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Abstract. In many environments in which detection of minority class
instances is critical, the available data intended for training Machine
Learning models is poorly distributed. The data imbalance usually pro-
duces deterioration of the trained model by generalisation of instances
belonging to minority class predicting as majority class instances. To
avoid these, different techniques have been adopted in the literature and
expand the original database such as Generative Adversarial Networks
(GANSs) or Bayesian network-based over-sampling method (BOSME).
Starting from these two methods, in this work we propose three new
variants of data augmentation to address data imbalance issue. We use
traffic event data from three different areas of California divided in two
subgroups attending their severity. Experiments show that top perfor-
mance cases where reached after using our variants. The importance of
data augmentation techniques as preprocessing tool has been proved as
well, as a consequence of performance drop of systems in which original
databases with imbalanced data where used.
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1 Introduction

Machine Learning (ML) and specially Deep Learning (DL) models have become
one of the most effective and useful tool for prediction and inference in different
environments such as biomedicine or smart cities. Although data availability
is not a matter to be concerned, data imbalance could cause deterioration of
performance of the models. No matter the size of the database if there are few
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instances of one of the possibles classes to be determined, the algorithm might
generalise by classifying almost all instances as part of the majority class.

In many cases it is of special interest the correct classification of the minority
class. For instance, in a cancer diagnosis problem the cost of predicting wrongly
a patient with cancer as a cancer-free case is critical. Generally, in databases the
minority cases become from patient that suffer cancer, and if this imbalance is
extreme, models should generalize by classifying almost all instances as part of
majority class, obtaining a high accuracy yet. Other examples of such imbalances
could be found in fraud commitment detection where fraudulent cases are less
frequent by far.

In traffic event prediction different factors are responsible for causing traffic
delays or accidents, and identification of them in real time is crucial for avoiding
uncomfortable situations. In this area the instances belonging to traffic misfor-
tunes are a minority in comparison to usual traffic sensor readings too.

To avoid these situations in which minority class instances could not be
detected, training the models with as much instances from minority class as
majority class instances should be the solution. Over-sampling is a suitable
methodology to modify the class variable distribution at a data-level stage (pre-
processing), before the learning process. By this way, the model obtains enough
information from the minority class to detect these exceptions while performing
in real scenarios.

In this work, starting from two different alternatives for expanding original
data we proposed three novel ways for generating new instances. Each of them are
evaluated in a large, real-world dataset consisting of traffic sensor observations
and from the different metropolitan areas from the state of California over a
period of three months.

The rest of the paper is organised as follows. Section 2 reviews some of the
most representatives works published in the literature. Section 3 specifies the new
alternatives proposed by this work. In Sect.4 the materials and methodology
applied in this work are presented. In Sect.5 we conduct different experiments
of classification tasks using data generated by all the alternatives proposed and
the results are presented. In Sect.6 discussion of these results and conclusions
are made.

2 State of the Art

Different methodology has been applied to expand original databases to obtain a
more generalised source of knowledge resulting on an optimized inference model.
In [7] they propose the primitive GAN algorithm in which a generator and dis-
criminator play an adversarial process in which they simultaneously train two
models: a generative model that captures the data distribution, and a discrimi-
native model that estimates the probability that a sample came from the training
data rather than from the generator. The training procedure for the generator
is to maximize the probability of the discriminator making a mistake. By this
way, new instances are created with similar characteristics of the original data.
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Cibersecurity systems usually face the problem of data imbalance. In [9] they
proposed a Multi-task learning model with hybrid deep features (MEMBER) to
address different challenges like class imbalance or attack sophistication. Based
on a Convolutional Neural Network (CNN) with embedded spatial and channel
attention mechanisms, MEMBER introduces two auxiliary tasks (i.e., an auto-
encoder (AE) enhanced with a memory module and a distance-based prototype
network) to improve the model generalization capability and reduce the perfor-
mance degradation suffered in imbalanced databases. Continuing with intrusion
detection area, a tabular data sampling method to solve the imbalanced learn-
ing task of intrusion detection, which balances the normal samples and attack
samples was proposed in [6]. In [14] TGAN was presented, as a method for
creating tabular data creating discrete and continuous variables like medical
or educational records. In [15] they developed CTAB-GAN, a novel conditional
table GAN architecture with the ability to model diverse data types, including
a mix of continuous and categorical variables, solving data imbalance and long
tail issues, i.e., certain variables having drastic frequency differences across large
values. In [4] they proposed a method to train generative adversarial networks
on multivariate feature vectors representing multiple categorical values.

