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1 Introduction 

Embedded machine learning has recently drawn significant attention due to the 
fast development of machine learning (ML) and embedded devices. It is an 
application of artificial intelligence (AI) to make decisions or predictions from the 
existing data at the edge without explicit programming. The success of embedded 
ML heavily relies on the recent improvement of computation power since ML 
algorithms are highly data-intensive. Machines need to launch complex linear 
algebraic computations, such as matrix and vector operations, to learn the non-
trivial relationship between the inputs and outputs. To date, computing clusters using 
multiple high-frequency central processing units (CPU), graphics processing unit 
(GPU), and tensor processing unit (TPU) [79] are the most widely used resources 
to perform such operations. However, when the users want to enjoy the convenience 
of ML without transmitting their local data, computing clusters are certainly not a 
good choice due to the prices and large form factor. 

An embedded device refers to a small computer system—a combination of 
computer processors, memory, and input/output devices [91]. Nowadays, people 
have access to multiple personal devices, such as smartphones, smartwatches, and 
autonomous cars. Embedded devices such as Raspberry Pi [66], Nvidia Jetson [52], 
and Arduino [11] are powerful yet affordable due to the recent emergence of 
hardware. For example, an Nvidia Jetson Nano developer kit [52] with 128-core 
4GB memory GPU that can run most ML algorithms only costs less than $100. 
Embedded machine learning enables the deployment of ML algorithms on edge 
devices rather than the powerful computational cluster. It allows the end users to 
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perform machine learning directly on devices used in the field, thus leading to 
numerous novel applications. 

Concurrent advances in machine learning and low-power computing areas pave 
the way for high-impact applications. These applications can attract social attention, 
promote industrial progress, and improve the quality of life. For example, computer 
vision (CV) and natural language processing (NLP) are major technical areas that 
widely apply machine learning since they are attached closely to the industry 
and commercial market. Specifically, computer vision helps machines understand 
images and videos, thus generating meaningful information and making decisions. 
Example applications include image classification, object detection, object tracking, 
and instance segmentation. The market for computer vision is expected to reach 
USD 48.6 billion by 2022 [38]. NLP refers to the technology that gives computers 
to understand text and language similar to human beings [37]. Application of NLP 
includes speech recognition, sentiment analysis, machine translation, and text sum-
marization. Another popular machine learning application area is recommendation 
system (RS). Recommendation systems aim to recommend things to the users based 
on their previous interests and other factors. These systems predict the most likely 
content that will interest users. Many tech companies such as Google, Amazon, and 
Netflix rely on recommendation systems to enhance their customers’ engagement. 

As a particular subset of the previously mentioned ML applications trained 
solely with big data, embedded machine learning supports obtaining and processing 
new data locally. Embedded devices are usually equipped with different sensors 
to measure motion, biopotentials, and temperature. Embedded ML can directly 
use data from these sensors, thus enabling numerous novel applications. Target 
applications include smart healthcare, autonomous driving, professional sports, 
and power/energy management [23, 54, 87]. The rest of the chapter will first 
overview embedded machine learning frameworks and then offer examples of 
specific applications using embedded machine learning. This chapter focuses mainly 
on embedded machine learning applications with data obtained on-device. The 
concept of embedded machine learning and tinyML will be coherently interspersed 
and interact with the applications. Finally, we also introduce energy management as 
a service application since the deployment of ML applications on edge devices is 
limited by battery capacity. 

2 Overview of Embedded Machine Learning Frameworks 

Embedded machine learning frameworks typically consist of model training, model 
compression, and model inference, as illustrated in Fig. 1. Model training is the 
process of learning the non-trivial patterns or relationships between the inputs and 
outputs through an intensive search that includes trial and error. It usually needs a 
vast amount of data points to train to learn the hidden complex relationship between 
the inputs and outputs instead of memorizing from the existing data. Thus, model
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Fig. 1 Overview of embedding machine learning framework 

training is usually performed in powerful computation processors, such as cloud 
servers, workstations, or personal computers (PC), as shown in Fig. 1. 

The success of ML frameworks relies heavily on the improvement of com-
putation power since ML algorithms need an intensive amount of data to train. 
However, users of ML applications do not participate in the model training part. 
Instead, they run the pre-trained ML models on their devices for inference in 
different applications. Therefore, it is crucial to ensure that the ML algorithms tar-
geting embedded applications can run on edge devices with limited computational 
power and memory. To this end, popular ML libraries such as PyTorch [60] and 
TensorFlow [1] have been making significant efforts in compressing the size and 
accelerating the inference time of the model on embedded devices. For example, 
PyTorch Mobile [61] and TFLite [80] are the corresponding lightweight version of 
PyTorch and TensorFlow. Many recent studies take advantage of these lightweight 
ML frameworks that target embedded ML [26, 94, 95]. The lightweight version 
of TensorFlow, TFLite, can reduce the model size up to 75% with a minimal 
accuracy loss. For instance, a ResNet101 model, after optimized by TFLite, is 
only 44.9 MB, compared to 178.3 MB on TensorFlow with only 0.2% accuracy 
loss. Consequently, the tinyML concept is introduced with the fast development of 
lightweight ML libraries. TinyML refers to ML capable of performing on-device 
sensor data analytics at ultra-low power, thus enabling a variety of always-on 
applications and targeting battery-operated devices [82]. The middle part of Fig. 1 
shows that model compression is bridging the model training and model inference 
using ML libraries. 

