
A Survey of Embedded Machine
Learning for Smart and Sustainable
Healthcare Applications

Sizhe An, Yigit Tuncel, Toygun Basaklar, and Umit Y. Ogras

1 Introduction

Embedded machine learning has recently drawn significant attention due to the
fast development of machine learning (ML) and embedded devices. It is an
application of artificial intelligence (AI) to make decisions or predictions from the
existing data at the edge without explicit programming. The success of embedded
ML heavily relies on the recent improvement of computation power since ML
algorithms are highly data-intensive. Machines need to launch complex linear
algebraic computations, such as matrix and vector operations, to learn the non-
trivial relationship between the inputs and outputs. To date, computing clusters using
multiple high-frequency central processing units (CPU), graphics processing unit
(GPU), and tensor processing unit (TPU) [79] are the most widely used resources
to perform such operations. However, when the users want to enjoy the convenience
of ML without transmitting their local data, computing clusters are certainly not a
good choice due to the prices and large form factor.

An embedded device refers to a small computer system—a combination of
computer processors, memory, and input/output devices [91]. Nowadays, people
have access to multiple personal devices, such as smartphones, smartwatches, and
autonomous cars. Embedded devices such as Raspberry Pi [66], Nvidia Jetson [52],
and Arduino [11] are powerful yet affordable due to the recent emergence of
hardware. For example, an Nvidia Jetson Nano developer kit [52] with 128-core
4GB memory GPU that can run most ML algorithms only costs less than $100.
Embedded machine learning enables the deployment of ML algorithms on edge
devices rather than the powerful computational cluster. It allows the end users to

S. An · Y. Tuncel · T. Basaklar · U. Y. Ogras (�)
University of Wisconsin-Madison, Madison, WI, USA
e-mail: sizhe.an@wisc.edu; tuncel@wisc.edu; basaklar@wisc.edu; uogras@wisc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_6

127

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845 a

mailto:sizhe.an@wisc.edu
mailto:sizhe.an@wisc.edu
mailto:sizhe.an@wisc.edu

 8624 56845 a 8624 56845 a

mailto:tuncel@wisc.edu
mailto:tuncel@wisc.edu

 15606 56845 a 15606 56845 a

mailto:basaklar@wisc.edu
mailto:basaklar@wisc.edu

 23423 56845 a 23423
56845 a

mailto:uogras@wisc.edu
mailto:uogras@wisc.edu
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6

128 S. An et al.

perform machine learning directly on devices used in the field, thus leading to
numerous novel applications.

Concurrent advances in machine learning and low-power computing areas pave
the way for high-impact applications. These applications can attract social attention,
promote industrial progress, and improve the quality of life. For example, computer
vision (CV) and natural language processing (NLP) are major technical areas that
widely apply machine learning since they are attached closely to the industry
and commercial market. Specifically, computer vision helps machines understand
images and videos, thus generating meaningful information and making decisions.
Example applications include image classification, object detection, object tracking,
and instance segmentation. The market for computer vision is expected to reach
USD 48.6 billion by 2022 [38]. NLP refers to the technology that gives computers
to understand text and language similar to human beings [37]. Application of NLP
includes speech recognition, sentiment analysis, machine translation, and text sum-
marization. Another popular machine learning application area is recommendation
system (RS). Recommendation systems aim to recommend things to the users based
on their previous interests and other factors. These systems predict the most likely
content that will interest users. Many tech companies such as Google, Amazon, and
Netflix rely on recommendation systems to enhance their customers’ engagement.

As a particular subset of the previously mentioned ML applications trained
solely with big data, embedded machine learning supports obtaining and processing
new data locally. Embedded devices are usually equipped with different sensors
to measure motion, biopotentials, and temperature. Embedded ML can directly
use data from these sensors, thus enabling numerous novel applications. Target
applications include smart healthcare, autonomous driving, professional sports,
and power/energy management [23, 54, 87]. The rest of the chapter will first
overview embedded machine learning frameworks and then offer examples of
specific applications using embedded machine learning. This chapter focuses mainly
on embedded machine learning applications with data obtained on-device. The
concept of embedded machine learning and tinyML will be coherently interspersed
and interact with the applications. Finally, we also introduce energy management as
a service application since the deployment of ML applications on edge devices is
limited by battery capacity.

2 Overview of Embedded Machine Learning Frameworks

Embedded machine learning frameworks typically consist of model training, model
compression, and model inference, as illustrated in Fig. 1. Model training is the
process of learning the non-trivial patterns or relationships between the inputs and
outputs through an intensive search that includes trial and error. It usually needs a
vast amount of data points to train to learn the hidden complex relationship between
the inputs and outputs instead of memorizing from the existing data. Thus, model

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 129

Fig. 1 Overview of embedding machine learning framework

training is usually performed in powerful computation processors, such as cloud
servers, workstations, or personal computers (PC), as shown in Fig. 1.

The success of ML frameworks relies heavily on the improvement of com-
putation power since ML algorithms need an intensive amount of data to train.
However, users of ML applications do not participate in the model training part.
Instead, they run the pre-trained ML models on their devices for inference in
different applications. Therefore, it is crucial to ensure that the ML algorithms tar-
geting embedded applications can run on edge devices with limited computational
power and memory. To this end, popular ML libraries such as PyTorch [60] and
TensorFlow [1] have been making significant efforts in compressing the size and
accelerating the inference time of the model on embedded devices. For example,
PyTorch Mobile [61] and TFLite [80] are the corresponding lightweight version of
PyTorch and TensorFlow. Many recent studies take advantage of these lightweight
ML frameworks that target embedded ML [26, 94, 95]. The lightweight version
of TensorFlow, TFLite, can reduce the model size up to 75% with a minimal
accuracy loss. For instance, a ResNet101 model, after optimized by TFLite, is
only 44.9 MB, compared to 178.3 MB on TensorFlow with only 0.2% accuracy
loss. Consequently, the tinyML concept is introduced with the fast development of
lightweight ML libraries. TinyML refers to ML capable of performing on-device
sensor data analytics at ultra-low power, thus enabling a variety of always-on
applications and targeting battery-operated devices [82]. The middle part of Fig. 1
shows that model compression is bridging the model training and model inference
using ML libraries.

Model inference refers to the process of inferring the most likely output of
given inputs from the previously learned model. Hence, it does not require intensive
computational power and can be easily deployed on edge devices. In the embedded
machine learning flows, the model inference is the central part that runs on users’
edge devices. For instance, users can access ML applications such as tracking

130 S. An et al.

their vital signs using a smartphone or smartwatch [9] and setting up self-driving
functions in their car. A recent study [94] designed and implemented convolution
neural networks (CNNs) on smartphones using TFLite to estimate human activities
in real time. Similarly, real-time human pose estimations for a single person and
multi-person on mobile devices are proposed in [26] and [95], respectively. The
right part of Fig. 1 shows that users can use the compressed ML algorithm for their
customized applications using their edge devices.

3 Embedded Machine Learning Applications for Healthcare

The aging population has been becoming a serious concern all over the world. The
consequent rise in health-related issues has drawn significant research attention from
the industry and academic community. Technology companies have continuously
increased their R&D expenditure for wearable devices that can be used for mobile
activity and health monitoring. For instance, Apple utilizes its popular consumer-
facing products, such as Apple Watch, to provide health-related features accessible
on its watch to bridge wearables and clinical tools used in medical research [9]. In
2021, Google acquired the wearable giant Fitbit (smartwatch) to participate in the
AI-enabled healthcare race among top-pitch technical companies [32]. Embedded
machine learning enables various healthcare-related applications by feeding multi-
modal sensing data obtained from humans into machine learning algorithms on
devices.

