledgements. The authors would like to thank Prof. Eduard Ayguade and
the anonymous reviewers for the insightful comments.

References

1. Ayguade, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X.,
Unnikrishnan, P., Zhang, G.: The design of OpenMP tasks. IEEE Trans. Parallel
Distributed Syst. (TPDS) 20(3), 404–418 (2009)

2. Campanoni, S., Jones, T., Holloway, G., Reddi, V.J., Wei, G.Y., Brooks, D.: Helix:
automatic parallelization of irregular programs for chip multiprocessing. In: Code
Generation and Optimization (CGO), pp. 84–93. San Jose, USA (2012)

3. Cytron, R.: Doacross: beyond vectorization for multiprocessors. In: International
Conference on Parallel Processing (ICPP), pp. 836–844 (1986)

4. cTuning, F.: cBench: Collective benchmarks (2016). http://ctuning.org/cbench
5. Harris, T., Larus, J., Rajwar, R.: Transactional memory. Synthesis Lectures Com-

put. Architecture 5(1), 1–263 (2010)
6. Henning, J.L.: Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer

Architecture News 34(4), 1–17 (2006)
7. Intel Corporation: Intel architecture instruction set extensions programming refer-

ence. Chapter 8: Intel transactional synchronization extensions (2015)
8. Le, H., et al.: Transactional memory support in the IBM POWER8 processor. IBM

J. Res. Dev. 59(1), 8:1–8:14 (2015)
9. Murphy, N., Jones, T., Mullins, R., Campanoni, S.: Performance implications of

transient loop-carried data dependences in automatically parallelized loops. In:
International Conference on Compiler Construction (CC), pp. 23–33, Barcelona,
Spain (2016)

10. OpenMP-ARB: OpenMP application program interface version 4.5 (2015)
11. OpenMP-ARB: OpenMP application program interface version 5.0 (2018)
12. OpenMP-ARB: OpenMP application program interface version 5.2 (2021)
13. Rangan, R., Vachharajani, N., Vachharajani, M., August, D.I.: Decoupled software

pipelining with the synchronization array. In: Parallel Architecture and Compila-
tion Techniques (PACT) (2004)

14. Salamanca, J., Amaral, J.N., Araujo, G.: Using hardware-transactional-memory
support to implement thread-level speculation. IEEE Trans. Parallel Distrib. Syst.
29(2), 466–480 (2018)

15. Salamanca, J., Baldassin, A.: Evaluating the performance of speculative doacross
loop parallelization with taskloop. In: International Conference on High Perfor-
mance Computing and Simulation (HPCS), Barcelona, Spain (2020)

16. Salamanca, J.: Performance comparison of speculative taskloop and openmp-for-
loop thread-level speculation on hardware transactional memory. In: International
Symposium on Parallel and Distributed Computing (ISPDC), Basel, Switzerland,
pp. 83–90 (2022)

17. Salamanca, J., Baldassin, A.: Improving speculative taskloop in hardware trans-
actional memory. In: International Workshop on OpenMP, Bristol, UK, pp. 3–17
(2021)

18. Salamanca, J., Baldassin, A.: Using off-the-shelf hardware transactional memory to
implement speculative while in openmp. In: International Workshop on OpenMP,
Chattanooga, USA, pp. 50–64 (2022)

http://ctuning.org/cbench

96 J. Salamanca and A. Baldassin

19. Shirako, J., Unnikrishnan, P., Chatterjee, S., Li, K., Sarkar, V.: Expressing doacross
loop dependences in OpenMP. In: International Workshop on OpenMP, Camberra,
Australia, pp. 30–44 (2013)

20. Steffan, J., Mowry, T.: The potential for using thread-level data speculation to facil-
itate automatic parallelization. In: High-Perform. Computer Architecture (HPCA),
Washington, USA, pp. 2–13 (1998)

21. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley
(1996)

OpenMP Offload Experiences

The Kokkos OpenMPTarget Backend:
Implementation and Lessons Learned

Rahulkumar Gayatri1(B), Stephen L. Olivier2, Christian R. Trott2,
Johannes Doerfert3, Jan Ciesko2, and Damien Lebrun-Grandie4

1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
rgayatri@lbl.gov

2 Sandia National Laboratories, Albuquerque, NM, USA
{slolivi,crtrott,jciesko}@sandia.gov

3 Lawrence Livermore National Laboratory, Livermore, CA, USA
jdoerfert@llnl.gov

4 Oak Ridge National Laboratory, Oak Ridge, TN, USA
lebrungrandt@ornl.gov

Abstract. As the supercomputing landscape diversifies, solutions such
as Kokkos to write vendor agnostic applications and libraries have risen
in popularity. Kokkos provides a programming model designed for per-
formance portability, which allows developers to write a single source
implementation that can run efficiently on various architectures. At its
heart, Kokkos maps parallel algorithms to architecture and vendor spe-
cific backends written in lower level programming models such as CUDA
and HIP. Another approach to writing vendor agnostic parallel code is
using OpenMP’s directives based approach, which lets developers anno-
tate code to express parallelism. It is implemented at the compiler level
and is supported by all major high performance computing vendors, as
well as the primary Open Source toolchains GNU and LLVM. Since its
inception, Kokkos has used OpenMP to parallelize on CPU architectures.
In this paper, we explore leveraging OpenMP for a GPU backend and
discuss the challenges we encountered when mapping the Kokkos APIs
and semantics to OpenMP target constructs. As an exemplar workload
we chose a simple conjugate gradient solver for sparse matrices. We find
that performance on NVIDIA and AMD GPUs varies widely based on
details of the implementation strategy and the chosen compiler. Further-
more, the performance of the OpenMP implementations decreases with
increasing complexity of the investigated algorithms.

Keywords: Kokkos · OpenMP · GPUs · parallel programming ·
performance portability

1 Introduction

As high performance computing enters the exascale computing era, the largest
supercomputers are dominated by GPU accelerated system designs. For almost a
decade, these platforms, including the latest NERSC system, Perlmutter, exclu-
sively deployed GPUs from NVIDIA. This single vendor trend is changing with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 99–113, 2023.
https://doi.org/10.1007/978-3-031-40744-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_7&domain=pdf
https://doi.org/10.1007/978-3-031-40744-4_7

100 R. Gayatri et al.

the first deployed exascale machines. The recently launched Frontier system
at Oak Ridge National Laboratory and the upcoming El Capitan platform
at Lawrence Livermore National Laboratory use AMD GPUs, while Argonne
National Laboratory’s Aurora supercomputer will use Intel GPUs.

A challenge arising from this architectural diversity is that each vendor
has their own preferred programming model. NVIDIA provides CUDA, first
introduced in 2007. AMD developed the HIP programming model, which is
closely modelled after CUDA. Data Parallel C++ (DPC++), an extension of
the Khronos SYCL standard [7], is Intel’s preferred choice for implementing
code on their GPUs. Writing applications and libraries directly in each ven-
dor’s preferred programming model thus requires the implementation of four
versions, assuming one would want to support multicore CPU execution as well.
To eliminate this unmanageable software development and maintenance over-
head, vendor independent higher-level frameworks such as Kokkos [2,11,12] and
RAJA [1] were developed. These frameworks promise performance portability by
providing a common interface for expressing parallelism and data management,
which is then mapped to the vendor specific programming models.

There are also efforts to make the vendor specific models portable across
architectures. SYCL itself is designed as a hardware agnostic programming
model, and Intel’s DPC++ compiler has the ability to target NVIDIA GPUs and
to a lesser degree AMD GPUs. AMD’s HIP model can be mapped to CUDA by
coupling AMD’s toolchain to NVIDIA’s. Community research efforts in LLVM
are also working to compile CUDA to other architectures [3]. However, in practice
there are very few projects relying on these portability efforts of the vendor mod-
els, due to concerns over full support on all architectures. In particular, support
contracts which are part of the large supercomputing procurements generally
only cover the vendor’s own toolchain. The portability frameworks do not have
the same issue, since they leverage the native toolchains on each architecture.

OpenMP [10] is the one vendor independent node-level programming model
standard which all the vendors support to varying degrees, and which is generally
part of the contractual requirements in the large supercomputing procurements.
Furthermore, it is not only supported by vendor specific compilers, but also by
the two primary open source toolchains, LLVM and GCC. OpenMP uses a direc-
tive based approach, which allows developers to annotate existing code to express
parallelism. This approach has been used to good effect on CPU based systems
for two decades. Since version 4.0 [9], OpenMP has also supported directives for
accelerators such as GPUs, and those directives have evolved significantly with
subsequent versions. However, the available subset of the specification, the qual-
ity of implementation of those subsets, and even the interpretation of intended
behavior of some features are different in each toolchain, causing challenges when
using OpenMP for performance portability.

In this paper we explore these challenges using the effort of porting Kokkos to
use OpenMP as a hardware independent backend implementation. That effort
was conceived as a means to provide for Kokkos a second toolchain path on
each platform, in addition to the vendor specific programming models. Having

The Kokkos OpenMPTarget Backend 101

multiple toolchains, and specifically compilers, available on each system allows
for redundancy and more overall robustness of the software stack. It also prepares
Kokkos for a situation where a new hardware vendor may not develop a unique
programming model, leveraging the OpenMP specification instead. Additionally,
other performance portability frameworks have explored the use of OpenMP
offloading in their backend implementations [6,8].

In this paper we use the conjugate gradient solver (CG-Solve) described
in [12] as an exemplar to discuss various concepts in Kokkos, how they are
mapped to OpenMP, and the challenges which arise. The results demonstrate
the performance achieved by the CG-Solve example and its individual kernels
on NVIDIA A100 GPUs available on Perlmutter and AMD MI250x available on
Crusher (testbed for Frontier). We use the latest clang compiler from the main
branch of llvm (dated 5/15/2023) and vendor specific compilers for each of the
GPUs, i.e., NVHPC/22.7 on A100 and amdclang available with rocm/5.4.3 on
MI250x. We will refer to these as LLVM, NVHPC and ROCM respectively.

Our CG-solve exemplar is not an attempt to present the very best implemen-
tation of CG-Solve, nor to improve upon the existing math algorithms. Specifi-
cally we are not exploring the use of different sparse matrix storage formats or
various possible parallelization schemes for the algorithms. This paper is primar-
ily concerned with the question of how Kokkos usage of OpenMP compares to the
native OpenMP implementations and how the OpenMP offload implementation
compares to the use of native CUDA and HIP backends in Kokkos, given a spe-
cific algorithm and parallelization strategy. Also, note that while we have used
CG-solve as vehicle to present issues arising when mapping Kokkos to OpenMP,
the actual Kokkos backend must be robust and applicable to a wide variety
of applications built upon Kokkos. Therefore, optimizations, e.g., OpenMP set-
tings, that may benefit CG-solve but are not be universally appropriate would
not be considered for inclusion in the Kokkos OpenMPTarget backend.

2 CG-Solve

The conjugate gradient solver (CG-Solve) [5] is a simple iterative linear solver,
which use three primary linear algebra functions: a vector addition (axpby), an
inner product (dot) and a sparse matrix vector multiply (spmv). In each iteration
the axpby is called four times, the dot twice and the spmv once. Listing 1.1 shows
the pseudo code for the solver. The three operations exhibit three common pat-
terns found in data parallel programming: simple data parallel loops, reductions,
and nested loops. The overall algorithm is largely bandwidth limited. However
the pure vector operations are often latency sensitive on GPU systems, since at
typically observed vector lengths of 100,000 to 1,000,000 entries per device the
vector operations can execute in under 20us there. Furthermore, axpby, dot and
spmv are not just important for CG-Solve, but are also the fundamental building
blocks in many other linear solvers.

102 R. Gayatri et al.

Listing 1.1. CGSolve
for (int64_t k = 1; k <= max_iter && normr > tolerance; ++k) {

if (k == 1) {
axpby(p, one , r, zero , r); // AXPBY

} else {
oldrtrans = rtrans;
rtrans = dot(r, r); // DOT
double beta = rtrans / oldrtrans;
axpby(p, one , r, beta , p); // AXPBY

}
normr = std::sqrt(rtrans);
double alpha = 0;
double p_ap_dot = 0;
spmv(Ap, A, p); // SPMV
p_ap_dot = dot(Ap, p); // DOT
if (p_ap_dot < brkdown_tol) {

if (p_ap_dot < 0) {
std::cerr << "miniFE:: cg_solve�ERROR ,�numerical�breakdown!"

<< std::endl;
return num_iters;

} else
brkdown_tol = 0.1 * p_ap_dot;

}
alpha = rtrans / p_ap_dot;
axpby(x, one , x, alpha , p); // AXPBY
axpby(r, one , r, -alpha , Ap); // AXPBY
num_iters = k;

}

The remainder of this section discusses the Kokkos implementation of axpby,
dot and spmv, mapping them to OpenMP, and the challenges we encountered.

2.1 AXPBY

The vector addition (axpby) function in CG-Solve is a simple data parallel loop,
with no dependencies between iterations. It is straightforward to express in most
programming models, including Kokkos.

Listing 1.2. Kokkos Vector Addition (axpby)
void axpby (double a, Kokkos::View <double*> x,

double b, Kokkos::View <double*> y) {
Kokkos:: parallel_for("AXPBY", x.extent (0), KOKKOS_LAMBDA(const int i) {

y(i) = a*x(i) + b*y(i);
});

}

A Kokkos View expresses a possibly multi-dimensional array. This function
only uses its simplest version representing a plain one-dimensional contiguous
vector. The Kokkos parallel_for execution pattern expresses a parallelizable
loop. It takes as arguments a label (for debugging and profiling purposes), an
iteration range, and the loop body expressed through a C++ lambda. Kokkos is
a descriptive programming model, which does not guarantee any specific imple-
mentation strategy on architectures. Its parallel loops do not imply order nor
concurrency, and thus can be mapped to thread, vector or pipeline parallelism.

An equivalent OpenMP implementation of axpby for GPUs (assuming man-
ual data management) is given in Listing 1.3.

The Kokkos OpenMPTarget Backend 103

Listing 1.3. OpenMP Vector Addition (axpby)
void axpby (int N, double a, double* x,

double b, double* y) {
#pragma omp target teams distribute parallel for simd nowait is_device_ptr(

x,y)
for(int i=0; i< N; i++) {

y[i] = a*x[i] + b*y[i];
}

}

In its implementation of parallel_for, Kokkos uses a partial specialization
approach, where the lambda is handed to a backend specific implementation of
the parallel loop. Simplified, this strategy looks like the code in Listing 1.4.

Listing 1.4. parallel_for OpenMPTarget backend
template <Functor >
struct ParallelFor <Functor , OpenMPTarget > {

int N; Functor f;
void execute () {

#pragma omp target teams distribute parallel for simd nowait
for(int i=0; i< N; i++) { f(i); }

}
};

template <class Functor >
void parallel_for(string label , int N, Functor f) {

ParallelFor <Functor , OpenMPTarget > closure{N,f};
closure.execute ();

}

Note that the only fundamental difference between the direct OpenMP imple-
mentation and the Kokkos backend implementation is the expression of the loop
body via a C++ lambda. However, we have observed that the OpenMP compil-
ers are very sensitive to the use of seemingly unrelated C++ patterns. Specifi-
cally, significant performance difference can be observed when writing algorithms
in two different – but from the C++ perspective equivalent – ways. One such
instance is the use of C++ lambdas. To illustrate that difference, we measured
performance also for versions of the algorithms written directly in OpenMP, but
using lambdas, as shown in Listing 1.5.

Listing 1.5. OpenMP Vector Addition (axpby) as C++ lambda
void axpby (int N, double a, double* x,

double b, double* y) {
auto f = [=](i) {y[i] = a*x[i] + b*y[i];};

#pragma omp target teams distribute parallel for simd nowait firstprivate(f)
for(int i=0; i< N; i++) {

f(i);
}

}

A similar issue occurs with the use of OpenMP target regions inside class
member functions. When the axpby is implemented as a class member function,
where N is a class data member, performance drops even more than with the use
of lambdas, compared to creating a local copy of N inside the member function.

Figure 1 shows the performance of the different versions of axpby discussed
above. The figure shows 5 versions AXPBY, where the labels on the legends
represent the following:

104 R. Gayatri et al.

Array-length

G
B/

s

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

1 million 5 million 10 million

KK-CUDA
KK-OMP
OMP-lambda
OMP-raw
OMP-class

AXPBY on A100 with llvm/17

Array-length

G
B/

s

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

1 million 5 million 10 million

KK-CUDA
KK-OMP
OMP-lambda
OMP-raw
OMP-class

AXPBY on A100 with nvhpc/22.7

Array-length

G
B/

s

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1 million 5 million 10 million

KK-HIP
KK-OMP
OMP-lambda
OMP-raw
OMP-class

AXPBY on MI250x with llvm/17

Array-length

G
B/

s

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1 million 5 million 10 million

KK-HIP
KK-OpenMP
OMP-lambda
OMP-raw
OMP-class

AXPBY on MI250x with rocm/5.4.3

Fig. 1. AXPBY on NVIDIA A100 with LLVM and NVHPC compilers and on AMD
MI250x with LLVM and ROCM compilers. Y axis is in GB/s, so higher is better.

1. KK-CUDA : Kokkos version with the CUDA backend
2. KK-OMP : Kokkos version with the OpenMPTarget backend
3. OMP-lambda : Direct OpenMP version using lambda inside a target region
4. OMP-raw : Direct OpenMP version not using lambda inside a target region
5. OMP-class : Variant of OMP-raw version using a class member inside the

target region, instead of its equivalent local copy.

For this kernel, we see that the direct OpenMP code when compiled with the
vendor compilers can achieve almost the same performance as Kokkos with the
native CUDA/HIP backends. At larger vector lengths, the Kokkos OpenMP-
Target backend approaches the raw OpenMP performance, and most of the
difference can be explained by the previously noted issues around the use of
Lambdas. However, NVHPC does not exhibit the lambda specific performance
penalty, and the Kokkos OpenMPTarget backend in each case achieves the same
performance as the lambda OpenMP implementation. Comparing the relative
performance of the different implementations on the two different architectures,
they appear to be a function of the compiler rather than the hardware.

2.2 DOT

The dot product (dot) function performs a single reduction on a given data type.
In Kokkos this operation is expressed using the parallel_reduce pattern as
shown in Listing 1.6. The equivalent direct OpenMP code is shown in Listing 1.7.

Listing 1.6. Kokkos Reduction (dot)
double dot(Kokkos::View <double*> x, Kokkos::View <double*> y) {

double result = 0.;
Kokkos:: parallel_reduce("DOT", x.extent (0), KOKKOS_LAMBDA(const int i,

double &lsum) {
lsum += x(i) * y(i);

}, result);
return result;

}

The Kokkos OpenMPTarget Backend 105

Listing 1.7. OpenMP Reduction (dot)
void dot (int N, double* x, double* y) {

double result = 0.;
#pragma omp target teams distribute parallel for simd reduction (+: result)

is_device_ptr(x,y)
for(int i=0; i< N; i++) {

result += x[i] * y[i];
}
return result;

}

Array-length

G
B/

s

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1 million 5 million 10 million

KK-CUDA
KK-OMP
OMP-lambda
OMP-raw

DOT on A100 with llvm/17

Array-length

G
B/

s

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1 million 5 million 10 million

KK-CUDA
KK-OMP
OMP-lambda
OMP-raw

DOT on A100 with nvhpc/22.7

Array-length

G
B/

s

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1 million 5 million 10 million

KK-HIP
KK-OMP
OMP-lambda
OMP-raw

DOT on MI250x with llvm/17

Array-length

G
B/

s

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1 million 5 million 10 million

KK-HIP
KK-OMP
OMP-lambda
OMP-raw

DOT on MI250x with rocm/5.4.3

Fig. 2. DOT on NVIDIA A100 with LLVM and NVHPC compilers and on AMD MI250x
with LLVM and ROCM compilers. Y axis is GB/s, so higher is better.

Figure 2 shows the bandwidth achieved by the dot kernel, with legend labels
following the naming in Fig. 1. Only ROCM achieves the same performance as
the native backends of Kokkos, and only in the absence of lambdas which oth-
erwise reduce performance by 4-8x depending on the vector length. Here LLVM
and NVHPC are not sensitive to the use of Lambdas. Still, with OpenMP, they
only achieve between 30% and 70% of the performance of the native backends.
Unlike the axpby results, NVHPC with OpenMP only reaches about 50% of the
CUDA backend performance. A 2022 paper documenting the current design of
the LLVM OpenMP runtime [4] remarks that recent improvements of that run-
time have not included any work on better implementations of GPU reductions,
but our understanding is that some vendors are working on this topic.

2.3 SPMV

The third algorithm needed for CG-Solve is a sparse-matrix vector multiply.
Numerous sparse matrices representations exist. Here we employ the common
compressed sparse row (CSR) representation, which comprises an array storing
the non-zero values of the matrix, an array with the associated column indicies,
and a vector storing the row offsets into the value and column index arrays.

106 R. Gayatri et al.

At its simplest the spmv can then be implemented as loop over rows, with a
nested reduction to compute the dot product of each row. Listing 1.8 provides
a simple implementation of the spmv algorithm.

Listing 1.8. Sparse matrix vector multiply (spmv) sequential algorithm
for(row = 0; row < num_rows; row++) { // Loop over all rows

row_start = row_offsets[row];
row_end = row_offsets[row +1];
// Reduction over non -zeros in each row
for(idx = row_start; idx <row_end; idx++)

y(row) += m_values[idx] * x[m_cold_idx[idx]];
}

This operation is more complex than either axpby or dot since for good per-
formance on GPUs, nested parallelism must be exploited. The nested parallelism
exposes more concurrency in the algorithm, which becomes more important with
increasing number of non-zeros per row. Since the inner loop’s trip count depends
on the outer loop’s iteration index, they can not be easily collapsed. Further-
more, the kernel exhibits a mix of streaming and irregular data access. The
matrix data is accessed continuously, while accesses of the x vector are irregular.

While the basic spmv algorithm requires only two loops, In practice Kokkos
implements a somewhat more complex version using three levels of parallelism to
expose appropriate amounts of work for each level of the GPU hierarchy. Often
the number of non-zeros per row, and thus the inner loop length, is fairly small.
Thus it is beneficial to use only the third and innermost level of parallelism
to perform the reduction, but to still group adjacent rows in threads sharing a
common cache, to exploit data access locality of the vector x.

Both Kokkos and the OpenMP specification support three levels of paral-
lelism using the concepts of teams, threads and vector parallelism. Kokkos pro-
vides special execution policies with the execution patterns, namely TeamPolicy,
TeamThreadRange, and ThreadVectorRange. OpenMP expresses the same con-
ceptual ideas with the teams distribute, parallel for, and simd constructs.
Both Kokkos and many OpenMP compilers are consistent in mapping the first
level of parallelism across streaming multiprocessors (SMs) or compute units
(CUs) and the second level of parallelism within SMs or CUs.

Differences between Kokkos and many OpenMP compilers arise regarding
the third level of parallelism (or lack thereof). While conceptually the single
instruction multiple data (SIMD) model of lock-step execution exemplified by
CPU vectorization is stricter than the single instruction multiple threads (SIMT)
model of GPUs, SIMD can be profitably mapped onto SIMT and indeed lockstep
execution at the lowest level of the GPU’s hierarchy can be the most performant.
However, the LLVM compiler, and many vendor compilers, including NVHPC
and ROCM, treat OpenMP’s simd as a hint, and do not map it to hardware
parallelism. All threads in a GPU CUDA block or HIP group are instead acti-
vated together as part of the parallel for construct. This restriction, for now,
limits the performance for any Kokkos application that uses the third paral-
lel level explicitly. Moreover, the third level of parallelization enables efficient
memory coalescing on GPU architectures that Kokkos works to exploit. When
that third level of parallelism is not present, the memory references are not coa-

The Kokkos OpenMPTarget Backend 107

lesced, resulting in inefficient access patterns. That said, a dedicated three level
mapping honoring the simd construct is currently under development as part of
LLVM.

Listing 1.9. Kokkos Hierarchical Parallelism for spmv

Kokkos:: parallel_for(
"SPMV", Kokkos::TeamPolicy <>(num_teams , team_size , vector_size),
KOKKOS_LAMBDA(const Kokkos::TeamPolicy <>:: member_type &team) {

const int64_t first_row = team.league_rank () * rows_per_team;
const int64_t last_row = first_row + rows_per_team < nrows

? first_row + rows_per_team
: nrows;

// iterate over rows owned by this team
Kokkos:: parallel_for(

Kokkos:: TeamThreadRange(team , first_row , last_row),
[&](const int64_t row) {

const int64_t row_start = A.row_ptr(row);
const int64_t row_length =

A.row_ptr(row + 1) - row_start;

double y_row;
// reduction over non -zeroes in the row
Kokkos:: parallel_reduce(

Kokkos:: ThreadVectorRange(team , row_length),
[=](const int64_t i, double &sum) {

sum += A.values(i + row_start) *
x(A.col_idx(i + row_start));

},
y_row);

y(row) = y_row;
});

});

Listing 1.9 shows the implementation of SPMV using hierarchical execu-
tion patterns in Kokkos. The Kokkos::TeamPolicy is used to specify the num-
ber of teams, team size and the number of vector lanes used per thread. For
this algorithm the team size and the vector length are optimization parameters
that require tuning for each hardware platform. When using the CUDA or HIP
backend, each team is mapped to a block, with the thread identifiers in each
team mapped to threadIdx.y and vector lanes mapped to threadIdx.x. Vec-
tor lengths are limited by the warp or wavefront size respectively. In the spmv
algorithm, each team is assigned a number of rows, which are then iterated over
in parallel by the threads of the team. The nested reduction is performed by the
vector lanes associated with each thread.

A direct mapping of the Kokkos semantics to OpenMP leads to an imple-
mentation as shown in Listing 1.10 In Kokkos, the loop body of the outer loop
is executed by all threads within the team. This is achieved in OpenMP by a
parallel region inside the outer loop. Now every thread computes redundantly
first row and last row, avoiding an otherwise necessary broadcast upon enter-
ing the nested parallel loop. The nested reduction is annotated with the simd
directive. As stated above, none of the compilers used for this work actually
parallelize the simd loop for a GPU. In order to identify how much of a perfor-
mance reductions is caused by that lack of parallelization we also ran the native
CUDA/HIP Kokkos backend code with a vector-size of one.

There are other idioms of hierarchical parallelism where there is a mismatch
of Kokkos and OpenMP semantics. Though not illustrated in CG-solve, Kokkos

108 R. Gayatri et al.

allows a team level reduction over a variable that is introduced within the team.
The semantics are that each thread has copy of the variable that is initialized to
the identity at the start of the reduction operation, and the final partial values
of all copies are combined and the resulting value redistributed to all threads’
copies at the end of the reduction operation. In contrast, OpenMP reduction
semantics require that the reduction variable must be shared by the threads in a
team and hence it must be known at the start of the parallel region. However,
in some use cases, it may not be possible to identify such reductions at the start
of the parallel region, since the nested reduction may occur in other functions.

Listing 1.10. OpenMP Hierarchical Parallelism spmv - Version A
int num_teams = (nrows + rows_per_team - 1)/rows_per_team;
#pragma omp target teams distribute is_device_ptr(x,y,A_row_ptr ,A_values ,

A_col_idx)
for(int team = 0; team < num_teams; ++i)
#pragma omp parallel
{

const int64_t first_row = omp_get_team_num () * rows_per_team;
const int64_t last_row = first_row + rows_per_team < nrows ? first_row +

rows_per_team : nrows;
#pragma omp for
for(int row = first_row; row < last_row; ++row)
{

const int64_t row_start = A_row_ptr[row];
const int64_t row_length = A_row_ptr[row + 1] - row_start;

double y_row;
#pragma omp simd reduction (+: y_row)
for(int i = 0; i < vector_size; ++i)
{

y_row += A_values[i + row_start] * x[A_col_idx[i + row_start]];
}
y[row] = y_row;

}
}

Listing 1.11. OpenMP Hierarchical Parallelism spmv - Version B
#pragma omp target teams num_teams(leage_size) thread_limit(team_size)

is_device_ptr(x,y,A_row_ptr ,A_values ,A_col_idx)
#pragma omp parallel

{
const int blockIdx = omp_get_team_num ();
const int gridDim = omp_get_num_teams();

for (int league_id = blockIdx; league_id < num_teams; league_id +=
gridDim) {

#pragma omp for
for(int row = first_row; row < last_row; ++row)
{

// similar to above
}

}
}

The native Kokkos backends implement the team level reduction using a
memory buffer in device memory. Due to the mismatch in Kokkos and OpenMP
semantics, this approach is also currently used for the OpenMPTarget backend.
This workaround requires explicit control of the number of active teams using the
num teams clause to ensure that the correct amount of buffer space is allocated.
Unfortunately adding that clause reduces the performance of Kokkos hierarchical
parallelism on some compilers, even in the cases, such as spmv, where team level

The Kokkos OpenMPTarget Backend 109

reductions are not present. We measured the impact of adding the num teams
clause for spmv in our experiments.

We also considered an alternative implementation strategy of Kokkos’ hier-
archical parallelism without the distribute construct that performs better in
many cases. This strategy requires the loop over worksets to be a nested loop
inside the target region as shown in Listing 1.11. Currently this approach is
the default implementation strategy for the Kokkos OpenMPTarget backend on
NVIDIA and AMD GPUs. However, different combinations of architecture and
compiler can vary in their preference for implementations similar to Listing 1.10
or Listing 1.11, as our experiments will illustrate.

Figure 3 shows the performance of spmv on NVIDIA A100 and AMD MI250x
GPUs. The labels for the legends of Fig. 3 represent the following:

1. KK-CUDA 3 levels - Kokkos version with CUDA backend, using all 3 levels
of hierarchical parallelism

2. KK-CUDA 2 levels - Kokkos version with CUDA backend, using only 2 levels
of hierarchical parallelism. (Set vector_size=1 for ThreadVector level.)

3. KK-OMP-a - Kokkos version with OpenMPTarget backend, implementing
hierarchical parallelism similar to Listing 1.10

4. KK-OMP-b - Kokkos version with OpenMPTarget backend, implementing
hierarchical parallelism similar to Listing 1.11.

5. w/o num teams - allow the compiler to choose the number of teams
6. OMP - direct (non-Kokkos) OpenMP implementation

As with the previous algorithms, KK-CUDA/KK-HIP performance is signif-
icantly greater than any of the OpenMP variants. How, much however depends
on the compiler, the hardware, and the specific variant of the OpenMP code.
The experiment highlights the sensitivity of the OpenMP performance to specific
implementation choices, with different choices resulting in better performance on
different hardware and compiler combinations.

For example, consider the two compiler versions on NVIDIA’s A100. Using
LLVM compiler the native OpenMP version and the KK-OMP-B version without
the num_teams clause come closest to the performance of the native backends,
achieving approximately 70% of the KK-CUDA-3-level bandwidth. These opti-
mized OpenMP versions using LLVM on A100 achieve performance similar to
their equivalent native KK-CUDA-2-level version. In comparison, the KK-OMP-
A version using LLVM shows a 25% performance gap, and this regression has
been observed in other applications as well. The NVHPC compiler also prefers
the KK-OMP-B style of parallel decomposition, and unlike LLVM it benefits
immensely from the use of num_teams clause. Additionally in this combination
of architecture and compiler versions, all OpenMP versions underperform com-
pared to the equivalent native KK-CUDA-2-level version.

On AMD GPUs, even the 2-level native version significantly underperforms
compared to the 3-level native version, highlighting the performance benefits
that can be achieved by exploiting all 3 levels of hierarchical parallelism. Among
the OpenMP versions, KK-OMP-A outperforms KK-OMP-B on both compilers.

110 R. Gayatri et al.

Array-length

G
B/

s

0

500

1000

1500

1 million 5 million 10 million

KK-CUDA 3 levels
KK-CUDA 2 levels
KK-OMP-b
KK-OMP-b-w/o num_teams
KK-OMP-a-w/o num_teams
OMP

SPMV on A100 with llvm/17

Array-length

G
B/

s

0

500

1000

1500

1 million 5 million 10 million

KK-CUDA 3 levels
KK-CUDA 2 levels
KK-OMP-b
KK-OMP-b-w/o num_teams
KK-OMP-a-w/o num_teams
OMP

SPMV on A100 with nvhpc/22.7

Array-length

G
B/

s

0

250

500

750

1000

1250

1 million 5 million 10 million

KK-HIP 3 levels
KK-HIP 2 levels
KK-OMP-b
KK-OMP-b-w/o num_teams
KK-OMP-a-w/o num_teams
OMP

SPMV on MI250x with llvm/17

Array-length

G
B/

s

0

250

500

750

1000

1250

1 million 5 million 10 million

KK-HIP 3 levels
KK-HIP 2 levels
KK-OMP-b
KK-OMP-b-w/o num_teams
KK-OMP-a-w/o num_teams
OMP

SPMV on MI250x with rocm/.4.3

Fig. 3. SPMV on NVIDIA A100 with LLVM and NVHPC compilers and on AMD
MI250x with LLVM and ROCM compilers. Y axis is GB/s, so higher is better.

The performance differences observed in this study make it difficult to maintain
OpenMP code with consistent performance across different platforms.

The performance of the CG-Solve application as a whole is dominated by
the performance of the SPMV kernel. Running the CG-Solve example with the
OpenMPTarget backend of Kokkos without making any optimizations specific
to CG-solve itself brings the performance close to 50% of the native backends.

3 Beyond the Basics

Besides the initial issues mapping Kokkos to OpenMP already discussed above,
there are a number of other challenges that we outline briefly in this section.
These challenges did not impact the CG-Solve example, but are of great concern
when implementing more complex applications.

3.1 Scratch Memory

Kokkos’ hierarchical parallelism provides the ability to allocate team and thread
private scratch pads, which act as fast user-managed cache. These scratch pads
can be mapped to CUDA and HIP shared memory, and generally are useful for
cooperative work within a thread team. In principle the OpenMP specification
has the concept of allocators which conceivably would be able to address part
of the problem. However, currently this is not implemented by most compilers.
Furthermore, in order to leverage aforementioned CUDA and HIP shared mem-
ory, the allocation size needs to be specified upon entry into a target region,
something for which the OpenMP specification does not provide a mechanism.

3.2 Concurrency

Another capability in Kokkos which is difficult to reliably implement is querying
available device concurrency. As mentioned in Sect. 2.3, there is a need to have
tight control over the number of teams generated in order to support TeamThread
level reductions in Kokkos. However we also do not want to restrict the paral-
lelism that can be exploited by a compiler. A trade-off between the two con-
straints is to calculate the maximum number of in-flight teams possible on a

The Kokkos OpenMPTarget Backend 111

given architecture based on the team size requested. This approach requires
information about the number of execution resources available. Currently the
backend uses a mix of hardware knowledge, OpenMP routines when applicable
and an educated guess to determine this number since there is no single solution
that reliably works on every applicable architecture-compiler combination.

One candidate solution is the omp_get_num_procs() routine. Because the
routine returns the number of processors available on the current device, when
called from the host it cannot provide information about concurrency on other
devices. We suggest extending its functionality to take a device number as an
argument and return the number of available processors on the device identi-
fied by that device number. A potential workaround is to open an empty target
region at the start of the program only to call omp_get_num_procs() within it.
Unfortunately, we have observed that the number returned by the routine when
called from an accelerator device is not a consistent representation of the underly-
ing hardware concurrency across implementations. Some implementations even
return just 1 if the target region body contains only the call to that routine,
because they try to optimize the amount of execution resources to match the
computation in the target region.

Another use of device concurrency information in Kokkos is to support its
UniqueToken feature, a locking mechanism that allows a caller to acquire a
unique index. Ideally the number of unique index entries should match the num-
ber of execution resources. Otherwise, an arbitrarily large number of such unique
indices must be created, which may not be practically useful.

Currently extensions to query device concurrency exist that are specific to
some vendors, but we are not aware of a portable solution. We hope to converge
onto a single cohesive and portable solution on this issue through collaboration
with vendors and the community.

4 Conclusion

In this paper we have described mapping the Kokkos Performance Portability
model to OpenMP for GPUs. Using a simple linear solver we have explored the
state of the Kokkos OpenMPTarget backend on NVIDIA and AMD GPUs with
multiple compilers. We find that the OpenMPTarget backend provides signifi-
cantly less performance than the architecture specific CUDA and HIP backends,
due to a mix of compiler implementation issues and limitations in the speci-
fication. On average the OpenMP variants (including Kokkos OpenMPTarget
backend and raw OpenMP code) provide 57% of the CUDA and HIP backend
performance, but at its worst it is about 30x slower than the HIP backend. The
performance of the OpenMP implementation is very sensitive to particular con-
struct choices, but the effect of these choices depends on both hardware and
compiler. It is thus difficult to write and maintain code which performs con-
sistently across different platforms. Extending OpenMP testing and verification
suites to include performance testing across different hardware and compilers
could help improve this situation, identify regressions in implementations and

112 R. Gayatri et al.

help develop best practices. We acknowledge that the current state of OpenMP
offloading for GPUs represents an improvement from the past, when performance
and even basic portability had been universally poor even for simple loops. We
look forward to future enhancements in the specification and improvements in
compiler/runtime implementations, which are becoming more commonplace as
a result of collaborations between vendors and the community to address the
challenge of performance portability.

Acknowledgments. Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.
This written work is authored by an employee of NTESS. The employee, not NTESS,
owns the right, title and interest in and to the written work and is responsible for
its contents. Any subjective views or opinions that might be expressed in the written
work do not necessarily represent the views of the U.S. Government. The publisher
acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this written work or
allow others to do so, for U.S. Government purposes. The DOE will provide public
access to results of federally sponsored research in accordance with the DOE Public
Access Plan. This work was supported by Exascale Computing Project 17-SC-20-SC,
a joint project of the U.S. Department of Energy’s Office of Science and National
Nuclear Security Administration, responsible for delivering a capable exascale ecosys-
tem, including software, applications, and hardware technology, to support the nation’s
exascale computing imperative. This research used resources of the National Energy
Research Scientific Computing Center (NERSC), which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231,
and the Oak Ridge Leadership Computing Facility at the Oak Ridge National Labo-
ratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

References

1. Beckingsale, D.A., et al.: RAJA: portable performance for large-scale scientific
applications. In: 2019 IEEE/ACM International Workshop on Performance, Porta-
bility and Productivity in HPC (P3HPC), pp. 71–81. IEEE (2019)

2. Carter Edwards, H., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore
performance portability through polymorphic memory access patterns. J. Parall.
Distrib. Comput. 74(12), 3202–3216 (2014). https://doi.org/10.1016/j.jpdc.2014.
07.003. https://www.sciencedirect.com/science/article/pii/S0743731514001257.
Domain-Specific Languages and High-Level Frameworks for High-Performance
Computing

3. Doerfert, J., et al.: Breaking the vendor lock: performance portable programming
through OpenMP as target independent runtime layer. In: Klöckner, A., Moreira,
J. (eds.) Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques, PACT 2022, Chicago, Illinois, 8–12 October 2022,
pp. 494–504. ACM (2022). https://doi.org/10.1145/3559009.3569687

https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://www.sciencedirect.com/science/article/pii/S0743731514001257
https://doi.org/10.1145/3559009.3569687

The Kokkos OpenMPTarget Backend 113

4. Doerfert, J., et al.: Co-designing an OpenMP GPU runtime and optimizations
for near-zero overhead execution. In: 2022 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 504–514 (2022). https://doi.org/10.
1109/IPDPS53621.2022.00055

5. Hestenes, M.R., Stiefel, E., et al.: Methods of conjugate gradients for solving linear
systems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)

6. Kelling, J., et al.: Challenges porting a C++ template-metaprogramming abstrac-
tion layer to directive-based offloading. In: Bhalachandra, S., Daley, C., Melesse
Vergara, V. (eds.) 2021 International Workshop on Accelerator Programming
Using Directives. WACCPD 2021. Lecture Notes in Computer Science, vol. 13194.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97759-7 5

7. Khronos SYCL Working Group: SYCL specification (2020). https://www.khronos.
org/registry/SYCL/specs/sycl-2020-provisional.pdf

8. Killian, W., Scogland, T., Kunen, A., Cavazos, J.: The design and implementation
of openMP 4.5 and OpenACC backends for the RAJA C++ performance porta-
bility layer. In: Chandrasekaran, S., Juckeland, G. (eds.) WACCPD 2017. LNCS,
vol. 10732, pp. 63–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
74896-2 4

9. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face, Version 4.0. https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.
pdf (2013)

10. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face, Version 5.2. https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5-2.pdf (2021)

11. Trott, C., et al.: The kokkos ecosystem: comprehensive performance portability for
high performance computing. Comput. Sci. Eng. 23(5), 10–18 (2021). https://doi.
org/10.1109/MCSE.2021.3098509

12. Trott, C.R., et al.: Kokkos 3: Programming model extensions for the exascale era.
IEEE Trans. Parallel Distrib. Syst. 33(4), 805–817 (2021)

https://doi.org/10.1109/IPDPS53621.2022.00055
https://doi.org/10.1109/IPDPS53621.2022.00055
https://doi.org/10.1007/978-3-030-97759-7_5
https://www.khronos.org/registry/SYCL/specs/sycl-2020-provisional.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-2020-provisional.pdf
https://doi.org/10.1007/978-3-319-74896-2_4
https://doi.org/10.1007/978-3-319-74896-2_4
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1109/MCSE.2021.3098509

OpenMP Target Offload Utilizing GPU
Shared Memory

Mathias Gammelmark(B) , Anton Rydahl , and Sven Karlsson

Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kgs,
Lyngby, Denmark

{magam,svea}@dtu.dk, rydahlanton@gmail.com

Abstract. Memory resources are an important aspect to consider when
designing high performing programs. This is especially true for programs
running on graphical processing units, GPUs, yet this is not something
trivially done using current OpenMP target offloading. In this paper, we
examine methods for implementing parallel programs running on GPUs,
which rely on locally shared memory resources and intricate synchro-
nization. Employing the methods, we show you can achieve between 1.5
to 9 relative speedup over a range of compilers. We evaluate portability
by running experiments on two systems, utilizing different GPU tech-
nologies and vendors. We further investigate scheduling, synchronization
and execution time of our experiments, to better understand the over-
head associated with using OpenMP, compared to architecture specific
languages. Lastly, we argue that improved GPU scheduling could yield
a potential speedup of 3.

