
On the Challenge of Hardware Errors,
Adversarial Attacks and Privacy Leakage
for Embedded Machine Learning

Ihsen Alouani

1 Introduction

Due to the recent breakthroughs in deep neural networks (DNNs) design and train-
ing, DL architectures are currently deployed to solving mainstream applications,
along with industrial and critical applications: going from intelligent transportation
systems [1–3], natural language processing [4], robotics [5], and healthcare [6].
This is in part owing to the VLSI technology progress, the new high-performance
communication systems and the development of IoT devices. More specifically, this
trend results in the generation of abundant amounts of data from different embedded
sensors and IT systems, which are necessary for training accurate DNN models.

Given the computing-intensive aspect of DNNs, the by-default deployment of
deep models is in Cloud data-centers or private data-centers. However, there are
practical limits and drawbacks of such systems at least from 2 perspectives:

(i) First, from resource and power consumption and consequently environmental
impact perspective, this scheme has considerable overheads.

(ii) Second, from a communication perspective, such a deployment scheme
requires sending raw data from sensors to the servers all through wireless
and wired communication platforms.

The downside of this scheme is that data-centers are power-hungry platforms;
they are estimated to account for around .1% of worldwide electricity use with high
environmental impact [7]. These trends motivate a ML computing paradigm that
overcomes these issues. Specifically, a more distributed deployment of ML at the
Edge emerged as a promising paradigm towards power-efficient near-sensor intel-
ligent systems. While Embedded and Edge ML offers promising power/accuracy

I. Alouani (�)
Centre for Secure Information Technologies (CSIT), Queen’s University Belfast, Belfast, UK
e-mail: i.alouani@qub.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_19

497

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845 a

mailto:i.alouani@qub.ac.uk
mailto:i.alouani@qub.ac.uk
mailto:i.alouani@qub.ac.uk
mailto:i.alouani@qub.ac.uk
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19

498 I. Alouani

trade-off and enhances the mainstream development of ML models towards sustain-
able and smart systems and cities, several problems still limit ML trustworthiness.

In this chapter, we focus on three aspects of ML trustworthiness, namely
Robustness to errors, security, and privacy.

2 ML Robustness to Errors

In a context of performance-driven design requirements, new hardware generations
continuously shrink transistors dimensions, thereby increasing circuits sensitivity to
external events which can negatively affect their reliability. There are two scenarios
in which errors occur in modern embedded systems:

• Deliberate fault injection attacks such as Rowhammer [8]. Intentional attacks are
another potential source of faults. The widespread usage of CNNs led to the
development of sophisticated attacks. Malicious users could intentionally tamper
with the parameters of the model [9].

• Reliability-related events such as soft errors either in memories, i.e., Single Event
Upsets (SEU) or in combinatorial circuits, i.e., Single Event Transients (SET).
These events are typically caused by high energy particles striking electronic
devices.

These errors can propagate through the neural network to create accuracy loss,
and potentially global system failures that can be safety-critical or security sensitive
in some cases.

In this section, we provide an exploratory analysis of DNNs vulnerability to
errors.

2.1 Methodology

In most embedded ML accelerators, the model parameters are stored on-board. A
memory corruption has a persistent and, hence, cumulative aspect and will remain
until a new model is trained and implemented.

To reproduce models behavior under this threat, we simulate memory corruptions
by injecting a number of bit-flips in random parameters of a model at runtime
(inference). We subsequently evaluate the model robustness for different error rates
and locations (Fig. 1).

We consider two data representations:

• IEEE-754 single-precision 32-bit float: This is the standard representation
format for real numbers. It is the dominant representation in CPU and GPU
architectures. For simplicity we refer to this representation as . F in the rest of
the chapter. are composed of three parts: a sign, an exponent and a fraction part
(see Fig. 2). The normalized format of IEEE-754 floating point is expressed as
follows:

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 499

Input

Output

Select
position

Flip bitDone?

Select
one bit

Error injection method

Yes

No

Fig. 1 Overview of the fault injection methodology

1 0 0 1 0 1 1 0 0 1…

Fractional
Integer

sign

(a)

0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0...

sign exponent fraction

31 30 23 22 0

= 0.156

8 bits 23 bits

(b)

Fig. 2 Fixed-point representation in (a) with a bit-width of 8 and a fractional length of 2 (left) and
.−2 (right). On (b) the standard IEEE-754 representation of 32 bit floating-point values

.val = (−1)sign × 2exp−bias × (1.f raction) (1)

• Fixed-point representation: This representation uses two parameters: bit-width
and fractional length. Negative fractional lengths can be used to represent
powers of two. This representation is referred to as . Q (for quantized) in the
rest of the chapter.

To evaluate the robustness of a given model to faults, we create a fault injection
framework that takes a trained network as an input. While testing the model at
inference time, bit-flips are injected in the network’s weights with a tunable injection
rate. After each test, we report the overall accuracy under fault injection.

These tests are repeated 100 times for a statistically representative experiment. In
each run, the engine generates a new set of errors and the injection of the generated
errors is performed each run. We then report the accuracy distribution, i.e., the

500 I. Alouani

average accuracy, the maximum, the minimum, and the standard deviation for the
test.

2.2 Results

The results were obtained on weights in single-precision floating point compara-
tively with quantized weights in terms of classification accuracy of the different
networks. The results of different runs are presented as the mean and the standard
deviation of the top-1 accuracy.

