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Abstract. Teamwork is essential in many industries to tackle complex
projects. Thus, the development of teamwork skills is crucial in higher
education. In the classroom, the formation of teams must be fostered
throughout all phases to promote the development of these skills. Sev-
eral criteria for forming teams in the classroom have been proposed,
including Belbin’s role taxonomy or Myers-Briggs type indicator. How-
ever, finding optimal teams or partitions of members into teams is a
highly combinatorial problem that requires of optimization techniques.
This paper presents an integer linear programming model for team for-
mation in the classroom that includes constraints requested by lecturers
and allows for the incorporation of different team evaluation heuristics.
We study the performance and the scalability of the model using different
solvers, conditions, and problem instance types.

Keywords: Teamwork · integer linear programming · team evaluation
heuristics · team formation · optimization

1 Introduction

Increasingly, teamwork prevails in industries to address complex projects that
can consume many resources and require extensive planning and management. In
these scenarios, large-scale projects that cannot be carried out individually often
have to be tackled, requiring the participation of individuals working together.
Therefore, the demand for skills related to teamwork such as communication,
task allocation, leadership, and conflict resolution, is constant.
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In this sense, it is crucial that competencies related to teamwork can be devel-
oped in higher education degrees. In fact, the importance of future professionals
relies on their technical and soft skills, among which teamwork is included [22].
Teamwork requires skills related to the ability to communicate to express and
defend ideas in front of a group of peers, leadership, or efficient time manage-
ment, among many others [15].

To promote the personal development of team members in a classroom, teams
must be structured in a way that allows for a satisfactory experience. In the liter-
ature, several approaches for forming teams in the classroom have been proposed,
ranging from simple ones such as grouping students according to their average
grade, or the time they have available for work, to more complex approaches
based on personality and behavior such as the Belbin’s role taxonomy [5], the
Myers-Briggs type indicator [17] (MBTI) or the Big five inventory [13].

The problem of finding optimal teams or partitions of members into teams is
known as the team formation problem. Finding an optimal partition of students
into teams is a highly combinatorial problem that is both difficult to be solved
manually and using algorithms [14]. In fact, many variants of the team formation
problem are NP-hard problems [14]. Thus, the use of optimization techniques
is necessary to tackle this problem appropriately. Typically, the team formation
problem relies on a function that is capable of estimating team performance
prior to carrying out the task at hand. This function can be named as the team
evaluation heuristic, as it approximates the performance of the team by relying
on different criteria.

In the literature, several authors have proposed the use of heuristic and meta-
heuristic algorithms to tackle the team formation problem in the classroom. For
instance, Yannibelli et al. [29] proposed a genetic algorithm based on crowding to
group students based on Belbin’s role taxonomy. In another study, Andrejczuk et
al. [3] proposed an anytime heuristic to tackle large instances of team formation
based on personality traits, congeniality, and competences. The authors in [4,26]
propose a genetic algorithm for dividing students into teams based again on Bel-
bin’s role taxonomy. The article [11] proposes a multi-objective genetic algorithm
that aims to foster homogeneity across groups and heterogeneity within groups.

While heuristics and metaheuristics are necessary to tackle larger instances,
they may not be advisable for conducting experiments to compare the effec-
tiveness of several team evaluation heuristics in the classroom. As mentioned,
team evaluation heuristics are functions that estimate team performance based
on several criteria. Due to the small number of teams that one may form in the
classroom, one should reduce variability in the study to make the most of avail-
able data. Heuristics and metaheuristics may introduce noise into the study due
to their approximate nature, and exact methods such as mathematical program-
ming may be preferred. Ideally, exact methods should be as scalable as possible
to ensure their use in large classrooms.

Algorithms for integer linear programming (ILP) are well-suited for obtain-
ing optimal solutions to complex problems due to their ability to handle discrete
decision variables [12]. These types of algorithms have been successfully applied
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to various similar optimization problems, such as resource allocation [28], match-
ing of students to supervisors [24], task assignment to agents based on their
capabilities [8], project allocation to individuals according to their skills [7,23],
or grouping of students for peer assessment [27]. These algorithms allow us to
obtain optimal solutions to problems, making them suitable for situations where
one wants to conduct experiments to compare several team evaluation heuristics.

