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1 Introduction 

Deep Neural Networks (DNNs) have emerged as a promising set of algorithms for 
solving complex AI problems such as image classification, object detection and 
localization, semantic segmentation, speech recognition, language translation, and 
video processing [1]. The state-of-the-art performance of these models has laid 
the foundation for DNNs to be used in safety-critical applications as well such 
as autonomous driving [2] and smart healthcare [3]. Driven by the compute- and 
memory-intensive nature of DNNs and the need for deploying such high-accuracy 
models in resource-constrained edge devices, a significant amount of research 
has been carried out towards designing specialized hardware accellerators that 
can enable low-cost DNN inference at the edge. Some prominent DNN hardware 
accelerators include Eyeriss [4], MAERI [5], TPU [6], and MPNA [7]. 

On the one end, these DNN hardware accelerators promise low-cost and real-time 
execution of DNNs; however, on the other end, they bring some critical reliability 
challenges that can significantly degrade the performance and dependability of the 
system. These reliability threats are specifically important to address for safety-
critical systems, as even a single fault at a critical location in such systems can result 
in severe consequences. For example, in the case of autonomous driving vehicles, a 
critical fault in the perception unit can result in the misclassification of a traffic sign 
(e.g., a stop sign) which can lead to a fatal accident. Such faults can even lead to total 
disruption of traffic service if the vehicle is connected to the traffic infrastructure in 
a smart city. An overview of different hardware-induced reliability threats, how they 
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Fig. 1 Overview of different reliability threats and their repercussions. The picture used in the 
figure is from the COCO dataset 

manifest in a system and how can they impact the functionality of a DNN inference 
is shown in Fig. 1. 

Reliability Threats Gradual progress in the fabrication process and the desire for 
extreme-performance devices has lead us to the era of nano-scale devices. However, 
electronic devices fabricated using nano-scale technology face various reliability 
issues. Some of these issues are associated with the limitations of the fabrication 
process while others are associated with the extreme sizes of the transistors. The 
following text provides a brief introduction to different hardware-induced reliability 
threats that can degrade the performance of a system. 

• Soft Errors are transient bit-flips caused by high-energy particle strikes. These 
particles can be alpha particles emitted from the impurities in the packaging 
materials of the chip or neutrons from cosmic radiations [8]. These soft errors can 
propagate all the way to application layer of a system and results in significant 
accuracy degradation. External factors such as temperature and altitude can have 
a notable impact on the Soft Error Rate (SER). 

• Aging of nano-scale electronic devices occurs due to various physical phe-
nomena such as Bias Temperature Instability (BTI), Time-Dependent Dielectric
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Breakdown (TDDB), Hot Carrier Injection (HCI), and Electromigration (EM). 
It typically results in increased threshold voltage (.VTH ) [9] or breakdown of 
dielectric and wires. In the early stages, aging manifests as timing errors in a 
system, and later it can even transform into permanent faults. Typically, large 
guardbands are added to the operating frequency of a circuit to ensure reliable 
operation. Similar to other reliability threats, aging rate also increases with 
temperature. 

• Process Variations are variations in the hardware characteristics of transistors 
that occur due to imperfections in the fabrication process [10]. In general, these 
variations manifest as timing errors in a system and, therefore, are addressed by 
adding guardbands, i.e., either by increasing the supply voltage or reducing the 
operating frequency of the device. Extreme variations can even lead to permanent 
faults, which can have a significant impact on the manufacturing yield. 

Apart from aggressive guard-banding, a number of other techniques have also 
been proposed to improve the resilience of systems against reliability threats. 
However, most of these techniques are based on redundancy, e.g., Error Correc-
tion Codes (ECC), Dual Modular Redundancy (DMR) [11], and Triple Modular 
Redundancy (TMR) [12]. The redundancy-based techniques, on the one hand, are 
highly effective; however, on the other hand, they lead to high performance and 
energy overheads. This together with the compute- and memory-intensive nature 
of DNNs makes such techniques infeasible for DNN-based systems. Therefore, 
alternate techniques are required that can improve the resilience of DNN-based 
systems against hardware-induced reliability threats at minimal cost. 

