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Abstract. Edge computing is a new promising paradigm helps users to
execute their tasks on edge network which is closer to them rather than
cloud. It can reduce application response time especially for those are
critical to time such as healthcare applications, real-time apps, game
playing, or traffic systems. Edge User Allocation (EUA) problem is
responsible for allocate user application into edge servers on the edge
network as app vendors’ needing. In this paper, we propose a heuristic
called Nearest Edge Server with Highest Capacity (NESHC) to solve the
EUA problem. We use a real-word dataset in our extensive experiments.
The results show that NESHC can reduce elapsed CPU time and outper-
form baseline approach (Optimal) and two state-of-the-art approaches
(ICSOC19 and TPDS20). The reduction of delay causes increasing of
user allocated into edge servers and leveraging the overall utilization of
edge network system.

1 Introduction

Recently, the sector of Information Technology (IT) has developed dramatically
with about 50-billion Internet of Things (IoT) devices will be connected to the
Internet in the coming years [14]. This development will lead to the production
of complex and computation intensive IoT applications that generate a big data
[2]. Some limitations such as power and computational capabilities (i.e., CPU
and memory) have caused downside effects on the execution of such resource-
demanding applications on the devices [18]. Cloud computing is a technology
that can support this growth by allowing on-demand access to a massive pool of
computation resources [5,17]. However, the resources of cloud computing are cen-
tralized and far distance from IoT devices where the data generated and caused
different problems regarding to applications that required critical conditions for
execution such as reaching a high level of quality of services, low response time,
ability to real-time interactive, and ensure a secure platform. Therefore, using
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only cloud platform to execute such applications leads to some issues like secu-
rity problems, generating a high delay and latency, interrupting the seamless of
real-time interaction and violation of the quality of services [15]. Edge and fog
computing have been used to provide more secure platform, reduce delay and
latency, enable interaction for real-time applications, and enhance the quality
of services by providing a pool of computational and storage capabilities at the
edge and fog level of networks where they are close to IoT devices [4,6].

Edge computing is a new paradigm extending the cloud computing can reduce
the latency for end-to-end devices, provide real-time interaction for the latency-
sensitive applications where the edge servers that are much closer to end-user
than cloud servers [12]. The process of determining which edge servers will serve
which users is called Edge User Allocation (EUA), which is a critical problem
in edge computing paradigm [12]. In edge computing paradigm, the computing,
networking, and storage resources are span closer to the edge of the network
by the number of edge servers which are closer to the end-users [3]. Edge com-
puting provides lower network latency than the conventional cloud computing
paradigm. This paradigm also offers a capability by enabling computation and
storage at the edge level of the network. This substantially reduces data trans-
fer (and bandwidth consuming) between the end user and the cloud [16]. Edge
computing is especially important for extensive streaming applications or criti-
cal systems that require real-time decision-making, such as autonomous traffic
systems, healthcare, or online gaming.

The edge servers are limited resources which might not be able to serve all
the users within its coverage. Thus, some of the users might also be allocated
in other coverage of the edge servers, or be allocated to the cloud. In order to
ensure the Quality of Services (QoS) from the standpoint of the app vendor, the
optimization target in this case is to maximize the number of users allotted to
edge servers. Also, it’s important to reduce the number of edge servers needed to
serve those users. By lowering the cost of the app vendor’s hiring edge servers to
serve their app users [10], and increasing the resource usage on edge servers [7],
this will guarantee the cost effectiveness of the allocation. One of the main goals
in the server consolidation problem in cloud computing is to reduce the number
of required servers [1,9]. Edge user allocation (EUA) problem is the term used
to describe the aforementioned issue [10,11,13], by allocating user’s task to the
required edge servers in efficient way. The EUA problem is NP-hardness which
becomes hard to solve effectively in an expanding edge computing environment.
In this paper, we propose a heuristic approach called Nearest Edge Server with
Highest Capacity (NESHC) to solve the EUA problem and reduce the delay of
application execution on the edge network. The main contributions of this paper
include:

– Proposes NESHC heuristic to solve NP-hardness of the EUA problem.
– Solving the complexity of the EUA problem by finding the optimal solution

for user’s task allocation into edge servers.
– Reduces the delay of execution time-aware applications such as real-time

application.
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– On a real-world dataset, extensive evaluations are performed to show that
the efficiency of the proposed approach. The outcomes demonstrate that our
approach outperforms some of baseline and the state-of-the-art approaches.