Figure 3 illustrates the result of comparing the floating-point and quantized
representations. The results show that quantized models are surprisingly more
robust to fault injection than the full precision models, which has been consistently
observed for 4 different CNNs with different fault injection rates. We believe that
the reason behind this observation is the error distance after injection denoted by
. A in [10]. For instance, the . Q representation with 7 decimal bits and 1 integer bit
will differ from the original value by at most . ±1. However, for the full precision
representation, the error distance on activation can reach .3 × 1038 as observed in
[10]. Therefore, since floating-point numbers are more sensitive to bit-flips than
fixed-point representation, quantized networks tend to show higher robustness to
errors, in addition to the area and power consumption gains.

0 100 200 300 400 500
Number of injected errors

0

200

400

600

800

A
cc
ur
ac
y
(c
or
re
ct
 p
re
di
ct
io
ns
)

Alexnet

Q accuracy distribution (μ, σ)
F Accuracy distribution (μ, σ)

0 100 200 300 400 500
Number of injected errors

0

200

400

600

800

A
cc
ur
ac
y
(c
or
re
ct
 p
re
di
ct
io
ns
)

Vgg16

Q accuracy distribution (μ, σ)
F Accuracy distribution (μ, σ)

0 100 200 300 400 500
Number of injected errors

0

200

400

600

800

A
cc
ur
ac
y
(c
or
re
ct
 p
re
di
ct
io
ns
)

Googlenet

Q accuracy distribution (μ, σ)
F Accuracy distribution (μ, σ)

0 100 200 300 400 500
Number of injected errors

0

200

400

600

800

A
cc
ur
ac
y
(c
or
re
ct
 p
re
di
ct
io
ns
)

Squeezenet

Q accuracy distribution (μ, σ)
F Accuracy distribution (μ, σ)

Fig. 3 Models accuracy under fault injection for weights representation with 8-bit fixed point (. Q)
and 32-bit single-precision IEEE-754 (. F)

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 501

3 ML Security

ML systems have been deployed in a variety of application domains, including
security-sensitive and safety-critical applications [11]. However, ML models have
been shown vulnerable to several security threats, including adversarial examples,
which consist of additive noise carefully crafted to fool ML models.

3.1 Adversarial Attacks

Adversarial examples are additive perturbations to an input that are carefully crafted
by an adversary to deceive the model and force it to output a wrong label. If
adversaries succeed in manipulating the decisions of a ML classifier to their advan-
tage, this can tamper with the security and integrity of the system, and potentially
threaten the safety of people in some applications like autonomous vehicles. For
example, adding adversarial noise to a stop sign that leads an autonomous car to
wrongly classify it as a speed limit sign can lead to crashes and loss of life. In fact,
adversarial examples have been shown effective under real-world settings [12–14]:
that when printed out, an adversarially crafted image can fool the classifiers even
under different lighting conditions and orientations. Therefore, understanding and
mitigating these attacks is essential to developing safe and trustworthy intelligent
systems.

Attacker Knowledge When attacking a DNN-based model, we can distinguish
two main attack scenarios based on attacker knowledge:

(i) Black-box setting: the adversary has partial or no access to the victim
model’s architecture and parameters. The adversary uses the results of
querying the victim to reverse engineer the classifier and create a substitute
model used to generate the adversarial examples. An illustration of this
scenario is given by Fig. 4.

(ii) White-box setting: in which the adversary has complete knowledge of
the training data of the victim model in addition to the target model’s
architecture and parameters. An illustration of this scenario is given by
Fig. 5. (FGSM) [15] attack, Projected gradient descent (PGD) [16] attack,
Carlini & Wagnar (C&W) [17] are the main white-box adversarial attacks.

The attacker intention is to slightly modify the source image so that it is classified
incorrectly by the target model, without special preference towards any particular
output which is known as untargeted attack. However, in a targeted attack, the
attacker aims at a specified wrong target class.

Minimizing Injected Noise An adversary, using information learned about the
classifier, generates perturbations to cause incorrect classification under the con-
straint of minimizing this perturbation magnitude to avoid detection. For illustration

502 I. Alouani

Fig. 4 Illustration of a black-box attack setting

purposes, consider a CNN used for image classification. More formally, given an
original input image x and a target classification model .f () s.t. f (x) = l, the
problem of generating an adversarial example . x∗ can be formulated as a constrained
optimization [17]:

.x
∗ = arg min

x∗
D(x, x∗), s.t. f (x∗) = l∗, l �= l∗ (2)

where . D is the distance metric used to quantify the similarity between two images
and the goal of the optimization is to minimize this added noise, typically to avoid
detection of the adversarial perturbations. l and . l∗ are the two labels of x and . x∗,
respectively: . x∗ is considered as an adversarial example if and only if the label
of the two images are different (.f (x) �= f (x∗)) and the added noise is bounded
(.D(x, x∗) < ε where .ε � 0).

Distance Metrics The adversarial perturbations should be visually imperceptible
by a human eye. Since it is hard to model humans’ perception, three metrics have
been practically used to measure the noise magnitude relatively to a given input,
namely . L0, . L2, and .L∞ [17]. Notice that these three metrics are special cases of the
. Lp norm defined as follows:

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 503

Fig. 5 Illustration of a white-box attack setting

. ‖x‖p =
(

n∑
i=1

|xi |p
) 1

p

(3)

These metrics focus on different aspects of visual significance. For example, . L0
evaluates the number of pixels with different values at corresponding positions in
two inputs. . L2 is the Euclidean distance between two images x and . x∗, while .L∞ is
the maximum difference for all pixels at corresponding positions in the two images.