In the following section, we present a brief overview of DNNs and DNN hardware 
accelerators. Then, in Sect. 3, we present an overall methodology for building 
reliable DNN inference systems and also discuss individual low-cost techniques for 
mitigating permanent faults, aging, and soft errors. 

2 Preliminaries 

2.1 Deep Neural Networks 

A neural network can be visualized as a network of interconnected neurons (see 
Fig. 2a), where a neuron is the fundamental computational unit of the network. The 
functionality of a typical neuron used in neural networks can be described using the 
following equation: 

.Out = f

(
N∑
i=0

Wi × Ai + b

)
(1)
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Fig. 2 (a) An example MLP network. (b) Convolutional layer. (c) Architecture of a convolutional 
neural network 

where . Wi represents the ith weight, . Ai represents the ith activation, N represents 
the number of weights (and activations) in the input vectors, b represents the bias, 
and .f (.) represents the activation function (a non-linear function to introduce non-
linearity). The neurons are typically arranged in layers, and a neural network having 
more than three layers is termed as a Deep Neural Network (DNN). Figure 2a shows  
an example of a Fully Connected Neural Network (FCNN), in which all the neurons 
in each layer are connected with all the neurons in the previous layer and the next 
layer. A FCNN is also known as a Multi-layer Perceptron (MLP). 

Different types of DNNs have been proposed in the literature. Apart from 
FCNNs, Convolutional Neural Networks (CNNs) are also widely known. CNNs 
are mainly used to process spatially or temporally correlated data such as images 
and videos. A CNN is generally composed of multiple convolutional layers and 
fully connected layers, see Fig. 2c. The convolutional layers are used for extracting 
features from the input while the fully connected layers are responsible for the final 
classification based on the features extracted by the convolutional layers. Figure 2b 
shows a detailed view of a convolutional layer. 

Various other types of DNNs also exist, for example, Recurrent Neural Networks 
(RNNs), Generative Adversarial Networks (GANs), and Graph Neural Networks 
(GNNs). However, as most of the reliability studies have been demonstrated on 
MLPs and CNNs, this chapter also considers the same to highlight the effectiveness 
of different methods. 

2.2 DNN Hardware Accelerators 

To enable the deployment of DNNs in resource-constrained edge devices, DNN 
hardware accelerators are employed. Various accelerator designs have been pro-
posed in the literature, where each design supports a specific set of dataflows in
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Fig. 3 A systolic-array-based DNN hardware accelerator 

a more efficient manner, e.g., see [4, 6, 7, 13]. An overview of a DNN hardware 
accelerator is shown in Fig. 3. A DNN accelerator is mainly composed of Processing 
Elements (PEs), partial sum accumulation units, and on-chip memory. Each PE 
contains some arithmetic modules and some registers. The arithmetic modules are 
for performing the MAC operations involved in the DNN execution and the registers 
are for storing weights, activations, and partial sums. The exact configuration of the 
PEs and their connectivity in the accelerator are based on the supported dataflows. 

The accelerator shown in Fig. 3 is a systolic-array-based design composed of 
homogeneous PEs, similar to the design in [6]. The PEs are connected in a 2D-grid-
like manner. The accelerator follows a weight-stationary dataflow, where weights 
are loaded into the array (through vertical channels) and kept stationary during 
operations. Note, weights from the same filter/neuron are mapped on the same 
column, while weights from multiple filters/neurons can be mapped simultaneously 
by mapping different filters/neurons (from the same DNN layer) to different 
columns. After the weights have been loaded inside the PEs, the input activations 
are fed from the left and are multiplied with the weight values to generate products. 
Each product is then added with the partial sum from the above PE, and the 
updated partial sum is then passed downstream to be used in the next cycle by 
the downstream PE. As the size of the processing array is usually limited, a dot-
product operation is broken down into multiple chunks (based on the size of the 
processing array) and a single chunk is mapped onto the array at a time. The partial 
sums generated by the array are stored in the accumulation units to be added with 
the corresponding partial sum/s from the other chunks (if any). A more detailed 
explanation of the architecture can be found in [14].
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3 Reliable Deep Learning 

This section presents a systematic methodology for building reliable systems for 
DNN-based applications. The section also highlights the impact of different types of 
reliability threats on the application-level accuracy of DNNs and presents different 
low-cost techniques for improving the resilience of DNN-based systems against 
hardware-induced reliability threats at minimal cost. 