Keywords: GPGPU Programming · OpenMP Target Offloading ·
Shared Memory · Fine-Grained Parallelism

1 Introduction

As supercomputers advance towards exascale levels of performance, there is an
increasing trend of incorporating accelerators such as Graphics Processing Units,
GPU s, to enhance computational density and efficiency. However, the integra-
tion of GPUs into supercomputing systems introduces additional complexity for
developers, necessitating the evolution of parallel programming models to keep
pace with this trend. While architecture-specific languages and tools such as the
Compute Unified Device Architecture, CUDA [17], provides lower-level control
of the GPU hardware often allowing higher performing programs through hard-
ware intrinsic functions, they also place a greater burden on developers, requiring
them to invest more effort and time in development.

Open Multi-Processing, OpenMP [19], is an application programming inter-
face, API, which has long been a popular choice for shared memory parallelism
within the realm of High Performance Computing, HPC. OpenMP provides
developers with a range of library routines and compiler directives that help
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 114–128, 2023.
https://doi.org/10.1007/978-3-031-40744-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_8&domain=pdf
http://orcid.org/0000-0002-9087-4646
http://orcid.org/0000-0001-6620-6800
http://orcid.org/0000-0003-0737-9992
https://doi.org/10.1007/978-3-031-40744-4_8

OpenMP Target Offload Utilizing GPU Shared Memory 115

manage the low-level details of parallelization, allowing developers to focus on
high-level logic. An important addition in OpenMP 4.0 [20] is the introduction
of target offload, which allow developers to offload part of programs to GPUs
using a similar syntax to traditional OpenMP parallelization, bringing the high
portability of OpenMP to GPU programming.

Target offload in OpenMP is still in an early stage of development across
many compilers, including different implementations of the standard. This can
often lead to a significant difference in behavior and performance, for the same
lines of code when using different compilers. Additionally, GPUs provide fast
local memory resources, which is shared between groups of threads providing
very fast access. This locally shared memory is important to consider for high
performing GPU applications, as it enables fast data sharing and pre-fetching.
Yet this area of controlling locally shared memory is not fully mature and can
result in a high degree of variation in performance across compilers.

This paper aims to analyze the practical aspects of implementing portable
programs with effective utilization of GPU shared memory with OpenMP, specif-
ically focusing on block/chunk algorithms by conducting experiments on two
different system, employing both NVIDIA and AMD hardware.

Furthermore, we compare the performance of compiler generated code and
performance portability across different compilers. Lastly, we will profile the
resulting GPU kernels, to further investigate the underlying scheduling and syn-
chronization of the target regions.

The main contributions of this paper are as follows. We:

– examine the effectiveness of manual parallelization and automatic loop-based
work-sharing constructs in OpenMP target offloading for fine-grained control
of parallelization and evaluate their suitability for algorithms reliant on GPU
shared memory and blocking.

– compare performance and usability of target offloading for blocking algo-
rithms depending on local synchronization and memory resource sharing for
the most common compilers on modern hardware.

– identify areas where OpenMP target offloading lags behind, compared to a
equivalent program written in CUDA.

In Sect. 2, this paper provides an overview of OpenMP target offloading and
introduces the two algorithms used for experimentation. Section 3 presents our
experimental results, both considering methods of parallelization, compiler capa-
bilities and in-depth profiling of GPU scheduling. Section 4 gives a brief summary
of related works and Sect. 5 concludes the paper by summarizing key findings.

2 Background

GPUs are highly parallel processors, which excel especially at handling large
workloads and processing where similar work is required for a large number
of elements. They can typically run thousands of threads at the same time,

116 M. Gammelmark et al.

spread across hundreds of cores, making it crucial to consider ways to maximize
parallelization in one’s programs.

GPUs are typically structured in many physical groups of tightly packed
cores, utilizing a Single Instruction Multiple Data, SIMD, architecture, for max-
imizing the density of cores, allowing significantly higher core count compared
to conventional CPUs. NVIDIA refer to these groups as Streaming Multiproces-
sors, SMs, containing 32 cores, while AMD designates them as Compute Units,
CUs, containing 64 cores. Each of these SM/CU will process the same instruc-
tion across all cores and through smart hardware and software mapping enable
execution of multiple threads at the same time, all executing the same instruc-
tions in lockstep. This results in great performance when the flow of execution
is identical across all threads, but when a branch is encountered the efficiency
will decrease as some cores will remain idle, while the neighbors are executing
other branches.

The cores are not only densely clustered in groups, but is also tightly inter-
connected in the groups, sharing the same registers, L1 cache, and locally shared
memory, enabling significantly faster data sharing and synchronization within
a group compared to outside [16]. It is therefore important to structure pro-
grams in such a way, that most communication is happening within one group,
to best utilize the local interconnection. This is already deeply embedded in the
architecture-specific languages, such as CUDA and OpenCL, where GPU work
is organized in blocks or workgroups respectively, representing a block/group
of threads which work together within the same SM/CU. This organization
enables efficient sharing and synchronization between the threads, as they all
remain within the same group. Beyond the blocks/workgroup, synchronization
becomes limited, although some data sharing can still be accomplished through
the use of atomic operations and global memory access. If global synchronization
is required, it becomes necessary to wait for all blocks/groups to complete before
continuing.

There are several approaches to writing GPU programs using OpenMP target
offloading. Section 2.1 discusses the available parallel constructs in OpenMP and
Sect. 2.2 discusses the example applications being used for the experiments.

2.1 OpenMP Target Parallelism for GPUs

The analogous concept to blocks and workgroups in OpenMP is the teams con-
struct, which similarly represents a group of threads working tightly together.
We consider two main methods for organizing work into blocks. The first is man-
ually defining the work-sharing and the number of teams in the target teams
region, using the num teams directive, with the intention of starting a team for
each block. The number of teams created is a higher bound for OpenMP 5.0 and
will be defined by the implementation, but both a lower and higher bound have
later been introduced, making this methods more portable for newer versions of
OpenMP. The second method is using the distribute work-sharing construct
to parallelize a for-loop across all available teams, and then let the implemen-
tation decide how many actual teams are used, see Listing 1.1. This has the

OpenMP Target Offload Utilizing GPU Shared Memory 117

advantage of being independent of the actual number of teams created, making
the methods much more portable. The negative side to this method is that it can
introduce an additional overhead of managing an outer loop iterating over the
blocks, depending on how the implementation decides to handle the distribution.
This effect will be examined further in Sect. 3.3.

To fully utilize the hardware a second level of parallelism must be created
using a parallel region. Similarly, to the teams construct, the parallel region
can either be created by directly by specifying the number of threads, or by
distributing a loop using the parallel for construct. The number of threads
in a team can be specified using the thread limit clause, but this also defines
an upper limit in OpenMP 5.0, meaning that the actual number of threads in
the team is implementation specific, but similarly this clause also received a
lower bound in a later version of OpenMP, see Listing 1.2. Using the parallel
for work-sharing construct is again the more portable solution but might add
additional overhead from handling the loop logic and automatic work-sharing.

The main reason we have for separating the team and thread parallelization
in OpenMP is to enable allocation of shared memory, which is done by handling
array and variable initialization before starting the thread parallelization. A
second reason is synchronization, which can be managed using either barrier
constructs within parallel regions or by ending a loop parallelization for the
work-sharing constructs. It is important to note that forking and joining of the
loop parallelization can incur a significant overhead, depending on how the work-
sharing is implemented.

In Listings 1.1 and 1.2 are code snippets illustrating the overall struc-
ture of both the manual work-sharing and the automatic distribute and
parallel for based work-sharing. The outer most pragma is responsible
for allocating all blocks and assigning them to the teams and initializ-
ing the shared memory, where the inner most pragma is responsible for
distributing the blocks work across all available threads within the team.
1 #pragma omp target teams distribute thread_limit (BLOCK_SIZE) nowait depend (...)

2 for (int block_id = 0; block_id < n_blocks ; ++ block_id) {

3 int temp [BLOCK_SIZE];

4 #pragma omp parallel for num_threads (BLOCK_SZIE) shared (tmp)

5 for (int thid = 0; thid < BLOCK_SIZE ; ++thid) {

6 // Do Someting ...

Listing 1.1. Worksharing constructs with distribute and parallel for

1 #pragma omp target teams num_teams (num_blocks) thread_limit (BLOCK_SIZE) nowait depend (...)

2 {

3 int temp [BLOCK_SIZE];

4 #pragma omp parallel num_threads (BLOCK_SZIE) shared (tmp)

5 {

6 // Do Someting ...

Listing 1.2. Manual worksharing using num teams and thread limit

118 M. Gammelmark et al.

In OpenMP 5.0 the loop construct was introduced with higher restrictions,
allowing potentially better static analysis and mapping to hardware [21]. The
usage is very similar to the distribute and parallel for constructs, but allows
mapping to either teams or parallel regions, based on the bind clause. However,
the loop construct is still not widely supported across compilers and will only
be examined using the NVC compiler.

2.2 Applications

The different parallel patterns are considered for two algorithms utilizing block-
ing and GPU shared memory. The first algorithm is the parallel scan based on
the Blelloch algorithm [2], which computes the sum of all previous elements in an
array. Scan, or also called prefix sums is widely used, eg. for binning and stream
compaction in the AMReX framework [28], enabling large scale dynamic particle
simulations on GPUs or for list compaction in tree construction algorithms as pre-
sented by Wu et al. [26]. Multiple variations of this algorithm exists, with current
state of the art based on decoupled look-back [15]. However, for the context of this
paper a more simplistic approach is taken, following the presented implementation
by Harris et al. in GPU gems 3 [11]. The overall idea of the algorithm is to calcu-
late the prefix sum locally within a block using the Blelloch algorithm and writes
out the total sums of the blocks to an auxiliary array, which then recursively have
the prefix sum calculated, until the auxiliary array can fit into a single block. The
prefix sum of the blocksums, then corresponds to the sum off all previous blocks,
which then can be used to find the global prefix sum.

The second application considered is the parallel four-way LSB radix sorting
algorithm, which additionally utilizes the parallel scan for iteratively sorting
elements 2 bits at a time, from the lowest bit to the highest bits. A simplified
version of the four-way radix sort as described by Linh Ha et al. [10] is used
for the experiments, which is omitting the parallel order checking and is using a
direct mapping instead of the coalesced block mapping presented. This is done
to keep the complexity low, as the focus is held on how to best control the
parallelism. Other versions of the parallel radix sort exist, such as 16-way radix
sort, sorting by 4 bits at a time, or current state algorithms such as one-sweep
radix sorting [1] using the previously mentioned single pass prefix sum, with
decoupled look-back.

Both applications are heavily using blocking iteration, where data is pro-
cessed in blocks and are heavily relying on shared memory. For this reason, we
are forced to use separated teams and thread parallel regions, as described in
Sect. 2.1.

3 Results

The applications are evaluated using multiple compilers, on two different HPC
systems, using GPUs from both AMD and NVIDIA. Before reviewing the exper-
imental results, we’ll provide a short description of the two systems in Sect. 3.1
and the compilers in Sect. 3.2.

OpenMP Target Offload Utilizing GPU Shared Memory 119

Table 1. Architecture information for the nodes used in the two systems. The infor-
mation in 1a has been gathered from the A100 white-paper [16] for the GPU and CPU
info have been reported with lscpu within the batch jobs. The information in 1b has
been gathered from the LUMI documentation [4].

CPU Information

Model name
Intel Xeon Gold
G226G

GPU count 2

Sockets 2

Cores per socket 16

L1d cache 32KiB

L1i cache 32KiB

L2 cache 1024KiB

L3 cache 22528KiB

CPU Information

Model name
AMD EPYC
7A53

GPU count 4 (8 logical)

Sockets 1

Cores per socket 64

L1d cache 32 KiB

L1i cache 32 KiB

L2 cache 512 KiB

L3 cache 256 MiB

GPU Information

Model name Ampere A100

RAM 40 GiB

SM count 108

Shared mem / L1 192 KiB (per SM)

L2 cache 40 MiB

(a) Ampere Node

GPU Information

Model name Instinct MI250X

RAM 128 GiB (per module)

CU count 110 (per chip)

Shared mem 64 KiB (per CU)

L1 cache 16 KiB (per CU)

L2 cache 8 MiB (per chip)

(b) LUMI Node

3.1 HPC System

The first system is a local cluster at the Technical University of Denmark,
managed by DCC [9], which provides access to NVIDIA’s A100 PCIE 40GB
GPUs [16]. Only a single GPU is utilized for the experiments, with exclusive
access to the node to minimize external contributors to noise and overhead.

The second system is the LUMI-G supercomputer [4], which is equipped with
four AMD MI250X GPUs, each with a total of 128GB memory. The MI250X
GPU is a multi-chip module containing two GPU dies, meaning that each node
contain 8 logical GPU partitions where each pair, shares the 128GB memory. As
we are using a single GPU for our experiments, this effectively means that only
half of one MI250X is utilized.

A more detailed description of both systems is found in Table 1.

3.2 Compilers

The applications are developed using C++17 and are compiled with the -O3 flag
for all experiments. The specific version of each compiler is listed in Table 2.

120 M. Gammelmark et al.

Table 2. Compilers used on the compute nodes from Tables 1a and b. No commit is
present for the NVC compiler as it has not been installed from Git. Additionally, both
clang and cray are mapping to HIP rocm version 5.2.21153.

Compiler Version Commit

clang DCC 16.0.0 710a834c4c822c5c444fc9715785d23959f5c645

clang LUMI 16.0.0 710a834c4c822c5c444fc9715785d23959f5c645

nvc 22.5 -

cray clang 15.0.0 324a8e7de6a18594c06a0ee5d8c0eda2109c6ac6

gcc 13.0.0 44baa34157cf81306be23eacece751aa020985d4

The first compiler is the C language family front-end for the LLVM project
Clang [12], which we use across both systems. We have compiled Clang to sup-
port target offloading according to the LLVM compile guide for OpenMP [13].
The second compiler is the nvc++ compiler from NVIDIA, which is part of
NVIDIA’s HPC SDK [18] and is provided on the DCC system. We will refer
to this compiler as NVC. The third compiler used is the cray clang++ com-
piler, which is provided by the LUMI system as part of their Cray Compiling
Environment CCE [14], which we will refer to as Cray. The last compiler used
is the GNU Compiler Collection GCC [24]. GCC is also compiled to support
target offloading, where we followed the guide Offloading Support in GCC [3].

3.3 Parallel Scan

In this section we will compare the manual work-sharing with the automatic
loop based work-sharing on the DCC system. The two methods will be com-
pared using the parallel scan algorithm, presented in Sect. 2.2. Additionally, an
equivalent CUDA implementation is used to compare similar levels of complex-
ity with an explicit kernel definition. Figure 1 illustrates the execution time for
both the manual work-sharing, automatic work-sharing with parallel for and
the loop construct based work-sharing introduced in OpenMP 5.0.

Manual work-sharing demonstrates substantially better performance for both
the Clang and NVC compilers, and we see that Clang deliverers comparable
results to the pure CUDA implementation for large arrays. Additionally, it is
noteworthy that NVC achieves a speedup of approximately 7 with manual work-
sharing for large arrays compared to the parallel for constructs. For small
arrays, Clang exhibits decreased performance, potentially attributed to overhead
between kernels, which we will further investigate in Sect. 3.5.

We encountered difficulties with the GCC compiler, as it did not allocate
more than 28-32 threads per team. To prevent errors, we had to reduce the block-
size to 16 for GCC, alternative to 256 used for the remaining compilers. However,
as mentioned in Sect. 2 this behavior is still compliant with the standard.

OpenMP Target Offload Utilizing GPU Shared Memory 121

Fig. 1. Execution time for the 3 different parallelization methods across multiple com-
pilers, including the equivalent CUDA implementation. All tests are performed on the
DCC system, with A100 GPUs, and execution times include 95 percentile intervals for
200 runs.

The automatic work-sharing using distribute and parallel for yields
lower performance across all array sizes for both NVC and Clang but demon-
strates an improvement for GCC while also allowing the block-size to remain
at 256. During the debugging process, it was found that GCC utilizes only 32
threads per team, deviating from the more ideal number of 128 threads used
by both NVC and Clang. This clearly indicates improved performance stabil-
ity when utilizing the work-sharing constructs, which further enables the use of
much larger blocks which cannot be supported with the manual work-sharing or
CUDA, without additional code complexity. However, the performance stability
also comes with added overhead, which is indicated by the previously mentioned
decreased performance for both NVC and Clang.

The OpenMP 5.0 loop construct demonstrates performance close to CUDA
across all array sizes, and generally outperforms other patterns for NVC, with a
speedup of almost 8 compared to the manual work-sharing. As earlier mentioned
we only have support for this work-sharing construct in NVC, which limits fur-
ther usage, but does show promise for future implementations of OpenMP target
offloading.

In general, the manual work-sharing achieves better performance in our
experiments, compared to the automatic based on the distribute and parallel
for constructs. However, its effectiveness heavily relies on the implementation,
leading to decreased portability across systems and compilers, as shown for the
GCC compiler.

122 M. Gammelmark et al.

3.4 Radix Sort

Next, we examine the manual work-sharing using the four-way parallel radix
sorting algorithm. The experiments will both run on the DCC and LUMI system.
GCC is omitted due to problems related to the available number of threads in
a teams region. The goal of the experiment is to give a better understanding of
the expected performance for the tested compilers when using separated team
and thread parallelism, to utilize the locally shared GPU memory.

The experiment consists of sorting an array of random numbers, with number
of elements ranging from 100 to 108. Time is measured from the first target
region is called, until the last target region completes and synchronizes. The
sorting algorithm is run once as a warm-up to ensure that the run-time is fully
initialized, before starting to measure the time. The resulting data is additionally
verified after completion, to ensure correct behavior. Timings do not include
allocation of data, as all allocations are handled before sorting is started.

Figure 2, illustrates the total execution time, using multiple compilers on both
the A100 and MI250X GPUs. Similarly to the previous experiment we have an
equivalent CUDA implementation measured on the same A100 GPUs, hinting
to what execution time can ideally be expected from a very simple code without
using any advanced features.

Clang still shows significant variation in performance for smaller arrays and
shows an execution time that approaches the pure CUDA implementation for
large arrays. Investigating the percentile interval of the Clang time, shows a
relatively constant difference between the 0.01 percentile and 0.99 percentile,
ranging from 0.010s to 0.012s over all sizes of the array larger than the block-
size. The constant range of the variation indicates that it is not originating from
the kernels themselves, but rather an overhead applied to each executed target
region. We will investigate this further in the next section.

On LUMI, we see increased performance for Clang and similar performance
for Cray. Clang show significantly reduced statistical variation between runs,
compared to equivalent runs on the DCC system, with more than 30 times less
variation for most array sizes. Whether the slightly better average performance
for Clang on LUMI is due to the hardware, or due to a more efficient OpenMP
run-time, is not possible to say from these experiments and is not examined
further in this paper. However, it is still worth mentioning that Clang achieves
better and clearer results on AMD, than on NVIDIA hardware.

NVC shows better performance with smaller arrays compared to Clang on
A100, but falls behind around 105 elements, indicating a less efficient paral-
lelization and mapping to the hardware. Similarly to the previous experiment,
NVC does not show any large variation between runs and maintains a steady 10
times slowdown compared to the CUDA implementation across all array sizes.
NVC could potentially achieve better performance using the loop construct, as
observed in Fig. 1, where similar performance to CUDA is observed for some
sizes.

OpenMP Target Offload Utilizing GPU Shared Memory 123

Fig. 2. Execution time of the radix sort implementation across a range of number of
elements from 100 to 108 elements, with 95 percentile intervals for 200 runs. Experi-
ments are conducted on both A100s from the DCC and MI250X on LUMI. The high
variation for the Clang generated code is examined further in Sect. 3.5.

3.5 Profiling

In this section we perform a more in-depth examination of the kernel execution
using profiling tools, to get a better understanding of the observed difference
between NVC, Clang and CUDA on the DCC system.

The experiment have a similar setup as the previous experiment, where sort-
ing of an array random numbers is performed, but here we fix the size to 106 ele-
ments for all tests. Profiling has been performed using NVIDIA Nsight Systems
version 2021.3.3.2-b99c4d6, which is shipped with CUDA 11.51 and is using
nsys profile --trace=cuda <program><args> for all tests.

Figure 3 illustrates the average execution time for each kernel included in the
radix sorting algorithm, which also includes all the kernels from the scan algo-
rithm. A significant increase in kernel execution time is measured for NVC, across
all kernels which utilize the separated team and thread parallelization for utiliz-
ing the shared memory, with slowdowns of between 5 to 10 compared to Clang
and CUDA. However, we measure better performance for the AddBlockSums
kernel, achieving similar results to Clang and CUDA, indicating that the lost
performance is due to the separated team and thread parallelization. Clangs ker-
nel execution achieves similar result to the CUDA implementation, indicating

1 CUDA version 11.5 is the highest version still fully supported by the version of Clang
used.

124 M. Gammelmark et al.

Fig. 3. Profiling kernel execution time for NVC, Clang and CUDA, using A100, with
5 runs per test, with each kernel being executed multiple times per run.

that the manual work-sharing is working ideally for Clang and that the varia-
tion observed in earlier experiments is not contributed to by the kernel execution
itself.

By examining the profiling data further, we reveal that Clang utilizes syn-
chronization with the host, resulting in additional latency from the communica-
tion between the host and device. This should not be necessary as the nowait
and depend clauses are used to run the target regions asynchronously. This
does correlate with the increase in time between kernels observed in Fig. 4, and
could explain the large variation in execution time from earlier experiments. In
contrast, both NVC and CUDA launch all kernels asynchronously and handles
scheduling on the device, effectively removing the latency added by the commu-
nication.

Figure 4 illustrates this idle-time between kernels and show a significant
amount for Clang with an average of 46.5µs, compared to 9.2µs observed for
NVC and 5.0µs observed for CUDA. As the overall kernel execution time is
significantly better for Clang, compared to NVC, it is with high probability that
the lost performance and large variation can be contributed to the scheduling
and synchronization of the kernels.

We theorize that improving the scheduling in Clang has potential to yield
a significant speedup for the overall run-time. To determine the potential, the
combined execution time of all kernels is calculated while taking into account
an estimated improved idle-time for each kernel. Realistic values for the esti-
mated idle-time can be derived from the average values obtained for NVC or
CUDA. Based on these specific experiments, it is found that Clang could achieve
a speedup of 2.37 with an idle-time similar to NVC, and a 3.24 speedup with
an idle-time similar to CUDA. It is important to note that these results are
highly application-specific. Nonetheless, they highlight the potential for substan-
tial performance enhancement in Clang, despite already achieving impressive
performance without adding much complexity for the GPU target offloading.

OpenMP Target Offload Utilizing GPU Shared Memory 125

Fig. 4. Profiling idle time between kernels for code generated with NVC, Clang and
CUDA, using A100. The idle time is found by the difference in start-time between the
consecutive kernels, subtracted by the kernel execution time.

4 Related Work

Previous work by Chapman et al, [5,6] and Daley et al, [7] also report poor
performance for distribute and parallel for constructs when using separate
team and thread parallelization, similar to what we observe in Sect. 3.3. Davis
et al. [8] further confirm this behavior and additionally show substantial per-
formance improvement using manual team distribution compared to automatic
distribution with the distribute construct. Chapman et al. [5,6], further show
significant improvement using the OpenMP 5.0 loop directive, which was also
observed in Sect. 3.3.

Rydahl et al. [22] investigated multi-GPU programming using target offload-
ing for stencil operation, similarly performing asynchronous kernel execution
using the nowait clause. Here multiple target regions were running in parallel
allowing overlapping kernel execution, which could help reduce latency related
to host-side synchronization.

Tian et al. [25], suggest extension to OpenMP allowing high performing target
regions, including allocators for shared memory and synchronization intrinsic
within teams. Talaashrafi et al. [23] suggest to automate utilization of shared
memory for pre-fetching of read-only data, which could reduce the need for
blocking in some algorithms.

Lastly, Zegarra et al. [27], propose a new scan clause for OpenMP, with sim-
ilar performance as direct programming in OpenCL, but with much less design
effort, essentially making it possible to implement our first application using a
single OpenMP target construct. Introducing local scanning within teams would
additionally help to significantly reduce the design effort for the radix sorting, as
the majority of the complexity is related to a local Blelloch scan implementation.
Having a local scan clause would additionally allow highly optimized OpenMP
implementations taking full advantage of supported architecture features.

126 M. Gammelmark et al.

5 Conclusions

In this paper, we examined manual team and thread work-sharing and auto-
matic work-sharing based on the distribute and parallel for constructs, for
OpenMP target offloading. We ran experiments using two algorithms heavily
relying on shared memory and synchronization within teams. We show larger
speedups than 9 for NVC and 1.5 for Clang, when using manual work-sharing
compared to the automatic work-sharing constructs distribute and parallel
for and more than a speedup of 7, when using the loop construct, compared to
the manual work-sharing for NVC.

For both parallel scan and radix sorting we found that Clang suffers from
significant overhead for all target regions when running on A100 GPUs, which is
revealed to most likely be caused by synchronization through the host, despite
using the nowait and depend clauses, where applications compiled with NVC
were able to launch all kernels from the host and handle execution asyn-
chronously on the GPU. Through profiling we show that Clangs kernel execution
is comparable to the simple pure CUDA implementation, but that a significant
increase in idle-time between kernels is present compared to other compilers.
This results in poor performance when applications consist of many smaller tar-
get regions, but have diminishing impact when the problem-size increase. Lastly,
we estimate a potential speedup of 3 for the profiled applications compiled with
Clang, if a scheduling similar to NVC and CUDA can be achieved.

Acknowledgement. This work was partially supported by DeiC National HPC (g.a.
DeiC-DTU-N5-20230033) and by the “Compiler development” project (g.a. DeiC-
DTU-N5-20230033).

We acknowledge Danish e-infrastructure Cooperation (DeiC), Denmark for award-
ing this project access to the LUMI supercomputer, owned by the EuroHPC Joint
Undertaking, hosted by CSC (Finland) and the LUMI consortium through Danish
e-infrastructure Cooperation (DeiC), Denmark, “Compiler development”, DeiC-DTU-
N5-20230033.

Lastly, we acknowledge DCC [9] for providing access to the A100 GPUs used for
experiments as well as interactive environments used throughout development.

References

1. Adinets, A., Merrill, D.: Onesweep: a faster least significant digit radix sort for
gpus. arXiv preprint arXiv:2206.01784 (2022). https://doi.org/10.48550/arXiv.
2206.01784

2. Blelloch, G.E.: Prefix sums and their applications. Tech. Rep. CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University (1990)

3. Burnus, T.: Offloading support in GCC (2023). https://gcc.gnu.org/wiki/
Offloading. Accessed 17 May 2023

http://arxiv.org/abs/2206.01784
https://doi.org/10.48550/arXiv.2206.01784
https://doi.org/10.48550/arXiv.2206.01784
https://gcc.gnu.org/wiki/Offloading
https://gcc.gnu.org/wiki/Offloading

OpenMP Target Offload Utilizing GPU Shared Memory 127

4. Center for Science: LUMI-G documentation, GPU nodes. https://docs.lumi-
supercomputer.eu/hardware/lumig/ (2023). Accessed 15 May 2023

5. Chapman, B., et al.: Outcomes of openMP hackathon: openMP application expe-
riences with the offloading model (part I). In: McIntosh-Smith, S., de Supinski,
B.R., Klinkenberg, J. (eds.) IWOMP 2021. LNCS, vol. 12870, pp. 67–80. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-85262-7 5

6. Chapman, B., et al.: Outcomes of openMP hackathon: openMP application expe-
riences with the offloading model (part II). In: McIntosh-Smith, S., de Supinski,
B.R., Klinkenberg, J. (eds.) IWOMP 2021. LNCS, vol. 12870, pp. 81–95. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-85262-7 6

7. Daley, C., Ahmed, H., Williams, S., Wright, N.: A case study of porting HPGMG
from CUDA to openMP target offload. In: Milfeld, K., de Supinski, B.R.,
Koesterke, L., Klinkenberg, J. (eds.) IWOMP 2020. LNCS, vol. 12295, pp. 37–
51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58144-2 3

8. Davis, J.H., Daley, C., Pophale, S., Huber, T., Chandrasekaran, S., Wright, N.J.:
Performance assessment of OpenMP compilers targeting NVIDIA V100 GPUs. In:
Bhalachandra, S., Wienke, S., Chandrasekaran, S., Juckeland, G. (eds.) WACCPD
2020. LNCS, vol. 12655, pp. 25–44. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-74224-9 2

9. DTU Computing Center: DTU Computing Center resources (2022). https://doi.
org/10.48714/DTU.HPC.0001

10. Ha, L., Krüger, J., Silva, C.T.: Fast four-way parallel radix sorting on GPUs.
Comput. Graph. Forum 28(8), 2368–2378 (2009). https://doi.org/10.1111/j.1467-
8659.2009.01542.x

11. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. In:
GPU Gems 3, pp. 851–876. Addison-Wesley Professional (2007)

12. LLVM: Clang: a c language family frontend for LLVM (2023). https://clang.llvm.
org/. Accessed 26 May 2023

13. LLVM: Support, getting involved, and FAQ (2023). https://openmp.llvm.org/
SupportAndFAQ.html. Accessed 17 May 2023

14. LUMI: Cray compilers (2023). https://docs.lumi-supercomputer.eu/development/
compiling/cce/. Accessed 26 May 2023

15. Merrill, D., Garland, M.: Single-pass parallel prefix scan with decoupled look-back.
Tech. Rep. NVR-2016-002, NVIDIA (2016)

16. NVIDIA: Nvidia a100 tensor core gpu architecture, unprecedented acceleration
at every scale (2020). https://images.nvidia.com/aem-dam/en-zz/Solutions/data-
center/nvidia-ampere-architecture-whitepaper.pdf. Accessed 15 May 2023

17. NVIDIA: CUDA toolkit documentation v11.5.0 (2023). https://docs.nvidia.com/
cuda/archive/11.5.0/. Accessed 26 May 2023

18. NVIDIA: Nvidia HPC SDK documentation (2023). https://docs.nvidia.com/hpc-
sdk/archive/22.7/. Accessed 26 May 2023

19. OpenMP Architecture Review Board: OpenMP (2023). https://www.openmp.
org/. Accessed 15 May 2023

20. OpenMP Architecture Review Board: Openmp application programming interface
version 4.0 (2023). https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.
pdf. Accessed 15 May 2023

21. OpenMP Architecture Review Board: OpenMP application programming interface
version 5.0 (2023). https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf. Accessed 15 May 2023

https://docs.lumi-supercomputer.eu/hardware/lumig/
https://docs.lumi-supercomputer.eu/hardware/lumig/
https://doi.org/10.1007/978-3-030-85262-7_5
https://doi.org/10.1007/978-3-030-85262-7_6
https://doi.org/10.1007/978-3-030-58144-2_3
https://doi.org/10.1007/978-3-030-74224-9_2
https://doi.org/10.1007/978-3-030-74224-9_2
https://doi.org/10.48714/DTU.HPC.0001
https://doi.org/10.48714/DTU.HPC.0001
https://doi.org/10.1111/j.1467-8659.2009.01542.x
https://doi.org/10.1111/j.1467-8659.2009.01542.x
https://clang.llvm.org/
https://clang.llvm.org/
https://openmp.llvm.org/SupportAndFAQ.html
https://openmp.llvm.org/SupportAndFAQ.html
https://docs.lumi-supercomputer.eu/development/compiling/cce/
https://docs.lumi-supercomputer.eu/development/compiling/cce/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/archive/11.5.0/
https://docs.nvidia.com/cuda/archive/11.5.0/
https://docs.nvidia.com/hpc-sdk/archive/22.7/
https://docs.nvidia.com/hpc-sdk/archive/22.7/
https://www.openmp.org/
https://www.openmp.org/
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

128 M. Gammelmark et al.

22. Rydahl, A., Gammelmark, M., Karlsson, S.: Feasibility studies in multi-GPU target
offloading. In: Klemm, M., de Supinski, B.R., Klinkenberg, J., Neth, B. (eds.)
OpenMP in a Modern World: From Multi-device Support to Meta Programming.
IWOMP 2022. Lecture Notes in Computer Science, vol. 13527, pp. 81–93. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-15922-0 6

23. Talaashrafi, D., Maza, M.M., Doerfert, J.: Towards automatic openMP-aware uti-
lization of fast GPU memory. In: Klemm, M., de Supinski, B.R., Klinkenberg, J.,
Neth, B. (eds.) OpenMP in a Modern World: From Multi-device Support to Meta
Programming. IWOMP 2022. Lecture Notes in Computer Science, vol. 13527, pp.
67–80. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15922-0 5

24. The GCC team: Offloading support in GCC (2023). https://gcc.gnu.org/. Accessed
26 May 2023

25. Tian, S., Chesterfield, J., Doerfert, J., Chapman, B.: Experience report: writing
a portable GPU runtime with OpenMP 5.1. In: McIntosh-Smith, S., de Supin-
ski, B.R., Klinkenberg, J. (eds.) IWOMP 2021. LNCS, vol. 12870, pp. 159–169.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85262-7 11

26. Wu, K., Truong, N., Yuksel, C., Hoetzlein, R.: Fast fluid simulations with sparse
volumes on the GPU. Comput. Graph. Forum 37(2), 157–167 (2018). https://doi.
org/10.1111/cgf.13350

27. Zegarra, M., Pereira, M., Martorell, X., Araujo, G.: Automatic scan paralleliza-
tion in openmp. In: 2017 International Symposium on Computer Architecture
and High Performance Computing Workshops (SBAC-PADW), pp. 85–90. IEEE
(2017). https://doi.org/10.1109/SBAC-PADW.2017.23

28. Zhang, W., Myers, A., Gott, K., Almgren, A., Bell, J.: AmReX: block-structured
adaptive mesh refinement for multiphysics applications. Int. J. High Per-
form. Computing Applications 35(6), 508–526 (2021). https://doi.org/10.1177/
10943420211022811

https://doi.org/10.1007/978-3-031-15922-0_6
https://doi.org/10.1007/978-3-031-15922-0_5
https://gcc.gnu.org/
https://doi.org/10.1007/978-3-030-85262-7_11
https://doi.org/10.1111/cgf.13350
https://doi.org/10.1111/cgf.13350
https://doi.org/10.1109/SBAC-PADW.2017.23
https://doi.org/10.1177/10943420211022811
https://doi.org/10.1177/10943420211022811

Improving a Multigrid Poisson Solver
with Peer-to-Peer Communication

and Task Dependencies

Anton Rydahl(B) and Sven Karlsson

Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kgs,
Lyngby, Denmark

rydahlanton@gmail.com, svea@dtu.dk

Abstract. Multigrid methods are a family of mathematical methods
governing linear time and storage complexity for solving several ellip-
tic partial differential equations. The logarithmically decaying resolution
of the grids in the multigrid hierarchy poses a challenge to achieving
high parallel efficiency on highly heterogeneous systems. At the same
time, supercomputers have become increasingly heterogeneous with the
advent of general-purpose graphics processing units.

This paper presents a highly optimized geometric multigrid Poisson
solver that leverages multiple general-purpose graphics processing units
with OpenMP target offloading and tasking.

We demonstrate that advanced OpenMP features, such as task depen-
dencies and peer-to-peer data transfers, can decrease the amount of idle
time on the accelerators and thereby increase the parallel efficiency for
a multigrid application.

Weak scaling results are presented for two high-performance comput-
ing systems with NVIDIA and AMD accelerators. We use four NVIDIA
Tesla GV100 general-purpose graphics processing units to achieve a par-
allel efficiency of 94 percent for a solver based on V-cycles with seven
multigrid levels.

Keywords: Target Offloading · Multigrid methods · Task
dependencies · Task reductions · Peer-to-peer communication

1 Introduction

Geometric multigrid methods are powerful mathematical models that solve sev-
eral elliptic partial differential equation problems in linear serial time and space
complexity [15, page 196]. The recursion consists of iteratively improving the
solution estimate on a predefined hierarchy of discretizations.

The convergence rate depends highly on the number of grids; therefore, very
low-resolution grids must be included in the grid hierarchy. The computations
on fine-resolution grids can significantly benefit from leveraging the general-
purpose graphics processing units, GPGPUs, found on modern supercomput-
ers [13]. However, the computations on the coarsest grids are less suitable for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 129–143, 2023.
https://doi.org/10.1007/978-3-031-40744-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_9&domain=pdf
http://orcid.org/0000-0001-6620-6800
http://orcid.org/0000-0003-0737-9992
https://doi.org/10.1007/978-3-031-40744-4_9

130 A. Rydahl and S. Karlsson

the GPGPUs as the level of parallelism needs to be higher to scale to highly
heterogeneous hardware. Therefore, implementing multigrid methods that effi-
ciently use the accelerators without limiting the number of levels is challenging.

By eliminating synchronization points with task dependencies and task
reductions, we hide the communication overhead and minimize idle time on
the accelerators. Further, by using the runtime function omp target memcpy()
from the OpenMP 5.0 specification [12] rather than directives for mapping, we
show how peer-to-peer communication between GPGPUs can improve the par-
allel efficiency of the geometric multigrid Poisson solver.

Large Unified Modern Infrastructure, LUMI [3], which at the time of writing
is the third fastest computer in the world [14], comes with four AMD Instinct
MI250X [1] GPGPUs per compute node in the GPU partition. As many of the
largest systems have AMD GPGPUs, it is essential to understand behavior and
potential bottlenecks.

It is found that the approach outlined in this paper weakly scales worse on
LUMI than on another system with NVIDIA Tesla GV100 GPGPUs, primarily
due to peer-to-peer data transfers, which are more than an order of magnitude
slower than on the NVIDIA system.

Our primary contributions follow below:

– We present a single-node multi-GPU geometric multigrid Poisson solver for
efficiently solving the Poisson equation in 3D with different combinations of
inhomogeneous Dirichlet and Neumann boundary conditions.

– The solver has similar weak scaling properties to other GPU-accelerated geo-
metric multigrid Poisson solvers based on MPI plus CUDA.

– We demonstrate how advanced OpenMP features can be used to improve the
scalability of multigrid applications.

2 Mathematical Background

The Poisson equation is an elliptic partial differential equation arising in several
science and engineering fields. It can be stated on the form

Δu(x, y, z) = f(x, y, z), (x, y, z) ∈ Ω (1)

where Δ = ∇2 is the Laplacian operator, and Ω is a hyperrectangle,

Ω =
{
(x, y, z) : x0 ≤ x ≤ x0 + Lx, y0 ≤ y ≤ y0 + Ly, z0 ≤ z ≤ z0 + Lz

}
.

The Poisson Eq. (1) will be considered together with two sets of boundary con-
ditions. In the first case, inhomogeneous Dirichlet conditions are imposed on all
surfaces of the hyperrectangular domain. The other set of boundary conditions
consists of inhomogeneous Dirichlet conditions on horizontal surfaces of Ω,

u(x, y, z0) = gmin(x, y), u(x, y, z0 + Lz) = gmax(x, y) (2)

Peer-to-Peer Communication and Task Dependencies 131

and inhomogeneous Neumann conditions on vertical surfaces of Ω,

∂u

∂x
(x0, y, z) = ηmin(y, z)

∂u

∂x
(x0 + Lx, y, z) = ηmax(y, z)

∂u

∂y
(x, y0, z) = ξmin(x, z)

∂u

∂y
(x, y0 + Ly, z) = ξmax(x, z). (3)

The first set of Boundary conditions is commonly called a pure Dirichlet problem.
In contrast, the second set of boundary conditions will be called the mixed
boundary problem. The numerical procedure described in this chapter works for
all combinations of Dirichlet and Neumann conditions except for pure Neumann
problems.