The remainder of the paper is organized as follows. Section 2 presents our
proposed heuristic approach. Section 3 shows the results of the work compared
with baseline and state-of-the-art approaches. The conclusion and future work
are presented in Sect. 4.

2 Proposed Method

Edge user allocation (EUA) is NP-hard problem aims to find the best edge
server for users for allocation where a dense distribution of edge servers and
limited computing resources make it extremely computationally expensive to
solve optimally the edge user allocation (EUA) problem in a large-scale scenario
[12]. In some cases, the optimal solution would be high expensive, for example, if
there are only 512 users and 125 edge servers, finding an optimal solution takes
up to 23 s. This is unacceptable for applications or services that require real-time
or near-real-time decisions. In order to efficiently find an optimal solution for the
EUA problem and reducing the delay of applications execution, we introduce a
heuristic approach called Nearest Edge Server with Highest Capacity (NESHC).
The main aim of our heuristics is to reduce the delay in finding an optimal
solution for edge user allocation problems to allow real-time applications or time-
critical applications to complete their tasks within a required period of time. In
this paper, we re-use the definition of the EUA problem which proposed by the
authors in [10]. They set three definitions to handle with the EUA problem:

– Definition 1. Classical Bin Packing (BP) Problem: All bins are homogeneous
with a similar bin capacity and the size of an item is presented as a single
aggregation measure.

– Definition 2. Variable Sized Bin Packing (VSBP) Problem: This is a more
general variant of the classical BP problem, where a limited collection of bin
sizes is allowed and the objective is to minimize the total size of bins used,
which is slightly different from the objective of the classical BP problem.

– Definition 3. Vector Bin Packing (VBP) Problem: By contrast, the size of an
item in the VBP problem is associated with a multi-dimensional vector. The
objective remains similar, in which the sum of packed item size vectors must
not exceed the bin capacity vector in each dimension, which is normalized to
1 without loss of generality. It is called as multi-capacity BP problem in some
works.

For user tasks allocation, edge servers have differential remaining capacity
and multi-dimensional resource requirements. As a result, the EUA problem can
be represented as a hybrid of the VSBP and VBP problems, yielding a variable
sized vector bin packing (VSVBP) problem. Our goal is to reduce the delay for
the user allocation problem by finding the best edge server to allocate the user
tasks and outperform both baseline and state-of-the-art approaches.
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Fig. 1. The Flow Chart of the Heuristic Algorithm

As we can be seen in Fig. 1, our model considers the priority according to
app vendor’s needing and required capacity to serve user tasks and sorts users
task in ascending manner from highest priority to lowest priority. After that,
the capacity according to (CPU, RAM, Storage, and Bandwidth) for each edge
servers will be randomly generated and sorted in descending order to find the
highest capacity between all edge servers. The distance between the highest
priority user task and the highest edge server capacity will be measured to find
the nearest edge servers candidate to serve the user task in order to reduce
overall delay and avoid sending user tasks to far distance edge servers or to the
cloud.

Nearest Edge Server with Highest Capacity (NESHC)
In large-scale scenarios, finding an optimal solution will take very long time

due to the problem’s NP-hardness. In this section we propose a heuristic algo-
rithm called Nearest Edge Server with Highest Capacity (NESHC) to solve the
EUA problem. Suppose we have a set of users and a set of edge servers, we need
to allocate user’s task with highest priority to the nearest edge server with high-
est capacity. The edge servers will be sorted in descending order according to
their capacity of CPU, RAM, Storage, and Bandwidth. Also, users will be sorted
in ascending order according to their task’s priority. The distance between users
with highest priority and the edge servers with highest capacity will be calcu-
lated to find the nearest edge servers for users to be allocated. Given a set of
edge servers S and a set of users U (lines 1–4), NESHC allocates an app vendor’s
users to edge servers. At the beginning all user tasks are unallocated. In line
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5, the model sorts all edge servers according to their capacity of four vectors
(CPU, RAM, Storage, and Bandwidth) in descending order to find the high-
est edge servers capacity where 1 is the lowest capacity and 20 is the highest
capacity. The capacity will be normalized to be an integer number between 1
and 20. The model sorts all user tasks according to their priority generated by
the app vendors in ascending order where 1 indicates to the highest priority and
10 indicates to the lowest priority (line 6). In line 7, the model calculates the
distance between user u with highest priority and edge server s with highest
capacity to find the nearest edge server s to the user u. In lines (8–15), NESHC
allocates users which hold the highest priority to the nearest active edge server
with the highest capacity, next to the nearest inactive edge server with the high-
est capacity. The process continue allocates all users from the highest priority
to the lowest priority. Otherwise, if there are no free edge servers to serve user
task, the user will be connected to the app vendor’s cloud server to be allocated
there line (16–18).

