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1 Introduction 

Due to the recent breakthroughs in deep neural networks (DNNs) design and train-
ing, DL architectures are currently deployed to solving mainstream applications, 
along with industrial and critical applications: going from intelligent transportation 
systems [1–3], natural language processing [4], robotics [5], and healthcare [6]. 
This is in part owing to the VLSI technology progress, the new high-performance 
communication systems and the development of IoT devices. More specifically, this 
trend results in the generation of abundant amounts of data from different embedded 
sensors and IT systems, which are necessary for training accurate DNN models. 

Given the computing-intensive aspect of DNNs, the by-default deployment of 
deep models is in Cloud data-centers or private data-centers. However, there are 
practical limits and drawbacks of such systems at least from 2 perspectives: 

(i) First, from resource and power consumption and consequently environmental 
impact perspective, this scheme has considerable overheads. 

(ii) Second, from a communication perspective, such a deployment scheme 
requires sending raw data from sensors to the servers all through wireless 
and wired communication platforms. 

The downside of this scheme is that data-centers are power-hungry platforms; 
they are estimated to account for around .1% of worldwide electricity use with high 
environmental impact [7]. These trends motivate a ML computing paradigm that 
overcomes these issues. Specifically, a more distributed deployment of ML at the 
Edge emerged as a promising paradigm towards power-efficient near-sensor intel-
ligent systems. While Embedded and Edge ML offers promising power/accuracy 
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trade-off and enhances the mainstream development of ML models towards sustain-
able and smart systems and cities, several problems still limit ML trustworthiness. 

In this chapter, we focus on three aspects of ML trustworthiness, namely 
Robustness to errors, security, and privacy. 

2 ML Robustness to Errors 

In a context of performance-driven design requirements, new hardware generations 
continuously shrink transistors dimensions, thereby increasing circuits sensitivity to 
external events which can negatively affect their reliability. There are two scenarios 
in which errors occur in modern embedded systems:

• Deliberate fault injection attacks such as Rowhammer [8]. Intentional attacks are 
another potential source of faults. The widespread usage of CNNs led to the 
development of sophisticated attacks. Malicious users could intentionally tamper 
with the parameters of the model [9].

• Reliability-related events such as soft errors either in memories, i.e., Single Event 
Upsets (SEU) or in combinatorial circuits, i.e., Single Event Transients (SET). 
These events are typically caused by high energy particles striking electronic 
devices. 

These errors can propagate through the neural network to create accuracy loss, 
and potentially global system failures that can be safety-critical or security sensitive 
in some cases. 

In this section, we provide an exploratory analysis of DNNs vulnerability to 
errors. 

2.1 Methodology 

In most embedded ML accelerators, the model parameters are stored on-board. A 
memory corruption has a persistent and, hence, cumulative aspect and will remain 
until a new model is trained and implemented. 

To reproduce models behavior under this threat, we simulate memory corruptions 
by injecting a number of bit-flips in random parameters of a model at runtime 
(inference). We subsequently evaluate the model robustness for different error rates 
and locations (Fig. 1). 

We consider two data representations:

• IEEE-754 single-precision 32-bit float: This is the standard representation 
format for real numbers. It is the dominant representation in CPU and GPU 
architectures. For simplicity we refer to this representation as . F in the rest of 
the chapter. are composed of three parts: a sign, an exponent and a fraction part 
(see Fig. 2). The normalized format of IEEE-754 floating point is expressed as 
follows:
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Fig. 1 Overview of the fault injection methodology 
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Fig. 2 Fixed-point representation in (a) with a bit-width of 8 and a fractional length of 2 (left) and 
.−2 (right). On (b) the standard IEEE-754 representation of 32 bit floating-point values 

.val = (−1)sign × 2exp−bias × (1.f raction) (1)

• Fixed-point representation: This representation uses two parameters: bit-width 
and fractional length. Negative fractional lengths can be used to represent 
powers of two. This representation is referred to as . Q (for quantized) in the 
rest of the chapter. 

To evaluate the robustness of a given model to faults, we create a fault injection 
framework that takes a trained network as an input. While testing the model at 
inference time, bit-flips are injected in the network’s weights with a tunable injection 
rate. After each test, we report the overall accuracy under fault injection. 