Remote activity and healthy monitoring applications can provide valuable
insights [12]. Hence, they can improve the quality of life in many healthcare
applications, including but not limited to human activity recognition [4, 19], gait
monitoring [5, 46], human pose estimation [2, 3, 92], and freezing of gait (FoG) [24,
55, 69]. For example, advanced ML algorithms can locally analyze the motion and
physiological data from wearable sensors. This capability can enable many real-
time applications such as irregular rhythm notification, early warning signs, and
fall detection. These applications are also the first step toward diagnosis, prognosis,
and rehabilitation of movement disorders similar to Parkinson’s disease (PD) and
stroke. The rest of this section discusses three illustrative examples as cases studies
and summarizes the recent work in those areas.

3.1 Freezing-of-Gait Identification in PD Patients

Parkinson’s disease (PD) is one of the most common age-related neurodegenerative
diseases. It causes muscular rigidity, tremor, bradykinesia, slowness in movement,
and postural instability [27, 45, 49, 83]. More than 50% of the PD patients develop
freezing of gait (FoG) [44] in their advanced stages of the disease. Freezing of gait
is a brief absence of the ability to walk despite the intention of moving the feet [59].

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 131

FoG episodes may include trembling of knees, short shuffling steps, or complete
akinesia [71] and overall increase the risk of falling and deteriorate the patient’s
quality of life.

Clinical studies suggest that external stimuli, such as auditory, visual, or tactile
cues, help patients to exit the FoG state and resume walking [59]. FoG identification
is a challenging task since FoG episodes are rare events. Furthermore, clinical
settings cannot provide the actual frequency of occurrence of FoG episodes. For
example, FoG episodes mainly occur during turning, walking through doorways,
or dual tasking, and 90% of them last less than 20 s [44]. Specific experimental
sessions are designed to simulate the daily-life activities in clinical settings, such as
walking and turning while dual tasking [44]. However, this practice is a challenging
proposition due to fundamental limitations. On the one hand, the duration of these
sessions in a clinical setting and the number of visits per patient are limited. On the
other hand, the frequency of FoG occurrence and the duration of FoG episodes are
short. Hence, the probability of observing FoG episodes during these simulations
can be small.

FoG-related problems can be avoided by systems that can identify FoG episodes
and provide an appropriate cueing mechanism such as audio. FoG identification can
be divided into two subclasses: FoG detection and FoG prediction. FoG detection
implies classifying FoG episodes after patients start to experience them. It has
been heavily studied for over a decade. More than 50 studies related to FoG
detection have been published by late 2019 [58]. In contrast, FoG prediction implies
classifying FoG episodes before the occurrence of an FoG episode. The main goal
of the FoG prediction studies is to predict potential FoG episodes and prevent their
onset by providing preemptive cueing. Despite this promising potential, there are
very few studies related to FoG prediction compared to FoG detection [58, 59, 73].

Both FoG detection and prediction studies use various wearable sensors placed
on different parts of the patient’s body. These sensors collect motion data using iner-
tial measurement units, plantar pressure systems, and electromyography [44, 59].
Various machine learning approaches are utilized for FoG identification, including
random forests, support vector machines (SVMs), nearest neighbor algorithms, and
deep neural networks (DNNs) [57]. Classification algorithms, such as decision trees,
SVMs, and k-nearest neighbor, require handcrafted spectral and statistical features
extracted from the motion data of the PD patients, which needs substantial domain
knowledge [57]. However, FoG identification approaches should require minimal
preprocessing and manual effort to facilitate easy deployment on edge-AI devices.
Approaches that employ DNNs do not require domain knowledge. They can directly
utilize raw sensor data to identify FoG episodes. For example, convolutional neural
networks (CNNs) are adopted widely among with long short-term memory (LSTM)
networks to detect and predict FoG episodes [13, 53, 57, 73, 83]. Table 1 summarizes
the recent FoG identification studies published since 2018. None of the above
studies have embedded ML framework in an edge-AI device. These approaches
require powerful computing resources that are hard to integrate on an edge device.
Therefore, there is a critical need for lightweight FoG identification approaches

132 S. An et al.

Table 1 A summary of recent FoG identification studies

Sensor type and location FoG identification approach

Sama et al. [69] IMU placed on the waist k-NN, random forest, logistic
regression, Naïve Bayes, multilayer
perceptron (MLP), SVM

Camps et al. [24] IMU placed on the waist CNN

Oung et al. [55] 3 accelerometers placed on the left
shank, left thigh, and lower back

Probabilistic NN, SVM

Li et al. [41] Accelerometer placed on the
lower back

Mini-batch k-means clustering

Mikos et al. [47] 2 accelerometers placed on each
ankle

MLP

Rad et al. [63] 3 accelerometers placed on the left
shank, left thigh, and lower back

Denoising autoencoder

Handojoseno et al.
[33]

EEG electrodes placed on the head DNN

Torvi et al. [83] 3 accelerometers placed on the left
shank, left thigh, and lower back

LSTM

El-Attar et al. [29] Accelerometer placed on the left
shank

DNN

Naghavi and Wade
[49]

3 accelerometers placed on the left
shank, left thigh, and lower back

Statistical analysis based on
Kruskal–Wallis test

Naghavi et al. [50] 2 accelerometers placed on each
ankle

k-NN, SVM, decision tree, MLP
along with classifier bagging and
synthetic minority over-sampling
methods

Arami et al. [10] 3 accelerometers placed on the left
shank, left thigh, and lower back

SVM

Demrozi et al. [28] 3 accelerometers placed on the left
shank, left thigh, and lower back

k-NN

Reches et al. [67] 3 accelerometers placed on the left
ankle, right ankle, and lower back

SVM

Shi et al. [75] 3 accelerometers placed on the left
ankle, right ankle, and neck

CNN

Li et al. [42] 3 accelerometers placed on the left
shank, left thigh, and lower back

CNN . + LSTM

Sigcha et al. [77] IMU placed on the waist CNN . + LSTM

Mancini et al. [44] 8 IMUs placed on the shins, feet,
wrists, sternum, and lower back

Correlation and thresholding

Bikias et al. [20] IMU placed on the wrist CNN

Borzi et al. [21] 2 IMUs placed on the shins k-NN, SVM, linear discriminant
analysis, logistic regression

that leverage the wearable sensor data with minimal preprocessing of the data and
activate an appropriate cueing mechanism locally on the edge device.

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 133

3.2 Human Activity Recognition

There has been growing interest in human activity recognition (HAR) due to its
health monitoring and patient rehabilitation applications [4, 65, 76, 90]. Inertial
measurement units (IMUs) are used to capture the body and joint movements to
estimate or predict human activity. The recognized activities with time stamps are
valuable insights for health monitoring and rehabilitation. The prevalence of low-
cost motion sensors and embedded machine learning algorithms make it possible to
perform human activity recognition on-device [18].

3.2.1 Processing Pipeline

The majority of HAR methods employ smartphones due to their popularity and
easy access to integrated accelerometers and gyroscope sensors [6, 76, 90]. More
recent work started using wearable devices for this purpose due to significant
power consumption and form-factor benefits. A typical HAR framework consists
of data preprocessing, feature extraction, and classifying algorithms, as shown
in Fig. 2. Inertial measurement units, which typically include accelerometers and
gyroscopes, are attached to different human body parts. They usually provide
three-axis acceleration and angular velocity. If the activities are simple enough, a
significant number of approaches use only the acceleration data since the gyroscope
sensors have relatively larger power consumption [97]. The first step is to preprocess
the raw sensor data to reduce measurement noise and construct activity windows.
Then, the data in each activity window are used to produce features, such as the
body acceleration and signal statistics (e.g., min, max, mean). Finally, these features
are used by ML algorithms to recognize activities, such as standing, sitting, lying,
walking, and jogging.