3.1 A Systematic Methodology for Building Reliable DNN 
Systems 

Figure 4 presents an overview of our systematic design methodology for building 
reliable systems for DNN-based applications. The methodology is composed of 
different design-time steps, post-fabrication steps, and run-time steps. 

The design-time steps focus on building a hardware accelerator capable of 
mitigating all types of hardware-induced reliability threats. Towards this, first, a 
baseline hardware accelerator is designed based on the user-defined performance 
constraints. Then, the additional circuitry required for mitigating permanent faults 
(see Sect. 3.3), aging (see Sect. 3.4), and soft errors (see Sect. 3.5) is added to 
the accelerator design. Note, to achieve high resilience against reliability threats 
at a low cost, the error resilience of a representative set of DNNs is taken into 
consideration. The error resilience helps estimate the extent of protection required 
against each threat. After reinforcing the accelerator with the additional circuitry, the 
hardware is synthesized using reliability-aware synthesis techniques, for example, 
using selective hardening where vulnerable nodes in the hardware are hardened 
using node-level redundancy [15]. 
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Fig. 4 Our methodology for designing reliable hardware for DNN-based applications (adapted 
from [16])
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The post-fabrication steps focus on exploiting the information collected through 
post-fabrication testing (e.g., fault maps and process variation maps of the fabricated 
hardware) to define DNN mapping policies. The fault-aware and variation-aware 
mapping of DNNs can significantly reduce the negative impact of faults and 
variations on the application-level accuracy and performance characteristics of the 
system (see Sect. 3.3). The mapping information together with fault maps are also 
used by range initialization block for soft error mitigation. 

The run-time steps focus on trading energy for reliability through adaptive 
voltage and frequency scaling. The online error rate monitoring blocks monitor the 
frequency of errors, and the system then responds by increasing the supply voltage 
or decreasing the operating frequency to reduce the frequency of errors, whenever 
required. Software-level redundancy can also be employed to improve the reliability 
by processing critical layers (or neurons) multiple times. 

3.2 Resilience of DNNs to Reliability Threats 

Occasionally, DNNs are assumed to be inherently resilient to errors [17]. However, 
studies have shown that DNNs respond differently to different types of errors. 
Errors that occur at critical locations in the system can significantly degrade the 
application-level accuracy of DNNs while errors at non-critical locations do not 
impact the accuracy much. This section presents the resilience of DNNs to different 
types of reliability threats. The section also highlights the importance of low-cost 
fault-mitigation techniques for dependable performance. 

3.2.1 Resilience of DNNs to Permanent Faults 

This section presents an empirical analysis from [14] highlighting the impact of 
stuck-at permanent faults in the computational array of a systolic-array-based DNN 
accelerator (shown in Fig. 3) on the application-level accuracy of DNNs. The 
analysis is performed for two different networks trained on two different datasets, 
i.e., the MNIST and TIMIT datasets. The details of the DNN architectures used are 
presented in Table 1. For this analysis, a systolic array of .256 × 256 MAC units 
synthesized using 45nm OSU PDK to generate a gate-level netlist is considered. 
For permanent faults, stuck-at faults are inserted randomly at internal nodes in the 
netlist. 

Table 1 Datasets and the corresponding DNNs used for analyzing the impact of permanent faults 

Dataset Network architecture Accuracy (%) 

MNIST [18] Fully connected (L1-L4): 784. ×256. ×256. ×256. ×10 98.15 

TIMIT [19] Fully connected (L1-L4): 1845. ×2000. ×2000. ×2000. ×183 73.91
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Fig. 5 Impact of Stuck-at-Faults in a systolic-array-based DNN accelerator on the classification 
accuracy of two different DNNs [20] 

Figure 5a shows the impact of using a faulty DNN accelerator on the classifi-
cation accuracy of two different DNNs. As can be observed from the figure, for 
both the DNNs, the classification accuracy decreases sharply with the increase in 
faulty PEs. For example, in the case with the number of faulty PEs equals 16, the 
average accuracy of the DNN trained on the TIMIT dataset falls to zero, while the 
accuracy of the DNN trained on the MNIST dataset falls to around 50%. Note that 
16 PEs is equivalent to around 0.025% of total PEs in a .256 × 256 array. This 
shows that even a very small number of permanent faults in a DNN-based system 
can significantly degrade the system’s performance. This analysis clearly highlights 
the need for permanent fault mitigation to increase the manufacturing yield of DNN 
accelerators, as faulty hardware having permanent faults cannot produce reliable 
results. 