2.1 Finite Difference Discretization

In one dimension, the second-order central finite difference operator can be used
to derive a second-order accurate finite difference scheme for the Poisson Eq. (1)
with Dirichlet (2) and Neumann (3) boundary conditions. The separability of the
Laplacian operator makes it sufficient to cover the one-dimensional discretization
and boundary modifications. The second-order central finite difference operator
on an equidistant grid Gh with a uniform grid spacing h is given by

u
(2)
i � ui−1 − 2ui + ui+1

h2
(4)

which can be derived by considering a Taylor expansion in the points
{ui−1, ui, ui+1}, isolating u

(2)
i and dropping higher-order terms [2]. Here, the

superscript in parenthesis indicates the order of the derivative.

2.2 Geometric Multigrid Methods for the Discrete Poisson
Equation

A geometric multigrid method consists of a prescribed hierarchy of grids Gh

to G2l−1h together with a set of mathematical operators, namely a relaxation
scheme, a restriction operator, and a prolongation operator. The superscripts
indicate the grid spacing. The relaxation operator S is used to improve the
approximation to the linear system Ahuh = fh on grid Gh. The restriction oper-
ator maps I2h

h : Gh → G2h, and the prolongation operator defines the inverse
mapping Ih

2h : G2h → Gh from the coarser to the finer grid. This follows the nota-
tion from Multilevel Projection Methods for Partial Differential Equations [10].
The concept is to find the residual rh = fh −Ahuh on the fine grid Gh. By com-
puting the defect d2h from A2hd2h = r2h on the coarser grid G2h, the solution
estimate on the fine grid Gh can be improved by adding dh = Ih2hd2h to uh. The
residual defect can further be reduced by recursively leveraging several coarser
grid levels.

132 A. Rydahl and S. Karlsson

2.3 Boundary Conditions

Eliminated Dirichlet boundary conditions can be imposed in points u0 or un−1,
when the one-dimensional grid G consists of n points.

Ghost points u−1 and un can be introduced to derive non-eliminated Neu-
mann boundary conditions. We may consider the first-order central finite differ-
ence operator to ensure that the approximate derivative of u0 and un−1 equals
the Neumann conditions. For the left boundary, this corresponds to the choice
of u−1 given by

u
(1)
0 � u1 − u−1

2h
⇔ u−1 � u1 − 2hu

(1)
0 . (5)

2.4 Restricting Boundary Conditions

Because the defect equation is solved on all levels, except for the finest, new
boundary conditions for the defect equation must be derived.

The analytic solution to the Poisson equation is known at the boundary
points for Dirichlet conditions. Hence by definition, the residual of Dirichlet
boundary points is zero.

In this work, Neumann conditions are imposed such that the first derivative
of the defect must equal the difference between the prescribed derivative and
the approximate derivative. Appropriate choices that have the same order of
accuracy as the second-order central finite difference operator (4) are given by

u
(1)2h

0 � u
(1)h

0 − h−1
(−3

2
uh
0 + 2uh

1 − 1
2
uh
2

)
(6)

u
(1)2h

n−1 � u
(1)h

n−1 − h−1
(1
2
uh
n−3 − 2uh

n−2 +
3
2
uh
n−1

)
. (7)

GPU 0

GPU 1

GPU 2

GPU 3

Fig. 1. This figure shows standard coarsening for a cube decomposition. The figure
portrays a 2D slice of a cubic domain for easy understanding. The figure shows that
four cells in 2D are collapsed into one cell by the restriction operator. For the ease of
implementing appropriate boundary modifications, the restriction operator increases
the size of the halo. In this example, three levels in the multigrid hierarchy have a
uniform grid spacing h, 2h, and 4h, respectively. It should be emphasized that using
more than three levels is desirable in practice.

Peer-to-Peer Communication and Task Dependencies 133

2.5 Domain Decomposition

Domain decomposition introduces internal boundaries. They can be considered
a Dirichlet condition that needs to be updated every time the estimate of u is
updated on level 0 or the estimate of d is updated on level l > 0.

Figure 1 illustrates the concept of standard coarsening in two dimensions for
two-dimensional domain decomposition. In standard coarsening, every point in
the coarse grid G2h corresponds to every second point in the fine grid Gh. When
using uniform grid spacing, the physical size of the domain increases when the
domain is restricted to a coarser grid because the ghost points used for storing
non-eliminated boundary corrections are now placed 2h from the boundary.

3 Implementation

The Poisson solver described in the previous section was implemented in C++
and can be used with any combination of Dirichlet and Neumann boundary
conditions, except for a pure Neumann problem.

The implementation described in this section is available at https://github.
com/AntonRydahl/multigrid-poisson.

template <class T>
T DeviceArray <T>:: infinity_norm () const {

T res = 0.0;
const int _dev = this ->device;
const int * _shape = this ->shape;
const Halo & _halo = this ->halo;
const int (& _stride)[3] = this ->stride;
const T * _devptr = this ->devptr;

#pragma omp target device(_dev) is_device_ptr(_devptr) map(always ,tofrom:res)
{

#pragma omp teams distribute parallel for reduction(max:res) collapse (3)
for(int i = 0;i<_shape [0];i++)
for(int j = 0;j<_shape [1];j++)
for (int k_block = 0;k_block <_shape [2]; k_block += BLOCK){

T tmp = 0.0;
#pragma omp simd reduction(max:tmp)

for (int_t k = k_block;k<std::min(k_block+BLOCK ,_shape [2]);k++){
T abselem = std::abs(_devptr[idx(i,j,k,_halo ,_stride)]);
tmp = std::max(abselem ,tmp);

}
res = std::max(res ,tmp);

}
}
return res;

}

Listing 1.1: Example kernel from the solver. This kernel computes the infinity
norm of a subdomain. The DeviceArray class contains information about shape,
stride, and halo, and the idx function is a constant expression that computes
the index taking halo and stride into account. One-dimensional blocking is used
in the least strided dimension.

https://github.com/AntonRydahl/multigrid-poisson
https://github.com/AntonRydahl/multigrid-poisson

134 A. Rydahl and S. Karlsson

3.1 Offloading

The solver contains multiple kernels for smoothing, restriction, prolongation,
boundary transfers, norm calculations, and more. They are all implemented using
blocking in the least strided dimension.

Listing 1.1 shows an example of how the infinity norm of a subdomain can
be computed on the device. The DeviceArray class template stores information
about host and device pointers, shape, halo size, and element stride. The index
is computed based on halo and stride with a constant expression. The combined
clause omp target teams distribute parallel for collapse(3) is used to
distribute the loop iterations with two levels of parallelism across teams and
threads on the device. Hardware parallelism is enabled with a single instruction,
multiple data, SIMD, reduction.

The remaining GPU kernels are implemented similarly and consider three
levels of parallelism across teams, threads, and SIMD lanes.

3.2 Task Dependencies

Due to the associated communication, the smoothing operation is the step in the
multigrid algorithm that is hardest to get to run efficiently on multiple devices.
Especially when considering three-dimensional domain partitioning and coarser
levels, overlapping multiple data transfers and computations becomes challeng-
ing because the computational load is very small relative to the communication
overhead.

#pragma omp parallel
#pragma omp single nowait
for (int s = 0; s < nsmooth; s++)
for (int i = 0; i < omp_get_num_devices (); i++){
#pragma omp task depend(inout:u[i],v[i])

// Swap the solution estimates
#pragma omp task depend(in:u[i],v[i],east_neighbor[i]) depend(out:east[i])

// Impose the east boundary conditions
#pragma omp task depend(in:u[i],v[i],west_neighbor[i]) depend(out:west[i])

// Impose the west boundary condition
...

#pragma omp task depend(in:east[i]) depend(out:east_neighbor[i])
// Compute and send the east boundary

#pragma omp task depend(in:west[i]) depend(out:west_neighbor[i])
// Compute and send the west boundary
...

#pragma omp task depend(out:u[i],v[i]) \
depend(in:east[i],west[i],north[i],south[i],top[i],bottom[i])

// Perform Jacobi relaxation
}

Listing 1.2: Simplified example of running the Jacobi relaxation. The aim is to
show that multiple relaxations can be run without synchronization when using
task dependencies.

Peer-to-Peer Communication and Task Dependencies 135

A näıve approach to running multiple devices in parallel was first attempted
by simply looping over the devices in a parallel-for region with the same number
of threads as the number of available devices.

However, each smoothing must have at least two synchronization points with
this approach. The first synchronization point is placed after the boundary con-
ditions have been imposed. This enforces that the halo values are not sent before
an adjacent device is finished using the halo values from the previous iteration.
The second is ensuring that the data transfer between adjacent devices is finished
before the next iteration.

To avoid synchronization points, the programming pattern from Listing 1.2
was applied. In the listing, north, south, east, west, top, and bottom refer to the
six surfaces of each subdomain. With the task-based approach, several smoothing
iterations can be run without synchronization points between iterations. Some
of the tasks have been omitted to simplify the example. For example, there is
a dependency between east and west boundaries. The west data transfer will
need to specify depend(out:...) on the buffer, and the adjacent east internal
boundary will specify depend(in:...) on the same buffer for imposing the
boundary condition.

In Listing 1.2, both the boundary exchange and smoothing operation have in
dependencies on the boundaries rather than inout dependencies. This requires
duplicate computations of boundary points and storing halo values in separate
buffers. This provides a higher level of parallelism, as boundary transfers can
start immediately after the internal boundary conditions have been imposed.

The dependency on the send and receive buffers must not be inout as this
would require that the tasks imposing, for instance, east and west boundary
conditions, would be mutually exclusive, when west neighbor is a reference
to the adjacent east boundary and vice versa. The correct execution order is
ensured by the inout dependencies on the solution estimates, denoted u and v
in the first task in the example code.

double fnorm = 0.0;
#pragma omp parallel reduction (+: fnorm) reduction (+: rnorm)
#pragma omp single nowait
#pragma omp taskgroup task_reduction (+: fnorm)
for (int i = 0; i<omp_get_num_devices ();i++){
#pragma omp task default(none) shared(u,...) firstprivate(i)\

in_reduction (+: fnorm)
{

double fnorm_task = u[i]. infinity_norm ();
fnorm += fnorm_task;

}
}

Listing 1.3: Host parallelism for efficient reductions on multiple GPUs. The
partial results are computed with Listing 1.1.

136 A. Rydahl and S. Karlsson

Task Reductions. A standard way of measuring whether a multigrid algorithm
has converged is to compute the relative residual defined by

||Au − f ||∞
||f ||∞ (8)

and measure whether it has changed since the last cycle. The infinity norm
can efficiently be computed using OpenMP task reductions. Listing 1.3 shows
the host parallelism needed to compute reductions across multiple devices. The
example does not convey the full potential of using task reductions. In reality,
many kernels may need to be executed to compute the relative residual because
of boundary corrections.

3.3 Direct Peer-to-Peer Communication

Many OpenMP applications rely on directive-based data mapping between host
and devices with omp target data enter() and similar directives. So did this
application, to begin with.

Many modern supercomputers have multiple devices per compute node, typ-
ically interconnected with fast direct links. The OpenMP standard does not
define a directive to make direct transfers from one device to another. Thereby,
directive-based data mapping does not leverage the fast links between GPUs.

While the OpenMP specification does not provide a directive for peer-to-
peer communication, it introduced a runtime function for that purpose in the
OpenMP 5.0 specification [12], namely omp target memcpy(). As per the speci-
fications, this function supports data transfers between any combination of host
and device pointers. However, most compiler vendors do not support peer-to-
peer communication at the time of writing. It is supported in version 16 of the
clang++ compiler from the LLVM project [7], which will be used to illustrate
the potential of using omp target memcpy().

Listing 1.4 shows how data transfers can be sent directly from device-to-
device with omp target memcpy() using host and device pointers.

template <class T>
void Array <T>:: device_to_device(Array <T> & arr) {

// Device -to -device
int res = omp_target_memcpy(arr.devptr ,this ->devptr ,this ->size*sizeof(T)

,0,0,arr.device ,this ->device);
if (res != 0){/* Handle errors */}

};

Listing 1.4: If a compiler, such as clang 16, supports any combination of host
and device pointers, direct communication can be used.

Peer-to-Peer Communication and Task Dependencies 137

Table 1. Sub-table 1a states the most crucial device information for the compute node
from DCC. It has four NVIDIA Tesla GV100 GPUs interconnected with fast Infiniband
links. The host on the node is a dual-socket Intel Xeon Gold 6142.
Sub-table 1b lists the equivalent information for a compute node from LUMI. It has
four AMD MI250X GPUs, which contain two GPU dies each. The accelerator metrics
are listed per GPU die. The host on the LUMI G node is a single socket AMD EPYC
7A53.

(a) DCC Node

Number of GPGPUs 4

Model name
NVIDIA

Tesla GV100

RAM 32 GB

FP64 Units 2560

L1 cache 10.2 MB

L2 cache 6.1 MB

(b) LUMI G Node

Number of GPGPUs 4

Model name
AMD

Instinct MI250X

RAM 64 GB

FP64 Units 7040

L1 cache 1.76 MB

L2 cache 8 MB

4 HPC Systems

Experiments have been performed at two HPC systems; a compute node from
Large Unified Modern Infrastructure, LUMI [3], and one from the DTU Com-
puting Center, DCC [4]. Table 1 gives an overview of the accelerators on the two
compute nodes.

The compute node from LUMI has four AMD Instinct MI250X GPGPUs,
each consisting of two GPU dies. The two GPU dies within one MI250X are
connected with four Infinity Fabric links, each with a theoretical bandwidth of
50 GB/s [16]. GPU dies that do not reside within the same GPU are connected
with a single Infinity Fabric link with a bandwidth of 50 GB/s. Each GPU die
is connected to the host with an Infinity Fabric link with a 36 GB/s theoretical
bandwidth.

The compute node from DCC has four NVIDIA Tesla GV100 GPGPUs. All
GPUs are interconnected with 25 GB/s NVLink connections. Furthermore, there
is an additional NVLink connection between GPU 0 and 3, and between 1 and
2 such that these links have a bandwidth of 50 GB/s [5, topology A, page 63].

The clang++ 16 compiler was installed according to the guide [8] from commit
bf82070ea465969e9ae86a31dfcbf94c2a7b4c4c on DCC and
710a834c4c822c5c444fc9715785d23959f5c645 on LUMI.

138 A. Rydahl and S. Karlsson

5 Experimental Results

5.1 Convergence Experiment

Two test problems were used to verify the correctness of the implementation.
The first one is given by

Δu(x, y, z) = − (k2
x + k2

y + k2
z) sin(kxx) sin(kyy) sin(kzz) (9)

which has the analytic solution u(x, y, x) = sin(kxx) sin(kyy) sin(kzz). In the
convergence experiment, frequencies (kx, ky, kz) = (3, 5.3,−7.8) were used. The
second test problem has the analytic solution u(x, y, z) = cos(xz2) sin(y3) and
is given by

Δu(x, y, z) =
(− (4x2z2 + 9y4 + z4) sin(y3) + 6y cos(y3)

)
cos(xz2) (10)

− 2x sin(xz2) sin(y3).

It can be assumed that no errors were introduced during the implementation
if the observed convergence rate matches the expected convergence rate of the
discretization. Ordinary least squares estimates are one way to approximate the
convergence rate of the solver. The normal equations are given by

X�Xθ = X�y, X =

⎡

⎢
⎢
⎣

1 log h1

...
...

1
... log hk

⎤

⎥
⎥
⎦ , y =

⎡

⎢
⎣

log τ1
...

log τk

⎤

⎥
⎦ , θ =

[
α
β

]
(11)

where k is the number of observations, h1, . . . , hk are the grid spacings, τ1, . . . , τk
are the observed errors, α is the intercept, and β is the slope [9].

Fig. 2. The maximum absolute error has been plotted as a function of the grid spacing
h for test problems (9) and (10). The convergence rate has been found as the slope
of the least squares linear fit in logarithmic space. Eight GPUs were used to solve the
three test problems and a 2 × 2 × 2 × 2 hyperrectangular 3D domain decomposition.
The dashed black line shows the theoretical rate of convergence of the 7-point stencil.

Peer-to-Peer Communication and Task Dependencies 139

Fig. 3. Comparison of average runtime of a V-cycle on the DCC node when using all
four devices in a pencil partitioning. Four pre- and post-smoothing were used in the
experiment, and the results were averaged over 30 iterations, even though the method
converges in less. The experiment used six, seven, eight, and eight levels.

Fig. 2 shows that the ordinary least squares estimate of the rate of conver-
gence, ROC, the slope β from the normal equations (11), matches the expectation
of a second-order accurate numerical method.

5.2 Evaluating Improvements

The compute node from DCC with four NVIDIA Tesla GV100 GPUs was used
to evaluate the improvements made to the initial code, which were described in
Sect. 3. Three versions were tested: A näıve approach where multiple devices were
run in parallel using parallel for loops, and one where task dependencies and task
reductions had been employed to remove synchronization points. Additionally,
the task-based approach was extended with direct peer-to-peer communication.

Figure 3 shows the results of the experiments. Going from the naive approach
to the tasking approach gave a 10 percent speedup. Improving the data transfers
with peer-to-peer communication gave an additional improvement of 11 percent
for the largest experiment size.

5.3 Weak Scaling Analysis

The weak scaling experiment was performed by considering a pencil decomposi-
tion on the DCC node and a hyperrectangle decomposition on the LUMI node.
Due to the vastly different amounts of device memory, a domain consisting of
640 × 1024 × 640 voxels was considered for the DCC node, while a domain of

140 A. Rydahl and S. Karlsson

Fig. 4. Upper row: Weak scaling results from the DCC node when using peer-to-peer
communication and redirecting data transfers via the host. The efficiency is given for
different numbers of levels in the multigrid hierarchy. The lower row shows the same
experiments on LUMI. Note the very different scales of the vertical axes for the compute
node from DCC and the compute node from LUMI.

1024 × 1280 × 1024 voxels was used on the LUMI node. On the DCC node, it
was scaled to dimensions 640×2048×1280 and 2048×2560×2048 on the LUMI
node.

The efficiency was measured as t(1)
t(k) where t(1) is the average time per V-cycle

and t(k) is the average time for a k times larger domain when using k devices.
On the DCC node, the efficiency for one multigrid level, corresponding to the

Jacobi relaxation and convergence estimates alone, is 99 and 98 percent for two
and four devices, respectively. When using more levels, it gradually decreases to
94 percent for seven multigrid levels and four devices. When using four devices
and seven multigrid levels, the finest domain has a size of 640 × 2048 × 1280,
meaning that the coarsest level has only 5 × 16 × 10 cells distributed across the
four devices.

However, on the compute node from LUMI G, the weak scaling results are
very different. Using just one level has worse scaling than using all seven levels
on the DCC node. Further, when using eight devices on LUMI and seven multi-
grid levels, the parallel efficiency drops as low as 38 percent, and peer-to-peer
communication does not improve the results significantly.

Peer-to-Peer Communication and Task Dependencies 141

Fig. 5. Histograms of the data transfers using peer-to-peer and redirected communica-
tion. The timings are for sending interior boundaries of size 513× 513 double precision
floating-points corresponding to approximately 2.1 megabytes.

5.4 Boundary Transfers

The transfer times for peer-to-peer communication and communication redi-
rected via the host were estimated to explain the difference in weak scaling
results. The transfer times were estimated by measuring wall-clock time imme-
diately before and after the transfers on the host.

As described in Sect. 4, the theoretical bandwidth of the Infinity Fabric con-
nections between the devices on the compute node from LUMI is greater than
or equal to the theoretical bandwidth of the NVLinks on the compute node
from DCC. However, it was found that the direct GPU-to-GPU data transfers
were many times slower on LUMI than on DCC. Figure 5 shows a probability
histogram of the timings. It was found that the peer-to-peer transfers on LUMI
were approximately 73.5 times slower than on the DCC compute node.

On LUMI, the median peer-to-peer transfer was approximately 31 percent
faster than the median communication via the host. On the DCC compute node,
using the peer-to-peer connections for halo exchange was ten times faster than
redirecting the communication via the host.

6 Related Work

D. Jacobsen et al. [6] present a geometric multigrid solver based on finite differ-
ences. The implementation is conceptually similar to ours but is implemented
in MPI + CUDA and is not publicly available. Due to the use of MPI, their
solver scales to more GPUs. On the DCC node, our solver achieves better weak
scaling than the results reported by D. Jacobsen et al. When using four pre-
and post-smoothings and five multigrid levels, they report a parallel efficiency of
86 percent on two GPGPUs. In contrast, the solver from this paper achieves 95
percent efficiency on four NVIDIA Tesla GV100. However, on the LUMI node,
we achieve similar results. Note that this comparison is approximate since we

142 A. Rydahl and S. Karlsson

have not had access to the same computing systems.
A more recent MPI + CUDA example is N. Onodera et al. [11], which solves

the Poisson equation on a Cartesian grid using a geometric multigrid precon-
ditioned conjugate gradient method. Similarities between their work and the
solver in this paper are that they both support mixed boundary conditions and
are based on finite differences. Their implementation is made in MPI plus CUDA.
As the code is not publicly available, it is not possible to compare the perfor-
mance.

7 Conclusion

Developing multigrid applications that efficiently use multiple GPGPUs in par-
allel is a design challenge. That is because the low-resolution grids do not nec-
essarily benefit from leveraging multiple accelerators.

It has been demonstrated that direct communication between GPUs, intro-
duced in version 5.0 of the OpenMP standard, can significantly improve the weak
scaling of multigrid applications. While we observed significant improvements on
a compute node with NVIDIA Tesla GV100 GPGPUs interconnected with fast
NVLink connections, the optimization had little to no effect on a compute node
from LUMI with AMD Instinct MI250X GPGPUs interconnected with Infinity
Fabric. It was found that the peer-to-peer communication on the former system
was, on the median, 73.5 times faster than on the latter system. Therefore, the
potential of leveraging the direct GPU-to-GPU connections on LUMI was much
smaller and did not provide a significant improvement.

Acknowledgment. This project has received funding from the European High-
Performance Computing Joint Undertaking (JU) under grant agreement No 951732. We
acknowledge the Danish e-Infrastructure Cooperation (DeiC), Denmark, for awarding
this project access to the LUMI supercomputer, owned by the EuroHPC Joint Under-
taking, hosted by CSC (Finland) and the LUMI consortium through DeiC, Denmark,
Compiler development (DeiC-DTU-N5-20230033). Lastly, we acknowledge DCC [4] for
providing access to compute resources.

References

1. AMD: Introducing AMD CDNA 2 Architecture. https://www.amd.com/system/
files/documents/amd-cdna2-white-paper.pdf (2022). Accessed 23 Mar 2023

2. Bingham, H., Larsen, P., Barker, A.: Computational Fluid Dynamics. Technical
University of Denmark, Kongens Lyngby, Denmark (2020)

3. Center for Science: GPU nodes - LUMI-G. https://docs.lumi-supercomputer.eu/
hardware/lumig/ (2023). Accessed 16 May 2023

4. DTU Computing Center: DTU Computing Center resources (2022). https://doi.
org/10.48714/DTU.HPC.0001

5. Hewlett Packard Enterprise: HPE Apollo 6500 Gen10 System/HPE Pro-
LiantXL270d Gen10 Server User Guide. https://support.hpe.com/hpesc/public/
docDisplay?docLocale=en US&docId=a00045705en us (2019). Accessed 16 May
2023

https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://docs.lumi-supercomputer.eu/hardware/lumig/
https://docs.lumi-supercomputer.eu/hardware/lumig/
https://doi.org/10.48714/DTU.HPC.0001
https://doi.org/10.48714/DTU.HPC.0001
https://support.hpe.com/hpesc/public/docDisplay?docLocale=en_US&docId=a00045705en_us
https://support.hpe.com/hpesc/public/docDisplay?docLocale=en_US&docId=a00045705en_us

Peer-to-Peer Communication and Task Dependencies 143

6. Jacobsen, D., Senocak, I.: A full-depth amalgamated parallel 3d geometric multi-
grid solver for GPU clusters. In: Aerospace Sciences Meeting Including the New
Horizons Forum and Aerospace Exposition (2011). https://doi.org/10.2514/6.
2011-946

7. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: International Symposium on Code Generation and Opti-
mization, 2004. CGO 2004. CGO 2004, IEEE Computer Society, USA (2004)

8. LLVM: Support, Getting Involved, and FAQ. https://openmp.llvm.org/
SupportAndFAQ.html#build-amdgpu-offload-capable-compiler (2023). Accessed
16 Feb 2023

9. Madsen, H.: Time Series Analysis. Chapman and Hall (2000)
10. McCormick, S.: Multilevel Projection Methods for Partial Differential Equations.

SIAM, Denver, Colorado (1992)
11. Onodera, N., Idomura, Y., Hasegawa, Y., Yamashita, S., Shimokawabe, T., Aoki,

T.: GPU Acceleration of multigrid preconditioned conjugate gradient solver on
block-structured cartesian grid. In: The International Conference on High Perfor-
mance Computing in Asia-Pacific Region, pp. 120–128. HPC Asia 2021, Association
for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3432261.3432273

12. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face - Version 5.0 November 2018. https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf (2018). Accessed 18 May 2023

13. Rydahl, A., Gammelmark, M., Karlsson, S.: Feasibility Studies in Multi-GPU Tar-
get Offloading. In: Klemm, M., de Supinski, B.R., Klinkenberg, J., Neth, B. (eds.)
OpenMP in a Modern World: From Multi-device Support to Meta Programming.
IWOMP 2022. Lecture Notes in Computer Science, vol. 13527, pp. 81–93. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-15922-0 6

14. Top 500: November 2022. https://top500.org/lists/top500/2022/11/ (2022).
Accessed 18 May 2023

15. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. London, 1 edn. (2001)
16. Vicherek, J.: Introduction of LUMI supercomputer. https://events.it4i.cz/event/

160/attachments/457/1717/lumi-intro.pdf (2023). Accessed 16 May 2023

https://doi.org/10.2514/6.2011-946
https://doi.org/10.2514/6.2011-946
https://openmp.llvm.org/SupportAndFAQ.html#build-amdgpu-offload-capable-compiler
https://openmp.llvm.org/SupportAndFAQ.html#build-amdgpu-offload-capable-compiler
https://doi.org/10.1145/3432261.3432273
https://doi.org/10.1145/3432261.3432273
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1007/978-3-031-15922-0_6
https://top500.org/lists/top500/2022/11/
https://events.it4i.cz/event/160/attachments/457/1717/lumi-intro.pdf
https://events.it4i.cz/event/160/attachments/457/1717/lumi-intro.pdf

Beyond Explicit GPU Support

Multipurpose Cacheing to Accelerate
OpenMP Target Regions on FPGAs

Julian Brandner(B), Florian Mayer, and Michael Philippsen

Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) Programming Systems
Group, Erlangen, Germany

{julian.brandner,florian.andrefranc.mayer,michael.philippsen}@fau.de

Abstract. While FPGAs can offer great throughput and energy effi-
ciency, when offloading OpenMP target regions to them the memory
bandwidth often limits the ability to exploit their potential. As a rem-
edy, our OpenMP-to-FPGA compiler fully automatically inserts opti-
mized multipurpose cache blocks into the generated FPGA hardware.
We exploit characteristics of OpenMP target regions to both avoid costly
bus snooping hardware and to achieve cache consistency. On a diverse
set of benchmarks with data reuse the caches reduce the runtime by 43%
on average, while only consuming slightly more FPGA resource.

Keywords: FPGA · OpenMP · target offloading · hardware cache

1 Introduction

FPGAs promise a huge potential for computational tasks. In the right domain
they can outperform CPUs as well as GPUs in terms of performance [3] and
energy efficiency [29]. However, many attempts to automatically offload OpenMP
target regions to FPGAs [12,18,20,24] still cannot unleash the potential of the
FPGA. One of their common problems is that large amounts of data can only be
stored in the DDR memory of the FPGA, and due to the limited clock frequency
of the FPGA, memory bandwidth poses a significant performance bottleneck.

We improve this by automatically inserting a highly optimized multipurpose
cache into the generated FPGA hardware and use it in the kernels that encode
offloaded OpenMP target regions on the FPGA. As we use a multipurpose cache
any target region that exhibits data reuse benefits form the cache, regardless of
its algorithm and without the need to statically determine the data reuse pat-
terns. While the presence of a cache is transparent and can be ignored when
compiling for a standard processor, this is no longer the case for cache block on
the FPGA. Here the inserted cache needs to be actively controlled to guaran-
tee cache consistency. And it can also only occupy a small fraction of FPGA
resources as it competes with the offloaded computation.

To the best of our knowledge we are the first to add a multipurpose cache
to the FPGA hardware generated for an offloaded OpenMP target region. We
exploit characteristics of the OpenMP target regions to avoid both resource-
hungry bus snooping hardware on the FPGA and cache consistency issues.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 147–162, 2023.
https://doi.org/10.1007/978-3-031-40744-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-40744-4_10

148 J. Brandner et al.

PCI
IP

Kernel 1

Kernel 2

. . .

Kernel N

Cache

Control Port

DDR

FPGACPU

Host
Binary

PCI
Driver

Fig. 1. A typical CPU-FPGA system with an added cache (bold).

Section 2 sketches the workflow of typical OpenMP-to-FPGA compilers and
their resulting FPGA design. Section 3 explains how we to improve this design.
Section 4 covers our implementation. Section 5 presents our evaluation and find-
ings. In Sect. 6 we discuss related work before we conclude.

2 State of the Art

The various OpenMP-to-FPGA compilers generate both a host binary and
FPGA hardware (see Fig. 1, but ignore the bold elements for now). For the
host binary, they replace the OpenMP target regions with code that handles the
necessary data transfers and starts and awaits the FPGA-side computations. For
the FPGA hardware they use a so-called high level synthesis (HLS) to translate
target regions into hardware blocks (kernels) and embed them into a low-level
platform (LLP) that also holds pre-built blocks like a PCI controller, a DDR
memory interface, etc. The latter serve as an interface between the kernels and
the host. To execute the complete program, the FPGA is initialized with this
bitstream (generated from the LLP and all kernels) and connected to the host
system (e.g. by PCI Express).

On all the OpenMP-to-FPGA offloading systems there is the following flow of
execution: Fist, the necessary data is passed to the FPGA, where a PCI controller
stores the data into onboard DDR memory. Then the PCI controller passes the
memory locations to the kernel, launches the kernel, and awaits its termination.
The host binary is typically blocked during this process. Finally, when the host
requests the results, the PCI controller directly loads them from the onboard
DDR memory. Typical applications alternate between data shipment (in/out)
phases and FPGA computation phases.

There is a need for a cache. In addition to the data shipment that the PCI
controller performs, the kernels also frequently access the onboard memory. On
the FPGA the gap between kernels and the onboard memory is even worse
than the gap between processor and memory in standard computer architecture.
The reason is that on an FPGA it in general requires multiple interconnecting
hardware blocks between the kernels and the memory, i.e., long data paths with

Multipurpose Cacheing to Accelerate OpenMP Target Regions on FPGAs 149

significant latencies that severely reduce the throughput, since FPGAs usually
operate with relatively low clock frequencies (< 200MHz). Therefore, to reduce
these latencies, we suggest adding a cache between the kernels and the DDR
memory, see the bold elements of Fig. 1.

However, cache consistency solutions from standard computer architecture
are not applicable to caches on the FPGA. In standard computer architecture it
is mainly the processor that accesses the memory. When DMA controllers sel-
domly accesses it, this is transparent for the processor as extra hardware detects
and resolves potential inconsistencies. The situation is different in the flow of
execution used for FPGA offloading. First, both the PCI controller and the
kernel access the onboard memory frequently, which often causes memory con-
sistency issues when a cache is present. Second, due to their complexity and the
structure of buses in FPGA design, the inconsistency resolving techniques from
standard computer architecture would consume a significant fraction of FPGA
resources and restrict the space that the kernels have for computing. We address
these technical issues below and demonstrate how we exploit characteristics of
the offloaded OpenMP target regions to solve them.

3 Approach

For decades computer architects have used caches to grant processors fast access
to data that reside in slow memory. Hence, it is promising to add an onboard
multipurpose cache to the generated FPGA hardware to speedup memory access
for the kernels, see Fig. 1. We use a readily available cache block that is designed
at register transfer level, is highly resource-efficient, and scales well.

But adding a cache block to an FPGA is far from trivial. In addition to the
inconsistency issues mentioned above, there are two more problems. First, the
cache competes for FPGA resources that are needed for computing. We address
this problem by picking a cache block that is known to have a small footprint.
Second, HLS kernels need extra mechanisms that tell a cache block if a certain
memory address can or cannot be cached, and they need to actively control the
cache w.r.t. consistency issues.

3.1 Cache Integration

At first glance hardware caches appear to be transparent. They can be inserted
into a communication bus (or other connections), to automatically store passing
data for faster future requests and to defer write accesses in order to save time.
But not every read or write request can be safely cached or deferred since for
addresses of memory mapped peripherals (instead of memory regions) caching
may lead to incorrect behavior. Therefore, typical bus protocols include an extra
set of data lines to indicate what type of device is being addressed and what
kinds of optimizations are safe.

During HLS however, the address space has yet to be determined and thus
the HLS cannot determine how to set these lines. The HLS therefore settles

150 J. Brandner et al.

with a safe option that either completely prevents caching, or does not cause
any incorrect behavior. In practice the HLS often disables the allocation of new
cache lines or leaves the cache empty. Simply adding a cache block to an HLS
kernel does not improve performance.

Luckily we can solve this problem in the context of OpenMP-to-FPGA
offloading by exploiting that the kernels do not directly interact with periph-
eral devices. They only use their outgoing ports to communicate with the
onboard DDR memory. And since we handle consistency separately (see below
in Sect. 3.2), it is safe to enable aggressive caching. We fully engage the cache by
writing fixed values to the corresponding extra data lines that control the cache.

3.2 Cache Consistency

We place the cache between the kernels and the onboard memory. Due to archi-
tectural constraints it is impossible to route the direct memory lines from the PCI
controller (dashed arrow in Fig. 1) through the cache. This causes consistency
problems: The PCI can read data that is not yet updated, and the kernels may
see outdated values from the cache and miss changes that the host previously
made to the onboard memory. Standard computer architecture typically solves
such problems by means of a snooping cache that has extra hardware circuits
for monitoring the bus. If an address comes by that would lead to consistency
issues the cache reacts. On a write request, it invalidates the affected cache line.
On a read request it responds with the cached result, even though the cache was
not the recipient of the request.

While conceptually it may be possible to add bus snooping circuits to an LLP,
it is impractical for two reasons: First, bus snooping and its dynamic inconsis-
tency detection and resolution require complex hardware circuits that would
occupy valuable resources and take them away from computing. Second, FPGAs
typically employ point-to-point bus system topologies, instead of, for instance, a
daisy chain. Hence, a passing request does not physically reach the cache block
at all. Workarounds would require additional snooping blocks in the bus network
that not only introduce additional latencies but also occupy even more resources.

Luckily we are offloading OpenMP target regions. Due to their copy-in/copy-
out semantics, we only have to synchronize cache and memory at the beginning
and at the end of an offloaded region.

To solve the cache consistency issues, we add an additional outgoing port to
every kernel and connect it to the control interface of the cache (bold lines to
”control port” in Fig. 1). We also add explicit code to the kernel code that con-
trols the cache via this interface. At the beginning of a target region the kernel
issues a clearing of the cache, so that it sees any updates the PCI controller may
have written to the DDR memory before. If we can statically determine that
no two kernels ever run simultaneously in the OpenMP program we optimize
and drop the checking for previously deferred writes. Otherwise, the cache is
instructed to write this data to memory during cache invalidation to avoid inter-
fering with other kernels that were either started concurrently or non-blocking.
At the end of the target region the kernel issues a flush before it signals its

Multipurpose Cacheing to Accelerate OpenMP Target Regions on FPGAs 151

completion to the platform. This way the PCI controller only accesses the DDR
memory after the cache is flushed.

4 Implementation

We implemented our approach by extending the ORKA OpenMP-to-FPGA com-
piler [18] and the underlying TaPaSCo system composer [14]. We target the Xil-
inx FPGA ecosystem and used Vitis HLS and Vivado v2021.2 respectively for the
hardware generation. We conducted our experiments on the AMD Virtex Ultra-
Scale+ FPGA VCU118 Evaluation Kit. For the host system we used an Intel Core
i7-4770 CPU which was connected to the FPGA board via PCI Express.

We used the LogiCORE System Cache Version 5 provided by Xilinx. We chose
this cache block as it is officially developed and optimized for Xilinx platforms.
To the best of our knowledge it is the only publicly available implementation of a
cache block for Xilinx FPGAS that natively supports the AMBA AXI4 interface
used by Vitis HLS kernels and that offers extensive reconfigurability. The cache
size, the cache line length, and the associativity can be chosen freely.

To fully engage the cache (see Sect. 3.1), we set the ARCACHE as well as
the AWCACHE lines of the AXI4 bus interface protocol to all ones. To cir-
cumvent cache consistency problems (see Sect. 3.2), according to the LogiCORE
documentation the kernel has to write certain fixed values to a specific address
(0x1C000) of the cache control port. The value 0x200 issues an invalidation of
the cache, the value 0x8000 a flush.

Even though we only implemented our ideas as part of the ORKA compiler and
only targeted a single FPGA platform, our work is relevant to other OpenMP-to-
FPGA offloading systems. As they all construct a similar LLP and compose kernels
that access the onboard memory (see Fig. 1), they all can integrate a cache block
in the way we suggest. Even works that employ domain specific analyses to gener-
ate kernel-local caches (see Sect. 6), can benefit from an additional multipurpose
cache, as not every reuse can be determined statically.

5 Evaluation

5.1 Benchmarks

To evaluate the effect of the added cache blocks we use a benchmark set con-
sisting of a 2D convolution (Filter), a Matrix Multiplication, the Levenshtein
Distance, the Knapsack problem, two different sorting algorithms, the SHA256
hash, and the computation of the Mandelbrot set (see Table 1). We chose these 8
tasks because, first, the research on FPGA optimization frequently uses them for
FPGA system benchmarking (“see also” column). Second, the 8 codes are diverse
with respect to both memory access patterns and other properties. The Filter
and the Matrix Multiplication access the memory in a regular reuse pattern
that is independent of the input. The Levenshtein Distance and the Knapsack
problem are examples of popular dynamic programming algorithms. For the

152 J. Brandner et al.

Table 1. Benchmark set.

Benchmark See Also Data Reuse 2D Data SizeIndep. Reuse Lines of Code Memory Demand Range (KB)

Filter [4,8,22,26] X X X 21 40 – 16000

Matrix Multiplication [8,16,23,28] X X 12 30 – 7680

Levenshtein Distance [5,34] X X X 30 40 – 313

Knapsack [9,25] X X 30 4 – 2200

OE-Transposition Sort [4,11,15,30] X 15 0.4 – 60

Bitonic Sort [6,16,30] X 25 0.4 – 60

SHA256 [4,21] 200 40 – 960

Mandelbrot [4,10,13,32] 20 40 – 16000

Knapcksack problem the data access pattern cannot be statically determined
but strongly depends on the input, while the Levenshtein Distance exhibits a
static and highly local pattern. As sorting is a building block of many algorithms
we included Odd-Even Transposition Sort and Bitonic Sort which are typical for
use on FPGAs. Both sorts repeatedly iterate over the dataset, leading to large
temporal gaps between reuses. Lastly, we included the SHA256 hash and the
Mandelbrot set, since both do have many memory accesses but with hardly any
data reuse (see column “data reuse”).

The benchmarks also vary with respect to other properties. Four of the bench-
marks (column “2D data”) work with conceptual 2D data that the codes linearize
into accesses to 1D arrays because of HLS limitations. This leads to a typical
memory access pattern as two adjacent array elements in the 2D array after
linearization are separated by a fixed offset. Our performance measurements,
however, did not confirm the reasonable suspicion that this access pattern may
affect cache performance. Two of the codes (column “size independent reuse”)
have – in contrast to the other six ones – a unique property in respect to the
spatial locality of their memory accesses: Their data access pattern is not only
static, but the number of memory accesses between the use and the reuse of an
address is independent of the problem size. This property impacts performance
as we discuss in Sect. 5.2.

