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Abstract. Renewable energies are currently experiencing promising
growth as an alternative solution to minimize the emission of pollutant
gases from the use of fossil fuels, which contribute to global warming.
To integrate these renewable energies safely with the grid system and
make the electric grid system more stable, it is vitally important to
accurately forecast the amount of wind power generated at specific wind
power generation sites and the timing of this generation. Deep learning
approaches have shown good forecasting performance for complex and
nonlinear problems, such as time series wind power data. However, fur-
ther study is needed to optimize deep learning models by integrating
multiple models with hyperparameter optimization, to attain optimal
performance from these individual models. In this paper, we propose
a hybrid CNN-LSTM model for wind power forecasting in Ethiopia.
Bayesian optimization is applied to tune the hyperparameters of the indi-
vidual learners, including 1D-CNN and LSTM models, before building
the hybrid CNN-LSTM model. The proposed model is tested on three
case study wind power datasets obtained from the Ethiopian Electric
Power Corporation. According to the MAE, RMSE, and MAPE evalua-
tion metrics, the hybrid model performs significantly better than bench-
mark models, including ANN, RNN, BiLSTM, CNN, and LSTM models,
for all case study data.

Keywords: hybrid models · time series · renewable energies ·
forecasting

1 Introduction

Renewable energy has shown promising growth in recent years due to its sustain-
ability, environmentally friendly nature, and abundant availability as a source of
electric energy [22]. Among various types of renewable energy, wind power has
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demonstrated remarkable growth as one of the most effective strategies to com-
bat climate change and meet greenhouse gas emission targets in many countries.
Governments and researchers strongly encourage the production and consump-
tion of wind energy [22]. Accurately quantifying the amount of renewable energy
production, particularly wind energy generation, is crucial for the safe integra-
tion of renewable energy into the grid system and to enhance efficient power
grid operation [3]. However, wind power generation is inherently random, non-
linear, non-stationary, and highly intermittent, making its integration with the
grid system challenging.

Despite significant renewable energy potential in Ethiopia, including hydro-
electric, wind, and geothermal energy, current energy production is limited, and
the energy supply falls short of rising energy consumption demands [24]. Further-
more, the absence of electric load estimation and modeling methods contributes
to energy fluctuations and power interruptions that affect electric energy trans-
mission and distribution systems [15]. As a result, energy outages and power
interruptions affect all customer categories, increasing defensive expenditures
due to unreliable and unstable energy supply. Therefore, accurate prediction of
wind power generation can play a key role in improving the reliability and stabil-
ity of the power system [7] and enable safe integration of produced wind power
into the grid system [4].

Recently, deep learning has shown remarkable performance in various appli-
cations, including renewable energy forecasting, due to its ability to handle
nonlinear, non-stationary, spatiotemporal data generated from energy systems.
Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN),
Deep Belief Networks (DBN), and Multilayer Perceptron (MLP) are among the
well-known and widely used deep learning algorithms, with Long Short-Term
Memory (LSTM) standing out in the context of time series forecasting [6].

To improve the accuracy of energy forecasting in the renewable energy sector,
various artificial intelligence techniques have been applied. An example of this
is the Bayesian optimization-based artificial neural network model developed
in [19]. Additionally, the precision of short-term forecasting has been enhanced
by utilizing hybrid deep learning models that integrate various neural network
architectures. Several studies have shown that these hybrid models outperform
single models in various applications [11,19], and [20], and have been successful
in accurately predicting wind speed and evapotranspiration [7,27].

This paper aims to evaluate the effectiveness of a hybrid model of 1D-CNN
and LSTM for forecasting wind power time series data in Ethiopia for the first
time. The model leverages CNN’s feature extraction capability from nonlinear
wind power time series data and the potential of LSTM in learning high temporal
time series data. The paper’s contributions can be summarized as follows:

1. The optimal hyperparameters were determined using Bayesian optimization
algorithm to obtain the optimal performance of the proposed model.

2. A CNN-LSTM hybrid model was developed for day-ahead wind power fore-
casting by using the effective feature extraction capabilities of 1D-CNN and
forecast generalization of LSTM models
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3. The effectiveness of a hybrid of CNN-LSTM model against base line models
such as 1D-CNN, LSTM, ANN and BiLSTM is verified for wind power fore-
casting using the metrics of mean absolute error (MAE), root mean square
error (RMSE), and mean absolute percentage error (MAPE).

