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1 Introduction 

As discussed in chapter “Massively Parallel Neural Processing Array (MPNA): 
A CNN Accelerator for Embedded Systems”, deep learning has revolutionized 
domains worldwide by improving machine understanding and has been used to 
develop state-of-the-art techniques in fields like computer vision [15], speech 
recognition and natural language processing [21], healthcare [9], medicine [49], 
bioinformatics [20], etc. These developments are primarily driven by the rising 
computational capabilities of modern processing platforms and the availability 
of massive new annotated datasets that enable the model to learn the necessary 
information. Fields like medicine and healthcare generate massive amounts of data, 
in the order of hundreds of exabytes is the USA alone, which can be leveraged 
by deep learning technologies to significantly improve a user’s quality of life and 
obtain substantial benefits. Furthermore, healthcare is one of the largest revenue-
generating industries in the world, requiring contributions upward of .10% of the 
country’s Gross Domestic Product (GDP) annually [4]. Countries like the United 
States routinely spend up to .17.8% of their GDP on healthcare [35]. The global 
health industry is expected to generate over .$10 trillion revenue, annually by 2022, 
which is a highly conservative estimate as it does not consider the increasing global 
elderly population percentages [47]. The rising global average life expectancy 
is another byproduct of the substantial technological advancements in medicine 
and healthcare [34]. The Internet of Things (IoT) phenomenon serves as an ideal 

B. S. Prabakaran (�) 
Institute of Computer Engineering, Technische Universität Wien (TU Wien), Vienna, Austria 
e-mail: bharath.prabakaran@tuwien.ac.at 

M. Shafique 
Engineering Division, New York University Abu Dhabi, Abu Dhabi, UAE 
e-mail: muhammad.shafique@nyu.edu 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical, 
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_2 

21


 31368 2385 a 31368 2385 a
 

 885 52970 a 885 52970 a
 
mailto:bharath.prabakaran@tuwien.ac.at
mailto:bharath.prabakaran@tuwien.ac.at
mailto:bharath.prabakaran@tuwien.ac.at
mailto:bharath.prabakaran@tuwien.ac.at

 885 56845 a 885 56845
a
 
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2


22 B. S. Prabakaran and M. Shafique
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Fig. 1 Breakdown of the estimated economic impact of Internet of Things applications by 2025; 
an overview of the human bio-signals that can be monitored and analyzed for patient-specific care 

opportunity that can be exploited by investigating its applicability in the healthcare 
sector to offer more efficient and user-friendly services that can be used to improve 
quality of life. The Internet of Medical Things (IoMT) market is expected to grow 
exponentially to achieve an annual economic impact of .$1.1–$2.5 trillion by 2025, 
which constitutes .41% of the impact of the complete IoT sector [29]. This includes 
applications like personalized health monitoring, disease diagnostics, patient care, 
and physiological signal, or bio-signal, monitoring, and analytics to recommend 
person-specific lifestyle changes or health recommendations [2, 19], especially 
by investing heavily in the capabilities and advancements of deep learning. A 
breakdown of the estimated economic impact of IoT applications by the year 2025 
and an overview of human bio-signals, which can be monitored and analyzed, are 
presented in Fig. 1. 

An overview of a few healthcare use-cases and applications is discussed next, 
before moving on to the framework that can be used for exploring the deep 
learning models that can be deployed for a given use-case, given its output quality 
requirements and hardware constraints of the target execution platform. 

1.1 Deep Learning in Healthcare: Potential Use-Cases and 
Applications 

Medical Imaging Deep learning has been largely investigated as a solution to 
address research challenges in the computer vision and imaging domains due to 
the availability of massive labeled and annotated datasets. Therefore, the primary 
healthcare domain suitable for investigating the applicability of deep learning 
would be medical imaging. Since various technologies like X-Rays, CT (Computed 
Tomography) and MRI (Magnetic Resonance Imaging) scans, ultrasound, etc. are 
regularly used by clinicians and doctors to help patients, deep learning can be highly
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beneficial in such scenarios where they can be deployed as clinical assistants that 
can aid in diagnostics and radiology. 

Electronic Health Record Analysis Electronic Health Record (EHR) is a col-
lection of health data related to a patient across time, including their medical 
history, current and past medications, allergies, immunization information, lab test 
results, radiology imaging studies, age, weight, etc. These EHRs, from several 
patients, are combined into a large pool, based on their demographics, to mine and 
extract relevant information that can be used to devise new treatment strategies and 
improve the health status of the patients. Deep learning techniques have successfully 
demonstrated the ability to combine all this information to extract vital health 
statistics, including the ability to predict a patient’s mortality. 