We took the codes of all benchmarks from textbooks and open implemen-
tations and supplied them to the ORKA compiler as standard OpenMP codes
with the algorithmic parts marked as target regions. Table 1 shows the number of
lines of code of the target regions for each benchmark, including the sizes of the
functions called from there. Every benchmark contains exactly one target region
and thereby produces one hardware kernel. We generated the input data for the
benchmarks randomly from fixed seeds. We tested every benchmark on a wide
range of problem sizes, leading to a variation in their memory demand shown
in the column “memory demand range”. The ranges were chosen according to
the complexity of the respective algorithm to achieve reasonable runtimes. For
reproducibility the benchmark codes, including their input generation, as well
as all the performance measurements discussed below are publicly available.1

1 https://doi.org/10.5281/zenodo.8055888.

https://doi.org/10.5281/zenodo.8055888

Multipurpose Cacheing to Accelerate OpenMP Target Regions on FPGAs 153

Table 2. Runtime reduction per benchmark. (Problem data size ca. 40 KB, 128 KiByte
2-way cache with 64 Byte lines).

Benchmark Runtime
w/o. Cache
in µs

Runtime
w. Cache
in µs

Runtime
Reduction

Filter 63219 36034 43%

Matrix Multiplication 74133 33956 54%

Levenshtein Distance 21827 13581 38%

Knapsack 5712 3427 40%

OE-Transposition Sort 145819750 88003888 40%

Bitonic Sort 90026 53280 41%

SHA256 52136 52174 0%

Mandelbrot 68062 67382 1%

We synthesized two FPGA versions (without a cache/with a cache) both
with a clock frequency of 100 MHz, except for the Levenshtein Distance and the
OE-Transposition Sort. Here the vendor tools failed to achieve timing closure,
so we had to settle with 50 MHz for both versions. This deviation for two bench-
marks does not falsify the results, as the interconnection between the kernels
and the memory is always driven at the same frequency as the kernels and the
cache, leading to the same runtime behavior across frequencies. We chose these
frequencies as a trade-off. We consider them realistic and fast enough for real use
cases. But they are also slow enough for the sythesis tools to sport high success
rates.

5.2 Runtime Performance

To determine the runtime effects of our approach we synthesized FPGA hard-
ware without and with a cache block. We measured only the time spent on the
offloaded target regions on the FPGA since neither the host side of the gen-
erated code nor the data transfers to/from the FPGA vary between the two
versions. In addition to the axis without/with there are 4 more axes that span
the space of our measurements. a) Problem size: Table 2 picks from the measure-
ment space a problem size that demands roughly 40 KB of memory and thus
achieves comparability among the benchmarks. The reason for this choice is that
this size causes a computational load on the less demanding benchmarks that
is clearly above the resolution of the timers. And this size is also small enough
for the more complex benchmarks to finish within minutes. For Table 2 we also
selected from all our measurements fixed values for the three other axes that
configure the cache. b) Cache size: We show measurements for a cache size of
128 KiBytes that is larger than the benchmarks’ memory demands of 40 KB.

154 J. Brandner et al.

This is a sensible assumption as on an FPGA a large cache has a reasonable cost
(see Sect. 5.4). Section 5.3 shows the effects of caches that are smaller than the
problem data. c) Associativity: As the cache size is significantly larger than the
problem size, the 4-way cache does shorten the runtimes. Hence, it suffices that
Table 2 only shows the measurements for the 2-way cache. d) Cache line length:
We only show measurements for 64 Byte lines – the smallest possible setting –
because in our experiments the line length had little impact on the runtimes.
Both the 4-way associativity and longer cache lines only increased the resource
consumption of the cache (see Sect. 5.4).

With this reasoning we can boil down the huge space of measurements Table 2
that characterize the effect of the added cache block for average situations. The
insights are, first, as excepted, benchmarks that do not exhibit any data reuse,
cannot benefit from a cache (SHA256, Mandelbrot). But the good news is that
the existence of the cache does slow them down either. Second, for the remaining
six benchmarks we gain an average runtime reduction of 43% (fairly similar
across the six benchmarks) for caches that are large enough to fit the entire
problem data. We discuss below, how the kernels behave for smaller caches.

5.3 Expected Scaling of the Runtime Performance

The decisive factor for the performance of a hardware cache is its hit rate. If a
requested address is still cached from a previous request, the cache can respond
quickly without accessing the main memory (cache hit). However, if too many
requests have occurred since the last use of a certain address, the corresponding
cache line may have been replaced, leading to a cache miss when the address is
used again. In general, the smaller the cache is in relation to the problem data
of an application with a general reuse pattern, the more cache misses slow down
the runtime. Above in Sect. 5.2 and Table 2 we discussed the runtime effects of
adding a large enough cache as this is a frequent situation for on-FPGA caches.

Let us now demonstrate that our added cache behaves as expected for larger
problem sizes. Let us first look at benchmarks that feature general reuse patterns.
As an example, Fig. 2a shows the runtime reductions for the Matrix Multipli-
cation. (Note that the problem data grows quadratically with the width/height
of a square matrix.) Other benchmarks have similar graphs. We plot four dif-
ferent cache sizes for growing problem data. The two graphs show the runtime
reduction for a 2-way and a 4-way associative cache. As known from Sect. 5.2,
for small problem sizes, even the smallest caches can yield good results, regard-
less of the associativity. For large problem sizes and with more memory accesses
between reuses, there are more cache misses. If the cache size is far too small the
cache even slows down the runtime. In total, our inserted caches show textbook
behavior. This is also true for the effect of associativity. The 4-way associative
caches are less likely to replace an address early. Therefore, it needs a larger
disproportion between the cache size and the problem data than with a 2-way
associative cache before the cache looses its boosting effect.

The decrease in cache performance for larger problem sizes is typical for
applications with a general reuse pattern, i.e., for which the number of addresses

Multipurpose Cacheing to Accelerate OpenMP Target Regions on FPGAs 155

Fig. 2. Runtime reduction for growing problem sizes and various cache sizes:

that have to be cached between reuses grows with the problem sizes. There are
however also applications like the Filter and Levenshtein Distance benchmarks.
As for them the number of memory accesses between a use and a reuse is inde-
pendent of the problem size, the cache performance is (almost) independent as
well, as Fig. 2b exemplary shows for the Filter benchmark. For them our inserted
caches show the expected behavior, i.e., replacement is not an issue for small
caches. And since there is no unwanted replacement, the cache associativity also
does not have any impact on the runtime.

5.4 Resource Utilization

To determine the resource utilization of our approach, we synthesized bitstreams
without and with a cache block and measured the consumption of the three main
FPGA resources: lookup tables (LUTs), registers, and ram blocks (not to be
confused with the onboard DDR memory). Our design does not use any digital
signal processors, DSPs. The differences between the numbers with/without a
cache given in Table 3 represent the cost of adding the cache and the control
logic. The measured numbers were very similar for all 8 benchmarks. The bold
numbers highlight the configuration used in Table 2.

156 J. Brandner et al.

Table 3. Resource consumption of the various cache configurations.

Cache Size (KiByte) Cache Line Size (Byte) Associativity Cost of adding a cache

LUTs # Registers # Ram Blocks

32 64 2 9225 5708 36

4 11887 7059 66

128 2 11439 7224 34

4 13312 7858 65

64 64 2 9928 7298 36

4 10941 6852 70

128 2 11208 6916 36

4 13864 7932 66

128 64 2 9495 8061 36

4 11201 6473 70

128 2 11065 6915 36

4 13540 7656 70

256 64 2 10433 5734 6

4 11759 6504 70

128 2 11967 6929 4

4 12555 7949 70

These are the key insights: a) Whereas the total costs fluctuate heavily
between seemingly similar cache configurations, the numbers of required LUTs
and registers stay in a similar range with only a slight upwards trend for more
complex caches. There is a more pronounced fluctuation for the number of ram
blocks. b) The total cost of the cache is marginal. The highest number of required
LUTs for any cache is 13864, which for our target platform corresponds to about
1% of the available LUTs. For the registers, the maximal resource consumption
was even lower with 9131, accounting for 0.4% of the available registers. The
maximal consumption of ram blocks is 70, corresponding to only 3% of the
available number of blocks. c) A 4-way cache occupies significantly more ram
blocks than a 2-way cache. Effects, about which we can only speculate, led to
the fact that the largest cache size for 2-way associative caches was reproducibly
the cheapest in terms of ram blocks. d) Longer cache lines require more resources.

The pure LLP without any cache only consumed about 8%, 6%, and 5% of
the FPGAs LUTs, registers, and ram blocks, respectively.

From these insights we derive the recommended and default cache configura-
tion of our ORKA compiler extension uses (and that we also used for the runtime
measurements in Table 2): As longer cache lines do not yield any performance
benefits we use the smallest cache line length (64 Bytes). As the total resource
consumption of the inserted cache is small we fill up the FPGA with the largest
possible caches. For the associativity there is no suggested default value.

Multipurpose Cacheing to Accelerate OpenMP Target Regions on FPGAs 157

6 Related Work

The latency and bandwidth of the on-FPGA memory are known problems that
the related work addresses in three general ways. (1) One area of research (ours)
adds cache hardware to the FPGA. The other two areas are orthogonal to us:
(2) optimize the latency and bandwidth of the kernel software or (3) improve
cache circuits for FPGAs.

Hardware Cache Block on the FPGA. Our work is unique in this area
as no other research group (a) addresses general OpenMP target regions, (b)
uses a highly optimized off-the-shelf cache block, (c) relies on an established,
productive toolchain (HLS, LLP), and (d) employs standard FPGA hardware
for PCI slots.

By exploiting the copy-in/copy-out semantics of OpenMP target regions we
are able to use a single cache without costly bus snooping hardware for achieving
cache consistency. The related work does not exploit this and hence has to find
other means to achieve cache consistency. In all the publications known to us,
the researchers gave up on at least one of our unique strengths (a)–(d).

Cheng et al. [7] give up on (b) and (c). Their idea is to add hand-crafted
cache blocks with resource-hungry consistency monitoring hardware that works
with their special interconnection circuits. As this cannot (easily) be done with
standard HLS tools, they use their custom research HLS. Instead of a single
large cache, they add multiple smaller caches, one per segment of the offloaded
code that works with a certain set of memory addresses. In a way, each of those
smaller caches is closer to the computations than our large cache block. The
authors’ reasoning is that the total cost of the consistency control circuits of
all the smaller caches is lower than the cost of the complexity of a single bus
snooping cache. The authors find the code segments to which they add caches
by monitoring an execution and identifying so-called access hot spots. We do
not need such an analysis and get away with two simple cache flushes per target
region, one at the beginning and one at the end. While we achieve our runtime
improvements on codes that are typical for FPGAs, they only evaluate with
some CPU codes from the SPEC2006 benchmark suite [31].

Putnam et al. [28] give up on (c) and (d). They use their custom HLS and
only target a single custom host-sided ASIC hardware platform that provides a
single shared address space for both the CPU and the FPGA. Their approach
relies on this global shared address space. In contrast, we can accelerate kernels
on any system with an FPGA on a PCIe interconnect. They also evaluate on
Matrix Multiplication and Smith-Waterman (memory access pattern similar to
our Levenshtein Distance). One of their other 3 benchmark codes is another
matrix operation. We evaluate on a larger set of 6 other benchmarks.

Adler et al. [1] give up on (a) as their LEAP framework is not an OpenMP-to-
FPGA compiler. It is an LLP-generator similar to TaPaSCo (which is our LLP
generator) that can build cached FPGA designs around user-provided hardware
written in a Bluespec register-transfer level (RTL) description [2]. As they work
with any custom hardware, they need to connect all caches to an expensive ring

158 J. Brandner et al.

network to enable bus snooping. In contrast, we build an FPGA from unmodified
OpenMP code and use the properties of OpenMP target regions to allow for a
cache with less expensive consistency circuitry.

Winterstein et al. [33] also give up on (a) as they cannot process OpenMP
code, but instead use generic C code as input. Since they automatically build
hardware cores that are compatible with the LEAP platform (see above) they
inherit its costly consistency hardware. In contrast to our general OpenMP target
regions, they only target pointer-chasing algorithms.

Latency and Bandwidth Improvement in Source Code. Instead of adding
cache hardware, there are optimizations on the level of the programming lan-
guage that improve the latency and the bandwidth of memory accesses by means
of extra code. The HLS generates FPGAs with circuits for the extra code. The
research in this area exploits specific features of the applications to achieve excel-
lent performance. While the optimizations are not applicable to all memory
access patterns, they are orthogonal to adding hardware caches.

Liang et al. [16] target codes that only read from or only write to each array
(half of our benchmarks). Their runtime reductions (up to 88%) come from
manually replacing the array access expressions in the C++ codes with calls into
a library that mimics a cache-like behaviour per array. Mayer et al. [19] target
regularly structured stencil codes with canonical loop nests with contiguous read
and write accesses (half of our benchmarks). Their runtime reductions (up to
83%) come from added buffer arrays and HLS pragmas to access them with
memory bursts. Pouchet et al. [27] also address stencil codes. They add FIFO
buffers to exploit data reuse and perform standard loop transformations. They
reduce the runtime by 50% to 95% on suitable benchmarks.

While for specific memory access patterns source-level only solutions can in
general outperform general purpose cache hardware, the works in this area can
benefit from additional cache blocks for other memory access patterns.

Better FPGA Cache Blocks. Finally, there is research on how to build good
cache architectures on FPGAs. Choi et al. [8] work on general purpose caches for
FPGA use. Matthews et al. [17] target a specific cache for FPGAs that serve a
special multi-core soft-processor also built on the FPGA. They specifically tailor
a cache block to the internals of that processor.

Such work is also orthogonal to ours as we could switch to and use improved
cache blocks in our LLP.

7 Conclusion

We integrate a highly optimized multipurpose cache block in the hardware that
an OpenMP-to-FPGA compiler fully automatically generates when offloading
an OpenMP target region. This cache addresses the latency and bandwidth
bottlenecks between the kernels and the on-FPGA memory. We exploit special
properties of OpenMP target regions to fully engage these caches and to ensure
cache consistency without resource-hungry bus snooping circuits. On a diverse
benchmark set with data reuse the added caches on average save 43% of the
runtime while only requiring less than 3% of the FPGA’s resources.

Multipurpose Cacheing to Accelerate OpenMP Target Regions on FPGAs 159

Acknowledgments. The authors acknowledge the financial support by the Federal
Ministry of Education and Research of Germany in the framework of ORKA-HPC
(project number 01IH17003A).

References

1. Adler, M., Fleming, K.E., Parashar, A., Pellauer, M., Emer, J.: Leap scratchpads:
automatic memory and cache management for reconfigurable logic. In: Proceed-
ings of the International Symposium Field Programmable Gate Arrays (FPGA
2011), Monterey, CA, pp. 25–28, February 2011. https://doi.org/10.1145/1950413.
1950421. Accessed 11 May 2023

2. Arvind: Bluespec: a language for hardware design, simulation, synthesis and veri-
fication invited talk. In: Proceedings of the ACM and IEEE International Confer-
ence on Formal Methods and Models for Co-Design (MEMOCODE 2003), Mont
Saint-Michel, France, pp. 249. IEEE Computer Society, June 2003

3. Asano, S., Maruyama, T., Yamaguchi, Y.: Performance comparison of FPGA,
GPU and CPU in image processing. In: Proceedings of the International Con-
ference on Field Programmable Logic and Applications (FPL 2009), Prague,
Czech Republic, pp. 126–131, September 2009. https://doi.org/10.1109/FPL.2009.
5272532. Accessed 11 May 2023

4. Brandner, J., Mayer, F., Philippsen, M.: Reducing OpenMP to FPGA round-trip
times with predictive modelling. In: Klemm, M., de Supinski, B.R., Klinkenberg,
J., Neth, B. (eds.) IWOMP 2022. LNCS, vol. 13527, pp. 94–108. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-15922-0 7. Accessed 11 May 2023

5. Castells-Rufas, D., et al.: Opencl-based FPGA accelerator for semi-global approx-
imate string matching using diagonal bit-vectors. In: Proceedings of the Interna-
tional Conference on Field Programmable Logic and Applications (FPL 2021),
Dresden, Germany, pp. 174–178, May 2021. https://doi.org/10.1109/FPL53798.
2021.00036. Accessed 11 May 2023

6. Chen, R., Siriyal, S., Prasanna, V.: Energy and memory efficient mapping of bitonic
sorting on FPGA. In: Proceedings of the International Symposium Field Pro-
grammable Gate Arrays (FPGA 2015), Monterey, CA, pp. 240–249, February 2015.
https://doi.org/10.1145/2684746.2689068. Accessed 11 May 2023

7. Cheng, S., Lin, M., Liu, H.J., Scott, S., Wawrzynek, J.: Exploiting memory-level
parallelism in reconfigurable accelerators. In: Proceedings of the International
Symposium Field-Programmable Custom Computing Machines (FCCM 2012),
Toronto, Canada, pp. 157–160, April 2012. https://doi.org/10.1109/FCCM.2012.
35. Accessed 11 May 2023

8. Choi, J., Nam, K., Canis, A., Anderson, J., Brown, S., Czajkowski, T.: Impact
of cache architecture and interface on performance and area of FPGA-based
processor/parallel-accelerator systems. In: Proceedings of the International Sympo-
sium Field-Programmable Custom Computing Machines (FCCM 2012), Toronto,
Canada, pp. 17–24, April 2012. https://doi.org/10.1109/FCCM.2012.13. Accessed
11 May 2023

9. Escobar, F.A., Kolar, A., Harb, N., Vinci Dos Santos, F., Valderrama, C.: Scalable
shared-memory architecture to solve the knapsack 0/1 problem. Microprocessors
Microsyst. 50(3), 189–201 (2017). https://doi.org/10.1016/j.micpro.2017.04.001.
Accessed 11 May 2023

https://doi.org/10.1145/1950413.1950421
https://doi.org/10.1145/1950413.1950421
https://doi.org/10.1109/FPL.2009.5272532
https://doi.org/10.1109/FPL.2009.5272532
https://doi.org/10.1007/978-3-031-15922-0_7
https://doi.org/10.1109/FPL53798.2021.00036
https://doi.org/10.1109/FPL53798.2021.00036
https://doi.org/10.1145/2684746.2689068
https://doi.org/10.1109/FCCM.2012.35
https://doi.org/10.1109/FCCM.2012.35
https://doi.org/10.1109/FCCM.2012.13
https://doi.org/10.1016/j.micpro.2017.04.001

160 J. Brandner et al.

10. Färber, C., Schwemmer, R., Machen, J., Neufeld, N.: Particle identification on
an FPGA accelerated compute platform for the LHCb upgrade. IEEE Trans.
Nuclear Sci. 64(7), 1994–1999 (2017). https://doi.org/10.1109/TNS.2017.2715900.
Accessed 11 May 2023

11. Hematian, A., Chuprat, S., Manaf, A.A., Parsazadeh, N.: Zero-delay FPGA-based
odd-even sorting network. In: Proceedings of the IEEE Symposium Computers
Informatics (ISCI 2013), Langkawi, Malaysia, pp. 128–131, April 2013. https://
doi.org/10.1109/ISCI.2013.6612389. Accessed 11 May 2023

12. Huthmann, J., Sommer, L., Podobas, A., Koch, A., Sano, K.: OpenMP device
offloading to FPGAs using the nymble infrastructure. In: Milfeld, K., de Supin-
ski, B.R., Koesterke, L., Klinkenberg, J. (eds.) IWOMP 2020. LNCS, vol. 12295,
pp. 265–279. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58144-
2 17 Accessed 11 May 2023

13. Knaust, M., Mayer, F., Steinke, T.: OpenMP to FPGA offloading prototype
using OpenCL SDK. In: Proceedings of the International Workshop High-Level
Parallel Programing Models and Supportive Environment (HIPS 2019), Rio de
Janeiro, Brazil, pp. 387–390, May 2019. https://doi.org/10.1109/IPDPSW.2019.
00072 (Accessed on May 11, 2023)

14. Korinth, J., Hofmann, J., Heinz, C., Koch, A.: The TaPaSCo open-source toolflow
for the automated composition of task-based parallel reconfigurable computing
systems. In: Proceedings of the International Symposium Applied Reconfigurable
Computing, (ARC 2019), Darmstadt, Germany, pp. 214–229, April 2019

15. Lipu, A.R., Amin, R., Islam Mondal, M.N., Mamun, M.A.: Exploiting parallelism
for faster implementation of bubble sort algorithm using FPGA. In: Proceedings of
the International Conference Electrical, Computer Telecommunication Engineering
(ICECTE 2016), Rajshahi, Bangladesh, pp. 1–4, December 2016. https://doi.org/
10.1109/ICECTE.2016.7879576. Accessed 11 May 2023

16. Ma, L., Lavagno, L., Lazarescu, M.T., Arif, A.: Acceleration by inline cache for
memory-intensive algorithms on FPGA via high-level synthesis. IEEE Access 5,
18953–18974 (2017). https://doi.org/10.1109/ACCESS.2017.2750923. Accessed 11
May 2023

17. Matthews, E., Doyle, N.C., Shannon, L.: Design space exploration of l1 data caches
for FPGA-based multiprocessor systems. In: Proceedings of the International Sym-
posium Field Programmable Gate Arrays (FPGA 2015), Monterey, CA, pp. 156–
159, February 2015. https://doi.org/10.1145/2684746.2689083 (Accessed on May
11, 2023)

18. Mayer, F., Brandner, J., Hellmann, M., Schwarzer, J., Philippsen, M.: The ORKA-
HPC compiler–practical OpenMP for FPGAs. In: Proceedings of the International
Workshop Languages and Compilers for Parallel Computing (LCPC 2021). LNCS,
Newark, DE, vol. 13181, pp. 83–97, October 2021. https://doi.org/10.1007/978-3-
030-99372-6 6. Accessed 11 May 2023

19. Mayer, F., Brandner, J., Philippsen, M.: Employing polyhedral methods to reduce
data movement in FPGA stencil codes. In: Mendis, C., Rauchwerger, L. (eds)
LCPC 2022. LNCS, vol. 13829, pp. 47–63. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-31445-2 4. Accessed 11 May 2023

20. Mayer, F., Knaust, M., Philippsen, M.: OpenMP on FPGAs-a survey. In: Pro-
ceedings of the International Workshop OpenMP (IWOMP 2019), Auckland, New
Zealand, pp. 94–108, August 2019. https://doi.org/10.1007/978-3-030-28596-8 7.
Accessed 11 May 2023

https://doi.org/10.1109/TNS.2017.2715900
https://doi.org/10.1109/ISCI.2013.6612389
https://doi.org/10.1109/ISCI.2013.6612389
https://doi.org/10.1007/978-3-030-58144-2_17
https://doi.org/10.1007/978-3-030-58144-2_17
https://doi.org/10.1109/IPDPSW.2019.00072
https://doi.org/10.1109/IPDPSW.2019.00072
https://doi.org/10.1109/ICECTE.2016.7879576
https://doi.org/10.1109/ICECTE.2016.7879576
https://doi.org/10.1109/ACCESS.2017.2750923
https://doi.org/10.1145/2684746.2689083
https://doi.org/10.1007/978-3-030-99372-6_6
https://doi.org/10.1007/978-3-030-99372-6_6
https://doi.org/10.1007/978-3-031-31445-2_4
https://doi.org/10.1007/978-3-031-31445-2_4
https://doi.org/10.1007/978-3-030-28596-8_7

Multipurpose Cacheing to Accelerate OpenMP Target Regions on FPGAs 161

21. McEvoy, R.P., Crowe, F.M., Murphy, C.C., Marnane, W.P.: Optimisation of the
SHA-2 family of hash functions on FPGAs. In: Proceedings of the IEEE Com-
puter Society Annual Symposium Emerging VLSI Technologies and Architectures
(ISVLSI 2006), Karlsruhe, Germany, pp. 317–322, March 2006. https://doi.org/
10.1109/ISVLSI.2006.70, Accessed 11 May 2023

22. Meher, P.K., Chandrasekaran, S., Amira, A.: FPGA realization of FIR filters by
efficient and flexible systolization using distributed arithmetic. IEEE Trans. Signal
Processing 56(7), 3009–3017 (2008). https://doi.org/10.1109/TSP.2007.914926.
Accessed 11 May 2023

23. Moss, D.J., et al.: A customizable matrix multiplication framework for the Intel
HARPv2 Xeon+FPGA platform: a deep learning case study. In: Proceedings of the
International Symposium Field Programmable Gate Arrays (FPGA 2018), Mon-
terey, CA, pp. 107–116, February 2018. https://doi.org/10.1145/3174243.3174258.
Accessed 11 May 2023

24. Nepomuceno, R., Sterle, R., Valarini, G., Pereira, M., Yviquel, H., Araujo, G.:
Enabling OpenMP task parallelism on multi-FPGAs. arXiv:2103.10573 [cs.DC],
March 2021. https://doi.org/10.1109/FCCM51124.2021.00047. Accessed 11 May
2023

25. Nibbelink, K., Rajopadhye, S., McConnell, R.: 0/1 knapsack on hardware: a com-
plete solution. In: Proceedings of the International Conference on Application-
Specific Systems, Architectures and Processors (ASAP 2007), Montréal, Canada,
pp. 160–167, July 2007. https://doi.org/10.1109/ASAP.2007.4429974. Accessed 11
May 2023

26. Park, S.Y., Meher, P.K.: Efficient FPGA and ASIC realizations of a DA-
based reconfigurable FIR digital filter. IEEE Trans. Circuits and Systems
II: Express Briefs 61(7), 511–515 (2014). https://doi.org/10.1109/TCSII.2014.
2324418. Accessed 11 May 2023

27. Pouchet, L.N., Zhang, P., Sadayappan, P., Cong, J.: Polyhedral-based data reuse
optimization for configurable computing. In: Proceedings of the International Sym-
posium Field Programmable Gate Arrays (FPGA 2013), Montery, CA, pp. 29–38,
February 2013

28. Putnam, A., et al.: Performance and power of cache-based reconfigurable comput-
ing. SIGARCH Comput. Archit. News 37(3), 395–405 (2009). https://doi.org/10.
1145/1555815.1555804. Accessed 11 May 2023

29. Qasaimeh, M., Denolf, K., Lo, J., Vissers, K., Zambreno, J., Jones, P.H.: Comparing
energy efficiency of CPU, GPU and FPGA implementations for vision kernels. In:
Proceedings of the IEEE International Conference on Embedded Software and
Systems (ICESS 2019), Las Vegas, NV, pp. 1–8, June 2019. https://doi.org/10.
1109/ICESS.2019.8782524. Accessed 11 May 2023

30. Sklyarov, V., Skliarova, I.: High-performance implementation of regular and easily
scalable sorting networks on an FPGA. Microprocessors and Microsystems 38(5),
470–484 (2014). https://doi.org/10.1016/j.micpro.2014.03.003. Accessed 11 May
2023

31. SPEC: SPEC CPU 2006. https://www.spec.org/cpu2006/. Accessed 11 May 2023
32. Wang, K., Nurmi, J.: Using OpenCL to rapidly prototype FPGA designs. In:

Proceedings of the IEEE Nordic Circuits and Systems Conference (NORCAS
2016), Copenhagen, Denmark, pp. 1–6, November 2016. https://doi.org/10.1109/
NORCHIP.2016.7792907. Accessed 11 May 2023

https://doi.org/10.1109/ISVLSI.2006.70
https://doi.org/10.1109/ISVLSI.2006.70
https://doi.org/10.1109/TSP.2007.914926
https://doi.org/10.1145/3174243.3174258
http://arxiv.org/abs/2103.10573
https://doi.org/10.1109/FCCM51124.2021.00047
https://doi.org/10.1109/ASAP.2007.4429974
https://doi.org/10.1109/TCSII.2014.2324418
https://doi.org/10.1109/TCSII.2014.2324418
https://doi.org/10.1145/1555815.1555804
https://doi.org/10.1145/1555815.1555804
https://doi.org/10.1109/ICESS.2019.8782524
https://doi.org/10.1109/ICESS.2019.8782524
https://doi.org/10.1016/j.micpro.2014.03.003
https://www.spec.org/cpu2006/
https://doi.org/10.1109/NORCHIP.2016.7792907
https://doi.org/10.1109/NORCHIP.2016.7792907

162 J. Brandner et al.

33. Winterstein, F., Fleming, K., Yang, H.J., Wickerson, J., Constantinides, G.:
Custom-sized caches in application-specific memory hierarchies. In: Proceedings
of the International Conference on Field Programmable Technology (FPT 2015),
pp. 144–151 (2015). https://doi.org/10.1109/FPT.2015.7393141. Accessed 11 May
2023

34. Yoshimi, M., Nishikawa, Y., Miki, M., Hiroyasu, T., Amano, H., Mencer, O.: A per-
formance evaluation of CUBE: One-dimensional 512 FPGA cluster. In: Proceedings
of the International Symposium Applied Reconfigurable Computing (ARC 2010),
Bangkok, Thailand, pp. 372–381, March 2010

https://doi.org/10.1109/FPT.2015.7393141

Generalizing Hierarchical Parallelism

Michael Kruse(B)

Mathematics and Computer Science Division, Argonne National Laboratory,
9700 S S. Cass Avenue, Lemont, IL 60439, USA

michael.kruse@anl.gov

Abstract. Since the days of OpenMP 1.0 computer hardware has be-
come more complex, typically by specializing compute units for coarse-
and fine-grained parallelism in incrementally deeper hierarchies of par-
allelism. Newer versions of OpenMP reacted by introducing new mecha-
nisms for querying or controlling its individual levels, each time adding
another concept such as places, teams, and progress groups. In this paper
we propose going back to the roots of OpenMP in the form of nested par-
allelism for a simpler model and more flexible handling of arbitrary deep
hardware hierarchies.

Keywords: Parallelism Hierarchy · Nested Parallelism · OpenMP ·
Heterogeneity

1 Introduction

Contemporary hardware architecture has changed significantly since OpenMP
was introduced. OpenMP 1.0 was designed for symmetric multiprocessing (SMP)
systems, when processors could run at most one thread [16]. There was no hier-
archy, as implied by symmetric: Everything was at the same level without dif-
ferences in performance or communication between any two CPUs.

The programming model therefore was comparatively simple: one directive to
start f(thread-)parallelism (#pragma omp parallel) and execute its associated
region as a single program multiple data (SPMD) instance, two directives to dis-
tribute work between them (#pragma omp for and #pragma omp sections),
and some directives such as barriers and memory fences. It was intended mainly
to standardize proprietary compiler extensions that various companies intro-
duced. It was possible to establish a logical hierarchy by executing a parallel
directive inside another parallel-construct, but this has no performance advan-
tage over using all threads in a single parallel construct and makes it difficult to
not under- or oversubscribe the available hardware.

This model was not sufficient anymore after the hardware became more com-
plex and introduced NUMA, multiple cores per CPU, SMT, and SIMD. While
applications could just ignore these characteristics and continue to work cor-
rectly, these applications would not be able to reach the best possible perfor-
mance. Therefore, shown in Table 1, OpenMP 3.1 introduced the proc_bind

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 163–178, 2023.
https://doi.org/10.1007/978-3-031-40744-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_11&domain=pdf
http://orcid.org/0000-0001-7756-7126
https://doi.org/10.1007/978-3-031-40744-4_11

164 M. Kruse

Table 1. Changes in compute architectures and how OpenMP addressed them.

Hardware Feature OpenMP Feature Version

Symmetric Multiprocessing (SMP) #pragma omp parallel for 1.0

scheduling with dependencies #pragma omp task 3.0

Non-Uniform Memory Access (NUMA) OMP PROC BIND, OMP PLACES 3.1, 4.0

Cores, shared caches OMP PROC BIND, OMP PLACES 3.1, 4.0

Symmetric Multithreading (SMT) OMP PROC BIND, OMP PLACES 3.1, 4.0

Single Instruction Multiple Data (SIMD) #pragma omp simd 4.0

Heterogeneous Accelerators #pragma omp target 4.0

GPGPU Multiprocessors #pragma omp teams distribute 4.0

Single Instruction Multiple Threads (SIMT) #pragma omp parallel for, safesync 1.0, 6.0

mechanism, affinity, and other features to account for work placement to hard-
ware units.

The assumption that everything is an abstraction of SMP threads then
was broken with the advent of GPGPUs. Nvidia GPUs split the execution
into grid, block, and warp and introduced the CUDA programming language,
which abstracted hardware blocks and warps into the single instruction multiple
threads (SIMT) model, but the grid remained separate because of not support-
ing fundamental mechanisms across processing units such as barriers. OpenMP
could no longer be used as a programming model; only Intel’s Xeon Phi many-
core accelerator held up the global cache coherency required by OpenMP. Con-
sequently, OpenMP added two new layers: target for device memory and teams
for computations with fewer synchronization guarantees than threads to match
the CUDA model. Unlike traditional threads, SIMT threads are executed in
lockstep which was a breaking change since older OpenMP applications may
have assumed a fair scheduler. The current draft of OpenMP 6.0 takes this into
accounting with a safesync clause.

The current hardware generation has many more levels that we explore in
Appendix A. For instance, most vendors these days combine multiple chiplets
into a single packaging, where communication between chiplets is necessarily
slower than within a single die, i.e. NUMA but for teams [1]. We expect that
future processors will be even more complex and its consequences in terms of
performance even more noticeable.

Also, even today most high-performance computing platforms have multiple
GPUs per node; but since OpenMP has no constructs to represent this level of
parallelism, each GPU has to be targeted separately. One proposal is to another
pair of constructs: leagues to start multiple sets of teams (one set per GPU) and
spread for work distribution between them. The composite directive for embar-
rassingly parallel code using all available parallelism therefore would become1

pragma omp target leagues spread teams distribute parallel for simd .

1 Our proposal is #pragma omp parallel for level(devices,teams,threads,lanes).

Generalizing Hierarchical Parallelism 165

Another proposal is to make a league span over teams from different GPUs, either
by the compiler treating them as such, or the runtime offering a ‘superdevice’
combining multiple GPUs. In addition to creating another NUMA problem when
OMP_PLACES currently applies only to host code, GPUs may not support all the
synchronization mechanisms across GPUs, such as atomics. This may actually
change in the future, similar to most GPUs now support these mechanisms on
the teams-level.

Since the term thread has many meanings that depend on context, in the
following we avoid this term. We will use task to mean an execution of an
SPMD region2, warp to mean a collection of tasks that may execute in lockstep
(even on non-Nvidia hardware), and lane to denote one of the tasks executed in
a warp.

2 Algorithms for Using Multiple Levels

Beyond individual algorithms that are specifically optimized to make use of a
specific level’s feature—such as lookup-tables that fits a specific level’s local
memory—some classes of algorithms can be implemented recursively and profit
from any number of levels. One of the most elementary is an implementation of
a reduction: on each level, one of the tasks collects the results from all sibling
tasks. The most efficient means of communication on each level is chosen, for
example, shuffle instructions on the warp level, to reduce the amount of work on
the slower parent levels. OpenMP has a reduction clause, but for user-defined
operators, it does not permit non-commutativeness or making use of level-specific
optimizations such as CUDA’s __shfl_xor_sync.

Another class of algorithms is stencils. In addition to profiting from warp-
level instructions [20], they can be tiled to an arbitrary level [8]. A region of
stencil computations can be chosen such that their input region just fits into the
local memory. This can be repeated on any level that has local memory.

Other algorithms making use of multiple levels are tensor comprehensions
including matrix-matrix multiplications [10] and butterfly-access patterns such
as exposed by fast Fourier transforms [3]. In both cases, optimized algorithms
select a subset of computations with data reuse and for each level ensure that
this data is in local memory.

3 Language Extensions for Hierarchical Parallelism

The idea we propose is to reuse the mechanism of nested parallelism from
OpenMP 1.0 but allow the nested construct to choose where to get the new
parallelism from. In this section we explore various aspects of controlling where
a computation runs, and we continue in Sect. 4 on using levels with local memory.

2 The meaning in OpenMP is “instance of executable code and its data environment”,
which also includes non-SPMD regions such as in the task-construct.

166 M. Kruse

3.1 Explicitly Selecting a Level

The level clause selects the level of parallelism to use, as shown below.

pragma omp parallel level(devices(0,1))
pragma omp parallel level(multiprocessors)
{

printf("Hello from multiprocessor %d\n", omp_get_thread_num());

pragma omp parallel level(warps)
{

pragma omp parallel level(lanes)
printf("Hello from lane %d of warp %d\n", omp_get_thread_num(), \

omp_get_ancestor_thread_num(2));

} }

One of the motivations of this proposal is allowing performance optimization
of specific devices, hence the arguments of the clause can be implementation-
specific. It is sensible to also specify a set of predefined levels for device-
independent code that match the units of parallelism of the current OpenMP
specification: devices, teams, threads, and simd. The example above shows
that the clause argument may take options; in the case of devices it selects
which devices participate in the SPMD region. These could also be filtered by
a selector; for example, device={isa("nvptx")} would select all CUDA-based
devices. The teams and threads arguments correspond to the definition of the
current teams and parallel directives, respectively;

Levels can be collapsed to form a single, encompassing level. For instance,

pragma omp parallel level(devices(0-3),teams,threads)

executes the tasks using all threads in all teams of the selected devices. Only
synchronization guarantees that are common for all levels are also guaranteed
for the collapsed levels. Implementations may use aliases for common com-
binations of levels. For instance, level(teams) could be considered an alias
for level(partitions,gpcs,tpcs,multiprocessors,tbps,ctas) to hide the
hardware-level details of Nvidia H100 GPUs.

In order to preserve compatibility with current OpenMP programs, the
default level-clause argument has to be threads. There is the poten-
tial for #pragma omp parallel level(teams) to subsume the semantics of
#pragma omp teams including its combined and composite directives.

3.2 Selecting Levels by Property

The level clause (and teams/parallel constructs) assumes the programmer
already has an idea about how the algorithm should execute, but this should
not be relevant for first designing an algorithm. Alternatively, the programmer
could just define what features are needed for an algorithm, and then the com-
piler or runtime can select the appropriate hardware and levels to use. The
following code indicates that it needs a working implementation of a barrier.

Generalizing Hierarchical Parallelism 167

pragma omp parallel sync(barrier)
{

[...]

pragma omp barrier
[...]

}

OpenMP’s teams directive does support a barrier that works across team bound-
aries, so only parallelism within a team could be used. However, many targets
support barriers on the hardware level that teams maps to and therefore use this
level of parallelism. barrier is an example of a level property, but many other
properties could be defined; more possible properties are listed in Table 2.

Table 2. Level properties.

Name Description

barrier, critical, atomic Whether this named synchronization directive is
supported on this level

shuffle Whether shuffle instructions are supported on this
level; see Sect. 3.7

oversubcribable Whether more tasks can be launched than the
hardware can execute in parallel. In this case the
operating system has to time-share the resource

dynamic Whether nonstatic schedules are allowed; see Sect.
3.5

lockstep, progress Whether the tasks execute in lockstep. If not,
whether there is a forward progress guarantee

globalmem Whether the level has access to the global address
space. If not, explicit mapping using the map

clause is required; see Sect. 4

localmem Whether there is local memory on this level that
can be accessed efficiently but only by task in this
level

groupmem Whether there is memory that has different
contents for each sibling on this level, such as
threadprivate and its generalization
groupprivate

cache Whether there is a transparent cache on this level

num(c) Number of tasks this level can run in parallel

grainedness(r) Measure of how long tasks on this levels should
execute. The more nested the hardware level, the
smaller the graininess should be, meaning fewer
synchronizable tasks but also has less
synchronization overhead

168 M. Kruse

The properties as defined here are positive properties. This contradicts the
current semantics of the parallel directive, which, for example, has to sup-
port barrier directives even without sync(barrier). Hence, a nobarrier clause
would be needed instead, to indicate the code does not need this feature. How-
ever, we think it would be preferable if users would specify the features they
need, rather than having to specify for each directive the list of features that
are not used. We propose to apply the default semantics of the parallel directive
only if the sync clause is not present; that is, sync() has a different meaning
from not specifying the clause at all.

3.3 Reserving Nested Parallelism

By default, #pragma omp parallel sync() would use all available parallelism,
but with nested parallel constructs some of the hardware parallelism needs to
be reserved for the inner levels. This can be done with a reserve clause.

pragma omp parallel sync() reserve(sync(barrier))
pragma omp parallel sync(barrier)
[...]

The outer directive uses all levels except the ones that match the reserve clause
argument, but implementations should make at least some parallelism available
to each level, if necessary by subdividing it (see Sect. 3.8). OpenMP’s current
teams and parallel constructs match this example. In addition to the sync argu-
ment, the level to be reserved could be selected explicitly by using the level-
clause-style argument. Multiple levels can be reserved by using multiple argu-
ments to the reserve clause.

Implementing this may not be trivial, however, since at compile time it may
not be known what kind of parallelism has been reserved for the inner construct.
In the example above, the threads level and the simd level provide support
barriers but are compiled differently. It may just compile the region for both of
them, which is then selected by the runtime. Some restrictions may be needed
to limit the number of versions when selecting levels by property, especially for
numeric variations such as by the simdlen clause.