Model inference refers to the process of inferring the most likely output of 
given inputs from the previously learned model. Hence, it does not require intensive 
computational power and can be easily deployed on edge devices. In the embedded 
machine learning flows, the model inference is the central part that runs on users’ 
edge devices. For instance, users can access ML applications such as tracking
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their vital signs using a smartphone or smartwatch [9] and setting up self-driving 
functions in their car. A recent study [94] designed and implemented convolution 
neural networks (CNNs) on smartphones using TFLite to estimate human activities 
in real time. Similarly, real-time human pose estimations for a single person and 
multi-person on mobile devices are proposed in [26] and [95], respectively. The 
right part of Fig. 1 shows that users can use the compressed ML algorithm for their 
customized applications using their edge devices. 

3 Embedded Machine Learning Applications for Healthcare 

The aging population has been becoming a serious concern all over the world. The 
consequent rise in health-related issues has drawn significant research attention from 
the industry and academic community. Technology companies have continuously 
increased their R&D expenditure for wearable devices that can be used for mobile 
activity and health monitoring. For instance, Apple utilizes its popular consumer-
facing products, such as Apple Watch, to provide health-related features accessible 
on its watch to bridge wearables and clinical tools used in medical research [9]. In 
2021, Google acquired the wearable giant Fitbit (smartwatch) to participate in the 
AI-enabled healthcare race among top-pitch technical companies [32]. Embedded 
machine learning enables various healthcare-related applications by feeding multi-
modal sensing data obtained from humans into machine learning algorithms on 
devices. 

Remote activity and healthy monitoring applications can provide valuable 
insights [12]. Hence, they can improve the quality of life in many healthcare 
applications, including but not limited to human activity recognition [4, 19], gait 
monitoring [5, 46], human pose estimation [2, 3, 92], and freezing of gait (FoG) [24, 
55, 69]. For example, advanced ML algorithms can locally analyze the motion and 
physiological data from wearable sensors. This capability can enable many real-
time applications such as irregular rhythm notification, early warning signs, and 
fall detection. These applications are also the first step toward diagnosis, prognosis, 
and rehabilitation of movement disorders similar to Parkinson’s disease (PD) and 
stroke. The rest of this section discusses three illustrative examples as cases studies 
and summarizes the recent work in those areas. 

3.1 Freezing-of-Gait Identification in PD Patients 

Parkinson’s disease (PD) is one of the most common age-related neurodegenerative 
diseases. It causes muscular rigidity, tremor, bradykinesia, slowness in movement, 
and postural instability [27, 45, 49, 83]. More than 50% of the PD patients develop 
freezing of gait (FoG) [44] in their advanced stages of the disease. Freezing of gait 
is a brief absence of the ability to walk despite the intention of moving the feet [59].
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FoG episodes may include trembling of knees, short shuffling steps, or complete 
akinesia [71] and overall increase the risk of falling and deteriorate the patient’s 
quality of life. 

Clinical studies suggest that external stimuli, such as auditory, visual, or tactile 
cues, help patients to exit the FoG state and resume walking [59]. FoG identification 
is a challenging task since FoG episodes are rare events. Furthermore, clinical 
settings cannot provide the actual frequency of occurrence of FoG episodes. For 
example, FoG episodes mainly occur during turning, walking through doorways, 
or dual tasking, and 90% of them last less than 20 s [44]. Specific experimental 
sessions are designed to simulate the daily-life activities in clinical settings, such as 
walking and turning while dual tasking [44]. However, this practice is a challenging 
proposition due to fundamental limitations. On the one hand, the duration of these 
sessions in a clinical setting and the number of visits per patient are limited. On the 
other hand, the frequency of FoG occurrence and the duration of FoG episodes are 
short. Hence, the probability of observing FoG episodes during these simulations 
can be small. 

FoG-related problems can be avoided by systems that can identify FoG episodes 
and provide an appropriate cueing mechanism such as audio. FoG identification can 
be divided into two subclasses: FoG detection and FoG prediction. FoG detection 
implies classifying FoG episodes after patients start to experience them. It has 
been heavily studied for over a decade. More than 50 studies related to FoG 
detection have been published by late 2019 [58]. In contrast, FoG prediction implies 
classifying FoG episodes before the occurrence of an FoG episode. The main goal 
of the FoG prediction studies is to predict potential FoG episodes and prevent their 
onset by providing preemptive cueing. Despite this promising potential, there are 
very few studies related to FoG prediction compared to FoG detection [58, 59, 73]. 