3.2.2 Resilience of DNNs to Timing Faults 

Timing failures in high-performance nano-scale CMOS devices are a significant 
reliability concern. These errors arise due to various reasons, e.g., power supply 
disturbance, crosstalk, process variations, and aging. Moreover, the operating 
conditions, such as supply voltage, also significantly affect the frequency of timing 
failures. This section highlights the impact of timing errors on the classification 
accuracy of a DNN trained on the MNIST dataset using the analysis presented 
in [14]. The DNN architecture is presented in Table 1 and the considered hardware 
accelerator is shown in Fig. 3. To illustrate the impact of timing errors on DNN 
accuracy, [14] considered a Timing Error Propagation (TEP) case where timing 
errors are allowed to propagate to the output. The timing errors are introduced in
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Fig. 6 Impact of timing 
errors induced through 
voltage under-scaling on the 
classification accuracy of a 
DNN trained on the MNIST 
dataset [14] 

the accelerator array through voltage under-scaling. Figure 6 shows the impact of 
voltage under-scaling on the classification accuracy of the DNN. Note, as the supply 
voltage of the array is reduced, timing errors start increasing. Figure 6 clearly shows 
that in the TEP case, the accuracy of the DNN starts decreasing abruptly as the fault 
rate starts increasing. Therefore, to ensure reliable execution of DNNs it is essential 
to mitigate timing errors. 

3.2.3 Resilience of DNNs to Memory Faults 

To illustrate the impact of memory faults on the accuracy of DNNs, Hanif et al. [16] 
presented an analysis where they injected random faults in the weight memory 
of a DNN accelerator. The analysis showed that faults at higher significance bit-
locations in the weights can drastically reduce the application-level accuracy of 
DNNs while faults at lower significance bit-locations do not impact the accuracy 
much. Moreover, the analysis also showed that the accuracy drop increases sharply 
with the increase in the fault rate. They also studied the impact of different types 
of faults individually and showed that 0-to-1 bit-flips have a more severe impact 
compared to 1-to-0 bit-flips, as 0-to-1 bit-flips at higher significance bit-locations 
can significantly increase the weight values. This conclusion is also in line with 
the dropout [21] and DropConnect [22] concepts in the sense that 1-to-0 bit-flips 
push the weight values toward zero, which is equivalent to dropout at a fine-grained 
level. Note that the conclusion may differ for different data representation formats. 
Similar fault injection studies have also been conducted in [23] and [24] to analyze 
the resilience of DNNs.
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3.3 Permanent Fault Mitigation 

As highlighted in Sect. 3.2.1, permanent faults can restrain a system from generating 
correct outputs. Therefore, it is essential to mitigate such errors to ensure high 
manufacturing yield. Fault-Aware Pruning (FAP) [20] has been proposed to 
mitigate permanent faults in the computational array of a systolic-array-based DNN 
accelerator. The key idea behind this approach is to replace critical faults with non-
critical faults. In [20], this is achieved through dropping the computations mapped 
onto the faulty components, as dropping a small percentage of computations in 
DNNs do not impact the accuracy much, see dropout [21] and DropConnect [22] 
concepts. 

Figure 7 illustrates the modified systolic-array design proposed in [20] for  
mitigating permanent faults in the MAC units of a systolic-array-based DNN 
accelerator. As illustrated in the figure, each PE is equipped with an additional MUX 
to bypass the MAC unit inside the PE. In case a fault is detected in the MAC unit of a 
PE during post-fabrication testing, the corresponding MUX is configured to bypass 
the faulty MAC unit. Note, the systolic-array architecture shown in Fig. 7 follows a 
weight-stationary dataflow where weights from the same neuron/filter are mapped 
onto the same column and are kept stationary inside the PEs during execution. 
Hence, the bypass operation corresponds to pruning of the weights mapped onto 
the faulty units. 