A range of methods is used during the preprocessing step. The most common
preprocessing techniques include downsampling, low-pass filtering, and segmenta-
tion. The inertial sensors often sample at a high sampling rate (. >50 Hz). However,
most human activities are only at a few Hz range [18], making the sampled data
redundant. Median and mean filters are two mainstream filters used for down-
sampling. Similarly, the sensor data, especially accelerometer data, are typically
noisy. Therefore, most preprocessing techniques incorporate low-pass filtering and
smoothing. Most ML algorithms require the inputs to have a fixed length. Therefore,
preprocessing steps typically involve segmentation algorithms that divide the data
into possibly overlapping windows. For example, segmentation algorithms can
divide a long period (in the order of hours) of time series data into multiple fixed-
length (e.g., one–ten seconds) windows. If the number of data samples in each
window is uniform, the ML algorithms, such as DNNs, can conveniently process
them.

134 S. An et al.

Fig. 2 Overview of human activity recognition. The figure is partially modified from [18]

3.2.2 Commonly Used ML Algorithms

Most of the HAR techniques employ supervised learning algorithms. Exam-
ples of supervised learning algorithms suitable for HAR include support vector
machine (SVM), random forests, decision trees, k-nearest neighbors (k-NN), and
neural network (NN). These algorithms take the labeled data to train the classifier,
as outlined below:

• Support vector machine: SVM techniques try to find a hyperplane in high-
dimensional space that separates two output classes [34]. If they cannot find the
separating hyperplane in a lower dimension, it keeps mapping the data into higher
dimensions until the separating hyperplane is found. HAR problem is essentially
a multi-class classifying problem. Multiple classifiers need to be performed to
apply SVM to HAR for differentiating more than two output classes since SVM
is a binary classifier.

• Random forests and decision trees: Decision tree classifiers are commonly used
for classification problems since it is intuitive and explainable. They use a series
of rules to make decisions, just like how humans make decisions [34]. Decision
trees take the dataset features to create binary questions and continually separate
the dataset until all data samples are isolated to different classes. An ensemble

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 135

of tree-structured classifiers is employed for random forests. The most predicted
classes among all trees are chosen as the final predicted class.

• k-Nearest Neighbors: This approach is one of the most traditional and popular
techniques in classifying problems [34]. K-NN first computes k-nearest neighbors
in the training set. Then, it chooses the most common class among k neighbors.
That class is then the final estimated class. K-NN technique requires all training
data to be stored locally. Many of the HAR techniques used k-NN for the offline
training [70].

• Neural networks: Neural networks are widely used in classification and regression
problems. Multilayer perceptron (MLP) classifier is one of the primary neural
networks used for human activity recognition. It consists of three layers at least:
one input layer, one hidden layer, and one output layer. Each layer of the MLP
has multiple neurons/nodes with non-linear activation functions. In the HAR
context, the number of hidden neurons in the hidden layers is crucial for obtaining
good accuracy while retaining low computational complexity. The number of
neurons in the output layer corresponds to the output classes. Convolution
neural networks (CNNs) are popular for processing 2D images. Convolutional
kernels can convolve with the input image layers by layers to extract the helpful
feature maps instead of choosing the features manually in other techniques [93].
Researchers recently applied CNN in HAR by reshaping the 1D HAR features to
a 2D feature map input [16].

3.2.3 Offline vs. Online Learning

Currently, there are two mainstream HAR training paradigms: offline training and
online training. The training is performed on dedicated computing resources such
as power CPU and GPU for offline training. Machine learning algorithms require a
large amount of data to capture different patterns’ behavior and learn how to classify
them. Thus, dedicated computing resources are used since they can process a vast
amount of data. The offline pre-trained models then are deployed to edge devices,
for example, smartphones and smart wearables, to perform the inference for new
users. Offline training is the fundamentals of all supervised training algorithms.
The downside of this approach is that the performance of inferring on new users
that have not appeared in the training data is inevitably worse than inferring on the
trained users. Online training tackles this issue by continually training with new user
data on the edge devices. The pre-trained models are also deployed to edge devices,
but the new users’ data obtained on the field are fed into the machine learning
algorithm running on the edge device to train online. Since the amount of data is
small compared to the offline training data, the edge devices can train the models in
real time. For HAR on-device, the neural network is the most popular method since
it supports online training [18].

136 S. An et al.

3.3 Human Pose Estimation

Human pose estimation aims to detect and track key joints, such as wrists, elbows,
and knees. It has rapidly growing applications areas, including rehabilitation,
professional sports, and autonomous driving [23, 54, 87]. For instance, one of the
leading causes of autonomous car accidents is “robotic” driving, where the self-
driver makes a legal but unexpected stop and causes other drivers to crash into
it [54]. Real-time human pose estimation can help computers understand and predict
human states, thus leading to more natural driving. Likewise, remote rehabilitation
applications, which are currently not feasible, can be enabled by human pose
estimation.

Human pose estimation can be performed by processing image, video, LiDAR
(light detection and ranging), inertial sensors (IMUs), or mmWave radar data.
RGB image and video frames are the most common input types since they offer
accurate real-world representations with true color. However, the RGB frame quality
depends heavily on the environmental setting, such as light conditions and visibility.
Alternatively, the LiDAR point cloud obtained by laser scanning overcomes these
challenges. However, it has high-cost and significant processing requirements,
making them unsuitable for indoor applications such as rehabilitation. mmWave
radar can generate high-resolution 3D point clouds while maintaining low-cost,
price, and power advantages. Inertial sensors (IMUs) can also reconstruct human
pose using the sensing accelerations and gyroscopes [88, 89]. This section discusses
these three broad approaches and recent literature.

3.3.1 Human Pose Estimation Using RGB Camera

In the computer vision field, human pose estimation has drawn attention after a
seminal study in 2005 [64]. This study presents a framework to detect ten distinct
body parts using rectangular templates from RGB images. He et al. [35] propose
Mask R-CNN, which can reconstruct skeleton from RGB images using K masks by
leveraging ResNet neural network architecture. It first detects K different key points
and then connects them. Mask R-CNN has become popular due to its fast processing
time and accurate estimation. Similarly, Cao et al. proposed OpenPose [25], a real-
time human pose estimation technique that can detect human body, face, and foot
key points together for the first time. OpenPose has become one of the popular
benchmarks due to its decent performance and the easy-to-use open-source package.
Besides the RGB video-based approach, Microsoft Kinect and Kinect V2 [74]
provide depth cameras to extract the human joints representation. Both Kinect and
Kinect V2 use an RGB camera and a depth sensor consisting of an infra-red camera
and projector as sensing units to capture the information. The Kinect family has
become one of the popular methods to obtain the ground truth label for training due
to its convenience, low cost, and nice performance [7, 72, 96].

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 137

From an RGB image containing a person, the human pose estimation model
typically consists of the cropping bounding box, extracting features, and predicting
the joint coordinates. The first step is to crop the bounding box containing the
human. The area of a person can be only .1/5 of the image or even smaller. For
the human pose estimation task, the region of interest (ROI) is only the area related
to humans. Hence, an efficient human bounding box detection algorithm is crucial.
After obtaining the human bounding box, the next step is to extract useful features
from the area. Most of the techniques use deep CNNs since many of them have been
proved to be suitable feature extractors in the image processing field [35]. Finally,
the model needs to output the human joints coordinates. In estimating the joint
coordinates, heatmap-based and regression-based are two mainstream methods.

Heatmap-based models learn each joint point’s position through the Gaussian
distribution graphs. The method first renders Gaussian probability distribution
heatmaps for every joint point and then applies argmax or soft-argmax operation
to the heatmaps, thus obtaining the final estimation results. Since the maximum
value of every heatmap corresponds to a joint’s coordinates, the resolution of the
output heatmap needs to be relatively high (64. ×64 usually). Thus, this method’s
computation and memory overhead are high since multiple high-resolution Gaussian
heatmaps need to be rendered (one output heatmap for each joint).