Both FoG detection and prediction studies use various wearable sensors placed 
on different parts of the patient’s body. These sensors collect motion data using iner-
tial measurement units, plantar pressure systems, and electromyography [44, 59]. 
Various machine learning approaches are utilized for FoG identification, including 
random forests, support vector machines (SVMs), nearest neighbor algorithms, and 
deep neural networks (DNNs) [57]. Classification algorithms, such as decision trees, 
SVMs, and k-nearest neighbor, require handcrafted spectral and statistical features 
extracted from the motion data of the PD patients, which needs substantial domain 
knowledge [57]. However, FoG identification approaches should require minimal 
preprocessing and manual effort to facilitate easy deployment on edge-AI devices. 
Approaches that employ DNNs do not require domain knowledge. They can directly 
utilize raw sensor data to identify FoG episodes. For example, convolutional neural 
networks (CNNs) are adopted widely among with long short-term memory (LSTM) 
networks to detect and predict FoG episodes [13, 53, 57, 73, 83]. Table 1 summarizes 
the recent FoG identification studies published since 2018. None of the above 
studies have embedded ML framework in an edge-AI device. These approaches 
require powerful computing resources that are hard to integrate on an edge device. 
Therefore, there is a critical need for lightweight FoG identification approaches
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Table 1 A summary of recent FoG identification studies 

Sensor type and location FoG identification approach 

Sama et al. [69] IMU placed on the waist k-NN, random forest, logistic 
regression, Naïve Bayes, multilayer 
perceptron (MLP), SVM 

Camps et al. [24] IMU placed on the waist CNN 

Oung et al. [55] 3 accelerometers placed on the left 
shank, left thigh, and lower back 

Probabilistic NN, SVM 

Li et al. [41] Accelerometer placed on the 
lower back 

Mini-batch k-means clustering 

Mikos et al. [47] 2 accelerometers placed on each 
ankle 

MLP 

Rad et al. [63] 3 accelerometers placed on the left 
shank, left thigh, and lower back 

Denoising autoencoder 

Handojoseno et al. 
[33] 

EEG electrodes placed on the head DNN 

Torvi et al. [83] 3 accelerometers placed on the left 
shank, left thigh, and lower back 

LSTM 

El-Attar et al. [29] Accelerometer placed on the left 
shank 

DNN 

Naghavi and Wade 
[49] 

3 accelerometers placed on the left 
shank, left thigh, and lower back 

Statistical analysis based on 
Kruskal–Wallis test 

Naghavi et al. [50] 2 accelerometers placed on each 
ankle 

k-NN, SVM, decision tree, MLP 
along with classifier bagging and 
synthetic minority over-sampling 
methods 

Arami et al. [10] 3 accelerometers placed on the left 
shank, left thigh, and lower back 

SVM 

Demrozi et al. [28] 3 accelerometers placed on the left 
shank, left thigh, and lower back 

k-NN 

Reches et al. [67] 3 accelerometers placed on the left 
ankle, right ankle, and lower back 

SVM 

Shi et al. [75] 3 accelerometers placed on the left 
ankle, right ankle, and neck 

CNN 

Li et al. [42] 3 accelerometers placed on the left 
shank, left thigh, and lower back 

CNN . + LSTM 

Sigcha et al. [77] IMU placed on the waist CNN . + LSTM 

Mancini et al. [44] 8 IMUs placed on the shins, feet, 
wrists, sternum, and lower back 

Correlation and thresholding 

Bikias et al. [20] IMU placed on the wrist CNN 

Borzi et al. [21] 2 IMUs placed on the shins k-NN, SVM, linear discriminant 
analysis, logistic regression 

that leverage the wearable sensor data with minimal preprocessing of the data and 
activate an appropriate cueing mechanism locally on the edge device.
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3.2 Human Activity Recognition 

There has been growing interest in human activity recognition (HAR) due to its 
health monitoring and patient rehabilitation applications [4, 65, 76, 90]. Inertial 
measurement units (IMUs) are used to capture the body and joint movements to 
estimate or predict human activity. The recognized activities with time stamps are 
valuable insights for health monitoring and rehabilitation. The prevalence of low-
cost motion sensors and embedded machine learning algorithms make it possible to 
perform human activity recognition on-device [18]. 

3.2.1 Processing Pipeline 

The majority of HAR methods employ smartphones due to their popularity and 
easy access to integrated accelerometers and gyroscope sensors [6, 76, 90]. More 
recent work started using wearable devices for this purpose due to significant 
power consumption and form-factor benefits. A typical HAR framework consists 
of data preprocessing, feature extraction, and classifying algorithms, as shown 
in Fig. 2. Inertial measurement units, which typically include accelerometers and 
gyroscopes, are attached to different human body parts. They usually provide 
three-axis acceleration and angular velocity. If the activities are simple enough, a 
significant number of approaches use only the acceleration data since the gyroscope 
sensors have relatively larger power consumption [97]. The first step is to preprocess 
the raw sensor data to reduce measurement noise and construct activity windows. 
Then, the data in each activity window are used to produce features, such as the 
body acceleration and signal statistics (e.g., min, max, mean). Finally, these features 
are used by ML algorithms to recognize activities, such as standing, sitting, lying, 
walking, and jogging. 