To improve the performance of FAP, Fault-Aware Pruning + Training (FAP+T) 
is proposed [20]. The technique is based on the observation that DNNs are typically 
over-parameterized and pruning a small set of weights during training do not affect 
the final accuracy much [25]. Figure 8 presents a general flow for training a DNN 
against permanent faults. As highlighted in the figure, the fault map extracted 
through post-fabrication testing of the fabricated chip (along with the DNN mapping
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policy) is used to force the weights to be mapped onto faulty MAC units to zero in 
each iteration of the training loop. This enables the DNN to adapt to the faults in the 
system and offer better performance compared to simple FAP. 

Figure 9 highlights the effectiveness of FAP and FAP. +T using a fully connected 
DNN trained on the MNIST dataset. As can be seen from the figure, both FAP and 
FAP. +T help improve the resilience of the DNN against permanent faults in the 
computational array of a DNN accelerator; however, FAP. +T offers better results at 
higher fault rates, i.e., negligible accuracy loss even when 50% of the total MAC 
units are faulty. 

Although FAP. +T is highly effective against permanent faults, its main drawback 
is that it involves retraining the given DNN, which may not be possible under 
some scenarios due to the lack of computational resources or a comprehensive 
training dataset. To address this issue, Fault-Aware Mapping (FAM) has been 
proposed [26]. FAM employs a saliency-driven approach to determine the mapping 
of the given pre-trained DNN for the given faulty chip. Figure 10 shows the general 
flow for applying FAM. First, the saliency of each DNN weight is computed using 
the L1 or L2-norm. Then, using an optimization algorithm and the knowledge of the 
faults, a mapping policy is determined that leads to the minimum (or a lower) sum 
of saliency of weights to be pruned due to permanent faults in the computational 
array of the DNN accelerator. In the end, the parameters of the DNN are rearranged 
according to the mapping policy (wherever possible) to avoid any run-time data



564 M. A. Hanif and M. Shafique

Extract Fault Map using 
Post-fabrication Testing Fault Map 

Compute 
Saliency of 
Weights of 

the DNN 

Determine Mapping by 
Minimizing the Sum of 
Saliency of Weights to 

be Pruned 

DNN 
Accelerator 

Pre-trained 
DNN 

Repeat for Each Layer of the DNN 

Modified 
DNN + 

Mapping 
PolicyDataset 

Rearrange 
DNN 

Parameters 

Fig. 10 Fault-aware mapping methodology

-0.42

-0.84

-0.63 

0.59

-0.44

-0.61 

0.17 

0.15

-0.58

-0.81

-0.94 

0.22-0.78 

0.92

-0.36 

0.28

-0.42

-0.84

-0.63 

0.59

-0.44

-0.61 

0.17 

0.15

-0.58

-0.81 

0.22-0.78 

0.92

-0.36 

0.28

-0.42

-0.84

-0.63 

0.59

-0.44

-0.61 

0.15

-0.58

-0.81

-0.94 

0.22-0.78 

0.92 

0.28

-0.42

-0.84

-0.63 

0.59 -0.78 

0.92

-0.36 

0.28 -0.44

-0.61 

0.17 

0.15

-0.58

-0.81

-0.94 

0.22 

Filter 1 Filter 2 Filter 3 Filter 4 

(b) Mapping of the Filters 
on an unfaulty 4x4 Array 

(c) Mapping of the Filters 
on a Faulty 4x4 Array 

(d) Mapping using 
Fault-Aware Mapping 

x
-0.36

-0.94 x0.17 

(a) 

Absolute 
Error = 0.94 

Swapping the 
locations of Filter 3 

and Filter 4 results in 
Absolute Error = 0.17 

Fig. 11 An illustrative example of fault-aware mapping on a .4×4 systolic array 

rearrangement operations. The output DNN and the mapping policy are then used 
together with FAP for reliable DNN inference. Figure 11 presents an example of 
how FAM can help in reducing the impact of permanent faults when used with FAP, 
and Fig. 12 highlights the effectiveness of the approach when used for the VGG11 
network trained on the ImageNet dataset. Figure 12 clearly highlights that FAM can 
be employed without retraining specifically for low-to-moderate fault rates to get 
better results than only FAP. 

