
Deep Learning Reliability: Towards
Mitigating Reliability Threats in Deep
Learning Systems by Exploiting Intrinsic
Characteristics of DNNs

Muhammad Abdullah Hanif and Muhammad Shafique

1 Introduction

Deep Neural Networks (DNNs) have emerged as a promising set of algorithms for
solving complex AI problems such as image classification, object detection and
localization, semantic segmentation, speech recognition, language translation, and
video processing [1]. The state-of-the-art performance of these models has laid
the foundation for DNNs to be used in safety-critical applications as well such
as autonomous driving [2] and smart healthcare [3]. Driven by the compute- and
memory-intensive nature of DNNs and the need for deploying such high-accuracy
models in resource-constrained edge devices, a significant amount of research
has been carried out towards designing specialized hardware accellerators that
can enable low-cost DNN inference at the edge. Some prominent DNN hardware
accelerators include Eyeriss [4], MAERI [5], TPU [6], and MPNA [7].

On the one end, these DNN hardware accelerators promise low-cost and real-time
execution of DNNs; however, on the other end, they bring some critical reliability
challenges that can significantly degrade the performance and dependability of the
system. These reliability threats are specifically important to address for safety-
critical systems, as even a single fault at a critical location in such systems can result
in severe consequences. For example, in the case of autonomous driving vehicles, a
critical fault in the perception unit can result in the misclassification of a traffic sign
(e.g., a stop sign) which can lead to a fatal accident. Such faults can even lead to total
disruption of traffic service if the vehicle is connected to the traffic infrastructure in
a smart city. An overview of different hardware-induced reliability threats, how they

M. A. Hanif (�) · M. Shafique
New York University Abu Dhabi, Abu Dhabi, UAE
e-mail: mh6117@nyu.edu; muhammad.shafique@nyu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_21

553

 31368 2385 a 31368 2385 a

 885
56845 a 885 56845 a

mailto:mh6117@nyu.edu
mailto:mh6117@nyu.edu

 8324 56845 a 8324 56845
a

mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21

554 M. A. Hanif and M. Shafique

Process
VariationsBTI

Aging
HCI

Soft
Errors

ytilibaile
R

 Th
re

at
s

TDDB
Electromigration

noitatsefina
M

stluaFfo

Transient Faults Intermittent Faults Permanent Faults

Time

O
ut

pu
t

…

Error

Time

O
ut

pu
t

…

Error

Time

O
ut

pu
t …Error

Correct
Output

Input Output
Expected

Observed

DNN-based System

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

m

FC
 m

+1

FC
 N

On-chip
Memory

Accumulators

PE
Control

Unit PE PE
Processing Array

...

PE PE PE...

...

...

...

DNN

In
pu

t

O
ut

pu
t

Off-Chip
Memory

DNN
Hardware

PE PE PE...

… …

Convolutional Layers Fully Connected Layers

Permanent
Faults

Faults 40 km/h
Sign

Stop
Sign

Fig. 1 Overview of different reliability threats and their repercussions. The picture used in the
figure is from the COCO dataset

manifest in a system and how can they impact the functionality of a DNN inference
is shown in Fig. 1.

Reliability Threats Gradual progress in the fabrication process and the desire for
extreme-performance devices has lead us to the era of nano-scale devices. However,
electronic devices fabricated using nano-scale technology face various reliability
issues. Some of these issues are associated with the limitations of the fabrication
process while others are associated with the extreme sizes of the transistors. The
following text provides a brief introduction to different hardware-induced reliability
threats that can degrade the performance of a system.

• Soft Errors are transient bit-flips caused by high-energy particle strikes. These
particles can be alpha particles emitted from the impurities in the packaging
materials of the chip or neutrons from cosmic radiations [8]. These soft errors can
propagate all the way to application layer of a system and results in significant
accuracy degradation. External factors such as temperature and altitude can have
a notable impact on the Soft Error Rate (SER).

• Aging of nano-scale electronic devices occurs due to various physical phe-
nomena such as Bias Temperature Instability (BTI), Time-Dependent Dielectric

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 555

Breakdown (TDDB), Hot Carrier Injection (HCI), and Electromigration (EM).
It typically results in increased threshold voltage (.VTH) [9] or breakdown of
dielectric and wires. In the early stages, aging manifests as timing errors in a
system, and later it can even transform into permanent faults. Typically, large
guardbands are added to the operating frequency of a circuit to ensure reliable
operation. Similar to other reliability threats, aging rate also increases with
temperature.