A range of methods is used during the preprocessing step. The most common 
preprocessing techniques include downsampling, low-pass filtering, and segmenta-
tion. The inertial sensors often sample at a high sampling rate (. >50 Hz). However, 
most human activities are only at a few Hz range [18], making the sampled data 
redundant. Median and mean filters are two mainstream filters used for down-
sampling. Similarly, the sensor data, especially accelerometer data, are typically 
noisy. Therefore, most preprocessing techniques incorporate low-pass filtering and 
smoothing. Most ML algorithms require the inputs to have a fixed length. Therefore, 
preprocessing steps typically involve segmentation algorithms that divide the data 
into possibly overlapping windows. For example, segmentation algorithms can 
divide a long period (in the order of hours) of time series data into multiple fixed-
length (e.g., one–ten seconds) windows. If the number of data samples in each 
window is uniform, the ML algorithms, such as DNNs, can conveniently process 
them.
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Fig. 2 Overview of human activity recognition. The figure is partially modified from [18] 

3.2.2 Commonly Used ML Algorithms 

Most of the HAR techniques employ supervised learning algorithms. Exam-
ples of supervised learning algorithms suitable for HAR include support vector 
machine (SVM), random forests, decision trees, k-nearest neighbors (k-NN), and 
neural network (NN). These algorithms take the labeled data to train the classifier, 
as outlined below: 

• Support vector machine: SVM techniques try to find a hyperplane in high-
dimensional space that separates two output classes [34]. If they cannot find the 
separating hyperplane in a lower dimension, it keeps mapping the data into higher 
dimensions until the separating hyperplane is found. HAR problem is essentially 
a multi-class classifying problem. Multiple classifiers need to be performed to 
apply SVM to HAR for differentiating more than two output classes since SVM 
is a binary classifier. 

• Random forests and decision trees: Decision tree classifiers are commonly used 
for classification problems since it is intuitive and explainable. They use a series 
of rules to make decisions, just like how humans make decisions [34]. Decision 
trees take the dataset features to create binary questions and continually separate 
the dataset until all data samples are isolated to different classes. An ensemble
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of tree-structured classifiers is employed for random forests. The most predicted 
classes among all trees are chosen as the final predicted class. 

• k-Nearest Neighbors: This approach is one of the most traditional and popular 
techniques in classifying problems [34]. K-NN first computes k-nearest neighbors 
in the training set. Then, it chooses the most common class among k neighbors. 
That class is then the final estimated class. K-NN technique requires all training 
data to be stored locally. Many of the HAR techniques used k-NN for the offline 
training [70]. 

• Neural networks: Neural networks are widely used in classification and regression 
problems. Multilayer perceptron (MLP) classifier is one of the primary neural 
networks used for human activity recognition. It consists of three layers at least: 
one input layer, one hidden layer, and one output layer. Each layer of the MLP 
has multiple neurons/nodes with non-linear activation functions. In the HAR 
context, the number of hidden neurons in the hidden layers is crucial for obtaining 
good accuracy while retaining low computational complexity. The number of 
neurons in the output layer corresponds to the output classes. Convolution 
neural networks (CNNs) are popular for processing 2D images. Convolutional 
kernels can convolve with the input image layers by layers to extract the helpful 
feature maps instead of choosing the features manually in other techniques [93]. 
Researchers recently applied CNN in HAR by reshaping the 1D HAR features to 
a 2D feature map input [16]. 

3.2.3 Offline vs. Online Learning 

Currently, there are two mainstream HAR training paradigms: offline training and 
online training. The training is performed on dedicated computing resources such 
as power CPU and GPU for offline training. Machine learning algorithms require a 
large amount of data to capture different patterns’ behavior and learn how to classify 
them. Thus, dedicated computing resources are used since they can process a vast 
amount of data. The offline pre-trained models then are deployed to edge devices, 
for example, smartphones and smart wearables, to perform the inference for new 
users. Offline training is the fundamentals of all supervised training algorithms. 
The downside of this approach is that the performance of inferring on new users 
that have not appeared in the training data is inevitably worse than inferring on the 
trained users. Online training tackles this issue by continually training with new user 
data on the edge devices. The pre-trained models are also deployed to edge devices, 
but the new users’ data obtained on the field are fed into the machine learning 
algorithm running on the edge device to train online. Since the amount of data is 
small compared to the offline training data, the edge devices can train the models in 
real time. For HAR on-device, the neural network is the most popular method since 
it supports online training [18].
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3.3 Human Pose Estimation 

Human pose estimation aims to detect and track key joints, such as wrists, elbows, 
and knees. It has rapidly growing applications areas, including rehabilitation, 
professional sports, and autonomous driving [23, 54, 87]. For instance, one of the 
leading causes of autonomous car accidents is “robotic” driving, where the self-
driver makes a legal but unexpected stop and causes other drivers to crash into 
it [54]. Real-time human pose estimation can help computers understand and predict 
human states, thus leading to more natural driving. Likewise, remote rehabilitation 
applications, which are currently not feasible, can be enabled by human pose 
estimation. 