Drug Discovery The processing capabilities of deep learning models can also 
be leveraged on massive genomic, clinical, and population-level data to identify 
potential drugs or compounds that can, “by-design,” explore associations with 
existing cell signaling pathways, pharmaceutical and environmental interactions, 
to identify cures for known health problems. For instance, the protein folding 
problem, which had fazed the community for more than five decades, was recently 
solved by the AlphaFold deep learning model, proposed by researchers from 
Google [20]. This enables researchers to predict the structure of a protein complex, 
at atomic granularity, using just its amino acid composition, which can further 
enable scientists to identify compounds that can prevent the formation of lethal 
proteins in hereditary medical conditions like Alzheimer’s or Parkinson’s. 

Precision Medicine Genomic analysis, in combination with drug discovery 
approaches, might be the key to develop the next generation of precise targeted 
medical treatments, which improve the user’s quality of life. Understanding the 
genetic capability of the underlying condition, such as the type of cancer, its ability 
to reproduce, and the way it propagates, can enable scientists to better develop user-
specific treatment options. However, processing such large amounts of data can take 
anywhere from weeks to months, which can be circumvent by deep learning models 
to the order of hours, enabling such explorations. 

Similarly, there are plenty of other healthcare applications, like real-time moni-
toring and processing of bio-signals, sleep apnea detection, detecting gait patterns, 
genomic analysis, artificial intelligence-based chatbots and health assistants, and 
many more, that can benefit by investigating the applicability of deep learning in 
these use-cases (Table 1). We delve into the field of deep learning for healthcare, 

Table 1 A summary of key state-of-the-art techniques in deep learning for healthcare 

Deep learning in healthcare References 

Medical imaging [1, 10, 15, 25, 27, 43] 

Electronic health record analysis [18, 39, 45, 46, 50] 

Drug discovery and precision medicine [7, 20, 24, 36, 38, 40, 42] 

Others [17, 23, 37]
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next, by presenting a comprehensive embedded neural architecture search and 
model compression framework for healthcare applications and illustrate the benefits 
by evaluating its efficacy on a bio-signal processing use-case. 

2 Embedded Neural Architecture Search and Model 
Compression Framework for Healthcare Applications 

Figure 2 illustrates an overview of the deep neural network (DNN) model search 
and compression framework for healthcare, which is composed of six key stages. 
The framework considers (1) the user specifications and quality requirements, such 
as the required prediction labels, output classes, expected accuracy or precision 
of the model and (2) the hardware constraints of the target execution platform, 
such as the available on-chip memory (MBs) and the maximum number of 
floating-point operations (FLOPs) that can be executed per second to construct 
the required dataset from the existing labeled annotations (more details provided 
in Sect. 2.3) and explore the design space of DNN models that can be useful for the 
application. 

2.1 User Specifications and Requirements 

The framework enables dynamic model exploration by restricting the output classes 
of the DNN, based on the user requirements; besides the normal and anomalous 
classes, the user might require an output class specific to the target use-case. 
For instance, a hospital might require the model to classify X-Rays or CT scans 
to explicitly detect cases of lung infection caused by the novel SARS-CoV-2 
coronavirus as a separate classification. These instances can be included by the 
framework to generate and explore DNN models specific to this case, given that the 
corresponding annotated data is already present in the dataset used for construction. 

The framework currently considers four metrics for evaluating the quality of a 
model (Q), namely, Accuracy (A), Precision (P ), Recall (R), and F1-score (F ). 
Accuracy of a model is defined as the ratio of correct classifications with respect 
to the total number of classifications, Precision signifies the percentage of classified 
items that are relevant, Recall is defined as the percentage of relevant items that 
are classified correctly, and F1-score is used to evaluate the Recall and Precision 
of a model by estimating their harmonic mean. The system designer can specify 
a constraint in the framework using any of the abovementioned metrics, while 
exploring the DNN models for the application to ensure that the models obtained 
after exploration satisfy the required quality constraint. Evaluation with other use-
case specific metrics is orthogonal to these standards and can be easily incorporated 
into the framework. These metrics are estimated as follows:
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. A = T P + T N

#Classif ications
, P = T P

T P + FP
,R = T P

T P + FN
,F = 2 ∗ P ∗ R

P + R

where T P  stands for the number of true positive predictions, whereas T N , FP , 
and FN  depict the number of true negative, the number of false positive, and the 
number of false negative predictions, respectively. 