Bayesian network-based over-sampling method (BOSME) was introduced in
[12], which is a new over-sampling methodology based on Bayesian networks.
What makes BOSME different is that it relies on a new approach, generating
artificial instances of the minority class following the probability distribution of a
Bayesian network that is learned from the original minority classes by likelihood
maximization.

Some other researchers opted for treating multi-modal data in order to opti-
mize the trained network’s inference accuracy. In [13] they proposed an end-
to-end framework named Event Adversarial Neural Network (EANN), which is
able to obtain event- invariant features and thus benefit the detection of fake
news on newly arrived events. In [8] they proposed an audio-visual Deep CNNs
(AVDCNN) SE model, which incorporates audio and visual streams into an uni-
fied network model. For traffic event detection were also used other approaches
that include data from multiple type and sources. In [2] they annotated social
streams such as microblogs as a sequence of labelling problem. They presented a
novel training data creation process for training sequence labelling models. This
data creation process utilizes instance level domain knowledge. In [3] they pro-
posed Restricted Switching Linear Dynamical System (RSLDS) to model normal
speed and travel time dynamics and thereby characterize anomalous dynamics.
They used the city traffic events extracted from text to explain those anomalous
dynamics. In [10] they used human mobility and social media data. A detected
anomaly was represented by a sub-graph of a road network where people’s rout-
ing behaviors significantly differ from their original patterns. They then try to
describe a detected anomaly by mining representative terms from the social
media that people posted when the anomaly happened. In [5] they used Twitter
posts and sensor data observations to detect traffic events using semi-supervised
deep learning models such as Generative Adversarial Networks. They extend the
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multi-modal Generative adversarial Network model to a semi-supervised archi-
tecture to characterise traffic events.

3 Proposed Approach

As we mentioned in the introductory part in classification environments in which
data imbalances can cause the performance deterioration of the machine learning
model, it is of special interest to have a balanced class distribution. For this
purpose, BOSME was proposed tackling this issue by generating synthetic data
following the probability distribution of a Bayesian network. Moreover, in the
majority of the cases GANs become the first option at extending databases and
address imbalance learning tasks. In this work, we assess both option and propose
three new variants that raise from both methodologies.

3.1 Variant 1: Feeding the Discriminator of GAN with Data
Proceeding from BOSME

The idea of GAN is to maximize the capability of the generator of creating
instances as equal as possible as original ones by trying to confuse the dis-
criminator and this last trying to distinguish real data from synthetic data.
Originally, discriminator is fed by data generated by the generator raised from
normal distribution. If we substitute these data by data generated by BOSME
which expand databases including synthetic data from the minority class, the
capability of distinguishing real data of the discriminator might be enhanced.
Following this idea, we propose this variant, in which first BOSME is applied to
the original database and next, a modified version of GAN is applied, where the
discriminator is fed by the synthetic data proceeding from BOSME.

3.2 Variant 2: Feeding the Discriminator of GAN with Data
Proceeding from BOSME+data Proceeding from the Generator

As the continuation of the variant proposed above, we expand the data with
which the discriminator of GAN is fed. We mixed two types of data, the data
proceeding from the generator, which is raised from noise, and the synthetic data
proceeding from BOSME. By this way, a more general vision of the synthetic
data could obtain the discriminator improving its ability to distinguish fake data
from real data.