• Process Variations are variations in the hardware characteristics of transistors
that occur due to imperfections in the fabrication process [10]. In general, these
variations manifest as timing errors in a system and, therefore, are addressed by
adding guardbands, i.e., either by increasing the supply voltage or reducing the
operating frequency of the device. Extreme variations can even lead to permanent
faults, which can have a significant impact on the manufacturing yield.

Apart from aggressive guard-banding, a number of other techniques have also
been proposed to improve the resilience of systems against reliability threats.
However, most of these techniques are based on redundancy, e.g., Error Correc-
tion Codes (ECC), Dual Modular Redundancy (DMR) [11], and Triple Modular
Redundancy (TMR) [12]. The redundancy-based techniques, on the one hand, are
highly effective; however, on the other hand, they lead to high performance and
energy overheads. This together with the compute- and memory-intensive nature
of DNNs makes such techniques infeasible for DNN-based systems. Therefore,
alternate techniques are required that can improve the resilience of DNN-based
systems against hardware-induced reliability threats at minimal cost.

In the following section, we present a brief overview of DNNs and DNN hardware
accelerators. Then, in Sect. 3, we present an overall methodology for building
reliable DNN inference systems and also discuss individual low-cost techniques for
mitigating permanent faults, aging, and soft errors.

2 Preliminaries

2.1 Deep Neural Networks

A neural network can be visualized as a network of interconnected neurons (see
Fig. 2a), where a neuron is the fundamental computational unit of the network. The
functionality of a typical neuron used in neural networks can be described using the
following equation:

.Out = f

(
N∑
i=0

Wi × Ai + b

)
(1)

556 M. A. Hanif and M. Shafique

(c)

Classifier

Output

Feature
Extractor

CONV 1

FC 6

FC 7

FC 8

Input

CONV 2

CONV 3

CONV 4

CONV 5

Pooling
Layer

Input
Layer

Hidden
Layers

Output
Layer

A1 AI

(a) OK

A2

...

...

O1

...

...

...

O2

WIJ
<1>W11

<1>

W11
<2>

W11
<3>

W11
<4>

(b)

…

Convolutional
Layer (CONV)

Output Feature
MapsFilter 1

Filter N N

M

Input Feature
Maps

M

Nth feature
map

Filter 2

Fig. 2 (a) An example MLP network. (b) Convolutional layer. (c) Architecture of a convolutional
neural network

where . Wi represents the ith weight, . Ai represents the ith activation, N represents
the number of weights (and activations) in the input vectors, b represents the bias,
and .f (.) represents the activation function (a non-linear function to introduce non-
linearity). The neurons are typically arranged in layers, and a neural network having
more than three layers is termed as a Deep Neural Network (DNN). Figure 2a shows
an example of a Fully Connected Neural Network (FCNN), in which all the neurons
in each layer are connected with all the neurons in the previous layer and the next
layer. A FCNN is also known as a Multi-layer Perceptron (MLP).

Different types of DNNs have been proposed in the literature. Apart from
FCNNs, Convolutional Neural Networks (CNNs) are also widely known. CNNs
are mainly used to process spatially or temporally correlated data such as images
and videos. A CNN is generally composed of multiple convolutional layers and
fully connected layers, see Fig. 2c. The convolutional layers are used for extracting
features from the input while the fully connected layers are responsible for the final
classification based on the features extracted by the convolutional layers. Figure 2b
shows a detailed view of a convolutional layer.

Various other types of DNNs also exist, for example, Recurrent Neural Networks
(RNNs), Generative Adversarial Networks (GANs), and Graph Neural Networks
(GNNs). However, as most of the reliability studies have been demonstrated on
MLPs and CNNs, this chapter also considers the same to highlight the effectiveness
of different methods.

2.2 DNN Hardware Accelerators

To enable the deployment of DNNs in resource-constrained edge devices, DNN
hardware accelerators are employed. Various accelerator designs have been pro-
posed in the literature, where each design supports a specific set of dataflows in

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 557

Off-Chip
Memory Ac

tiv
at

io
n

M
em

or
y

Control Unit

DNN
Accelerator

Input
Activations

Output
Activations

Weights

Partial Sums
Output
Activations

. . .

Weight Memory

Accumulation Unit

Processing
Array

...

...

...

PE PE PE...
PE PE PE...

PE PE PE...

Weights

X

+

Reg.

Partial Sum

Partial Sum

In
pu

t A
ct

iv
at

io
n PE

Weight

Weight

Reg.

Re
g.

Reg.

Fig. 3 A systolic-array-based DNN hardware accelerator

a more efficient manner, e.g., see [4, 6, 7, 13]. An overview of a DNN hardware
accelerator is shown in Fig. 3. A DNN accelerator is mainly composed of Processing
Elements (PEs), partial sum accumulation units, and on-chip memory. Each PE
contains some arithmetic modules and some registers. The arithmetic modules are
for performing the MAC operations involved in the DNN execution and the registers
are for storing weights, activations, and partial sums. The exact configuration of the
PEs and their connectivity in the accelerator are based on the supported dataflows.

