
An End-to-End Embedded Neural
Architecture Search and Model
Compression Framework for Healthcare
Applications and Use-Cases

Bharath Srinivas Prabakaran and Muhammad Shafique

1 Introduction

As discussed in chapter “Massively Parallel Neural Processing Array (MPNA):
A CNN Accelerator for Embedded Systems”, deep learning has revolutionized
domains worldwide by improving machine understanding and has been used to
develop state-of-the-art techniques in fields like computer vision [15], speech
recognition and natural language processing [21], healthcare [9], medicine [49],
bioinformatics [20], etc. These developments are primarily driven by the rising
computational capabilities of modern processing platforms and the availability
of massive new annotated datasets that enable the model to learn the necessary
information. Fields like medicine and healthcare generate massive amounts of data,
in the order of hundreds of exabytes is the USA alone, which can be leveraged
by deep learning technologies to significantly improve a user’s quality of life and
obtain substantial benefits. Furthermore, healthcare is one of the largest revenue-
generating industries in the world, requiring contributions upward of .10% of the
country’s Gross Domestic Product (GDP) annually [4]. Countries like the United
States routinely spend up to .17.8% of their GDP on healthcare [35]. The global
health industry is expected to generate over .$10 trillion revenue, annually by 2022,
which is a highly conservative estimate as it does not consider the increasing global
elderly population percentages [47]. The rising global average life expectancy
is another byproduct of the substantial technological advancements in medicine
and healthcare [34]. The Internet of Things (IoT) phenomenon serves as an ideal

B. S. Prabakaran (�)
Institute of Computer Engineering, Technische Universität Wien (TU Wien), Vienna, Austria
e-mail: bharath.prabakaran@tuwien.ac.at

M. Shafique
Engineering Division, New York University Abu Dhabi, Abu Dhabi, UAE
e-mail: muhammad.shafique@nyu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_2

21

 31368 2385 a 31368 2385 a

 885 52970 a 885 52970 a

mailto:bharath.prabakaran@tuwien.ac.at
mailto:bharath.prabakaran@tuwien.ac.at
mailto:bharath.prabakaran@tuwien.ac.at
mailto:bharath.prabakaran@tuwien.ac.at

 885 56845 a 885 56845
a

mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2

22 B. S. Prabakaran and M. Shafique

Personalized
Health-CARE

Estimated Economic Impact of IoT Applications by 2025

Healthcare Industry Electricity
Urban Infrastructure Security Resource Extraction
Agriculture Vehicles Retail

41%
$ 1.1 – 2.5 Trillion

33%
$ 0.9 – 2.3 Trillion

$ 0.2 – 0.5 Trillion

4%

4%

4%

4%

1%

2%

7%

19%
$ 0.5 – 0.9

Trillion

Fig. 1 Breakdown of the estimated economic impact of Internet of Things applications by 2025;
an overview of the human bio-signals that can be monitored and analyzed for patient-specific care

opportunity that can be exploited by investigating its applicability in the healthcare
sector to offer more efficient and user-friendly services that can be used to improve
quality of life. The Internet of Medical Things (IoMT) market is expected to grow
exponentially to achieve an annual economic impact of .$1.1–$2.5 trillion by 2025,
which constitutes .41% of the impact of the complete IoT sector [29]. This includes
applications like personalized health monitoring, disease diagnostics, patient care,
and physiological signal, or bio-signal, monitoring, and analytics to recommend
person-specific lifestyle changes or health recommendations [2, 19], especially
by investing heavily in the capabilities and advancements of deep learning. A
breakdown of the estimated economic impact of IoT applications by the year 2025
and an overview of human bio-signals, which can be monitored and analyzed, are
presented in Fig. 1.

An overview of a few healthcare use-cases and applications is discussed next,
before moving on to the framework that can be used for exploring the deep
learning models that can be deployed for a given use-case, given its output quality
requirements and hardware constraints of the target execution platform.

1.1 Deep Learning in Healthcare: Potential Use-Cases and
Applications

Medical Imaging Deep learning has been largely investigated as a solution to
address research challenges in the computer vision and imaging domains due to
the availability of massive labeled and annotated datasets. Therefore, the primary
healthcare domain suitable for investigating the applicability of deep learning
would be medical imaging. Since various technologies like X-Rays, CT (Computed
Tomography) and MRI (Magnetic Resonance Imaging) scans, ultrasound, etc. are
regularly used by clinicians and doctors to help patients, deep learning can be highly

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 23

beneficial in such scenarios where they can be deployed as clinical assistants that
can aid in diagnostics and radiology.

Electronic Health Record Analysis Electronic Health Record (EHR) is a col-
lection of health data related to a patient across time, including their medical
history, current and past medications, allergies, immunization information, lab test
results, radiology imaging studies, age, weight, etc. These EHRs, from several
patients, are combined into a large pool, based on their demographics, to mine and
extract relevant information that can be used to devise new treatment strategies and
improve the health status of the patients. Deep learning techniques have successfully
demonstrated the ability to combine all this information to extract vital health
statistics, including the ability to predict a patient’s mortality.

Drug Discovery The processing capabilities of deep learning models can also
be leveraged on massive genomic, clinical, and population-level data to identify
potential drugs or compounds that can, “by-design,” explore associations with
existing cell signaling pathways, pharmaceutical and environmental interactions,
to identify cures for known health problems. For instance, the protein folding
problem, which had fazed the community for more than five decades, was recently
solved by the AlphaFold deep learning model, proposed by researchers from
Google [20]. This enables researchers to predict the structure of a protein complex,
at atomic granularity, using just its amino acid composition, which can further
enable scientists to identify compounds that can prevent the formation of lethal
proteins in hereditary medical conditions like Alzheimer’s or Parkinson’s.

Precision Medicine Genomic analysis, in combination with drug discovery
approaches, might be the key to develop the next generation of precise targeted
medical treatments, which improve the user’s quality of life. Understanding the
genetic capability of the underlying condition, such as the type of cancer, its ability
to reproduce, and the way it propagates, can enable scientists to better develop user-
specific treatment options. However, processing such large amounts of data can take
anywhere from weeks to months, which can be circumvent by deep learning models
to the order of hours, enabling such explorations.

Similarly, there are plenty of other healthcare applications, like real-time moni-
toring and processing of bio-signals, sleep apnea detection, detecting gait patterns,
genomic analysis, artificial intelligence-based chatbots and health assistants, and
many more, that can benefit by investigating the applicability of deep learning in
these use-cases (Table 1). We delve into the field of deep learning for healthcare,

Table 1 A summary of key state-of-the-art techniques in deep learning for healthcare

Deep learning in healthcare References

Medical imaging [1, 10, 15, 25, 27, 43]

Electronic health record analysis [18, 39, 45, 46, 50]

Drug discovery and precision medicine [7, 20, 24, 36, 38, 40, 42]

Others [17, 23, 37]

24 B. S. Prabakaran and M. Shafique

next, by presenting a comprehensive embedded neural architecture search and
model compression framework for healthcare applications and illustrate the benefits
by evaluating its efficacy on a bio-signal processing use-case.

