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1 Introduction 

Faster wireless network speeds and rapid innovations in mobile technologies have 
changed the way we use our computers. It is estimated that 207.2 million people in 
the United States own a smartphone today while the number of smartphone users 
worldwide is estimated to be more than two billion [1]. These mobile devices are 
not only used for making voice calls but also efficiently able to run complex mobile 
applications that interact with the Internet. The volume of data being accessed 
and processed by smartphones and the sophistication of mobile applications are 
rapidly increasing over time. However, the rapid evolution in hardware and software 
capabilities of mobile devices has not been paralleled by a similar advance in battery 
technology [2]. As expected, high-end mobile applications increase the burden on 
the battery life of smartphones. For example, it has been shown that a GPS-based 
smartphone app can drain a mobile phone’s battery completely within 7 hours [3]. 

A promising solution that is being considered to support high-end mobile 
applications is to offload mobile computations to the cloud [4–11]. Offloading is an 
opportunistic process that relies on cloud servers to execute the functionality of an 
application that typically runs on a mobile device. The terms “cyber foraging” and 
“surrogate computing” are also sometimes used to describe computation offloading. 
Such computation offloading is being considered today as a means to save energy 
consumption (thereby improving battery lifetime) and increase the responsiveness 
of mobile applications. The potential of computation offloading lies in the ability to 
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sustain power hungry applications by releasing the energy consuming resources of 
the smartphone from intensive processing requirements. 

In this chapter, we present the details of a framework for mobile-to-cloud 
offloading that was first presented in [12]: 

• We study the behavior of a set of popular smartphone applications, in both local 
and offload processing modes. We identify possible bottlenecks during mobile-
to-cloud offloading, as a function of the applications functional characteristics, 
such as data intensiveness and computation intensiveness. This study is crucial to 
establish the pros and cons of offloading when using various wireless networks. 

• We quantify the influence of different wireless network technologies on mobile-
to-cloud offloading. We perform several experiments to gain a clear under-
standing of the impact of selecting the appropriate network when offloading, 
while considering advances in current high-speed wireless data communication 
networks such as 3G, 4G, and Wi-Fi. 

• We propose a novel middleware framework that uses a machine-learning tech-
nique called reinforcement learning (RL) to make offloading decisions effectively 
on a smartphone. The proposed framework considers various types of infor-
mation on the mobile device, such as network type, network bandwidth, and 
user-context, to decide when to offload in order to minimize energy consumption. 
Our strategy utilizes unsupervised machine learning to select between available 
networks (3G, 4G, or Wi-Fi) when offloading mode is active. Our experiments 
with real applications on a smartphone highlight the potential of our framework 
to minimize energy consumed in mobile devices. 

2 Prior Work 

Many prior research efforts have proposed strategies to reduce energy consumption 
in mobile devices via machine learning-based device resource management methods 
[13–18] and offloading strategies [4, 8, 19, 20]. Kumar et al. [19] presented a 
mathematical analysis of offloading. Broadly, the energy saved by computation 
offloading depends on the amount of computation to be performed (C), the amount 
of data to be transmitted (D), and the wireless network bandwidth (B). If (D/C) 
is low, then it was claimed that offloading can save energy. Flores et al. [8] 
proposed a fuzzy decision engine for code offloading. The mobile device uses a 
decision engine based on fuzzy logic to combine various factors and decide when 
to offload. Our framework discussed in this chapter considers many more factors 
than these works, such as network type, data size, and degree of computations when 
making decisions about offloading. Cuervo et.al [4] proposed a system called MAUI, 
based on code annotations to specify which methods from a software class can be 
offloaded. Annotations are introduced in the source code by the developer during the 
development phase. At runtime, methods are identified by a MAUI profiler, which 
performs the offloading of the methods, if the bandwidth of the network and data
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transfer conditions are ideal. MAUI aims to optimize both energy consumption and 
execution time, using an optimization solver. However, this annotation method puts 
an extra burden on the already complex mobile application development phase. 
Moreover, such annotations can cause unnecessary code offloading that drains 
energy [20]. To reduce the complexity of the application development process, 
we recommend transferring the entire application processing to the cloud rather 
than utilizing a design-time code partitioning method. Further, we propose a 
novel adaptive reward-based machine learning approach to make smart offloading 
decisions that can achieve high energy efficiency with offloading and also improve 
application response time. 