2.2 Platform Constraints 

Similarly, to ensure that the explored networks do not require computational 
resources beyond those available on the target execution platform, a hardware 
constraint is implemented before the evaluation stage, which the user can define 
as per their requirements. Currently, the hardware constraints of the system can 
be specified by the system designer either in terms of the memory overhead 
(B), i.e., the maximum size of the model that can be accommodated on the 
platform, or the execution time in terms of the maximum number of floating-point 
operations that the platform can execute for a single inference (FP ). Like the quality 
metrics, incorporating other additional platform-specific hardware constraints are 
orthogonal to our current approach and can be an easily added functionality to the 
framework. Explicitly specifying hardware constraints requires the framework to 
identify models that offer the best quality under the given constraints, which enables 
the exploration of a trade-off between output quality and hardware requirements of 
the model, two metrics that typically maintain an inverse correlation. 

2.3 Dataset Construction 

To ensure that the model developed is application-driven, a custom dataset is 
constructed by fusing labels, in an existing healthcare dataset, in order to create 
the required output classes. Note that each label in the custom dataset needs to 
be correspond to one of the labels in the existing healthcare dataset, to ensure 
coherence. For instance, with respect to the COVID-19 classifier application 
discussed earlier, there could be varying diagnosis for the lung X-Rays or CT scans 
present in the dataset, including pneumonia, pleural effusion, cystic fibrosis, or lung 
cancer, which are ultimately labeled as “anomaly” in the constructed dataset, given 
the sole focus of the application is to just classify amongst normal, anomaly, and 
“COVID-19.” A similar methodology can be used to construct custom datasets for 
a given healthcare application, as discussed with the help of a use-case in Sect. 3.
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2.4 Deep Learning Model Generation 

With the necessary information regarding the user specifications, platform con-
straints, and the constructed dataset, we generate the set of possible DNN models 
(. ψ) by varying the key neural architecture parameters. Since our approach considers 
a relevant state-of-the-art model as a baseline, we extract the key architectural 
parameters from the baseline model and vary them to generate different models 
that can achieve (near) state-of-the-art accuracy with reduced hardware require-
ments. For instance, the use-case discussed in Sect. 3 explores three DNN model 
parameters, namely, (1) No. of Residual Network Blocks (#ResNet Blocks), (2) No. 
of Filters (#Filters), and (3) No. of LSTM Cells (#LSTM Cells), which can, 
theoretically, be any value in the .R+ domain, leading to an explosion of the designs 
that need to be explored under an unbounded design space. By considering the 
state-of-the-art model as the upper bound, we restrict the number of designs to be 
explored, thereby ensuring that the algorithm converges in finite time. Furthermore, 
since the exploration of the models is heavily dependent on the state of the art, any 
modifications to the block-level structure of the baseline model, including changes 
to the block, will affect the design space of the models (. ψ) to be explored. 

2.5 Deep Learning Model Training and Evaluation 

The DNN models generated earlier need to be trained and evaluated on the 
constructed dataset, individually, before their real-world deployment. However, 
since the training and evaluation of each individual DNN in the design space is 
a compute-intensive and time-consuming task, first, we need to reduce the number 
of models generated, which we ensure by constraining the hardware requirements of 
the model (as discussed earlier in Sect. 2.2), and second, we need to quickly explore 
the design space of DNNs, to reduce the overall duration of the task. Exploration 
of the design space, in our framework, can be conducted either exhaustively or 
selectively, as discussed below: 

(1) Exhaustive Exploration It requires each individual model of the design space 
to be trained and evaluated on the constructed dataset in order to determine the set 
of Pareto-optimal DNN models, which essentially trade off between output quality 
and hardware requirements. The hardware constraints imposed by the execution 
platform combined with the state-of-the-art imposed upper bound enable the 
framework to exhaustively explore the design space of DNN models in tens of GPU 
hours, as opposed to hundreds or thousands of hours in the case of unconstrained 
exploration. Therefore, when the complexity of the model, its parameter format, 
the number of weights and biases, and the variation in the hyper-parameters 
increase, it is recommended to selectively explore the design space to circumvent 
the exponential rise in design space models. Exhaustive exploration is primarily
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included as a functionality to illustrate the efficacy of the selective exploration 
technique that has been discussed next. 

(2) Selective Exploration It involves the effective selection, training, and evalua-
tion of a small subset of the models in . ψ in order to reduce the exploration time 
to a couple of GPU hours. Genetic algorithms utilize a cost function, which defines 
the optimization goal, to effectively obtain near-optimal solutions while reducing 
the exploration time for a wide range of real-world optimization problems [44]. 
The framework uses genetic algorithms that rely on the concepts of reproduction 
and evolution to select the models that need to be trained in each generation to 
create a new generation of models that have the potential to further optimize the cost 
function. The use of other meta-heuristic approaches to explore the design space is 
orthogonal to our use of genetic algorithms, which encompasses techniques like ant 
colony optimization [8] and simulated annealing [48], and can be incorporated into 
the framework, if essential. 