The accelerator shown in Fig. 3 is a systolic-array-based design composed of
homogeneous PEs, similar to the design in [6]. The PEs are connected in a 2D-grid-
like manner. The accelerator follows a weight-stationary dataflow, where weights
are loaded into the array (through vertical channels) and kept stationary during
operations. Note, weights from the same filter/neuron are mapped on the same
column, while weights from multiple filters/neurons can be mapped simultaneously
by mapping different filters/neurons (from the same DNN layer) to different
columns. After the weights have been loaded inside the PEs, the input activations
are fed from the left and are multiplied with the weight values to generate products.
Each product is then added with the partial sum from the above PE, and the
updated partial sum is then passed downstream to be used in the next cycle by
the downstream PE. As the size of the processing array is usually limited, a dot-
product operation is broken down into multiple chunks (based on the size of the
processing array) and a single chunk is mapped onto the array at a time. The partial
sums generated by the array are stored in the accumulation units to be added with
the corresponding partial sum/s from the other chunks (if any). A more detailed
explanation of the architecture can be found in [14].

558 M. A. Hanif and M. Shafique

3 Reliable Deep Learning

This section presents a systematic methodology for building reliable systems for
DNN-based applications. The section also highlights the impact of different types of
reliability threats on the application-level accuracy of DNNs and presents different
low-cost techniques for improving the resilience of DNN-based systems against
hardware-induced reliability threats at minimal cost.

3.1 A Systematic Methodology for Building Reliable DNN
Systems

Figure 4 presents an overview of our systematic design methodology for building
reliable systems for DNN-based applications. The methodology is composed of
different design-time steps, post-fabrication steps, and run-time steps.

The design-time steps focus on building a hardware accelerator capable of
mitigating all types of hardware-induced reliability threats. Towards this, first, a
baseline hardware accelerator is designed based on the user-defined performance
constraints. Then, the additional circuitry required for mitigating permanent faults
(see Sect. 3.3), aging (see Sect. 3.4), and soft errors (see Sect. 3.5) is added to
the accelerator design. Note, to achieve high resilience against reliability threats
at a low cost, the error resilience of a representative set of DNNs is taken into
consideration. The error resilience helps estimate the extent of protection required
against each threat. After reinforcing the accelerator with the additional circuitry, the
hardware is synthesized using reliability-aware synthesis techniques, for example,
using selective hardening where vulnerable nodes in the hardware are hardened
using node-level redundancy [15].

Design Constraints
(Area, Power, Latency, Accuracy, etc.)

Design a Fault-Tolerant
Accelerator

Circuitry to Support
Permanent Fault

Mitigation

Hardware

Deep Neural
Networks (DNNs)

Evaluate Error Resilience
of the DNNs

DNN Mapping (Resilience-

Aware, Faults-Aware)

Adaptive Voltage and Frequency Control

Online Soft Error
Rate Monitoring

Apply Reliability-Aware
Synthesis

DNN 1 DNN N...

Online Timing-Error
Rate Monitoring

Hardened DNN
Accelerator Design with
Online Monitoring and

Control Circuitry

Post-Fabrication Testing

Initialize Range-
Restriction
Functions

Circuitry for Aging
Mitigation

Circuitry for Timing
Error Detection and

Mitigation

Design-time Steps Post Fabrication Steps Run-time Steps Inputs Intermediate Outputs

Fig. 4 Our methodology for designing reliable hardware for DNN-based applications (adapted
from [16])

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 559

The post-fabrication steps focus on exploiting the information collected through
post-fabrication testing (e.g., fault maps and process variation maps of the fabricated
hardware) to define DNN mapping policies. The fault-aware and variation-aware
mapping of DNNs can significantly reduce the negative impact of faults and
variations on the application-level accuracy and performance characteristics of the
system (see Sect. 3.3). The mapping information together with fault maps are also
used by range initialization block for soft error mitigation.

The run-time steps focus on trading energy for reliability through adaptive
voltage and frequency scaling. The online error rate monitoring blocks monitor the
frequency of errors, and the system then responds by increasing the supply voltage
or decreasing the operating frequency to reduce the frequency of errors, whenever
required. Software-level redundancy can also be employed to improve the reliability
by processing critical layers (or neurons) multiple times.