Adversarial Attacks Generation Several methods have been proposed in the
literature to generate adversarial examples. In the following we give a quick
overview on the most popular ones:

Fast Gradient Sign Method (FGSM) FGSM is a single-step, gradient-based, attack.
An adversarial example is generated by calculating a one-step gradient update
following the direction of the sign of the loss gradient over the input, which is the
direction that maximizes the target model’s loss:

.xadv = x + εsign(∇xJθ (x, y)) (4)

504 I. Alouani

where .∇J () is the gradient of the loss function J and . θ is the set of model
parameters and . ε is the perturbation magnitude budget.

Projected Gradient Descent (PGD) PGD is a more efficient attack generation
method; it is an iterative variant of FGSM where the adversarial noise is generated
adaptively as follows:

.xt+1
adv = PSx

(xt
adv + α · sign(∇xLθ (x

t
adv, y))) (5)

where .PSx
() is a projection operator projecting the input into the feasible region . Sx

and . α is the added noise at each iteration. PGD find the perturbation that maximizes
the loss of a model on a particular input while keeping the size of the perturbation
lower than the budget due to the projection operator.

Carlini & Wagner (.C&W) This attack has 3 variants based on the used distance
metric (.l0, l2, l∞). It generates adversarial examples by solving the following
optimization problem:

minimize
δ

‖δ‖2 + c · l(x + δ)

s.t. x + δ ∈ [0, 1]n
(6)

where .‖δ‖2 is the lowest noise that forces the model to misclassify. .l(·) is the loss
function defined as follows:

.l(x) = max(maxi �=t {Z(x)i} − Z(x)t − κ) (7)

where .Z(x) is the output of the layer before the softmax called logits. t is the
target label, and . κ is the attack confidence. An adversarial example is considered
as successful if .maxi �=t {Z(x)i} − Z(x)t ≤ 0.

3.1.1 Defenses Against Adversarial Attacks

To protect ML models against adversarial attacks, several defense techniques can
be found in the literature. We briefly introduce the different categories and provide
insights from Embedded Systems perspective.

Adversarial Training (AT) AT is one of the most efficient state-of-the-art defense
methods against adversarial attacks whose aim is to integrate the adversarial noise
within the training process. It can be formulated as follows [16]:

. min
θ

E(x,y)∼D
[

max
δ∈B(x,ε)

Lce(θ, x + δ, y)

]
(8)

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 505

where . θ indicates the parameters of the classifier, .Lce is the cross-entropy loss,
.(x, y) ∼ D represents the training data sampled from a distribution . D, and
.B(x, ε) is the allowed perturbation set. In this formulation, the inner maximization
problem’s objective is to explore the “adversarial surrounding” of a given training
point and to take into account, not only the sample but also the worst-case noise
from an adversarial perspective. The outer minimization problem is the conventional
training aiming at minimizing the loss function (which includes adversarial noise)
[16].

Nonetheless, the drawback of AT is its significant computational intensivity
compared to the baseline training process. This is obviously due to the nested
optimization problems in the formulation that need to be solved iteratively.

Input Pre-processing (IP) Input pre-processing is based on applying transforma-
tions to the input in order to remove adversarial perturbations [18, 19]. Transfor-
mations include the averaging, median, and Gaussian low-pass filters [19], as well
as JPEG compression [20]. However, it has been shown that these defenses are
vulnerable to white-box attacks [21]; in a white-box setting, where the adversary
is aware of the defense, they can integrate the pre-processing function in the noise
generation process. Furthermore, pre-processing requires computation overheads
which is not suitable for resource-constrained devices such as Embedded Systems.

Gradient Masking (GM) GM leverages regularization to make the model’s output
less sensitive to input perturbations. Papernot et al. presented defensive distilla-
tion [22]. Nonetheless, this method is vulnerable to .C&W attack [17]. Besides, GM
techniques such as defensive distillation require a retraining process which results
in time and energy overheads.

Randomization-Based Defenses These techniques leverage randomness to protect
systems from adversarial noise. Lecuyer et al. [23] propose that random noise
be added to the first layer of the DNN and the output be estimated via a Monte
Carlo simulation. Raghunathan et al. [24] evaluate only a tiny neural network.
Estimating the model output requires a heavy Monte Carlo simulation with a number
of different model inference runs online, which cannot be afforded under resource
constraints.

These defense strategies either require changing the DNN structure, modifying
the training process or retrain the model only against known adversarial threats,
which results in considerable overheads in time, resource utilization and energy
consumption. In the following, we present defense strategies that take into account
this aspect, which we call Embedded Systems-friendly defenses.

506 I. Alouani

3.2 Embedded Systems-Friendly Defenses

Another set of defense techniques are inspired by hardware-efficiency techniques
such quantization [25, 26]. The authors in [27] proposed Defensive approximation
(DA), which leverages approximate computing (AC) to build robust models.

3.2.1 Defensive Approximation

The demand on high-performance embedded and mobile devices has been dras-
tically increasing in the past decades. However, the technology is physically
reaching the end of Moore’s law, especially with the release of TSMC and
Samsung 5 nm technology [28]. On the other hand, we observe that highly accurate
computations might not be a must in all application domains. In fact, in a wide
range of emerging applications, there is no specific accuracy requirements at
the computing-element level, but rather a quality-of-service requirements on the
system level. These application are inherently fault-tolerant by design and can
relax the computational accuracy constraint. This observation has motivated the
development of approximate computing (AC), a computing paradigm that trades
power consumption with accuracy. The idea is to implement inexact/approximate
elements that consume less energy, as far as the overall application tolerates the
imprecision level in computation. This paradigm has been shown promising for
inherently fault-tolerant applications such as deep learning, data analytics, and
image/video/signal processing. Several AC techniques have been proposed in the
literature and can be classified into three main categories based on the computing
stack layer they target: software, architecture, and circuit level [29, 30].