2 Related Works

Industries and institutions can generate a considerable volume of data on their
day-to-day operations by introducing sensor devices [18]. The energy sector,
including renewable energy, is among the few that produces data on a timely
basis regarding customer energy consumption, such as minute, hourly, and daily
usage. Furthermore, wind farms’ Supervisory Control and Data Acquisition
(SCADA) systems collect data related to wind power at specified time intervals.
This type of data is known as time-series data, representing a series of periodic
measurements of a variable. Specifically, time series data generated from energy
systems is nonlinear and non-stationary, exhibiting not only temporal correlation
but also spatial patterns [8].

The energy sector, particularly in the field of renewable energy forecasting,
has made significant advancements with the utilization of Artificial Intelligence
(AI) methods such as machine learning and deep learning techniques [1,21].
These algorithms have been extensively used to forecast various weather param-
eters. Furthermore, a combination of different AI techniques has emerged as a
preferred approach in recent times to develop models that perform better than
individual models.

Several studies have shown that hybrid deep learning models outperform
individual or single models [10]. To prove this, Goh et al. [5] investigated a hybrid
of a convolutional neural network (1D-CNN) and a long short memory network
(LSTM). They obtained an improvement of 16.73% for single-step prediction
and 20.33% for 24-step load prediction. Additionally, [11] implemented a hybrid
1D-CNN and BiLSTM model to enhance wind speed prediction accuracy and
address uncertainty modeling issues. Results indicated that the proposed hybrid
approach achieved a 42% improvement over reference approaches. Another study
by [9] proposed the combination of Ensemble Empirical Mode Decomposition
(EEMD) and BiDLSTM system for accurate wind speed forecasting.

Furthermore, Wang et al. [25] proposed a 3-hour ahead average wind power
prediction method based on a convolutional neural network. The authors in [26]
introduced a deep learning approach based on a pooling long short-term mem-
ory (LSTM) based convolutional neural network to predict short- and medium-
term electric consumption. Results revealed that the proposed method improved
short- and medium-term load forecasting performance. Authors in [20] devel-
oped the CNN-LSTM-LightGBM-based short-term wind power prediction model
by considering various environmental factors. Moreover, a hybrid deep learning
model to accurately forecast the very short-term (5-min and 10-min) wind power
generation of the Boco Rock wind farm in Australia was proposed by Hossain
et al. [7]. However, the authors used the Harris Hawks Optimization algorithm
to improve the proposed model.
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Another hybrid model was introduced by J. Yin et al. [27] to forecast short-
term (1–7-day lead time) evapotranspiration (ET0). The authors used a hybrid
Bi-LSTM that combines BiLSTM and ANN using three meteorological data
(maximum temperature, minimum temperature, and sunshine duration). The
best forecast performance for short-term daily ET0 was found.

Lu et al. [14] proposed a hybrid model based on a convolutional neural net-
work and long short-term memory network (CNN-LSTM) for short-term load
forecasting (STLF). The authors noted that forecasting accuracy can be notably
improved. T. Li et al. [13] introduced a hybrid CNN-LSTM model by integrat-
ing the convolution neural network (CNN) with the long short-term memory
(LSTM) neural network to forecast the next 24-hour PM2.5 concentration in
Beijing, China. Results indicated that the proposed multivariate CNN-LSTM
model achieved the best results due to low error and shorter training time.

3 Methods

The section presents the main parts of the methodology carried out in the pro-
posed hybrid deep learning model, the CNN-LSTM model, for wind power fore-
casting. The main features of the methodology are presented in Fig. 1.

In particular, a description of the selected deep learning algorithms, CNN
and LSTM, used to build the hybrid model, data preprocessing, hyperparameter
tuning, model training, and evaluation are described in this section. The study
uses three wind power datasets generated from different wind farm sites as case
study data. Each dataset is divided into training and test sets, while maintaining
the order of the time series data. The first three years of data are used to build
and fit the model, and the final one-year data is used to assess the model’s
performance. Hyperparameter tuning is performed on the training data using a
k-fold cross-validation approach.

3.1 Deep Learning Models

Deep learning algorithms have emerged as one of the most widely used
approaches in artificial intelligence in the last years. One of the key advan-
tages of deep learning is its ability to automatically learn features and extract
multi-level abstract representations from complex data sets, setting it apart from
other machine learning models. In particular, deep learning models such as those
discussed in Sect. 3.1 have demonstrated better performance in handling large
and complex data, including image processing, pattern extraction, classification,
and time series forecasting [12].