3.2 Resilience of DNNs to Reliability Threats

Occasionally, DNNs are assumed to be inherently resilient to errors [17]. However,
studies have shown that DNNs respond differently to different types of errors.
Errors that occur at critical locations in the system can significantly degrade the
application-level accuracy of DNNs while errors at non-critical locations do not
impact the accuracy much. This section presents the resilience of DNNs to different
types of reliability threats. The section also highlights the importance of low-cost
fault-mitigation techniques for dependable performance.

3.2.1 Resilience of DNNs to Permanent Faults

This section presents an empirical analysis from [14] highlighting the impact of
stuck-at permanent faults in the computational array of a systolic-array-based DNN
accelerator (shown in Fig. 3) on the application-level accuracy of DNNs. The
analysis is performed for two different networks trained on two different datasets,
i.e., the MNIST and TIMIT datasets. The details of the DNN architectures used are
presented in Table 1. For this analysis, a systolic array of .256 × 256 MAC units
synthesized using 45nm OSU PDK to generate a gate-level netlist is considered.
For permanent faults, stuck-at faults are inserted randomly at internal nodes in the
netlist.

Table 1 Datasets and the corresponding DNNs used for analyzing the impact of permanent faults

Dataset Network architecture Accuracy (%)

MNIST [18] Fully connected (L1-L4): 784. ×256. ×256. ×256. ×10 98.15

TIMIT [19] Fully connected (L1-L4): 1845. ×2000. ×2000. ×2000. ×183 73.91

560 M. A. Hanif and M. Shafique

Fig. 5 Impact of Stuck-at-Faults in a systolic-array-based DNN accelerator on the classification
accuracy of two different DNNs [20]

Figure 5a shows the impact of using a faulty DNN accelerator on the classifi-
cation accuracy of two different DNNs. As can be observed from the figure, for
both the DNNs, the classification accuracy decreases sharply with the increase in
faulty PEs. For example, in the case with the number of faulty PEs equals 16, the
average accuracy of the DNN trained on the TIMIT dataset falls to zero, while the
accuracy of the DNN trained on the MNIST dataset falls to around 50%. Note that
16 PEs is equivalent to around 0.025% of total PEs in a .256 × 256 array. This
shows that even a very small number of permanent faults in a DNN-based system
can significantly degrade the system’s performance. This analysis clearly highlights
the need for permanent fault mitigation to increase the manufacturing yield of DNN
accelerators, as faulty hardware having permanent faults cannot produce reliable
results.

3.2.2 Resilience of DNNs to Timing Faults

Timing failures in high-performance nano-scale CMOS devices are a significant
reliability concern. These errors arise due to various reasons, e.g., power supply
disturbance, crosstalk, process variations, and aging. Moreover, the operating
conditions, such as supply voltage, also significantly affect the frequency of timing
failures. This section highlights the impact of timing errors on the classification
accuracy of a DNN trained on the MNIST dataset using the analysis presented
in [14]. The DNN architecture is presented in Table 1 and the considered hardware
accelerator is shown in Fig. 3. To illustrate the impact of timing errors on DNN
accuracy, [14] considered a Timing Error Propagation (TEP) case where timing
errors are allowed to propagate to the output. The timing errors are introduced in

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 561

Fig. 6 Impact of timing
errors induced through
voltage under-scaling on the
classification accuracy of a
DNN trained on the MNIST
dataset [14]

the accelerator array through voltage under-scaling. Figure 6 shows the impact of
voltage under-scaling on the classification accuracy of the DNN. Note, as the supply
voltage of the array is reduced, timing errors start increasing. Figure 6 clearly shows
that in the TEP case, the accuracy of the DNN starts decreasing abruptly as the fault
rate starts increasing. Therefore, to ensure reliable execution of DNNs it is essential
to mitigate timing errors.

3.2.3 Resilience of DNNs to Memory Faults

To illustrate the impact of memory faults on the accuracy of DNNs, Hanif et al. [16]
presented an analysis where they injected random faults in the weight memory
of a DNN accelerator. The analysis showed that faults at higher significance bit-
locations in the weights can drastically reduce the application-level accuracy of
DNNs while faults at lower significance bit-locations do not impact the accuracy
much. Moreover, the analysis also showed that the accuracy drop increases sharply
with the increase in the fault rate. They also studied the impact of different types
of faults individually and showed that 0-to-1 bit-flips have a more severe impact
compared to 1-to-0 bit-flips, as 0-to-1 bit-flips at higher significance bit-locations
can significantly increase the weight values. This conclusion is also in line with
the dropout [21] and DropConnect [22] concepts in the sense that 1-to-0 bit-flips
push the weight values toward zero, which is equivalent to dropout at a fine-grained
level. Note that the conclusion may differ for different data representation formats.
Similar fault injection studies have also been conducted in [23] and [24] to analyze
the resilience of DNNs.