Defensive approximation [27] tackles the problem of robustness to adversarial
attacks from a new perspective, i.e., approximation in the underlying hardware,
and leverages AC to secure DNNs. Specifically, at the lowest level, DA replaces
exact conventional multipliers used in the convolution operations by an approximate
multipliers. These approximate multiplier can generate inaccurate outputs, but the
error distance needs to be under control. For this reason, the approximation occurs
specifically in the mantissa multiplication, exclusively, to avoid high magnitude
noise in the case of errors in the exponent or the sign bit of floating-point numbers.
Subsequently, the convolution layers are built based on the approximate multipliers,
which injects AC-induced noise within model layers. This noise is leveraged to
protect DNNs against adversarial attacks. Moreover, in addition to the by-product
gains in resources due to AC, this defense requires no retraining or fine-tuning of
the protected model.

DA targets both robustness and energy/resource challenges. In fact, DA exploits
the inherent fault tolerance of deep learning systems to provide resilience while also
obtaining by-product gains of AC in terms of energy and resources. The AC-induced
perturbations tend to help the classifier generalize and enhances its confidence and
consequently enhance the classifier’s robustness. Figure 6 gives an overview on DA

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 507

Fig. 6 Defensive approximation overview

mechanism within a CNN. It shows the distribution of the error distance due to
the approximate multiplier. This noise distribution propagates within the model and
impacts the features map, thereby defusing the adversarial noise mechanism. In the
following, we discuss the exploration of approximation space with regards to the
baseline accuracy of the models.

3.2.1.1 Baseline Accuracy

Before exploring the impact of AC on the security of DNNs, the protected model
needs to maintain models’ utility as a bottom line. For this reason, we explore
the impact of the approximate multiplier on the accuracy for different levels of
approximation, i.e., starting from approximating the full network, comparatively
with having increasing exact layers along with the approximate model. Table 1 gives
an overview on the utility as a function of the approximation level of the model for
CIFAR-10 and ImageNet datasets.

3.2.1.2 Impact on Robustness

To evaluate the impact of AC on robustness, we consider a powerful adversary that
has full access to the defense mechanism as well as the victim model architecture
and parameters. Hence, we measure the model accuracy under adversarial examples
created using different attacks for several noise budgets.

508 I. Alouani

Table 1 Impact of
approximation on model
classification accuracy for a
set of clean Inputs from
CIFAR-10 and ImageNet

Top 1 accuracy

Model CIFAR-10 ImageNet

Full exact model 100% 100%

Full approximate model 85.7% 73.23%

Exact: 1st conv layer 98.34% 97.18%

Exact: 2nd conv layer 93.4% 83.60%

Exact: 3rd conv layer 93.4% 83.60%

Exact: 1st FC layer 88.04% 75.4%

Exact: 2nd FC layer 88.04% 75.4%

Exact: 3rd FC layer 88.04% 75.4%

Exact: all FC layers 95% 78.87%

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05

Ac
cu

ra
cy

noise budget

Approximate model Exact model

(a)

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05

Ac
cu

ra
cy

noise budget

Approximate model Exact model

(b)

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05

Ac
cu

ra
cy

noise budget

Approximate model Exact model

(c)

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05

Ac
cu

ra
cy

noise budget

Approximate model Exact model

(d)

Fig. 7 Model accuracy for different noise budgets under white-box attack. (a) CIFAR-10 using
FGSM. (b) CIFAR-10 using PGD. (c) ImageNet using FGSM. (d) ImageNet using PGD

Figure 7 summarizes the effectiveness of DA defense against FGSM and PGD
attacks for different noise budgets (. ε). The approximate hardware prevents the
attacker from generating efficient AE for deeper networks and complex data
distribution. Even with a high amount of injected noise (.ε = 0.06), DA model
accuracy remains as high as .90% under PGD attack.

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 509

3.2.2 Undervolting as a Defense

3.2.2.1 Approach

This approach explores using voltage over-scaling (VOS) as a lightweight defense
against adversarial attacks [31]. It consists of reducing supply voltage at runtime,
i.e., inference, without accordingly scaling down the frequency (Fig. 8). This creates
stochastic hardware-induced noise at computation circuitry that is leveraged to
defend DNNs against adversarial attacks. The rationale behind choosing VOS is
as follows:

(i) Stochastic noise: The impact of injecting random noise on DNNs robustness
has been proven theoretically in [23, 32]. However, none of these works
provides a practical implementation of the randomness source, especially one
that does not require high overhead and considerable complexity to cope with
Embedded ML requirements. This approach leverages a fundamental property
of VOS, which is a stochastic behavior of the induced timing violations within
the circuit.

(ii) Controllable noise magnitude: While injected random noise can be used to
improve the robustness of DNNs [23], its magnitude should be under control.
In fact, injecting high magnitude noise can have drastic impact on baseline
accuracy. Nonetheless, VOS-induced noise magnitude is directly controllable
by the supply voltage.

3.2.2.2 Setup

To match the fault rates with the voltage levels, we used a Xilinx Zynq Ultrascale. +
ZCU104 FPGA platform that hosts a VGG-16 CNN. The device’s Processing Sys-
tem (PS) includes a quad-core Arm Cortex-A53 applications processor (APU), as
well as a dual-core Cortex-R5 real-time processor (RPU). We leveraged an external
voltage controller, the Infineon USB005, to perform undervolting characterization
on the FPGA device, which is connected to the board via an I2C wire. We can read
and write the different voltage rail supplies to the board using PowerIRCenter GUI.