In this work, we propose a linear integer programming model for team for-
mation. The model allows for the incorporation of various constraints (e.g., team
size, members who should be placed together or not, etc.) that commonly arise in
a classroom setting. In addition to this, the model is generic and it can incorpo-
rate several team evaluation heuristics. In this article, we study the performance
of the model under two team evaluation heuristics: one based on Belbin’s role
taxonomy [5] and another based on Myer-Briggs Type Indicator [17]. We focus
on these two criteria as they have been widely employed in the literature [2–
4,9,26]. We present experiments to compare the performance and scalability of
implementations of this model under different non-commercial solvers.

The rest of the paper is organized as follows. Section 2 briefly formalizes the
team formation problem in the classroom and introduces two team evaluation
heuristics employed in this study for creating problem instances. Then, Sect. 3
presents the mathematical model for team formation. Section 4 provides the
evaluation of the model by comparing different solvers. Finally, Sect. 5 highlights
some concluding remarks and draws some future work lines.

2 Team Formation Problem in the Classroom

The team formation problem in the classroom typically aims to partition a set
of students into disjoint teams. Let us briefly formalize the problem.

Given a set of students S = {s1, . . . , sp}, we aim to form teams whose sizes
are in the set L = {l1, . . . , lr}.

We define N ⊂ S × S as the set of pairs of students who should not be in
the same team for pedagogical issues. Similarly, we define C ⊂ S × S as the set
of pairs of students who should be in the same team. We define T = {t1, . . . , tq}
as the set of feasible teams. A team ti will be feasible if and only if l ∈ L and it
is satisfied that ∀sj , sk ∈ ti, (sj , sk) /∈ N .

The goal of team formation problems in the classroom is finding a partition of
students into teams that is optimal. Typically, the optimality of a team is linked
to its performance. However, exactly knowing a team’s performance prior to
the execution of their tasks is not possible. Therefore, team formation problems
typically employ a heuristic to estimate or serve as a proxy function for team
performance (i.e., the team evaluation heuristic). One of the common heuristics
found in the literature is using team heterogeneity as an approximation to future
team performance. Heuristics based on the Belbin taxonomy and the Myer-
Briggs indicator have been a common approach due to their foundations on
management and psychology theories. In this article, we will employ two team
evaluation heuristics based on both studies to analyze the performance of our
ILP model.
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2.1 Belbin Team Evaluation Heuristic

Belbin’s role taxonomy defines one of the most important theories regarding
successful team dynamics [5]. In this theory, Belbin identifies eight behavioral
patterns that are required for a successful team. He called these behavioral pat-
terns as roles. A team member could play different roles within the team as a
result of the emergence of different behaviors at different times. That is, there
is no limitation on the number of roles that may be played by an individual.
Belbin stated that a good balance in the distribution of roles within a team
showed more satisfactory team-level results than teams with overrepresented or
lacking roles. To obtain the predominant roles of each member, the Belbin Self-
Perception Inventory is used [16]. This inventory calculates a numerical score for
each of the roles for each team member.

The heuristic defined for this theory considers that a team member has a
predominant role when they obtain a high or very high score associated with
this role, according to the salience level defined by Partington and Harris [18].

If bj,k is the score obtained by student sj in role k, and βk is the threshold for
which it is considered high, then we say that the team acquires a positive score in
role k if any of the members surpass or equalize threshold βk. We formalize this
score as fk(ti). The total score of the team f(ti) is the sum of the scores obtained
for each of the roles normalized by the maximum to be achieved. Formally, both
are defined as follows:

fk(ti) =
{

1 if ∃sj ∈ ti, bj,k ≥ βk

0 otherwise (1)

f(ti) =
1
8

×
8∑

k=1

fk(ti)

2.2 MBTI Team Evaluation Heuristic

The Myers-Briggs Type Indicator (MBTI) is an instrument that focuses on iden-
tifying an individual’s personality in four different dimensions [17]. Each of these
dimensions is formed by 2 traits that are opposite to each other, and whose
combination defines 16 different personalities. The MBTI inventory allows to
obtain a score for each of these four dimensions, determining the personality
trait assigned to an specific team member in these dimensions.