These tests are repeated 100 times for a statistically representative experiment. In 
each run, the engine generates a new set of errors and the injection of the generated 
errors is performed each run. We then report the accuracy distribution, i.e., the
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average accuracy, the maximum, the minimum, and the standard deviation for the 
test. 

2.2 Results 

The results were obtained on weights in single-precision floating point compara-
tively with quantized weights in terms of classification accuracy of the different 
networks. The results of different runs are presented as the mean and the standard 
deviation of the top-1 accuracy. 

Figure 3 illustrates the result of comparing the floating-point and quantized 
representations. The results show that quantized models are surprisingly more 
robust to fault injection than the full precision models, which has been consistently 
observed for 4 different CNNs with different fault injection rates. We believe that 
the reason behind this observation is the error distance after injection denoted by 
. A in [10]. For instance, the . Q representation with 7 decimal bits and 1 integer bit 
will differ from the original value by at most . ±1. However, for the full precision 
representation, the error distance on activation can reach .3 × 1038 as observed in 
[10]. Therefore, since floating-point numbers are more sensitive to bit-flips than 
fixed-point representation, quantized networks tend to show higher robustness to 
errors, in addition to the area and power consumption gains. 
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Fig. 3 Models accuracy under fault injection for weights representation with 8-bit fixed point (. Q) 
and 32-bit single-precision IEEE-754 (. F)
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3 ML Security 

ML systems have been deployed in a variety of application domains, including 
security-sensitive and safety-critical applications [11]. However, ML models have 
been shown vulnerable to several security threats, including adversarial examples, 
which consist of additive noise carefully crafted to fool ML models. 

3.1 Adversarial Attacks 

Adversarial examples are additive perturbations to an input that are carefully crafted 
by an adversary to deceive the model and force it to output a wrong label. If 
adversaries succeed in manipulating the decisions of a ML classifier to their advan-
tage, this can tamper with the security and integrity of the system, and potentially 
threaten the safety of people in some applications like autonomous vehicles. For 
example, adding adversarial noise to a stop sign that leads an autonomous car to 
wrongly classify it as a speed limit sign can lead to crashes and loss of life. In fact, 
adversarial examples have been shown effective under real-world settings [12–14]: 
that when printed out, an adversarially crafted image can fool the classifiers even 
under different lighting conditions and orientations. Therefore, understanding and 
mitigating these attacks is essential to developing safe and trustworthy intelligent 
systems. 

Attacker Knowledge When attacking a DNN-based model, we can distinguish 
two main attack scenarios based on attacker knowledge: 

(i) Black-box setting: the adversary has partial or no access to the victim 
model’s architecture and parameters. The adversary uses the results of 
querying the victim to reverse engineer the classifier and create a substitute 
model used to generate the adversarial examples. An illustration of this 
scenario is given by Fig. 4. 

(ii) White-box setting: in which the adversary has complete knowledge of 
the training data of the victim model in addition to the target model’s 
architecture and parameters. An illustration of this scenario is given by 
Fig. 5. (FGSM) [15] attack, Projected gradient descent (PGD) [16] attack, 
Carlini & Wagnar (C&W) [17] are the main white-box adversarial attacks. 

The attacker intention is to slightly modify the source image so that it is classified 
incorrectly by the target model, without special preference towards any particular 
output which is known as untargeted attack. However, in a targeted attack, the  
attacker aims at a specified wrong target class. 

Minimizing Injected Noise An adversary, using information learned about the 
classifier, generates perturbations to cause incorrect classification under the con-
straint of minimizing this perturbation magnitude to avoid detection. For illustration
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Fig. 4 Illustration of a black-box attack setting 

purposes, consider a CNN used for image classification. More formally, given an 
original input image x and a target classification model .f () s.t. f (x) = l, the  
problem of generating an adversarial example . x∗ can be formulated as a constrained 
optimization [17]: 

.x
∗ = arg min

x∗
D(x, x∗), s.t. f (x∗) = l∗, l �= l∗ (2) 

where . D is the distance metric used to quantify the similarity between two images 
and the goal of the optimization is to minimize this added noise, typically to avoid 
detection of the adversarial perturbations. l and . l∗ are the two labels of x and . x∗, 
respectively: . x∗ is considered as an adversarial example if and only if the label 
of the two images are different (.f (x) �= f (x∗)) and the added noise is bounded 
(.D(x, x∗) < ε where .ε � 0). 