3.2.2.3 Impact on Robustness

Figure 9 shows the accuracy of the exact model and undervolted models for LeNet-
5, AlexNet, and ResNet-18 CNNs under .�∞ and . �2 C&W attack. While the baseline
exact model (.hexact) yields high classification accuracy, it drops drastically under
.C&W attack reaching near 0 for .ε = 0.4. Most importantly, approximate model
with a fault rate .f r = 10−4 maintains a high robustness (accuracy under attack)
even for high magnitude . ε. This observation holds for AlexNet and ResNet-18 as
well.

510 I. Alouani

Dataset
preprocessing

Generate
adversarial sample

on eexactt model

Inference
on exactt model

Generate
adversarial sample
on approx.. model

Inference
on approx.. model

Adversarial
attack

VOS fault
injection

(e.g., 5%) (e.g., 86%)

Exact model:
Convention DNN model

Approx. model:
Convention DNN + VOS faults

Fig. 8 Experimental setup for undervolted models robustness

0.1 1 1.5 2 4 6 8 10
Attack noise budget,

0%
20%
40%
60%
80%
100%

Ac
cu
ra
cy

0.05 0.5 1 1.5 2 3 6 8
Attack noise budget,

0%
20%
40%
60%
80%
100%

Ac
cu
ra
cy

0.05 0.5 1 1.5 2 3 6 8
Attack noise budget,

0%
20%
40%
60%
80%
100%

Ac
cu
ra
cy

×10−1 ×10−2 ×10−2

(a) LeNet-5 with MNIST (b) AlexNet with CIFAR-10 (c) ResNet-18 with CIFAR-100

hexact happrox(fr = 10−6) happrox(fr = 10−5) happrox(fr = 10−4) happrox(fr = 10−3)

(a) LeNet-5 with MNIST
0%
20%
40%
60%
80%
100%

A
cc
ur
ac
y

0%

23.33%

82.51%

41.98%

6.05%

(b) AlexNet with CIFAR-10
0%
20%
40%
60%
80%
100%

A
cc
ur
ac
y

10.05% 14.72%

81.09%

24.76% 20.91%

(c) ResNet-18 with CIFAR-100
0%
20%
40%
60%
80%
100%

A
cc
ur
ac
y

10.38%
29.92%

66.04%

11.28% 8.51%

hexact happrox(fr = 10−6) happrox(fr = 10−5) happrox(fr = 10−4) happrox(fr = 10−3)

!

Fig. 9 Robustness of VOS-models under C&W attack for both .�∞ (top) and . �2 (bottom) metrics

While VOS offers a practical source of randomness that enhances DNNs
robustness to adversarial attacks, it also comes with an obvious by-product gain
in terms of power consumption, and offers an ad-hoc defense that does not require
modifying the model or retraining it.

Trade-off The results show that a VOS-induced noise protects DNNs against
adversarial attacks. However, aggressive undervolting results in a drop in utility.

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 511

fr=0 fr=10−6 fr=10−5 fr=10−4 fr=10−3

Computational fault rate, fr

0%
20%
40%
60%
80%
100%

Pe
rc
en
ta
ge

Sweet spot

Baseline accuracy Robustness on 2 HSJ Robustness on ∞ HSJ

Fig. 10 An illustration of the accuracy/robustness trade-off for AlexNet with CIFAR-10 on HSJ.
In the figure, .f r = 0 indicates the exact model, . hexact

A trade-off between accuracy and robustness with by-product power savings could
be found, to achieve high-robustness models without accuracy drop. An example of
a robustness/accuracy trade-off is depicted in Fig. 10. Notice that . fr represent the
fault rates, which are directly defined by the VOS level. The figure shows that with a
simple space exploration, we can identify a sweet-spot for a given CNN that yields
the highest possible robustness with the lowest possible accuracy drop.

3.3 Privacy

Confidentiality is a fundamental design property, especially for systems that process,
store, or communicate private and sensitive data. In ML, insuring a model privacy
consists in protecting the model against information leakage, whereby an adversary
aims to infer sensitive information such as training data by interacting with the
victim. In fact, the promising performance of ML systems spread their use to
sensitive applications ranging from medical diagnosis in health-care to surveillance
and biometrics. These models are trained on various data such as clinical/biomedical
records, personal photos, genome data, financial, social, location traces, etc. More-
over, they are also trained with crowd-sourced data as cloud providers (e.g., Amazon
AWS, Microsoft Azure, Google API) in a ML-as-a-Service fashion, which allow
novice users to train models that often contains personally identifiable information.

ML models are vulnerable to privacy threats, which are critical when data
confidentiality is an issue, e.g., when revealing the identity of the patients in
clinical records. Membership Inference Attacks [33] aim at determining whether
a data sample belongs to the training dataset. More generically, Property Inference
Attacks [34] infer certain properties that hold only for a fraction of the training data,
and are independent from the features that the DNN model aims to learn. On the
other hand, Model Stealing methods [35] aim at duplicating the functionality of the

512 I. Alouani

ML model and extract its parameters, and Model Inversion Attacks [36] aim to infer
sensitive features of the training data.

Towards avoiding these leakages of confidential information, several privacy-
preserving techniques can be employed. Homomorphic Encryption (HE) ensures
that the data remains confidential, since the attacker does not have access to the
decryption keys. CryptoNets [37] apply HE to perform DNN inference on encrypted
data, and the work of [38] extends the encryption to the complete training process.
However, HE-based techniques are very costly in terms of execution time and
resources.

Another state-of-the-art technique towards privacy-preserving ML is Differ-
ential Privacy (DP) which consists of injecting random noise to the stochastic
gradient descent process (Noisy SGD) [39], or through Private Aggregation of
Teacher Ensembles (PATE) [40], in which the knowledge learned by an ensemble of
“teacher” models is transferred to a “student” model. While DP is one of the most
efficient defenses against information leakage, it comes at a considerable cost in
terms of utility, i.e., it results in a baseline accuracy drop.