562 M. A. Hanif and M. Shafique

1 = Bypass
the MAC

PE PE PE...

. . .

. . .

. . .

Accumulation Units

PE PE PE

PE PE PE

. . .

. . .

Faulty
MAC Unit

Systolic
Array

PE PE PE

PE

. . .

PE

PE

PE

...

...

...
. . .

…

…

…

…

…

…

…

…

Weights
(Matrix A)

snoitavit cA
) B xi rt a

M(

X +

Partial Sum

Ac
tiv

at
io

n

PE

Weight

0 10

…

X +

PE
0 1

…

Additional
MUX to bypass
the MAC unit

Additional
MUX to bypass
the MAC unit

Fig. 7 Modified systolic-array design for permanent fault mitigation through fault-aware pruning

3.3 Permanent Fault Mitigation

As highlighted in Sect. 3.2.1, permanent faults can restrain a system from generating
correct outputs. Therefore, it is essential to mitigate such errors to ensure high
manufacturing yield. Fault-Aware Pruning (FAP) [20] has been proposed to
mitigate permanent faults in the computational array of a systolic-array-based DNN
accelerator. The key idea behind this approach is to replace critical faults with non-
critical faults. In [20], this is achieved through dropping the computations mapped
onto the faulty components, as dropping a small percentage of computations in
DNNs do not impact the accuracy much, see dropout [21] and DropConnect [22]
concepts.

Figure 7 illustrates the modified systolic-array design proposed in [20] for
mitigating permanent faults in the MAC units of a systolic-array-based DNN
accelerator. As illustrated in the figure, each PE is equipped with an additional MUX
to bypass the MAC unit inside the PE. In case a fault is detected in the MAC unit of a
PE during post-fabrication testing, the corresponding MUX is configured to bypass
the faulty MAC unit. Note, the systolic-array architecture shown in Fig. 7 follows a
weight-stationary dataflow where weights from the same neuron/filter are mapped
onto the same column and are kept stationary inside the PEs during execution.
Hence, the bypass operation corresponds to pruning of the weights mapped onto
the faulty units.

To improve the performance of FAP, Fault-Aware Pruning + Training (FAP+T)
is proposed [20]. The technique is based on the observation that DNNs are typically
over-parameterized and pruning a small set of weights during training do not affect
the final accuracy much [25]. Figure 8 presents a general flow for training a DNN
against permanent faults. As highlighted in the figure, the fault map extracted
through post-fabrication testing of the fabricated chip (along with the DNN mapping

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 563

Off-line Post-fabrication Testing
for Fault Map Extraction Fault Map

Fault-Aware
Weight Masking

Forward
Pass

Backward
Pass

DNN
Accelerator

DNN
Architecture

Training (Repeat for Every Mini-batch)
Fault-
Aware
DNN

Dataset

Weight
Update

DNN Mapping
Policy

Fig. 8 General flow adopted for fault-aware retraining

80

85

90

95

100

0 10 20 30 40

)ega
%(ycaruccA

Percentage of Faulty MAC Units in the Array (%age)

FAP
FAP+T

Negligible
Accuracy Loss

FAP+T offers
better results

 50

Fig. 9 Impact of using FAP and FAP. +T on the classification accuracy of a fully connected DNN
trained on the MNIST dataset at different fault rates [20]

policy) is used to force the weights to be mapped onto faulty MAC units to zero in
each iteration of the training loop. This enables the DNN to adapt to the faults in the
system and offer better performance compared to simple FAP.

Figure 9 highlights the effectiveness of FAP and FAP. +T using a fully connected
DNN trained on the MNIST dataset. As can be seen from the figure, both FAP and
FAP. +T help improve the resilience of the DNN against permanent faults in the
computational array of a DNN accelerator; however, FAP. +T offers better results at
higher fault rates, i.e., negligible accuracy loss even when 50% of the total MAC
units are faulty.

Although FAP. +T is highly effective against permanent faults, its main drawback
is that it involves retraining the given DNN, which may not be possible under
some scenarios due to the lack of computational resources or a comprehensive
training dataset. To address this issue, Fault-Aware Mapping (FAM) has been
proposed [26]. FAM employs a saliency-driven approach to determine the mapping
of the given pre-trained DNN for the given faulty chip. Figure 10 shows the general
flow for applying FAM. First, the saliency of each DNN weight is computed using
the L1 or L2-norm. Then, using an optimization algorithm and the knowledge of the
faults, a mapping policy is determined that leads to the minimum (or a lower) sum
of saliency of weights to be pruned due to permanent faults in the computational
array of the DNN accelerator. In the end, the parameters of the DNN are rearranged
according to the mapping policy (wherever possible) to avoid any run-time data