2 Embedded Neural Architecture Search and Model
Compression Framework for Healthcare Applications

Figure 2 illustrates an overview of the deep neural network (DNN) model search
and compression framework for healthcare, which is composed of six key stages.
The framework considers (1) the user specifications and quality requirements, such
as the required prediction labels, output classes, expected accuracy or precision
of the model and (2) the hardware constraints of the target execution platform,
such as the available on-chip memory (MBs) and the maximum number of
floating-point operations (FLOPs) that can be executed per second to construct
the required dataset from the existing labeled annotations (more details provided
in Sect. 2.3) and explore the design space of DNN models that can be useful for the
application.

2.1 User Specifications and Requirements

The framework enables dynamic model exploration by restricting the output classes
of the DNN, based on the user requirements; besides the normal and anomalous
classes, the user might require an output class specific to the target use-case.
For instance, a hospital might require the model to classify X-Rays or CT scans
to explicitly detect cases of lung infection caused by the novel SARS-CoV-2
coronavirus as a separate classification. These instances can be included by the
framework to generate and explore DNN models specific to this case, given that the
corresponding annotated data is already present in the dataset used for construction.

The framework currently considers four metrics for evaluating the quality of a
model (Q), namely, Accuracy (A), Precision (P), Recall (R), and F1-score (F).
Accuracy of a model is defined as the ratio of correct classifications with respect
to the total number of classifications, Precision signifies the percentage of classified
items that are relevant, Recall is defined as the percentage of relevant items that
are classified correctly, and F1-score is used to evaluate the Recall and Precision
of a model by estimating their harmonic mean. The system designer can specify
a constraint in the framework using any of the abovementioned metrics, while
exploring the DNN models for the application to ensure that the models obtained
after exploration satisfy the required quality constraint. Evaluation with other use-
case specific metrics is orthogonal to these standards and can be easily incorporated
into the framework. These metrics are estimated as follows:

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 25

D
ee

p
Le

ar
ni

ng
 M

od
el

 T
ra

in
in

g
an

d
Ev

al
ua

tio
n

U
se

r S
pe

ci
fic

at
io

ns
/R

eq
ui

re
m

en
ts

Pl
at

fo
rm

 C
on

st
ra

in
ts

 (M
B

, F
LO

Ps
)

W
ea

ra
bl

es
/

M
ob

ile
s

4M
B,

 0
.1

 G
FL

O
Ps

C
lu

st
er

/G
PU

25
6

M
B,

 1
0

TF
LO

Ps

G
en

er
at

e
D

ee
p

N
eu

ra
l N

et
w

or
ks

Se
le

ct
iv

e
Ex

pl
or

at
io

n

Tr
ai

ni
ng

 a
nd

 e
va

lu
at

io
n

of

se
le

ct
ed

 n
et

w
or

k
m

od
el

s

G
en

et
ic

 A
lg

or
ith

m
s

To
ur

na
m

en
t;

N
SG

A-
II;

SP

EA
-2

; W
he

el
 R

ou
le

tte

O
pt

im
al

 M
od

el

Se
le

ct
io

n

Pa
re

to
-O

pt
im

al

N
et

w
or

ks

O
pt

im
al

 M
od

el

Se
le

ct
io

n
In

pu
t

Bl
oc

k 1

O
ut

pu
t

Bl
oc

k n

Bl
oc

k 2

0 0 0

O
ut

pu
t

In
pu

t

0 0 0

In
pu

ts
O

ut
pu

ts

D
at

as
et

 C
on

st
ru

ct
io

n

N
ew

 L
ab

el
s

¬
 E

xi
st

in
g

La
be

ls

Ad
di

ng
 S

am
pl

es
 ¬

 D
at

a
In

te
rp

ol
at

io
n

M
od

el
 C

om
pr

es
si

on

N
eu

ra
l A

rc
hi

te
ct

ur
e

Pa
ra

m
et

er
s

#R
es

N
et

 B
lo

ck
s;

 #
Fi

lte
rs

; #
LS

TM
 C

el
ls

Ex
ha

us
tiv

e
Ex

pl
or

at
io

n

Tr
ai

ni
ng

 &
 e

va
lu

at
io

n
of

 a
ll

po
ss

ib
le

 n
et

w
or

k
m

od
el

s

1
2

3

4
5

6

O
pt

im
iz

at
io

n
G

oa
ls

:
�

Ac
cu

ra
cy

 o
nl

y
�

R
ec

al
l o

nl
y

�
M

em
or

y
on

ly
�

W
ei

gh
te

d
Ac

cu
ra

cy
 &

M

em
or

y

Pr
ed

ic
tio

n
La

be
ls

/C
la

ss
es

Q
ua

lit
y

M
et

ric
s:

Ac

cu
ra

cy
, P

re
ci

si
on

, R
ec

al
l,

F1
-s

co
re

44

4

98

97
 In

cr
ea

si
ng

 P
ru

ni
ng

 →

Accuracy

Memory

10
×

Pr
un

in
g

20

0
50

10
0

6
5

3
4

2
O

Accuracy

60
×

N
um

be
r o

f B
its

Q
ua

nt
iz

at
io

n

Set of DNN Models for Healthcare Application

D
ee

p
Le

ar
ni

ng
 M

od
el

 G
en

er
at

io
n

Memory

C
om

bi
ne

d
Ex

pl
or

at
io

n

F
ig
. 2

A

n
ov

er
vi

ew
 o

f
th

e
ke

y
st

ag
es

 in
 th

e
de

ep
 le

ar
ni

ng
 m

od
el

 e
xp

lo
ra

tio
n

an
d

co
m

pr
es

si
on

 f
ra

m
ew

or
k

fo
r

he
al

th
ca

re
 a

pp
lic

at
io

ns
 (

ad
ap

te
d

fr
om

 [
37

])

26 B. S. Prabakaran and M. Shafique

. A = T P + T N

#Classif ications
, P = T P

T P + FP
,R = T P

T P + FN
,F = 2 ∗ P ∗ R

P + R

where T P stands for the number of true positive predictions, whereas T N , FP ,
and FN depict the number of true negative, the number of false positive, and the
number of false negative predictions, respectively.