RNNs are a type of deep learning method that is particularly effective in han-
dling large datasets containing temporal dependencies. RNNs can learn sequen-
tial data by recursively applying operations during the forward pass and using
backpropagation through time for learning. As such, RNNs have been studied
for many real-world applications that generate sequential and time series data,
including speech synthesis, natural language processing, and image captioning
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[17]. However, a challenge for RNNs is long-term dependency, which leads to
the vanishing gradient problem as the gap between relevant information and the
point where it is needed grows [17]. To address the limitations of RNNs, LSTM
and Gated Recurrent Unit (GRU) techniques were introduced. These methods
can retain information over long periods, allowing for processing complex and
sequential data. LSTM is especially notable for its ability to handle time series
forecasting. The main deep learning algorithms involved in the hybrid model
CNN-LSTM, CNN and LSTM respectively, are briefly described in the following
subsections.

Fig. 1. General scheme of the methodology including CNN-LSTM hybrid model.

CNN. This type of deep learning algorithm mimics humans’ visual perception
processing systems. They have become the most widely used and extensively
studied deep learning method for tasks such as computer vision, image segmen-
tation, classification, and natural language processing, demonstrating remark-
able performance [5]. Additionally, CNNs have recently gained attention from
researchers as a solution for time series forecasting problems such as wind power
and solar radiation [8].

LSTM. This type of deep learning algorithm was developed to solve the van-
ishing gradient problem in RNN by introducing an efficient memory cell that
can handle long-term dependencies [2]. The memory cells in LSTM networks
can retain the previous information for the next learning step. In addition to the
cell unit, LSTM includes three gate structures: the input gate, forget gate, and
output gate [16]. The main function of these gates in LSTM layers is to control
the flow of data into and out of the cell state. The forget gate, which consists of
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sigmoid activation nodes, determines which previous states should be retained
and which ones should be discarded [23].

This paper proposes a hybrid model that combines a one-dimensional con-
volutional neural network (1D-CNN) and LSTM, as shown in Fig. 2. The 1D-
CNN is capable of extracting meaningful features from wind power time series
data, and the LSTM network can leverage long-term dependencies among the
extracted features to produce improved prediction results.

Fig. 2. Hybrid of 1D-CNN-LSTM architecture.

3.2 Data Preprocessing

For this study, the dataset was obtained with the permission of the Ethiopian
Electric Power Corporation. The source dataset was collected from three groups
of wind power generation plants managed by the corporation. For all groups of
wind power data, the time resolution is the same ranging from 9 February 2019
to 25 July 2022, referred by Dataset 1, Dataset 2, and Dataset 3. The wind
power plants from which data is generated is located just outside Adama Town
in Oromia Regional State of Ethiopia, which is 95 km southeast of Addis Ababa,
the capital city of Ethiopia. For further information, the dataset used to estab-
lish the findings of this paper is available at https://github.com/DataLabUPO/
WindPower HAIS23.

To improve the performance of the proposed model, we performed data pre-
processing, which included handling missing values and removing duplicates.
The dataset must be transformed into favorable range values for deep learning
model training to effectively learn the input data. In this case, the dataset is
scaled into (0,1), which will improve computation and model convergence speed.
The min-max normalization method was used to transform the data into the
range (0,1), as expressed by Eq. 1.

https://github.com/DataLabUPO/WindPower_HAIS23
https://github.com/DataLabUPO/WindPower_HAIS23
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n =

(
X0 − Xmin

)

Xmax − Xmin
(1)

where n represents the normalized values of X, while X0 represents the current
value of the variable X. Xmin and Xmax refer to the minimum and maximum
data points for the variable X in the input dataset.

3.3 Performance Evaluation

Different evaluation techniques, such as MAE (Eq. 2), RMSE (Eq. 3), MSE
(Eq. 4), and MAPE (Eq. 5), have been used to determine the prediction per-
formance of trained models.

MAE =
1
n

n∑

i=1

|y − ŷ| (2)

RMSE =

√√
√
√ 1

n

n∑

i=1

(
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)2

(3)

MSE =
1
n

n∑

i=1

(
y − ŷ

)2

(4)

MAPE =
1
n

n∑

i=1

|y − ŷ|
y

∗ 100 (5)

where y and ŷ represent the actual and predicted values, respectively. In addition,
n represents the total number of observations used to train the model.