564 M. A. Hanif and M. Shafique

Extract Fault Map using
Post-fabrication Testing Fault Map

Compute
Saliency of
Weights of

the DNN

Determine Mapping by
Minimizing the Sum of
Saliency of Weights to

be Pruned

DNN
Accelerator

Pre-trained
DNN

Repeat for Each Layer of the DNN

Modified
DNN +

Mapping
PolicyDataset

Rearrange
DNN

Parameters

Fig. 10 Fault-aware mapping methodology

-0.42

-0.84

-0.63

0.59

-0.44

-0.61

0.17

0.15

-0.58

-0.81

-0.94

0.22-0.78

0.92

-0.36

0.28

-0.42

-0.84

-0.63

0.59

-0.44

-0.61

0.17

0.15

-0.58

-0.81

0.22-0.78

0.92

-0.36

0.28

-0.42

-0.84

-0.63

0.59

-0.44

-0.61

0.15

-0.58

-0.81

-0.94

0.22-0.78

0.92

0.28

-0.42

-0.84

-0.63

0.59 -0.78

0.92

-0.36

0.28 -0.44

-0.61

0.17

0.15

-0.58

-0.81

-0.94

0.22

Filter 1 Filter 2 Filter 3 Filter 4

(b) Mapping of the Filters
on an unfaulty 4x4 Array

(c) Mapping of the Filters
on a Faulty 4x4 Array

(d) Mapping using
Fault-Aware Mapping

x
-0.36

-0.94 x0.17

(a)

Absolute
Error = 0.94

Swapping the
locations of Filter 3

and Filter 4 results in
Absolute Error = 0.17

Fig. 11 An illustrative example of fault-aware mapping on a .4×4 systolic array

rearrangement operations. The output DNN and the mapping policy are then used
together with FAP for reliable DNN inference. Figure 11 presents an example of
how FAM can help in reducing the impact of permanent faults when used with FAP,
and Fig. 12 highlights the effectiveness of the approach when used for the VGG11
network trained on the ImageNet dataset. Figure 12 clearly highlights that FAM can
be employed without retraining specifically for low-to-moderate fault rates to get
better results than only FAP.

3.4 Timing Error Mitigation

Aging in CMOS devices manifests as timing errors. These errors can have a
drastic impact on the performance of a DNN interference system, as highlighted
in Sect. 3.2.2. Conventional techniques such as aggressive voltage and frequency
guard-banding result in significant energy and/or latency overheads. Therefore, it is

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 565

0
20
40
60
80

100

0 10 20 30 40

 ycaruccA 5poT
]ega

%[

Number of Faulty PEs [%age]

Fault-Aware Pruning Fault-Aware Mapping
Fault-aware mapping helps

maintain the baseline accuracy
even at moderate fault rates

Baseline

 50

Fig. 12 Impact of fault-aware mapping on the classification accuracy of the VGG11 network
trained on the ImageNet dataset

PE PE PE...
. . .

. . .

. . .
Accumulation Units

PE PE PE

PE PE PE

. . .

. . .

Systolic
Array

PE PE PE

PE

. . .

PE

PE

PE

...

...

...
. . .

…

…

…

…

…

…

…

…

Weights
(Matrix A)

snoitavitcA
)B xirta

M(

X +

Partial Sums

Ac
tiv

at
io

n

PE

Weight

0 1

…

X +

PE
0 1

…

Psum Psum’

CLK+Δ

CLK+Δ Error = Bypass
current MAC

unit

CLK

CLK

Difference in
inputs correspond

to error

Additional partial
sum register to
capture correct

output

Fig. 13 Architectural modifications required in PEs of a systolic-array-based DNN accelerator to
realize TE-Drop

crucial to address these errors at low cost to ensure reliable and resource-efficient
DNN execution.

To address timing errors in the computational array of a systolic-array-based
DNN accelerator at a low cost, Zhang et al. proposed TE-Drop [14]. TE-Drop
works on the principle that the contribution of each individual MAC operation
to the overall output of a DNN is very small. Therefore, a small percentage of
MAC operations can be dropped without affecting the application-level accuracy
of the system. To detect timing errors in the computational array, TE-Drop utilizes
Razor flip-flops; however, instead of re-executing the erroneous MAC operation, it
captures the correct MAC output in an alternate partial sum register operating on a
delayed clock. Then, the succeeding PE is bypassed to feed the correct MAC output
back into the computational flow. Figure 13 presents the architectural modifications
required to realize the concept.