3.4 Work Distribution

Currently, the worksharing loop and sections directives always bind to the
innermost parallel construct, and the distribute directive always binds to
the innermost teams construct. With parallel gaining the functionality of
both and more levels, it needs to gain the ability to bind to any surround-
ing parallel construct. Our proposal suggests using a bind_ancestor clause,
which is similar to the bind clause but takes an argument analogous to
omp get ancestor thread num(level). The shorter variant would be bind(-1),
which takes an argument relative to the current level.

Generalizing Hierarchical Parallelism 169

pragma omp parallel sync() reserve(sync())
pragma omp parallel sync()

pragma omp for bind_ancestor(0) // bind to outermost parallel
for (int i = 0; i < 128; ++i)

pragma omp for // bind to innermost parallel
for (int j = 0; j < 64; ++j)

[...]

The reader may have noticed that the example first starts two levels of paral-
lelism and then work-distributes both levels independently. This is contrary to
how it currently needs to be written in OpenMP and to how OpenMP defines
composite constructs.

pragma omp teams
pragma omp distribute
for (int i = 0; i < 128; ++i)

pragma omp parallel
pragma omp for
for (int j = 0; j < 64; ++j)

[...]

Written this way, the overhead of the parallel directive applies to each iteration
of the outer loop. The LLVM implementation tries to avoid this by compiling
#pragma omp teams distribute parallel for into the former code where
the associated loop is strip-mined by the number of teams, even though cur-
rently not expressible in OpenMP. LLVM calls this form ‘SPMD-mode’.

3.5 Scheduling

The possibility of worksharing any level also allows adding a schedule clause on
any level, including dynamic schedules. OpenMP’s distribute construct allows
only static schedules since dynamic schedules would require expensive synchro-
nization between teams.

Additionally, we propose schedule(none), which is useful for shuffle instruc-
tions (Sect. 3.7). In contrast to a static schedule, this ensures that there is
only a single chunk. Behavior is undefined if there are more logical iterations
than tasks, to support the generation of efficient code. Non-participating exe-
cutions only have to be masked out. If the loop is normalized (i.e., starting
at 0 and incremented by 1), then the loop counter variable is identical to
omp_get_thread_num(), and the runtime call (or introducing special variables
such as threadidx.x in CUDA) can be avoided.

3.6 Compiler-Transformation-Based Directives

While the teams distribute and parallel for directives follow the start par-
allelism and work-distribute approach, the simd and loop directives do not. These
directives do both at the same time but at the cost of less programmer control.

170 M. Kruse

Our proposed parallel directive can first initialize a vector context for a num-
ber of lanes, as shown here.

pragma omp parallel level(simd(8)) private(partial_sum)
{

pragma omp for bind(simd) schedule(static,8)
for (int i = 0; i < 32; ++i)

partial_sum += A[i];

[...]

}

The code first initializes all elements of the vector partial_sum with 0; then each
lane sums up 32

8 = 4 values from array A, a typical start of an implementation
of a reduction. This resembles the SIMT execution model, there is no good
reason why the SIMT programming model should be reserved for GPUs only.
For LLVM, the command line flag -fopenmp-target-simd was proposed that
would make the simd construct map to the individual lanes of a warp [18].

Combining starting parallelism and work distribution can be done with the
parallel for combined construct. To get the descriptive semantics of the loop
construct, one would simply use #pragma omp parallel for sync() .

3.7 Warp-Level Primitives

Another feature that CUDA supports but OpenMP does not is shuffle instruc-
tions, even though support has been proposed [20]. One of the difficulties is
that a parallel directive may not be mapped to a hardware layer that supports
them; and even if it does, warp sizes vary between devices. The following shows
a solution based on our proposal.

pragma omp parallel sync(shuffle,barrier) lastprivate(sum)
{

[...]

pragma omp barrier
for (int j = 0; j < omp_get_num_threads(); ++j)

sum += omp_get_value_from_sibling(partial_sum, j);

}

Each warp lane has its private copy of partial_sum, which are collecting par-
tial sums, as in the preceding section but without limitation to a specific warp
size. Worksharing loops have an implicit barrier ensuring that all partial sums
have been computed. On Nvidia devices since Volta, it maps to the __syncwarp
instruction or does nothing if the lanes are in lockstep. The partial sums then
are added up for the final result. Here this is done by all lanes, but only the
last task needs to do it because of lastprivate. In CUDA, the library func-
tion omp_get_value_from_sibling can use the __shfl_idx_sync primitive. A

Generalizing Hierarchical Parallelism 171

more efficient implementation could use __shfl_down_sync, either because the
compiler recognizes the pattern or by exposing it as a function call.

Compared to the solution in [20], this has the downside that it has no
fallback in case shuffle instructions are not supported; and implementing
omp_get_value_from_sibling by other means would be inefficient. A version
that supports fallback using memory one level up would be the following, but
it relies on compiler optimizations to promote s[omp_get_thread_num()] to a
register.

float sum = 0;

float s[omp_get_max_threads()] = {0};

pragma omp parallel sync(shuffle,barrier) shared(s) lastprivate(sum)
{

pragma omp for
for (int i = 0; i < n; ++i)

s[omp_get_thread_num()] += A[i];

sum = 0;

pragma omp barrier
for (int j = 0; j < omp_get_num_threads(); ++j)

sum += s[j];

}

3.8 Level Partitioning

Previous examples assumed that a level occupies exactly one hardware level or
collapses multiple levels into a virtual level. We propose the possibility to also
split a hardware level. Intel’s GPU hardware natively supports changing the
warp size [6], but on Nvidia’s GPUs it is fixed to 32 lanes. However, we can
divide a lane by two as shown below.

pragma omp parallel level(lanes) reserve(level(lanes(16)))
pragma omp parallel level(lanes(16))
[...]

For the implementation this does not change a lot other than that it has to
keep track of thread numbers and what nested directives bind to. For instance,
Nvidia’s warp-level instructions provide arguments to bind only to a subset of
warp lines but still execute on all lanes. The __shfl_*_sync family of functions
have width parameters to treat all warp subsections of that size as separate
entities.

3.9 Versioning

Programmers can write multiple kernels optimized for different hardware.
OpenMP already offers the means to do this with the metadirective and
declare variant directive. For instance, a device={isa("nvptx")} filter can
be used to execute an optimized kernel for CUDA-based targets only where levels

172 M. Kruse

such as “warp” are available, and device={arch("navi")} selects a GPU gen-
eration from AMD. Additionally, a robust application can fall back on a generic
version of a kernel using the sync clause for hardware-independence.

4 Language Extensions for Hierarchical Memory

In addition to instruction stream processors, hierarchy levels may have memory
that is used transparently as a cache, be accessible faster from the processing
unit than from sibling units (a NUMA domain), not accessible at all from sibling
units (a scratch-pad), or each unit may use independent storage for the same
virtual address3.

Using this nomenclature, OpenMP target device storage is a scratch pad
(unless enabling unified shared memory), and the memory on it must be allocated
by using either omp_target_alloc or the map clause. This could motivate also
supporting the map clause for lower-level memories such as block-shared mem-
ory. Any access the mapped memory is redirected to the local memory, replacing
the manual solution of declaring a temporary array in the outer construct and
copying the data into it.

The more difficult problem is when each sibling can receive only part of the
entire data because of memory constraints. Also, when the data is written as
well, how the data is written back at the end of the construct has to be defined.

The following illustration tiles a 2-dimensional array where each tile is dis-
tributed to a different device.

float A[1024][1024];

pragma omp parallel level(devices:0-3) \
map(to(d):A[(d / 2)*511:513][(d%2)*511:513]) \
map(from(d):A[(d / 2)*512:512][(d%2)*512:512])

The map clause is parameterized by a device number d, so each device can
receive a different array section. The sections overlap so devices can access the
immediate neighbors for reading, commonly referred to as a ghost surface. A
second map clause with a from-modifier specifies what elements to transfer back
to parent memory that must have unique sources. A reduction clause could be
used to combine elements in case the array sections are overlapping. To avoid
wasting memory, the compiler will need to pack the transferred data into a new
data layout and rewrite the address computations within the construct. If the
memory is a NUMA domain instead of a scratch-pad (so access from sibling
devices are still possible, but slower), a similar syntax could be used to define
data affinity.

Note that the target directive is not necessary here because level(devices)
already declares our intention to offload. Heterogeneous devices manifest as junc-
tions in the hierarchy diagram, such as Fig. 1. Without explicit device specifica-
tion an implementation would likely execute this example on the host CPU.
3 In the the OpenMP 6.0 draft called groupprivate memory, a generalization of
threadprivate.

Generalizing Hierarchical Parallelism 173

For more complicated mapping scheduling, the only generic solution might
be to implement the mapping manually by the programmer, for example,
A_dist[4][513][513], and then map each A_dist[d] to a different device. In
contrast to XcalableMP [9], which was explicitly designed for distributed mem-
ory (PGAS), our approach assumes that there is always a parent memory large
enough to hold its child memories.

5 Related Work

The original hardware level names as invented by Nvidia were the grid, blocks,
and threads. Later programming models use different names to emphasize its
vendor-independence: OpenMP calls them league/team/thread, OpenACC uses
kernel/gang/worker, and OpenCL uses the names NDRange, work-group, and
work-item. In contrast to OpenMP which explicitly flattens the iteration space
using the collapse clause, OpenCL’s and CUDA’s levels are multidimensional
with up to three dimensions. In the following we discuss how CUDA, SYCL, and
OpenACC handle increasingly deeper hardware hierarchies.

5.1 CUDA

Nvidia introduced Thread Block Clusters in CUDA 11.8 with Compute Capa-
bility 9.0 as a new level between grid and block [4,14]. It is supported only with
the Hopper generation and only with up to 8 blocks, which suggests it is using
the common memory of a multiprocessor (see Fig. 1). According to the docu-
mentation, however, they are required to be executed only on the same GPC.
Access to Thread Block Cluster memory is not a language extension but has to
be done using the Cooperative Groups API.

Cooperative Groups [4] is Nvidia’s API to generalize the different abstrac-
tion levels inspired by tiled_extent from C++AMP. It predefines six different
levels, including multi-grid, which spans multiple devices, but also allows user-
defined partitioning like we proposed in Sect. 3.8. A Cooperative Group supports
group-level operations such as barriers and shuffle methods (Sect. 3.7).

5.2 SYCL

SYCL 2020 added the notion of subgroups to the language [7]. A subgroup
usually represents the SIMD lanes of a warp but is specified only to be ‘related’
work-items. Memory levels such as in Sect. 4 are selectable for atomic using the
sycl::memory_scope enumeration. There is no specification of arbitrary depth,
but vendors can and do introduce extensions that allow optimizing for their
hardware, such as Xilinx sycl::ext::xilinx::partition_ndarray.

To support shuffle instructions, Intel proposed the ESIMD extension, which
allows vector intrinsics instead of the implicit SIMT approach [5]. That is, the
user has to write the instructions that operate on subgroup lanes, usually using
a C++ simd class—a vector with as many elements as the SIMD width; it

174 M. Kruse

also supports inline assembly. Hierarchical partitions as shown in Sect. 3.8 are
supported using a simd_view class. A noteworthy feature is to call ESIMD code
from a SIMT context, by passing the code to the invoke_simd function. In the
called function scalar parameters are pass as simd objects, unless declared as
uniform.

5.3 OpenACC

OpenMP 3.3 introduced nesting multiple gang levels [15]. The outer gang levels
have to specify how many levels of gang parallelism are to be reserved for nested
constructs. This does not map to heterogeneous levels as in this proposal, but
to the three dimensions of a CUDA grid.

6 Conclusion

OpenMP 1.0 started with a simple premise of flat, symmetric shared-memory
parallelism. As computing resources become more powerful, they are also becom-
ing more diverse and complex, but the specification can react only after the new
hardware emerges. Devices must also match OpenMP’s rigid execution model
and hardware. FPGAs do not, and hence an FPGA device will never be able to
comply with the OpenMP specification, despite OpenMP priding itself on having
been implemented for many different kinds of hardware [2]. With our proposal,
there are fewer guarantees that an implementation must provide and greater
flexibility for future hardware without releasing a new OpenMP specification.

Additionally, it has the advantage of being descriptive (just define the require-
ments of a level via the sync clause), similar to the loop construct without
a loop, but also prescriptive when needed for performance optimization using
a hardware-specific level in the level clause. Programs that allocate compute
hours on supercomputers generally require showing that the program has been
optimized to the target hardware (e.g., [17,19]). With more complex hardware
this will be increasingly harder to do if OpenMP does not provide the means to
do so, and applications will have to use vendor-proprietary ecosystems (CUDA,
HIP, DPC++, etc.) instead.

Reusing the well-known parallel and for/DO constructs would be the most
straightforward since we are reusing its principles of starting an SPMD region,
then distributing work between them, but there may be too many legacy behavior
conflicts may make introducing new directive names necessary. It is also a major
undertaking to revise OpenMP’s current nomenclature of target, league, teams,
contention groups, threads, and simd. In any case, a major advantage over the
current approach is the orthogonal relations between levels using properties,
compared with the heterogeneous but fixed levels and their pairwise defined
relations that were intended to match a now-outdated generation of hardware.

Acknowledgments. The idea of reusing the parallel directive instead of teams was
first brought up by Bronis de Supinski.

Generalizing Hierarchical Parallelism 175

This research was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration, in particular its subproject SOLLVE.

A Nvidia Grace Hopper Superchip Hierarchy

In this section, we illustrate the complexity and hierarchical depth of contempo-
rary high-performance hardware using Nvidia’s most recent GPGPU design, the
Hopper architecture [13], as an example. GPGPU hardware from other vendors
such as Intel and AMD generally expose a similar hierarchy and implement the
same programming model assumed by OpenMP, SYCL, OpenACC, etc., but will
also be different enough to require different optimization strategies. For instance,
Nvidia hardware has 32 lanes per warp, while AMD has 64, and Intel’s GPU
accelerators are configurable between 1 and 32 lanes per warp. Other typical
differences are the number of levels, the amount of memory per level, and the
number of tasks supported on each level. In contrast, specialized hardware such
as FPGAs and dedicated AI accelerators may diverge significantly.

The current OpenMP programming model does not account for these differ-
ences and uses a one-model-to-match-them-all approach which cannot accurately
represent the diversity of accelerator architectures. Moreover, compute hardware
can be expected to become more complex in unpredictable ways in the future.

Figure 1 shows the H100 in a hypothetical configuration that might be sold
as the Nvidia HGX Grace Hopper system or be part of the LANL Venado clus-
ter. Unlike previous chips, Nvidia also offers its H100 ‘Hopper’ architecture chips
in combination with an ARM-based CPU called ‘Grace’ integrated into the ele-
gantly named ‘Grace Hopper’ superchip [12]. Nvidia points out that the Grace
CPU does not have NUMA for “high developer productivity”, but in a typical
setting where multiple processors are connected via NVLink, including Nvidia’s
own HGX offerings, each superchip is effectively its own NUMA domain. Other-
wise, the Grace CPU matches the architectures that are taken account with the
parallel for construct and proc_bind clause and the simd construct.

In contrast, the Hopper GPU has many more levels than the
teams distribute and parallel for constructs can represent. An H100 chip
is not just a flat collection of multiple SMs but builds a hierarchy itself. Most
of them may not be relevant for either the programming model or performance,
making them transparent to the programmer, except for the L2 cache, which
splits the GPU into halfs.

A H100 multiprocessor (SM) is a multicore processor itself and can process 4
instruction streams in parallel, each with its own warp scheduler and register file.
The instruction streams can come from either the same or different Cooperative
Thread Arrays (CTAs) if the memory constraints allow, but a currently resident
task will never move to another SM. Since the four schedulers share the same
local memory, data transfers between the warps on the same SM is significantly
faster than between warps on different SMs. An algorithm may be able to take
this into account; but since the same memory is also used for a per-block shared

176 M. Kruse

Fig. 1. Hierarchical parallelism of a fictitious Nvidia H100 cluster.

memory, it is architecturally possible to directly access another block’s scratch
pad memory when executing on the same SM using the abstraction called ‘dis-
tributed shared memory’. In OpenMP, it is currently not possible to access this
memory.

A Cooperative Thread Array itself is split into warps of 32 lanes each, but
whether they are executed in parallel depends on the hardware. In contrast to
AMD and Intel, handling of divergent lanes of the same warp is done by the
hardware (instead of instructions that explicitly set the execution mask) and,
beginning with the Volta architecture, features ‘independent thread schedul-

Generalizing Hierarchical Parallelism 177

ing’ [11]. That is, the hardware is allowed to decide itself when to mask out a
lane and when to continue its execution. As a result, which lanes are executed in
lockstep is not predictable in software anymore, and Nvidia added __syncwarps
and additional _sync-suffix instructions to CUDA to give software some control
over the processes.

With 32 FP32 cores, the H100 can execute all warp lanes at once in the case
of a single-precision instruction, but since only 16 FP64 cores are available, it
takes two rounds for all 32 lanes of a double-precision instruction to execute.
Neither CUDA nor OpenMP exposes this detail, but some algorithms might be
able to exploit this detail knowing that using two warps each using just 16 lanes
may result in the same performance as a full warp or that lanes that are not
in the same group of 16 can diverge without performance penalty. Incidentally,
this similarly applies to the Grace CPU, which processes a single 512-bit SVE
instruction independently in 4 SIMD units.

In addition to the SIMT programming model, CUDA supports a limited
selection of traditional SIMD intrinsics, but only for integer operations [14].
For instance, the __vadd2 intrinsic treats a 32-bit integer register as a vector
register containing two 16-bit integers and adds them independently. Similarly,
__vadd4 adds four 8-bit integers. We are not aware of any compiler that emits
these vector instructions without explicitly using the intrinsics, even when using
#pragma omp simd .

References

1. Dongarra, J., Geist, A.: Report on the Oak Ridge National Laboratory’s Frontier
System. Technical Report. ICL-UT-22-05, University of Tennessee (2022)

2. Fan, X., de Supinski, B.R., Sinnen, O., Giacaman, N. (eds.): IWOMP 2019. LNCS,
vol. 11718. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28596-8

3. Franchetti, F., de Mesmay, F., McFarlin, D., Püschel, M.: Operator language: a
program generation framework for fast kernels. In: Taha, W.M. (ed.) DSL 2009.
LNCS, vol. 5658, pp. 385–409. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03034-5 18

4. Harris, M.: Cooperative Groups: Flexible CUDA Thread Programming. Nvidia
blog post (2017). http://developer.nvidia.com/blog/cooperative-groups/

5. Intel: “Explicit SIMD” SYCL extension. https://github.com/intel/llvm/tree/sycl/
sycl/doc/extensions/experimental/sycl ext intel esimd

6. Intel: oneAPI GPU Optimization Guide 2023.1. https://www.intel.com/
content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-1/intel-xe-
gpu-architecture.html

7. Khronos: SYCL 2020 Specification (revision 7). http://registry.khronos.org/
SYCL/specs/sycl-2020/html/sycl-2020.html

8. Kruse, M., Finkel, H.: A proposal for loop-transformation pragmas. In: de Supinski,
B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.) IWOMP
2018. LNCS, vol. 11128, pp. 37–52. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98521-3 3

9. Lee, J., Tran, M.T., Odajima, T., Boku, T., Sato, M.: An extension of XcalableMP
PGAS lanaguage for multi-node GPU clusters. In: Alexander, M., et al. (eds.) Euro-
Par 2011. LNCS, vol. 7155, pp. 429–439. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29737-3 48

https://doi.org/10.1007/978-3-030-28596-8
https://doi.org/10.1007/978-3-642-03034-5_18
https://doi.org/10.1007/978-3-642-03034-5_18
http://developer.nvidia.com/blog/cooperative-groups/
https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/experimental/sycl_ext_intel_esimd
https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/experimental/sycl_ext_intel_esimd
https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-1/intel-xe-gpu-architecture.html
https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-1/intel-xe-gpu-architecture.html
https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-1/intel-xe-gpu-architecture.html
http://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
http://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://doi.org/10.1007/978-3-319-98521-3_3
https://doi.org/10.1007/978-3-319-98521-3_3
https://doi.org/10.1007/978-3-642-29737-3_48
https://doi.org/10.1007/978-3-642-29737-3_48

178 M. Kruse

10. Low, T.M., Igual, F.D., Smith, T.M., Quintana-Orti, E.S.: Analytical modeling
is enough for high-performance BLIS. Trans. Math. Softw. (TOMS) 43(2), 1–18
(2016)

11. Nvidia: Tesla V100 GPU Architecture V1.1. Technical report. (2017). http://www.
nvidia.com/object/volta-architecture-whitepaper.html

12. Nvidia: Grace Hopper Superchip Architecture V1.01. Technical report (2022).
http://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper

13. Nvidia: H100 Tensor Core GPU Architecture V1.03. Technical report. (2022).
http://resources.nvidia.com/en-us-tensor-core

14. Nvidia: CUDA Toolkit Documentation V12.1 Update 1 (2023). https://docs.
nvidia.com/cuda/

15. OpenACC-standard.org: The OpenACC Application Programming Interface Ver-
sion 3.3 (2022). https://www.openacc.org/specification

16. OpenMP Architecture Review Board: OpenMP C and C++ Application Program
Interface Version 1.0 (1998)

17. PRACE: Guide for Applicants to Tier-0 Resources. Call for Proposals (2016).
http://prace-ri.eu/hpc-access/project-access/project-access-open-calls/guide-for-
applicants-to-tier-0-resources/

18. Tian, S.: Add new clang argument ‘-fopenmp-target-simd’. LLVM code review
(2021). https://reviews.llvm.org/D110286

19. US Department of Energy: INCITE Call for Proposals. http://www.
doeleadershipcomputing.org/proposal/new-proposals-instructions/

20. Wang, A., Yi, X., Yan, Y.: Supporting data Shuffle between threads in OpenMP.
In: Milfeld, K., de Supinski, B.R., Koesterke, L., Klinkenberg, J. (eds.) IWOMP
2020. LNCS, vol. 12295, pp. 98–112. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58144-2 7

http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
http://resources.nvidia.com/en-us-tensor-core
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://www.openacc.org/specification
http://prace-ri.eu/hpc-access/project-access/project-access-open-calls/guide-for-applicants-to-tier-0-resources/
http://prace-ri.eu/hpc-access/project-access/project-access-open-calls/guide-for-applicants-to-tier-0-resources/
https://reviews.llvm.org/D110286
http://www.doeleadershipcomputing.org/proposal/new-proposals-instructions/
http://www.doeleadershipcomputing.org/proposal/new-proposals-instructions/
https://doi.org/10.1007/978-3-030-58144-2_7
https://doi.org/10.1007/978-3-030-58144-2_7

Exploring the Limits of Generic Code
Execution on GPUs via Direct (OpenMP)

Offload

Shilei Tian1(B) , Barbara Chapman1 , and Johannes Doerfert2(B)

1 Stony Brook University, Stony Brook, NY 11794, USA
{shilei.tian,barbara.chapman}@stonybrook.edu

2 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
jdoerfert@llnl.gov

Abstract. GPUs are well-known for their remarkable ability to acceler-
ate computations through massive parallelism. However, offloading com-
putations to GPUs necessitates manual identification of code regions
that should be executed on the device, memory that needs to be trans-
ferred, and synchronization to be handled. Recent work has leveraged
the portable target offloading interface provided by LLVM/OpenMP,
taking GPU acceleration to a new level. This approach, known as the
direct GPU compilation scheme, involves compiling the entire host appli-
cation for the GPU and executing it there, thereby eliminating the
need for explicit offloading directives. Nonetheless, due to limitations
of the current GPU compiler toolchain and execution, seamlessly exe-
cuting CPU code on GPUs with certain features remains a significant
challenge. In this paper, we examine the limits of CPU code execution
on GPUs by applying the direct GPU compilation scheme to LLVM’s
test-suite, analyze the encountered errors, and discuss potential solu-
tions for enabling more code to execute on GPUs without any changes if
feasible. By studying these issues, we shed light on how to improve GPU
acceleration and make it more accessible to developers.

Keywords: OpenMP · GPU · compiler testing

1 Introduction

GPUs are renowned for their exceptional computational power, primarily
attributed to their ability to leverage massive parallelism. Offloading compu-
tations to GPUs has proven to be an effective approach for accelerating various
applications. However, this process typically requires manual identification of
code regions suitable for GPU execution, as well as managing data transfers and
synchronization between the CPU and GPU. To address this challenge, recent
work [20,21] has proposed the direct GPU compilation scheme, which leverages
the portable target offloading interface offered by LLVM/OpenMP. This scheme
involves compiling the entire host application for the GPU and executing it
there, eliminating the need for explicit offloading directives.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 179–192, 2023.
https://doi.org/10.1007/978-3-031-40744-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_12&domain=pdf
http://orcid.org/0000-0001-6468-6839
http://orcid.org/0000-0001-8449-8579
http://orcid.org/0000-0001-7870-8963
https://doi.org/10.1007/978-3-031-40744-4_12

180 S. Tian et al.

Despite the potential benefits of the direct GPU compilation scheme, there
are limitations to executing CPU code on GPUs seamlessly due to current
toolchain and execution constraints. In this paper, we examine the limits of
CPU code execution on GPUs by applying the direct GPU compilation scheme
to LLVM’s test-suite. Through our analysis, we identify and categorize a series
of encountered errors into eight distinct types, which encompass issues with test
cases, bugs in the compiler and runtime, and the absence of certain features that
led to the failure of test case compilations. In addition, we delve into potential
solutions that could enable a wider range of codes to be executed on GPUs,
ideally without necessitating any alterations to user codes, provided it’s feasible.
The study’s primary objective is to elucidate the potential areas of improve-
ment in GPU acceleration, thereby making it more user-friendly and accessible
to developers.

The paper is organized as follows. In Sect. 2, we provide an overview of the
direct GPU compilation scheme, which is the approach we use in this study.
In Sect. 3, we describe our methodology and implementation details. Section 4
presents the results of our study, along with a detailed analysis. We review related
works in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Background

OpenMP 4.0 introduced the target construct, which allows code regions to be
executed on target devices such as GPUs [3] and FPGAs [10]. An example of
CUDA code and its equivalent OpenMP version is shown in Fig. 1. In addition
to the target construct (as well as its combined variants), OpenMP provides
the declare target directive that specifies that all associated variables and
functions are to be mapped onto the target devices and thus are usable in device
code [18]. The device type(nohost) clause on a declare target construct
forces the compiler not to generate host versions of the enclosed variables and
functions.

While this approach provides a simpler programming model than traditional
CUDA or OpenCL, it still requires users to wrap the code with the target con-
struct. In particular, users need to identify the regions of code that would benefit
from GPU acceleration and explicitly mark them with the target construct.

The proposed approach by Tian et al. [20] enables the compilation of an
existing host application for GPU execution with minimal modification to the
user code by leveraging the portable target offloading interface provided by
LLVM/OpenMP. Users can provide simple stub code to delegate function calls
to the host using the host remote procedure call (RPC) framework for functions
that can not be executed directly on a GPU. Later, the approach was extended
by augmenting the compiler with a custom link-time optimization pass, which
can automatically generate RPC calls without the need for stub code from users,
and expand source parallelism to the entire GPU device [21].

The compilation and execution path of this approach is illustrated in Fig. 2.
In the following we will briefly introduce the compilation of the direct GPU
compilation scheme.

Exploring the Limits of Generic Code Execution 181

Fig. 1. An example of CUDA code and its equivalent OpenMP code.

2.1 Device Code Representation

The direct compilation framework facilitates executing the entire program on the
GPU by marking all user code associated with the declare target directive,
essentially prepending a begin declare target device type(nohost) before
any user source file. The framework offers a user wrapper header (shown in
Fig. 3), which can be pre-included using clang’s -include command line option
when compiling user code.

2.2 Loader

The GPU execution still follows a “host-centric” approach where the execution
of a “GPU program” must be initiated from the host. Traditionally, the main
function in the host code has been the entry point for user applications. However,
since the entire user code is now considered device code, a new entry point for the
host code is needed. The direct compilation framework provides a main wrapper
(also depicted in Fig. 2) that acts as the new host entry point. The main wrapper

182 S. Tian et al.

Fig. 2. Overview of the compilation and execution path of the direct GPU compilation
framework introduced by Tian et al. [20] and the extended work [21]. The figure is
from the work [21].

first maps all program arguments to the device so that the user code can access
them and then invokes the user’s main function. To avoid conflicts with the
existing main function, the user’s main function is renamed to user main (as
illustrated in Fig. 3). The new host entry point must be compiled and linked
with all other user source files into the executable by the user.

Fig. 3. User wrapper header to take all user code as device code and rename main

function to user main.

3 Methodology

This section introduces a new compiler driver wrapper designed to simplify the
use of the direct compilation scheme. It then discusses the comprehensive han-
dling of different main functions, followed by the test suite and system config-
uration employed in the exploration of the limits of generic code execution on
GPUs using the direct compilation scheme.

3.1 Compiler Driver Wrapper

As described in Sect. 2, the direct GPU compilation scheme involves three steps:
1) compiling user source files with a user wrapper header included; 2) compil-
ing the loader; and 3) linking the object files of user code and loader. However,

Exploring the Limits of Generic Code Execution 183

the additional second step makes it difficult to seamlessly integrate the compi-
lation scheme into build systems like CMake without significant changes to the
configuration or build script.

To address this limitation, we have developed a solution by implementing a
compiler driver wrapper, called clang-gpu and clang-gpu++, for C and C++
compilation, respectively. When the driver is used in compilation-only mode
(-c), the wrapper forwards all arguments to the invocation of clang/clang++
as well as all necessary extra compilation flags. Otherwise, the wrapper first
compiles the loader and then adds the loader object file to the invocation of
clang/clang++ as an additional input file. With this approach, users can use
clang-gpu and clang-gpu++ as a regular compiler in build systems without
requiring any changes.

3.2 Handling Different main Functions

In a host environment, a program must contain a global function named main,
which serves as the designated start of the program. In C++, this function has
one of two forms: int main(); or int main(int argc, char *argv[]);. The
C language also allows the form void main();.

As mentioned in Sect. 2, the user’s main function is renamed to user main
to avoid ambiguity. However, this approach assumes that all users’ main func-
tions are in the form of int main(int argc, char *argv[]);, which may not
always be the case and can lead to a compile error due to a conflict declaration
of a function.

To address this issue, we implemented a compiler pass that “canonical-
izes” the main function to the form int main(int argc, char *argv[]); and
renames it accordingly. This approach ensures that the loader can correctly
invoke the user’s main function, regardless of its original form.

3.3 Test Suite and System Configuration

We used LLVM’s test-suite to test the correctness and performance of the
compilation scheme. This suite includes benchmarks and test programs, and
provides tools to collect metrics such as benchmark runtime, compilation time,
and code size. The suite includes several categories of tests, including:

– SingleSource: Contains single-file test programs.
– MultiSource: Includes entire programs with multiple source files.
– MicroBenchmarks: Programs using the google-benchmark library. The pro-

grams define functions that are run multiple times until the measurement
results are statistically significant.

– External: Contains descriptions and test data for code that cannot be
directly distributed with the test-suite. The most prominent members of this
directory are the SPEC CPU benchmark suites.

– Bitcode: These tests are mostly written in LLVM bitcode.

184 S. Tian et al.

– CTMark: Contains symbolic links to other benchmarks forming a representa-
tive sample for compilation performance measurements.

We chose not to perform runtime performance evaluation in this paper, as
this has been extensively studied in prior work [20,21]. We did not use the
Bitcode tests, as these are written in LLVM bitcode, which is target dependent
and can not be directly used for GPU testing.

Our system consisted of an NVIDIA A100 Tensor Core GPU (40GB) with
AMD EPYC 7532 processors (32 cores with hyper-threading disabled) and 256
GB DDR4 RAM. We used CUDA 11.8.0 and compiled the entire test suite using
the default configuration for release build. Figure 4 shows how we configured,
built, and executed the test suite.

Fig. 4. Commands used to configure, build, and run the test suite. The compiler driver
wrappers are used as compilers for C/C++ and there is no extra CMake configuration
arguments nor changes in CMake files required.

4 Results and Analysis

The results of each subdirectory are presented in Fig. 5. In the subsequent sec-
tions, we delve into a detailed analysis of the different errors encountered, dis-
cussing its root causes and potential solutions.

4.1 Test Case Issue

We identified some issues in the test suite, such as the incorrect use of parallel
for in the test case SingleSource/Benchmarks/SmallPT/smallpt.cpp, which
caused a compile error (as shown in Fig. 6). This issue was not previously revealed
because OpenMP was not enabled when compiling the SingleSource subdi-
rectory. Another example is in MultiSource/Applications/sgefa/driver.c,
where malloc is declared as char *malloc();, causing conflicting types for the
function.

After fixing those issues, we got seven more passing tests: four in
MultiSource/Applications and three in MultiSource/Benchmarks.

4.2 Compiler/Runtime Bug

We uncovered several bugs throughout the compiler, spanning front-end code
generation, middle-end optimization, backend code generation, and runtime

Exploring the Limits of Generic Code Execution 185

Fig. 5. Number of passed and failed test cases in each sub directory.

Fig. 6. Incorrect use of parallel for in the test case SingleSource/Benchmarks/

SmallPT/smallpt.cpp that causes compile error.

library. These bugs were discovered when assertions were triggered during com-
pile or link time, indicating that certain errors were not caught beforehand and
that certain assumptions made during development did not hold.

For example, while compiling the test case CTMark/ClamAV, clang crashed
because the user code did not specify a size for a variable length array (VLA) in
a way that was handled. The source excerpt is shown in Fig. 7. Despite of fact
that the size of the array dents is a compile-time constant, rather than a literal,
this error should have been detected earlier and an appropriate error message
should have been produced, especially since VLAs are not currently supported
when targeting GPUs (will be discussed in Sect. 4.6).

Another bug we encountered during our investigation was related to the
LLVM Attributor framework. This bug manifests as an assertion error when
compiling the test case CTMark/tramp3d-v4, as depicted in Fig. 8.

The majority of runtime failures shown in Fig. 5b were caused by illegal mem-
ory access. These failures can arise from various issues, including miscompilation
or a faulty device runtime library. Further investigation is required to pinpoint
the exact cause. Meanwhile, the other runtime failures were caused by issues in
the automatic RPC implementation, where external functions were invoked on
the host but the pointer arguments were not handled correctly.

In addition to the aforementioned bugs, we observed limitations in handling
inline assembly and compiler intrinsics that are specifically target-dependent.
Operations such as AVX512, which are specific to certain targets, are not
portable by default. If inline assembly used in the code is not supported by
the target, the compiler backend will crash instead of emitting an error. We will
delve into this topic further in Sect. 4.8.

186 S. Tian et al.

Fig. 7. clang crashed because an assertion is hit (top) for the source code shown in
the bottom. Given the target does not support VLAs, an error should have been raised
earlier.

Fig. 8. clang crashed because an assertion is hit in LLVM’s Attributor framework.

4.3 External Global Variable

Some header files contain external global variables, such as extern std::
ostream cout; from <iostream> and extern char *optarg; from <unistd.
h>. While in the extended work [21] external function calls are replaced with
host RPC calls automatically by the compiler, external global variables are not
handled in the same way. To address this, one possible solution is to replace
access to an external global variable with host RPC calls, similar to the app-
roach used for external functions. However, it may be difficult to handle pointers
such as extern char *optarg;. Alternatively, with the emerging unified mem-
ory design where both CPU and GPU use the same memory, this will no longer
be an issue.

4.4 Variadic Function

Variadic functions, such as fprintf, are commonly used in CPU code. However,
they are not supported in GPU due to the lack of support from application

Exploring the Limits of Generic Code Execution 187

binary interface (ABI). The extended work [21] managed to support external
variadic functions in two steps: first, by creating a non-variadic wrapper on the
device solely for host RPC calls, and second, by creating a non-variadic wrapper
on the host side that recovers the call site. However, this approach may not work
if users handle variadic arguments explicitly in the code, as shown in Fig. 9.

Fig. 9. An example of explicit handling of variadic arguments in the test case CTMark/

sqlite3.

To solve this issue, a proper ABI for variadic functions needs to be defined.
Some exploration has already been done in this area. For instance, NVIDIA
GPUs can support the printf variadic function. In this case, the front end
creates a structure at the call site that accommodates all variadic arguments,
and then lowers the function call to void vprintf(const char *fmt, void
*args);, where the second argument is a pointer to the structure. Figure 10
demonstrates how this procedure works.

This approach can be extended to support the explicit handling of variadic
functions, where both the caller and callee are compiled by the same compiler.

Fig. 10. The lowering of printf in clang for NVIDIA GPUs.

188 S. Tian et al.

4.5 C++ Exception Handling

Exceptions are a mechanism for handling exceptional circumstances, such as
runtime errors, in programs by transferring control to special functions called
handlers. An exception is thrown using the throw keyword from inside a try
block. Exception handlers are declared with the keyword catch, which must be
placed immediately after the try block. However, no GPU compilers supports
arbitrary C++ exception handling.

Full support for exceptions requires features such as stack unwinding, which
are not yet available on GPUs. Moreover, the inherent dynamically divergent
execution can cause problems on specific (lock step) targets. A reasonable alter-
native solution is to lower the throw expression to a built-in trap that aborts
GPU execution. The catch statement then becomes a no-op, effectively equiva-
lent to using the -fno-exceptions compiler flag except that the syntactic throw
and catch statements would still be allowed.

4.6 Variable Length Array

Currently, GPU targets impose a limitation on stack allocation, requiring a stat-
ically known size. This constraint poses a challenge when dealing with variable
length arrays that necessitate dynamic-sized stack allocation. Although NVIDIA
has introduced a preview feature in PTX 7.3 that supports dynamic stack allo-
cation [12], the compiler does not yet provide full support for this feature. To
overcome this limitation, an alternative solution is to replace dynamic stack allo-
cation with dynamic heap allocation. To ensure proper memory management, it
becomes necessary to insert cleanup code that handles the deallocation of these
dynamically allocated variables as their scope is left.

4.7 Unsupported Data Type

There are data types, such as long double, that are not supported by GPUs.
Similar to the host side when the target CPU does not support certain types,
software emulation can also be applied on GPUs. Moreover, more data types are
likely to be supported in the future as GPUs evolves. For now, clang will allow
long double and other unsupported types to appear, e.g., as part of struct dec-
larations, but it will not allow use of them, e.g., as part of arithmetic operations.

4.8 Inline Assembly

As mentioned earlier, both inline assembly and compiler intrinsics are inherently
target-dependent and lack portability by default. To address this challenge, a
potential solution is to translate the assembly code into the corresponding target-
specific assembly code. This approach has been successfully employed in binary
translation projects such as Apple’s Rosetta 2 and Intel’s Houdini, enabling
cross-architecture execution. Similarly, for compiler intrinsics, a wrapper layer
can be introduced to map them to a code sequence that is valid on the target

Exploring the Limits of Generic Code Execution 189

architecture. This approach allows the intrinsic functions to be adapted and
utilized in the context of the specific target architecture. A relevant study by
Doerfert et al. [6] proposes techniques for mapping intrinsics to target-specific
code sequences, offering a means to achieve compatibility across architectures.
The OpenPOWER group provides functional equivalents of Intel MMX, SSE,
and AVX intrinsic functions commonly used in Linux applications [17].

5 Related Work

Several prior works have investigated the execution of host programs on GPUs.
Silberstein et al. [16] proposed direct access to the host’s file system from GPU
code and implemented an RPC protocol to facilitate data transfers between
the CPU and GPU. Damschen et al. [4] explored transparent acceleration of
binary applications using heterogeneous computing resources without manual
porting or developer-provided hints. Matsumura et al. [9] introduced an auto-
mated stencil framework that transforms and optimizes stencil patterns in C
source code, generating corresponding CUDA code. Mikushin et al. [11] pre-
sented a parallelization framework that detects parallelism and generates target
code for both X86 CPUs and NVIDIA GPUs. To support functions that cannot
be natively executed on GPUs, they replaced function calls in LLVM with an
interface that uses a foreign function interface to execute the requested functions
on the host. Jablin et al. [8] proposed a fully automatic system for managing
and optimizing CPU-GPU communication, comprising a runtime library and
compiler transformations. Pakin et al. [15] proposed reverse-acceleration model
where the accelerators orchestrate the computation, offloading work that can not
be accelerated to the general-purpose processors. Tian et al. [20] were the first
to attempt running the entire host program on a GPU using OpenMP target
offloading. They augmented the compiler with a custom link-time optimization
pass to generate RPC calls automatically, eliminating the need for stub code
from users and expanding source parallelism to the entire GPU device. Their
work later has been extended in [21], where the compiler was augmented with
a custom link-time optimization pass, which can automatically generate RPC
calls without the need for stub code from users, and expand source parallelism
to the entire GPU device.