In the previous variant, the data proceeding from BOSME only feeds the
discriminator with data from the minority class which could cause some problems
in certain environments. In contrast, with this last variant this issue is tackled.
A simplistic graphic description is given in Fig. 1
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Fig. 1. Graphic diagram of Variant 2

3.3 Variant 3: Application of GAN with Minority Class Data

Finally, we opted for dividing the original data based on its class. The data
that belong to minority class is used to feed GAN, and synthetic data is created
following the GAN architecture. By this way, data imbalance issue is addressed
and the resulting classification task should be enhanced.

4 Materials and Methods

4.1 Material and Environment

In this work we tested each of the variants proposed in the above section as well
as the original GAN and BOSME methodology by expanding original data from
a large, real-world dataset consisting of traffic sensor observations and from the
different metropolitan areas from the state of California over a period of three
months.

The Caltrans Performance Measurement System (PeMS) [1] provides large
amount of traffic sensor data that has been widely used by the research commu-
nities. We collected traffic events within a three months period from 31st July
2013 to 31st October 2013, for three different metropolitan area of the state of
California, i.e., Bay Area, North Central and Central Coast. We divided each
traffic event depending their level of risk, i.e., hazard and control. In each case
we identified the minority class to proceed with each variant proposed in this
work.

The environment in which all testing and training procedure took place is
the following. We used Machine Learning oriented sklearn [11] library of Python
in a 64 bit Windows operating system running on Intel Core i5-2010U CPU at
1,6 GHz x 4.
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4.2 Methodology

First of all, we applied each of the three variants proposed in Sect. 3 as well as
the original BOSME and GAN methodologies. By this way, we had 5 ways of
generating synthetic data starting from the original databases. Next, each of the
expanded databases were used to feed 7 well-known ML classifiers that are listed
below. Each of them has been used in the default configuration of sklearn except
for the attributes mentioned.

— DT: Decision Tree (criterion = entropy)

RF: Random Forest (number of estimators = 150, criterion = entropy)
— knn: k-Nearest Neighbors(number of neighbors = 3, weights = distance)
GNB: Gaussian Naive Bayes

— AB: Adaboost (Base Classifier: Decision Tree)

— MLP: Multilayer Perceptron

— SVM: Supported Vector Machine

Different performance metrics were used for determining which of the afore-
mentioned techniques for extending the original data fits best with traffic event
prediction task. These are accuracy, recall, precision, F1 score and AUC (Area
Under the ROC Curve). AUC is the area below the ROC curve, i.e., a graph
showing the performance of a classification model at all classification thresh-
olds. What is plotted in the curve is the FPR and TPR in the x and y axes,
respectively, whose definitions are given in Eq.4 and 5. The definitions of the
rest of the metrics mentioned above are given in Egs. 1 ,3 and 6, where TP, TN,
FP, and FP stand for True Positives, True Negatives, False Positives, and False
Negatives, respectively.

Accuracy(Acc) = TP+ ;‘; i ?J}f TFN (1)

Recall(Re) = Tff;—ipFN (2)

Precision(Pr) = Tijf—iPFP (3)

TruePositiveRate(TPR) = TP;jt-iPFN (4)

FalsePositiveRate(FPR) = % (5)
2% Prx Re

F1— score(F1) = Pr iR
r+ Re
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5 Experimental and Results

Each of the methodologies cited in this work were tested for data augmentation
of original traffic event databases. For 10 different seeds a 10-fold cross vali-
dation were developed in each case to obtain all performance metrics. In each
table, in the first column the metropolitan area of event detection and the data
augmentation methodology applied are given, where BA, NC and CC stand for
Bay Area, North Central and Central Coast respectively. Vx stand for x variant
we proposed in Sect. 3, and Original means that the evaluation was done using
the original database. The abbreviation of each classifier is given in Sect. 4.