Regression-based models represent another alternative that is simpler and more
intuitive. It directly learns the joints’ coordinates values using L1 or L2 loss.
Since the regression-based method does not require rendering the heatmap and
maintaining the high resolution, the output feature map can be small compared to
the heatmap-based model. Thus, the computation and memory requirements of the
regression-based model are significantly lower than the heatmap-based model. For
instance, using Resnet-50, the floating-point operation per second (FLOPs) of the
regression-based model is .1/20000 of the heatmap-based model [43]. This result
shows that the regression model is friendly to the edge devices. Regression-based
methods are widely applied in industry [43] since it is computationally efficient and
straightforward. However, the heatmap-based method is generally more robust for
occlusion and blur. In addition, the heatmap-based model has better explainability
than the regression-based model. Recently, researchers have started to combine two
methods to keep advantages of both of them [43].

3.3.2 Human Pose Estimation Using mmWave Radar

The human pose can also be reconstructed from mmWave signals. Compared to the
RGB image source, mmWave signals preserve user privacy well since the mmWave
signal does not reveal salient and rich information such as true-color images. At the
same time, the sparse input source makes human pose estimation a more challenging
task. Almost all mmWave human pose estimation methods use a regression-based
model. In 2018, researchers proposed RF-Pose3D [96], a technique that reconstructs
up to 14 body parts, including the head, neck, shoulders, elbows, wrists, hip, knees,
and feet. This work first uses 12 camera nodes to record RGB-based video and

138 S. An et al.

then obtain label key points from OpenPose. At the same time, radar signals at a
few GHz are used to generate the RF heatmap. They then train a region proposal
network (RPN) to zoom in on RF data and a CNN with ResNet architecture to
extract the 3D skeleton from the region of interest. For keypoint localization, the
average errors in the .x, y, z axes are 4.2, 4.0, and 4.9 cm, respectively.

Besides being limited to 14 joints, this work does not leverage the mmWave
radar’s ability to obtain a high-quality point cloud. Thus, it requires a much
more complex NN architecture with high computation cost. Moreover, multiple
cameras and bulky radar signal generating systems hinder the practicality of the
approach. The most recent mmWave radar-based pose estimation techniques use
point cloud representation from the commercial radar device Texas Instrument (TI)
xWR1x43 [81]. Sengupta et al. [72] propose mmPose, a human pose estimation
technique that constructs the skeleton by using mmWave point cloud and a forked-
CNN architecture. They use two radar devices and sum up the point values in the
feature map level to overcome the sparse representation of the point cloud. An et
al. [3] present a meta-learning and frame aggregation framework to help mmWave-
based human pose estimation model converge faster for unseen scenarios. Xue et
al. [92] propose the mmMesh technique to construct human mesh using mmWave
point cloud.

Finally, another recent study proposes a mmWave-based assistive rehabilitation
system (MARS) [2] using human pose estimation. It sorts the mmWave point
cloud and performs matrix transformations before feeding them to a CNN model.
MARS can reconstruct up to 19 human joints and human skeleton in 3D space
using mmWave radar without raising privacy concerns and requiring strict lighting
settings. Moreover, MARS provides the users with 19 joints velocity estimations,
four critical angle estimations, and ten commonly used rehabilitation posture
correction feedback. It incorporates point cloud preprocessing, a CNN that outputs
joint positions, and rehabilitation movement feedback to the user. It first maps
the 5D time series mmWave point cloud to a 5-channel feature map and then
outputs 3D joint positions. It finally provides joint velocity, angle estimations, and
posture correction feedback. The overview of MARS is shown in Fig. 3. An example
of human pose estimation using mmWave radar point cloud is shown in Fig. 4.

Fig. 3 Overview of human pose estimation using mmWave point cloud and its downstream
healthcare-related tasks. The figure is partially modified from [2]

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 139

Fig. 4 Example of human pose estimation using mmWave radar point cloud. From left to right, it
shows radar point cloud, MARS estimation, and the ground truth [2]. Some of the human parts are
highlighted by the bounding boxes in the figure. The figure is partially modified from [2]

140 S. An et al.

Model inference of MARS takes only 64 . µs and consumes 442 . µJ energy on the
Nvidia Jetson Xavier-NX board. These results show the practicality of the proposed
technique running real time on low-power edge devices. The accuracy of human
pose estimation using mmWave is comparable to that of an RGB image. However,
the explainability of the model and solution for free-form human pose estimation
is still challenging. There are several future challenges for mmWave human pose
estimation to be widely applied in real-life applications.

3.3.3 Human Pose Estimation Using Inertial Sensors

Besides cameras and radars, wearables such as inertial sensors (IMUs) also play
an essential role in human pose estimation. IMU-based human pose estimation is
relatively robust to different environmental settings since sensing is not interfered
with by light conditions or visibility. Thus, it is more practical for occlusions or
baggy clothing scenarios. In addition, the explainability of IMUs-based human
pose estimation is pretty good since every IMU is placed in a specific position
of a person. As one of the earliest studies in this field, [68] estimate human pose
using 17 IMUs, and a Kalman filter is employed for all the measurements. It
comprehensively defined 17 IMUs on a person, thus achieving accurate human pose
estimation. However, the large number of IMUs requires long setup times and makes
it uncomfortable for users. Marcard et al. proposed sparse inertial poser (SIP) [88]:
automatic 3D human pose estimation from sparse IMUs. This work provides a new
method to estimate the human pose using only six IMUs. By exploiting a statistical
body model and jointly optimizing posture over continuous time frames to fit both
orientation and acceleration data, SIP achieves positional errors of 3.9 cm. A follow-
up work [89] combines IMUs and a moving camera to estimate multiple human
poses in challenging outdoor scenes robustly.

In summary, human pose estimation can be performed using different input
sources. Table 2 compares different input sources in terms of accuracy, privacy
concern, price, and the anti-interference ability. Lightweight embedded machine
learning algorithms enable running human pose estimation models on edge devices.
In real-life applications, it is crucial to choose proper input sources of the human
pose estimation model according to different requirements such as accuracy, privacy,
and robustness.

Table 2 Comparison between different input sources for human pose estimation. Anti-
interference here represents the robustness of the algorithm. Specifically, different input sources
are affected by environmental conditions such as light and smoke to varying degrees

Data form Accuracy Privacy Price Anti-interference

Camera Image/video .� � � .� .�� . �

LiDAR Point cloud .� � � .� � � .� . � � �

Radar Point cloud/heatmap .�� .� � � .�� . � � �

IMUs Accelerations .� .� � � .� � � .� � �

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 141

4 Energy Management

The commonly used edge devices include smartphones, smartwatches, and other
wearable devices. Small form-factor devices, in particular, have severely limited
battery capacity due to form-factor requirements, such as small size, lightweight,
and flexibility. For example, the Oura Ring 3 incorporates a 22 mAh–3.7 V battery
and advertises a battery life of 4 to 7 days [56]. Despite this limitation, these
devices collect significant amounts of data to enable sophisticated health monitoring
applications discussed in previous sections. The energy consumption soars if they
transmit these data to a mobile device or to the cloud since wireless streaming of
information is prohibitively power-consuming. Consequently, the recharge interval
is short, which causes the users to stop using these devices. Therefore, significant
research effort focuses on reducing the dependency of wearable devices on batteries.

Reducing the dependency on batteries critically depends on the developments in
three main research areas: (1) energy harvesting (EH), (2) energy management, and
(3) low-power design:

(1) Energy harvesting refers to techniques that generate power from ambient
resources, such as light and motion. It provides a complementary energy source
to batteries.

(2) Energy management encompasses the techniques that aim to optimally utilize
the available energy from batteries and energy harvesting sources. It regulates
the energy consumption to maximize the user experience within the constraints
set by the energy source and the device.

(3) Low-power design refers to a broad class of design styles that aim to minimize
the power consumption of the devices, while they meet the processing require-
ments. Popular techniques include clock and power gating, leakage power
minimization, and heterogeneous computing, such as using domain-specific
hardware accelerators to boost energy efficiency.