Distance Metrics The adversarial perturbations should be visually imperceptible 
by a human eye. Since it is hard to model humans’ perception, three metrics have 
been practically used to measure the noise magnitude relatively to a given input, 
namely . L0, . L2, and .L∞ [17]. Notice that these three metrics are special cases of the 
. Lp norm defined as follows:
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Fig. 5 Illustration of a white-box attack setting 

. ‖x‖p =
(

n∑
i=1

|xi |p
) 1

p

(3) 

These metrics focus on different aspects of visual significance. For example, . L0
evaluates the number of pixels with different values at corresponding positions in 
two inputs. . L2 is the Euclidean distance between two images x and . x∗, while .L∞ is 
the maximum difference for all pixels at corresponding positions in the two images. 

Adversarial Attacks Generation Several methods have been proposed in the 
literature to generate adversarial examples. In the following we give a quick 
overview on the most popular ones: 

Fast Gradient Sign Method (FGSM) FGSM is a single-step, gradient-based, attack. 
An adversarial example is generated by calculating a one-step gradient update 
following the direction of the sign of the loss gradient over the input, which is the 
direction that maximizes the target model’s loss: 

.xadv = x + εsign(∇xJθ (x, y)) (4)
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where .∇J () is the gradient of the loss function J and . θ is the set of model 
parameters and . ε is the perturbation magnitude budget. 

Projected Gradient Descent (PGD) PGD is a more efficient attack generation 
method; it is an iterative variant of FGSM where the adversarial noise is generated 
adaptively as follows: 

.xt+1
adv = PSx

(xt
adv + α · sign(∇xLθ (x

t
adv, y))) (5) 

where .PSx
() is a projection operator projecting the input into the feasible region . Sx

and . α is the added noise at each iteration. PGD find the perturbation that maximizes 
the loss of a model on a particular input while keeping the size of the perturbation 
lower than the budget due to the projection operator. 

Carlini & Wagner (.C&W ) This attack has 3 variants based on the used distance 
metric (.l0, l2, l∞). It generates adversarial examples by solving the following 
optimization problem: 

minimize 
δ

‖δ‖2 + c · l(x + δ) 

s.t. x  + δ ∈ [0, 1]n 
(6) 

where .‖δ‖2 is the lowest noise that forces the model to misclassify. .l(·) is the loss 
function defined as follows: 

.l(x) = max(maxi �=t {Z(x)i} − Z(x)t − κ) (7) 

where .Z(x) is the output of the layer before the softmax called logits. t is the 
target label, and . κ is the attack confidence. An adversarial example is considered 
as successful if .maxi �=t {Z(x)i} − Z(x)t ≤ 0. 

3.1.1 Defenses Against Adversarial Attacks 

To protect ML models against adversarial attacks, several defense techniques can 
be found in the literature. We briefly introduce the different categories and provide 
insights from Embedded Systems perspective. 

Adversarial Training (AT) AT is one of the most efficient state-of-the-art defense 
methods against adversarial attacks whose aim is to integrate the adversarial noise 
within the training process. It can be formulated as follows [16]: 

. min
θ

E(x,y)∼D
[

max
δ∈B(x,ε)

Lce(θ, x + δ, y)

]
(8)
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where . θ indicates the parameters of the classifier, .Lce is the cross-entropy loss, 
.(x, y) ∼ D represents the training data sampled from a distribution . D, and 
.B(x, ε) is the allowed perturbation set. In this formulation, the inner maximization 
problem’s objective is to explore the “adversarial surrounding” of a given training 
point and to take into account, not only the sample but also the worst-case noise 
from an adversarial perspective. The outer minimization problem is the conventional 
training aiming at minimizing the loss function (which includes adversarial noise) 
[16]. 

Nonetheless, the drawback of AT is its significant computational intensivity 
compared to the baseline training process. This is obviously due to the nested 
optimization problems in the formulation that need to be solved iteratively. 

Input Pre-processing (IP) Input pre-processing is based on applying transforma-
tions to the input in order to remove adversarial perturbations [18, 19]. Transfor-
mations include the averaging, median, and Gaussian low-pass filters [19], as well 
as JPEG compression [20]. However, it has been shown that these defenses are 
vulnerable to white-box attacks [21]; in a white-box setting, where the adversary 
is aware of the defense, they can integrate the pre-processing function in the noise 
generation process. Furthermore, pre-processing requires computation overheads 
which is not suitable for resource-constrained devices such as Embedded Systems. 