2.2 Platform Constraints

Similarly, to ensure that the explored networks do not require computational
resources beyond those available on the target execution platform, a hardware
constraint is implemented before the evaluation stage, which the user can define
as per their requirements. Currently, the hardware constraints of the system can
be specified by the system designer either in terms of the memory overhead
(B), i.e., the maximum size of the model that can be accommodated on the
platform, or the execution time in terms of the maximum number of floating-point
operations that the platform can execute for a single inference (FP). Like the quality
metrics, incorporating other additional platform-specific hardware constraints are
orthogonal to our current approach and can be an easily added functionality to the
framework. Explicitly specifying hardware constraints requires the framework to
identify models that offer the best quality under the given constraints, which enables
the exploration of a trade-off between output quality and hardware requirements of
the model, two metrics that typically maintain an inverse correlation.

2.3 Dataset Construction

To ensure that the model developed is application-driven, a custom dataset is
constructed by fusing labels, in an existing healthcare dataset, in order to create
the required output classes. Note that each label in the custom dataset needs to
be correspond to one of the labels in the existing healthcare dataset, to ensure
coherence. For instance, with respect to the COVID-19 classifier application
discussed earlier, there could be varying diagnosis for the lung X-Rays or CT scans
present in the dataset, including pneumonia, pleural effusion, cystic fibrosis, or lung
cancer, which are ultimately labeled as “anomaly” in the constructed dataset, given
the sole focus of the application is to just classify amongst normal, anomaly, and
“COVID-19.” A similar methodology can be used to construct custom datasets for
a given healthcare application, as discussed with the help of a use-case in Sect. 3.

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 27

2.4 Deep Learning Model Generation

With the necessary information regarding the user specifications, platform con-
straints, and the constructed dataset, we generate the set of possible DNN models
(. ψ) by varying the key neural architecture parameters. Since our approach considers
a relevant state-of-the-art model as a baseline, we extract the key architectural
parameters from the baseline model and vary them to generate different models
that can achieve (near) state-of-the-art accuracy with reduced hardware require-
ments. For instance, the use-case discussed in Sect. 3 explores three DNN model
parameters, namely, (1) No. of Residual Network Blocks (#ResNet Blocks), (2) No.
of Filters (#Filters), and (3) No. of LSTM Cells (#LSTM Cells), which can,
theoretically, be any value in the .R+ domain, leading to an explosion of the designs
that need to be explored under an unbounded design space. By considering the
state-of-the-art model as the upper bound, we restrict the number of designs to be
explored, thereby ensuring that the algorithm converges in finite time. Furthermore,
since the exploration of the models is heavily dependent on the state of the art, any
modifications to the block-level structure of the baseline model, including changes
to the block, will affect the design space of the models (. ψ) to be explored.

2.5 Deep Learning Model Training and Evaluation

The DNN models generated earlier need to be trained and evaluated on the
constructed dataset, individually, before their real-world deployment. However,
since the training and evaluation of each individual DNN in the design space is
a compute-intensive and time-consuming task, first, we need to reduce the number
of models generated, which we ensure by constraining the hardware requirements of
the model (as discussed earlier in Sect. 2.2), and second, we need to quickly explore
the design space of DNNs, to reduce the overall duration of the task. Exploration
of the design space, in our framework, can be conducted either exhaustively or
selectively, as discussed below:

(1) Exhaustive Exploration It requires each individual model of the design space
to be trained and evaluated on the constructed dataset in order to determine the set
of Pareto-optimal DNN models, which essentially trade off between output quality
and hardware requirements. The hardware constraints imposed by the execution
platform combined with the state-of-the-art imposed upper bound enable the
framework to exhaustively explore the design space of DNN models in tens of GPU
hours, as opposed to hundreds or thousands of hours in the case of unconstrained
exploration. Therefore, when the complexity of the model, its parameter format,
the number of weights and biases, and the variation in the hyper-parameters
increase, it is recommended to selectively explore the design space to circumvent
the exponential rise in design space models. Exhaustive exploration is primarily

28 B. S. Prabakaran and M. Shafique

included as a functionality to illustrate the efficacy of the selective exploration
technique that has been discussed next.

(2) Selective Exploration It involves the effective selection, training, and evalua-
tion of a small subset of the models in . ψ in order to reduce the exploration time
to a couple of GPU hours. Genetic algorithms utilize a cost function, which defines
the optimization goal, to effectively obtain near-optimal solutions while reducing
the exploration time for a wide range of real-world optimization problems [44].
The framework uses genetic algorithms that rely on the concepts of reproduction
and evolution to select the models that need to be trained in each generation to
create a new generation of models that have the potential to further optimize the cost
function. The use of other meta-heuristic approaches to explore the design space is
orthogonal to our use of genetic algorithms, which encompasses techniques like ant
colony optimization [8] and simulated annealing [48], and can be incorporated into
the framework, if essential.

In the selective exploration process, we start with an initial population of 30
random DNN models present in the design space, referred to as individuals, based
on the recommendation of previous works [41] in order to obtain the best results.
The genetic algorithms require the presence of a “chromosome,” which encodes
all the key neural architecture parameters (“genes”) that can be varied to obtain
the complete design space of DNN models. All the genes are stitched together to
generate the chromosome string, which, when decoded, constructs a DNN model,
or an individual, in the design space. Each individual is subsequently trained on
the constructed dataset to evaluate its viability in terms of a fitness value, which
enables it to compete with other individuals in the design space. The fitness value
is estimated as the cost function when the decoded DNN model (M) exists in the
design space (. ψ) or is considered to be a NULL value otherwise and is discarded
from the search. Next, on the basis of their fitness values, two individuals are
selected to pass on their genes to the next generation while undergoing the process
of mutation and crossover, which are essential reproduction principles. We ensure an
ordered .0.4 crossover probability for a mating parent pair with a random crossover
location in the pair’s chromosomes. The next generation of the population, i.e.,
the offspring, has their parents’ chromosomes exchanged from the start until the
crossover point and is considered for exploration based on their fitness value.
The offspring also have a mutation probability of .0.11 to enable a bit-flip in the
chromosome, thereby ensuring a diverse population and enabling a comprehensive
exploration of DNN models. The experiments are run to determine a population
of 30 individuals in each generation, based on their fitness values, to create 5
consecutive iterations of offspring that can be trained and evaluated to determine
the set of best-fit individuals (see Fig. 3).

By default, the framework includes the ability to explore the design space using
the following recognized genetic algorithms: NSGA-II [6], Roulette Wheel [11],
Tournament Selection [31], and SPEA-2 [51]. Likewise, other algorithms and
heuristics can be incorporated into the framework, as discussed earlier. The time
complexity of each algorithm determines the order of execution time required for

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 29

Start Initial Population:
30 DNN Models

Training and
Fitness Value

Evaluation

Mating pair
Selection Crossover Mutation

YES

NO Generations
== 5?