In recent years, researchers have focused on compiler and runtime optimiza-
tion for OpenMP after the introduction of target offloading in OpenMP 4.0.
Bertolli et al. [2,3] enabled OpenMP offloading to GPUs in LLVM. Flang, the
PGI Fortran front-end, also supports OpenMP offloading through the LLVM
OpenMP runtime [13]. Antão et al. [1] introduced front-end-based optimizations
for NVIDIA GPUs, reducing register usage and avoiding idle threads. Doerfert
et al. [5] presented the TRegion interface, enabling more kernels to execute in
SPMD mode. Tian et al. [19] introduced runtime support for concurrent exe-
cution of OpenMP target tasks. Yviquel et al. [22] presented a framework for
using the OpenMP programming model in distributed memory environments,
combining OpenMP directives and MPI communication. Huber et al. [7] devel-
oped OpenMP-aware program analyses and optimizations for efficient execution

190 S. Tian et al.

of CPU-centric parallelism on GPUs. Ozen and Wolfe [14] demonstrated its
implementation of the loop directive on NVIDIA GPUs.

6 Summary

In this paper we investigated the feasibility and effectiveness of executing CPU
code on GPUs using the direct GPU compilation scheme. We highlighted the
challenges and limitations in the current GPU compiler toolchain and hardware
support. In addition, we discussed potential solutions to enable broader GPU
execution capabilities. The findings can contribute to advancing GPU accelera-
tion and facilitating the utilization of GPUs for a wider range of code without
significant modifications from application developers.

This work highlights the effectiveness of the compilation scheme introduced
in [20,21], which enables straightforward execution of CPU codes on GPUs,
to test “GPU compilers” using a vast collection of existing CPU code. In this
initial study alone we detected multiple compiler bugs and categorized other the
shortcomings; both will lead to improved capabilities and robustness.

Acknowledgement. This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Administration) responsible for the
planning and preparation of a capable exascale ecosystem, including software, appli-
cations, hardware, advanced system engineering, and early testbed platforms, in sup-
port of the nation’s exascale computing imperative. The views and opinions of the
authors do not necessarily reflect those of the U.S. government or Lawrence Livermore
National Security, LLC neither of whom nor any of their employees make any endorse-
ments, express or implied warranties or representations or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of the information contained
herein. This work was in parts prepared by Lawrence Livermore National Labora-
tory under Contract DE-AC52-07NA27344 (LLNL-CONF-827970). We also gratefully
acknowledge the computing resources provided and operated by the Joint Laboratory
for System Evaluation at Argonne National Laboratory.

References

1. Antão, S.F., et al.: Offloading Support for OpenMP in Clang and LLVM. In: Work-
shop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC@SC), 14 Novem-
ber 2016, pp. 1–11, IEEE Computer Society, Salt Lake City, UT, USA (2016).
https://doi.org/10.1109/LLVM-HPC.2016.006

2. Bertolli, C., et al.: Integrating GPU support for OpenMP offloading directives
into Clang. In: Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-
HPC@SC), 15 November 2015, pp. 1–11, ACM, Austin, Texas, USA (2015).
https://doi.org/10.1145/2833157.2833161

3. Bertolli, C., et al.: Coordinating GPU threads for OpenMP 4.0 in LLVM. In:
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC@SC), 17
November 2014, pp. 12–21. IEEE Computer Society, New Orleans, LA, USA (2014).
https://doi.org/10.1109/LLVM-HPC.2014.10

https://doi.org/10.1109/LLVM-HPC.2016.006
https://doi.org/10.1145/2833157.2833161
https://doi.org/10.1109/LLVM-HPC.2014.10

Exploring the Limits of Generic Code Execution 191

4. Damschen, M., Riebler, H., Vaz, G., Plessl, C.: Transparent offloading of compu-
tational hotspots from binary code to Xeon Phi. In: Design, Automation & Test in
Europe Conference & Exhibition (DATE), 9–13 March 2015, pp. 1078–1083, ACM,
Grenoble, France (2015). https://dl.acm.org/doi/10.5555/2755753.2757063

5. Doerfert, J., Diaz, J.M.M., Finkel, H.: The TRegion interface and compiler opti-
mizations for OpenMP target regions. In: Fan, X., de Supinski, B.R., Sinnen, O.,
Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 153–167. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-28596-8 11

6. Doerfert, J., et al.: Breaking the vendor lock: performance portable programming
through openMP as target independent runtime layer. In: International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT), 8–12 Octo-
ber 2022, pp. 494–504, ACM, Chicago, Illinois (2022). https://doi.org/10.1145/
3559009.3569687

7. Huber, J., et al.: Efficient Execution of OpenMP on GPUs. In: International Sym-
posium on Code Generation and Optimization (CGO), 2–6 April 2022, pp. 41–52,
IEEE, Seoul, Republic of Korea (2022). https://doi.org/10.1109/CGO53902.2022.
9741290

8. Jablin, T.B., Prabhu, P., Jablin, J.A., Johnson, N.P., Beard, S.R., August, D.I.:
Automatic CPU-GPU communication management and optimization. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 4–8 June 2011, pp. 142–151, ACM, San Jose, CA, USA (2011). https://
doi.org/10.1145/1993498.1993516

9. Matsumura, K., Zohouri, H.R., Wahib, M., Endo, T., Matsuoka, S.: AN5D: auto-
mated stencil framework for high-degree temporal blocking on GPUs. In: Interna-
tional Symposium on Code Generation and Optimization (CGO), February 2020,
pp. 199–211, ACM, San Diego, CA, USA (2020). https://doi.org/10.1145/3368826.
3377904

10. Mayer, F., Knaust, M., Philippsen, M.: OpenMP on FPGAs—a survey. In: Fan,
X., de Supinski, B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS,
vol. 11718, pp. 94–108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
28596-8 7

11. Mikushin, D., Likhogrud, N., Zhang, E.Z., Bergstrom, C.: Kernelgen - the design
and implementation of a next generation compiler platform for accelerating numer-
ical models on GPUs. In: International Parallel & Distributed Processing Sympo-
sium Workshops (IPDPSW), 19–23 May 2014, pp. 1011–1020, IEEE Computer
Society, Phoenix, AZ, USA (2014). https://doi.org/10.1109/IPDPSW.2014.115

12. NVIDIA: Parallel Thread Execution ISA Version 8.1. https://docs.nvidia.com/
cuda/parallel-thread-execution/index.html#stack-manipulation-instructions-
alloca (2023)

13. Özen, G., Atzeni, S., Wolfe, M., Southwell, A., Klimowicz, G.: OpenMP GPU
Offload in Flang and LLVM. In: Workshop on the LLVM Compiler Infrastructure
in HPC (LLVM-HPC@SC), 13 November 2018, pp. 1–9, IEEE, Dallas, TX, USA
(2018), https://doi.org/10.1109/LLVM-HPC.2018.8639434

14. Ozen, G., Wolfe, M.: Performant portable openMP. In: ACM SIGPLAN Interna-
tional Conference on Compiler Construction (CC), 2–3 April 2022, pp. 156–168,
ACM, Seoul, South Korea (2022). https://doi.org/10.1145/3497776.3517780

15. Pakin, S., Lang, M., Kerbyson, D.J.: The reverse-acceleration model for program-
ming Petascale hybrid systems. IBM J. Res. Develop. 53(5), 8 (2009). https://doi.
org/10.1147/JRD.2009.5429074

https://dl.acm.org/doi/10.5555/2755753.2757063
https://doi.org/10.1007/978-3-030-28596-8_11
https://doi.org/10.1145/3559009.3569687
https://doi.org/10.1145/3559009.3569687
https://doi.org/10.1109/CGO53902.2022.9741290
https://doi.org/10.1109/CGO53902.2022.9741290
https://doi.org/10.1145/1993498.1993516
https://doi.org/10.1145/1993498.1993516
https://doi.org/10.1145/3368826.3377904
https://doi.org/10.1145/3368826.3377904
https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1109/IPDPSW.2014.115
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#stack-manipulation-instructions-alloca
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#stack-manipulation-instructions-alloca
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#stack-manipulation-instructions-alloca
https://doi.org/10.1109/LLVM-HPC.2018.8639434
https://doi.org/10.1145/3497776.3517780
https://doi.org/10.1147/JRD.2009.5429074
https://doi.org/10.1147/JRD.2009.5429074

192 S. Tian et al.

16. Silberstein, M., Ford, B., Keidar, I., Witchel, E.: GPUfs: integrating a file system
with GPUs. In: Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 16–20 March 2013, pp. 485–498, ACM, Houston, TX, USA
(2013). https://doi.org/10.1145/2451116.2451169

17. System Software Work Group, OpenPOWER Foundation: Vector Intrinsics Port-
ing Guide. https://openpowerfoundation.org/specifications/vectorintrinsicporting
guide/ (2018)

18. Tian, S., Chesterfield, J., Doerfert, J., Chapman, B.: Experience report: writing
a portable GPU runtime with openMP 5.1. In: McIntosh-Smith, S., de Supin-
ski, B.R., Klinkenberg, J. (eds.) IWOMP 2021. LNCS, vol. 12870, pp. 159–169.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85262-7 11

19. Tian, S., Doerfert, J., Chapman, B.M.: Concurrent execution of deferred openMP
target tasks with hidden helper threads. In: Chapman, B., Moreira, J. (eds.) Lan-
guages and Compilers for Parallel Computing. LCPC 2020. Lecture Notes in Com-
puter Science, vol. 13149. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-95953-1 4

20. Tian, S., Huber, J., Parasyris, K., Chapman, B.M., Doerfert, J.: Direct GPU compi-
lation and execution for host applications with OpenMP Parallelism. In: Workshop
on the LLVM Compiler Infrastructure in HPC (LLVM-HPC@SC), 13–18 November
2022, pp. 43–51, IEEE, Dallas, TX, USA (2022). https://doi.org/10.1109/LLVM-
HPC56686.2022.00010

21. Tian, S., Scogland, T., Chapman, B., Doerfert, J.: GPU First - Execution of Legacy
CPU Codes on GPUs (2023)

22. Yviquel, H., et al.: The OpenMP Cluster Programming Model. In: Workshop of
the International Conference on Parallel Processing (ICPP), 29 August 2022–1
September 2022, pp. 1–11, ACM, Bordeaux, France (2022). https://doi.org/10.
1145/3547276.3548444

https://doi.org/10.1145/2451116.2451169
https://openpowerfoundation.org/specifications/vectorintrinsicportingguide/
https://openpowerfoundation.org/specifications/vectorintrinsicportingguide/
https://doi.org/10.1007/978-3-030-85262-7_11
https://doi.org/10.1007/978-3-030-95953-1_4
https://doi.org/10.1007/978-3-030-95953-1_4
https://doi.org/10.1109/LLVM-HPC56686.2022.00010
https://doi.org/10.1109/LLVM-HPC56686.2022.00010
https://doi.org/10.1145/3547276.3548444
https://doi.org/10.1145/3547276.3548444

OpenMP Infrastructure and Evaluation

Improving Simulations of Task-Based
Applications on Complex NUMA

Architectures

Idriss Daoudi1(B) , Thierry Gautier2, Samuel Thibault3 ,
and Swann Perarnau1

1 Argonne National Laboratory, Lemont, USA
idaoudi@anl.gov

2 INRIA Grenoble - LIP - ENS Lyon, Lyon, France
3 INRIA Bordeaux - Université de Bordeaux, Bordeaux, France

Abstract. Modeling and simulation are crucial in high-performance
computing (HPC), with numerous frameworks developed for distributed
computing infrastructures and their applications. Despite node-level sim-
ulation of shared-memory systems and task-based parallel applications,
existing works overlook non-uniform memory access (NUMA) effects, a
critical characteristic of current HPC platforms.

In this work, we introduce a modeling for complex NUMA architec-
tures and enhance a simulator for dependency-based task-parallel appli-
cations. This facilitates experiments with varied data locality models:
we refine a communication-oriented model leveraging topology informa-
tion for data transfers, and devise a more intricate model incorporating
a cache mechanism for last-level cache data storage. Dense linear alge-
bra test cases are used to validate both models, demonstrating that our
simulator reliably predicts execution time with minimal relative error.

Keywords: NUMA architectures · Modeling · OpenMP tasks ·
Simulation

1 Introduction

Task-based runtimes, originating with Cilk in 1998 [4], have evolved to accom-
modate shared-memory machines [16], heterogeneous architectures with acceler-
ators [2,3,18], and distributed-memory systems [2,6,11,17]. The 2008 OpenMP
standard version 3.0 integrated the independent task model, expanding in 2013
to incorporate dependent task model and accelerator targeting.

To achieve optimal performance on shared-memory machines, schedulers
need to tackle non-uniform memory access (NUMA) effects [26,32]. Despite
these advancements, technical constraints often hinder reproducibility of results
on such platforms. Some studies [30] addressed these issues through simulation,
enabling realistic and reproducible scheduling research [1] and facilitating quick
prototyping before implementing on real systems.

For (OpenMP) task-based applications, a high-quality simulation of shared-
memory could lead to efficient runtimes, benefiting from a robust, reproducible

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 195–209, 2023.
https://doi.org/10.1007/978-3-031-40744-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_13&domain=pdf
http://orcid.org/0000-0003-2425-8359
http://orcid.org/0000-0001-6411-809X
http://orcid.org/0000-0002-1029-0684
https://doi.org/10.1007/978-3-031-40744-4_13

196 I. Daoudi et al.

methodology. Prior studies [30] emphasized the need for NUMA-aware simulators
that consider cache effects for accurate performance prediction.

Our earlier work [13] introduced a preliminary simulator, named sOMP, using
SimGrid [9] to predict the performance of task-based applications on shared-
memory architectures by modeling a simple NUMA structure and data local-
ity impacts. This tool allowed the non-cycle-accurate simulation of task-based
applications using a trace of their sequential execution obtained with OMPT.
Nevertheless, it neglected cache effects and failed to model complex NUMA archi-
tectures, diminishing the relevance of some application predictions. This paper
expands on that work in several ways:

– We model complex and more intricate NUMA and cache architectures;
– We refine the task execution simulation to take into account overlapping

between communications and computations.
– We introduce L3 caching in the simulation, which strongly improves sim-

ulation accuracy;
– We study the cost of the simulation.
– We show that we can easily experiment with a proof-of-concept cache-aware

scheduler thanks to the refined models.

Following a review of existing literature, we delve into the principles of simula-
tion and our modeling of NUMA architectures. We revisit a prior model ignoring
data locality, extend another model considering NUMA locality, and introduce an
enhanced model factoring in cache locality. Simulation accuracy across different
application algorithms (Cholesky, QR and LU factorization algorithms), matrix
sizes, and Intel and AMD platforms is then demonstrated. Lastly, we discuss the
simulator’s cost and its applications for cache-aware scheduling research.

2 State of the Art

Many simulators have been designed for predicting performance in a variety of
contexts in order to analyze application behavior. Simulators like BigSim [34],
xSim [15], Dimemas [19], MERPSYS [12], CloudSim [8], and GreenCloud [23]
predict performance across various applications and contexts. Some focus on spe-
cific architectures, like hybrid MPI/OpenMP applications and task-based sim-
ulations on multicore processors [21,27–29,31]. While these offer precision, no
particular memory model is implemented, as in the case of Simany [22].

Efforts have also been made to study task-based applications performance,
involving modeling NUMA access on large compute nodes [14,20] and acceler-
ators [30]. Some studies, like SimGrid [25] and simNUMA [24], align with our
work technically or in modeling, but none currently predict performance of task-
based applications with data dependencies on NUMA architectures considering
both NUMA and cache locality effects.

Our previous work [13] presented the sOMP simulator, which leverages the
SimGrid framework to simulate task-based application execution with NUMA
effects. Despite good predictions for Cholesky factorization, the project had sev-
eral limitations:

Improving Simulations of Task-Based Applications 197

– NUMA architectures modeling was very simplistic;
– data transfers cost was trivially added the computations cost;
– cache effects were ignored.

Therefore, several trade-offs were made. For example, large tile sizes were
needed to compensate for unsimulated cache effects. For the more complex QR
factorization and on AMD platforms, the simulations were unreliable. This paper
extends sOMP to incorporate cache effects and refines platform modeling and
data transfers, greatly improving prediction accuracy and exploring potential
scheduling research opportunities.

3 Context and Principles

This study addresses scenarios where scheduling researchers aim to optimize
task-based runtime system scheduling heuristics for specific applications and
platforms. However, real execution experiments are subject to system noise,
non-reproducibility due to software or firmware upgrades, and limited platform
access due to high energy costs.

To overcome these challenges, it’s desirable to experiment with heuristics in a
simulated environment offering perfect reproducibility and flexibility to run
on any platform. This simulation needs to accurately model the platform behav-
ior to align the scheduling heuristics with the platform’s actual performance.
In multicore systems, NUMA and L3 cache effects are crucial for scheduling
heuristics and need to be accurately simulated. This paper focuses on metic-
ulously modeling the NUMA architecture, incorporating L3 cache simulation,
and verifying the performance aligns with native execution. Other performance
influencers like thermal constraints, dynamic voltage and frequency scaling, and
OS noise, though relevant, are beyond this paper’s scope.

To implement these principles, we relied on our previously developed tool
sOMP, which will be improved in this work. sOMP was built using SimGrid, a
powerful non-cycle-accurate simulator.

SimGrid. Initially designed for simulating distributed-memory platforms to
study heterogeneous platforms scheduling algorithms [9], is employed here for
shared-memory architectures. The latter’s L3 caches and NUMA coherency
mechanisms essentially render them distributed systems, which will be discussed
in Sect. 4. SimGrid isn’t a cycle-accurate simulator. Computations are inter-
preted as overall calculation quantities, consuming time relative to machine per-
formance (GFlop/s), and communications as data quantities transferred based
on bandwidth (GB/s) and latency (ns). Instead of a costly cycle-by-cycle simula-
tion, our aim is a less expensive overall behavior simulation, while still accurately
observing phenomena like NUMA and cache effects, contention, and concurrency.

sOMP. The simulator, presented in our previous work [13] and tailored for task-
based applications with data dependencies, predicts their performance on archi-
tectures modeled in the SimGrid XML format using native execution-generated
trace files. After parsing these files, sOMP submits tasks to a queue managed by

198 I. Daoudi et al.

a scheduler, akin to a standard OpenMP runtime. We enhance sOMP by intro-
ducing L3 cache simulation support and refining platform profiling for increased
accuracy.

Overview of the Profiling and Simulation Principles. The overall princi-
ple of our profiling and simulation experiments is as follows, given a task-based
application to be run on a target platform:

1. Platform specifics such as L3 caches, NUMA nodes, and architectural link
bandwidths are discerned through manufacturer documentation and bench-
marking. The platform modelization is expressed in an XML file. This step
in presented in Sect. 4;

2. Unmodified OpenMP applications are executed sequentially (on a single core)
on the platform with varied parameters (e.g., the tile size) to observe behav-
ior under different conditions, recording the overall application execution
makespan as a reference;

3. During these executions, an execution trace is generated using OpenMP’s
OMPT support, from which we extract the task graph and task execution
duration;

4. Using the collected information, a parallel simulation of the execution is per-
formed, substituting tasks with virtual time accounting for cost-effective sim-
ulation, and combining it with models that take into account NUMA and
cache effects. This step is presented in Sect. 5.

With these simulations, scheduling researchers can reliably experiment with
their heuristics, modifying task schedulers, data placement, or platform specifics
to investigate the effects on their scheduling heuristic. In the following sections,
we describe some of these steps in more detail for our experiments.

4 NUMA Architectures Modeling

We see a NUMA architecture as a distributed machine in this work: several com-
putation units are interconnected, forming a NUMA node. Depending on the
machine, one or more NUMA nodes (also interconnected) form a socket that can
be coupled to one or more other sockets, each having its own memory controller.
The sockets are connected with UPI (Intel) or Infinity Fabric (AMD) links.

An overview of NUMA architectures was presented in our previous work [13]
for an Intel platform: specifically, an Intel Xeon Gold 6240 with 36 cores
(Cascade-Lake microarchitecture) and two NUMA nodes, 18 cores each. The
latter is represented with SimGrid components: the cores and the memory con-
trollers are modeled as SimGrid hosts, the intrasocket interconnect is modeled
as a SimGrid backbone, and the intersocket UPI link is modeled as a SimGrid
link between routers.

While this model proves adequate for the relatively straightforward archi-
tecture of this particular Intel processor, it is not applicable to more intricate
processors that exhibit a hierarchically structured and interconnected arrange-
ment of components. Such complexities cannot be overlooked due to their direct
bearing on the accuracy of the simulation.

Improving Simulations of Task-Based Applications 199

4.1 Modeling Complex NUMA Architectures

In the first contribution of this work, we consider a second more intricate pro-
cessor: a dual-socket AMD EPYC 7452 with 64 cores (AMD Infinity microar-
chitecture) and 16 NUMA nodes, four cores each.

This architecture, based on the zen 2 microarchitecture, is more complex
than the Intel platform, featuring two sockets with four dies connected by an
Infinity Fabric network. Each die contains two NUMA nodes, therefore, two
caches and eight cores.

Hence, our previous Intel platform model [13] was insufficient, prompting
extension for this study. Figure 1 shows our proposed SimGrid model for the
AMD platform. The Infinity Fabric network is modeled as a router network
based on AMD documentation. Each die, as shown on the top left, comprises a
SimGrid backbone symbolizing the in-die Infinity Fabric interconnect linking the
die-to-die network, RAM, and two L3 cache + 4 CPU core sets. Each L3 cache
+ 4 core set, known as a CCX, embeds a faster backbone than the in-die Infinity
Fabric interconnect. This closely follows the actual zen 2 architecture and is
necessary to accurately reflect the varying access speeds of cores to different L3
caches and account for bandwidth contention in the die-to-die interconnect.

M M

$C C C C

$ C C C C

Die 2

Die 3

Die 4

Die 5

Die 6

Die 7

Socket 0

Die 1

Socket 1

Die 0

Fig. 1. AMD platform model using SimGrid components (the details of only die 0 are
shown; other dies are modeled identically).

4.2 Bandwidth Measurements

The critical aspect of our modeling approach hinges upon the precise measure-
ment of machine parameters, specifically the link bandwidths interconnecting
the components under study. Our preceding work [13] primarily relied on band-
width values as stipulated by the manufacturers. However, these prescribed val-
ues exhibited limitations due to their failure to incorporate the overhead associ-
ated with coherency protocols. Furthermore, they were not wholly indicative of
the attainable bandwidth, thus underscoring the need for rigorous benchmark-
ing. To this end, we employed the Intel Memory Latency Checker v3.8 for the
task of quantifying the bandwidths associated with the memory controller and
intersocket links. By manipulating the buffer size of this tool, we were able to
retain data in the L3 cache. This adjustment, in turn, facilitated the measure-
ment of the available bandwidth connecting the cores and the shared L3 cache,
thereby enabling us to determine the intra-CCX interconnect bandwidth.

However, this tool doesn’t measure other topology link bandwidths, leading
us to create a simple reader-writer microbenchmark for measuring bandwidth

200 I. Daoudi et al.

between L3 caches. This allowed us to directly measure parameters used by Sim-
Grid to characterize a communication link: overall link bandwidth (shared), uni-
lateral link bandwidth (splitduplex), and per-flow link bandwidth (fatpipe). We
obtained fatpipe bandwidth through a single writer+reader pair, while aggre-
gated bandwidth from multiple pairs provided splitduplex bandwidth. Similarly,
with writers and readers spread across two L3 caches, we determined the shared
bandwidth.

5 NUMA and Cache Effects Modeling

This section presents three simulation models to provide three levels of refine-
ment: a TASK model presented in Sect. 5.1, a NUMA model in Sect. 5.2, and a
NUMA and cache model in Sect. 5.3. We present the results for the three models
in Sect. 6.

5.1 Recap: The TASK Model

The initial sOMP approach presented in our previous work [13] simulates only
task durations, not data transfers, using SimGrid for virtual clock accounting
and task dependency adherence. It assumes non-preemptible tasks tied to CPU
cores, typical in task-based runtime systems. This model, referred to as the TASK
model, records average task durations from single-core application executions.
These durations are then used to simulate parallel executions.

Discussion. Parallel execution modeling is inherently complex as task dura-
tions lengthen with more cores due to data locality. Data exchanges between
sockets increase, eventually hitting bandwidth limitations. Thus, the previous
sOMP version proposed a model simulating NUMA data locality effects. This
model separates task execution into computation and communication compo-
nents. The computation part replays the average task durations from single-core
executions (as the TASK model does), thereby excluding data locality effects.
The communication simulation, added subsequently, enables sOMP to account
for varying locality effects across different scheduling strategies.

5.2 NUMA Effects Modeling: The COMM Model

The previous version of sOMP [13] extended the TASK model to account for
NUMA data communications induced by task dependencies using SimGrid trans-
fers over the platform model, thus accounting for NUMA effects. In this subsec-
tion, we outline the second contribution of this work: this approach is improved
to include communications overlap with computations.

Improving Simulations of Task-Based Applications 201

Data Transfers Modeling. In the prior sOMP version [13], data commu-
nication cost was simply added to computation cost. Yet, a task on a CPU
core often executes arithmetic and memory instructions (like load/store) inter-
leaved. Depending on the implementation and CPU behavior, memory instruc-
tion latency may be overlapped by arithmetic instructions. Hence, over the dura-
tion T (ti) of task ti, the time for memory instructions TM (ti) is more or less
overlapped with the arithmetic part of the task TC(ti). Formally, we have:

max(TC(ti), TM (ti)) ≤ T (ti) ≤ TC(ti) + TM (ti). (1)

Our dense linear algebra tasks consist of single calls to BLAS operations.
Overlap between computation and communication is considerable for some tasks,
like dgemm, but less so for others, like the QR factorization tasks. We establish
overlap ratios through experimentation, selecting values that minimize precision
error. As such, we set overlap ratios of 60% for Cholesky, 4% for QR, and 10% for
LU. If communication time is less than the overlap ratio of computation time,
it is entirely overlapped; if greater, the excess is added to computation time.
Memory instructions considered in TM (ti) are those handling task input and
output operands or scratch buffers. To align with SimGrid’s distributed-memory
platform orientation, we model task memory accesses as data transfers for task
operands, meaning matrix tiles or tiled scratch buffers, grouped for tractable
simulation times. Task memory accesses are modeled as concurrent by access
mode, with all read or write operations concurrent. However, communications of
different access modes are made sequential, since a task usually reads its data,
performs the computations, and then writes the result back to memory. TM (ti)
can thus be written as

TM (ti) =
n

max
j=1

TcommR(ai,j) +
n

max
j=1

TcommW (ai,j), (2)

where n is the number of memory accesses, ai,j is the jth operand of task ti, and
TcommR(ai,j (resp. TcommW (ai,j)) is the time to read (resp. write) ai,j depending
on its NUMA location and the core performing task ti. As a result, the set of tasks
executing at the same time on the different cores induces a corresponding set of
communications that progress concurrently on the platform. SimGrid can then
determine, at each timestep of the simulation, the bandwidth sharing between
the communications [10] and thus account for contention on the simulated links.

Discussion. The COMM model enhances simulations by considering data
NUMA locality. Data flows between architecture components, affected by archi-
tecture parameters and traversed links, impact execution time. Accounting for
NUMA data locality and modeling transfers as communications creates con-
tention and concurrency effects.

However, data locality isn’t static during real execution. Cache effects come
into play alongside NUMA effects. When a task on a CPU core uses matrix
tiles, they remain in the corresponding L3 cache. If another task on the same
core needs those tiles, they can be fetched from the cache instead of the NUMA

202 I. Daoudi et al.

node RAM, saving time and bandwidth. The previous COMM model, not con-
sidering these effects, always simulates data fetching from the NUMA nodes’
RAM, leading to a pessimistic simulation.

This issue is addressed by enhancing the COMM model with a caching mech-
anism to consider data reuse between tasks.

5.3 Cache Effects Modeling: The COMM+CACHE Model

The third contribution of this work extends the COMM model into a new
COMM+CACHE model, by tracking in which L3 caches one can fetch copies of
matrix tiles efficiently and modeling the communications between the RAM, the
L3 caches, and the CPU cores.

Implementation of L3 Caches. The tile size in dense algebra is often chosen
to fit tasks’ datasets into the L3 cache but not the L2 cache, maximizing cache
utilization. We model only the L3 caches, as including L2 would significantly
increase simulation times without improving precision, as they aren’t shared
between cores and don’t exhibit notable locality behavior.

In our L3 cache implementation, we consider the actual cache size and tile
size. The cache comprises slots, calculated by CacheSize

T ileSize . Data insertion in the
cache follows a least recently used (LRU) behavior for evictions, approximating
actual cache associativity while ignoring aspects like conflict misses.

During task execution, the data associated with the task is locked in the
cache. Despite its simplicity and low simulation cost, this model provides satis-
factory accuracy for dense linear algebra kernels.

Cache Transfers. In the improved version of sOMP, we record not only the
matrix tiles’ NUMA node RAM locality but also their presence in the L3 cache.
This complex notion of locality acknowledges that the required tiles can be
fetched from various locations - local L3 cache, remote L3 cache, or local or
remote NUMA node.

We model data transfers from remote cache or RAM to the local cache,
and then from the local cache to the core, as communications. If the same tile
is needed for a subsequent task executed on a neighboring CPU core, only a
transfer from the local cache to the core is triggered, assuming the tile hasn’t been
evicted. This effectively models the decongestion of intersocket links, reflecting
actual platform behavior.

If a task alters a matrix tile, we remove the tile from all other L3 caches. Sub-
sequent tasks requiring the updated tile will have to reload it. Evicted modified
tiles must be transferred back to their corresponding NUMA node RAM.

In the QR factorization, we model the reuse of per-core scratch workspaces
with one matrix tile per CPU core that tasks only write to, thus accurately
representing the L3 caches’ storage of the corresponding CPU cores’ workspaces.

Improving Simulations of Task-Based Applications 203

Discussion. The COMM+CACHE model refines data locality over the model
from Sect. 5.2, which assumes all data to be remote. By simulating the occupancy
of L3 caches and data transfers between L3 caches and RAM, we enhance the
accuracy of predicting application behavior. As tile sizes fit in the L3 cache
but not L2, we model only the former, striking a balance between simulation
precision and cost. This modeling is suitable for tiled dense linear algebra, while
sparse linear algebra would require a more intricate task behavior modeling.

6 Results

Our experiments were conducted on the processors mentioned in Sect. 4. The
Intel system’s limited locality effects contrast with AMD’s complex interconnect
of numerous NUMA nodes and caches.

OpenBLAS 0.3.10 and LLVM OpenMP runtime were used, with thread bind-
ing on the core places and frequency governors set to powersave mode, to avoid
uneven behavior of the software and hardware governors. Experiments in this
paper, unless specified otherwise, utilized a matrix size of 16384× 16384 (double
precision), namely, 1 GB of data, and approximately 6000 tasks for the Cholesky
case. The matrix size, larger than the L3 caches but allowing for substantial data
reuse, will therefore require accurate simulation of cache-to-cache transfers.

A task tile size of 512 × 512 was chosen, optimal for working sets fitting in
L2+L3 caches but not L2 alone. Performance was evaluated against the number
of cores used, selected in proximity order (the hwloc [5] logical order) to observe
topological effects, first within individual sockets and subsequently across mul-
tiple sockets.

6.1 Application Case

The KASTORS [33] benchmark suite, designed to evaluate the OpenMP depen-
dent task paradigm from OpenMP 4.0 specifications, forms the basis for our
experiments. We assess three dense matrix factorization algorithms from the
suite’s PLASMA [7] subset: Cholesky, QR, and LU factorizations.

The Cholesky factorization incorporates four task types:θ(n) dpotrf, θ(n2)
dtrsm, θ(n2) dsyrk, and θ(n3) dgemm. Predominantly comprising efficient
dgemm tasks involving three matrix tiles, it exhibits substantial data reuse
between tasks.

QR factorization involves θ(n) dgeqrt, θ(n2) dormqr, θ(n2) dtsqrt, and θ(n3)
dtsmqr tasks. Dominated by less efficient dtsmqr tasks involving four matrix
tiles and one scratch tile, it presents less data reuse, leading to increased cache
evictions.

Lastly, LU factorization (with pivoting) includes θ(n) dgetrf, θ(n2) dswptr,
θ(n3) dgemm, and θ(n2) dlaswp tasks. Predominantly composed of dgemm tasks,
it exhibits less data reuse, with pivoting introducing variation in behavior.

204 I. Daoudi et al.

6.2 Methodology

To measure the accuracy of the simulations by comparing simulation time (Tsim)
with real execution time (Tnative), we do not consider the absolute values of the
metric but set one that defines the relative precision error of sOMP compared
with native executions:

PrecisionError(%) =
(Tnative − Tsim)

Tnative
. (3)

The following graphs depict the precision error of simulated versus native
execution times for varying core counts, with polynomial regression curves (5th
order) indicating trends. Positive precision errors denote optimistic “undersim-
ulation” and negative errors, pessimistic “oversimulation”, hence, curves nearer
to 0 signify greater precision. We initially present simulation precision results,
then demonstrate simulation’s time efficiency compared to real application exe-
cution, and finally, illustrate the simulator’s importance in assessing scheduling
policies using a cache-aware scheduling instance.

6.3 Precision Results

Figure 2 presents the Cholesky case results on the Intel platform. The TASK
model only considers task computation time and its precision decreases beyond
18 cores, equivalent to the first NUMA domain (or socket). Beyond this, the
TASK model exhibits approximately +3% precision error due to its disregard
for data locality and transfers.

The COMM model improves simulations beyond 18 cores by accounting for
memory latencies due to platform contention, but becomes too pessimistic with
many cores, as it overlooks data reuse in caches. The COMM+CACHE model,
considering L3 cache data movements, consistently achieves under 1% average
precision error across all core counts.

The TASK model performs well on the Intel platform due to its single NUMA
domain per socket, yielding a 0.8% average precision error, implying minimal
NUMA-related effects. However, on the AMD EPYC 7452 as shown in Fig. 3,
with 16 NUMA nodes and 16 L3 caches, the TASK model’s precision error
increases to around +3% on the first socket and up to +10% when utilizing all
cores. The increased data transfers due to multiple NUMA nodes on the AMD
machine necessitate more accurate modeling.

The COMM model lacks accuracy due to underestimation of intersocket com-
munications, leading to up to -10% error. The COMM+CACHE model consis-
tently provides reliable results, with less than 2% error, highlighting the impor-
tance of accurately modeling data reuse and L3 cache interconnections. A simpli-
fied version of this model, named “COMM+CACHE simple platform”, ignoring
the machine’s hierarchical topology, becomes overly optimistic due to neglecting
die-to-die network contention.

The QR factorization results in Fig. 4 show that the TASK model is overly
optimistic, and the COMM model is pessimistic. The COMM+CACHE model

Improving Simulations of Task-Based Applications 205

Fig. 2. Precision error of Cholesky sim-
ulations on the Intel platform.

Fig. 3. Precision error of Cholesky sim-
ulations on the AMD platform.

accounts for L3 caching effects, but fails to consider bandwidth variation effects
on the application kernels when many cores are used, making it optimistic in
these scenarios. A more refined model within SimGrid, intertwining execution
time and memory transfers, could address this but is beyond this paper’s scope.

Fig. 4. Precision error of QR simula-
tions on the AMD platform.

Fig. 5. Precision error of LU simula-
tions on the AMD platform.

Figure 5 presents LU factorization results, where precision errors of models
significantly vary for few-core executions due to native measurements’ unpre-
dictable performance, primarily due to pivoting in LU factorization. As core
count increases, these inconsistencies diminish, and the COMM+CACHE model
accurately simulates the computation/communication behavior. The TASK
model remains overly optimistic, and the COMM model, overly pessimistic.

Our models have demonstrated consistent accuracy across various linear alge-
bra algorithms and different matrix sizes. For matrix sizes of 12288× 12288,
16384× 16384, 20480× 20480 and 24576× 24576, which means an increase in
task and data transfer volumes due to larger matrices, the COMM+CACHE
model remains reliable with an average precision error of 1.4% for Cholesky,
4.5% for QR, and 1.4% for LU. These results validate our experimentally deter-
mined overlapping factors, confirming simulation accuracy regardless of problem
size changes.

206 I. Daoudi et al.

To summarize, we get good results on the Intel platform, which is a simple
architecture not showing ample NUMA effects, but we also get good results on
the AMD platform despite its complex architecture.

6.4 Simulation Time

The simulator typically requires 1 s on a laptop core to simulate an execution for
a 16384× 16384 matrix with a 512× 512 tile size (around 6,000 tasks) Cholesky
factorization, while the actual execution on the AMD platform takes around
75 s on one core or 1.6 s on 64 cores. This is due to our use of coarse, not cycle-
accurate, simulation, where all actual computations and read/write operations
are replaced by single simulation steps.

Simulation time grows linearly with task number and with core count for
the COMM and COMM+CACHE models due to increased concurrent commu-
nications. However, this increase is independent from the computations of the
real execution and remains reasonable, and the reduced precision error is usually
worth the simulation time increase.

6.5 Use Case: Experimenting with Cache-Aware Schedulers

The preceding analysis confirms that the COMM+CACHE model offers precise
simulated execution times accounting for both NUMA and cache effects, enabling
realistic and reproducible scheduling research for optimizing cache affinity, sim-
ilar to prior work on GPU-based platforms [1,30]. We introduced a proof-of-
concept cache-aware OpenMP task scheduler that prioritizes tasks with data
operands already in the CPU core’s L3 cache. This reduces L3 cache misses and
overall data transfers. Performance results, displayed in Fig. 6, reveal that the
COMM+CACHE model closely simulates native executions. Utilizing the refined
scheduler in the simulator exhibits a performance improvement that escalates
with the number of cores used, demonstrating the heuristic’s scalability bene-
fits on a large multicore system. The COMM+CACHE model uniquely exhibits
this effect in simulation due to the performance improvement resulting from

Fig. 6. Simulated performance with a cache-aware scheduler on AMD platform.

Improving Simulations of Task-Based Applications 207

cache effects. This experiment highlights the advantage of simulation. It allowed
us to swiftly prototype a proof-of-concept scheduler, observe gains without the
scheduler’s cost impacting performance, and balance these costs and gains. This
simulation-led prototyping approach enables refinement of heuristics, faster per-
formance results, and reproducible investigation of scheduling bugs.

7 Conclusion and Future Work

In this study, we presented significant enhancements to simulate parallel task-
based applications on shared-memory architectures using three models. We
improved our previous work with an enhanced COMM model to better account
for computation / communication overlap and NUMA effects. Then, they newly
introduced COMM+CACHE model further improves this by incorporating a
cache mechanism to handle data movement and cached data access. Coupled
with precise modeling of the target architecture, this model achieves superior
precision, underlining the importance of accurate modeling of machine compo-
nents and hierarchy.

Rather than relying on error-prone manual determination of socket topol-
ogy, we collected bandwidth and latency measurements from target platforms.
We plan to design an automatic tool for determining platform topology and
bandwidths, similar to SimGrid’s automatic network discovery.

To characterize the overlap between arithmetic and memory instructions, we
intend to use performance counters to observe kernel behavior and refine overlap
ratios, requiring a rework of SimGrid’s task execution model.

We aim to extend our evaluation to more applications and platforms, partic-
ularly those that are memory-bound. With our simulator accurately reproducing
target platform behavior, it provides a reproducible experimentation platform
for task-based runtime systems and schedulers, alleviating challenges associated
with technical conditions on CPU-based platforms.

Acknowledgements. This research was supported by the Exascale Computing
Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of Sci-
ence and National Nuclear Security Administration, responsible for delivering a capable
exascale ecosystem, including software, applications, and hardware technology, to sup-
port the nation’s exascale computing imperative, and the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computer Research, under Contract
DE-AC02-06CH11357.