566 M. A. Hanif and M. Shafique

Profile Activation
Values using a
Subset of the

Validation Dataset

Determine
Safe Ranges

for Activation
Values

Deploy Range
Restriction
Functions

Protected
DNN

Unprotected
DNN

Validation
Dataset

Fig. 14 General flow of range-restriction-based soft error mitigation techniques

3.5 Soft Error Mitigation

As highlighted in Sect. 3.2.3, soft errors at critical locations in a DNN-based system
can significantly degrade the application-level accuracy of the system [16, 27].
Therefore, it is crucial to address these errors to ensure reliable DNN execution.
Although conventional redundancy-based techniques (e.g., DMR and TMR) are
highly effective against soft errors, they result in extreme overheads due to the
compute-intensive nature of DNNs. Therefore, specialized low-cost techniques are
designed to improve the resilience of these systems against soft errors.

To mitigate soft errors in SRAM-based on-chip memory, Azizimazreah et al.
proposed a zero-biased SRAM cell design that has a higher tendency to switch
to ‘0’ in case an error occurs in the cell [28]. The intuition behind this design is
that 0-to-1 bit-flips in DNNs result in a higher accuracy loss compared to 1-to-0
bit-flips. To mitigate soft errors in the computational array of a DNN accelerator,
researchers have proposed different range-restriction techniques, e.g., Ranger [27],
that bound the range of the intermediate activation values to a pre-computed safe
range. The intuition behind these techniques is that soft errors can result in large
activation values that may propagate to the output and impact the classification
result. Therefore, abnormally large activation values that fall out of the normal range
can be classified as erroneous, and dropping such values can mitigate soft errors
due to the inherent resilience of DNNs to pruning. Figure 14 presents the general
flow of range-restriction techniques. A similar technique is proposed in [29] for
mitigating soft errors in the on-chip memory of DNN accelerators. Apart from the
above-mentioned techniques, algorithm-based fault tolerance, such as checksum-
based error detection and correction have also been proposed to mitigate soft errors
in DNN systems at a low cost [30].

4 Conclusion

The state-of-the-art performance of DNNs for complex AI problems has led to
their adoption for safety-critical applications as well. However, these systems have
strict robustness constraints that are challenged by the hardware-induced reliability
threats introduced due to the use of specialized DNN accelerators. The compute- and
memory-intensive nature of DNNs prevents the use of redundancy-based techniques

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 567

for mitigating these threats. Towards this, this chapter covered different low-cost
techniques for improving the resilience of DNN inference systems against soft
and timing errors. The chapter also covered different techniques for mitigating
permanent faults. Moreover, the chapter also discussed a holistic methodology for
mitigating all types of reliability threats at low overhead costs.

References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
2. Fink, M., Liu, Y., Engstle, A., Schneider, S.A.: Deep learning-based multi-scale multi-object

detection and classification for autonomous driving. In: Fahrerassistenzsysteme 2018, pp. 233–
242. Springer, Berlin (2019)

3. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C.,
Corrado, G., Thrun, S., Dean, J.: A guide to deep learning in healthcare. Nat. Med. 25(1),
24 (2019)

4. Chen, Y., et al.: Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile
devices. IEEE J. Emerg. Sel. Topics Circuits Syst. (2019)

5. Kwon, H., Samajdar, A., Krishna, T.: Maeri: Enabling flexible dataflow mapping over
DNN accelerators via reconfigurable interconnects. In: Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 461–475. ACM, New York (2018)

6. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,
S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis of a tensor processing
unit. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), pp. 1–12. IEEE, Piscataway (2017)

7. Hanif, M.A., Putra, R.V.W., Tanvir, M., Hafiz, R., Rehman, S., Shafique, M.: MPNA: A
massively-parallel neural array accelerator with dataflow optimization for convolutional neural
networks (2018). arXiv preprint arXiv:1810.12910

8. Baumann, R.C.: Radiation-induced soft errors in advanced semiconductor technologies. IEEE
T-DMR 5(3), 305–316 (2005)

9. Kang, K., et al.: NBTI induced performance degradation in logic and memory circuits: how
effectively can we approach a reliability solution? In: ACM/IEEE ASP-DAC, pp. 726–731
(2008)

10. Raghunathan, B., Turakhia, Y., Garg, S., Marculescu, D.: Cherry-picking: exploiting process
variations in dark-silicon homogeneous chip multi-processors. In: 2013 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 39–44. IEEE, Piscataway (2013)

11. Vadlamani, R., Zhao, J., Burleson, W., Tessier, R.: Multicore soft error rate stabilization using
adaptive dual modular redundancy. In: Proceedings of the Conference on Design, Automation
and Test in Europe, pp. 27–32. European Design and Automation Association (2010)

12. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve computer
reliability. IBM J. Res. Dev. 6(2), 200–209 (1962)