DNN
Offspring

Stop

Offspring Generation

Fig. 3 Flow chart illustrating the selective design space exploration technique (adapted from [37])

exploring the design space . ψ . If the size of the design space is considered to be
N , the time complexity of the algorithms would be .O(N2), .O(N ∗ log N), .O(N),
and .O(N2 ∗ log N), respectively. The efficacy of these algorithms, illustrated by
the varying subset of individuals selected and evaluated, is discussed in Sect. 3 with
the use-case. The genetic algorithms used by the framework require a cost function
(. φ) that needs to be specified by the system designer, which can be optimized to
obtain the set of near-optimal network models (. ω) for the explored design space.
The weighted cost function used in this framework is

. φ = α ∗ Q + β ∗
[

1 − H

Hmax

]

where .α, β ∈ [0, 1] depict the weights for output quality (Q) and hardware require-
ments (H) of the model, respectively. .Hmax denotes the hardware requirements
of the state-of-the-art baseline model. As discussed earlier, Q can be evaluated
as Accuracy, Precision, Recall, or F1-score, whereas H can be estimated as the
memory overhead or the number of floating-point operations for an inference.
Other application-specific quality metrics or additional hardware requirements,
such as the power consumption of the model or its energy requirements on the
target platform, can also be included in the framework. The weights . α and . β
depict the importance of the quality and hardware metrics, respectively, during the
algorithm’s exploration of the design space. Algorithm 1 discusses the pseudo-code
for the weighted DNN model exploration technique deployed in the framework.
Given (1) the inputs (design space (. ψ), weights for the cost function (. α, . β), and
the hardware requirement for the state-of-the-art model (.Hmax)) and (2) quality
and hardware constraints (.QConst , HConst), the weighted DNN model exploration
algorithm generates a set of DNN models . ω that satisfies the quality and hardware
constraints of the application. The ExplorationAlgorithm function call in Line 10
can call any of the selective exploration algorithms (genetic algorithms) or the
exhaustive exploration technique discussed earlier. Table 2 illustrates an overview
of the symbols and denotations used in this chapter.

30 B. S. Prabakaran and M. Shafique

Algorithm 1 Weighted DNN model exploration
Input: ψ, α, β, Hmax
Constraints: QConst , HConst
Output: ω
1: H = [];
2: for M in ψ do
3: if HardwareRequirements(M) ≤ HConst then
4: H.append(HardwareRequirements(M));
5: else
6: ψ.remove(M);
7: end if
8: end for
9: φ = α ∗ Q + β ∗

[
1 − H

Hmax

]
10: ω = ExplorationAlgorithm(φ, ψ);
11: for DNN in ω do
12: if Q.(DNN) < QConst then
13: ω.remove(DNN);
14: end if
15: end for

Table 2 Overview of the symbols used in this work along with their denotations [37]

Symbol Denotation Symbol Denotation

Q Model quality N Size of design space (. ψ)

.QConst User quality constraint .φ Cost function to be optimized

A Accuracy of the model .ω Output set of near-optimal DNN models

P Precision of the model .α Weight for output quality Q
R Recall of the model .β Weight for hardware requirement H
F F1-score of the model M DNN model in . ψ

B Memory overhead of the model .HConst Platform’s hardware constraint

FP
No. of floating-point operations
reqd. by the model . Hmax

Hardware requirements of the
state-of-the-art model

.ψ Design space of DNN models H Hardware requirements of the model

2.6 Model Compression

The framework also includes the capability of further reducing the model’s hardware
requirements through the means of compression techniques like pruning and
quantization. Besides neural architecture search approaches, model compression
techniques have proven to be highly successful in reducing the hardware require-
ments of the model while retaining output quality [12].

2.6.1 Pruning

As the name conveys, the core concept of this approach involves identifying less-
important parameters of the model, such as the weights, kernels, biases, or even

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 31

neurons or layers, and eliminating them to further reduce the hardware requirements
of the DNN model, increasing their deployability in edge platforms. Eliminating the
model parameters reduces many of its requirements, such as memory overhead of
the model and the number of floating-point operations required for an inference,
which tend to further improve performance and reduce energy consumption on the
target platform during inference. The pruned model is subsequently retrained on the
constructed dataset to ensure that the model achieves an output quality similar to
that of the original unpruned model obtained from the design space. The framework
integrates the pruning techniques presented in [3, 12, 26, 28, 30] to provide the
system designer with a range of options that can be implemented in order to meet
the application requirements based on the DNN model’s capabilities. For example,
the technique proposed in [12] determines the lowest .x% of weights, based on their
absolute magnitude, in each individual layer of the model and eliminates them,
followed by a retraining stage, as discussed earlier, to achieve an accuracy similar
to the original model. Whereas the technique presented in [30] sorts the complete
set of weights in the model to iteratively eliminate the lowest .x% of overall weights
in each iteration, regardless of the layer, followed by model retraining to achieve
original model accuracy. Section 3 illustrates an overview of the benefits of pruning
DNN models obtained using this approach. Incorporating other pruning techniques
into the framework can be easily achieved as long as the new technique complies
with the original interfaces of standard pruning techniques.

2.6.2 Quantization

The model parameters are usually stored in a floating-point format requiring 32
bits, leading to a large memory overhead on the execution platform. Accessing each
floating-point parameter from memory requires increased access latency and energy
consumption, as opposed to traditional 8-bit or 16-bit integers. Likewise, a high-
precision floating-point addition operation requires nearly an order of magnitude
more energy as opposed to a 32-bit integer ADD operation [13]. Hence, approaches
that can be used to reduce the precision from 32 bits to 16 or 8 bits, through
the process of quantization, can be used to substantially reduce the hardware
requirements of the model. Quantization techniques can be implemented to further
reduce the precision of the DNN model to less than 8 bits, by analyzing its trade-off
with output quality for the target application. The process involves the construction
of . 2p clusters, where p stands for the number of quantized bits, using the k-means
algorithm, which evaluates the parameters in each layer of the DNN model. Once the
clusters are determined, equally spaced values are allocated to each cluster ranging
from minimum to maximum value for corresponding cluster weights composed
of all zeros to all ones, respectively. For simplicity, all layers in the DNN model
are quantized with the same number of bits. Similar to pruning, other quantization
techniques can be incorporated into the framework as long as the new technique
complies with the original interfaces of standard quantization.

32 B. S. Prabakaran and M. Shafique

Based on recommendations from the studies presented in [12] and from exhaus-
tive experimentation, the optimal approach for minimizing the hardware require-
ments of the model requires pruning the selected DNN model obtained from
the design space, followed by model quantization, to eliminate the redundant
parameters and subsequently reduce parameter precision, respectively.