References

1. Agullo, E., Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Are static schedules so
bad? a case study on Cholesky factorization. In: IPDPS (2016)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put. Pract. Exp. 2009(23), 187–198 (2011). Special Issue: Euro-Par

208 I. Daoudi et al.

3. Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Ort́ı, E.S.:
An extension of the StarSs programming model for platforms with multiple GPUs.
In: Proceedings of the 15th Euro-Par Conference. Delft, The Netherlands (2009)

4. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. J. Parallel Distrib. Comput.
37(1), 55–69 (1996)

5. Broquedis, F., et al.: hwloc: a generic framework for managing hardware affinities
in HPC applications. In: International Conference on Parallel, Distributed and
Network-Based Processing (PDP2010), pp. 180–186. Pisa, Italia (2010)

6. Bueno, J., Martinell, L., Duran, A., Farreras, M., Martorell, X., Badia, R.M.,
Ayguadé, E., Labarta, J.: Productive cluster programming with OmpSs. In: Pro-
ceedings of the 17th international conference on Parallel processing - Volume Part
I. Euro-Par 2011 (2011)

7. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: Lapack working note 191: a class
of parallel tiled linear algebra algorithms for multicore architectures (2007)

8. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50
(2011)

9. Casanova, H.: Simgrid: a toolkit for the simulation of application scheduling. In:
CC Grid, pp. 430–437 (2001)

10. Casanova, H.: Modeling large-scale platforms for the analysis and the simulation
of scheduling strategies. In: 18th International Parallel and Distributed Processing
Symposium, 2004. Proceedings. p. 170 (2004)

11. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. SIGPLAN Notices 40(10), 519–538 (2005)

12. Czarnul, P., et al.: MERPSYS: an environment for simulation of parallel application
execution on large scale HPC systems. Simul. Model. Pract. Theory 77, 124–140
(2017)

13. Daoudi, I., Virouleau, P., Gautier, T., Thibault, S., Aumage, O.: sOMP: simulating
OpenMP task-based applications with NUMA effects. In: IWOMP 2020, pp. 197–
211 (2020)

14. Denoyelle, N., Goglin, B., Ilic, A., Jeannot, E., Sousa, L.: Modeling non-uniform
memory access on large compute nodes with the cache-aware roofline model. IEEE
Trans. Parallel Distrib. Syst. 30(6), 1374–1389 (2019)

15. Engelmann, C.: Scaling to a million cores and beyond: using light-weight simulation
to understand the challenges ahead on the road to exascale. Futur. Gener. Comput.
Syst. 30, 59–65 (2014)

16. Galilee, F., Cavalheiro, G., Roch, J.L., Doreille, M.: Athapascan-1: on-line building
data flow graph in a parallel language. In: PACT (1998)

17. Gautier, T., Besseron, X., Pigeon, L.: KAAPI: a thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: Proceedings of the
2007 International Workshop on Parallel Symbolic Computation. PASCO 2007
(2007)

18. Gautier, T., Lima, J.V., Maillard, N., Raffin, B.: Xkaapi: A runtime system for
data-flow task programming on heterogeneous architectures. In: IPDPS. IEEE
(2013)

19. Girona, S., Labarta, J.: Sensitivity of performance prediction of message passing
programs. J. Supercomputing 17, 291–298 (2000)

20. Haugen, B.: Performance analysis and modeling of task-based runtimes, Ph.D.
thesis (2016)

Improving Simulations of Task-Based Applications 209

21. Haugen, B., Kurzak, J., YarKhan, A., Luszczek, P., Dongarra, J.: Parallel simula-
tion of superscalar scheduling. In: ICPP, pp. 121–130 (2014)

22. Heinrich, F.: Modeling, prediction and optimization of energy consumption of MPI
applications using SimGrid, Theses, Université Grenoble Alpes (2019)

23. Kliazovich, D., Bouvry, P., Khan, S.U.: Greencloud: a packet-level simulator of
energy-aware cloud computing data centers. J. Supercomput. 62, 1263–1283 (2012)

24. Liu, Y., et al.: SimNUMA: simulating NUMA-architecture multiprocessor systems
efficiently. In: ICPDS (2013)

25. Mohammed, A., Eleliemy, A., Ciorba, F.M., Kasielke, F., Banicescu, I.: Experimen-
tal verification and analysis of dynamic loop scheduling in scientific applications.
In: ISPDC. IEEE (2018)

26. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP
task scheduling strategies for multicore NUMA systems. Int. J. High Perform.
Comput. Appl. 26(2), 110–124 (2012)

27. Rico, A., Duran, A., Cabarcas, F., Etsion, Y., Ramirez, A., Valero, M.: Trace-
driven simulation of multithreaded applications. In: International Symposium on
Performance Analysis of Systems and Software (2011)

28. Shudler, S., Calotoiu, A., Hoefler, T., Wolf, F.: Isoefficiency in practice: configuring
and understanding the performance of task-based applications. SIGPLAN Notices
52(8), 131–143 (2017)

29. Stanisic, L., et al.: Fast and accurate simulation of multithreaded sparse linear
algebra solvers. In: ICPDS. Melbourne, Australia (2015)

30. Stanisic, L., Thibault, S., Legrand, A., Videau, B., Méhaut, J.F.: Faithful per-
formance prediction of a dynamic task-based runtime system for heterogeneous
multi-core architectures. Concurr. Comput. Pract. Exp. 27(16), 4075–4090 (2015)

31. Tao, J., Schulz, M., Karl, W.: Simulation as a tool for optimizing memory accesses
on NUMA machines. Perform. Eval. 60(1), 31–50 (2005)

32. Virouleau, P., Broquedis, F., Gautier, T., Rastello, F.: Using data dependencies
to improve task-based scheduling strategies on NUMA architectures. In: ECPP
(2016)

33. Virouleau, P., et al.: Evaluation of OpenMP dependent tasks with the KASTORS
benchmark suite. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 16–29. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11454-5 2

34. Zheng, G., Kakulapati, G., Kalé, L.V.: Bigsim: A parallel simulator for performance
prediction of extremely large parallel machines. In: IPDPS, p. 78. IEEE (2004)

https://doi.org/10.1007/978-3-319-11454-5_2

Experimental Characterization
of OpenMP Offloading Memory

Operations and Unified Shared Memory
Support

Wael Elwasif(B)

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

elwasifwr@ornl.gov

Abstract. The OpenMP specification recently introduced support for
unified shared memory, allowing implementation to leverage underly-
ing system software to provide a simpler GPU offloading model where
explicit mapping of variables is optional. Support for this feature is
becoming more available in different OpenMP implementations on sev-
eral hardware platforms. A deeper understanding of the different imple-
mentation’s execution profile and performance is crucial for applications
as they consider the performance portability implications of adopting a
unified memory offloading programming style. This work introduces a
benchmark tool to characterize unified memory support in several Oep-
nMP compilers and runtimes, with emphasis on identifying discrepancies
between different OpenMP implementations as to how they various mem-
ory allocation strategies interact with unified shared memory. The bench-
mark tool is used to characterize OpenMP compilers on three leading
High Performance Computing platforms supporting different CPU and
device architectures. The benchmark tool is used to assess the impact of
enabling unified shared memory on the performance of memory-bound
code, highlighting implementation differences that should be accounted
for when applications consider performance portability across platforms
and compilers.

Keywords: OpenMP · Unified Shared Memory · Offloading

Notice: This manuscript has been authored in part by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for publica-
tion, acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. The
Department of Energy will provide public access to these results of federally spon-
sored research in accordance with the DOE Public Access Plan (http://energy.gov/
downloads/doe-public-access-plan.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 210–225, 2023.
https://doi.org/10.1007/978-3-031-40744-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_14&domain=pdf
http://orcid.org/0000-0003-0554-1036
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-031-40744-4_14

Experimental assessment of Unified Shared Memory 211

1 Introduction

The OpenMP device offloading model has been designed based on explicit dis-
joint data environment for execution on the host and offloading devices. This
approach manifests itself in the different rules governing the mapping of vari-
ables that exist in one environment to their corresponding counterparts in other
data environments within the program. Recent advances in hardware and system
software have increasingly allowed for both the host and connected offloading
device to directly access each other’s memory. The OpenMP standard intro-
duced support for unified shared memory starting in version 5.0 [15], allowing
for implementations to present the program with a single address space view of
both the host and device memory. As this supports is incorporated into more
compilers implementation running on different platforms with various level of
hardware and system support for unified addressing and/or remote host/device
memory access, the decisions made by the various implementations in support-
ing this functionality comes into focus as they have a profound impact on code
performance and correctness.

This paper presents an assessment of support for unified share memory
(USM) in OpenMP compilers running on three leading edge hardware plat-
forms. The work presented here also looks into how memory allocated using
different allocators is handled by the various studied compilers and their asso-
ciated runtimes. The goal here is to present an experimental characterization
of compiler and runtime behavior, highlighting different behavior (if any) when
USM is enabled in the code. The work also aims to highlight the different ways
compilers and runtimes handle different classes of memory, across the platforms
in the study. Towards that goal, a synthetic memory-bound benchmark is used
to isolate the impact of memory access on code execution, pinpointing change
in behavior due to the use of different allocators and USM. The benchmark is
used to access both vendor and open source compilers on three platforms, the
Cray EX Crusher system and the IBM Summit supercomputer at the Oak Ridge
National Laboratory as well as the Cray EX Perlmutter supercomputer at the
National Energy Research Scientific Center (NERSC).

This paper is organized as follows, background and related work are pre-
sented in Sect. 2 while the benchmark used to study USM and memory alloca-
tors is presented in Sect. 3. Experimental results on the three target platforms
are presented in Sect. 4. Discussions, conclusions, and possible future work are
presented in Sect. 5.

2 Background and Related Work

Offloading computations to accelerator devices was introduced into the OpenMP
standard starting with version 4.0. The programming model was based on the
concept of discrete devices with separate distinct memory spaces, with the pro-
grammer explicitly managing data movement using OpenMP directives and run-
time calls. This model can prove tedious and error prone for deeply nested data

212 W. Elwasif

structures, where the programmer must manually create a mirror mapped copy
of the data structure on the offloading device (such a problem is typically referred
to as the deep copy problem). CUDA introduced the concept of managed mem-
ory starting in CUDA version 6.0 [11,12], providing an abstraction and runtiume
support that allows memory to be accessed using the same underlying pointer
with no need for explicit distinct host and device versions of the same data
structure.

OpenMP expanded support for offloading in version 4.5, including the intro-
duction of the is_device_ptr clause, which indicates that a pointer already
exists in the device data environment, and that it could be used directly with
no mapping. This facility was used (e.g. in [10] to allow data structures allo-
cated using CUDA’s cudaMallocManaged() to be used in OpenMP target
regions without explicit mapping. This approach, however, requires that the
CUDA managed memory allocator be used for offloaded data structures, which
may require invasive changes to code bases and reduces code portability as
different accelerator technologies are introduced. In [13], the LLVM compiler
OpenMP runtime was modified, implementing the device allocation runtime call
omp_target_alloc() using the CUDA managed memory API. The updated
compiler was then used to benchmark unified memory support using several
benchmark from the Rodinia test suite. This approach, still requires the use
of the is_device_ptr clause, but replaces the platform specific CUDA mem-
ory alloction with an OpenMP runtime API, improving the portability of the
resulting code.

The OpenMP specification added support for the requires directive in ver-
sion 5.0, including the unified_shared_memory clause. This renders explicit
use of the map clause optional in target regions. Compliant implementations can
leverage underlying system software to support this functionality, allowing for
a pure OpenMP code to seamlessly access data structures from the host or the
device, without the need for custom allocators or platform-specific APIs. Support
for this feature has recently been introduce into several OpenMP compilers, and
this work attempts to provide a breadth first assessment of the existing imple-
mentations on several platforms, highlighting the interaction of this feature with
different memory allocation schemes.

3 Benchmark Description

The code outline of the benchmark test function used in this study is shown in
Listing 1. Full benchmark code is available in [5]. For each memory allocation
and mapping configuration, the test runs 4 iterations of a sequence of memory
initialization loops that execute on the host and the device. The first entry in
this sequence is executed on the host (lines 12-15). In the following results,
performance of this phase is referred to as CPU0 for the very first execution
instance, and CPU2 for subsequent instances. This host-side execution is then
followed by 4 iterations of device target region that re-initializes the memory
(lines 17-35), with GPU0 in the following results denoting performance of the first
iteration, and GPU1+ denoting performance of subsequent iterations. Finally the

Experimental assessment of Unified Shared Memory 213

CPU version of the loop is again executed (lines 40-43), denoted by CPU1 in the
following results. It follows that CPU1 represents the first execution of the CPU
loop after execution on the device, and CPU2 represents the second execution
in the subsequent outer loop iteration. The performance of different instances is
used to indicate memory access behavior across the host and the device. Memory
pages can be accessed locally if they already reside on the respective compute
device before loop execution. Memory pages residing on the host or device may
be accessed in place remotely by the other compute device (in this case no page
migration occurs, and access is done remotely over the connecting links). Finally
access to remote memory pages can trigger page faults that cause such pages to
migrate to the compute device where the memory access loop is executing. Page
faults and migration is an expensive operation, and this scenario would typically
be reflected in the slowest performance of the three possible scenarios on the
same compute device.

The benchmark test is enclosed in a function, with memory allocation and
control over mapping behavior defined in a driver portion of the benchmark.
Listing 2 shows two invocations of the test function, where memory is allocated
using the AMD ROCm Open Software Platform [8] via the C++ Heterogeneous-
Compute Interface for Portability(HIP) [9] hipHostMalloc() allocator. The
test is executed twice, once setting (managed_memory=true) to disable explicit
OpenMP mapping, and once with (managed_memory=false) to enable explicit
OpenMP memory mapping. Enabling the OpenMP compiler’s USM support is
controlled using a compile-time macro (USE_DSM). Performance of various por-
tions of the benchmark is evaluated using a measure of the bandwidth (in
GiB/Sec) observed during memory operations, as well as during the execu-
tion of the kernels on the host and device (since the code has no meaningful
compute-heavy segments). Time intervals are measured using two invocations of
the (omp_get_wtime()) OpenMP routine, that surround the target segment.

This benchmark is used to explore how the OpenMP runtimes in the stud-
ied compilers deal with the following memory allocation categories, and how
enabling USM affects this treatment

– System memory: Memory allocated using the native system allocator
(using malloc for C or new in C++). In this work, only aligned sys-
tem memory is considered (using the aligned new operator introduced in
C++17). A variant of this scheme, where memory on the device is allocated
using omp_target_alloc() and associated with the host pointer using the
omp_target_associate_ptr() is also studied.

– Managed memory: Memory allocated using a native device runtime facility
(e.g. using hipMallocManaged() for ROCm or cudaMallocManaged() for
CUDA). Such memory typically support page migration between the host
and the device, under control of the device driver.

– OpenMP allocated memory: Memory allocated using the omp_alloc()
OpenMP runtime. This is usually drawn from system allocated memory,
however the runtime can add extra traits as part of the allocation pro-
cess. Only default allocation is considered in this paper (by passing the flag
omp_default_mem_alloc as an argument to the OpenMP allocator.

214 W. Elwasif

1 #ifdef USE_USM

2 #pragma omp requires unified_shared_memory

3 #endif

4

5 void run_test(double *p, // Memory allocated in driver

6 const char *tag, // Output logging tag

7 bool managed_memory = false, // e.g. CUDA/HIP managed memory

8 bool associated = false) // Using omp_associate_ptr()

9 {

10 // Outer loop

11 for (int j = 0; j < 4; ++j){

12 if (not managed_memory && not associated) {

13 #pragma omp target enter data map(always, to: p[:SIZE])

14 }

15 // CPU_0 (and CPU_2) kernel

16 #pragma omp parallel for num_threads(NUM_THREADS)

17 for (size_t i = 0; i < SIZE; i++){

18 p[i] = 1.0;

19 }

20 // Inner loop - GPU1 - GPU4

21 for (int k = 0; k < 4; ++k) {

22 if (not managed_memory) {

23 // Explicit data movement

24 #pragma omp target update to(p[:SIZE])

25 #pragma omp target teams distribute parallel for

26 for (size_t i = 0; i < SIZE; i++){

27 p[i] = 2.0;

28 }

29 }

30 else {

31 #pragma omp target teams distribute parallel for is_device_ptr(p)

32 for (size_t i = 0; i < SIZE; i++) {

33 p[i] = 2.0;

34 }

35 }

36 if (not managed_memory) {

37 #pragma omp target update from(p[:SIZE])

38 }

39 } // k loop

40 if (not managed_memory && not associated) {

41 #pragma omp target exit data map(delete : p[:SIZE])

42 }

43 // CPU_1 Kernel execution

44 #pragma omp parallel for num_threads(NUM_THREADS)

45 for (size_t i = 0; i < SIZE; i++){

46 p[i] = 1.0;

47 }

48 } // j loop

49 }

Listing 1: Benchmark testing code

Experimental assessment of Unified Shared Memory 215

1 {

2 double *p = NULL;

3 hipHostMalloc((void **)&p, SIZE * sizeof(double));

4 run_test(p, "hipHostMalloc", true);

5 hipHostFree(p);

6 }

7 {

8 double *p = NULL;

9 hipHostMalloc((void **)&p, SIZE * sizeof(double));

10 run_test(p, "hipHostMalloc", false);

11 hipHostFree(p);

12 }

Listing 2: Sample benchmark driver code

– Pinned host memory: Pinned memory allocated on the host device using
facilities of the device runtime API (e.g. using hipHostMalloc() for ROCm
or cudaHostMalloc() for CUDA).

4 Experimental Evaluation

In this sections, benchmark results using several OpenMP compilers are pre-
sented on three platforms. In the results presented here, entries represent the
bandwidth observed for various stages of execution. CPU0 entries correspond to
the very first execution of the loop on the CPU, isolated to capture impact of sys-
tem factors such as allocate on first touch that may not be present in subsequent
executions. CPU1 represents the bandwidth observed on the CPU immediately
after the sequence of executions on the device. CPU2 represents the bandwidth
observed before a new sequence of GPU executions (but excluding CPU0) (this
means that CPU2 immediately follows CPU1 in the execution order). GPU0 rep-
resents the bandwidth for the first kernel execution on the device, where GPU1+

represents the average bandwidth for subsequent instances on the device. Map,
HTOD and DTOH represents the bandwidth observed during explicit map-
ping, copying memory from the host to the device, and copying memory from
the device to the host, respectively. Column marked omp map indicates whether
explicit mapping and data movement clauses are active for the corresponding
test case. Bandwidth measurements are averaged over all execution instances
for the corresponding operation across all iterations in the outer loop in 1.
Entries marked inf represent mapping and data transfer operation where no
data was actually transferred, resulting in artificially high reported bandwidth.
In all experiments, a single thread was used in the CPU loop. Tests used a dou-
ble vector of size 2, 000, 000, 000 or 14.901 GiB. We should note that the entry
marked std::new (assoc ptr) corresponds to standard system memory alloca-
tion on the CPU, and a corresponding memory allocated on the device, and asso-
ciated with the host pointer using the OpenMP omp_target_associate_ptr()
runtime routine.

216 W. Elwasif

4.1 Results on Crusher

Crusher [3] is a 192 node Cray EX system hosted at the Oak Ridge Leader-
ship Computing Facility (OLCF), with each compute node supporting 512 GB,
64-core AMD EPYC 7A53 cores and 4 AMD MI250X GPUs, each with 2 Graph-
ics Compute Dies (GCDs) for a total of 8 GCDs per node. In results reported
here, the following compilers were used: the Cray CCE compiler version 15.0.0,
the AMD ROCm OpenMP compiler version 5.3.0, the LLVM upstream com-
piler development version 17.0.0 (commit e7b9c2f00fa0) and the GCC compiler
(development branch devel/omp/12 commit b150ba8eebc). The benchmark was
compiled using the -O3 -std=c++17 -fopenmp flags with appropriate default
offloading flags for each compiler.

It should be noted that on Crusher, page migration is controlled via the
HSA XNACK environment variable [1], which is turned off by default. In the fol-
lowing tables, only results where the use of USM is matched with the proper
setting for HSA XNACK are reported. Both the CCE and ROCm compilers per-
form a check for HSA XNACK at run time, and generates a run time error and abort
execution if ##pragma omp requires unified_shared_memory is enabled and
HSA XNACK is not properly set. GCC on the other hand, sets HSA XNACK to 1 if
the code requires the use of USM. Table 1 shows results for CCE with USM on
and off, Table 2 shows the results for the ROCm compiler, 3 show results for
LLVM, and Table 4 shows GCC results. In the following results, page migration
is indicated by significant changes in the performance of successive executions
of the memory access loop on the same device. This can be seen, for example,
in the entry for hipMallocManaged with USM enabled in Table 1, where GPU0

shows a bandwidth of 3.63 GiB/Sec and subsequent executions on the device
(GPU1+) shows a bandwidth of 1044.12 GiB/Sec.

While a detailed analysis of all results is beyond the scope of this work, the
following observations can be made.

– With USM enabled, the CCE compiler appears to not enable page migration
whether or not explicit memory mapping and copying directives are used
in the OpenMP target regions (except for hipMallocManaged). This can be
seen for memory allocated via std::new or the OpenMP default allocator, as
compared to the behavior for hipMallocManaged where page migration takes
place during the GPU0 loop. With explicit mapping, observed bandwidth
results indicate that memory remain on the CPU, and the mapping and data
movement operations appear to be a noop.

– For the ROCm compiler, omp_default_alloc generated a page fault runtime
error with USM enabled when the benchmark was run on Crusher, using the
GPU kernel driver version 5.16.9.22.20.7654. A subsequent run on another
identical test system, with a newer version of the GPU kernel driver (version
6.0.5) using the same ROCm 5.3.0 toolchain produced no errors. This result
is reported in the omp_defaul_alloc (No Err) entry in Table 2.

– For the LLVM, ROCm, and GCC compilers, memory allocated via the
OpenMP allocator or std::new migrate back and forth between the host

Experimental assessment of Unified Shared Memory 217

Table 1. Benchmark Bandwidth (GiB/Sec) on Crusher using CCE 15.0.0.

USM on XNACK on

allocator omp map CPU0 CPU1 CPU2 GPU0 GPU1+ Map HTOD DTOH

hipMallocManaged N 3.82 2.92 23.74 3.63 1044.12

omp default alloc Y 3.82 23.73 23.78 20.35 21.02 inf inf inf

hipHostMalloc N 23.73 23.76 23.75 25.36 25.37

hipHostMalloc Y 23.73 23.75 23.75 25.35 25.36 inf inf inf

hipMalloc N 3.05 17.97 17.98 1074.36 1171.82

std::new Y 3.92 23.77 24.23 25.35 25.35 inf inf inf

std::new (assoc ptr) Y 3.92 23.76 23.77 1159.23 1160.74 inf 23.46 23.46

std::new N 3.80 23.78 23.77 24.18 25.35

USM OFF XNACK OFF

hipMallocManaged N 23.29 23.32 23.32 25.35 25.36

omp default alloc Y 23.77 23.76 23.77 1155.42 1156.80 14.90 14.88 14.78

hipHostMalloc N 23.75 23.78 23.78 25.35 25.36

hipHostMalloc Y 23.75 23.76 23.79 1156.36 1156.90 23.75 23.76 23.47

hipMalloc N 3.10 17.68 17.72 1062.29 1168.62

std::new Y 23.76 23.77 23.77 1157.07 1156.75 14.86 14.86 14.76

std::new (assoc ptr) Y 3.77 23.77 23.77 1157.04 1156.48 inf 14.87 14.78

Table 2. Benchmark Bandwidth (GiB/Sec) on Crusher using ROCm 5.3.0.

USM on XNACK on

allocator omp map CPU0 CPU1 CPU2 GPU0 GPU1+ Map HTOD DTOH

hipMallocManaged N 5.1 2.79 15.8 3.64 1040.20

omp defaul alloc Y RE RE RE RE RE RE RE RE

omp defaul alloc (No Err) Y 5.21 2.82 15.88 3.69 1154.76 inf inf inf

hipHostMalloc N 16.24 16.25 16.26 25.33 25.34

hipHostMalloc Y 16.24 16.25 16.26 25.34 25.35 inf inf inf

hipMalloc N 2.53 6.48 6.48 941.8 1175.82

std::new Y 5.15 2.82 16.06 3.64 1176.69 inf inf inf

std::new (assoc ptr) Y 5.36 15.93 15.96 1158.46 1161.29 inf 17.54 18.03

std::new N 5.11 3.26 16.08 3.02 1038.29

USM OFF XNACK OFF

hipMallocManaged N 14.84 14.92 14.91 25.34 25.35

omp defaul alloc Y 15.78 15.93 15.93 1139.63 1141.79 17.04 16.88 17.96

hipHostMalloc N 15.93 15.81 15.94 25.33 25.34

hipHostMalloc Y 16.06 15.83 15.97 1143.16 1131.52 18.59 18.48 19.33

hipMalloc N 2.5 6.48 6.46 955.27 1168.51

std::new Y 16.07 15.87 16.06 1128.37 1134.52 17.78 17.59 17.99

std::new (assoc ptr) Y 5.12 15.84 15.98 1145.07 1138.96 inf 17.64 17.98

218 W. Elwasif

Table 3. Benchmark Bandwidth (GiB/Sec) on Crusher using LLVM 17.0.0-dev.

USM on XNACK on

allocator omp map CPU0 CPU1 CPU2 GPU0 GPU1+ Map HTOD DTOH

hipMallocManaged N 5.18 2.78 15.75 3.64 765.13

omp defaul alloc Y 5.43 3.26 15.8 3.04 678.41 inf inf inf

hipHostMalloc N 15.82 15.88 15.71 24.66 24.67

hipHostMalloc Y 15.21 15.79 15.44 24.66 24.67 inf inf inf

hipMalloc N 2.51 6.46 6.45 878.6 1009.68

std::new Y 5.2 3.27 15.85 3.08 765.37 inf inf inf

std::new (assoc ptr) Y 5.42 15.66 15.51 1000.8 1001.6 inf 18.50 19.00

std::new N 5.2 3.27 15.85 3.08 764.91

USM OFF XNACK OFF

hipMallocManaged N 14.26 14.55 14.43 24.62 24.64

omp defaul alloc Y 15.58 15.93 15.51 1138.24 1144.77 17.1 16.57 17.77

hipHostMalloc N 15.64 15.73 15.68 24.61 24.62

hipHostMalloc Y 15.7 15.75 15.55 1170.62 1170.65 23.72 23.75 25.22

hipMalloc N 2.51 6.43 6.41 1044.89 1175.61

std::new Y 15.64 15.77 15.63 1155.75 1149.11 17.6 17.55 17.94

std::new (assoc ptr) Y 5.12 15.73 15.45 1155.89 1141.90 inf 17.68 17.96

Table 4. Benchmark Bandwidth (GiB/Sec) on Crusher using GCC 12.2.1-dev.

USM on XNACK on

allocator omp map CPU0 CPU1 CPU2 GPU0 GPU1+ Map HTOD DTOH

hipMallocManaged N 5.00 2.86 17.27 3.92 358.13

omp defaul alloc Y 4.96 3.32 17.54 3.42 358.61 inf inf inf

hipHostMalloc N 16.48 16.48 16.46 21.25 21.28

hipHostMalloc Y 17.51 17.47 17.45 21.24 21.29 inf inf inf

hipMalloc N 2.56 6.54 6.53 843.10 903.41

std::new Y 5.10 2.85 17.28 3.91 900.32 inf inf inf

std::new (assoc ptr) Y 17.40 3.34 17.13 3.41 3.42 inf RE RE

std::new N 17.41 3.34 17.13 3.41 900.51

USM OFF XNACK OFF

hipMallocManaged N 17.41 17.44 17.44 21.23 21.28

omp defaul alloc Y 17.29 17.29 17.29 948.74 948.73 20.37 20.44 22.79

hipHostMalloc N 16.25 16.27 16.26 21.23 21.29

hipHostMalloc Y 17.56 17.58 17.56 895.70 883.19 23.74 23.76 25.28

hipMalloc N 2.55 6.62 6.61 882.69 955.73

std::new Y 17.46 17.09 17.09 947.6 948.15 17.94 17.66 18.61

std::new (assoc ptr) Y 4.95 17.37 17.54 947.68 947.24 inf 17.76 18.41

Experimental assessment of Unified Shared Memory 219

and the GPU when USM is enabled, whether or not explicit mapping is used.
Explicit mapping is a noop for these compilers.

– With USM enabled, the LLVM compiler shows a 50.13% drop in perfor-
mance for std::new with explicit mapping for GPU1+. This performance
drop appears to be present for all configurations where data is copied or
migrates to the GPU, with the highest drop of 68.7% for omp_default_alloc.

– With USM enabled, the GCC compiler’s std::new assoc_ptr resulted in
a runtime error from the underlying libgomp runtime library when copying
data between the host and the device.

– The behavior of omp_default_alloc is similar to that of std::new for
all compilers with USM enabled. There is however a performance gap for
GPU1+, where bandwidth observed using std::new outperforming that for
omp_default_alloc for the LLVM and GCC compilers. This performance
gap is 12.8% for LLVM and 251% for GCC, and for LLVM there’s another
gap of 31.9% between std::new and the performance obtained via explicit
device allocation using hipMalloc.

– With USM enabled, ROCm shows an improvement of 13.3% in GPU1+ for
std::new when explicit mapping is used. This improvement is not seen in
the LLVM and GCC compilers, where memory migrates to the GPU.

– In general, the variability in GPU1+ performance with USM on depends on
the compiler, with CCE and ROCm providing a more consistent performance
than LLVM and GCC.

4.2 Results on Summit

Summit [7] is an 4600 node IBM AC922 POWER9 system with each compute
nodes supporting two IBM POWER9 processors and six NVIDIA Tesla V100
GPUs. For the experiments reported here, two compilers were used. The LLVM
compiler development version 17.0.0 commit d366da97bd24 and the GCC com-
piler (development branch devel/omp/12 commit a410f603fca). The experiments
used the same flags as was used on Crusher, with the appropriate required
offloading flags. Table 5 shows results for the LLVM compiler while Table 6
shows the results for GCC. It should be noted that the nvhpc compiler on Sum-
mit (latest version 22.11) failed to compile the benchmark.

On summit, memory allocated on the CPU using system allocators is accessi-
ble from the GPU using the NVIDIA Address Translation Service (ATS) [14,16].
The following points can be observed from the performance results:

– Using the LLVM with USM enabled, memory does not migrate to the GPU in
any of the memory allocation scenarios except for CUDA managed memory
allocated using cudaMallocManaged.

– With explicit mapping and USM enabled, the LLVM compiler’s mapping
and data update operations appear to be a noop, and memory remains on
the CPU and is accessed in place remotely from the GPU.

– With USM enabled, the GCC compiler copies memory to the device whether
or not explicit mapping is used.

220 W. Elwasif

Table 5. Benchmark Bandwidth (GiB/Sec) on Summit using LLVM 17.0.0-dev.

USM on

allocator omp map CPU0 CPU1 CPU2 GPU0 GPU1+ Map HTOD DTOH

cudaMallocManaged N 9.96 7.38 28.69 5.03 770.2

omp defaul alloc Y 13.09 30.70 30.71 18.81 18.12 inf inf inf

cudaMallocHost N 30.68 31.10 31.10 41.34 41.34

cudaMallocHost Y 31.24 31.22 31.22 41.31 41.35 inf inf inf

std::new Y 13.21 31.05 31.08 21.23 20.97 inf inf inf

std::new (assoc ptr) Y 13.18 30.87 30.82 765.57 769.16 inf 12.28 17.35

std::new N 13.22 31.01 31.01 20.92 20.70

USM OFF

cudaMallocManaged N 9.94 7.36 28.83 5.1 767.8

omp defaul alloc Y 1.94 30.80 30.79 762.82 763.82 10.01 12.28 6.59

cudaMallocHost N 30.8 30.81 30.81 41.34 41.35

cudaMallocHost Y 30.85 30.81 30.67 770.24 771.58 24.74 43.61 43.53

std::new Y 1.94 31.05 31.05 760.95 769.86 10.11 12.28 17.30

std::new (assoc ptr) Y 13.22 31.00 30.99 769.81 770.53 inf 12.28 17.29

std::new N 13.12 30.94 31.00 20.46 20.52

Table 6. Benchmark Bandwidth (GiB/Sec) on Summit using GCC 12.2.1-dev.

USM on

allocator omp map CPU0 CPU1 CPU2 GPU0 GPU1+ Map HTOD DTOH

cudaMallocManaged N 9.65 7.39 28.33 5.37 170.55

omp defaul alloc Y 2.06 29.5 29.39 167.88 170.00 15.10 12.29 10.05

cudaMallocHost N 29.56 29.85 29.84 3.18 3.18

cudaMallocHost Y 29.67 29.79 29.7 170.93 171.49 24.66 43.61 43.53

std::new Y 9.66 7.39 28.3 5.42 171.23 inf inf inf

std::new (assoc ptr) Y 9.68 24.25 23.45 0.92 1.17 inf 12.26 14.13

std::new N 7.31 7.31 27.21 5.44 170.62

USM OFF

cudaMallocManaged N 10.14 7.58 31.44 5.34 171.6

omp defaul alloc Y 1.94 27.73 27.59 157.35 169.41 10.19 12.4 4.75

cudaMallocHost N 28.29 28.85 28.84 3.18 3.17

cudaMallocHost Y 28.93 28.98 28.99 160.94 171.63 24.78 43.61 43.53

std::new Y 1.94 29.1 29.11 165.79 171.01 10.2 12.4 16.83

std::new (assoc ptr) Y 12.29 29.17 29.17 170.97 170.99 inf 12.4 16.87

std::new N 12.3 29.53 29.4 0.05 0.05

Experimental assessment of Unified Shared Memory 221

– The GCC compiler’s behavior with both explicit mapping and USM enabled
is different between memory allocated using omp_default_alloc, where map-
ping and data update operations are handled by the compiler, and std::new
where mapping and data update operations appear to be noop, and memory
pages migrate to the GPU during the execution of the GPU0 loop. The behav-
ior in this latter case is similar to the cudaMallocManaged and std::new with
no explicit mapping. This behavior s different from GCC on Crusher, where
explicit mapping was a noop in all cases, and memory pages migrated during
execution of GPU0.

– GCC results in the std::new (assoc_ptr) with USM enabled show a very
low bandwidth for loops executing on the GPU, suggesting a possible defect
that maybe related to the issue observed with GCC on Crusher for the same
scenario.

4.3 Results on Perlmutter

Perlmutter [6] is a Cray EX system with two partitions, a 3072-node CPU par-
tition based on the AMD EPYC 7763 processor, and a 1536-node GPU par-
tition using the AMD EPYC 7763 procesor connected to 4 NVIDIA A100 40
GB GPUs, in addition to 256 nodes with 4 NVIDIA A100 80 GB GPUs. For
experiments used in this work, three compilers were used, The LLVM compiler
version 16.0.0, the GCC compiler (development branch devel/omp/12 commit
a410f603fca), and the NVHPC compiler version 23.1. Table 7 shows results for
the LLVM compiler, Table 8 shows results for the GCC compiler, and Table 9
shows results for NVHPC.

Table 7. Benchmark Bandwidth (GiB/Sec) on Perlmutter using LLVM 16.0.

USM on

allocator omp map CPU0 CPU1 CPU2 GPU0 GPU1+ Map HTOD DTOH

cudaMallocManaged N 7.15 5.16 16.91 7.76 1305.29

omp defaul alloc Y 10.6 RE RE RE RE inf inf RE

cudaMallocHost N 16.87 16.62 16.62 23.7 24.44

cudaMallocHost Y 16.33 16.43 16.17 21.76 24.53 inf inf inf

std::new Y 10.47 RE RE RE RE inf inf RE

std::new (assoc ptr) Y 4.69 11.54 11.5 1293.64 1296.85 inf 12.76 14.53

std::new N 5.58 RE RE RE RE RE RE RE

USM OFF

cudaMallocManaged N 7.12 5.33 17.02 7.86 1321.91

omp defaul alloc Y 4.24 17.28 17.23 1290.97 1297.08 18.96 19.33 14.46

cudaMallocHost N 17.15 17.24 17.22 24.07 24.53

cudaMallocHost Y 17.42 16.29 16.38 1289.6 1282.8 24.2 24.83 24.48

std::new Y 4.1 17.26 17.21 1283.64 1281.87 12.88 13.04 11.9

std::new (assoc ptr) Y 10.39 17.21 17.26 1286.12 1285.55 inf 13.46 11.98

222 W. Elwasif

Table 8. Benchmark Bandwidth (GiB/Sec) on Perlmutter using GCC 12.2.1-dev.

USM on

allocator omp map CPU0 CPU1 CPU2 GPU0 GPU1+ Map HTOD DTOH

cudaMallocManaged N 7.10 5.25 17.07 11.53 371.52

omp defaul alloc Y 4.17 17.28 17.12 371.33 371.5 12.97 13.14 11.33

cudaMallocHost N 17.58 17.54 17.4 8.36 8.30

cudaMallocHost Y 17.38 17.40 17.38 370.48 371.99 24.20 24.86 24.49

std::new Y 6.82 5.20 17.01 11.14 372.39 inf inf inf

std::new (assoc ptr) Y 6.87 17.12 17.08 11.76 11.69 inf 13.03 4.25

std::new N 7.00 5.27 17.17 11.53 372.51

USM OFF

cudaMallocManaged N 6.95 5.21 17.28 11.08 371.36

omp defaul alloc Y 4.03 17.2 17.12 356.57 366.55 12.94 13.17 11.31

cudaMallocHost N 17.57 17.55 17.46 8.32 8.23

cudaMallocHost Y 17.22 17.24 17.16 369.43 368.61 24.19 24.84 24.49

std::new Y 4.34 16.42 16.43 365.10 365.00 12.94 13.10 11.99

std::new (assoc ptr) Y 10.43 17.36 17.33 371.50 365.71 inf 13.55 11.98

Table 9. The NVHPC compiler on Perlmutter.

USM on

allocator omp map CPU0 CPU1 CPU2 GPU0 GPU1+ Map HTOD DTOH

cudaMallocManaged N 4.91 4.85 23.66 5.79 1285.52

omp defaul alloc Y 3.34 23.74 23.71 1282.93 1283.74 13.61 13.6 10.6

cudaMallocHost N 23.72 23.74 23.76 24.33 24.54

cudaMallocHost Y 23.74 23.74 23.74 1283.39 1283.84 13.64 13.64 10.56

std::new Y 3.47 23.68 23.66 1283.72 1283.92 13.49 13.53 10.52

std::new (assoc ptr) Y 9.11 23.7 23.71 1283.56 1283.95 inf 14.11 10.64

std::new N RE RE RE RE RE RE RE RE

USM OFF

cudaMallocManaged N 4.96 4.94 23.64 5.87 1285.45

omp defaul alloc Y 3.22 23.72 23.7 1283.73 1284.94 13.77 13.75 10.53

cudaMallocHost N 23.67 23.69 23.71 24.21 24.54

cudaMallocHost Y 23.69 23.76 23.75 1283.82 1284.08 13.72 13.72 10.48

std::new Y 3.47 23.76 23.76 1283.81 1284.3 13.67 13.67 10.48

std::new (assoc ptr) Y 9.26 23.73 23.75 1283.86 1284.18 inf 14.24 10.57

std::new N RE RE RE RE RE RE RE RE

Experimental assessment of Unified Shared Memory 223

The following observations can be made regarding the observed results

– Both the LLVM and NVHPC compilers did not generate an error due to the
use of ##pragma omp requires unified_shared_memory directive. How-
ever, both compilers generated runtime errors when no explicit mapping
is used with system allocator std::new. This suggests non-compliance in
these versions of the compilers, as the OpenMP specification states that the
unified_shared_memory clause makes the map clause optional on target con-
structs.

– The GCC compiler successfully executed all tests with USM on, with mem-
ory pages migrating between the host and the device as appropriate (except
for the case with associated device pointers). With USM enabled, the GCC
compiler behavior on Perlmutter is analogous to its behavior on Summit. The
two machines have the same accelerator architecture (with NVIDIA V100 on
Summit and A100 on Perlmutter), but have different CPU architecture and
different CPU-GPU connection, indicating a degree of portability of USM
support in GCC when targeting the NVPTX backend.

5 Conclusions and Future Work

In this work, unified shared memory support in various OpenMP compilers is
investigated. A synthetic benchmark was developed to characterize the perfor-
mance of memory-bound operations as applied to memory allocated via the var-
ious allocators available on three platforms with offloading capabilities. Results
suggest that while support for USM is becoming more available, there remains
significant gaps and variability across compilers and platforms. While results
presented in this work represent a snapshot in time for the current state of
USM support, the benchmark described here should prove useful to track and
characterize USM support in different OpenMP implementations, as such imple-
mentations mature and get deployed to new and emerging hardware platforms.
Emerging platforms (such as the NVIDIA Grace Hopper Superchip [4] and the
AMD MI300 [2]) with hardware support for coherent and unified memory access
using discrete or single memory spaces are an obvious short term target for this
tool.

While the OpenMP specification only states that unified shared memory ren-
ders the map clause optional, it is up to individual implementations to decide
the manner in which this is implemented. Such decisions can have a profound
impact on code performance. This can be seen on platforms with separate, dis-
crete host and device physical memory - and where the hardware and low level
system software allow for cross-device remote memory access in place. On such
platforms, leveraging mechanisms for page migration to the appropriate com-
pute device would provide a higher performance for code patterns with repeated
access to the same memory page. While both strategies are compliant with the
OpenMP specification, such difference in performance represents a significant
performance portability challenge for applications that rely on USM.