As it could be observed in Table 1 in the majority of the cases the application
of GAN or BOSME independently outperforms the variants we proposed in
terms of accuracy. This metric is not very representative, because the original
database also is useful. In fact, due to the class imbalance in these databases, the
accuracy does not degrade, i.e., the few minority class instances could be wrongly
classified even offering a good accuracy overall. Other metrics are needed to
obtain more general conclusion, so we opted for attending Precision, Recall, F1-
Score and AUC. As the most determining action is the correct classification of
instances from the minority class, Recall is the most representative metric, since
it determines how good is a classifier predicting a positive instance as positive,
i.e., it defines a ratio between instances classified as positive ones and all positive

Table 1. Accuracies of different classifiers for different data augmentation techniques
for different areas.

Area-Method | RF (%) | DT (%) | knn (%) | GNB (%) | AB (%) | MLP (%) | SVM (%)
BA-GAN 99.3225 | 99.3225 | 99.3225 | 88.1021 99.3225 | 97.3432 96.6745

BA-V1 97.1225 | 97.1572 | 96.8251 | 95.2354 | 45.4789 | 96.8561 | 97.0731
BA-V2 97.0996 | 97.1572 | 96.8605 | 95.2354 16.0777 | 97.0553 | 97.0731
BA-V3 99.3225 |1 99.3225 | 99.2871 | 88.2349 |99.3225 | 96.9801 96.7631

BA-BOSME | 99.3225 | 99.3225 | 99.2915 | 94.6687 | 99.3225 | 96.0369 | 95.1868
BA-Original | 97.3282 | 96.4740 | 97.2193 | 96.8827 |96.9784 | 97.2423 | 97.4849
NC-GAN 98.9076 | 98.9076 | 98.9076 |92.1753 |98.9076 | 94.8792 | 94.8929

NC-V1 93.6228 | 93.6774 | 92.7625 | 89.526 50.2666 | 92.7489 | 93.2815
NC.V2 93.6091 | 93.6774 | 92.8444 | 89.526 92.4212 | 92.7489 | 93.2815
NC-V3 98.9076 | 98.9076 | 98.8529 |91.4788 | 98.9076 | 94.729 94.8929

NC-BOSME |98.9076 | 98.9076 | 98.9076 | 92.4212 |98.9076 | 93.1177 |93.2407
NC-Original | 94.4505 | 93.0577 | 94.5378 | 94.4424 | 93.6777 | 94.8301 | 94.8661
CC-GAN 99.6858 | 99.6858 | 99.6858 | 94.7013 | 99.686 |96.1925 |96.1535

CC-V1 99.6466 | 99.6858 | 96.7422 | 4.9455 99.6863 | 2.9438 96.1533
CC-V2 95.0855 | 95.1241 | 94.6209 | 90.8156 | 91.3716 | 94.5051 | 94.5051
CC-V3 99.686 | 99.6858 | 99.6858 | 94.7013 |99.686 |95.918 96.1535

CC-BOSME | 99.6858 | 99.6858 | 99.6858 | 94.0726 | 99.6858 | 92.9348 | 93.5239
CC-Original | 95.3254 | 92.7939 | 95.4468 | 95.6437 | 94.2579 | 95.6121 | 95.8008
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instances. As shown in Table2 in the Original database cases the performance
metric drops significantly. Thus, it is necessary more instances from the minority
lass for the proper training of each of the classifiers.

Other interesting metric to be observed is the AUC. One way of interpret-
ing AUC is as the probability that the model ranks a random positive example
more highly than a random negative example. In this case, the original database
offers the worst performance given the moderate percentage of random negative
instances due to the generalization as a consequence of data imbalance. Attend-
ing the rest of the variants mentioned and proposed within this work, we can
not deduce which is the best given that in each area for some method some vari-
ants perform better than others and vice-versa for other methods. For instance,
variant 2 suits best for Random Forest classifier, whereas for knn classifier is the
worst option. The application of GAN and BOSME independently offers a reg-
ular performance between different classifiers. However, the highest percentage
is obtained by the combination V3-AB in Bay Area, V1-AB in North Central
and V2-AB in Central Coast, which means that our variants are the most ade-
quate applying the best classifier. Table 3 shows all these measurements of the
aforementioned metric.

Table 2. Recall of different classifiers for different data augmentation techniques for
different areas.