1. initialization
2. a set of edge servers S and a set of users U
3. all users uj , ∀uj ∈ U , are unallocated
4. end initialization
5. sort edge server S in descending order according to their capacity

of CPU, RAM, Storage, and Bandwidth, i.e. [20: highest, 1: lowest]
6. sort user u in ascending order of their priority, i.e. [1: highest, 10:

lowest]
7. calculate the distance between user u with highest priority and

edge server s with highest capacity to find the nearest edge server
s to user u

8. for each user uj ∈ U do
9. Suj � user uj’s nearest edge servers;

10. Sactive
uj

� user uj’s active nearest edge servers;
11. if Sactive

uj
! = ∅ then

12. allocate user uj to a nearest edge server si ∈ Sactive
uj

which has the
highest capacity

13. else
14. allocate user uj to a nearest edge server si ∈ Suj

which has the
highest capacity

15. end if
16. if si cannot be decided then
17. allocate user uj to the central cloud server
18. end if
19. end for

3 Experiments and Results

All experiments are conducted on a Windows machine equipped with Intel Core
i7-10510U processor (4 CPUs, 2.3 GHz) and 16 GB RAM. The software environ-
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ment we utilized is Python 3.10.9 on windows 10 Pro. 64-bit. Python program-
ming language is implemented using Python Jupyter Notebook1, which can be
freely downloaded from the Anaconda website2. The experiments are conducted
on the publicly available EUA real-world dataset 3 [10], which contains the geo-
graphical locations of end-users and all cellular base stations in Australia.

We have conducted the experiments on a real-world dataset to evaluate
the performance of our approaches against other baseline and state-of-the-art
approaches. The five representative approaches, namely a Greedy baseline, a
Random baseline, and three state-of-the-art approaches for solving the EUA
problem:

– Greedy: This method allocates each user to the edge server with the largest
available capacity, regardless of whether the server is active or not. Users are
not allocated in any specific order.

– Random: This approach allocates each user to a random edge server available.
Users are allocated in no specific order.

– ICSOC19 [11]: The proposed optimal approach will be used in our experimen-
tal evaluation. They proposed two approaches to tackled the EUA problem.

– TPDS20 [8]: The authors in this approach tackle the EUA problem by max-
imizing the number of allocated users while minimizing the overall system
cost, which is determined using the expenses of required computing resources
on edge servers. But TPDS20 does not provide dynamic QoS, users’ QoS level
are pre-specified at random.

– MCF [12]: Proposes an approach to solve the edge user allocation problem in
large-scale scenarios. They aim to allocate the maximum number of users in
minimum number of edge servers as possible.

We choose ICSOC19, TPDS20 and MCF as benchmark state-of-the-art
approaches because they solved, the same problem which we handle in this paper,
edge user allocation problem. Also, they used the same dataset EUA dataset that
we use to conduct the experimental evaluation in this paper. In order to evaluate
our proposed approach, we use the same experimental settings that handled in
[12], which enable us to make a comparison between our proposed approach with
aforementioned two baseline approaches and three state-of-the-art approaches.
The simulation considers an urban area of 1.8km2 covered by 125 base stations,
each station has one edge server. Each edge server covers a radius of 100–150m
which is generated randomly. The results art taken by the average of repeated
experiment 100 times to obtain 100 different user distributions. To evaluate the
performance of our approach, we compare the CPU time taken to solve the EUA
problem with results obtained by the six approaches (Optimal, Greedy, Random,
ICSOC19, TPDS20 and MCF). The Optimal solution to a small-scale instance
of the EUA problem can be found with an Integer Programming solver, e.g.,
Gurobi3 or IBM ILOG CPLEX4 [12]. The settings of the experiments are shown
in Table 1.
1 https://github.com/jupyter/.
2 https://www.anaconda.com/.
3 https://github.com/swinedge/eua-dataset.