3 Case Study: Bio-signal Anomaly Detection

We present the efficacy of the framework by deploying it to generate, explore,
and compress a wide range of DNN models for our use-case: ECG Bio-signal
processing. We explore 5 different sub-cases as a part of this study:

• UC. 1: Binary Classification: [Normal, Anomaly]
• UC. 2: Multi-class Classification:

[Normal, Premature Ventricular Contraction, Other Anomaly]
• UC. 3: Multi-class Classification: [Normal, Bundle Branch Block, Other Anomaly]
• UC. 4: Multi-class Classification:

[Normal, Atrial Anomaly, Ventricular Anomaly, Other Anomaly]
• UC. 5: Multi-class Classification: [Normal, Ventricular Fibrillation, Other

Anomaly]

Hannun et al. [14] proposed a deep neural network model architecture that can
differentiate between 12 classes of ECG signals, evaluated on their private dataset.
This model is considered to be the current state of the art in ECG signal classification
and is the baseline model of this use-case. The primary block used in [14] is
adopted in this use-case to generate the design space of DNN models for each of
the 5 different sub-cases discussed above. The input and output layers have been
modified to consider the data from the open-source ECG dataset adopted in this case
study to process and categorize them into the required output classes. The default
model of the DNN is modified to include LSTM cells at the end, enabling accuracy
improvements in cases where the number of feature extraction layers is substantially
reduced during neural architecture search.

3.1 Experimental Setup

Dataset Construction For this bio-signal processing case study, the MIT-BIH
dataset [32] is used to construct the required datasets by collecting a 256-sample
window, which is subsequently assigned a label corresponding to the original
labels of the parent dataset. The 41 different annotations of the parent dataset are
categorized as one of the labels for each sub-case to ensure coherence in the dataset.
To construct an enriched dataset that can provide the relevant information to the
DNN model and enable it to learn effectively across labels like ventricular tachy-

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 33

cardia and ventricular fibrillation, the framework also includes the CU Ventricular
dataset [33] during the construction of the custom datasets. The constructed datasets
are split in the ratio of .7:1:2 to generate the training, validation, and testing datasets,
respectively.

Neural Architecture Parameters An overview of the modified DNN architecture
used in this case study is presented in Fig. 4. Therefore, the three primary neural
architecture parameters that can be varied to generate the DNN model design space
are (1) #ResNet Blocks, (2) #Filters, and (3) #LSTM Cells. The ResNet blocks are
made of 1D convolutional layers, batch normalization, ReLU activation blocks, and
dropout layers, as illustrated in Fig. 4, and can vary between 0 and 15. The number
of filters, of size 16, in each convolution layer is determined as a function of z–
[32 × 2z]—where z starts from the value of 0 and is increased by 1 after every y
ResNet blocks (y varies from 1 to 4 in increments of 1, i.e., y ∈ {1, 2, 3, 4}). The
number of LSTM cells is varied as 2x , where x ∈ {4, 5, 6, 7, 8}.

By varying these parameters, we can generate up to 320 different DNN models as
part of a given application’s design space. However, due to the hardware limitation
imposed by the state-of-the-art model, the framework reduces the number of models
explored to 135, thereby drastically reducing the exploration time.

Selective Exploration Figure 5 presents the composition of the chromosome
used by the genetic algorithms in this case study. The chromosome is a binary
string of size 9, which encodes the key neural architecture parameters discussed

Max pool 256 sample

× [1 – 15]
Max pool

Output

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

R

eL
U

Ba
tc

h
N

or
m

R

eL
U

D

ro
po

ut

Ba
tc

h
N

or
m

R

eL
U

D

ro
po

ut

Ba
tc

h
N

or
m

R

eL
U

LS
TM

D

en
se

So

ftm
ax

Ba
tc

h
N

or
m

R

eL
U

ECG Signal

Fig. 4 Modified state-of-the-art DNN architecture used in the case study (adapted from [37])

0
Parent Chromosome Pair

1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1

0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1

0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 1 0 1

Crossover

Mutation
0 1 0 1 1 0 1 1 0

#Filters

#LSTM Cells#ResNet Blocks

Chromosome

4 values

5 values16 values
Genes

Fig. 5 The composition of the chromosome used by the genetic algorithms in this case study;
example of chromosomal crossover and mutation (adapted from [37])

34 B. S. Prabakaran and M. Shafique

Table 3 Optimal
hyper-parameter values used
for training the DNN
Models [37]

Hyper-parameter Optimal value

Weights initialization He et al. [16]

Adam optimizer [22] β1 = 0.9, β2 = 0.999

Learning rate 0.001

Batch size 128

Dropout 0.2

Table 4 The optimal values
of the constants used by the
genetic algorithms [37]

Constant Optimal value

Population size 30

Chromosome length 9

Generation size 5

Mutation probability 0.11

Crossover probability 0.4

above as genes. The chromosome can therefore construct 210 − 1, or 1023, DNN
models in design space for each of the sub-cases. However, since only 5 of the 7
possible #LSTM cell values lead to valid DNN model architectures, we can directly
eliminate invalid configurations not present in ψ . Once the parent chromosome pair
is selected, based on their fitness value, for generating offspring, they undergo the
process of crossover to exchange genes and undergo potential mutation to introduce
diversity, as illustrated in Fig. 5.

Tool Flow The TensorFlow platform is used for the implementation of the DNN
models in the Python programming environment with the help of the Keras package.
The DNN models are trained over multiple iterations with varying hyper-parameter
values to determine the ones that offer maximum accuracy. Table 3 presents the
optimal values of these hyper-parameters. The DEAP library [5] in Python contains
implementations of the four genetic algorithms that are used in the case study.
Table 4 presents the constants and their optimal values, which are used by the
genetic algorithms during selective exploration of the design space. The exploration
stage is executed on a GPU server composed of four i9 CPUs and 8 Nvidia RTX
2080 GPUs, with the early stopping mechanism enabled. The selected models are
then trained using the custom dataset for quality evaluation and studying the trade-
off with their hardware requirement.

3.2 Exhaustive Exploration

Figure 6 illustrates the results and trade-offs between quality and memory of
exhaustively exploring the models in the UC. 3 design space. The Pareto-frontier of
the complete design space, which connects all the Pareto-optimal DNN models and
offers the best trade-off between quality and memory, is illustrated by A . Label B ,

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 35

Fig. 6 Analysis of exhaustive exploration on the UC. 3 design space (adapted from [37])

UC1 UC2 UC3 UC4 UC5

α=0.2 β=0.8
α=0.2 β=0.8

 noitarolpxE
[e

miT
H

rs
] 20

α=0.8 β=0.2

~8.37x Reduction in Exploration Time
15
10
5
0

~9.52x Reduction in Exploration Time

Fig. 7 Analyzing the time benefits of the selective exploration approach (adapted from [37])

on the other hand, depicts the pseudo-Pareto-frontier constructed using the set of
optimal designs obtained by random exploration (i.e., baseline). The large number of
inter-dependent parameters in DNN models leads to the situation where the designs
depicted in A and B are very similar to each other. Exhaustive exploration of the
design space has led to the successful identification of a DNN model that can reduce
the overhead by .∼30 MB for a quality loss of less than .0.5%. However, due to the
time required for such exhaustive exploration, it might be more suitable to obtain a
near-optimal point that offers similar trade-offs using selective exploration for much
less time. The variance in the Precision, Recall, and F1-score of the model for the
specialized bundle branch class indicates suitability of the framework to impose a
quality constraint on these metrics as well.