In the selective exploration process, we start with an initial population of 30 
random DNN models present in the design space, referred to as individuals, based 
on the recommendation of previous works [41] in order to obtain the best results. 
The genetic algorithms require the presence of a “chromosome,” which encodes 
all the key neural architecture parameters (“genes”) that can be varied to obtain 
the complete design space of DNN models. All the genes are stitched together to 
generate the chromosome string, which, when decoded, constructs a DNN model, 
or an individual, in the design space. Each individual is subsequently trained on 
the constructed dataset to evaluate its viability in terms of a fitness value, which 
enables it to compete with other individuals in the design space. The fitness value 
is estimated as the cost function when the decoded DNN model (M) exists in the 
design space (. ψ) or is considered to be a NULL value otherwise and is discarded 
from the search. Next, on the basis of their fitness values, two individuals are 
selected to pass on their genes to the next generation while undergoing the process 
of mutation and crossover, which are essential reproduction principles. We ensure an 
ordered .0.4 crossover probability for a mating parent pair with a random crossover 
location in the pair’s chromosomes. The next generation of the population, i.e., 
the offspring, has their parents’ chromosomes exchanged from the start until the 
crossover point and is considered for exploration based on their fitness value. 
The offspring also have a mutation probability of .0.11 to enable a bit-flip in the 
chromosome, thereby ensuring a diverse population and enabling a comprehensive 
exploration of DNN models. The experiments are run to determine a population 
of 30 individuals in each generation, based on their fitness values, to create 5 
consecutive iterations of offspring that can be trained and evaluated to determine 
the set of best-fit individuals (see Fig. 3). 

By default, the framework includes the ability to explore the design space using 
the following recognized genetic algorithms: NSGA-II [6], Roulette Wheel [11], 
Tournament Selection [31], and SPEA-2 [51]. Likewise, other algorithms and 
heuristics can be incorporated into the framework, as discussed earlier. The time 
complexity of each algorithm determines the order of execution time required for
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Start Initial Population: 
30 DNN Models 

Training and 
Fitness Value 

Evaluation 

Mating pair 
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NO Generations 
== 5? 

DNN 
Offspring 

Stop 

Offspring Generation 

Fig. 3 Flow chart illustrating the selective design space exploration technique (adapted from [37]) 

exploring the design space . ψ . If the size of the design space is considered to be 
N , the time complexity of the algorithms would be .O(N2), .O(N ∗ log N), .O(N), 
and .O(N2 ∗ log N), respectively. The efficacy of these algorithms, illustrated by 
the varying subset of individuals selected and evaluated, is discussed in Sect. 3 with 
the use-case. The genetic algorithms used by the framework require a cost function 
(. φ) that needs to be specified by the system designer, which can be optimized to 
obtain the set of near-optimal network models (. ω) for the explored design space. 
The weighted cost function used in this framework is 

. φ = α ∗ Q + β ∗
[

1 − H

Hmax

]

where .α, β ∈ [0, 1] depict the weights for output quality (Q) and hardware require-
ments (H ) of the model, respectively. .Hmax denotes the hardware requirements 
of the state-of-the-art baseline model. As discussed earlier, Q can be evaluated 
as Accuracy, Precision, Recall, or F1-score, whereas H can be estimated as the 
memory overhead or the number of floating-point operations for an inference. 
Other application-specific quality metrics or additional hardware requirements, 
such as the power consumption of the model or its energy requirements on the 
target platform, can also be included in the framework. The weights . α and . β
depict the importance of the quality and hardware metrics, respectively, during the 
algorithm’s exploration of the design space. Algorithm 1 discusses the pseudo-code 
for the weighted DNN model exploration technique deployed in the framework. 
Given (1) the inputs (design space (. ψ), weights for the cost function (. α, . β), and 
the hardware requirement for the state-of-the-art model (.Hmax)) and (2) quality 
and hardware constraints (.QConst , HConst ), the weighted DNN model exploration 
algorithm generates a set of DNN models . ω that satisfies the quality and hardware 
constraints of the application. The ExplorationAlgorithm function call in Line 10 
can call any of the selective exploration algorithms (genetic algorithms) or the 
exhaustive exploration technique discussed earlier. Table 2 illustrates an overview 
of the symbols and denotations used in this chapter.
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Algorithm 1 Weighted DNN model exploration 
Input: ψ, α, β, Hmax 
Constraints: QConst , HConst 
Output: ω 
1: H = []; 
2: for M in ψ do 
3: if HardwareRequirements(M) ≤ HConst then 
4: H.append(HardwareRequirements(M)); 
5: else 
6: ψ.remove(M); 
7: end if 
8: end for 
9: φ = α ∗ Q + β ∗

[
1 − H 

Hmax

]
10: ω = ExplorationAlgorithm(φ, ψ); 
11: for DNN in ω do 
12: if Q.(DNN) < QConst then 
13: ω.remove(DNN); 
14: end if 
15: end for 