Gradient Masking (GM) GM leverages regularization to make the model’s output 
less sensitive to input perturbations. Papernot et al. presented defensive distilla-
tion [22]. Nonetheless, this method is vulnerable to .C&W attack [17]. Besides, GM 
techniques such as defensive distillation require a retraining process which results 
in time and energy overheads. 

Randomization-Based Defenses These techniques leverage randomness to protect 
systems from adversarial noise. Lecuyer et al. [23] propose that random noise 
be added to the first layer of the DNN and the output be estimated via a Monte 
Carlo simulation. Raghunathan et al. [24] evaluate only a tiny neural network. 
Estimating the model output requires a heavy Monte Carlo simulation with a number 
of different model inference runs online, which cannot be afforded under resource 
constraints. 

These defense strategies either require changing the DNN structure, modifying 
the training process or retrain the model only against known adversarial threats, 
which results in considerable overheads in time, resource utilization and energy 
consumption. In the following, we present defense strategies that take into account 
this aspect, which we call Embedded Systems-friendly defenses.
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3.2 Embedded Systems-Friendly Defenses 

Another set of defense techniques are inspired by hardware-efficiency techniques 
such quantization [25, 26]. The authors in [27] proposed Defensive approximation 
(DA), which leverages approximate computing (AC) to build robust models. 

3.2.1 Defensive Approximation 

The demand on high-performance embedded and mobile devices has been dras-
tically increasing in the past decades. However, the technology is physically 
reaching the end of Moore’s law, especially with the release of TSMC and 
Samsung 5 nm technology [28]. On the other hand, we observe that highly accurate 
computations might not be a must in all application domains. In fact, in a wide 
range of emerging applications, there is no specific accuracy requirements at 
the computing-element level, but rather a quality-of-service requirements on the 
system level. These application are inherently fault-tolerant by design and can 
relax the computational accuracy constraint. This observation has motivated the 
development of approximate computing (AC), a computing paradigm that trades 
power consumption with accuracy. The idea is to implement inexact/approximate 
elements that consume less energy, as far as the overall application tolerates the 
imprecision level in computation. This paradigm has been shown promising for 
inherently fault-tolerant applications such as deep learning, data analytics, and 
image/video/signal processing. Several AC techniques have been proposed in the 
literature and can be classified into three main categories based on the computing 
stack layer they target: software, architecture, and circuit level [29, 30]. 

Defensive approximation [27] tackles the problem of robustness to adversarial 
attacks from a new perspective, i.e., approximation in the underlying hardware, 
and leverages AC to secure DNNs. Specifically, at the lowest level, DA replaces 
exact conventional multipliers used in the convolution operations by an approximate 
multipliers. These approximate multiplier can generate inaccurate outputs, but the 
error distance needs to be under control. For this reason, the approximation occurs 
specifically in the mantissa multiplication, exclusively, to avoid high magnitude 
noise in the case of errors in the exponent or the sign bit of floating-point numbers. 
Subsequently, the convolution layers are built based on the approximate multipliers, 
which injects AC-induced noise within model layers. This noise is leveraged to 
protect DNNs against adversarial attacks. Moreover, in addition to the by-product 
gains in resources due to AC, this defense requires no retraining or fine-tuning of 
the protected model. 

DA targets both robustness and energy/resource challenges. In fact, DA exploits 
the inherent fault tolerance of deep learning systems to provide resilience while also 
obtaining by-product gains of AC in terms of energy and resources. The AC-induced 
perturbations tend to help the classifier generalize and enhances its confidence and 
consequently enhance the classifier’s robustness. Figure 6 gives an overview on DA
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Fig. 6 Defensive approximation overview 

mechanism within a CNN. It shows the distribution of the error distance due to 
the approximate multiplier. This noise distribution propagates within the model and 
impacts the features map, thereby defusing the adversarial noise mechanism. In the 
following, we discuss the exploration of approximation space with regards to the 
baseline accuracy of the models. 