3.4 Analysis and Result Discussion

In order to develop the hybrid CNN-LSTM model for wind power forecasting,
it is crucial to determine the optimal hyperparameters. In this study, we define
the range and type of hyperparameters for each deep model including 1D-CNN
and LSTM models within their respective hyperparameter spaces. The best com-
bination of optimal hyperparameters was determined using the Bayesian opti-
mization algorithm and some of the optimal values found for each model are
not the same despite we define the same hyperparameter space and types such
as learning rate, activation function, etc. For example, hyperparameters space,
parameter type, and optimal values searched for 1D-CNN and LSTM models are
shown in Table 1.

After searching for the optimal parameters for each deep learning model, 1D-
CNN and LSTM models were defined in intercorrelated sequence layers. In the
first learning phase, the extraction of time series features was achieved using the
1D-CNN convolution layer. Learning the temporal correlation of the time series
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Table 1. Hyperparameters used for the proposed hybrid CNN-LSTM model.

Model Parameter name Types/Range values Optimal value selected

1D-CNN Number of filters [32, 64, 128, 256] 64

Kernel size [2, 3, 4, 5] 3

Dropout rate [0.1, 0.2, 0.4, 0.5] 0.1

Activation function [relu, tanh, Linear] relu

pool type [MaxPooling1D,AveragePooling1D] MaxPooling1D

n neurons at dense layer [20, 30, 40, 50] 40

Epoch [32, 64, 128, 260] 64

Batch size [20, 30, 40, 50] 40

Learning rate [0.0001, 0.001, 0.01, 0.1] 0.001

Optimizer [RMSProp,Adam,Adadalta] Adam

LSTM Activation function [relu, tanh, Linear] tanh

Dropout rate [0.1, 0.2, 0.4, 0.5] 0.1

n neurons at hidden layer [20, 30, 40, 50] 40

Optimizer [RMSProp,Adam,Adadalta] RMSProp

Epoch [32, 64, 128, 260] 64

Batch size [20, 30, 40, 50] 40

Learning rate [0.0001, 0.001, 0.01, 0.1] 0.01

Table 2. Forecasting performance of deep learning models using MAE, RMSE, and
MAPE metrics on training and test data.

Dataset Model Training Testing

MAE RMSE MAPE (%) MAE RMSE MAPE (%)

Dataset 1 ANN 0.4791 0.5453 4.531 0.5462 0.6167 2.6550

RNN 0.0679 0.0914 1.3477 0.0818 0.1031 1.1363

1D-CNN 0.0596 0.0774 1.3740 0.0679 0.0853 1.1737

LSTM 0.0586 0.0792 1.2552 0.0671 0.0845 1.2552

BiLSTM 0.0589 0.0791 1.1188 0.0655 0.0835 1.0726

CNN-LSTM 0.0507 0.0685 1.1262 0.0634 0.0809 1.1409

Dataset 2 ANN 0.1899 0.2361 1.9730 0.1998 0.2396 1.7481

RNN 0.0967 0.1216 1.5542 0.1051 0.1247 1.8984

1D-CNN 0.0663 0.0900 1.0412 0.0761 0.0970 1.1553

LSTM 0.0681 0.0922 1.0427 0.0690 0.0883 1.1358

BiLSTM 0.0683 0.0925 1.1188 0.0693 0.0889 1.1302

CNN-LSTM 0.0572 0.0771 1.0850 0.0678 0.0882 1.0482

Dataset 3 ANN 0.2639 0.3390 2.3053 0.1349 0.1708 1.6200

RNN 0.1161 0.1526 1.4745 0.1135 0.1416 1.4356

1D-CNN 0.1026 0.1336 1.3590 0.1048 0.1327 1.1482

LSTM 0.1098 0.1434 1.4502 0.1057 0.1311 1.2454

BiLSTM 0.1106 0.1406 1.2073 0.1006 0.1284 1.1405

CNN-LSTM 0.0874 0.1133 1.2107 0.0991 0.1264 1.1003
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data was performed in the second learning phase. Finally, the fully connected
layer produced the predicted output, as defined in the last layer.