This chapter overviews energy management, a key enabler, and service applica-
tion for edge devices running target ML applications. To this end, it first summarizes
the wearable energy harvesting modalities and provides a general idea of the energy
budget for wearable devices. Then, it presents an overview of optimal energy
management techniques. We leave the low-power design practices and optimizations
on energy consumption out of this chapter. We refer the interested readers to other
surveys and books on low-power design techniques [15, 62].

4.1 Energy Sources and Budget

Wearable EH techniques generate usable electrical energy from various sources
in a user’s environment while conforming to the physical and comfort constraints
associated with the wearable form factor [48]. The most common energy sources

142 S. An et al.

2 mph
5 mph
7 mph7 mp7 mph7 mp

Fig. 5 Power vs. load resistance curve of a wearable piezoelectric energy harvester at different
gait speeds

are light, motion, electromagnetic waves, and heat [78]. Ambient light has the
highest potential for wearable EH devices. For instance, with an 8.1 cm.

2 flexible
PV cell, ambient light EH offers a capacity of over 1 mW outdoors (5000 lux)
and close to 100 . µW indoors (500 lux) [39]. Similarly, radio-frequency (RF) EH
can harvest 10 . µW with an 18.4 cm.

2 flexible antenna with a signal strength of
.−10 dBm at 915 MHz [51]. Body-heat EH has power levels of about 3 . µW with
a 1 cm.

2 flexible harvester at an ambient temperature of 15 .
◦C (i.e., a temperature

difference of 22 .
◦C) [36]. Human-motion EH is particularly interesting for wearable

applications because the energy is available on demand. For example, energy due to
human activity is at hand when required by an activity-monitoring application. In
addition, human-motion EH can harvest about 25 . µW with a 23.8 cm.

2 piezoelectric
transducer, while the wearer is jogging (i.e., 5 mph gait speed) [84, 85], as illustrated
in Fig. 5.

4.2 Optimal Energy Management

We can enable a long-term recharge-free operation if the edge devices have an
energy-neutral operation. Energy neutrality means that the energy consumed over
a time period (e.g., one day) is less than or equal to the energy produced during the
same period. When the device has a battery, the energy stored in the battery can

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 143

temporarily power the device if the harvested energy is insufficient. However, the
battery will be recharged back to its original level if the energy-neutral operation
is guaranteed. Hence, the energy-neutral operation can automate battery charging
through harvested energy such that the battery level is restored at the end of each
day. In the absence of a battery, this system reduces to intermittent computing
where the operating halts when no energy is available. In summary, optimal energy
management techniques can maximize the device utility (e.g., the amount of time it
remains active) under the available energy budget, whether from a battery or energy
harvesting source.

Achieving energy-neutral operation is challenging due to the conflict between
the uncertainty in harvested energy and the target application’s quality-of-service
(QoS) requirements. The application performance and utilization of the device
can diminish when the harvested energy is limited [30]. For example, consider a
wearable health application where the target device must collect the vital signals
and process them locally to detect abnormalities. On the one hand, the device needs
a steady and sufficient amount of energy to perform its intended operation, e.g.,
analyzing the collected signals within a deadline. On the other hand, the harvested
energy may fluctuate widely and even vanish entirely during the same period.
Therefore, the limited and highly varying nature of the harvested energy necessitates
deliberate planning and management.

Energy management algorithms use the available energy judiciously to maximize
the application performance while minimizing manual recharge interventions to
achieve energy-neutral operation [86]. These algorithms should satisfy the following
conditions to be deployed on a wearable resource-constrained device:

• Incurring low execution time and power consumption overhead
• Having a small memory footprint
• Being responsive to the changes in the environment
• Learning to adopt such changes

Kansal et al. [40] present the general framework of energy-neutral operation for
energy harvesting devices. The authors propose a linear programming approach
to maximize the duty cycle of a sensor node and a lightweight heuristic to help
solve the linear programming with ease. Similarly, the work in [22] proposes a
long-term energy management algorithm, referred to as long-term ENO, which
aims to achieve energy neutrality for one year or more. As complementary to this
work, going with a more fundamental control-theory approach, Geissdoerfer et
al. [31] propose a feedback controller to achieve long-term ENO. To account for
the application requirements when deciding the duty cycle of the nodes, Bhat et al.
use a generalized utility function that defines the application characteristics [17].
They present a lightweight framework based on the closed-form solution of the
optimization problem that maximizes the utility while maintaining energy-neutral
operation. Although these are essential studies in this field, none of them consider
user activity patterns, hence the stochastic nature of energy harvesting, which is at
the core of wearable energy harvesting techniques.

144 S. An et al.

0 5 10 15 20 25
Time (hr)

0

10

20

30

40

50

B
at
t.
E
ne

rg
y
(J
)

ECO Iterative Kansal

Under-use

Over-use

Bhat

Fig. 6 Comparison of ECO to other approaches and an optimal iterative algorithm

A recently proposed energy management framework, ECO, is tailored for wear-
able use cases by incorporating user activity and energy harvesting uncertainty into
energy management [86]. The ECO framework maximizes a utility function under
specific battery energy constraints. The utility function can model any arbitrary
metric, such as device throughput and classification accuracy. The framework takes
the initial battery energy at the beginning of each day and the expected energy
harvesting profile for a finite horizon (e.g., 24 h) as inputs. The expected energy
harvesting profile is obtained from a novel EH forecasting model, which considers
user patterns. At the beginning of the day, using the energy harvesting profile, ECO
first finds the energy that the device can consume during each hour that maximizes
the utility function under the battery energy constraints. As the day progresses, this
solution is not optimum due to the variations in harvested energy. Using the actual
harvested energy, ECO corrects the initial allocations using a lightweight runtime
optimization algorithm after an hour. As a result, the ECO framework adapts to
the deviations from the expected EH values with negligible runtime overhead.
Figure 6 illustrates how ECO addresses the over-utilization and under-utilization of
the energy seen in two prior approaches, which result in higher application utility.
Moreover, measurements on a wearable device prototype show that ECO has 1000. ×
smaller energy overhead than iterative optimal approaches with a negligible loss in
utility.

ECO and other prior work are highly dependent upon the accuracy of the
energy forecasts. They can compensate for deviations in user patterns after the fact,
which causes a deviation from the optimal trajectory. As a remedy, reinforcement
learning (RL)-based resource management algorithms are employed for energy
management. RL-based approaches benefit from not relying on forecasts of the
harvested energy, in contrast to the prediction-based techniques presented above.

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 145

These techniques implicitly learn user patterns, and they can proactively perturb
the allocations before a significant deviation in usage pattern happens. RLMan is
a recent prediction-free energy management approach based on RL [8]. It aims
to maximize packet generation rate while avoiding power failures. tinyMAN is
another RL-based approach that takes the battery level and the previous harvested
energy values as inputs (states). It maximizes the utility of the device by judiciously
allocating the harvested energy throughout the day (action). [14]. Over time, by
interacting with the environment, the tinyMAN agent learns to manage the available
energy on the device according to the harvested energy.

In conclusion, energy management remains a fundamental research field essen-
tial for the success of the embedded AI field. Energy management techniques
must run as background service applications to ensure the successful operation of
embedded AI applications under the available energy budget. Significant challenges
include developing low-overhead techniques that maximize energy efficiency under
uncertainty and scarce energy resources. Developing novel energy forecasting mod-
els is an important research direction for prediction-based approaches. Similarly,
efficient runtime learning of user patterns is critical for prediction-free approaches.
Finally, the developments in this field can transfer to other resource allocation
problems in many different areas, including telecommunications to space-based
systems.