Training a deep neural network requires a large amount of data, which represents
practically the most valuable asset in ML ecosystems. In some specific applications,
data protected by privacy regulations and user level agreements. These can be
specific to application domains such as HIPPA regulations in the US which prohibits
patients’ data sharing and GDPR in Europe, which is more generic in regulating user
data collection [41]. Therefore, in medical applications, a given health institution
might not be able to collect enough data that is representative and relevant to train
an efficient ML model.

In another scenarios, data may be created on Edge devices, but owners are
reluctant to sharing it due to privacy concerns (industrial applications, text messages,
etc.), bandwidth challenges, or both.

Federated learning (FL) recently emerged as a potential solution to overcome
these aforementioned issues. Specifically, FL allows train ML models collabora-
tively between different nodes without sharing their local data [42]. FL allows
multiple participants (also called clients) to train local models and then consolidate
those models into a global model. This global model benefits from all client data,
without directly sharing the data, preserving data privacy. Each client trains its
model on its private data, and then communicates model updates to a central server
(also called aggregator). By avoiding communicating the data to a central back end
for training, this data remains local to each client and therefore private. Moreover,
distributing the training leads to benefits in performance and network bandwidth. In
an FL model, each participant updates the global model by training it on its local
data and shares the metadata with a central server. Only the trained local model
updates are shared, and the local data to each client remains private. The server
aggregates the local model updates into a single federated model and shares this
model with the participants, allowing them to benefit from a model trained on the
overall data. The federated model can continue to be refined as more data becomes
available. This process is illustrated in Fig. 11.

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 513

Fig. 11 An overview on FL setting: Client devices send locally trained model updates to server
for aggregation of the federated model

While FL has been branded by major companies such as Google as a privacy-
preserving solution, it has been shown that it is vulnerable to several attacks that
can jeopardize its and confidentiality:

Model Poisoning and Data Poisoning Each of the clients in FL setting is able to
arbitrarily change its local model maliciously that they send to server. The model
can be manipulated either directly through its parameters or indirectly by poisoning
the local training set to degrade the quality of the aggregated model making it
misclassify more often, or be more susceptible to adversarial inputs. In model
poisoning, a malicious client attempts to change the global model by poisoning
their local model parameters directly [43]. In contrast, in data poisoning, the attacker
manipulates its local training samples, affecting the model’s performance indirectly
throughout a substantial portion of the input space [44].

Deep Leakage from Gradients With access to the gradient of a particular client,
an adversary is able reconstruct the training samples of the client. In fact, attacks
like Deep Leakage from gradient (DLG) [45] and iDLG [46] show the possibility to
reconstruct training data samples from raw gradients only. The recovered images
are pixel wise accurate, and generated through an optimization problem aiming at
reducing the difference between the gradient of a given candidate input and the real
gradient.

Defenses and Limits Differential Privacy has been used as a defense against data
leakage [39]. However, it does not protect against poisoning attacks. Moreover,
secure aggregation techniques such as [47] aim at preventing the server from
accessing the individual model updates, while allowing the aggregation operation.

514 I. Alouani

However, this defense results by construction in an impossibility to detect integrity
attacks.

To defend against integrity attacks, and limit the influence of individual partic-
ipants, robust aggregation techniques have been proposed (also called Byzantine-
tolerant aggregation) [48, 49].

Fairness FL approach is designed under the assumption of non-iid data. The
incentive of participants to share their model updates generated on local data is to
enhance the model accuracy, specifically on their own data distribution. However,
robust aggregation techniques consider the tail of the gradient updates distribution
as a potential integrity attack and cuts it off in the aggregation phase. Therefore,
users with “atypical” data, i.e., in the tail of the overall users data distribution will
not benefit from the FL setting since their contributions are discarded by the robust
aggregation mechanism [50]. This results in a fairness problem: users with minority
and atypical data distributions will be disadvantaged by the FL setting.

Open Problems FL offers an interesting solution towards privately sharing
“knowledge representations” without necessarily sharing raw data, which allows
to train more generalizing and efficient models. However, a three objectives that
are necessary for FL deployment seem to be difficult to obtain simultaneously,
i.e., privacy, integrity, and fairness. In fact, secure aggregation techniques solve the
privacy problem and open an attack surface on the model integrity. On the other
hand, tackling the integrity problem with robust aggregation schemes results in the
loss of the global model fairness.

We believe that a fundamental problem to solve by the community is finding
interesting and adaptive trade-off between these three objectives.

4 Conclusion

This chapter focuses on three aspects of ML trustworthiness, especially in the
context of embedded systems and the Edge:

(i) The first is ML models robustness to errors, either due to hardware reliability
issues or deliberately injected by malicious actors.

(ii) The second aspect is the security of ML models, especially from an adversarial
ML perspective. More specifically, we explored defense techniques that are
Embedded Systems-friendly, i.e., that do not result in a high overhead in power
consumption or hardware resources.

(iii) The third is the privacy problem, where we focused on federated learning as
an emerging training paradigm that is compatible with Embedded Systems and
IoT applications.