3 Challenges with Offloading 

In spite of existing research highlighting the potential of offloading in mobile 
devices, current offloading techniques are far from being widely adopted in mobile 
systems. The implementation of these computation offloading techniques for many 
real-world mobile applications in real-world scenarios has not shown promising 
results [6], with the mobile device consuming more energy in the offloading process 
than the energy savings achieved due to computing on servers in an offloaded 
manner. 

Offloading decision engines must consider not only the potential energy savings 
from offloading but also how the response time of the application is impacted by 
offloading. An effective decision to offload processing to the cloud must reduce 
energy without significantly increasing response time. Such decisions are heavily 
impacted by wireless network inconsistency. The power consumed by the network 
radio interface is known to contribute a considerable fraction of the total device 
power, and it varies depending on wireless signal strength [21]. With the recent 
advent of high bandwidth 4G networks, there has been increased interest in the 
offloading domain, but from our experiments and results presented in later sections 
of this chapter, we found that 4G consumes more energy than Wi-Fi and 3G. Some 
of the prior works [22] in this area also confirm this observation. 

The network quality of a 4G connection at a mobile device’s location greatly 
affects the battery life. If the device is in the area that does not have 4G coverage, 
there is no advantage to a 4G interface, and if 4G network search is not disabled, 
then the radio’s search for a nonexistent signal will drain the battery quickly. In case 
of a weak signal, the device uses more power to send and receive data to and from 
the network. A strong 4G signal uses less battery, but the biggest problem is the 
constant switching from 4G to 3G and back again. Also, throughout a typical day, at 
different times, the performance of a wireless network varies because of changing 
traffic load on the network. We refer to all such problems due to the mobile network 
as “network inconsistency” problems. 

To counter the impact of network inconsistency on a mobile device and to 
optimize the offloading experience, we propose a novel offloading framework based
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on reinforcement learning. This framework not only decides when to offload but 
also helps a mobile device select between the different available wireless networks, 
to achieve consistent improvements by using offloading even in the presence of 
varying network conditions. In the following sections, we describe our framework 
in detail. 

4 Offloading Performance of Mobile Applications 

We analyzed the performance implications of offloading by comparing two scenar-
ios – one where all computations are performed only on the mobile device without 
using the cloud at all (local mode) and the other where there was a complete reliance 
on the cloud computation (offload mode), with minimal computations on the mobile 
device. We selected five diverse and popular commercially available smartphone 
applications for our experiment. Our evaluation focuses on two metrics: (i) battery 
consumption and (ii) response time. We compared the results obtained with these 
applications for 3G, 4G (HSPA+), and Wi-Fi networks. This comparative study was 
meant to help us identify various factors that need to be considered for the design 
of cloud offloading strategies for mobile applications, for example, identifying the 
best possible network for offloading to the cloud, for a given mobile application, at 
a specific location. 

4.1 Experimental Setup 

The power estimation models required to estimate battery consumption were built 
using power measurements on the LG G3 device running the Android OS version 
5.0.1. The contact between the smartphone and the battery was instrumented, and 
current was measured using the Monsoon Solutions power monitor [23] (Fig. 1). 
The monitor connects to a computer running the Monsoon Solutions power tool 
software, which allows real-time current and power measurements. We also used 
the Android Device Bridge, a software tool to perform battery drain measurements 
on the android device. The experiments were performed using AT&T’s 3G and 4G 
(HSPA+) networks and Comcast’s 100 Mbps (2.4 GHz Band) Wi-Fi network. We 
performed these experiments around the Colorado State University campus in Fort 
Collins, Colorado, the United States. 