3.3 Selective Exploration: Time Benefits

The primary benefit of the selective exploration process is the reduction in time
required to search the design space of DNN models with the use of genetic
algorithms. Figure 7 illustrates the reduction in time for the five different use-cases
when explored using the genetic algorithms, as opposed to exhaustive exploration.
We have also varied the weights used by the cost function (. α, . β) to emphasize
that changing weights does not drastically modify the time needed for exploring
the design space. Randomly selecting and evaluating .10% of the DNN models

36 B. S. Prabakaran and M. Shafique

100

Anomaly Class: UC1
Wheel Roulette Search

98

96

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

94

92

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

100

Anomaly Class: UC1
Tournament Search

98

96

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

94

92

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Fig. 8 Evaluation of the quality and memory trade-offs for the models obtained using wheel
roulette search and tournament search on the UC1 design space (adapted from [37])

in the design space acts as baseline comparison for the selective exploration
strategies discussed in this chapter, with practically no algorithmic overhead.
The selective exploration strategies achieve .9× reduction in exploration time, on
average, as opposed to the bounded exhaustive exploration strategy. The use of
genetic algorithms for exploring the search space is highly beneficial in scenarios
where the application requires the use of highly complex deep neural networks with
tens of millions of parameters. Exhaustively training and evaluating each model in
the design space, in such instances, would lead to exploration time overheads of
hundreds of GPU hours, which might not be feasible for the system designer.

3.4 Selective Exploration: Efficacy and Analysis

The primary benefit of using genetic algorithms, reduction in exploration time,
was already discussed earlier. In this subsection, we focus on the capability of the
genetic algorithms in exploring the design space and analyze their efficacy. The
results of these experiments for the UC. 1 and UC. 5 design spaces, with . α and . β
set to .0.5 are illustrated in Figs. 8 and 9, respectively. The transparent points in
these results depict the models obtained from the design space using exhaustive
exploration, enabling us to determine the efficacy of the genetic algorithms. The
genetic algorithms are highly successful at identifying a set of near-optimal DNN
models without traversing the complete design space, especially in cases where
the accuracy improvements or the hardware memory reductions are minimal when
compared to the Pareto-optimal design. The number of models evaluated by the
NSGA-II and SPEA-2 algorithm is smaller than their counterparts. Note that a
significant number of models in the UC. 5 design space exhibit .0% quality due to

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 37

100

Ventricular Fibrillation Class: UC5
NSGA-II Search

80

60

40

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

20

0

100

80

60

40

20

0

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Ventricular Fibrillation Class: UC5
SPEA-2 Search

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Fig. 9 Evaluation of the quality and memory trade-offs for the models obtained using NSGA-II
search and SPEA-2 search on the UC5 design space (adapted from [37])

97.5

95.0

92.5

90.0

87.5

85.0

82.5

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Premature Ventricular Contraction Class: UC2
Tournament Search a = 0.5 & b = 0.5

Premature Ventricular Contraction Class: UC2
Tournament Search a = 0.2 & b = 0.8

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

] 97.5

95.0

92.5

90.0

87.5

85.0

82.5

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Fig. 10 Evaluation of the weighted exploration technique on the UC2 design space using
tournament search with two different weight values for the cost function (adapted from [37])

the inherent differences in the number of samples of class Ventricular Fibrillation,
leading to a bias against it.

3.5 Selective Exploration: Weighted Exploration

Next, we discuss a subset of the results obtained when exploring the design
space using different weights for the cost function (. φ), which is used by the
genetic algorithms. Figure 10 illustrates the results when the algorithm focuses on
optimizing (1) memory alone (.α = 0.2, β = 0.8) or (2) memory and accuracy
(.α = 0.5, β = 0.5), for a model in the design space of UC. 2. Similarly, Fig. 11
presents the results when the algorithm optimizes for (1) memory alone (. α =
0.2, β = 0.8) or (2) accuracy alone (.α = 0.5, β = 0.5), in the design space of

38 B. S. Prabakaran and M. Shafique

100

80

60

40

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

20

100

80

60

40

20

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Ventricular Anomaly Class: UC4
Wheel Roulette Search a = 0.8 & b = 0.2

Ventricular Anomaly Class: UC4
Wheel Roulette Search a = 0.2 & b = 0.8

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Fig. 11 Evaluation of the weighted exploration technique on the UC4 design space using wheel
roulette search with two different weight values for the cost function (adapted from [37])

UC. 4. The weighted parameterization of the cost function is highly beneficial in
guiding the genetic algorithms to optimize for the required parameter, i.e., memory
or quality or both. For example, as illustrated by A in Fig. 11, the algorithm
focuses on optimizing memory, thereby selecting a large number of points with
minimal overhead. Similarly, when the optimization goal is either accuracy only
(see Fig. 11) or memory and accuracy (see Fig. 10), appropriate models are selected
for evaluation by the algorithm.

3.6 Pruning and Quantization: Compression Efficacy and
Receiver Operating Characteristics

Next, we select three near-optimal models obtained from the UC. 4 design space to
evaluate the efficacy of our pruning and quantization techniques. Without loss of
generality and for the purpose of illustration, the three models, Z. 1, Z. 2, and Z. 3,
focus on accuracy alone, trade-off between accuracy and memory, or memory alone,
respectively. Pruning, alone, is quite effective in reducing the memory by nearly
.40% for roughly .0.15% increase in accuracy. This contra-indicative improvement in
accuracy can be attributed to the over-redundant parameterization of the network
model, which is eliminated by pruning. Due to similar reasons, model Z. 1 can
tolerate pruning of a significant percentage of parameters before exhibiting accuracy
losses, as opposed to the other models that are not as over-parameterized. Likewise,
quantization can drastically reduce the memory requirements of the network by
lowering the precision of the parameters storing the weights and biases. This process
can further reduce the memory requirements by up to . 5×, as opposed to FP32
precision, for .<0.1% quality loss. Combining both these approaches can reduce
the memory by a factor of .53× for .<0.2% loss in quality (Fig. 12).