5 Conclusions

Embedded machine learning enables numerous novel applications since low-power
edge devices allow cutting-edge machine learning algorithms to obtain data from
multiple sensors and run locally. This chapter overviewed the opportunities and
challenges in the embedded machine learning applications context. It presented a
survey of edge-AI application use cases for embedded machine learning. First, it
overviewed embedded machine learning frameworks, consisting of model training,
model compression, and model inference. Then, it presented several edge-AI
applications for healthcare, such as freezing-of-gait identification for Parkinson’s
disease patients, human activity recognition, and human pose estimation. Finally,
we discussed energy management as a fundamental enabler for wearable devices
since battery shortage is one of the leading factors that limit embedded machine
learning on wearable devices. Lightweight machine algorithms for these high-
impact applications and other novel applications offer unique research opportunities.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015).
Software available from https://tensorflow.org

https://tensorflow.org
https://tensorflow.org
https://tensorflow.org

146 S. An et al.

2. An, S., Ogras, U.Y.: MARS: mmWave-based assistive rehabilitation system for smart health-
care. ACM Trans. Embed. Comput. Syst. 20(5s), 1–22 (2021)

3. An, S., Ogras, U.Y.: Fast and scalable human pose estimation using mmWave point cloud
(2022). Preprint. arXiv:2205.00097

4. An, S., Bhat, G., Gumussoy, S., Ogras, U.: Transfer learning for human activity recognition
using representational analysis of neural networks (2020). Preprint. arXiv:2012.04479

5. An, S., Tuncel, Y., Basaklar, T., Krishnakumar, G.K., Bhat, G., Ogras, U.Y.: Mgait: model-
based gait analysis using wearable bend and inertial sensors. ACM Trans. Internet Things 3(1),
1–24 (2021)

6. Anguita, D., Ghio, A., Oneto, L., Parra, F.X.L., Ortiz, J.L.R.: Energy efficient smartphone-
based activity recognition using fixed-point arithmetic. J. Univ. Comput. Sci. 19(9), 1295–1314
(2013)

7. Antunes, J., Bernardino, A., Smailagic, A., Siewiorek, D.P.: AHA-3D: a labelled dataset for
senior fitness exercise recognition and segmentation from 3D skeletal data. In: Prof. of the
British Machine Vision Conference (BMVC), p. 332 (2018)

8. Aoudia, F.A., Gautier, M., Berder, O.: RLMan: an energy manager based on reinforcement
learning for energy harvesting wireless sensor networks. IEEE Trans. Green Commun. Netw.
2(2), 408–417 (2018)

9. Apple: Apple Watch. Helping your patients identify early warning signs. https://www.apple.
com/healthcare/apple-watch/ (2021). Accessed 8 Jul 2021

10. Arami, A., Poulakakis-Daktylidis, A., Tai, Y.F., Burdet, E.: Prediction of gait freezing in
Parkinsonian patients: a binary classification augmented with time series prediction. IEEE
Trans. Neural Syst. Rehabil. Eng. 27(9), 1909–1919 (2019)

11. Arduino: Arduino. https://www.arduino.cc/ (2021). Accessed 8 Jul 2021
12. Basaklar, T., Tuncel, Y., An, S., Ogras, U.: Wearable devices and low-power design for

smart health applications: challenges and opportunities. In: 2021 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pp. 1–1. IEEE, Piscataway
(2021)

13. Basaklar, T., Tuncel, Y., Ogras, U.Y.: Subject-independent freezing of gait (FoG) prediction
in Parkinson’s disease patients. In: 2021 IEEE Biomedical Circuits and Systems Conference
(BioCAS), pp. 1–6. IEEE, Piscataway (2021)

14. Basaklar, T., Tuncel, Y., Ogras, U.Y.: tinyMAN: lightweight energy manager using reinforce-
ment learning for energy harvesting wearable IoT devices (2022). Preprint. arXiv:2202.09297

15. Bellaouar, A., Elmasry, M.: Low-power digital VLSI design: circuits and systems. Springer
Science & Business Media (2012)

16. Bevilacqua, A., MacDonald, K., Rangarej, A., Widjaya, V., Caulfield, B., Kechadi, T.: Human
activity recognition with convolutional neural networks. In: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 541–552. Springer, Berlin
(2018)

17. Bhat, G., Park, J., Ogras, U.Y.: Near-optimal energy allocation for self-powered wearable
systems. In: Proceedings of International Conference on Computer-Aided Design (ICCAD),
pp. 368–375 (2017)

18. Bhat, G., Deb, R., Chaurasia, V.V., Shill, H., Ogras, U.Y.: Online human activity recogni-
tion using low-power wearable devices. In: 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1–8. IEEE, Piscataway (2018)

19. Bhat, G., Tuncel, Y., An, S., Ogras, U.Y.: Wearable IoT devices for health monitoring.
TechConnect Briefs 2019, 357–360 (2019)

20. Bikias, T., Iakovakis, D., Hadjidimitriou, S., Charisis, V., Hadjileontiadis, L.J.: DeepFog: an
IMU-based detection of freezing of gait episodes in Parkinson’s disease patients via deep
learning. Front. Robot. AI 8 (2021)

21. Borzì, L., Mazzetta, I., Zampogna, A., Suppa, A., Olmo, G., Irrera, F.: Prediction of freezing of
gait in Parkinson’s disease using wearables and machine learning. Sensors 21(2), 614 (2021)

22. Buchli, B., Sutton, F., Beutel, J., Thiele, L.: Dynamic power management for long-term energy
neutral operation of solar energy harvesting systems. In: Proceedings of the Conference on
Embedded Network Sensor Systems, pp. 31–45 (2014)

https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 147

23. Camille Simon-Al-Araji. Bringing AI to the NBA (2019)
24. Camps, J., Sama, A., Martin, M., Rodriguez-Martin, D., Perez-Lopez, C., Arostegui, J.M.M.,

Cabestany, J., Catala, A., Alcaine, S., Mestre, B., et al.: Deep learning for freezing of
gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial
measurement unit. Knowl. Based Syst. 139, 119–131 (2018)

25. Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y.: Realtime multi-person 2D pose estimation using
part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7291–7299 (2017)

26. Choi, S., Choi, S., Kim, C.: MobileHumanPose: toward real-time 3D human pose estimation in
mobile devices. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2328–2338 (2021)

27. Deb, R., Bhat, G., An, S., Ogras, U., Shill, H.: Trends in technology usage for Parkinson’s
disease assessment: a systematic review. medRxiv (2021)

28. Demrozi, F., Bacchin, R., Tamburin, S., Cristani, M., Pravadelli, G.: Toward a wearable system
for predicting freezing of gait in people affected by Parkinson’s disease. IEEE J. Biomed.
Health Inform. 24(9), 2444–2451 (2019)

29. El-Attar, A., Ashour, A.S., Dey, N., El-Kader, H.A., El-Naby, M.M.A., Shi, F.: Hybrid DWT-
FFT features for detecting freezing of gait in Parkinson’s disease. In: Information Technology
and Intelligent Transportation Systems, pp. 117–126. IOS Press, Amsterdam (2019)

30. Fraternali, F., Balaji, B., Sengupta, D., Hong, D., Gupta, R.K.: Ember: energy management of
batteryless event detection sensors with deep reinforcement learning. In: Proceedings of the
18th Conference on Embedded Networked Sensor Systems, pp. 503–516 (2020)

31. Geissdoerfer, K., Jurdak, R., Kusy, B., Zimmerling, M.: Getting more out of energy-harvesting
systems: energy management under time-varying utility with PREAcT. In: Proceedings of the
18th International Conference on Information Processing in Sensor Networks, pp. 109–120
(2019)

32. Google: Google completes Fitbit acquisition. https://blog.google/products/devicesservices/
fitbit-acquisition/ (2021). Accessed 8 Jul 2021

33. Handojoseno, A.M.A., Shine, J.M., Nguyen, T.N., Tran, Y., Lewis, S.J.G., Nguyen, H.T.:
Analysis and prediction of the freezing of gait using EEG brain dynamics. IEEE Trans. Neural
Syst. Rehabil. Eng. 23(5), 887–896 (2014)

34. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, vol. 2. Springer, Berlin (2009)

35. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of IEEE
International Conference on Computer Vision, pp. 2961–2969 (2017)

36. Huu, T.N., Van, T.N., Takahito, O.: Flexible thermoelectric power generator with Y-type
structure using electrochemical deposition process. Appl. Energy 210, 467–476 (2018)

37. IBM: Natural Language Processing (NLP). https://www.ibm.com/cloud/learn/
naturallanguage-processing (2021). Accessed 8 Jul 2021

38. IBM: What is computer vision? https://www.ibm.com/topics/computer-vision (2021).
Accessed 8 Jul 2021

39. Jokic, P., Magno, M.: Powering smart wearable systems with flexible solar energy harvesting.
In: IEEE International Symposium on Circuits and Systems, pp. 1–4 (2017)

40. Kansal, A., Hsu, J., Zahedi, S., Srivastava, M.B.: Power management in energy harvesting
sensor networks. ACM Trans. Embedd. Comput. Syst. 6(4), 32 (2007)

41. Li, B., Zhang, Y., Tang, L., Gao, C., Gu, D.: Automatic detection system for freezing of
gait in Parkinson’s disease based on the clustering algorithm. In: 2018 2nd IEEE Advanced
Information Management, Communicates, Electronic and Automation Control Conference
(IMCEC), pp. 1640–1649. IEEE, Piscataway (2018)

42. Li, B., Yao, Z., Wang, J., Wang, S., Yang, X., Sun, Y.: Improved deep learning technique to
detect freezing of gait in Parkinson’s disease based on wearable sensors. Electronics 9(11),
1919 (2020)

43. Li, J., Bian, S., Zeng, A., Wang, C., Pang, B.,Liu, W., Lu, C.: Human pose regression with
residual log-likelihood estimation. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 11025–11034 (2021)

https://blog.google/products/devicesservices/fitbit-acquisition/
https://blog.google/products/devicesservices/fitbit-acquisition/
https://blog.google/products/devicesservices/fitbit-acquisition/
https://blog.google/products/devicesservices/fitbit-acquisition/
https://blog.google/products/devicesservices/fitbit-acquisition/
https://blog.google/products/devicesservices/fitbit-acquisition/
https://blog.google/products/devicesservices/fitbit-acquisition/
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision

148 S. An et al.

44. Mancini, M., et al.: Measuring freezing of gait during daily-life: an open-source, wearable
sensors approach. J. Neuroeng. Rehabil. 18(1), 1–13 (2021)

45. Masiala, S., Huijbers, W., Atzmueller, M.: Feature-set-engineering for detecting freezing
of gait in Parkinson’s disease using deep recurrent neural networks (2019). Preprint.
arXiv:1909.03428

46. Meng, Z., et al.: Gait recognition for co-existing multiple people using millimeter wave
sensing. In: Proceedings of AAAI Conference on Artificial Intelligence, vol. 34, pp. 849–856
(2020)

47. Mikos, V., Heng, C.-H., Tay, A., Yen, S.-C., Chia, N.S.Y., Koh, K.M.L., Tan, D.M.L., Au, W.L.:
A neural network accelerator with integrated feature extraction processor for a freezing of gait
detection system. In: 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 59–62.
IEEE, Piscataway (2018)

48. Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C.: Energy harvesting
from human and machine motion for wireless electronic devices. Proc. IEEE 96(9), 1457–1486
(2008)

49. Naghavi, N., Wade, E.: Prediction of freezing of gait in Parkinson’s disease using statistical
inference and lower–limb acceleration data. IEEE Trans. Neural Syst. Rehabil. Eng. 27(5),
947–955 (2019)

50. Naghavi, N., Miller, A., Wade, E.: Towards real-time prediction of freezing of gait in patients
with Parkinson’s disease: addressing the class imbalance problem. Sensors 19(18), 3898 (2019)

51. Nguyen, S., Amirtharajah, R.: A hybrid RF and vibration energy harvester for wearable
devices. In: IEEE Applied Power Electronics Conference, pp. 1060–1064 (2018)

52. Nvidia. Jetson Nano Developer Kit. https://developer.nvidia.com/embedded/jetson-
nanodeveloper-kit (2021). Accessed 8 Jul 2021

53. O’Day, J., Lee, M., Seagers, K., Hoffman, S., Jih-Schiff, A., Kidziñski, Ł., Delp, S., Bronte-
Stewart, H.: Assessing inertial measurement unit locations for freezing of gait detection and
patient preference. J. Neuroeng. Rehabil. 19(1), 1–15 (2022)

54. Odemakinde, E.: Human pose estimation with deep learning – ultimate overview in 2021
(2021)

55. Oung, Q.W., Basah, S.N., Muthusamy, H., Vijean, V., Lee, H., Khairunizam, W., Bakar,
S.A., Razlan, Z.M., Ibrahim, Z.: Objective evaluation of freezing of gait in patients with
Parkinson’s disease through machine learning approaches. In: 2018 International Conference
on Computational Approach in Smart Systems Design and Applications (ICASSDA), pp. 1–7.
IEEE, Piscataway (2018)

56. Oura. OURA – The most accurate guide on Sleep, Readiness, and Activity [Online] https://
ouraring.com/. Accessed 1 Oct 2021

57. Pardoel, S.: Detection and prediction of freezing of gait in Parkinson’s disease using wearable
sensors and machine learning (2021)

58. Pardoel, S., Kofman, J., Nantel, J., Lemaire, E.D.: Wearable-sensor-based detection and
prediction of freezing of gait in Parkinson’s disease: a review. Sensors 19(23), 5141 (2019)

59. Pardoel, S., Shalin, G., Nantel, J., Lemaire, E.D., Kofman, J.: Early detection of freezing of gait
during walking using inertial measurement unit and plantar pressure distribution data. Sensors
21(6), 2246 (2021)

60. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Steiner, A.B., Fang, L., Bai, J., Chintala,
S.: PyTorch: an imperative style, high performance deep learning library. In: Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook
(2019)

61. PyTorch: PyTorch Mobile. https://pytorch.org/mobile/home/ (2022). Accessed 8 Jul 2021
62. Rabaey, J.M., Pedram, M.: Low Power Design Methodologies, vol. 336. Springer Science &

Business Media, Berlin (2012)
63. Rad, N.M., Laarhoven, T.V., Furlanello, C., Marchiori, E.: Novelty detection using deep

normative modeling for IMU-based abnormal movement monitoring in Parkinson’s disease
and autism spectrum disorders. Sensors 18(10), 3533 (2018)

https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://ouraring.com/
https://ouraring.com/
https://ouraring.com/
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 149

64. Ramanan, D., Forsyth, D.A., Zisserman, A.: Strike a pose: tracking people by finding stylized
poses. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR),
vol. 1, pp. 271–278. IEEE, Piscataway (2005)

65. Rashid, N., Demirel, B.U., Al Faruque, M.A.: AHAR: adaptive CNN for energy-efficient
human activity recognition in low-power edge devices. IEEE Internet Things J. 9(15), 13041–
13051 (2022)

66. Raspberry Pi: Raspberry Pi. https://www.raspberrypi.com/documentation/ (2021). Accessed 8
Jul 2021

67. Reches, T., Dagan, M., Herman, T., Gazit, E., Gouskova, N.A., Giladi, N., Manor, B.,
Hausdorff, J.M.: Using wearable sensors and machine learning to automatically detect freezing
of gait during a fog-provoking test. Sensors 20(16), 4474 (2020)

68. Roetenberg, D., Luinge, H., Slycke, P.: Xsens MVN: full 6DOF human motion tracking using
miniature inertial sensors. Xsens Motion Technol. BV. Tech. Rep. 1, 1–7 (2009)