Before conducting our experiments, we followed a few rules to ensure mean-
ingful and accurate results while avoiding human error. These rules are as follows: 
(1) set the device’s screen to a consistent and fixed brightness level, to minimize 
interference from varying screen power consumption (e.g., for different ambient 
light scenarios); in our measurements, we used the lowest screen brightness
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Fig. 1 Monsoon power monitor setup 

level; (2) kill all background processes before measurements; and (3) repeat each 
experiment over 15 iterations to improve result confidence and minimize human 
error. We selected five diverse commercially available smartphone applications 
for our experiments: (i) matrix operations, (ii) Internet browser; (iii) zipper (file 
compression); (iv) voice recognition and translation; and (v) torrent (file download). 

The next subsection gives the details of all the applications considered and the 
results of their execution for the two scenarios (local and offloading modes) outlined 
earlier. 

4.2 Experimental Results 

4.2.1 Matrix Operation App 

The matrix calculator app [24] runs on android-based devices. The user is first asked 
to enter the size of the matrix and all the digits of the matrix manually, and then 
the user can direct the application to calculate the inverse of that matrix (using the 
adjoint method). For our experiments, we used a set of matrix sizes from 3 × 3 
to 9 × 9. For the cloud part, we implemented the functionality of calculating the 
matrix inverse using the Amazon Web Services (AWS) EC2 cloud instance [25]. 
Figure 2 shows the results from our experiment. The energy consumption in local 
processing mode is equal to the battery drain in the device while performing the 
matrix operation, whereas in the cloud mode, energy consumption is the total of 
battery drain during the idle time of the mobile device while the operation is being 
performed remotely on the cloud and the time for data transfer between the mobile 
device and the cloud.
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Fig. 2 Average battery consumption and average response time on a mobile device for a matrix 
operation with varying matrix sizes 

It can be observed that in the local processing mode, the battery consumption 
of the device increases manifolds with the increasing matrix size, largely, because 
there is an increase in the CPU’s energy consumption as the number of floating 
point operations increase. Local processing is found to be suitable for operations 
on small matrices (i.e., 3 × 3 and 5 × 5) allowing for low energy consumption 
on the device and low response time. On the other hand, offloading to the cloud 
saves energy and reduces response time when the matrix size increases. The device 
in offloading mode saves maximum energy (and also has minimum response time) 
when used with Wi-Fi. The results show that 3G performs slightly better than 4G as 
far as energy is concerned, whereas 4G gives better response time than 3G for the 
same operations.
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4.2.2 Internet Browser App 

Cloud-based web browsers use a split architecture where processing of a mobile 
web browser is offloaded to the cloud partially. This involves cloud support for most 
browsing functionalities such as execution of JavaScript, image transcoding and 
compression, and parsing and rendering of web pages. For our experiments, we used 
the Mozilla Firefox [26] and Puffin [27] browsers. Puffin is a commercially available 
cloud-based mobile browser, and Mozilla Firefox is a local browser available from 
the Google Play store. Our experiments are performed for a data range starting 
as low as 150 Kib to a session involving 5 MB of data transfer to load the web 
pages. Figure 3 shows the results obtained by measuring data transfer (response) 
time and energy consumed by these browsers for loading two different websites: (i) 
www.yahoo.com and (ii) www.wikipedia.org. 