3.2.1.1 Baseline Accuracy 

Before exploring the impact of AC on the security of DNNs, the protected model 
needs to maintain models’ utility as a bottom line. For this reason, we explore 
the impact of the approximate multiplier on the accuracy for different levels of 
approximation, i.e., starting from approximating the full network, comparatively 
with having increasing exact layers along with the approximate model. Table 1 gives 
an overview on the utility as a function of the approximation level of the model for 
CIFAR-10 and ImageNet datasets. 

3.2.1.2 Impact on Robustness 

To evaluate the impact of AC on robustness, we consider a powerful adversary that 
has full access to the defense mechanism as well as the victim model architecture 
and parameters. Hence, we measure the model accuracy under adversarial examples 
created using different attacks for several noise budgets.



508 I. Alouani

Table 1 Impact of 
approximation on model 
classification accuracy for a 
set of clean Inputs from 
CIFAR-10 and ImageNet 

Top 1 accuracy 

Model CIFAR-10 ImageNet 

Full exact model 100% 100% 

Full approximate model 85.7% 73.23% 

Exact: 1st conv layer 98.34% 97.18% 

Exact: 2nd conv layer 93.4% 83.60% 

Exact: 3rd conv layer 93.4% 83.60% 

Exact: 1st FC layer 88.04% 75.4% 

Exact: 2nd FC layer 88.04% 75.4% 

Exact: 3rd FC layer 88.04% 75.4% 

Exact: all FC layers 95% 78.87% 
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Fig. 7 Model accuracy for different noise budgets under white-box attack. (a) CIFAR-10 using 
FGSM. (b) CIFAR-10 using PGD. (c) ImageNet using FGSM. (d) ImageNet using PGD 

Figure 7 summarizes the effectiveness of DA defense against FGSM and PGD 
attacks for different noise budgets (. ε). The approximate hardware prevents the 
attacker from generating efficient AE for deeper networks and complex data 
distribution. Even with a high amount of injected noise (.ε = 0.06), DA model 
accuracy remains as high as .90% under PGD attack.



On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 509

3.2.2 Undervolting as a Defense 

3.2.2.1 Approach 

This approach explores using voltage over-scaling (VOS) as a lightweight defense 
against adversarial attacks [31]. It consists of reducing supply voltage at runtime, 
i.e., inference, without accordingly scaling down the frequency (Fig. 8). This creates 
stochastic hardware-induced noise at computation circuitry that is leveraged to 
defend DNNs against adversarial attacks. The rationale behind choosing VOS is 
as follows: 

(i) Stochastic noise: The impact of injecting random noise on DNNs robustness 
has been proven theoretically in [23, 32]. However, none of these works 
provides a practical implementation of the randomness source, especially one 
that does not require high overhead and considerable complexity to cope with 
Embedded ML requirements. This approach leverages a fundamental property 
of VOS, which is a stochastic behavior of the induced timing violations within 
the circuit. 

(ii) Controllable noise magnitude: While injected random noise can be used to 
improve the robustness of DNNs [23], its magnitude should be under control. 
In fact, injecting high magnitude noise can have drastic impact on baseline 
accuracy. Nonetheless, VOS-induced noise magnitude is directly controllable 
by the supply voltage. 

3.2.2.2 Setup 

To match the fault rates with the voltage levels, we used a Xilinx Zynq Ultrascale. +
ZCU104 FPGA platform that hosts a VGG-16 CNN. The device’s Processing Sys-
tem (PS) includes a quad-core Arm Cortex-A53 applications processor (APU), as 
well as a dual-core Cortex-R5 real-time processor (RPU). We leveraged an external 
voltage controller, the Infineon USB005, to perform undervolting characterization 
on the FPGA device, which is connected to the board via an I2C wire. We can read 
and write the different voltage rail supplies to the board using PowerIRCenter GUI. 

3.2.2.3 Impact on Robustness 

Figure 9 shows the accuracy of the exact model and undervolted models for LeNet-
5, AlexNet, and ResNet-18 CNNs under .�∞ and . �2 C&W attack. While the baseline 
exact model (.hexact ) yields high classification accuracy, it drops drastically under 
.C&W attack reaching near 0 for .ε = 0.4. Most importantly, approximate model 
with a fault rate .f r = 10−4 maintains a high robustness (accuracy under attack) 
even for high magnitude . ε. This observation holds for AlexNet and ResNet-18 as 
well.
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Fig. 9 Robustness of VOS-models under C&W attack for both .�∞ (top) and . �2 (bottom) metrics 

While VOS offers a practical source of randomness that enhances DNNs 
robustness to adversarial attacks, it also comes with an obvious by-product gain 
in terms of power consumption, and offers an ad-hoc defense that does not require 
modifying the model or retraining it. 