Table 2 Overview of the symbols used in this work along with their denotations [37] 

Symbol Denotation Symbol Denotation 

Q Model quality N Size of design space (. ψ) 

.QConst User quality constraint .φ Cost function to be optimized 

A Accuracy of the model .ω Output set of near-optimal DNN models 

P Precision of the model .α Weight for output quality Q 
R Recall of the model .β Weight for hardware requirement H 
F F1-score of the model M DNN model in . ψ

B Memory overhead of the model .HConst Platform’s hardware constraint 

FP  
No. of floating-point operations 
reqd. by the model . Hmax

Hardware requirements of the 
state-of-the-art model 

.ψ Design space of DNN models H Hardware requirements of the model 

2.6 Model Compression 

The framework also includes the capability of further reducing the model’s hardware 
requirements through the means of compression techniques like pruning and 
quantization. Besides neural architecture search approaches, model compression 
techniques have proven to be highly successful in reducing the hardware require-
ments of the model while retaining output quality [12]. 

2.6.1 Pruning 

As the name conveys, the core concept of this approach involves identifying less-
important parameters of the model, such as the weights, kernels, biases, or even
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neurons or layers, and eliminating them to further reduce the hardware requirements 
of the DNN model, increasing their deployability in edge platforms. Eliminating the 
model parameters reduces many of its requirements, such as memory overhead of 
the model and the number of floating-point operations required for an inference, 
which tend to further improve performance and reduce energy consumption on the 
target platform during inference. The pruned model is subsequently retrained on the 
constructed dataset to ensure that the model achieves an output quality similar to 
that of the original unpruned model obtained from the design space. The framework 
integrates the pruning techniques presented in [3, 12, 26, 28, 30] to provide the 
system designer with a range of options that can be implemented in order to meet 
the application requirements based on the DNN model’s capabilities. For example, 
the technique proposed in [12] determines the lowest .x% of weights, based on their 
absolute magnitude, in each individual layer of the model and eliminates them, 
followed by a retraining stage, as discussed earlier, to achieve an accuracy similar 
to the original model. Whereas the technique presented in [30] sorts the complete 
set of weights in the model to iteratively eliminate the lowest .x% of overall weights 
in each iteration, regardless of the layer, followed by model retraining to achieve 
original model accuracy. Section 3 illustrates an overview of the benefits of pruning 
DNN models obtained using this approach. Incorporating other pruning techniques 
into the framework can be easily achieved as long as the new technique complies 
with the original interfaces of standard pruning techniques. 

2.6.2 Quantization 

The model parameters are usually stored in a floating-point format requiring 32 
bits, leading to a large memory overhead on the execution platform. Accessing each 
floating-point parameter from memory requires increased access latency and energy 
consumption, as opposed to traditional 8-bit or 16-bit integers. Likewise, a high-
precision floating-point addition operation requires nearly an order of magnitude 
more energy as opposed to a 32-bit integer ADD operation [13]. Hence, approaches 
that can be used to reduce the precision from 32 bits to 16 or 8 bits, through 
the process of quantization, can be used to substantially reduce the hardware 
requirements of the model. Quantization techniques can be implemented to further 
reduce the precision of the DNN model to less than 8 bits, by analyzing its trade-off 
with output quality for the target application. The process involves the construction 
of . 2p clusters, where p stands for the number of quantized bits, using the k-means 
algorithm, which evaluates the parameters in each layer of the DNN model. Once the 
clusters are determined, equally spaced values are allocated to each cluster ranging 
from minimum to maximum value for corresponding cluster weights composed 
of all zeros to all ones, respectively. For simplicity, all layers in the DNN model 
are quantized with the same number of bits. Similar to pruning, other quantization 
techniques can be incorporated into the framework as long as the new technique 
complies with the original interfaces of standard quantization.
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Based on recommendations from the studies presented in [12] and from exhaus-
tive experimentation, the optimal approach for minimizing the hardware require-
ments of the model requires pruning the selected DNN model obtained from 
the design space, followed by model quantization, to eliminate the redundant 
parameters and subsequently reduce parameter precision, respectively. 