We observed that the results obtained fluctuated significantly due to network 
inconsistency. For example, the plots in Fig. 3 show that the response time/battery 
consumption of a browser session with around 3 MB data usage is sometimes 
more than that of a session which uses 5 MB of data. To counter such network 
inconsistency problems, we conducted 15 iterations of each experiment across 
different locations and at different times of the day. In general, our results show 
that cloud-based web browsers are faster but more expensive in terms of energy 
consumption. For small data transfers, it is suitable to use web browsers with local 
processing to save energy. For a typical user, the data transfer amount during a 
browsing session does not go beyond 5–6 MBs for a single session. Thus, for most 
websites in typical usage scenarios, a local browser will provide greater energy 
savings than when using offloading. The response time results indicate that for 
larger data usage scenarios, offloading can be beneficial. Fourth generation not 
only provides lower response time but also consumes more energy than 3G for the 
offloading scenarios. Wi-Fi outperforms both 3G and 4G in offloading mode, for 
response time and energy consumption. 

4.2.3 Zipper App 

Zipping large files in order to compress them is a widely used functionality on 
most computers. Zipper [28] is an android app that compresses files locally on 
a mobile device. For the cloud-based file compression, we used an AWS cloud 
instance and zipping tool available on the web [29]. Figure 4 shows the results 
for energy consumption and the response time when zipping various PDF and 
Word document files ranging in size from 15–255 MB. It can be observed that 
for the zipping operation, local computation is most efficient in terms of energy 
consumption. Offloading provides benefits only in response time and that too only 
for large file sizes. When offloading, 4G consumes more energy than 3G for smaller 
file sizes (15–105 MBs) whereas 3G consumes more energy than 4G for larger file 
sizes (175–255 MBs). Fourth generation is faster than 3G but slower than Wi-Fi. 
Wi-Fi gives the best results in terms of energy and response time when offloading.
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Fig. 3 Average battery consumption and response time on a mobile device for an Internet 
browsing session with varying data sizes 

4.2.4 Voice Recognition and Translation App 

There are several popular apps for voice recognition and translation available 
from app stores, for example, Google Translate [30] for android and Speak and 
Translate [31] for iOS. Google Translate is a cloud-based app, which also has an 
offline translation mode that performs local processing on the device with a small 
neural network. The application allows for downloading an installation package to 
support the local processing mode. It makes use of the statistical machine translation 
method, which relies on large amounts of data to train a machine translation engine. 

Figure 5 shows the energy consumption of the Google Translate app for a 
range of words. These measurements were recorded while translating 20–140 words 
from the English (the United States) to Marathi language. From the results in
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Fig. 4 Average battery consumption and response time on a mobile device for zipping/compress-
ing files of varying sizes 

Fig. 5, we can clearly observe that the local processing mode is more efficient 
in terms of energy consumption as compared with the cloud processing mode. 
The voice recognition and translation accuracy for local processing was 79.26% 
and for offloaded processing was 88.51%. This is because the offloaded voice 
data is processed by more powerful cloud servers, which are capable of running 
the complex computations of a larger neural network and other machine learning 
algorithms for more efficient translation. 

4.2.5 Torrents App 

We used the android-based torrent app Flud [32] to perform torrent downloads 
in local mode. In the cloud mode, a cloud server is used as a BitTorrent client 
to download torrent pieces on behalf of a mobile device. While the cloud server 
downloads the torrent, the mobile device switches to the sleep mode until the



160 A. Khune and S. Pasricha

Fig. 5 Average battery consumption on a mobile device for voice recognition and translation 
operations 

cloud finishes the torrent processes, and then the cloud uploads the downloaded 
torrent file in a single process to the mobile device. Kelenyi et al. [33] presented a 
similar strategy for torrent file download. This strategy saves energy consumption 
in smartphones as downloading torrent pieces from multiple peers consumes more 
energy than downloading one burst of pieces from the cloud. 

For our experiments, we used torrent file sizes ranging from 25–85 MB, with 
an AWS cloud instance being used for the cloud mode. Figure 6 shows the results 
of our experiments for this application. It is interesting to note that out of all the 
applications that we consider, offloaded processing proves to be most beneficial in 
terms of both energy savings and response time for the torrent download application, 
which is data intensive but not compute intensive. Fourth generation is faster than 
3G but slower than Wi-Fi, which is consistent with earlier observations. Fourth 
generation performs slightly better than 3G in terms of energy consumption for 
higher data sizes (45–85 MBs), but for smaller data sizes, 3G is more energy 
efficient. 