Human pose estimation can be performed by processing image, video, LiDAR 
(light detection and ranging), inertial sensors (IMUs), or mmWave radar data. 
RGB image and video frames are the most common input types since they offer 
accurate real-world representations with true color. However, the RGB frame quality 
depends heavily on the environmental setting, such as light conditions and visibility. 
Alternatively, the LiDAR point cloud obtained by laser scanning overcomes these 
challenges. However, it has high-cost and significant processing requirements, 
making them unsuitable for indoor applications such as rehabilitation. mmWave 
radar can generate high-resolution 3D point clouds while maintaining low-cost, 
price, and power advantages. Inertial sensors (IMUs) can also reconstruct human 
pose using the sensing accelerations and gyroscopes [88, 89]. This section discusses 
these three broad approaches and recent literature. 

3.3.1 Human Pose Estimation Using RGB Camera 

In the computer vision field, human pose estimation has drawn attention after a 
seminal study in 2005 [64]. This study presents a framework to detect ten distinct 
body parts using rectangular templates from RGB images. He et al. [35] propose 
Mask R-CNN, which can reconstruct skeleton from RGB images using K masks by 
leveraging ResNet neural network architecture. It first detects K different key points 
and then connects them. Mask R-CNN has become popular due to its fast processing 
time and accurate estimation. Similarly, Cao et al. proposed OpenPose [25], a real-
time human pose estimation technique that can detect human body, face, and foot 
key points together for the first time. OpenPose has become one of the popular 
benchmarks due to its decent performance and the easy-to-use open-source package. 
Besides the RGB video-based approach, Microsoft Kinect and Kinect V2 [74] 
provide depth cameras to extract the human joints representation. Both Kinect and 
Kinect V2 use an RGB camera and a depth sensor consisting of an infra-red camera 
and projector as sensing units to capture the information. The Kinect family has 
become one of the popular methods to obtain the ground truth label for training due 
to its convenience, low cost, and nice performance [7, 72, 96].
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From an RGB image containing a person, the human pose estimation model 
typically consists of the cropping bounding box, extracting features, and predicting 
the joint coordinates. The first step is to crop the bounding box containing the 
human. The area of a person can be only .1/5 of the image or even smaller. For 
the human pose estimation task, the region of interest (ROI) is only the area related 
to humans. Hence, an efficient human bounding box detection algorithm is crucial. 
After obtaining the human bounding box, the next step is to extract useful features 
from the area. Most of the techniques use deep CNNs since many of them have been 
proved to be suitable feature extractors in the image processing field [35]. Finally, 
the model needs to output the human joints coordinates. In estimating the joint 
coordinates, heatmap-based and regression-based are two mainstream methods. 

Heatmap-based models learn each joint point’s position through the Gaussian 
distribution graphs. The method first renders Gaussian probability distribution 
heatmaps for every joint point and then applies argmax or soft-argmax operation 
to the heatmaps, thus obtaining the final estimation results. Since the maximum 
value of every heatmap corresponds to a joint’s coordinates, the resolution of the 
output heatmap needs to be relatively high (64. ×64 usually). Thus, this method’s 
computation and memory overhead are high since multiple high-resolution Gaussian 
heatmaps need to be rendered (one output heatmap for each joint). 

Regression-based models represent another alternative that is simpler and more 
intuitive. It directly learns the joints’ coordinates values using L1 or L2 loss. 
Since the regression-based method does not require rendering the heatmap and 
maintaining the high resolution, the output feature map can be small compared to 
the heatmap-based model. Thus, the computation and memory requirements of the 
regression-based model are significantly lower than the heatmap-based model. For 
instance, using Resnet-50, the floating-point operation per second (FLOPs) of the 
regression-based model is .1/20000 of the heatmap-based model [43]. This result 
shows that the regression model is friendly to the edge devices. Regression-based 
methods are widely applied in industry [43] since it is computationally efficient and 
straightforward. However, the heatmap-based method is generally more robust for 
occlusion and blur. In addition, the heatmap-based model has better explainability 
than the regression-based model. Recently, researchers have started to combine two 
methods to keep advantages of both of them [43]. 

3.3.2 Human Pose Estimation Using mmWave Radar 

The human pose can also be reconstructed from mmWave signals. Compared to the 
RGB image source, mmWave signals preserve user privacy well since the mmWave 
signal does not reveal salient and rich information such as true-color images. At the 
same time, the sparse input source makes human pose estimation a more challenging 
task. Almost all mmWave human pose estimation methods use a regression-based 
model. In 2018, researchers proposed RF-Pose3D [96], a technique that reconstructs 
up to 14 body parts, including the head, neck, shoulders, elbows, wrists, hip, knees, 
and feet. This work first uses 12 camera nodes to record RGB-based video and
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then obtain label key points from OpenPose. At the same time, radar signals at a 
few GHz are used to generate the RF heatmap. They then train a region proposal 
network (RPN) to zoom in on RF data and a CNN with ResNet architecture to 
extract the 3D skeleton from the region of interest. For keypoint localization, the 
average errors in the .x, y, z axes are 4.2, 4.0, and 4.9 cm, respectively. 