Table 2 presents the results of a day ahead wind power prediction using the
hybrid deep learning model that combines 1D-CNN and LSTM models for the
three wind power datasets. Using optimal hyperparameter configurations, the
proposed CNN-LSTM model was compared against four individual deep learning
models, including simple RNN, LSTM, 1D-CNN, and BiLSTM. Based on the
evaluation results of MAE, RMSE, and MAPE presented in Table 2, it can be
observed that the shallow ANN exhibited the worst performance with the highest
MAE and RMSE error values of 0.4791 and 0.5451, respectively, on the training
data for all three cases. Similarly, the ANN performed poorly on the test data
with the largest MAE and RMSE error values of 0.5461 and 0.6167, respectively,
followed by the inferior performance of the RNN models on both the training and
test data compared to the rest of the deep learning models (LSTM, BiLSTM,
1D-CNN) and CNN-LSTM, as summarized in Table 2. More importantly, based
on the MAE and RMSE evaluation metrics, the CNN-LSTM model exhibits
the lowest error on both the training and test data for all case study datasets
used in this paper. From this, we can conclude that the combination of CNN-
LSTM enhanced by the hyperparameter tuning approach outperforms the single
optimized deep learning models and achieves excellent performance for the non-
linear and highly intermittent wind power forecasting problems.

Additionally, Fig. 3 displays the average MSE error values of all models on
the three wind power datasets analyzed in this study. The results indicate that
the ANN model had significantly larger error values for the MSE metric com-
pared to the other deep learning models. The results demonstrate the capability
of deep learning models in learning the nonlinear and complex wind power data
as compared to the shallow ANN architecture. On the other hand, the hybridiz-
ing of deep learning LSTM and 1D-CNN models with the use of an automatic
hyperparameter optimization approach yields the lowest MSE error and exhibits
improved forecasting performance. Furthermore, the CNN-LSTM model exhib-
ited the best performance on the test data, with the smallest MSE error, as
depicted in Fig. 4, while the shallow ANN was the poorest model, followed by
the RNN model, for all three wind power datasets analyzed.

Fig. 3. MSE error on the training set for different models on three datasets.
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Fig. 4. MSE error on the test set for different models on three datasets.

Fig. 5. Actual and predicted values for CNN-LSTM model in Dataset 1.

Figure 5 shows the predicted curve and the actual test data for Dataset 1
of daily wind power generation obtained by the CNN-LSTM model. It can be
observed that the actual observation and the model output follow the same
curve and the gap between the two curves is very small. Therefore, it can be
concluded that the CNN-LSTM model fits the actual curve accurately. In other
words, the model performed well and did not demonstrate either overestimation
or underestimation on the test data.

4 Conclusion

This paper proposes a hybrid CNN-LSTM model for improved wind power fore-
casting by leveraging the feature extraction potential of CNN and the better
temporal data forecasting capabilities of LSTM. A metaheuristic-based Bayesian
optimization approach was applied to select the optimal hyperparameters that
improve model accuracy. Using the automatically selected optimal parameters
of CNN and LSTM, the proposed hybrid CNN-LSTM models was developed for
each wind power dataset. The results of the comparative analysis with bench-
mark models reveal that ANN exhibits lower performance, followed by the RNN
models. However, the hybrid CNN-LSTM model outperforms the benchmark
methods for daily wind power forecasting. Specifically, the performance of the
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hybrid models are verified for each dataset compared to the single model and
found significant improvements in terms of lower MAE, RMSE, and MAPE val-
ues for the three wind power datasets when using the CNN-LSTM model.
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PID2020-117954RB and TED2021-131311B, PYC20 RE 078 USE, PY20-00870 and
UPO-138516, respectively.

References

1. Bedi, J., Toshniwal, D.: Deep learning framework to forecast electricity demand.
Appl. Energy 238, 1312–1326 (2019)

2. Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Optimal deep learning LSTM model
for electric load forecasting using feature selection and genetic algorithm: compar-
ison with machine learning approaches. Energies 11(7), 1636 (2018)

3. Buturache, A.N., Stancu, S., et al.: Wind energy prediction using machine learning.
Low Carbon Econ. 12(01), 1 (2021)

4. Duan, J., Wang, P., Ma, W., Fang, S., Hou, Z.: A novel hybrid model based on non-
linear weighted combination for short-term wind power forecasting. Int. J. Electr.
Power Energy Syst. 134, 107452 (2022)

5. Goh, H.H., et al.: Multi-convolution feature extraction and recurrent neural net-
work dependent model for short-term load forecasting. IEEE Access 9, 118528–
118540 (2021)

6. Habtemariam, E.T., Kekeba, K., Mart́ınez-Ballesteros, M., Mart́ınez-Álvarez, F.:
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