4.3 Summary of Findings 

The overall performance when offloading depends on various factors such as the 
amount of data required by the application, wireless network signal type and 
strength and the functionality of the application under consideration. In some prior 
work [19, 34], it was concluded that offloading is beneficial when an application 
is compute intensive and at the same time less data intensive. However, we found



Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile. . . 161

Fig. 6 Average battery consumption and response time on a mobile device for torrent file 
download operations 

that this is not always the case. For instance, offloading is beneficial for applications 
that may not be compute intensive, but are data intensive, for example, the torrent 
application. 

To make offloading more practical, it is important to reduce the energy spent 
in the communication between the mobile device and the cloud. Our experiments 
indicate that choosing the best possible network for offloading is a critical decision. 
One may assume that because 4G is faster than 3G, we should always rely on it 
for offloading when Wi-Fi is not available. However, our results indicate that 4G is 
more power hungry than 3G most of the time. 

Network quality is also a factor that cannot be ignored. We found that a good 
3G-coverage performs far better as opposed to poor 4G-coverage and vice versa. In 
the region of cell tower edges or where the coverage of 3G/4G ends, we found that 
the handover process results in high battery drain. This is because the device in such 
scenarios is constantly searching for the network, frequently scanning the wireless 
spectrum around it to determine which tower it should tether itself to. The more
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networks there are to choose from, the longer the scans take. Some apps require a 
channel to be established between the base station and the mobile device at regular 
intervals, which can significantly drain the device battery. 

Another observation is that as 4G generally provides faster data rates than 3G, 
users tend to consume more data when connected on 4G than 3G. The radio-network 
interface in the 4G (or LTE) device is functionally a lot more sophisticated and does 
a lot more than a 3G interface. This interface is the single biggest source of battery 
drain in a mobile device, apart from its display. Unlike the display, however, the 
network interface radio is always on. 

In conclusion, we observed from our experiments on real applications running on 
a real mobile device that the overall performance of offloading depends on various 
factors, such as the amount of data used by the application, network signal type (3G, 
4G, and Wi-Fi), network signal strength, and the complexity of the functionality of 
the application under consideration. 

5 Adaptive Offloading 

The decision to offload a mobile application to the cloud is a complex one due to the 
distributed nature and many real-time constraints of the overall system. To make an 
effective offloading decision, it is vital to consider various factors as we discovered 
after our experimental analysis presented in the previous section. As these factors 
vary at runtime, there is a need for an adaptive offloading approach that takes the 
variations of these factors at runtime into consideration when making decisions. 

A few prior works [8, 9] propose an offloading decision engine that considers the 
contextual parameters on a device and on the cloud to make an offloading decision 
adaptively. Flores et al. [8] proposed a fuzzy decision engine for code offloading. 
The mobile device runs the fuzzy logic decision engine, which is utilized to combine 
n number of variables (e.g., application data size and network bandwidth) that 
are obtained from the overall mobile cloud architecture. The fuzzy logic decision 
engine works in three steps, namely: fuzzification, inference, and defuzzification. In 
fuzzification, input data is converted into linguistic variables, which are assigned to a 
specific membership function. A reasoning engine is applied to the variables, which 
makes an inference based on a set of rules. Lastly, the outputs from the reasoning 
engine are mapped to linguistic variable sets again in the defuzzification step. 
This offloading decision engine in [8] assumes a consistent network performance 
during offloading. However, as observed in our experiments, such consistency is 
difficult to achieve because of frequent mobile user movements and variable network 
quality (due to factors such as location of the device and load on the network [21]). 
Moreover, the offloading decision engine in [8] mainly emphasizes energy savings; 
however, response time is also a crucial metric for various applications that should 
not be ignored, otherwise user quality of service degradation can become so severe 
that any effort to save energy becomes irrelevant.
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In the next section, we describe our reward-based middleware framework for 
adaptive offloading that overcomes the challenges mentioned above, to make more 
efficient decisions related to when and how to offload applications from a mobile 
device to the cloud. 