Area-Method | RF (%) | DT (%) | knn (%) | GNB (%) | AB (%) | MLP (%) | SVM (%)
BA-GAN 99.3225 | 99.3225 | 99.3225 | 88.1021 99.3225 | 97.3432 96.6745

BA-V1 97.1225 | 97.1572 | 96.8251 | 95.2354 | 45.4789 | 96.8561 | 97.0731
BA-V2 97.0996 | 97.1572 | 96.8605 | 95.2354 | 16.0777 | 97.0553 | 97.0731
BA-V3 99.3225 |1 99.3225 | 99.2871 | 88.2349 | 99.3225 | 96.9801 | 96.7631

BA-BOSME |99.3225 | 99.3225 | 99.2915 | 94.6687 |99.3225 | 96.0369 | 95.1868
BA-Original |66.129 |65.2011 | 63.9704 | 64.8414 |66.21 56.6379 | 58.0993
NC-GAN 98.9076 | 98.9076 | 98.9076 | 92.1753 | 98.9076 | 94.8792 | 94.8929

NC-V1 93.6228 | 93.6774 | 92.7625 | 89.526 50.2666 | 92.7489 | 93.2815
NC.V2 93.6091 | 93.6774 | 92.8444 | 89.526 92.4212 | 92.7489 | 93.2815
NC-V3 98.9076 | 98.9076 | 98.8529 | 91.4788 | 98.9076 | 94.729 94.8929

NC-BOSME | 98.9076 | 98.9076 | 98.9076 | 92.4212 |98.9076 | 93.1177 |93.2407
NC-Original |69.3718 | 68.9104 | 69.0945 | 66.1001 68.3082 | 64.2413 | 61.3296
CC-GAN 99.6858 | 99.6858 | 99.6858 | 94.7013 | 99.686 |96.1925 |96.1535

CC-V1 99.6466 | 99.6858 | 96.7422 | 4.9455 99.6863 | 2.9438 96.1533
CC-V2 95.0855 | 95.1241 | 94.6209 | 90.8156 |91.3716 | 94.5051 | 94.5051
CC-V3 99.686 | 99.6858 | 99.6858 |94.7013 |99.686 |95.918 96.1535

CC-BOSME | 99.6858 | 99.6858 | 99.6858 | 94.0726 |99.6858 | 92.9348 | 93.5239
CC-Original | 67.337 |65.3427 | 65.278 | 71.0973 |66.0623 | 63.9602 |65.1639
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Table 3. AUC of different classifiers for different data augmentation techniques for
different areas.

Area-Method | RF (%) | DT (%) | knn (%) | GNB (%) | AB (%) | MLP (%) | SVM (%)
BA-GAN | 90.2775 | 89.871 | 90.5662 | 49.1252 | 91.5185 | 63.6251 | 58.9844

BA-V1 90.8908 | 89.871 | 71.726 |65.9578 |56.018 |57.1239 |58.1556
BA-V2 90.4126 | 89.871 | 72.8234 | 65.9578 | 71.1632 | 59.0527 | 58.1556
BA-V3 90.3776 | 89.871 |85.553 |49.1935 |92.5633 | 62.1791 | 58.9629

BA-BOSME |90.6981 | 89.871 |90.1002 |66.1345 |90.3663 | 65.4085 | 66.256
BA-Original | 82.6257 | 68.4206 | 74.1477 | 71.2723 | 75.8556 | 80.7843 | 71.7135
NC-GAN 91.8614 | 91.4632 | 91.4632 | 68.8858 |91.4632 | 60.176 62.4061

NC-V1 91.9706 | 91.4632 | 76.2103 | 68.8858 | 97.6291 | 67.3004 | 62.4061
NC-V2 91.8896 | 91.4632 | 76.568 | 68.8858 | 74.5844 | 67.3004 |62.4061
NC-V3 91.9108 | 91.4632 | 91.9939 | 68.5141 92.5419 | 60.0394 | 62.4061