224 W. Elwasif

It should be noted that compiler implementations and operating system sup-
port for USM is maturing rapidly, and issues identified in this study should
probably be addressed in near term releases of the respective compilers. How-
ever, proper implementation documentation detailing various aspects of run-
time memory management and interaction with various memory spaces remain
needed.

Acknowledgments. This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. This research used resources of the National Energy Research Scientific
Computing Center (NERSC), a US Department of Energy Office of Science User Facil-
ity located at Lawrence Berkeley National Laboratory, operated under Contract No.
DE-AC02-05CH11231.

References

1. AMD Instinct MI200 GPU memory space overview. https://gpuopen.com/learn/
amd-lab-notes/amd-lab-notes-mi200-memory-space-overview/

2. AMD Instinct MI300 Details Emerge, Debuts in 2 Exaflop El Capitan
Supercomputer. https://www.tomshardware.com/news/new-amd-instinct-mi300-
details-emerge-debuts-in-2-exaflop-el-capitan-supercomputer

3. Crusher Quick-Start Guide. https://docs.olcf.ornl.gov/systems/crusher quick
start guide.html#

4. NVIDIA Grace Hopper Superchip Architecture Whitepaper. https://resources.
nvidia.com/en-us-grace-cpu/nvidia-grace-hopper

5. OLCF Compiler Tests. https://code.ornl.gov/elwasif/olcf-compiler-tests
6. Perlmutter Architecture. https://docs.nersc.gov/systems/perlmutter/

architecture/
7. Summit User Guide. https://docs.olcf.ornl.gov/systems/summit user guide.html
8. Advance Micro Devices: AMD ROCm Open Software Platfor. https://rocm.docs.

amd.com/en/latest/
9. Advance Micro Devices: HIP: C++ Heterogeneous-Compute Interface for Porta-

bility. https://github.com/ROCm-Developer-Tools/HIP
10. Grinberg, L., Bertolli, C., Haque, R.: Hands on with openMP4.5 and unified mem-

ory: developing applications for IBM’s hybrid CPU + GPU systems (part II). In:
de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.)
IWOMP 2017. LNCS, vol. 10468, pp. 17–29. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-65578-9 2

11. Harris, M.: Unified memory in CUDA 6 (2013). https://developer.nvidia.com/
blog/unified-memory-in-cuda-6/

12. Hindriksen, V.: CUDA 6 unified memory explained (2013). http://
streamcomputing.eu/blog/2013-11-14/cuda-6-unified-memory-explained/

13. Mishra, A., Li, L., Kong, M., Finkel, H., Chapman, B.: Benchmarking and evalu-
ating unified memory for openMP GPU offloading. In: Proceedings of the Fourth
Workshop on the LLVM Compiler Infrastructure in HPC. LLVM-HPC2017, Asso-
ciation for Computing Machinery, New York, NY, USA (2017). https://doi.org/
10.1145/3148173.3148184

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-mi200-memory-space-overview/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-mi200-memory-space-overview/
https://www.tomshardware.com/news/new-amd-instinct-mi300-details-emerge-debuts-in-2-exaflop-el-capitan-supercomputer
https://www.tomshardware.com/news/new-amd-instinct-mi300-details-emerge-debuts-in-2-exaflop-el-capitan-supercomputer
https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html#
https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html#
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://code.ornl.gov/elwasif/olcf-compiler-tests
https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://rocm.docs.amd.com/en/latest/
https://rocm.docs.amd.com/en/latest/
https://github.com/ROCm-Developer-Tools/HIP
https://doi.org/10.1007/978-3-319-65578-9_2
https://doi.org/10.1007/978-3-319-65578-9_2
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
http://streamcomputing.eu/blog/2013-11-14/cuda-6-unified-memory-explained/
http://streamcomputing.eu/blog/2013-11-14/cuda-6-unified-memory-explained/
https://doi.org/10.1145/3148173.3148184
https://doi.org/10.1145/3148173.3148184

Experimental assessment of Unified Shared Memory 225

14. NVIDIA Corp.: NVIDIA TESLA V100 GPU ARCHITECTURE (2017). https://
images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.
pdf

15. OpenMP Architecture Review Board: OpenMP application program interface
version 5.0 (2018). https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf

16. Sakharnykh, N.: Everything you need to know about unified mem-
ory (2018). https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-
everything-you-need-to-know-about-unified-memory.pdf

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf

OpenMP Reverse Offloading Using
Shared Memory Remote Procedure Calls

Joseph Huber(B) and Jon Chesterfield

Advanced Micro Devices, Santa Clara, USA
{Joseph.Huber,Jonathan.Chesterfield}@amd.com

Abstract. The widespread adoption of general purpose GPU program-
ming in high-performance computing (HPC) has led to an increased need
for expanded GPU functionality. Currently there are several features that
still require host services to be accomplished on the GPU, notably printing
and dynamic memory allocation. The OpenMP 5.0 standard includes sup-
port for reverse offloading to allow the GPU to execute code on the host.
This paper proposes a means of implementing reverse offloading within the
LLVM toolchain.

The remote procedure call (RPC) is a common method for executing
routines on a separate machine. This is adapted here for executing rou-
tines on heterogeneous hardware. We claim that shared memory support-
ing relaxed atomic load and store and acquire/release fences are sufficient
to implement remote procedure calls. Furthermore, using reliable shared
memory bypasses the usual failure modes associated with networking.

In this paper we introduce a generic shared memory RPC library that
can be used to implement host services that works on AMDGPU, NVPTX,
and x86-64 architectures. We then show how this can be used to implement
OpenMP 5.0 reverse offloading at the runtime level. Finally, we examine
some of the performance considerations and trade-offs when using this
implementation.

Keywords: OpenMP · GPU · RPC · Runtimes

1 Introduction

Recent developments in HPC systems suggest a shift towards heterogeneous
accelerators connected by high speed memory. This trend has only increased
as GPU vendors like NVIDIA and AMD have begun selling accelerators with
CPUs and GPUs in the same package. This general shift towards more general
purpose GPU programming has been assisted with the development of unified
shared memory features, blurring the lines between accelerator and host code.
However, truly blurring the line is limited by the lack of general host services on
many accelerator programs.

The remote procedure call (RPC) is a simple interface for executing a routine
on an external machine. To the user, it appears as a simple function call while the
details of the implementation are hidden behind the interface. The simplicity of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, pp. 226–238, 2023.
https://doi.org/10.1007/978-3-031-40744-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40744-4_15&domain=pdf
http://orcid.org/0000-0003-4987-8116
http://orcid.org/0000-0002-8546-2014
https://doi.org/10.1007/978-3-031-40744-4_15

Reverse Offloading Using RPC 227

this interface hides several well-known issues in common implementations. Works
by Tanenbaum and Renesse [8] highlight the difficulties, while Vinoksi’s [11]
paper argues that RPC interfaces offer “convenience over correctness”.

The design choice for RPC over a network is either to ignore failure mode
at loss of correctness or to augment the interface of all function calls to report
additional errors. Specific to shared memory heterogeneous systems, the com-
munication between CPU and GPU is as reliable as other memory traffic, and
failures are likely to be handled the same way other memory faults are handled,
e.g. checkpointing, restarts, or replacing hardware. Therefore no change to the
function interface is necessary or useful when changing the implementation to
execute remotely.

Essentially any shared memory system supporting multiple threads of exe-
cution is likely to meet the minimum requirements for this implementation. We
require only weakly ordered atomic loads and stores along with acquire/release
memory fences. This interface can then be made general enough to implement
host services and reverse offloading.

In this paper, we introduce a novel and general RPC mechanism for imple-
menting host services via OpenMP 5.0 reverse offloading. First, we cover rele-
vant background knowledge in Sect. 2. We will then cover related work in Sect. 3.
Section 4 will cover the implementation of our RPC library and interface which
will then be used in Sect. 5 to implement OpenMP 5.0 reverse offloading. We
will then provide basic performance evaluations of the implementation in Sect. 6.
Finally, future work and the conclusion will be discussed in Sect. 7 and Sect. 8.

1.1 Contributions and Limitations

The main contributions of this paper are as follows:

– A general-purpose RPC mechanism written in freestanding C++ for imple-
menting host services.

– An overview of how this interface can be used to implement OpenMP reverse
offloading.

– An evaluation of the latency of RPC calls from the GPU.

This paper outlines a proof-of-concept for implementing reverse offloading
for OpenMP 5.0. Because of this, we explicitly leave for future work beyond this
paper:

– The compiler front-end and back-end changes required to support reverse
offloading.

– Integration into the existing LLVM/Clang OpenMP offloading runtime.

2 Background

Remote procedure calls (RPC) represent a broad array of methods to call pro-
cedures on external machines. This implementation defines an RPC mechanism

228 J. Huber and J. Chesterfield

split between a client and server. The client is the process that initiates a con-
nection to the server and is considered active. The server is the process that
listens for and handles connections from the client and is considered passive. We
will refer to the pair of these as a process.

We will use the more-familiar CUDA terminology for GPUs in lieu of the
OpenCL terminology commonly used in association with AMD GPUs. That is,
a thread refers to a single work-item in the context of the GPU and a POSIX
thread in the context of the CPU.

2.1 Shared Memory

In this paper, shared memory refers to memory that is accessible from both the
GPU and CPU in a system asynchronously. In particular, writes to the memory
may be seen by the other device during the execution of a compute kernel. In
NVIDIA terminology, this refers to host-pinned allocations. Using Heterogeneous
System Architecture (HSA) terminology, as used by AMDGPU, we instead call
this fine-grained memory. A single address space is convenient but not necessary.

In order for our scheme to work we require a shared memory buffer that is
accessible from both the client and the server. Furthermore, the shared buffer
must support atomic operations that are visible to the other device. In practice
this can be achieved using system-level relaxed atomic loads and stores with
appropriate acquire/release fences. The hardware requirements for this are met
by both NVIDIA and AMD GPUs starting with the sm 60 and gfx801 architec-
tures respectively.

3 Related Work

This work is not the first to implement host services using shared memory. The
AMD compiler provides printing services through an interface called hostcall or
hostexec for HIP and OpenMP offloading compilations respectively. These use
a lock free stack based on atomic compare and swap in combination with HSA
signals to coordinate work. These implementations are not currently available on
non-AMDGPU architectures and are therefore not sufficient for generic support
for OpenMP reverse offloading.

The GCC 13 release introduced support for reverse offloading [3]. Their
method uses a similar approach to preallocate a fixed number of slots in shared
memory that threads can use to share data with the host. This is implemented
as a ring buffer continuously flushed by the host. However, this implementation
does not support many concurrent calls, nowait functionality, or mapping of
memory private to the thread.

This work is an adaptation of the implementation outlined in [4]. The four
distinct states tracked at compile time in the theoretical work are instead reduced
to two states tracked at runtime in this one. The conceptual framework of the
state machine is the same while the interface is unrelated and novel to this work.

Reverse Offloading Using RPC 229

Previous work has also explored RPC implementations in OpenMP itself. One
implementation created a basic RPC mechanism to compile OpenMP programs
directly on the GPU [10]. This implementation used compiler transforms to
automatically generate RPC stubs to enable host routines.

4 Remote Procedure Calls

This section will describe in detail the implementation of our RPC library. A
pseudocode implementation of the RPC interface is presented in Fig. 1. We
elected to implement the core RPC interface in freestanding C++ rather than
OpenMP as others have [9] so that the same implementation can be included
by other offloading languages, such as CUDA or HIP. This will first describe the
fundamental implementation of the underlying state machine in a one-to-one
case with a single thread on both the GPU and CPU. We will then extend this
interface to handle multiple producers. Finally, we will discuss how this can be
extended to handle the GPU’s SIMT model and multiple devices.

struct Process {
atomic_int *inbox;
atomic_int *outbox;
void *packet;

};

struct Port {
template <typename U> void recv(U use) noexcept;
template <typename F> void send(F fill) noexcept;
void close() noexcept;

};

struct Client : Process {
template <int opcode> Port open() noexcept;

};

struct Server : Process {
Port open() noexcept;

};

Fig. 1. Pseudocode for the RPC interface.

4.1 One-to-One Remote Procedure Calls

For the RPC interface we first allocate a fixed size buffer of memory that can
be shared between the server and the client. We set aside shared memory for
control flags and use a fixed-size buffer to implement our packet of data that will

230 J. Huber and J. Chesterfield

be exchanged between the two processes. The reason we use a fixed-size packet
will be explained in Sect. 4.5.

The strategy is to provide mutual exclusion over the shared packet, organised
such that ownership of the packet alternates exclusively between the client and
the server.

In order to provide mutual exclusion we use two mailboxes. Each process’
state contains a write-only outbox and a read-only inbox. We redundantly encode
two of the possible four states to allow us to toggle binary ownership between the
two processes. This nets us two primitive operations for controlling ownership,
posting and waiting. To give ownership to the other side, we post the data by
toggling the process’ outbox. Similarly, we can wait until we have ownership of
the buffer by polling the status of the inbox. For this work we decided to assign
ownership of the shared buffer to the client if inbox == outbox and conversely
assign ownership to the server if inbox != outbox.

These primitives are sufficient to implement the send and recv routines as
described in Fig. 1. The send function allows one process to send a single packet
to a recv call on the other end. The base implementation of these routines is
shown in Fig. 2. To send data, we must first wait until we own the buffer, we can
then use a callback to fill the packet with the desired data and pass ownership
to the other side. Similarly, to receive data we wait until we own the buffer and
then use the sent packet. Because a receive into a send does not require changing
ownership of the buffer, we only need to give ownership back if we are expecting
another incoming packet or are closing the server’s port. The implementation
supports asynchronous RPC calls by allowing the client to close a port after a
send without waiting for a response from the server. This only requires that we
check for ownership of the buffer when opening a port from the client as another
thread may have released its lock without ownership.

template <typename F>
void Port::send(F fill) {
int in = inbox.load(RELAXED);
int out = outbox.load(RELAXED);

while (!owns_buffer(in, out))
in = inbox.load();

memory_fence(ACQUIRE);
fill(packet);
memory_fence(RELEASE);
out.store(!out, RELAXED);

}

template <typename U>
void Port::recv(U use) {
int in = inbox.load(RELAXED);
int out = outbox.load(RELAXED);

if (last_op_was_recv) {
memory_fence(RELEASE);
out.store(!out, RELAXED);

}

while (!owns_buffer(in, out))
in = inbox.load(RELAXED);

memory_fence(ACQUIRE);
use(packet);
memory_fence(RELEASE);

}

Fig. 2. Implementation of the send and recv functions.

Reverse Offloading Using RPC 231

4.2 Many-to-Many Remote Procedure Calls

The above interface works in the case of a single client and server thread with
persistent ownership of the data. However, GPUs are not known for their single
threaded performance, so users will require support for concurrent RPC calls.
To do this, we define the concept of a port.

The port interface is provided as multiple copies of the underlying state
machine described in Sect. 4.1 as an array. A port is then simply an index into
this array. Threads that wish to use the RPC mechanism must first open a port.
The first level of mutual exclusion is that each instance can only be read or
written by one of the client or server at any point in time. A second level of
mutual exclusion is required to ensure that no two threads on a single device
write to a given index. This is done with atomic test and set on device local
memory.

Successfully opening a port establishes that the current thread on the current
device is the exclusive owner of the corresponding shared memory. That thread
can then proceed to the one-to-one state machine described above. Unlike the
rest of the buffer, the lock is allocated in device memory as it is never accessed
by the other device and local memory is likely to be faster than shared memory.
Compare and swap is sufficient to take a lock with store to release. A more
efficient solution avoiding the compare and swap is to use a set and retry loop
if supported. Considerations for locks on GPU architectures are discussed in
Sect. 4.5.

After the client successfully opens a port corresponding to some index and
sends a packet, some time later the server will detect that there is work available
at said index and attempt to acquire the server local ownership of that buffer.
For multiple client and server threads, exactly which pair resolve to each other is
not known ahead of time. The assumption is that any server thread can complete
a task from any client thread.

One difference between the client and the server interface is the inclusion of
an opcode in the port. When the client initiates the connection, it passes an
integer to specify the operation it wishes the server to perform. That integer will
be copied across to the server. The protocol assumes that the client will begin
the connection with a send and the server must always begin with a recv. After
the initial transaction any ordering is permitted so long as the opposite call is
used by the other process.

To give a concrete example, given this construction the following steps are
required to initiate an RPC call using the interface for a simple send and recv
from the perspective of the client:

– The client searches for an available port and claims the lock.
– The client checks that the port is still available to the current device and

continues if so.
– The client writes its data to the fixed-size packet and toggles its outbox.
– The client waits until its inbox matches its outbox.

232 J. Huber and J. Chesterfield

– The client reads the data from the fixed-size packet.
– The client closes the port and continues executing.

The same operation viewed from the server is a recv and send instead:

– The server searches for an available port with pending work and claims the
lock.

– The server checks that the port is still available to the current device.
– The server reads the opcode to perform the expected operation, in this case

a receive and then send.
– The server reads the data from the fixed-size packet.
– The server writes its data to the fixed-size packet and toggles its outbox.
– The server closes the port and continues searching for ports that need to be

serviced.

We provide Fig. 3 to illustrate the state transitions that occur for a more
complicated send, send, recv operation. The interface described is sufficient to
provide arbitrary data streaming between both devices. Note that client inbox
and server outbox are pointers to the same memory. Likewise the client outbox
and server inbox.

Client Server Server

Inbox Outbox Inbox Outbox Client Server

0 0 0 0 Sending Idle
0 1 1 0 Waiting Receiving
1 1 1 1 Sending Waiting
1 0 0 1 Waiting Receiving
1 0 0 1 Waiting Sending
0 0 0 0 Receiving Close

Fig. 3. The state transitions by the RPC interface when performing a send, send, recv
operation. The time required for the outbox write to reach the other process’ inbox is
omitted for brevity.

4.3 Expanding to the SIMT Model

The above interface assumes we have independent parallelism. However, the
GPU architectures use a SIMT execution model. This means that the smallest
unit of independent parallelism is not a single thread, but rather a group of
threads. So, in order to reliably claim a lock we must perform all the RPC calls
with multiple threads active at the same time.

This is implemented by increasing the size of the packet to contain enough
space for each hardware thread group to have its own slot. Additionally, the

Reverse Offloading Using RPC 233

SIMT model allows some threads to be inactive according to their mask. We
therefore pass the mask alongside the opcode to indicate which slots should
be processed. In order to conform to post-Volta independent thread scheduling
requirements and to avoid deadlocks, we must ensure that the same mask that
opens a port also closes it. This requires strictly enforcing convergence between
the port interface.

4.4 Multiple Devices

Expanding the above machinery to multiple devices is done by simply providing
multiple copies of the above machinery for each device. That is, each device
would have its own shared process and the host would run a server on each one.
This is primarily done because implementing a locking interface using the limited
system level atomics would hinder performance and functionality. It would be
possible to have a single group of server threads handle request’s from multiple
distinct GPUs through careful memory layout, but as they would likely need to
know which specific GPU is requesting things like dynamic memory allocation
this is not necessarily worthwhile.

4.5 Locking Concerns on GPUs

Special care must be given to the GPU execution model when implementing
locks. The GPU may provide very little in the ways of forward progress guaran-
tees. Under the OpenCL programming model, no thread may rely on a thread
from a different workgroup being scheduled at the same time. The HSA model
provides slightly more ordering constraints [7] that are not useful in this con-
text. In general, any thread that waits on another thread to release resources
must wait until that thread is scheduled, which may never happen. This compli-
cates lock free programming, the majority of the data structures in use assume
a somewhat fair machine scheduler.

This hazard is primarily avoided here by ensuring that each work group or
thread pairs with one on the other device and executes independently of all others
on the current device. The remaining problem is that there is a finite number of
allocated ports and threads will fail to open one when all are exhausted.

The RPC model implemented here holds open exactly one port during exe-
cution. A given GPU has an upper bound on the simultaneous concurrency it
can support in hardware and one of the few guarantees provided [7] is that this
upper bound is not exceeded by indefinitely suspending tasks. For contemporary
GPUs this is of the order of low thousands. Deadlocks under the worst possible
scheduling scheme can therefore be avoided by allocating a large enough area of
shared memory, which works out to the order of a few megabytes. Alternatively
that could be considered overly cautious and the underlying memory overhead
reduced correspondingly.

234 J. Huber and J. Chesterfield

5 Reverse Offloading

Beginning with OpenMP 5.0 [2], implementations of OpenMP target offloading
are allowed to offload back to the host in a process called reverse offloading.
Support for this feature has been sparse with the first limited implementation
being officially present in the GCC 13.1 release. An example application is given
in Fig. 4. The rest of this section will briefly explain how this can be implemented
using the RPC interface described in Sect. 4.

int foo(int x, int *A);
#pragma omp declare target to(foo) device_type(host)

void offload(int *A, int N) {
#pragma omp target map(to: A[:N])
{
int x = 1;
int y;

#pragma omp target device(ancestor: 1) map(to: A[x]) map(from: y)
y = foo(x, A);

}
}

Fig. 4. Example of OpenMP 5.0 reverse offloading.

5.1 Data Mapping

The OpenMP 5.0 standard currently does not define strict data mapping rules in
the case of reverse offloading, instead allowing them to be defined by the vendor.
Typically, data mapping in target regions is handled by a pointer table associat-
ing host and device pointers. For global data, we can therefore use the existing
OpenMP mapping pointer table to look up the corresponding host pointer or
allocate a new one if it does not exist. We can then use the address to initiate a
memory copy from the device to the host. This works with the caveat that this
memory transfer occurs on a distinct CUDA stream [5] or HSA queue [1].

However, not all data on the GPU is able to be copied in this way. Values
that are in private, device local, or shared memory are not accessible by the
CPU. Furthermore, firstprivate values and function arguments will need to be
passed by-value. In order to support this, we extend the send and recv functions
to allow streaming arbitrary sized data across the RPC interface by repeatedly
sending or receiving packets. This is therefore sufficient to support all kinds
of data mappings also possible on the host. The implementation could choose
whether or not to do this operation with a memory copy or an RPC stream
depending on the application. One caveat is that private or shared variables
may not have unique addresses and will require the thread-id to be mapped
uniquely.

Reverse Offloading Using RPC 235

5.2 Nowait

The OpenMP 5.1 standard allows for the nowait clause to be placed on target
clauses in a reverse offloading context. This is trivially implemented in our RPC
protocol. As explained in Sect. 4.2, the process can initiate a send and then
close the port without waiting for that send to complete. Therefore, supporting
nowait simply requires that we do not wait for confirmation from the server and
instead immediately close the port. Other OpenMP synchronization primitives,
such as a taskwait, can then be supported following the asynchronous RPC call.

5.3 Remote Calls

Reverse offloading simply requires that we call a function on the host machine.
Making a remote call therefore requires the following features be supported when
using our interface:

– An RPC client to communicate with the server.
– An RPC server continuously checking for ports to service.
– An opcode to copy arbitrarily sized data between the client and server.
– An opcode to invoke a function pointer with given arguments.
– A mapping between host pointers and device pointers.
– An outlined function implementing the target region on the host and a global

on the device initialized to its address on the host.

We can use these tools to implement a proposed lowering of the example in
Fig. 5.

int foo(int x, int *A);
#pragma omp declare target to(foo) device_type(host)

struct args { int x; int *A; int *y; };

void *__omp_outlined_foo;
#pragma omp declare target to(__omp_outlined_foo) device_type(nohost)

void __omp_outlined_foo(void *args) {
*args->y = foo(args->x, args->A);

}
#pragma omp declare target to(__omp_outlined_foo) device_type(host)

void __omp_outlined_offload(int *A, int N) {
int x = 1;
int y;
__omp_rpc_copy_to(A);
__omp_rpc_alloc(&y);
__omp_rpc_invoke(__omp_outlined_foo, args{x, A, y}, sizeof(args));
__omp_rpc_copy_from(&y);

}
#pragma omp declare target to(__omp_outlined_offload) device_type(nohost)

Fig. 5. High level proposed lowering of the reverse offloading region.

236 J. Huber and J. Chesterfield

6 Evaluation

We implemented a proof-of-concept runtime implementing reverse offloading as
described above. Evaluation was done to simply test the validity of the proposed
interface without strict adherence to an implementation. We tested a region sim-
ilar to the one in Sect. 5.3 and verified functionality with thread-local data. Our
implementation uses RPC streaming to implement all memory copies because it
does not have access to the OpenMP offloading runtime mapping table. Imple-
mentations of this test and the following performance analysis can be found at
the associated public repository [6]. All timings shown are taken as the average
of 10000 repetitions.

0 4 8 12 16 20 24 28 32

1

3

5

7

9

Number of Parallel Calls

R
el
at
iv
e
L
au

nc
h
L
at
en

cy

Relative latency of multi-threaded RPC calls.

1 Server Thread
2 Server Threads
4 Server Threads
8 Server Threads

16 Server Threads

Fig. 6. Latency of a reverse offloading region on the GPU relative to launching a target
region on the CPU.

We performed very basic performance tests to examine the usability of this
interface. For our performance evaluation we used an AMD gfx1030 GPU system
with a 24-core AMD PRO 5965WX threadripper and 128 GB of RAM. This
interface was also tested on an NVIDIA sm 70 GPU for functionality. We first
wanted to see how the latency of the reverse offloading compared to the latency
of a standard target region. For this we measured the latency of an empty reverse
offload target region launch on the device relative to a standard empty target
region launch on the host. The results are plotted against the number of SIMT

Reverse Offloading Using RPC 237

warps or wavefronts launched in parallel in Fig. 6. We observe that the basic RPC
call is on-par with a target region launch, however it quickly becomes slow given
increased parallelism. For this paper, we implemented the simplest possible port
allocation scheme as a linear scan for available ports. This could be improved
with more parallelism on the server and more efficient allocation of ports.

Mapping some data requires streaming it across the RPC interface. This
will be very slow relative to the maximum bandwidth that can be achieved
on the interconnect. We used the data streaming interface implemented in the
RPC interface and sent increasingly large buffers of data to the other side. We
launched the kernel with a single GPU thread to remove any contention. The
observed bandwidth on our system was on average about 23 MB/s in each case
for a 64-byte packet. This is quite slow relative to what the PCI-e bus is capable
of, but is sufficient for most use-cases as we can assume large amounts of data
can be mapped via standard device to host memory copies.

7 Future Work

The work outlined in this paper simply proposed an implementation of a generic
interface that can be used to provide arbitrary RPC functionality using only
a buffer of shared memory. We showed how this could be used to implement
reverse offloading as according to the OpenMP 5.0 standard. Future work can
be done to provide this interface in the LLVM/OpenMP offloading runtime and
support the required code-generation and front-end actions.

Furthermore, this interface can be used to implement any host services on the
GPU or other accelerator with shared memory. It would therefore be possible to
use this interface to create a library performing actions typically not available
on the GPU, such as malloc and printf.

Future optimizations could be done to the implemented RPC interface. The
discussion in this paper also excludes some that are already used in the associated
implementation [6] for brevity. In order to improve parallel RPC performance we
could use a more intelligent method to scan the open ports. One method is to use
a hash to choose a sufficiently random starting index, possibly based on hardware
specific values such as NVIDIA’s symmetric multiprocessor ID intrinstic.

The limited bandwidth results can be resolved for large copies by allocating
memory and possibly calling into language runtime specific memcpy calls. As it
is always possible to stream data through the pre-allocated buffer, this can be
done without introducing any failure modes by falling back to the slow path.

8 Conclusion

In this work we presented a novel implementation of a remote procedure call
(RPC) using only shared memory with minimal atomic support. Our interface
provides a client and server that can communicate through port that can send
and receive fixed-size packets between a client and a server. This interface can
be used to send data between the CPU and GPU to implement a remote call on

238 J. Huber and J. Chesterfield

the host. We can use this support to implement the reverse offloading interface
outlined in the OpenMP 5.0 standard.

We claim that these RPC calls are not prohibitively slow as the latency of
launching a target region on the host is similar to launching a target region on
the device. Data private to the thread that could normally not be accessed by
the CPU by standard runtime calls can also be copied using the RPC interface
and is sufficiently fast for the data sizes we expect to find in non-global memory.

References

1. HSA platform system architecture specification 1.2. http://hsafoundation.com/
wp-content/uploads/2021/02/HSA-SysArch-1.2.pdf

2. OpenMP application programming interface version 5.0 (2018). https://www.
openmp.org/spec-html/5.0/openmp.html

3. GCC 13 release serieschanges, new features, and fixes. https://gcc.gnu.org/gcc-13/
changes.html (2023)

4. Chesterfield, J.: Shared memory remote procedure calls. In: 50th International Con-
ference on Parallel Processing Workshop. ACM (2021). https://doi.org/10.1145/
3458744.3473357

5. Harris, M.: Nvidia technical blog (2022). https://developer.nvidia.com/blog/how-
overlap-data-transfers-cuda-cc/

6. Huber, J.: OpenMP reverse offloading. https://github.com/jhuber6/OpenMP-
reverse-offloading (2023)

7. Sorensen, T., Evrard, H., Donaldson, A.F.: GPU schedulers: how fair is fair enough?
In: 29th International Conference on Concurrency Theory (CONCUR2017), pp. 1–
17 (2018)

8. Tanenbaum, A., Renesse, R.V.: A critique of the remote procedure call paradigm
(1988)

9. Tian, S., Chesterfield, J., Doerfert, J., Chapman, B.: Experience Report: writ-
ing A Portable GPU Runtime with OpenMP 5.1. In: International Workshop on
OpenMP. Bristol, UK (2021)

10. Tian, S., Huber, J., Parasyris, K., Chapman, B., Doerfert, J.: Direct GPU com-
pilation and execution for host applications with openMP parallelism. In: 2022
IEEE/ACM Eighth Workshop on the LLVM Compiler Infrastructure in HPC
(LLVM-HPC), pp. 43–51 (2022). https://doi.org/10.1109/LLVM-HPC56686.2022.
00010

11. Vinoski, S.: Convenience over correctness. IEEE Internet Comput. 12(4), 89–92
(2008). https://doi.org/10.1109/MIC.2008.75

http://hsafoundation.com/wp-content/uploads/2021/02/HSA-SysArch-1.2.pdf
http://hsafoundation.com/wp-content/uploads/2021/02/HSA-SysArch-1.2.pdf
https://www.openmp.org/spec-html/5.0/openmp.html
https://www.openmp.org/spec-html/5.0/openmp.html
https://gcc.gnu.org/gcc-13/changes.html
https://gcc.gnu.org/gcc-13/changes.html
https://doi.org/10.1145/3458744.3473357
https://doi.org/10.1145/3458744.3473357
https://developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/
https://github.com/jhuber6/OpenMP-reverse-offloading
https://github.com/jhuber6/OpenMP-reverse-offloading
https://doi.org/10.1109/LLVM-HPC56686.2022.00010
https://doi.org/10.1109/LLVM-HPC56686.2022.00010
https://doi.org/10.1109/MIC.2008.75

Author Index

B
Baldassin, Alexandro 81
Brandner, Julian 147

C
Carribault, Patrick 66
Chapman, Barbara 34, 179
Chen, Le 18
Chesterfield, Jon 226
Ciesko, Jan 99

D
Daoudi, Idriss 195
de Supinski, Bronis 18
Doerfert, Johannes 99, 179

E
Elwasif, Wael 210
Emani, Murali 18

F
Fantar, Ramy 51

G
Gammelmark, Mathias 114
Gautier, Thierry 51, 66, 195
Gayatri, Rahulkumar 99

H
Hasabnis, Niranjan 3
Huber, Joseph 226

K
Kadosh, Tal 3
Karlsson, Sven 114, 129
Kruse, Michael 163

L
Lebrun-Grandie, Damien 99
Liao, Chunhua 18
Lin, Meifeng 34
Lin, Pei-Hung 18

M
Malik, Abid M. 34
Martin, Maël 66
Mattson, Timothy 3
Mayer, Florian 147
Mishra, Alok 34

O
Olivier, Stephen L. 99
Oren, Gal 3

P
Perarnau, Swann 195
Pereira, Romain 66
Philippsen, Michael 147
Pinter, Yuval 3
Polet, Pierre-Étienne 51

R
Roussel, Adrien 66
Rydahl, Anton 114, 129

S
Salamanca, Juan 81
Schneider, Nadav 3

T
Thibault, Samuel 195
Tian, Shilei 179
Trott, Christian R. 99

V
Vanderbruggen, Tristan 18

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
S. McIntosh-Smith et al. (Eds.): IWOMP 2023, LNCS 14114, p. 239, 2023.
https://doi.org/10.1007/978-3-031-40744-4

https://doi.org/10.1007/978-3-031-40744-4

	 Preface
	 Organization
	 Contents
	OpenMP and AI
	Advising OpenMP Parallelization via A Graph-Based Approach with Transformers*-20pt
	1 Introduction
	2 Related Work
	2.1 Rule-Based Methods
	2.2 Unimodal Machine-Learning Driven Methods
	2.3 Multimodal Machine-Learning Driven Methods

	3 Research Objectives
	4 OMPify
	4.1 Model
	4.2 Model Input
	4.3 Fine Tuning

	5 Experimental Results
	5.1 Dataset & Preprocessing
	5.2 Results

	6 Conclusions and Future Work
	References

	LM4HPC: Towards Effective Language Model Application in High-Performance Computing
	1 Introduction
	2 Background
	2.1 LMs for HPC

	3 Approach
	3.1 LM4HPC Design Overview
	3.2 HPC Tasks and Inference Pipelines
	3.3 Datasets
	3.4 Integration with New Data
	3.5 Evaluation

	4 Preliminary Results
	4.1 Code Similarity Analysis
	4.2 Parallelism Detection
	4.3 OpenMP Q and A

	5 Related Work
	6 Conclusion
	References

	OpenMP Advisor: A Compiler Tool for Heterogeneous Architectures
	1 Introduction
	1.1 Our Contribution

	2 Related Work
	3 OpenMP Advisor
	3.1 Kernel Analysis
	3.2 Cost Model
	3.3 Kernel Transformation

	4 Experiments and Evaluations
	4.1 Experiment 1 - Data Analysis
	4.2 Experiment 2 - Code Generation
	4.3 Experiment 3 - Cost Model
	4.4 Experiment 4 - Prediction

	5 Conclusion and Future Work
	References

	Tasking Extensions
	Introducing Moldable Tasks in OpenMP
	1 Introduction
	2 Motivation
	3 A New Directive: Taskmoldable
	3.1 General Structure
	3.2 Compilation
	3.3 Data Mapping Functions
	3.4 Data Dependencies
	3.5 Implementation

	4 Evaluation
	4.1 Gemm Decomposition
	4.2 Lapack Cholesky Factorization
	4.3 Case of Study: Beamforming

	5 Related Work
	6 Conclusion and Perspectives
	References

	Suspending OpenMP Tasks on Asynchronous Events: Extending the Taskwait Construct
	1 Introduction
	2 Motivations
	3 Extending Taskwait to Asynchronous Events
	3.1 Definitions
	3.2 Implementation

	4 Evaluation
	4.1 Task Management Overheads
	4.2 Standardizing OpenMP Task Suspension on an Asynchronous Event
	4.3 Effort on Porting Existing MPI Applications

	5 Related Works
	6 Conclusion
	References

	How to Efficiently Parallelize Irregular DOACROSS Loops Using Fine Granularity and OpenMP Tasks: The SPEC mcf Case
	1 Introduction
	2 Background
	2.1 Transactional Memory
	2.2 DOACROSS Parallelization
	2.3 Thread-Level Speculation
	2.4 Fine-Grained Parallelization
	2.5 Task-Based Parallelism

	3 Speculative Task Execution
	3.1 The ste_for Construct and the Speculative Dependency Types
	3.2 Implementing Speculative Task Execution on HTM

	4 Benchmarks, Methodology and Experimental Setup
	5 Experimental Results
	6 Conclusions
	References

	OpenMP Offload Experiences
	The Kokkos OpenMPTarget Backend: Implementation and Lessons Learned
	1 Introduction
	2 CG-Solve
	2.1 AXPBY
	2.2 DOT
	2.3 SPMV

	3 Beyond the Basics
	3.1 Scratch Memory
	3.2 Concurrency

	4 Conclusion
	References

	OpenMP Target Offload Utilizing GPU Shared Memory
	1 Introduction
	2 Background
	2.1 OpenMP Target Parallelism for GPUs
	2.2 Applications

	3 Results
	3.1 HPC System
	3.2 Compilers
	3.3 Parallel Scan
	3.4 Radix Sort
	3.5 Profiling

	4 Related Work
	5 Conclusions
	References

	Improving a Multigrid Poisson Solver with Peer-to-Peer Communication and Task Dependencies
	1 Introduction
	2 Mathematical Background
	2.1 Finite Difference Discretization
	2.2 Geometric Multigrid Methods for the Discrete Poisson Equation
	2.3 Boundary Conditions
	2.4 Restricting Boundary Conditions
	2.5 Domain Decomposition

	3 Implementation
	3.1 Offloading
	3.2 Task Dependencies
	3.3 Direct Peer-to-Peer Communication

	4 HPC Systems
	5 Experimental Results
	5.1 Convergence Experiment
	5.2 Evaluating Improvements
	5.3 Weak Scaling Analysis
	5.4 Boundary Transfers

	6 Related Work
	7 Conclusion
	References

	Beyond Explicit GPU Support
	Multipurpose Cacheing to Accelerate OpenMP Target Regions on FPGAs
	1 Introduction
	2 State of the Art
	3 Approach
	3.1 Cache Integration
	3.2 Cache Consistency

	4 Implementation
	5 Evaluation
	5.1 Benchmarks
	5.2 Runtime Performance
	5.3 Expected Scaling of the Runtime Performance
	5.4 Resource Utilization

	6 Related Work
	7 Conclusion
	References

	Generalizing Hierarchical Parallelism
	1 Introduction
	2 Algorithms for Using Multiple Levels
	3 Language Extensions for Hierarchical Parallelism
	3.1 Explicitly Selecting a Level
	3.2 Selecting Levels by Property
	3.3 Reserving Nested Parallelism
	3.4 Work Distribution
	3.5 Scheduling
	3.6 Compiler-Transformation-Based Directives
	3.7 Warp-Level Primitives
	3.8 Level Partitioning
	3.9 Versioning

	4 Language Extensions for Hierarchical Memory
	5 Related Work
	5.1 CUDA
	5.2 SYCL
	5.3 OpenACC

	6 Conclusion
	A Nvidia Grace Hopper Superchip Hierarchy
	References

	Exploring the Limits of Generic Code Execution on GPUs via Direct (OpenMP) Offload
	1 Introduction
	2 Background
	2.1 Device Code Representation
	2.2 Loader

	3 Methodology
	3.1 Compiler Driver Wrapper
	3.2 Handling Different main Functions
	3.3 Test Suite and System Configuration

	4 Results and Analysis
	4.1 Test Case Issue
	4.2 Compiler/Runtime Bug
	4.3 External Global Variable
	4.4 Variadic Function
	4.5 C++ Exception Handling
	4.6 Variable Length Array
	4.7 Unsupported Data Type
	4.8 Inline Assembly

	5 Related Work
	6 Summary
	References

	OpenMP Infrastructure and Evaluation
	Improving Simulations of Task-Based Applications on Complex NUMA Architectures*-5pt
	1 Introduction
	2 State of the Art
	3 Context and Principles
	4 NUMA Architectures Modeling
	4.1 Modeling Complex NUMA Architectures
	4.2 Bandwidth Measurements

	5 NUMA and Cache Effects Modeling
	5.1 Recap: The TASK Model
	5.2 NUMA Effects Modeling: The COMM Model
	5.3 Cache Effects Modeling: The COMM+CACHE Model

	6 Results
	6.1 Application Case
	6.2 Methodology
	6.3 Precision Results
	6.4 Simulation Time
	6.5 Use Case: Experimenting with Cache-Aware Schedulers

	7 Conclusion and Future Work
	References

	Experimental Characterization of OpenMP Offloading Memory Operations and Unified Shared Memory Support
	1 Introduction
	2 Background and Related Work
	3 Benchmark Description
	4 Experimental Evaluation
	4.1 Results on Crusher
	4.2 Results on Summit
	4.3 Results on Perlmutter

	5 Conclusions and Future Work
	References

	OpenMP Reverse Offloading Using Shared Memory Remote Procedure Calls
	1 Introduction
	1.1 Contributions and Limitations

	2 Background
	2.1 Shared Memory

	3 Related Work
	4 Remote Procedure Calls
	4.1 One-to-One Remote Procedure Calls
	4.2 Many-to-Many Remote Procedure Calls
	4.3 Expanding to the SIMT Model
	4.4 Multiple Devices
	4.5 Locking Concerns on GPUs

	5 Reverse Offloading
	5.1 Data Mapping
	5.2 Nowait
	5.3 Remote Calls

	6 Evaluation
	7 Future Work
	8 Conclusion
	References

	Author Index