69. Samà, A., Rodríguez-Martín, D., Pérez-López, C., Català, A., Alcaine, S., Mestre, B., Prats, A.,
Crespo, M.C., Bayés, À.: Determining the optimal features in freezing of gait detection through
a single waist accelerometer in home environments. Pattern Recogn. Lett. 105, 135–143 (2018)

70. Sani, S., Wiratunga, N., Massie, S.: Learning deep features for KNN-based human activity
recognition. In: CEUR Workshop Proceedings (2017)

71. Schaafsma, J.D., Balash, Y., Gurevich, T., Bartels, A.L., Hausdorff, J.M., Giladi, N.: Char-
acterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s
disease. Eur. J. Neurol. 10(4), 391–398 (2003)

72. Sengupta, A., Jin, F., Zhang, R., Cao, S.: Mm-pose: real-time human skeletal posture estimation
using mmWave radars and CNNs. IEEE Sensors J. 20(17), 10032–10044 (2020)

73. Shalin, G., Pardoel, S., Lemaire, E.D., Nantel, J., Kofman, J.: Prediction and detection of
freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory
neural-networks. J. Neuroeng. Rehabil. 18(1), 1–15 (2021)

74. Shao, L., Han, J., Xu, D., Shotton, J.: Computer vision for RGB-D sensors: kinect and its
applications [special issue intro]. IEEE Trans. Cybern. 43(5), 1314–1317 (2013)

75. Shi, B., Yen, S.C., Tay, A., Tan, D.M.L., Chia, N.S.Y., Au, W.L.: Convolutional neural
network for freezing of gait detection leveraging the continuous wavelet transform on lower
extremities wearable sensors data. In: 2020 42nd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC), pp. 5410–5415. IEEE, Piscataway
(2020)

76. Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.M.: A survey of online activity
recognition using mobile phones. Sensors 15(1), 2059–2085 (2015)

77. Sigcha, L., Costa, N., Pavón, I., Costa, S., Arezes, P., López, J.M., De Arcas, G.: Deep learning
approaches for detecting freezing of gait in Parkinson’s disease patients through on-body
acceleration sensors. Sensors 20(7), 1895 (2020)

78. Sudevalayam, S., Kulkarni, P.: Energy harvesting sensor nodes: survey and implications. IEEE
Commun. Surv. Tutorials 13(3), 443–461 (2010)

79. Svitla: CPU, GPU, and TPU for fast computing. https://svitla.com/blog/cpu-gpu-and-tpu-
forfast-computing-in-machine-learning-and-neural-networks (2021). Accessed 8 Jul 2021

80. TensorFlow: TensorFlow Lite: ML for mobile and edge devices. https://www.tensorflow.org/
lite (2022). Accessed 8 Jul 2021

81. Texas Instruments: IWR1443BOOST. https://www.ti.com/tool/IWR1443BOOST (2014).
Accessed 29 Sep 2020

82. tinyML: tinyML Summit ahead! https://www.tinyml.org/ (2021). Accessed 8 Jul. 2021
83. Torvi, V.G., Bhattacharya, A., Chakraborty, S.G.: Deep domain adaptation to predict freezing

of gait in patients with Parkinson’s disease. In: 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), pp. 1001–1006. IEEE, Piscataway (2018)

84. Tuncel, Y., Bandyopadhyay, S., Kulshrestha, S.V., Mendez, A., Ogras, U.Y.: Towards wearable
piezoelectric energy harvesting: modeling and experimental validation. In: Proceedings of the
ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 55–60 (2020)

https://www.raspberrypi.com/documentation/
https://www.raspberrypi.com/documentation/
https://www.raspberrypi.com/documentation/
https://www.raspberrypi.com/documentation/
https://www.raspberrypi.com/documentation/
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.ti.com/tool/IWR1443BOOST
https://www.ti.com/tool/IWR1443BOOST
https://www.ti.com/tool/IWR1443BOOST
https://www.ti.com/tool/IWR1443BOOST
https://www.ti.com/tool/IWR1443BOOST
https://www.ti.com/tool/IWR1443BOOST
https://www.tinyml.org/
https://www.tinyml.org/
https://www.tinyml.org/
https://www.tinyml.org/

150 S. An et al.

85. Tuncel, Y., Basaklar, T., Ogras, U.: How much energy can we harvest daily for wearable
applications? In: 2021 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), pp. 1–6. IEEE, Piscataway (2021)

86. Tuncel, Y., Bhat, G., Park, J., Ogras, U.: ECO: enabling energy-neutral IoT devices through
runtime allocation of harvested energy. IEEE Internet Things J. 9(7), 4833–4848 (2022) https://
doi.org/10.1109/JIOT.2021.3106283

87. Vakanski, A., Jun, H.-p., Paul, D., Baker, R.: A data set of human body movements for physical
rehabilitation exercises. Data 3(1), 2 (2018)

88. Von Marcard, T., Rosenhahn, B., Black, M.J., Pons-Moll, G.: Sparse inertial poser: automatic
3D human pose estimation from sparse IMUs. In: Computer Graphics Forum, vol. 36, pp. 349–
360. Wiley Online Library (2017)

89. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering
accurate 3D human pose in the wild using IMUs and a moving camera. In: Proceedings of
the European Conference on Computer Vision (ECCV), pp. 601–617 (2018)

90. Wang, A., Chen, G., Yang, J., Zhao, S., Chang, C.-Y.: A comparative study on human activity
recognition using inertial sensors in a smartphone. IEEE Sensors J. 16(11), 4566–4578 (2016)

91. Wikipedia: Embedded system. https://en.wikipedia.org/wiki/Embedded_system (2021).
Accessed 8 Jul 2021

92. Xue, H., Ju, Y., Miao, C.,Wang, Y., Wang, S., Zhang, A., Su, L.: mmMesh: towards 3D real-
time dynamic human mesh construction using millimeter-wave. In: Proceedings of the 19th
Annual International Conference on Mobile Systems, Applications, and Services, pp. 269–282
(2021)

93. Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K.: Convolutional neural networks: an
overview and application in radiology. Insights Imaging 9(4), 611–629 (2018)

94. Zebin, T., Scully, P.J., Peek, N., Casson, A.J., Ozanyan, K.B.: Design and implementation
of a convolutional neural network on an edge computing smartphone for human activity
recognition. IEEE Access 7, 133509–133520 (2019)

95. Zhang, J., Zhang, D., Xu, X., Jia, F., Liu, Y., Liu, X., Ren, J., Zhang, Y.: MobiPose: real-time
multi-person pose estimation on mobile devices. In: Proceedings of the 18th Conference on
Embedded Networked Sensor Systems, pp. 136–149 (2020)

96. Zhao, M., et al.: RF-based 3D skeletons. In: Proceedings of Conference of the ACM Special
Interest Group on Data Communication, pp. 267–281 (2018)

97. Zhu, S., Anderson, H., Wang, Y.: Reducing the power consumption of an IMU based gait
measurement system. In: Pacific-Rim Conference on Multimedia, pp. 105–116. Springer,
Berlin (2012)

https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system

	A Survey of Embedded Machine Learning for Smart and Sustainable Healthcare Applications
	1 Introduction
	2 Overview of Embedded Machine Learning Frameworks
	3 Embedded Machine Learning Applications for Healthcare
	3.1 Freezing-of-Gait Identification in PD Patients
	3.2 Human Activity Recognition
	3.2.1 Processing Pipeline
	3.2.2 Commonly Used ML Algorithms
	3.2.3 Offline vs. Online Learning

	3.3 Human Pose Estimation
	3.3.1 Human Pose Estimation Using RGB Camera
	3.3.2 Human Pose Estimation Using mmWave Radar
	3.3.3 Human Pose Estimation Using Inertial Sensors

	4 Energy Management
	4.1 Energy Sources and Budget
	4.2 Optimal Energy Management

	5 Conclusions
	References