Besides being limited to 14 joints, this work does not leverage the mmWave 
radar’s ability to obtain a high-quality point cloud. Thus, it requires a much 
more complex NN architecture with high computation cost. Moreover, multiple 
cameras and bulky radar signal generating systems hinder the practicality of the 
approach. The most recent mmWave radar-based pose estimation techniques use 
point cloud representation from the commercial radar device Texas Instrument (TI) 
xWR1x43 [81]. Sengupta et al. [72] propose mmPose, a human pose estimation 
technique that constructs the skeleton by using mmWave point cloud and a forked-
CNN architecture. They use two radar devices and sum up the point values in the 
feature map level to overcome the sparse representation of the point cloud. An et 
al. [3] present a meta-learning and frame aggregation framework to help mmWave-
based human pose estimation model converge faster for unseen scenarios. Xue et 
al. [92] propose the mmMesh technique to construct human mesh using mmWave 
point cloud. 

Finally, another recent study proposes a mmWave-based assistive rehabilitation 
system (MARS) [2] using human pose estimation. It sorts the mmWave point 
cloud and performs matrix transformations before feeding them to a CNN model. 
MARS can reconstruct up to 19 human joints and human skeleton in 3D space 
using mmWave radar without raising privacy concerns and requiring strict lighting 
settings. Moreover, MARS provides the users with 19 joints velocity estimations, 
four critical angle estimations, and ten commonly used rehabilitation posture 
correction feedback. It incorporates point cloud preprocessing, a CNN that outputs 
joint positions, and rehabilitation movement feedback to the user. It first maps 
the 5D time series mmWave point cloud to a 5-channel feature map and then 
outputs 3D joint positions. It finally provides joint velocity, angle estimations, and 
posture correction feedback. The overview of MARS is shown in Fig. 3. An example 
of human pose estimation using mmWave radar point cloud is shown in Fig. 4. 

Fig. 3 Overview of human pose estimation using mmWave point cloud and its downstream 
healthcare-related tasks. The figure is partially modified from [2]
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Fig. 4 Example of human pose estimation using mmWave radar point cloud. From left to right, it 
shows radar point cloud, MARS estimation, and the ground truth [2]. Some of the human parts are 
highlighted by the bounding boxes in the figure. The figure is partially modified from [2]
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Model inference of MARS takes only 64 . µs and consumes 442 . µJ energy on the 
Nvidia Jetson Xavier-NX board. These results show the practicality of the proposed 
technique running real time on low-power edge devices. The accuracy of human 
pose estimation using mmWave is comparable to that of an RGB image. However, 
the explainability of the model and solution for free-form human pose estimation 
is still challenging. There are several future challenges for mmWave human pose 
estimation to be widely applied in real-life applications. 

3.3.3 Human Pose Estimation Using Inertial Sensors 

Besides cameras and radars, wearables such as inertial sensors (IMUs) also play 
an essential role in human pose estimation. IMU-based human pose estimation is 
relatively robust to different environmental settings since sensing is not interfered 
with by light conditions or visibility. Thus, it is more practical for occlusions or 
baggy clothing scenarios. In addition, the explainability of IMUs-based human 
pose estimation is pretty good since every IMU is placed in a specific position 
of a person. As one of the earliest studies in this field, [68] estimate human pose 
using 17 IMUs, and a Kalman filter is employed for all the measurements. It 
comprehensively defined 17 IMUs on a person, thus achieving accurate human pose 
estimation. However, the large number of IMUs requires long setup times and makes 
it uncomfortable for users. Marcard et al. proposed sparse inertial poser (SIP) [88]: 
automatic 3D human pose estimation from sparse IMUs. This work provides a new 
method to estimate the human pose using only six IMUs. By exploiting a statistical 
body model and jointly optimizing posture over continuous time frames to fit both 
orientation and acceleration data, SIP achieves positional errors of 3.9 cm. A follow-
up work [89] combines IMUs and a moving camera to estimate multiple human 
poses in challenging outdoor scenes robustly. 

In summary, human pose estimation can be performed using different input 
sources. Table 2 compares different input sources in terms of accuracy, privacy 
concern, price, and the anti-interference ability. Lightweight embedded machine 
learning algorithms enable running human pose estimation models on edge devices. 
In real-life applications, it is crucial to choose proper input sources of the human 
pose estimation model according to different requirements such as accuracy, privacy, 
and robustness. 