NC-BOSME |91.835 |91.4632 |91.4632 | 69.1838 |93.9506 | 69.3278 | 68.0071
NC-Original | 83.5906 | 70.2484 | 76.7554 | 74.5938 | 74.9902 | 81.4973 | 76.1547
CC-GAN 97.0206 | 97.0206 | 97.0206 | 72.4319 | 98.4706 | 66.0791 | 67.1447

CC-V1 97.1699 | 96.8562 | 71.374 | 71.8002 |97.7436 | 63.1151 | 66.9084
CC-V2 96.5661 | 97.0206 | 71.6273 | 0.5 99.5428 | 69.3871 67.0409
CC-V3 97.2947 | 97.0206 | 97,0206 | 72.4319 | 97.8178 | 70.6532 | 67.1447

CC-BOSME | 97.0206 | 97.0206 | 97.0206 | 75.007 97.0206 | 76.2153 | 74.9746
CC-Original | 79.7884 | 65.2088 | 72.5906 |82.3193 | 75.6649 | 77.5265 |75.4132

6 Discussion and Conclusion

In this work we realised the importance of having a balanced data in classification
tasks in order to avoid generalisation of the resulting training of the classifiers.
In different environments an incorrect classification of an instance belonging to
minority class could have a critical impact. Thus, a data preprocessing is needed
to extend minority class instances and address this issue.

First, we looked through the accuracies of different classifiers after applying
every data augmentation methodology described in previous sections. We saw
that there was no evident difference between the application of different method
for balancing data or starting from the original database training the classifiers.
The low number belonging to the minority class was causing this, their incorrect
classification not degrading severely.

However, if we look other metrics such Recall or AUC, we can figure out
the importance of these data augmentation techniques. By this way, the classi-
fiers have enough instances from both classes for training phase, and the prob-
lem of generalisation is tackled. In each metropolitan area used analysed in the
experimental process the original data augmentation techniques perform more
regularly than the variants proposed in this work. In fact, if we determine their
goodness attending their overall performance metric within all the classifiers we
can deduce that they outperform the variants we proposed. Nevertheless, the
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highest AUC values where obtained by one of the variants proposed in Sect.3
for each metropolitan area.

For Bay Area, the highest AUC value was obtained after applying our third
variant, i.e., the application of GAN for the minority class instances, and poste-
rior use of Adaboost (Decision Tree as base classifier) as classifier.

For North Central area, our first approach gives the highest AUC value, i.e.,
the use of the new instances proceeding from BOSME and the instances pro-
ceeding from the generator as the entry for the discriminator, and the posterior
use of GAN for the creation of new instances. Finally, Adaboost (Decision Tree
as base classifier) was used as classifier.

In case of Central Coast, the second approach gives the best AUC value,
i.e., the use of the new instances proceeding from BOSME as the entry for the
discriminator, and the posterior use of GAN for the creation of new instances.
Finally, Adaboost (Decision Tree as base classifier) was used as classifier.

To summarize, the power of the data augmentation techniques as prepro-
cessing tool in data imbalance environments has been exceedingly demonstrated
in this work. The adequateness of each variant proposed in this work depends
on the characteristics and distribution of the original database, and the poste-
rior machine learning model to be adopted for the classification task. For more
complex models such as Adaboost or Random Forest where more than a single
classifier are evaluated our variants outperform the original GAN and BOSME.
Although, the highest values of AUCs are obtained by one of these variants in
each metropolitan area the overall performance in more simple models is better
for the simplest data augmentation methodologies. Depending the application
or the limitations of the hardware to be deployed all the system, some options
would be more adequate than others. For instance, if we have to adjust the mod-
els size or the training time is critic lighter models should be used and the original
GAN and BOSME would be the option to adopt in these cases. In contrast, if
there are no such restrictions, the possibility of finding the best classifier and the
best variant for addressing data imbalance issue would be the best alternative.
Following this line, finding an automatic way of finding the best combination of
data augmentation and classification model would alleviate big part of finding
the best alternative, improving system’s time efficiency.
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