The heuristic used is a normalized version of the one presented by Pieterse
et al. [21]. In this heuristic, we will assume that k is one of the four dimen-
sions (introversion-extraversion, sensation-intuition, thinking-feeling, judging-
perceiving) and k1 and k2 are the traits in that dimension (e.g., introversion and
extraversion for the introversion-extraversion dimension). In addition, γk(sj , kl)
is a function that returns 1 if student sj shows the trait kl in dimension k. The
heuristic applied to a specific dimension and team will return 0 if all members
show the same personality trait; 1 if at least one member presents a different
trait compared to the other members; and 2 otherwise. The final score of a team
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is represented as the sum of the scores obtained for each dimension normalized
by the maximum score to be achieved:

fk(ti) =

⎧⎨
⎩

0 if ∃kl,
∑

sj∈ti
γk(sj , kl) = |ti|

1 if ∃kl,
∑

sj∈ti
γk(sj , kl) = 1

2 otherwise
(2)

f(ti) =
1
8

×
4∑

k=1

fk(ti)

3 Integer Linear Programming Model

In this section, we describe the formulation of the ILP model that seeks to maxi-
mize the sum of scores of teams formed in the classroom. Apart from constraints
that ensure that students are partitioned into disjoint teams, the model is based
on some common constraints that lecturers and teachers want to employ when
forming teams in the classroom:

– Constraints to put two or several students together in the same team.
– Constraints to avoid two or several students being placed into the same team.
– Constraints to control the size of the teams.
– Constraints to control the number of teams formed for each team size.

The model assumes that all feasible teams ti ∈ T have been generated, as it
creates a binary decision variable for each of the teams that can be formed in
the classroom. In addition to this, and due to the fact that decision variables
represent the choice of specific teams, the model can incorporate any team eval-
uation heuristic into the objective function. Let L = {l1, . . . , lr} define the set of
allowed team sizes for the team formation. The ILP model is defined as follows:

max
∑
ti∈T

f(ti) × δi (3a)

s.t.∑
ti∈T,sj∈ti

δi= 1 ∀sj ∈ S (3b)

∑
ti∈T,sj ,sk∈ti

δi= 1 ∀(sj , sk) ∈ C (3c)

ml ≤
∑

ti∈T,|ti|=l

δi≤ Ml ∀l ∈ L (3d)

where, on the one hand, δi is a binary decision variable that indicates whether
feasible team ti is chosen or not for the solution. Specifically, its value will be
1 when the team participates in the team structure and 0 otherwise. On the
other hand, constraint 3b ensures that a student is assigned to precisely one
team, ensuring the partition into disjoint teams. Next, constraint 3c ensures
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that students that should go in the same team are assigned to the same team.
Finally, constraint 3d limits allowed team sizes, and the number of teams for each
allowed team size with lower and upper bounds ml and Ml respectively. Finally,
as shown in 3a, f(.) is a function that numerically estimates the performance
or quality of a team. For instance, it could represent any of the team evaluation
heuristics presented in Sect. 2. With respect to the constraint that precludes
students from being placed on the same team, this can be easily implemented
without any formal constraint by not generating decision variables that represent
teams with incompatible members.

4 Experiments

In this section, we show the different experiments that we conducted to study
the scalability of the proposed model under different non-commercial solvers and
conditions. The main goal of the experiments is to assess the scalability of the
ILP model under different conditions. First, we introduce the solvers that will
be employed in the experiments, then we describe the problem instances used in
the evaluation, and, finally, we describe the results obtained in the experiments.

4.1 Solvers

The solvers that will be employed in the study are non-commercial solvers. The
reason behind this is that team formation problems in the classroom are common
in educational settings and, therefore, many educational institutions may not
have access to commercial solvers. The solvers employed in the experiments are:

– SCIP [6] is one of the fastest academic solvers for mixed integer programming
and mixed integer nonlinear programming.

– COIN-OR Branch and Cut (CBC) [10] is an open-source solver that allows
solving linear programming and mixed integer programming problems, and
is a variant of the branch and bound technique, which among its operations
includes adding cutting planes to search for the solution more efficiently.

– CP-SAT [20] is a solver designed to solve integer programming problems that
consists of a Lazy Clause Generation solver over a SAT solver. Lazy Clause
Generation is a search technique in Constraint Programming (CP) that adds
explanation and learning to a propagation-based solver, which is responsible
for narrowing down the range taken by the decision variables.