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 39

080

90

100 3

0

100

90

80

(iii) 60% Pruned

80

90

100

0

100

90

80

(i) 20% Pruned

80

90

100

0

100

90

80

(iv) 80% Pruned

080

90

100 4

0

100

90

80

(ii) 40% Pruned

0

1

40
50
60
70
80
90
100
110 1

0

100

70

40

(v) 95% Pruned

]
%[ycaruccA

UC4 (α=1): Accuracy Memory
UC4 (α=0.5, β=0.5): Accuracy Memory

UC4 (β =1): Accuracy Memory

M
em

or
y

[M
B]

O P O P

O P

O P

O P

PNQ: Pruned &
N-bit Quantized DNN

UC4 (α=1):
Original DNN ~32MB

O: Original DNN
P: Pruned DNN

5
]

%[ycaruccA

2

M
em

or
y

[M
B]

Fig. 12 Compression of the near-optimal UC4 design space DNN models (adapted from [37])

Org. [α=1]
90P3Q [α=1]

Org. [α=β=0.5]
30P3Q [α=β=0.5]

Org. [β=1]
10P6Q [β=1]

Org. [α=1]
90P4Q [α=1]

Org. [α=β=0.5]
30P3Q [α=β=0.5]

Org. [β=1]
20P4Q [β=1]

 evitisoP eurT
ta

R

1.0

0.9

1.0

0.9

False Positive Rate
0.0 0.60.0 0.6

(a) (b)Ideal DNN Ideal DNN

e

Fig. 13 ROC evaluation of the similar DNN models from the UC. 4 design space [37]

Next, the receiver operating characteristics of selected pruned and quantized
models are evaluated to determine their behavior, when compared to the original
model obtained from the design space. The evaluation is completed for two
scenarios:

(a) With a memory constraint of . 0.5MB, maximize the model accuracy.
(b) With an accuracy constraint of .96.7%, minimize the model’s memory.

As can be observed from the results presented in Fig. 13, model Z. 1 exhibits the
best operating characteristics, with Z. 2 and Z. 3 not lagging far behind. The maximum
accuracy models, which are subsequently pruned and quantized, exhibit the worst
operating characteristics, far behind the pruned and quantized models of Z. 2 and Z. 3,

40 B. S. Prabakaran and M. Shafique

albeit with similar accuracy metrics. This makes the latter two models more suitable
for deployment in the real world on constrained edge devices like wearables.

4 Conclusion

Healthcare is one of the world’s largest industries requiring a lot of investments,
man power, training, and expertise, especially with the rising older population
(above the age of 65) in most western nations, a significant percentage of whom
require continuous support and healthcare. This requires scientists and researchers
to develop technologies that can cater to the requirements of global healthcare
systems with currently available technologies. Deep learning, which is currently at
the forefront of major technological innovation, has proven to be highly effective in
various healthcare domains like medical imaging, electronic health data analytics,
precision medicine, and drug discovery. In this chapter, an embedded neural
architecture search and model compression framework was discussed to enable
their deployment in healthcare applications. The framework considers the user
requirements, in terms of quality, or specifications, like type of output, and hardware
constraints of the target platform to effectively search the design space of DNN
models to generate a set of near-optimal DNNs suitable for the application. Besides
achieving a .53× reduction in memory, models optimized for both accuracy and
memory during the design space search were observed to have better operating
characteristics, even when compressed. The framework is open source and available
online at https://bionetexplorer.sourceforge.io/.

Acknowledgments This work has been supported by the Doctoral College Resilient Embedded
Systems, which is run jointly by the TU Wien’s Faculty of Informatics and the UAS Technikum
Wien. We would also like to acknowledge the coauthors (collaboration partners) of our BioNetEx-
plorer journal paper, which is discussed in this chapter.

References

1. Aggarwal, R., Sounderajah, V., Martin, G., Ting, D.S., Karthikesalingam, A., King, D.,
Ashrafian, H., Darzi, A.: Diagnostic accuracy of deep learning in medical imaging: a systematic
review and meta-analysis. NPJ Digit. Med. 4(1), 1–23 (2021)

2. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a
survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials
17(4), 2347–2376 (2015)

3. Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural networks.
ACM J. Emerg. Technol. Comput. Syst. 13(3), 1–18 (2017)

4. Bloomberg: These are the economies with the most (and least) efficient health care. [Online
Link]

5. De Rainville, F.M., Fortin, F.A., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: A python
framework for evolutionary algorithms. In: Proceedings of the 14th Annual Conference
Companion on Genetic and Evolutionary Computation, pp. 85–92 (2012)

https://bionetexplorer.sourceforge.io/
https://bionetexplorer.sourceforge.io/
https://bionetexplorer.sourceforge.io/
https://bionetexplorer.sourceforge.io/

 31960 53819 a 31960 53819 a

https://www.bloombergquint.com/global-economics/u-s-near-bottom-of-health-index-hong-kong-and-singapore-at-top

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 41

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

7. Dincer, A.B., Celik, S., Hiranuma, N., Lee, S.I.: DeepProfile: Deep learning of cancer
molecular profiles for precision medicine. BioRxiv, p. 278739 (2018)

8. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag.
1(4), 28–39 (2006)

9. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C.,
Corrado, G., Thrun, S., Dean, J.: A guide to deep learning in healthcare. Nat. Med. 25(1),
24–29 (2019)

10. Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D.I., Wang, G., Eaton-Rosen, Z., Gray, R.,
Doel, T., Hu, Y., et al.: NiftyNet: a deep-learning platform for medical imaging. Comput.
Methods Programs Biomed. 158, 113–122 (2018)

11. Goldberg, D.E.: Optimization, and machine learning. Genetic algorithms in Search (1989)
12. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural networks with

pruning, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149 (2015)
13. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural

network. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
14. Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., Tison, G.H., Bourn, C., Turakhia, M.P., Ng,

A.Y.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardio-
grams using a deep neural network. Nat. Med. 25(1), 65–69 (2019)

15. Hassaballah, M., Awad, A.I.: Deep Learning in Computer Vision: Principles and Applications.
CRC Press, Boca Raton (2020)

16. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level
performance on ImageNet classification. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1026–1034 (2015)

17. Horst, F., Lapuschkin, S., Samek, W., Müller, K.R., Schöllhorn, W.I.: Explaining the unique
nature of individual gait patterns with deep learning. Sci. Rep. 9(1), 1–13 (2019)

18. Huang, S.C., Pareek, A., Seyyedi, S., Banerjee, I., Lungren, M.P.: Fusion of medical imaging
and electronic health records using deep learning: a systematic review and implementation
guidelines. NPJ Digit. Med. 3(1), 1–9 (2020)

19. Islam, S.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.S.: The internet of things for health
care: a comprehensive survey. IEEE Access 3, 678–708 (2015)

20. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with
AlphaFold. Nature 596(7873), 583–589 (2021)