3.4 Timing Error Mitigation 

Aging in CMOS devices manifests as timing errors. These errors can have a 
drastic impact on the performance of a DNN interference system, as highlighted 
in Sect. 3.2.2. Conventional techniques such as aggressive voltage and frequency 
guard-banding result in significant energy and/or latency overheads. Therefore, it is
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Fig. 13 Architectural modifications required in PEs of a systolic-array-based DNN accelerator to 
realize TE-Drop 

crucial to address these errors at low cost to ensure reliable and resource-efficient 
DNN execution. 

To address timing errors in the computational array of a systolic-array-based 
DNN accelerator at a low cost, Zhang et al. proposed TE-Drop [14]. TE-Drop 
works on the principle that the contribution of each individual MAC operation 
to the overall output of a DNN is very small. Therefore, a small percentage of 
MAC operations can be dropped without affecting the application-level accuracy 
of the system. To detect timing errors in the computational array, TE-Drop utilizes 
Razor flip-flops; however, instead of re-executing the erroneous MAC operation, it 
captures the correct MAC output in an alternate partial sum register operating on a 
delayed clock. Then, the succeeding PE is bypassed to feed the correct MAC output 
back into the computational flow. Figure 13 presents the architectural modifications 
required to realize the concept.
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Fig. 14 General flow of range-restriction-based soft error mitigation techniques 

3.5 Soft Error Mitigation 

As highlighted in Sect. 3.2.3, soft errors at critical locations in a DNN-based system 
can significantly degrade the application-level accuracy of the system [16, 27]. 
Therefore, it is crucial to address these errors to ensure reliable DNN execution. 
Although conventional redundancy-based techniques (e.g., DMR and TMR) are 
highly effective against soft errors, they result in extreme overheads due to the 
compute-intensive nature of DNNs. Therefore, specialized low-cost techniques are 
designed to improve the resilience of these systems against soft errors. 

To mitigate soft errors in SRAM-based on-chip memory, Azizimazreah et al. 
proposed a zero-biased SRAM cell design that has a higher tendency to switch 
to ‘0’ in case an error occurs in the cell [28]. The intuition behind this design is 
that 0-to-1 bit-flips in DNNs result in a higher accuracy loss compared to 1-to-0 
bit-flips. To mitigate soft errors in the computational array of a DNN accelerator, 
researchers have proposed different range-restriction techniques, e.g., Ranger [27], 
that bound the range of the intermediate activation values to a pre-computed safe 
range. The intuition behind these techniques is that soft errors can result in large 
activation values that may propagate to the output and impact the classification 
result. Therefore, abnormally large activation values that fall out of the normal range 
can be classified as erroneous, and dropping such values can mitigate soft errors 
due to the inherent resilience of DNNs to pruning. Figure 14 presents the general 
flow of range-restriction techniques. A similar technique is proposed in [29] for  
mitigating soft errors in the on-chip memory of DNN accelerators. Apart from the 
above-mentioned techniques, algorithm-based fault tolerance, such as checksum-
based error detection and correction have also been proposed to mitigate soft errors 
in DNN systems at a low cost [30]. 

4 Conclusion 

The state-of-the-art performance of DNNs for complex AI problems has led to 
their adoption for safety-critical applications as well. However, these systems have 
strict robustness constraints that are challenged by the hardware-induced reliability 
threats introduced due to the use of specialized DNN accelerators. The compute- and 
memory-intensive nature of DNNs prevents the use of redundancy-based techniques
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for mitigating these threats. Towards this, this chapter covered different low-cost 
techniques for improving the resilience of DNN inference systems against soft 
and timing errors. The chapter also covered different techniques for mitigating 
permanent faults. Moreover, the chapter also discussed a holistic methodology for 
mitigating all types of reliability threats at low overhead costs. 
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