https://github.com/jupyter/
https://www.anaconda.com/
https://github.com/swinedge/eua-dataset
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Table 1. Experimental Settings [12]

Users Edge servers Available resources (µ)

Set #1 100, ..., 1000 50% 35

Set #2 500 10%, ..., 100% 35

Set #3 500 50% 30, 35, ..., 75

Fig. 2. Elapsed CPU time vs. Number of users (Set #1)

The results show that the NESHC approach can efficiently reduce over-
all delay for users tasks and enable time-aware applications to execute their
requests within required time constraint. Figure 2 shows the efficiency of NESHC
to reduce the average CPU execution time taken to solve an instance of the EUA
problem. The maximum elapsed CPU time in seconds to solve the EUA problem
is 0.308 s for NESHC at 1000 users, while the required time to solve the EUA
problem by Optimal and ICSOC19 is up to 23 s and 5 s, respectively. NESHC
can solve the EUA problem in 0.183 s when there are 100 users needed to be allo-
cated. The authors of MCF indicated that MCF, Greedy, TPDS20, and Random
required only 1–2 milliseconds to solve the EUA problem [12] and this is very
short time and unreasoning to solve the EUA problem by allocating efficiently
1000 users to 125 edge servers. In Fig. 3, it can be seen that the Optimal takes
up to 48 s to solve the EUA problem when the percentage of number of servers
is 80%. ICSOC19 also takes 8 s at 60% of number of servers. The maximum
elapsed CPU time for our approach NESHC is 0.506 s at 50% of number of
servers. Figure 4 illustrates that both Optimal and ICSOC19 takes up to 30 s
and 9 s at 45 and 55 available server capacity, respectively, to solve the EUA
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Fig. 3. Elapsed CPU time vs. Number of edge servers (Set #2)

Fig. 4. Elapsed CPU time vs. Edge server capacity (Set #3)
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Fig. 5. Elapsed CPU time vs. Number of users (Set #1) without Optimal and ICSOC19

Fig. 6. Elapsed CPU time vs. Number of edge servers (Set #2) without Optimal and
ICSOC19
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Fig. 7. Elapsed CPU time vs. Edge server capacity (Set #3) without Optimal and
ICSOC19

problem. Figures 5–7 show the same results excluding Optimal and ICSOC19
in order to demonstrate the efficiency of NESHC compared with TPDS20. In
Fig. 5, it can be clearly seen that TPDS20 takes up to 0.55 s at 1000 users, while
NESHC needs only 0.308 s to solve the EUA problem at the same number of
users. However, MCF, Greedy, and Random consume 1–2 milliseconds to tackle
the EUA problem which is considered unreasoning time. In Fig. 6, NESHC takes
0.506 s of elapsed CPU time when number of servers is 50% while it falls down
into 0.189 s when the percentage of servers is 100% which outperforms TPDS20.
Figure 7 shows that NESHC outperforms TPDS20 along the period from 30
server capacity until 75 with 0.191 s to 0.227 s.

4 Conclusion

Edge computing can be used to solve the problem generated from sending user
data into cloud for executing by reducing the delay and CPU execution time.
The EUA problem is an NP-hard problem to achieve a mission of allocating
efficiently users’ tasks into some edge servers. Many user applications are critical
to time such that healthcare applications which required a small amount of
time to be served as well as real-time applications. Nearest Edge Server with
Highest Capacity (NESHC) is a heuristic approach can efficiently solve the EUA
problem and reducing the overall delay for user’s tasks which be allocated into
edge network. Delay reduction indirectly means that our system can increase the
number of allocated users into edge servers in the edge network. Our experiments
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on a real-world dataset show that NESHC outperforms the baseline approach
(Optimal) and state-of-the-art approaches (ICSOC19 and TPDS20) in elapsed
CPU time required to allocate users into edge servers. In the future, the system
could be modified to utilize Fog network which provides more extensive resources
capabilities which meets users’ needs.
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