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Abstract In this paper, we consider a neural network solution of the inverse problem 
(IP) of magnetotelluric sounding (MTS) which consists in constructing the electrical 
conductivity distribution in the Earth’s interior from the values of the electromagnetic 
field components measured on its surface. It has a high input dimension (thousands 
of features), so it is necessary to reduce the input data dimension to achieve a more 
accurate and stable solution while reducing computational complexity. Neighboring 
measurement points and neighboring frequencies carry similar information dictating 
the need to use a selection method that considers this feature. The present work is 
devoted to the study of a method based on the iterative selection of features with the 
highest correlation with respect to the target variable and the exclusion of features 
with high cross-correlation. This method was compared with the traditional selection 
method, the cross-correlation filter. 
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1 Introduction 

In the solution of many physical problems with neural networks (NN), it is necessary 
to reduce the dimension of the input data [1]. This usually allows one to obtain a more 
accurate and resilient solution, also reducing computational complexity. In addition, 
such data preprocessing improves the generalizing ability of the model. 

Exploration geophysics uses methods based on the measurement of physical fields 
at the Earth’s surface to determine the distribution of some physical quantity in the 
Earth’s interior. Magnetotelluric sounding (MTS) is one of such methods recon-
structing electrical conductivity distribution from the properties of electromagnetic 
fields measured on the surface. However, such reconstruction is an inverse problem 
(IP) which is often ill-posed or ill-conditioned, and this IP has high dimension both 
by input and by output. 

Such problems may be efficiently solved using NN. Starting from more general 
pioneering studies in the beginning of 1990s [2] and the first investigations devoted 
to the NN solution of the IP of MTS [3], subsequent studies of the MTS IP solution 
within the approximation approach differed by increasing complexity of the parame-
terization scheme, increasing dimensionality of the IP, and by various improvements 
in the methods of NN approximation [4–8]. However, the increase in the number of 
input features hampers the efficiency of approximation. Therefore, reduction of the 
input dimensionality of the problem is an important part of building its solution. 

The MTS data is often characterized by multicollinearity. Therefore, a method 
used to select significant input features should take into account the correlation 
between them. There are several methods to detect multicollinearity, and various 
approaches are used to solve this problem [9, 10]. 

Feature selection (FS) is a general approach that chooses the subset of features 
most important for the target variable by removing irrelevant and redundant features. 
The methods most often used for FS in the case of high-dimensional data are filtering 
methods [11]. The approach studied in this article considers a special method of filter 
type. It iteratively selects features with the highest Pearson correlation with the target 
variable and discards features with high mutual correlation. 

In this study, we compare the quality of the NN solution to the MTS IP on the full 
set of input features and on its subsets. These subsets are created using the considered 
selection method, as well as using traditional FS methods, such as cross-correlation 
based selection of significant input features. 

The primary objective of this study is to test the effectiveness of the novel method 
of selecting essential features, whose main contribution is taking into account feature 
multicollinearity, in solving the MTS IP. In addition, we consider determination of the 
optimal parameters of the algorithm, and we compare the results obtained using this 
method with the results of cross-correlation based FS, and with the results obtained 
when neural networks are trained on the full data set.
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2 Problem Statement 

2.1 Parameterization Scheme 

The MTS IP model considered in the present study is an integral part of the general 
model designed for joint application of three physical methods: magnetometry, 
gravimetry, and magnetotelluric sounding. To ensure the possibility of simultaneous 
use, it is necessary that the formulation of the problem was similar for all the phys-
ical methods considered [12]. In this case, such a formulation would consist of 
determining the structural boundaries that separate geological layers with constant 
values of the parameters: magnetization in magnetometry, density in the gravimetry 
problem, electrical resistivity in MTS. 

The considered parameterization scheme was a 4-layer 2D model corresponding 
to the section of the Norilsk region, relevant in the context of ore exploration. The 
first layer modeled a basalt layer, the second and fourth ones—terrigenous-carbonate 
deposits of the Tunguska series, and the third one—gabbro-dolerite massive copper-
nickel-platinum ores. The medium parameterization scheme is shown in Fig. 1, and 
described in more detail in [13–15]. 

The values of the layers resistivity were fixed, i.e. the same for the entire data set. 
The determined parameters were the values of the depths of the boundaries of the 
layers h(y) along the section, the thickness of each layer for each y was greater than 
zero. 

The depth values for each pattern of the training sample were set randomly in 
the range of layer boundaries considered. Next, the direct problem was solved by 
the finite difference method. In this case, the six components of the EM field were 
calculated: the real and imaginary components of the impedance tensor Z (ZYX—H 
polarization and ZXY—E polarization) and tipper W [16, 17]. The calculation was 
made for 13 frequencies ranging from 0.001 to 100 Hz.

Fig. 1 Parameterization scheme 
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2.2 Data 

The data array was obtained by repeatedly solving the direct problem, as stated above. 
For each pattern, the direct 2D problem was solved for random distribution of the 
depths of the boundaries of the layers [18]. 