Table 2 Comparison between different input sources for human pose estimation. Anti-
interference here represents the robustness of the algorithm. Specifically, different input sources 
are affected by environmental conditions such as light and smoke to varying degrees 

Data form Accuracy Privacy Price Anti-interference 

Camera Image/video .� � � .� .�� . �

LiDAR Point cloud .� � � .� � � .� . � � �

Radar Point cloud/heatmap .�� .� � � .�� . � � �

IMUs Accelerations .� .� � � .� � � .� � �
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4 Energy Management 

The commonly used edge devices include smartphones, smartwatches, and other 
wearable devices. Small form-factor devices, in particular, have severely limited 
battery capacity due to form-factor requirements, such as small size, lightweight, 
and flexibility. For example, the Oura Ring 3 incorporates a 22 mAh–3.7 V battery 
and advertises a battery life of 4 to 7 days [56]. Despite this limitation, these 
devices collect significant amounts of data to enable sophisticated health monitoring 
applications discussed in previous sections. The energy consumption soars if they 
transmit these data to a mobile device or to the cloud since wireless streaming of 
information is prohibitively power-consuming. Consequently, the recharge interval 
is short, which causes the users to stop using these devices. Therefore, significant 
research effort focuses on reducing the dependency of wearable devices on batteries. 

Reducing the dependency on batteries critically depends on the developments in 
three main research areas: (1) energy harvesting (EH), (2) energy management, and 
(3) low-power design: 

(1) Energy harvesting refers to techniques that generate power from ambient 
resources, such as light and motion. It provides a complementary energy source 
to batteries. 

(2) Energy management encompasses the techniques that aim to optimally utilize 
the available energy from batteries and energy harvesting sources. It regulates 
the energy consumption to maximize the user experience within the constraints 
set by the energy source and the device. 

(3) Low-power design refers to a broad class of design styles that aim to minimize 
the power consumption of the devices, while they meet the processing require-
ments. Popular techniques include clock and power gating, leakage power 
minimization, and heterogeneous computing, such as using domain-specific 
hardware accelerators to boost energy efficiency. 

This chapter overviews energy management, a key enabler, and service applica-
tion for edge devices running target ML applications. To this end, it first summarizes 
the wearable energy harvesting modalities and provides a general idea of the energy 
budget for wearable devices. Then, it presents an overview of optimal energy 
management techniques. We leave the low-power design practices and optimizations 
on energy consumption out of this chapter. We refer the interested readers to other 
surveys and books on low-power design techniques [15, 62]. 

4.1 Energy Sources and Budget 

Wearable EH techniques generate usable electrical energy from various sources 
in a user’s environment while conforming to the physical and comfort constraints 
associated with the wearable form factor [48]. The most common energy sources
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2 mph 
5 mph 
7 mph7 mp7 mph7 mp 

Fig. 5 Power vs. load resistance curve of a wearable piezoelectric energy harvester at different 
gait speeds 

are light, motion, electromagnetic waves, and heat [78]. Ambient light has the 
highest potential for wearable EH devices. For instance, with an 8.1 cm. 

2 flexible 
PV cell, ambient light EH offers a capacity of over 1 mW outdoors (5000 lux) 
and close to 100 . µW indoors (500 lux) [39]. Similarly, radio-frequency (RF) EH 
can harvest 10 . µW with an 18.4 cm. 

2 flexible antenna with a signal strength of 
.−10 dBm at 915 MHz [51]. Body-heat EH has power levels of about 3 . µW with 
a 1 cm. 

2 flexible harvester at an ambient temperature of 15 . 
◦C (i.e., a temperature 

difference of 22 . 
◦C) [36]. Human-motion EH is particularly interesting for wearable 

applications because the energy is available on demand. For example, energy due to 
human activity is at hand when required by an activity-monitoring application. In 
addition, human-motion EH can harvest about 25 . µW with a 23.8 cm. 

2 piezoelectric 
transducer, while the wearer is jogging (i.e., 5 mph gait speed) [84, 85], as illustrated 
in Fig. 5. 

4.2 Optimal Energy Management 

We can enable a long-term recharge-free operation if the edge devices have an 
energy-neutral operation. Energy neutrality means that the energy consumed over 
a time period (e.g., one day) is less than or equal to the energy produced during the 
same period. When the device has a battery, the energy stored in the battery can
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temporarily power the device if the harvested energy is insufficient. However, the 
battery will be recharged back to its original level if the energy-neutral operation 
is guaranteed. Hence, the energy-neutral operation can automate battery charging 
through harvested energy such that the battery level is restored at the end of each 
day. In the absence of a battery, this system reduces to intermittent computing 
where the operating halts when no energy is available. In summary, optimal energy 
management techniques can maximize the device utility (e.g., the amount of time it 
remains active) under the available energy budget, whether from a battery or energy 
harvesting source. 

Achieving energy-neutral operation is challenging due to the conflict between 
the uncertainty in harvested energy and the target application’s quality-of-service 
(QoS) requirements. The application performance and utilization of the device 
can diminish when the harvested energy is limited [30]. For example, consider a 
wearable health application where the target device must collect the vital signals 
and process them locally to detect abnormalities. On the one hand, the device needs 
a steady and sufficient amount of energy to perform its intended operation, e.g., 
analyzing the collected signals within a deadline. On the other hand, the harvested 
energy may fluctuate widely and even vanish entirely during the same period. 
Therefore, the limited and highly varying nature of the harvested energy necessitates 
deliberate planning and management. 