Trade-off The results show that a VOS-induced noise protects DNNs against 
adversarial attacks. However, aggressive undervolting results in a drop in utility.
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Fig. 10 An illustration of the accuracy/robustness trade-off for AlexNet with CIFAR-10 on HSJ. 
In the figure, .f r = 0 indicates the exact model, . hexact

A trade-off between accuracy and robustness with by-product power savings could 
be found, to achieve high-robustness models without accuracy drop. An example of 
a robustness/accuracy trade-off is depicted in Fig. 10. Notice that . fr represent the 
fault rates, which are directly defined by the VOS level. The figure shows that with a 
simple space exploration, we can identify a sweet-spot for a given CNN that yields 
the highest possible robustness with the lowest possible accuracy drop. 

3.3 Privacy 

Confidentiality is a fundamental design property, especially for systems that process, 
store, or communicate private and sensitive data. In ML, insuring a model privacy 
consists in protecting the model against information leakage, whereby an adversary 
aims to infer sensitive information such as training data by interacting with the 
victim. In fact, the promising performance of ML systems spread their use to 
sensitive applications ranging from medical diagnosis in health-care to surveillance 
and biometrics. These models are trained on various data such as clinical/biomedical 
records, personal photos, genome data, financial, social, location traces, etc. More-
over, they are also trained with crowd-sourced data as cloud providers (e.g., Amazon 
AWS, Microsoft Azure, Google API) in a ML-as-a-Service fashion, which allow 
novice users to train models that often contains personally identifiable information. 

ML models are vulnerable to privacy threats, which are critical when data 
confidentiality is an issue, e.g., when revealing the identity of the patients in 
clinical records. Membership Inference Attacks [33] aim at determining whether 
a data sample belongs to the training dataset. More generically, Property Inference 
Attacks [34] infer certain properties that hold only for a fraction of the training data, 
and are independent from the features that the DNN model aims to learn. On the 
other hand, Model Stealing methods [35] aim at duplicating the functionality of the
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ML model and extract its parameters, and Model Inversion Attacks [36] aim to infer 
sensitive features of the training data. 

Towards avoiding these leakages of confidential information, several privacy-
preserving techniques can be employed. Homomorphic Encryption (HE) ensures 
that the data remains confidential, since the attacker does not have access to the 
decryption keys. CryptoNets [37] apply HE to perform DNN inference on encrypted 
data, and the work of [38] extends the encryption to the complete training process. 
However, HE-based techniques are very costly in terms of execution time and 
resources. 

Another state-of-the-art technique towards privacy-preserving ML is Differ-
ential Privacy (DP) which consists of injecting random noise to the stochastic 
gradient descent process (Noisy SGD) [39], or through Private Aggregation of 
Teacher Ensembles (PATE) [40], in which the knowledge learned by an ensemble of 
“teacher” models is transferred to a “student” model. While DP is one of the most 
efficient defenses against information leakage, it comes at a considerable cost in 
terms of utility, i.e., it results in a baseline accuracy drop. 

Training a deep neural network requires a large amount of data, which represents 
practically the most valuable asset in ML ecosystems. In some specific applications, 
data protected by privacy regulations and user level agreements. These can be 
specific to application domains such as HIPPA regulations in the US which prohibits 
patients’ data sharing and GDPR in Europe, which is more generic in regulating user 
data collection [41]. Therefore, in medical applications, a given health institution 
might not be able to collect enough data that is representative and relevant to train 
an efficient ML model. 

In another scenarios, data may be created on Edge devices, but owners are 
reluctant to sharing it due to privacy concerns (industrial applications, text messages, 
etc.), bandwidth challenges, or both. 