13. Lu, W., Yan, G., Li, J., Gong, S., Han, Y., Li, X.: FlexFlow: A flexible dataflow accelerator
architecture for convolutional neural networks. In: 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 553–564. IEEE, Piscataway (2017)

14. Zhang, J., et al.: Thundervolt: enabling aggressive voltage underscaling and timing error
resilience for energy efficient deep learning accelerators. In: ACM/IEEE DAC, pp. 1–6 (2018)

15. Limbrick, D.B., Mahatme, N.N., Robinson, W.H., Bhuva, B.L.: Reliability-aware synthesis of
combinational logic with minimal performance penalty. IEEE Trans. Nucl. Sci. 60(4), 2776–
2781 (2013)

568 M. A. Hanif and M. Shafique

16. Hanif, M.A., Khalid, F., Putra, R.V.W., Rehman, S., Shafique, M.: Robust machine learning
systems: Reliability and security for deep neural networks. In: 2018 IEEE 24th International
Symposium on On-Line Testing And Robust System Design (IOLTS), pp. 257–260. IEEE,
Piscataway (2018)

17. Gebregiorgis, A., Kiamehr, S., Tahoori, M.B.: Error propagation aware timing relaxation for
approximate near threshold computing. In: Proceedings of the 54th Annual Design Automation
Conference 2017, p. 77. ACM, New York (2017)

18. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

19. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Z. Ghahramani, M. Welling,
C. Cortes, N.D. Lawrence, K.Q. Weinberger (eds.) Advances in Neural Information Processing
Systems 27, pp. 2654–2662. Curran Associates (2014). http://papers.nips.cc/paper/5484-do-
deep-nets-really-need-to-be-deep.pdf

20. Zhang, J.J., et al.: Analyzing and mitigating the impact of permanent faults on a systolic array
based neural network accelerator. In: IEEE VTS, pp. 1–6. IEEE, Piscataway (2018)

21. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving
neural networks by preventing co-adaptation of feature detectors (2012). arXiv preprint
arXiv:1207.0580

22. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural networks using
DropConnect. In: International Conference on Machine Learning, pp. 1058–1066 (2013)

23. Hanif, M.A., Hafiz, R., Shafique, M.: Error resilience analysis for systematically employing
approximate computing in convolutional neural networks. In: 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 913–916. IEEE, Piscataway (2018)

24. Reagen, B., Gupta, U., Pentecost, L., Whatmough, P., Lee, S.K., Mulholland, N., Brooks, D.,
Wei, G.Y.: Ares: A framework for quantifying the resilience of deep neural networks. In: 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, Piscataway
(2018)

25. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with
pruning, trained quantization and Huffman coding (2015). arXiv preprint arXiv:1510.00149

26. Hanif, M., et al.: SalvageDNN: salvaging deep neural network accelerators with permanent
faults through saliency-driven fault-aware mapping. Philos. Trans. R. Soc. A 378(2164) (2020)

27. Chen, Z., et al.: Ranger: Boosting error resilience of deep neural networks through range
restriction (2020). arXiv preprint arXiv:2003.13874

28. Azizimazreah, A., Gu, Y., Gu, X., Chen, L.: Tolerating soft errors in deep learning accelerators
with reliable on-chip memory designs. In: 2018 IEEE International Conference on Networking,
Architecture and Storage (NAS), pp. 1–10 (2018). https://doi.org/10.1109/NAS.2018.8515692

29. Hoang, L.H., Hanif, M.A., Shafique, M.: FT-ClipAct: Resilience analysis of deep neural
networks and improving their fault tolerance using clipped activation. In: 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1241–1246. IEEE,
Piscataway (2020)

30. Zhao, K., Di, S., Li, S., Liang, X., Zhai, Y., Chen, J., Ouyang, K., Cappello, F., Chen, Z.: FT-
CNN: Algorithm-based fault tolerance for convolutional neural networks. IEEE Trans. Parallel
Distrib. Syst. 32(7), 1677–1689 (2020)

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692

	Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep Learning Systems by Exploiting Intrinsic Characteristics of DNNs
	1 Introduction
	2 Preliminaries
	2.1 Deep Neural Networks
	2.2 DNN Hardware Accelerators

	3 Reliable Deep Learning
	3.1 A Systematic Methodology for Building Reliable DNN Systems
	3.2 Resilience of DNNs to Reliability Threats
	3.2.1 Resilience of DNNs to Permanent Faults
	3.2.2 Resilience of DNNs to Timing Faults
	3.2.3 Resilience of DNNs to Memory Faults

	3.3 Permanent Fault Mitigation
	3.4 Timing Error Mitigation
	3.5 Soft Error Mitigation

	4 Conclusion
	References