6 Middleware Framework for Efficient Offloading of Mobile 
Applications 

To simplify the mobile application development process and at the same time avoid 
problems caused by hard coded annotations, our framework proposes to transfer 
all the computation for an application to the cloud instead of partial (selective) 
offloading of the application. Our framework involves a novel decision engine on the 
mobile device that works together with a clone virtual machine (VM) of the mobile 
software environment to execute applications on cloud servers. Figure 7 shows a 
high-level overview of the proposed framework. The framework is implemented 
at the middleware level in the software stack of the Android OS and runs in the 
background as an android service. As a result, our framework requires no changes 
to any of the applications or the Android OS. The runtime monitor component 
periodically triggers the reinforcement learning (RL) module to generate/update 
a Q-learning table. At any time, this Q-table contains information to guide the 
decision for when and how to offload an application to the cloud, depending on 
multiple factors. The remainder of this section provides a detailed overview of the 
RL mechanism and our algorithm to generate and use the Q-table. 

6.1 Reinforcement Learning (RL) 

RL is an unsupervised learning approach, which focuses on learning by having 
software agents interact with an environment and then taking actions to maximize 
some notion of a reward. In supervised learning (e.g., using neural networks), a 
training set of correctly identified observations is required to train a prediction 
model. RL differs from supervised learning in that correct input/output pairs of 
identified observations do not need to be presented, so there is no need for 
a pretrained model. Moreover, an RL algorithm performs well as it has better 
exploration capabilities than unsupervised learning methods. For this reason, RL 
is being widely used in gaming and control problems, for example, to determine 
the next best move in games [35, 36]. RL cuts down the need to manually specify 
rules, and agents learn simply by playing the game or exploring different moves in 
an automated manner. 

In RL, the state-action value function is a function of both state and action, and 
its value is a prediction of the expected sum of future reinforcements. The state-
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Fig. 7 Reinforcement learning (RL)-based middleware framework for efficient application 
offloading to cloud 

Fig. 8 Q-learning flow with example of Q-table 

action value function is referred to as the Q-function [37]. Figure 8 summarizes how 
a typical Q-learning reinforcement algorithm works. Q-learning is a reward-based 
mechanism that generates a Q-table with reinforcement or penalty values. The figure 
illustrates a section of a Q-table where the possible actions are offloading with 3G, 
4G, or Wi-Fi network, when the user is at different locations L1–L4. Actions are 
chosen, and the penalty values are calculated for respective actions to update the 
Q-table.
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Suppose the system is at a defined state st at time t. Upon taking action at from 
that state, we observe the one step reinforcement rt + 1, and the next state becomes 
st + 1. This continues until we reach a goal state, K steps later. The reward Rt in this 
goal state is shown below: 

Rt = 
K∑

k=0 

rt+k+1 (1) 

The objective with RL is to find actions at that maximize (or minimize) the sum 
of reinforcements or rewards rt in Eq. (1). This can be reduced to the objective 
of acquiring the Q-function Q(st, at) that predicts the expected sum of future 
reinforcements, where the correct Q-function determines the optimal next action. 
So, the RL objective is to make the following approximation as accurate as possible: 

Q (st , at ) ≈ 
∞∑

k=0 

rt+k+1 (2) 

The Q-function stores reinforcement values for each state and action pair of the 
system. Eq. (2) formulates the RL for a multistep decision problem (e.g., predicting 
sequential actions in a Tic-Tac-Toe game [37]). In our middleware framework, we 
use RL for a single-step decision problem as there are no sequential states that 
are dependent on the previous state of the system. This version of the problem is 
formulated as: 

Q (st , at ) ≈ 
n∑

t=1 

rt (3) 