21. Kamath, U., Liu, J., Whitaker, J.: Deep Learning for NLP and Speech Recognition, vol. 84.
Springer, Berlin (2019)

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv preprint
arXiv:1412.6980

23. Korkalainen, H., Aakko, J., Nikkonen, S., Kainulainen, S., Leino, A., Duce, B., Afara, I.O.,
Myllymaa, S., Töyräs, J., Leppänen, T.: Accurate deep learning-based sleep staging in a clinical
population with suspected obstructive sleep apnea. IEEE J. Biomed. Health Inform. 24(7),
2073–2081 (2019)

24. Lavecchia, A.: Deep learning in drug discovery: opportunities, challenges and future prospects.
Drug Discovery Today 24(10), 2017–2032 (2019)

25. Lee, J.G., Jun, S., Cho, Y.W., Lee, H., Kim, G.B., Seo, J.B., Kim, N.: Deep learning in medical
imaging: general overview. Korean J. Radiol. 18(4), 570–584 (2017)

26. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

27. Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing
on MRI. Zeitschrift für Medizinische Physik 29(2), 102–127 (2019)

28. Luo, J.H., Wu, J., Lin, W.: ThiNet: A filter level pruning method for deep neural network
compression. In: Proceedings of the IEEE International Conference on Computer Vision, pp.
5058–5066 (2017)

42 B. S. Prabakaran and M. Shafique

29. Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., Marrs, A.: Disruptive technologies:
advances that will transform life, business, and the global economy, vol. 180. McKinsey Global
Institute San Francisco (2013)

30. Marchisio, A., Hanif, M.A., Martina, M., Shafique, M.: PruNet: Class-blind pruning method for
deep neural networks. In: 2018 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE (2018)

31. Miller, B.L., Goldberg, D.E., et al.: Genetic algorithms, tournament selection, and the effects
of noise. Complex Syst. 9(3), 193–212 (1995)

32. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med.
Biol. Mag. 20(3), 45–50 (2001)

33. Nolle, F., Badura, F., Catlett, J., Bowser, R., Sketch, M.: CREI-GARD, a new concept in
computerized arrhythmia monitoring systems. Comput. Cardiol. 13, 515–518 (1986)

34. Our World in Data: Life expectancy. [Online Link]
35. Policy Advice: The state of healthcare industry—statistics for 2021. [Online Link]
36. Porumb, M., Stranges, S., Pescapè, A., Pecchia, L.: Precision medicine and artificial intelli-

gence: a pilot study on deep learning for hypoglycemic events detection based on ECG. Sci.
Rep. 10(1), 1–16 (2020)

37. Prabakaran, B.S., Akhtar, A., Rehman, S., Hasan, O., Shafique, M.: BioNetExplorer:
architecture-space exploration of biosignal processing deep neural networks for wearables.
IEEE Internet Things J. 8(17), 13251–13265 (2021)

38. Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S., Unterthiner, T.: Interpretable deep
learning in drug discovery. In: Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning, pp. 331–345. Springer, Berlin (2019)

39. Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Hardt, M., Liu, P.J., Liu, X., Marcus, J.,
Sun, M., et al.: Scalable and accurate deep learning with electronic health records. NPJ Digit.
Med. 1(1), 1–10 (2018)

40. Ramsundar, B., Eastman, P., Walters, P., Pande, V.: Deep Learning for the Life Sciences:
Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More. O’Reilly
Media (2019)

41. Reeves, C., Rowe, J.E.: Genetic Algorithms: Principles and Perspectives: A Guide to GA
Theory, vol. 20. Springer, Berlin (2002)

42. Rifaioglu, A.S., Atas, H., Martin, M.J., Cetin-Atalay, R., Atalay, V., Doğan, T.: Recent
applications of deep learning and machine intelligence on in silico drug discovery: methods,
tools and databases. Briefings Bioinform. 20(5), 1878–1912 (2019)

43. Sahiner, B., Pezeshk, A., Hadjiiski, L.M., Wang, X., Drukker, K., Cha, K.H., Summers, R.M.,
Giger, M.L.: Deep learning in medical imaging and radiation therapy. Med. Phys. 46(1), e1–
e36 (2019)

44. Sastry, K., Goldberg, D., Kendall, G.: Genetic algorithms. In: Search Methodologies, pp. 97–
125. Springer, Berlin (2005)

45. Shickel, B., Tighe, P.J., Bihorac, A., Rashidi, P.: Deep EHR: a survey of recent advances in
deep learning techniques for electronic health record (EHR) analysis. IEEE J. Biomed. Health
Inform. 22(5), 1589–1604 (2017)

46. Solares, J.R.A., Raimondi, F.E.D., Zhu, Y., Rahimian, F., Canoy, D., Tran, J., Gomes, A.C.P.,
Payberah, A.H., Zottoli, M., Nazarzadeh, M., et al.: Deep learning for electronic health records:
a comparative review of multiple deep neural architectures. J. Biomed. Inform. 101, 103337
(2020)

47. United Nations: World population ageing. [Online Link]
48. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: Simulated Annealing: Theory and

Applications, pp. 7–15. Springer, Berlin (1987)
49. Wang, F., Casalino, L.P., Khullar, D.: Deep learning in medicine—promise, progress, and

challenges. JAMA Internal Med. 179(3), 293–294 (2019)

 13356 12977 a 13356 12977 a

 25243 14084 a 25243 14084 a

 15461 50614 a 15461 50614 a

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 43

50. Xiao, C., Choi, E., Sun, J.: Opportunities and challenges in developing deep learning models
using electronic health records data: a systematic review. J. Am. Med. Inform. Assoc. 25(10),
1419–1428 (2018)

51. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: improving the strength pareto evolutionary
algorithm. In: TIK-Report, vol. 103 (2001)

	An End-to-End Embedded Neural Architecture Searchand Model Compression Framework for Healthcare Applicationsand Use-Cases
	1 Introduction
	1.1 Deep Learning in Healthcare: Potential Use-Cases and Applications

	2 Embedded Neural Architecture Search and Model Compression Framework for Healthcare Applications
	2.1 User Specifications and Requirements
	2.2 Platform Constraints
	2.3 Dataset Construction
	2.4 Deep Learning Model Generation
	2.5 Deep Learning Model Training and Evaluation
	2.6 Model Compression
	2.6.1 Pruning
	2.6.2 Quantization

	3 Case Study: Bio-signal Anomaly Detection
	3.1 Experimental Setup
	3.2 Exhaustive Exploration
	3.3 Selective Exploration: Time Benefits
	3.4 Selective Exploration: Efficacy and Analysis
	3.5 Selective Exploration: Weighted Exploration
	3.6 Pruning and Quantization: Compression Efficacy and Receiver Operating Characteristics

	4 Conclusion
	References