3 Case Study: Bio-signal Anomaly Detection 

We present the efficacy of the framework by deploying it to generate, explore, 
and compress a wide range of DNN models for our use-case: ECG Bio-signal 
processing. We explore 5 different sub-cases as a part of this study:

• UC. 1: Binary Classification: [Normal, Anomaly]
• UC. 2: Multi-class Classification: 

[Normal, Premature Ventricular Contraction, Other Anomaly]
• UC. 3: Multi-class Classification: [Normal, Bundle Branch Block, Other Anomaly]
• UC. 4: Multi-class Classification: 

[Normal, Atrial Anomaly, Ventricular Anomaly, Other Anomaly]
• UC. 5: Multi-class Classification: [Normal, Ventricular Fibrillation, Other 

Anomaly] 

Hannun et al. [14] proposed a deep neural network model architecture that can 
differentiate between 12 classes of ECG signals, evaluated on their private dataset. 
This model is considered to be the current state of the art in ECG signal classification 
and is the baseline model of this use-case. The primary block used in [14] is  
adopted in this use-case to generate the design space of DNN models for each of 
the 5 different sub-cases discussed above. The input and output layers have been 
modified to consider the data from the open-source ECG dataset adopted in this case 
study to process and categorize them into the required output classes. The default 
model of the DNN is modified to include LSTM cells at the end, enabling accuracy 
improvements in cases where the number of feature extraction layers is substantially 
reduced during neural architecture search. 

3.1 Experimental Setup 

Dataset Construction For this bio-signal processing case study, the MIT-BIH 
dataset [32] is used to construct the required datasets by collecting a 256-sample 
window, which is subsequently assigned a label corresponding to the original 
labels of the parent dataset. The 41 different annotations of the parent dataset are 
categorized as one of the labels for each sub-case to ensure coherence in the dataset. 
To construct an enriched dataset that can provide the relevant information to the 
DNN model and enable it to learn effectively across labels like ventricular tachy-
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cardia and ventricular fibrillation, the framework also includes the CU Ventricular 
dataset [33] during the construction of the custom datasets. The constructed datasets 
are split in the ratio of .7:1:2 to generate the training, validation, and testing datasets, 
respectively. 

Neural Architecture Parameters An overview of the modified DNN architecture 
used in this case study is presented in Fig. 4. Therefore, the three primary neural 
architecture parameters that can be varied to generate the DNN model design space 
are (1) #ResNet Blocks, (2) #Filters, and (3) #LSTM Cells. The ResNet blocks are 
made of 1D convolutional layers, batch normalization, ReLU activation blocks, and 
dropout layers, as illustrated in Fig. 4, and can vary between 0 and 15. The number 
of filters, of size 16, in each convolution layer is determined as a function of z– 
[32 × 2z]—where z starts from the value of 0 and is increased by 1 after every y 
ResNet blocks (y varies from 1 to 4 in increments of 1, i.e., y ∈ {1, 2, 3, 4}). The 
number of LSTM cells is varied as 2x , where x ∈ {4, 5, 6, 7, 8}. 

By varying these parameters, we can generate up to 320 different DNN models as 
part of a given application’s design space. However, due to the hardware limitation 
imposed by the state-of-the-art model, the framework reduces the number of models 
explored to 135, thereby drastically reducing the exploration time. 

Selective Exploration Figure 5 presents the composition of the chromosome 
used by the genetic algorithms in this case study. The chromosome is a binary 
string of size 9, which encodes the key neural architecture parameters discussed 
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Fig. 4 Modified state-of-the-art DNN architecture used in the case study (adapted from [37]) 

0 
Parent Chromosome Pair 

1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1 

0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 

0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 1 0 1 

Crossover 

Mutation 
0 1 0 1 1 0 1 1 0 

#Filters 

#LSTM Cells#ResNet Blocks 

Chromosome 

4 values 

5 values16 values 
Genes 

Fig. 5 The composition of the chromosome used by the genetic algorithms in this case study; 
example of chromosomal crossover and mutation (adapted from [37])
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Table 3 Optimal 
hyper-parameter values used 
for training the DNN 
Models [37] 

Hyper-parameter Optimal value 

Weights initialization He et al. [16] 

Adam optimizer [22] β1 = 0.9, β2 = 0.999 

Learning rate 0.001 

Batch size 128 

Dropout 0.2 

Table 4 The optimal values 
of the constants used by the 
genetic algorithms [37] 

Constant Optimal value 

Population size 30 

Chromosome length 9 

Generation size 5 

Mutation probability 0.11 

Crossover probability 0.4 

above as genes. The chromosome can therefore construct 210 − 1, or 1023, DNN 
models in design space for each of the sub-cases. However, since only 5 of the 7 
possible #LSTM cell values lead to valid DNN model architectures, we can directly 
eliminate invalid configurations not present in ψ . Once the parent chromosome pair 
is selected, based on their fitness value, for generating offspring, they undergo the 
process of crossover to exchange genes and undergo potential mutation to introduce 
diversity, as illustrated in Fig. 5. 