The Q-function is ultimately queried by the system to select the optimal action 
at, in state st: 

at = arg min Q (st , a) (4) 

6.2 RL Algorithm to Generate Q-Function 

The state of a mobile device is defined using the contextual information of the device 
such as its location, available network type, and network strength. These contextual 
factors are chosen as we consider them to be crucial for efficient offloading. The 
runtime monitor extracts the contextual information of the device to form state 
values of the system. For example, consider a mobile device that is at location L1, 
where it has access to a 3G network type with “strong” network strength. From 
this state, if an application processing needs to be offloaded, then the Q-function
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is called to select the appropriate network that would result in the least penalty in 
terms of energy or response time (or both). In our framework, the following state 
and action values are used to generate the Q-function: 

Set of state values (discrete values): 

• Location = L1, L2, L3, . . . , Ln 
• Network carrier = 3G, 4G, Wi-Fi 
• Network strength = Strong, Medium, Weak 
• Data  Size = data_small, data_medium, data_large 

Set of action values 

• Offload using 3G network 
• Offload using 4G network 
• Offload using Wi-Fi network 

The location L1-Ln can be any geographic area where the user uses the offloading 
application, for example, office and home. More state-action pairs can be added to 
the above list to account for factors that might affect offloading, for example, we can 
add “Time of Day” as another state value, as it is observed that network performance 
is slow at certain times of day when the network load is high. However, a larger set 
of state-value pairs will result in a larger Q-function requiring greater overhead to 
manage it. 

The Q-function is generated as follows: Initially, when the mobile device is at a 
location L1, the runtime monitor accesses contextual information from the device 
such as location, networks available, and network strength. A small data file is then 
uploaded from the mobile device to the cloud, using the primary network carrier. 
The battery consumed and total response time taken for this operation are measured. 
The uploading operation is repeated with varying (small, medium, and large) data 
sizes with all available networks at the location (3G, 4G, and Wi-Fi) activated one 
by one. For each of these uploading operations, the runtime monitor measures the 
battery amount consumed and response time to complete the operation. The Q-table 
is then populated with the penalty values calculated using Eqs. (5), (6), and (7): 

P3G = Pb3G ∗ x + Pt3G ∗ y (5) 

P4G = Pb4G ∗ x + Pt4G ∗ y (6) 

PWiFi = PWiFi ∗ x + PWiFi ∗ y (7) 

Thus, in our RL framework, the reinforcement values are essentially the penalty 
values P3G, P4G, and PWiFi. The set of possible individual penalty values are 
shown in Table 1. Once populated, the Q-table can be updated periodically in the 
background when the user is not actively using the device. In Eqs. (5), (6), and 
(7), to optimize battery consumption and response time, we used weights x and y, 
respectively, with penalty values. Both x and y parameters take values between 0
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Table 1 Penalty values in RL algorithm 

Penalty values Offload w/ 3G Offload w/ 4G Offload using Wi-Fi 

Battery (Pb) processing Pb3G Pb4G PbWiFi 

Response time (Pt) Pt3G Pt4G PtWiFi 

Total penalty P3G P4G PWiFi 

Fig. 9 Decision-making using Q-table (vector of key value pairs) 

and 1. For our experiments in Sect. 7, we used  x = 0.5 and y = 0.5 to balance 
minimizing battery consumption and response time. 

Figure 9 shows an example of the decision-making process with the help of two 
simple scenarios. For a data intensive application at location L1, we have 3G and 
4G networks available as shown in first two lines of the Q-table in the figure. The 
penalty value for 4G at location L1 is lesser; therefore, the 4G network is selected 
for offloading the application to the cloud. For a less data intensive application at 
location L2, out of all the networks available, 3G is selected because Wi-Fi has weak 
signal strength with higher penalty and 4G also has a higher penalty. 