Thus, the input dimension of the problem was: 

6 field components (taking into account the complex − valued data presentation) 
× 13 frequencies × 31 pickets = 2418 attributes (features) 

It should be noted that due to the geometry and physics of the problem, many 
features are correlated with each other, which is an additional argument in favor of 
FS. 

The output dimension of the problem was: 3 layers × 15 depths = 45 parameters. 
A total of 30,000 patterns were calculated. 

3 Methods of Solving the Inverse Problem 

3.1 The Use of Neural Networks 

In this study, to solve the IP, we use the type of NN called a multilayer perceptron 
(MLP), which is known to be a universal approximator [19–21]. 

Here we apply the approach of autonomous determination of parameters, when a 
separate single-output NN is used to determine each target parameter independently. 
The architecture used was an MLP with a single output and 32 neurons in the single 
hidden layer. To reduce the influence of weights initialization, three NN’s were trained 
in each considered case; the statistical indicators of the solution quality of the 3 NN’s 
were averaged. To prevent overtraining of the NN, training was stopped after 500 
epochs with no improvement in the solution quality on the validation set. 

The initial data set was divided into training, validation and test sets in the ratio 
of 70:20:10. The size of the sets was 21,000, 6,000, and 3,000 patterns, respectively. 

3.2 Description of the Iterative Feature Selection Algorithm 

Traditionally [22, 23], among the methods of selecting essential attributes based 
on supervised training, three groups are distinguished: filter methods, embedded 
methods and wrappers. Filter methods are highly computationally efficient; however, 
feature sets selected by them may be not optimal.
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Here we consider a method based on iterative feature selection (IFS), which takes 
into account multicollinearity of the input features [24]. Hereafter, by “correlation” 
we mean the Pearson correlation. 

As the first step, the algorithm selects the feature with the highest correlation with 
the target variable. As the second step, all features whose correlation with the one 
chosen at the first step was higher than some threshold value are excluded from the 
set. 

This process is repeated either until the features run out, or until there are no 
features left in the initial set whose correlation with the target variable is greater than 
a certain threshold (Fig. 2). 

Thus, the described method has two parameters that need to be set: 

1. The maximum allowable value of correlation with other input features Txx. 
2. The minimum allowable value of correlation with the target Txy. 

It should be noted that the studied algorithm has been already tested by the authors 
on an inverse problem in spectroscopy in their previous study [24], and proved its 
efficiency. A similar FS method is discussed in [25].

Fig. 2 Scheme of the 
iterative feature selection 
algorithm 
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3.3 Application of the Iterative Feature Selection Algorithm 

For efficient implementation of the described IFS algorithm, the absolute value of 
Pearson correlation coefficient between each pair of the input features was calculated. 
A large number of input features, especially neighboring ones, have indeed a high 
degree of mutual correlation. This may indicate redundancy of some features, which 
will be excluded from the feature set using the developed FS method. 

As specified above, the method discussed in this article has two threshold values 
to be set (Txx and Txy). We chose the values of the thresholds at which the number 
of selected features is 600 (~25% of all input parameters). There are several ways to 
achieve this. We used 4 different pairs of threshold values, and then the best ones for 
each of the methods were selected for further consideration. 

4 Results of Solving the Inverse Problem 

The quality of the NN solution of the inverse problem on the full feature set was 
compared with the quality obtained using the IFS algorithm and CC (cross-correlation 
based FS). The CC-based FS method calculates the correlation of each of the input 
features with the target variable and either takes the specified number of features 
with larger correlation values or takes all the features whose correlation with the 
target variable exceeds a pre-defined threshold. The results of comparison of the 
three approaches are presented in Fig. 3. 

The results are provided separately for the real part of the fields, for the imaginary 
part of the fields, and for both parts of input data considered simultaneously. In each 
case, the number of selected features was set to 600 for both IFS and CC methods. 
It should be noted that the fourfold reduction in the number of input features with

Fig. 3 The quality of the solution (root mean squared error) of the inverse problem on the test set 
on the full set of input features (No sel.), for cross-correlation feature selection (CC), and for the 
iterative feature selection algorithm (IFS), for 600 selected features 
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respect to the full feature set, when any of the two FS methods is used, causes also 
a significant reduction in the computational resources needed to train the NN. As 
for the FS procedure itself, both considered methods require computation of the 
correlation values for all the initial features, with their subsequent selection based on 
different types of comparison of the obtained values. This selection stage requires 
comparable numbers of comparison operations for the two methods, so the total 
amount of computational resources required for implementation of the two methods 
is nearly the same. 

The presented results are for the three blocks of the central vertical line, placed 
above each other and equally spaced from the edges of the section. The quality of the 
solution of all methods decreases with increasing layer number (depth). This is due 
to the distortions introduced by the upper layers in the readings for the lower ones. 

5 Conclusions 

Solving the inverse problem of MTS using the IFS algorithm considered in the article 
gives better results than solving this IP on the full set of input features. Another 
popular FS method (by cross-correlation) does not show such good results due to the 
high multicollinearity of this problem. Thus, the IFS algorithm makes it possible to 
reduce the error of solving the IP of MTS with a decrease in the input dimension. 
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