Tool Flow The TensorFlow platform is used for the implementation of the DNN 
models in the Python programming environment with the help of the Keras package. 
The DNN models are trained over multiple iterations with varying hyper-parameter 
values to determine the ones that offer maximum accuracy. Table 3 presents the 
optimal values of these hyper-parameters. The DEAP library [5] in Python contains 
implementations of the four genetic algorithms that are used in the case study. 
Table 4 presents the constants and their optimal values, which are used by the 
genetic algorithms during selective exploration of the design space. The exploration 
stage is executed on a GPU server composed of four i9 CPUs and 8 Nvidia RTX 
2080 GPUs, with the early stopping mechanism enabled. The selected models are 
then trained using the custom dataset for quality evaluation and studying the trade-
off with their hardware requirement. 

3.2 Exhaustive Exploration 

Figure 6 illustrates the results and trade-offs between quality and memory of 
exhaustively exploring the models in the UC. 3 design space. The Pareto-frontier of 
the complete design space, which connects all the Pareto-optimal DNN models and 
offers the best trade-off between quality and memory, is illustrated by A . Label B ,
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Fig. 6 Analysis of exhaustive exploration on the UC. 3 design space (adapted from [37]) 
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Fig. 7 Analyzing the time benefits of the selective exploration approach (adapted from [37]) 

on the other hand, depicts the pseudo-Pareto-frontier constructed using the set of 
optimal designs obtained by random exploration (i.e., baseline). The large number of 
inter-dependent parameters in DNN models leads to the situation where the designs 
depicted in A and B are very similar to each other. Exhaustive exploration of the 
design space has led to the successful identification of a DNN model that can reduce 
the overhead by .∼30 MB for a quality loss of less than .0.5%. However, due to the 
time required for such exhaustive exploration, it might be more suitable to obtain a 
near-optimal point that offers similar trade-offs using selective exploration for much 
less time. The variance in the Precision, Recall, and F1-score of the model for the 
specialized bundle branch class indicates suitability of the framework to impose a 
quality constraint on these metrics as well. 

3.3 Selective Exploration: Time Benefits 

The primary benefit of the selective exploration process is the reduction in time 
required to search the design space of DNN models with the use of genetic 
algorithms. Figure 7 illustrates the reduction in time for the five different use-cases 
when explored using the genetic algorithms, as opposed to exhaustive exploration. 
We have also varied the weights used by the cost function (. α, . β) to emphasize 
that changing weights does not drastically modify the time needed for exploring 
the design space. Randomly selecting and evaluating .10% of the DNN models



36 B. S. Prabakaran and M. Shafique

100 

Anomaly Class: UC1 
Wheel Roulette Search 

98 

96 

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

] 

94 

92 

0 10  20  
Memory[MB] 

30 40 

Precision 
Recall 
F1-Score 

100 

Anomaly Class: UC1 
Tournament Search 

98 

96 

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

] 

94 

92 

0 10  20  
Memory[MB] 

30 40 

Precision 
Recall 
F1-Score 

Fig. 8 Evaluation of the quality and memory trade-offs for the models obtained using wheel 
roulette search and tournament search on the UC1 design space (adapted from [37]) 

in the design space acts as baseline comparison for the selective exploration 
strategies discussed in this chapter, with practically no algorithmic overhead. 
The selective exploration strategies achieve .9× reduction in exploration time, on 
average, as opposed to the bounded exhaustive exploration strategy. The use of 
genetic algorithms for exploring the search space is highly beneficial in scenarios 
where the application requires the use of highly complex deep neural networks with 
tens of millions of parameters. Exhaustively training and evaluating each model in 
the design space, in such instances, would lead to exploration time overheads of 
hundreds of GPU hours, which might not be feasible for the system designer. 

3.4 Selective Exploration: Efficacy and Analysis 

The primary benefit of using genetic algorithms, reduction in exploration time, 
was already discussed earlier. In this subsection, we focus on the capability of the 
genetic algorithms in exploring the design space and analyze their efficacy. The 
results of these experiments for the UC. 1 and UC. 5 design spaces, with . α and . β
set to .0.5 are illustrated in Figs. 8 and 9, respectively. The transparent points in 
these results depict the models obtained from the design space using exhaustive 
exploration, enabling us to determine the efficacy of the genetic algorithms. The 
genetic algorithms are highly successful at identifying a set of near-optimal DNN 
models without traversing the complete design space, especially in cases where 
the accuracy improvements or the hardware memory reductions are minimal when 
compared to the Pareto-optimal design. The number of models evaluated by the 
NSGA-II and SPEA-2 algorithm is smaller than their counterparts. Note that a 
significant number of models in the UC. 5 design space exhibit .0% quality due to
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Fig. 9 Evaluation of the quality and memory trade-offs for the models obtained using NSGA-II 
search and SPEA-2 search on the UC5 design space (adapted from [37]) 
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Fig. 10 Evaluation of the weighted exploration technique on the UC2 design space using 
tournament search with two different weight values for the cost function (adapted from [37]) 

the inherent differences in the number of samples of class Ventricular Fibrillation, 
leading to a bias against it. 