7 Experimental Results 

To evaluate the efficacy of our proposed framework, we conducted a set of 
experiments. We implemented our middleware framework and its decision engine 
on an android-based mobile device. To form the Q-function of our RL algorithm, 
real user data was collected at different geographical locations around the Colorado
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Fig. 10 Average battery consumption and response time of Matrix operations app with learning 
methods 

State University campus area, in Fort Collins, Colorado. We compared our work 
with the fuzzy logic decision engine proposed by Flores et al. [8], which we 
discussed in Sect. 5 and which we also implemented on the android-based mobile 
device. 

Figure 10 shows the results for the matrix operation app with our proposed RL-
based decision engine and the fuzzy logic-based decision engine from [8]. Similarly, 
Fig. 11 shows the results for the zipper app, and Fig. 12 shows results for the torrent 
app. In all the scenarios, the task of a decision engine is to decide whether to offload 
and select the network to offload with. In these figures, the red trend line shows
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Fig. 11 Average battery consumption and response time of zipper app with learning methods 

results with the fuzzy decision engine [8] whereas the green trend line shows the 
results with our RL-based middleware framework. We have also shown bars with 
the results for offloading with each available network and local processing (from 
Sect. 4) as a reference. 

In general, our results show that our proposed RL-based decision engine 
outperforms the fuzzy logic approach from [8]. For less data intensive operations, 
the results of RL and fuzzy logic overlap. For instance, in the case of the zipper 
application (Fig. 11), for lower data sizes fuzzy logic shows better results, possibly 
because the Q-table generated using our RL algorithm uses 25 MB as the minimum 
data size. For any data size lower than this minimum value, the RL-based framework
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Fig. 12 Average battery consumption and response time of torrent app with learning methods 

is thus less effective at making predictions. This can be improved using a wider 
range of data files/sizes when populating the Q-table. For higher data sizes and 
more complex computations, our RL approach gives improved battery consumption 
and response time than [8]. 

Figure 13 summarizes the prediction accuracy of both the learning methods 
being compared. It can be observed that our RL-based engine has better prediction 
accuracy, which is crucial for making effective offloading decisions. The overall 
performance of offloading depends on various factors, such as the amount of data 
required by the application, network signal type (3G, 4G, and Wi-Fi) and network 
signal strength, and the complexity of the functionality of the application under 
observation. By considering all of these individual factors in the decision process, 
unlike the fuzzy logic approach from [8], and by utilizing a more sophisticated and
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Fig. 13 Prediction accuracy of learning methods 

powerful learning algorithm, our framework is able to achieve notably better results 
compared with [8]. Our results show that proposed RL-based offloading system can 
save up to 30% battery power with up to 25% better response time as compared with 
the fuzzy logic-based approach. 

8 Conclusions and Future Work 

In this chapter, we analyzed real mobile applications to determine the benefits of 
application offloading. We found that overall performance with offloading depends 
on various factors such as the amount of data and type of usage, available network 
carrier, and signal strength. These factors should be considered while making a 
decision to offload a mobile application. To make offloading more practical, it is 
important to reduce the energy spent in the communication between the mobile 
device and the cloud. In our experiments, we compared energy consumption in 
mobile devices for varying network types (3G, 4G, and Wi-Fi). This comparison 
shows that selecting an appropriate wireless network for offloading is crucial. We 
subsequently presented a novel network-aware mobile middleware framework based 
on reinforcement learning to accomplish energy-efficient offloading in smartphones. 
Our results show that we can save up to 30% battery power with up to 25% 
better response time when using our proposed framework compared with a state-
of-the-art fuzzy logic-based offloading approach from prior work. As part of future 
work, researchers can consider the evaluation of a more diverse set of mobile 
applications and characterizing their bottlenecks, explore new algorithms for low-
overhead offloading decision-making on smartphones and other mobile devices



172 A. Khune and S. Pasricha

(e.g., wearables), and consider the characterization and use of additional wireless 
networks for offloading, such as emerging 5G networks. 
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