Federated learning (FL) recently emerged as a potential solution to overcome 
these aforementioned issues. Specifically, FL allows train ML models collabora-
tively between different nodes without sharing their local data [42]. FL allows 
multiple participants (also called clients) to train local models and then consolidate 
those models into a global model. This global model benefits from all client data, 
without directly sharing the data, preserving data privacy. Each client trains its 
model on its private data, and then communicates model updates to a central server 
(also called aggregator). By avoiding communicating the data to a central back end 
for training, this data remains local to each client and therefore private. Moreover, 
distributing the training leads to benefits in performance and network bandwidth. In 
an FL model, each participant updates the global model by training it on its local 
data and shares the metadata with a central server. Only the trained local model 
updates are shared, and the local data to each client remains private. The server 
aggregates the local model updates into a single federated model and shares this 
model with the participants, allowing them to benefit from a model trained on the 
overall data. The federated model can continue to be refined as more data becomes 
available. This process is illustrated in Fig. 11.
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Fig. 11 An overview on FL setting: Client devices send locally trained model updates to server 
for aggregation of the federated model 

While FL has been branded by major companies such as Google as a privacy-
preserving solution, it has been shown that it is vulnerable to several attacks that 
can jeopardize its and confidentiality: 

Model Poisoning and Data Poisoning Each of the clients in FL setting is able to 
arbitrarily change its local model maliciously that they send to server. The model 
can be manipulated either directly through its parameters or indirectly by poisoning 
the local training set to degrade the quality of the aggregated model making it 
misclassify more often, or be more susceptible to adversarial inputs. In model 
poisoning, a malicious client attempts to change the global model by poisoning 
their local model parameters directly [43]. In contrast, in data poisoning, the attacker 
manipulates its local training samples, affecting the model’s performance indirectly 
throughout a substantial portion of the input space [44]. 

Deep Leakage from Gradients With access to the gradient of a particular client, 
an adversary is able reconstruct the training samples of the client. In fact, attacks 
like Deep Leakage from gradient (DLG) [45] and iDLG [46] show the possibility to 
reconstruct training data samples from raw gradients only. The recovered images 
are pixel wise accurate, and generated through an optimization problem aiming at 
reducing the difference between the gradient of a given candidate input and the real 
gradient. 

Defenses and Limits Differential Privacy has been used as a defense against data 
leakage [39]. However, it does not protect against poisoning attacks. Moreover, 
secure aggregation techniques such as [47] aim at preventing the server from 
accessing the individual model updates, while allowing the aggregation operation.
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However, this defense results by construction in an impossibility to detect integrity 
attacks. 

To defend against integrity attacks, and limit the influence of individual partic-
ipants, robust aggregation techniques have been proposed (also called Byzantine-
tolerant aggregation) [48, 49]. 

Fairness FL approach is designed under the assumption of non-iid data. The 
incentive of participants to share their model updates generated on local data is to 
enhance the model accuracy, specifically on their own data distribution. However, 
robust aggregation techniques consider the tail of the gradient updates distribution 
as a potential integrity attack and cuts it off in the aggregation phase. Therefore, 
users with “atypical” data, i.e., in the tail of the overall users data distribution will 
not benefit from the FL setting since their contributions are discarded by the robust 
aggregation mechanism [50]. This results in a fairness problem: users with minority 
and atypical data distributions will be disadvantaged by the FL setting. 

Open Problems FL offers an interesting solution towards privately sharing 
“knowledge representations” without necessarily sharing raw data, which allows 
to train more generalizing and efficient models. However, a three objectives that 
are necessary for FL deployment seem to be difficult to obtain simultaneously, 
i.e., privacy, integrity, and fairness. In fact, secure aggregation techniques solve the 
privacy problem and open an attack surface on the model integrity. On the other 
hand, tackling the integrity problem with robust aggregation schemes results in the 
loss of the global model fairness. 

We believe that a fundamental problem to solve by the community is finding 
interesting and adaptive trade-off between these three objectives. 

4 Conclusion 

This chapter focuses on three aspects of ML trustworthiness, especially in the 
context of embedded systems and the Edge: 

(i) The first is ML models robustness to errors, either due to hardware reliability 
issues or deliberately injected by malicious actors. 

(ii) The second aspect is the security of ML models, especially from an adversarial 
ML perspective. More specifically, we explored defense techniques that are 
Embedded Systems-friendly, i.e., that do not result in a high overhead in power 
consumption or hardware resources. 

(iii) The third is the privacy problem, where we focused on federated learning as 
an emerging training paradigm that is compatible with Embedded Systems and 
IoT applications.
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