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 515

References

1. Ben Khalifa, A., Alouani, I., Mahjoub, M.A., Rivenq, A.: A novel multi-view pedestrian
detection database for collaborative intelligent transportation systems. Fut. Gener. Comput.
Syst. 113, 506–527 (2020). https://doi.org/10.1016/j.future.2020.07.025

2. Jegham, I., Khalifa, A.B., Alouani, I., Mahjoub, M.A.: Soft spatial attention-based multimodal
driver action recognition using deep learning. IEEE Sensors J. 21(2), 1918–1925 (2021).
https://doi.org/10.1109/JSEN.2020.3019258

3. Al-Qizwini, M., Barjasteh, I., Al-Qassab, H., Radha, H.: Deep learning algorithm for
autonomous driving using GoogLenet. In: 2017 IEEE Intelligent Vehicles Symposium (IV),
pp. 89–96. IEEE, Piscataway (2017)

4. Deng, L., Liu, Y.: Springer, Berlin (2018)
5. Pierson, H.A., Gashler, M.S.: Deep learning in robotics: a review of recent research. Advanced

Robotics 31(16), 821–835 (2017)
6. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review,

opportunities and challenges. Briefings in bioinformatics 19(6), 1236–1246 (2018)
7. Masanet, E., Shehabi, A., Lei, N., Smith, S., Koomey, J.: Recalibrating global data center

energy-use estimates. Science 367(6481), 984–986 (2020). https://doi.org/10.1126/science.
aba3758

8. Kim, Y., Daly, R., Kim, J.S., Fallin, C., Lee, J., Lee, D., Wilkerson, C., Lai, K., Mutlu, O.:
Flipping bits in memory without accessing them: An experimental study of DRAM disturbance
errors. In: ACM/IEEE 41st International Symposium on Computer Architecture, ISCA 2014,
Minneapolis, pp. 361–372 (2014). https://doi.org/10.1109/ISCA.2014.6853210

9. Liu, Q., Liu, T., Liu, Z., Wang, Y., Jin, Y., Wen, W.: Security analysis and enhancement of
model compressed deep learning systems under adversarial attacks. In: Proceedings of the
23rd Asia and South Pacific Design Automation Conference. ASPDAC ’18, pp. 721–726. IEEE
Press, Piscataway (2018). http://dl.acm.org/citation.cfm?id=3201607.3201772

10. Neggaz, M.A., Alouani, I., Lorenzo, P.R., Niar, S.: A reliability study on CNNs for critical
embedded systems. In: 2018 IEEE 36th International Conference on Computer Design (ICCD),
pp. 476–479. IEEE (2018)

11. Neggaz, M.A., Alouani, I., Niar, S., Kurdahi, F.J.: Are CNNs reliable enough for critical
applications? An exploratory study. IEEE Des. Test 37(2), 76–83 (2020). https://doi.org/10.
1109/MDAT.2019.2952336

12. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno,
T., Song, D.: Robust physical-world attacks on deep learning visual classification. In: 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18–22, 2018, pp. 1625–1634. Computer Vision Foundation/IEEE Computer
Society (2018). https://doi.org/10.1109/CVPR.2018.00175

13. Man, Y., Li, M., Gerdes, R.M.: GhostImage: Remote perception attacks against camera-
based image classification systems. In: 23rd International Symposium on Research in Attacks,
Intrusions and Defenses, RAID 2020, San Sebastian, Spain, October 14–15, 2020, 317–332
(2020)

14. Tarchoun, B., Alouani, I., Ben Khalifa, A., Mahjoub, M.A.: Adversarial attacks in a multi-
view setting: An empirical study of the adversarial patches inter-view transferability. In: 2021
International Conference on Cyberworlds (CW), pp. 299–302 (2021). https://doi.org/10.1109/
CW52790.2021.00057

15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In:
Bengio, Y., LeCun, Y. (eds.): In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015)

16. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models
resistant to adversarial attacks. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings
(2018)

https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057

516 I. Alouani

17. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks. In: 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22–26, 2017,
pp. 39–57 (2017). https://doi.org/10.1109/SP.2017.49

18. Guesmi, A., Alouani, I., Baklouti, M., Frikha, T., Abid, M.: Sit: stochastic input transformation
to defend against adversarial attacks on deep neural networks. IEEE Design Test 1–1 (2021).
https://doi.org/10.1109/MDAT.2021.3077542

19. Osadchy, M., Hernandez-Castro, J., Gibson, S., Dunkelman, O., Pérez-Cabo, D.: No bot
expects the DeepCAPTCHA! Introducing immutable adversarial examples, with applications
to CAPTCHA generation. IEEE Trans. Inform. Forensics Secur. 12(11), 2640–2653 (2017)

20. Das, N., Shanbhogue, M., Chen, S.-T., Hohman, F., Chen, L., Kounavis, M.E., Chau,
D.H.: Keeping the Bad Guys Out: Protecting and Vaccinating Deep Learning with JPEG
Compression (2017)

21. Chen, J., Wu, X., Rastogi, V., Liang, Y., Jha, S.: Towards understanding limitations of pixel
discretization against adversarial attacks. In: 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 480–495. IEEE (2019)

22. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial
perturbations against deep neural networks. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 582–597 (2016). https://doi.org/10.1109/SP.2016.41

23. Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness to adversarial
examples with differential privacy. In: 2019 IEEE Symposium on Security and Privacy (SP),
pp. 656–672 (2019)

24. Raghunathan, A., Steinhardt, J., Liang, P.: Certified Defenses against Adversarial Examples
(2018)

25. Lin, J., Gan, C., Han, S.: Defensive quantization: when efficiency meets robustness. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6–9, 2019 (2019)

26. Khalid, F., Ali, H., Tariq, H., Hanif, M.A., Rehman, S., Ahmed, R., Shafique, M.: QuSecNets:
quantization-based defense mechanism for securing deep neural network against adversarial
attacks. In: 25th IEEE International Symposium on On-Line Testing and Robust System
Design, IOLTS 2019, Rhodes, Greece, July 1–3, 2019, 182–187 (2019). https://doi.org/10.
1109/IOLTS.2019.8854377