3.5 Selective Exploration: Weighted Exploration 

Next, we discuss a subset of the results obtained when exploring the design 
space using different weights for the cost function (. φ), which is used by the  
genetic algorithms. Figure 10 illustrates the results when the algorithm focuses on 
optimizing (1) memory alone (.α = 0.2, β = 0.8) or (2) memory and accuracy 
(.α = 0.5, β = 0.5), for a model in the design space of UC. 2. Similarly, Fig. 11 
presents the results when the algorithm optimizes for (1) memory alone (. α =
0.2, β = 0.8) or (2) accuracy alone (.α = 0.5, β = 0.5), in the design space of
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Fig. 11 Evaluation of the weighted exploration technique on the UC4 design space using wheel 
roulette search with two different weight values for the cost function (adapted from [37]) 

UC. 4. The weighted parameterization of the cost function is highly beneficial in 
guiding the genetic algorithms to optimize for the required parameter, i.e., memory 
or quality or both. For example, as illustrated by A in Fig. 11, the algorithm 
focuses on optimizing memory, thereby selecting a large number of points with 
minimal overhead. Similarly, when the optimization goal is either accuracy only 
(see Fig. 11) or memory and accuracy (see Fig. 10), appropriate models are selected 
for evaluation by the algorithm. 

3.6 Pruning and Quantization: Compression Efficacy and 
Receiver Operating Characteristics 

Next, we select three near-optimal models obtained from the UC. 4 design space to 
evaluate the efficacy of our pruning and quantization techniques. Without loss of 
generality and for the purpose of illustration, the three models, Z. 1, Z. 2, and Z. 3, 
focus on accuracy alone, trade-off between accuracy and memory, or memory alone, 
respectively. Pruning, alone, is quite effective in reducing the memory by nearly 
.40% for roughly .0.15% increase in accuracy. This contra-indicative improvement in 
accuracy can be attributed to the over-redundant parameterization of the network 
model, which is eliminated by pruning. Due to similar reasons, model Z. 1 can 
tolerate pruning of a significant percentage of parameters before exhibiting accuracy 
losses, as opposed to the other models that are not as over-parameterized. Likewise, 
quantization can drastically reduce the memory requirements of the network by 
lowering the precision of the parameters storing the weights and biases. This process 
can further reduce the memory requirements by up to . 5×, as opposed to FP32 
precision, for .<0.1% quality loss. Combining both these approaches can reduce 
the memory by a factor of .53× for .<0.2% loss in quality (Fig. 12).
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Fig. 12 Compression of the near-optimal UC4 design space DNN models (adapted from [37]) 
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Fig. 13 ROC evaluation of the similar DNN models from the UC. 4 design space [37] 

Next, the receiver operating characteristics of selected pruned and quantized 
models are evaluated to determine their behavior, when compared to the original 
model obtained from the design space. The evaluation is completed for two 
scenarios: 

(a) With a memory constraint of . 0.5MB, maximize the model accuracy. 
(b) With an accuracy constraint of .96.7%, minimize the model’s memory. 

As can be observed from the results presented in Fig. 13, model Z. 1 exhibits the 
best operating characteristics, with Z. 2 and Z. 3 not lagging far behind. The maximum 
accuracy models, which are subsequently pruned and quantized, exhibit the worst 
operating characteristics, far behind the pruned and quantized models of Z. 2 and Z. 3,
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albeit with similar accuracy metrics. This makes the latter two models more suitable 
for deployment in the real world on constrained edge devices like wearables. 

4 Conclusion 

Healthcare is one of the world’s largest industries requiring a lot of investments, 
man power, training, and expertise, especially with the rising older population 
(above the age of 65) in most western nations, a significant percentage of whom 
require continuous support and healthcare. This requires scientists and researchers 
to develop technologies that can cater to the requirements of global healthcare 
systems with currently available technologies. Deep learning, which is currently at 
the forefront of major technological innovation, has proven to be highly effective in 
various healthcare domains like medical imaging, electronic health data analytics, 
precision medicine, and drug discovery. In this chapter, an embedded neural 
architecture search and model compression framework was discussed to enable 
their deployment in healthcare applications. The framework considers the user 
requirements, in terms of quality, or specifications, like type of output, and hardware 
constraints of the target platform to effectively search the design space of DNN 
models to generate a set of near-optimal DNNs suitable for the application. Besides 
achieving a .53× reduction in memory, models optimized for both accuracy and 
memory during the design space search were observed to have better operating 
characteristics, even when compressed. The framework is open source and available 
online at https://bionetexplorer.sourceforge.io/. 
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