The implementation of the mathematical model has been carried out using
the Google ORTools library [20]. First, we are interested in verifying that all
solvers find the same solution for the same problem. Second, we aim to validate
the scalability of the solvers as the problem size increases. Finally, we want to
test if the team evaluation heuristic influences the execution time.
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Table 1. Average execution time and percentage of instances solved optimally by each
solver for each combination of classroom size (20, 30, 60), team size (3 to 5) and team
evaluation heuristic (Belbin and MBTI)

Belbin MBTI

Sizes CBC CP-SAT SCIP CBC CP-SAT SCIP

Classroom Team Time % Time % Time % Time % Time % Time %

4 0.11 100 2.82 100 0.77 100 0.12 100 2.97 100 0.59 100
20

5 0.49 100 4.84 100 3.34 100 0.53 100 5.01 100 3.30 100

3 0.08 100 1.71 100 0.77 100 0.08 100 1.79 100 0.74 100
30

5 15.93 100 65.52 100 185.00 100 17.55 100 63.10 100 194.01 100

3 1.07 100 15.10 100 11.30 100 1.04 20 15.37 20 14.19 20

4 92.79 100 443.16 100 2081.971 100 103.22 20 491.34 20 1987.56 2060

5 - 0 - 0 - 0 - 0 - 0 - 0

4.2 Problem Instances

To compare the performance of different solvers, several problem instances have
been created. For this, an original dataset was used containing a total of 260
anonymous students from the Tourism degree at the Polytechnic University of
Valencia. The dataset includes the results of their Belbin and MBTI tests.

Next, we generated synthetic classrooms by sampling this dataset. This
allowed us to create different problem instances with characteristics similar to
those that would be found in real classrooms. These instances have been used to
carry out experiments and evaluate different solutions under a variety of condi-
tions.

Specifically, the tests have been performed on 30 randomly generated
instances for 3 different classroom sizes: 20, 30, and 60 students. Thus, the
performance of the different solvers will be observed on a total of 120 different
instances in terms of execution time and the solution values obtained. Each of
the 120 generated instances can be solved with different constraints regarding
the team size. However, it was defined that the possible teams to be formed
will have a minimum of 3 students and a maximum number of 5. In particular,
experiments have been carried out by just allowing team sizes of 3, 4, and 5
students.

4.3 Results

The experiments were carried out on a machine with 4 cores and 8 GB of RAM.
Each type of solver has been executed a total of 5 times on each instance to
capture statistical differences in the execution time of the different solvers.

The methodology used to obtain the fastest solver follows a multiproblem
analysis methodology, which is common in the field of optimization with meta-
heuristics [19]. More specifically, we have carried out an analysis for each family of
problems. In this context, a family of problems combines classroom size, allowed
team size, and team evaluation heuristic. First, we obtain the average execution
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time that each solver has taken to solve each prospective instance. Each family
of problems consists of 30 instances. Therefore, for each subproblem and solver
we obtain 30 measures (i.e., the average execution time of the solver for each
of the 30 instances). Then, we employ a non-parametric test to compare the
execution time of the three solvers for each of the subproblems. More specifi-
cally, we employ the Friedman test. The Friedman test is the extension for more
than two populations of the Wilcoxon signed-rank test, and it either assumes
that the distributions are identical (null hypothesis) or at least two solver exe-
cution times are different from each other. The Wilcoxon signed-rank test with
corrected p-values is employed in case of rejecting the null hypothesis to detect
pairs of execution times that are different from each other.

Table 1 shows the experiments’ results. The table shows the average execution
time, the percentage of problem instances solved optimally for each solver, and
a combination of classroom size, team size, and team evaluation heuristic. For
each family of problems, we have underlined the statistically better results than
the rest using the methodology described above.

First, it is important to emphasize that the solutions obtained by different
solvers are the same for a given problem instance and the same combination of
classroom size, team size, and team evaluation heuristic. Therefore, we consider
that all solvers have achieved the optimal solution whenever the problem could
be solved.

As observed, CBC is generally the fastest solver of the three solvers for the
instances that we tested. In fact, the results suggest that CBC is orders of
magnitude faster than SCIP and CP-SAT. The difference between CBC and the
other two solvers is also statistically significant, as suggested by the Friedman
and Wilcoxon signed-ranked posthoc tests. Of course, the fact that CBC is faster
applies only to the type of problems and the model employed in the experiments.
Other solvers may provide better results for other types of problems or models. A
fact that seems to stem from the experiments is the necessity to test a model for
the team formation problem with different solvers, as there seem to be significant
and large differences among different solvers.