Energy management algorithms use the available energy judiciously to maximize 
the application performance while minimizing manual recharge interventions to 
achieve energy-neutral operation [86]. These algorithms should satisfy the following 
conditions to be deployed on a wearable resource-constrained device: 

• Incurring low execution time and power consumption overhead 
• Having a small memory footprint 
• Being responsive to the changes in the environment 
• Learning to adopt such changes 

Kansal et al. [40] present the general framework of energy-neutral operation for 
energy harvesting devices. The authors propose a linear programming approach 
to maximize the duty cycle of a sensor node and a lightweight heuristic to help 
solve the linear programming with ease. Similarly, the work in [22] proposes a 
long-term energy management algorithm, referred to as long-term ENO, which 
aims to achieve energy neutrality for one year or more. As complementary to this 
work, going with a more fundamental control-theory approach, Geissdoerfer et 
al. [31] propose a feedback controller to achieve long-term ENO. To account for 
the application requirements when deciding the duty cycle of the nodes, Bhat et al. 
use a generalized utility function that defines the application characteristics [17]. 
They present a lightweight framework based on the closed-form solution of the 
optimization problem that maximizes the utility while maintaining energy-neutral 
operation. Although these are essential studies in this field, none of them consider 
user activity patterns, hence the stochastic nature of energy harvesting, which is at 
the core of wearable energy harvesting techniques.
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Fig. 6 Comparison of ECO to other approaches and an optimal iterative algorithm 

A recently proposed energy management framework, ECO, is tailored for wear-
able use cases by incorporating user activity and energy harvesting uncertainty into 
energy management [86]. The ECO framework maximizes a utility function under 
specific battery energy constraints. The utility function can model any arbitrary 
metric, such as device throughput and classification accuracy. The framework takes 
the initial battery energy at the beginning of each day and the expected energy 
harvesting profile for a finite horizon (e.g., 24 h) as inputs. The expected energy 
harvesting profile is obtained from a novel EH forecasting model, which considers 
user patterns. At the beginning of the day, using the energy harvesting profile, ECO 
first finds the energy that the device can consume during each hour that maximizes 
the utility function under the battery energy constraints. As the day progresses, this 
solution is not optimum due to the variations in harvested energy. Using the actual 
harvested energy, ECO corrects the initial allocations using a lightweight runtime 
optimization algorithm after an hour. As a result, the ECO framework adapts to 
the deviations from the expected EH values with negligible runtime overhead. 
Figure 6 illustrates how ECO addresses the over-utilization and under-utilization of 
the energy seen in two prior approaches, which result in higher application utility. 
Moreover, measurements on a wearable device prototype show that ECO has 1000. ×
smaller energy overhead than iterative optimal approaches with a negligible loss in 
utility. 

ECO and other prior work are highly dependent upon the accuracy of the 
energy forecasts. They can compensate for deviations in user patterns after the fact, 
which causes a deviation from the optimal trajectory. As a remedy, reinforcement 
learning (RL)-based resource management algorithms are employed for energy 
management. RL-based approaches benefit from not relying on forecasts of the 
harvested energy, in contrast to the prediction-based techniques presented above.



A Survey of Embedded Machine Learning for Smart and Sustainable. . . 145

These techniques implicitly learn user patterns, and they can proactively perturb 
the allocations before a significant deviation in usage pattern happens. RLMan is 
a recent prediction-free energy management approach based on RL [8]. It aims 
to maximize packet generation rate while avoiding power failures. tinyMAN is 
another RL-based approach that takes the battery level and the previous harvested 
energy values as inputs (states). It maximizes the utility of the device by judiciously 
allocating the harvested energy throughout the day (action). [14]. Over time, by 
interacting with the environment, the tinyMAN agent learns to manage the available 
energy on the device according to the harvested energy. 

In conclusion, energy management remains a fundamental research field essen-
tial for the success of the embedded AI field. Energy management techniques 
must run as background service applications to ensure the successful operation of 
embedded AI applications under the available energy budget. Significant challenges 
include developing low-overhead techniques that maximize energy efficiency under 
uncertainty and scarce energy resources. Developing novel energy forecasting mod-
els is an important research direction for prediction-based approaches. Similarly, 
efficient runtime learning of user patterns is critical for prediction-free approaches. 
Finally, the developments in this field can transfer to other resource allocation 
problems in many different areas, including telecommunications to space-based 
systems. 

5 Conclusions 

Embedded machine learning enables numerous novel applications since low-power 
edge devices allow cutting-edge machine learning algorithms to obtain data from 
multiple sensors and run locally. This chapter overviewed the opportunities and 
challenges in the embedded machine learning applications context. It presented a 
survey of edge-AI application use cases for embedded machine learning. First, it 
overviewed embedded machine learning frameworks, consisting of model training, 
model compression, and model inference. Then, it presented several edge-AI 
applications for healthcare, such as freezing-of-gait identification for Parkinson’s 
disease patients, human activity recognition, and human pose estimation. Finally, 
we discussed energy management as a fundamental enabler for wearable devices 
since battery shortage is one of the leading factors that limit embedded machine 
learning on wearable devices. Lightweight machine algorithms for these high-
impact applications and other novel applications offer unique research opportunities. 
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