27. Guesmi, A., Alouani, I., Khasawneh, K.N., Baklouti, M., Frikha, T., Abid, M., Abu-Ghazaleh,
N.B.: Defensive approximation: securing CNNs using approximate computing. In: ASPLOS
’21: 26th ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Virtual Event, USA, April 19–23, 2021, pp. 990–1003 (2021).
https://doi.org/10.1145/3445814.3446747

28. Moore, S.K.: Another step toward the end of Moore’s law: Samsung and TSMC move to 5-
nanometer manufacturing—[news]. IEEE Spectr. 56(6), 9–10 (2019). https://doi.org/10.1109/
MSPEC.2019.8727133

29. Guesmi, A., Alouani, I., Baklouti, M., Frikha, T., Abid, M., Rivenq, A.: Heap: a heterogeneous
approximate floating-point multiplier for error tolerant applications. In: Proceedings of the
30th International Workshop on Rapid System Prototyping (RSP’19). RSP ’19, pp. 36–42.
Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3339985.
3358495

30. Alouani, I., Ahangari, H., Ozturk, O., Niar, S.: A novel heterogeneous approximate multiplier
for low power and high performance. IEEE Embedded Syst. Lett. 10(2), 45–48 (2018). https://
doi.org/10.1109/LES.2017.2778341

31. Islam, S., Alouani, I., Khasawneh, K.N.: Lower voltage for higher security: using voltage
overscaling to secure deep neural networks. In: 2021 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pp. 1–9 (2021). https://doi.org/10.1109/ICCAD51958.
2021.9643551

32. Cohen, J.M., Rosenfeld, E., Kolter, J.Z.: Certified adversarial robustness via randomized
smoothing. In: Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, vol. 97, pp. 1310–1320 (2019)

https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 517

33. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against
machine learning models. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22–26, 2017, pp. 3–18 (2017). https://doi.org/10.1109/SP.2017.41

34. Ganju, K., Wang, Q., Yang, W., Gunter, C.A., Borisov, N.: Property inference attacks on
fully connected neural networks using permutation invariant representations. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15–19, 2018, pp. 619–633 (2018). https://doi.org/10.
1145/3243734.3243834

35. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models
via prediction APIs. In: 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10–12, 2016, pp. 601–618 (2016)

36. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence infor-
mation and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12–16, 2015, pp. 1322–
1333 (2015). https://doi.org/10.1145/2810103.2813677

37. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: Cryp-
tonets: Applying neural networks to encrypted data with high throughput and accuracy. In:
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19–24, 2016, vol. 48, pp. 201–210 (2016)

38. Nandakumar, K., Ratha, N.K., Pankanti, S., Halevi, S.: Towards deep neural network training
on encrypted data. In: IEEE Conference on Computer Vision and Pattern Recognition
Workshops, CVPR Workshops 2019, Long Beach, CA, USA, June 16–20, 2019, pp. 40–48
(2019). https://doi.org/10.1109/CVPRW.2019.00011

39. Abadi, M., Chu, A., Goodfellow, I.J., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.:
Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October 24–28, 2016, pp. 308–
318 (2016). https://doi.org/10.1145/2976749.2978318

40. Papernot, N., Song, S., Mironov, I., Raghunathan, A., Talwar, K., Erlingsson, Ú.: Scalable
private learning with PATE. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings
(2018)

41. Annas, G.J., et al.: HIPAA regulations-a new era of medical-record privacy? N. Engl. J. Med.
348(15), 1486–1490 (2003)

42. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz, K.,
Charles, Z., Cormode, G., Cummings, R., et al.: Advances and open problems in federated
learning (2019). arXiv preprint arXiv:1912.04977

43. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated
learning. In: International Conference on Artificial Intelligence and Statistics, pp. 2938–2948.
PMLR (2020)

44. Jere, M.S., Farnan, T., Koushanfar, F.: A taxonomy of attacks on federated learning. IEEE
Secur. Privacy 19(2), 20–28 (2020)

45. Zhu, L., Han, S.: Deep Leakage from Gradients, pp. 17–31. Federated Learning (2020)
46. Zhao, B., Mopuri, K.R., Bilen, H.: iDLG: Improved deep leakage from gradients (2020). arXiv

preprint arXiv:2001.02610
47. Chen, Y., Su, L., Xu, J.: Distributed statistical machine learning in adversarial settings:

Byzantine gradient descent. Proc. ACM Meas. Anal. Comput. Syst. 1(2), 1–25 (2017)
48. Damaskinos, G., El-Mhamdi, E.-M., Guerraoui, R., Guirguis, A., Rouault, S.: AggregaThor:

byzantine machine learning via robust gradient aggregation. Proc. Mach. Learn. Syst. 1, 81–
106 (2019)

49. Rajput, S., Wang, H., Charles, Z., Papailiopoulos, D.: Detox: a redundancy-based framework
for faster and more robust gradient aggregation. In: Advances in Neural Information Processing
Systems, vol. 32 (2019)

50. Yu, T., Bagdasaryan, E., Shmatikov, V.: Salvaging federated learning by local adaptation
(2020). arXiv preprint arXiv:2002.04758

https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318

	On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage for Embedded Machine Learning
	1 Introduction
	2 ML Robustness to Errors
	2.1 Methodology
	2.2 Results

	3 ML Security
	3.1 Adversarial Attacks
	3.1.1 Defenses Against Adversarial Attacks

	3.2 Embedded Systems-Friendly Defenses
	3.2.1 Defensive Approximation
	3.2.2 Undervolting as a Defense

	3.3 Privacy

	4 Conclusion
	References