As the reader may have observed, the number of decision variables in the
proposed model directly depends on the number of teams that can be formed.
If no other constraint is provided, this depends on the classroom size and the
number of allowed team sizes. We carried out some additional experiments with
extra team sizes to analyze how the computation time of the model grows with
the number of decision variables. The results of this experiment can be found in
Fig. 1. More specifically, the figure shows the average computation time for CBC
and the 95% confidence interval for instances with a varying number of decision
variables. Please, note that the number of decision variables in the figure is
expressed in thousands. The figure shows that the model’s execution time seems
to grow exponentially with the number of decision variables. This is an expected
behavior, as many team formation problem variants are NP-hard problems [14].
In the results, some solvers could not solve some of the larger instances, as it
stems from the percentage of instances solved in Table 1. In fact, the problems
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Fig. 1. Average computation time per instance for CBC and 95% confidence interval
depending on the number of decision variables

with 60 students and teams of size 5 could not be solved by any of the solvers,
given the computational resources available.

This exponential behavior may make it challenging to solve larger problem
instances in a reasonable time with common hardware. For instance, instances
with 80 to 100 students, which may be found in some Spanish university class-
rooms. This limitation is in line with this type of models, as mentioned by other
authors [1,25]. That opens the room to study alternative ILP formulations that
can scale better for larger instances.

Another insight provided by the experiments is related to the two types of
team evaluation heuristics employed. While the execution time seems similar for
both heuristics in smaller instances, some instances for MBTI seem harder to
solve for large instances. For instance, only 20% of the problem instances could be
solved optimally with the given resources for 60 students and team sizes of 3 and
4 students, respectively. This result may indicate that the distribution of traits
in students may influence the resolution time of models. Thus, the distribution
of traits may also influence the scalability of the model and the most appropriate
solver for solving the problem.

5 Conclusions

In this paper, we have proposed an integer linear programming model for solving
the team formation problem in the classroom. The model incorporates several
common constraints in the classroom: disjoint teams, allowed team sizes, stu-
dents that should be paired together, and students that should be placed in
different teams. The objective function of the problem is general, and it can be
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extended to take into consideration different criteria. In the experiments car-
ried out in this paper, we employ two team evaluation heuristics that foster
heterogeneity of Belbin’s role taxonomy and MBTI.

We have conducted experiments with problem instances generated from a real
dataset of students’ traits regarding Belbin’s role taxonomy and MBTI. More
specifically, we have created several instances with different classroom sizes. Each
instance has been solved employing each of the two team evaluation heuristics,
different allowed team sizes, and different non-commercial solvers. The results
point out several insights.

Regarding execution time, there may be significant differences between avail-
able solvers, making it important to study and identify the most appropriate
solver for the variant of team formation in the classroom problem. Another
insight comes from the fact that the model’s execution time rapidly grows with
the problem size. Specifically, based on the resources used in our experiments,
no solver was able to solve problem instances with a class size of 60 and a team
size of 5. This indicates that it necessary to study other models that scale better
with larger instances. Exact methods like the one proposed in this paper are
necessary as they obtain the optimal solution, allowing us to compare various
team evaluation heuristics. Thus, it is necessary to study alternative formula-
tions that scale better with the size of the problem for specific team formation
in the classroom problems. This is especially the case for large classroom sizes
like the ones found in many Spanish universities.

The experiments also suggest that despite the fact that both team evalua-
tion heuristics aim for heterogeneity, the distribution of traits among students
may influence the hardness of the problem instance. Therefore, different solvers
and models may perform differently under different team evaluation heuristics
that foster diversity. In future work, we also plan to propose several integer
linear problems for team formation in the classroom problem and study their
appropriateness for different problem types.

Acknowledgement. This work was partially supported with grant DIGITAL-2022
CLOUD-AI-02 funded by the European Comission and grant PID2021-123673OB-
C31 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making
Europe”.

References

1. Aguiar, A., Pinheiro, P.R., Coelho, A.L.V., Nepomuceno, N., Neto, Á., Cunha,
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