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1 Introduction 

The use-cases of Machine Learning (ML) applications have been significantly 
growing in recent years. Among the ML models, Deep Neural Networks (DNNs), 
which stack several layers of neurons, have demonstrated to solve complex tasks 
with high accuracy. Capsule Networks (CapsNets) have established as prominent 
ML models due to their high learning capabilities. Moreover, Spiking Neural 
Networks (SNNs) emerged as biologically plausible models, in which their spike 
event-based communication provides energy-efficient capabilities to be employed 
in low-power and resource-constrained devices [9, 10]. 

On the other hand, ML systems are expected to be reliable against multiple 
security threats. Several studies highlighted that one of the most critical issues is 
represented by the adversarial attacks, i.e., small and imperceptible input perturba-
tions that cause misclassifications. Moreover, as highlighted in Fig. 1, also other ML 
vulnerabilities cause serious concerns questioning the deployment of ML models in 
safety-critical applications. Therefore, the ML community analyzed and proposed 
several attack methodologies and defensive countermeasures [77]. While the attacks 
and defenses for DNNs have been extensively studied, the security of advanced ML 
models such as CapsNets and SNNs is still in its emerging phase and needs more 
thorough investigations. 

After discussing the security challenges for ML systems and the taxonomy of 
adversarial ML, this chapter provides an overview of the security threats for DNNs, 
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CapsNets, and SNNs, focusing on recent advancements, current trends, and unique 
possibilities for specific ML models to enhance their robustness. 

2 Security Challenges for ML 

Recent works [14, 77, 78, 96] have shown that ML-based systems are vulnerable 
to different types of security and reliability threats (see Fig. 1), which can span 
from maliciously injected perturbations, such as adversarial attacks, hardware 
Trojans, or injected faults, to natural misfunctioning of the system, like permanent 
faults generated during chip fabrication, aging, and process variations. Moreover, 
the leakage of sensitive and confidential data, including the intellectual property 
of the ML model (e.g., architecture and parameters) and training dataset, have 
raised several privacy issues. While the adversarial ML issues will be extensively 
discussed in the rest of the chapter, this section briefly introduces the other types of 
vulnerabilities. 

2.1 ML Privacy 

Due to the massive performance and computational power of high-end GPU-HPC 
workstations, it is possible to conduct ML tasks using a massive amount of data on a 
large scale. If such data is collected from users’ private information, such as private 
images, interests, web searches, and clinical records, the ML deployment toolchain 
will have access to sensitive information that could potentially be mishandled. 
The privacy attacks for ML can be classified into two categories, namely Model 
Extraction Attacks and Model Inversion Attacks. While the former category aim 
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Fig. 1 Vulnerability threats for ML-based systems, their manifestation and impact on their 
functionality



Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 465

at extracting private information of the ML model (e.g., model parameter, model 
architecture), the latter threatens the sensitive features of the training data. 

• Model Extraction Attacks: The goal of the adversary is to duplicate the parameters 
and hyperparameters of the model to provide ML services, and to compromise 
the ML algorithms’ confidentiality and intellectual property of the service 
provider [87, 92]. 

• Model Inversion Attacks: The adversary aims to infer sensitive information from 
the training data. Membership inference attacks [81] can infer whether a sensitive 
record belongs to the training set when the ML model is overfitted, While Property 
Inference Attacks [19] infer specific properties that only hold for a fraction of the 
training data. 

There are currently four possible categories of techniques that can be applied to 
avoid these leakages of sensitive information: 

• Differential Privacy: The goal is to prevent the adversary from inferring whether a 
specific data was used to train the target model, such that the ML algorithm learns 
to extract features of the training data without disclosing sensitive information 
about individuals. The privacy is guaranteed through a randomization mechanism, 
which could be based on injecting noise into the stochastic gradient descent 
process (Noisy SGD [1]) or through the Private Aggregation of Teacher Ensem-
bles (PATE) method [65], in which a “student” model receives the knowledge 
transferred from an ensemble of “teacher” models. 

• Homomorphic Encryption: It is an encryption scheme .x → y, in which the 
ML computations are conducted on ciphertexts y, and the decrypted output in 
plaintext x matches the result that would have been computed without encryption. 
As long as the decryption key is unknown to the adversary, the data remains 
confidential. Since the Fully Homomorphic Encryption (FHE) system [20] dra-
matically increases the computational complexity of the ML algorithm, a partial 
homomorphic encryption system [63] which supports only certain operations in 
the ciphertext domain, such as additions or multiplications, is more suited for 
complex computations. In the context of ML, CryptoNets [21] performs DNN 
inference on encrypted data, while Nandakumar et al. [60] extends the encryption 
support to the whole training process. 

• Secure Multi-Party Computation: The basic idea consists of distributing the 
training/testing data across multiple servers and training/inferring the ML model 
together, while each server does not have access to the training/testing data of 
the other servers. Different privacy-preserving ML protocols have been proposed, 
including SecureML [59], MiniONN [44], DeepSecure [74], Gazelle [31], and 
SecureNN [91]. 

• Trusted Execution Environment: Additional hardware is used to create a secure 
and isolated computation environment in which the ML algorithms are exe-
cuted [47]. In this way, the e integrity and confidentiality of the data and codes 
loaded inside the protected regions are guaranteed.
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However, these privacy-preserving methods significantly increase the computa-
tional overhead and require customization for specific ML models at the software 
and hardware levels to improve the efficiency of computations. 

2.2 Fault Injection and Hardware Trojans on ML Systems 

Hardware-level security vulnerabilities for ML systems include fault injection 
techniques (e.g., bit-flips) and the injected hardware Trojans into ML accelerators. 
Generically speaking, an adversary can flip the bits of data stored into the SRAM 
and DRAM memory cells through laser injection [2] or Row-Hammer attacks [35]. 

• Fault Injection Attack Methodologies aim at finding the most sensitive locations in 
which to inject faults [45, 89]. The Bit-Flip Attack [72] finds the most vulnerable 
bits of the ML model parameters using a progressive bit search method, while the 
Practical Fault Attack [7] injects faults into ML activations. 

• Hardware Trojans are maliciously introduced hardware injected during chip 
fabrication that only activate when triggered. They represent serious threats when 
the hardware devices are manufactured in off-shore fabrication facilities, thus 
increasing the risk of facing untrusted supply chains. In the context of ML 
accelerators, Clements et al. [12] designed hardware Trojans for the ML activation 
function, and in NeuroAttack, the Trojan consists of flipping the values of certain 
bits of ML models. In both methods, the hardware Trojan is triggered by a 
carefully designed input pattern. 

The defensive countermeasures to mitigate against the above-discussed vulner-
abilities are based on improving the resiliency of ML accelerators and memory 
systems and detecting Trojans. 

• Fault tolerance methods, similarly to the soft error mitigation methodologies, 
aim at improving the resiliency of ML applications. Such defensive techniques 
are based on hardware redundancy [62], range restriction [11], or weight recon-
struction [40]. More specifically, the algorithm-based fault tolerance (ABFT) 
method [97] detects and corrects errors in the convolutional layers. 

• Trojan detection methods are based on runtime monitoring [18] of the ML  
accelerator. The operations executed in the hardware device are constantly 
monitored, and any eventual functionality violation due to an inserted hardware 
Trojan or other reasons can be immediately detected and notified. 

2.3 ML Systems Reliability Threats 

Unlike the vulnerability threats that are intentionally injected by malicious adver-
saries, ML systems are subjected to reliability threats that undermine their correct
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functionality. The continuous underscaling of the technology nodes in which the 
chips are fabricated has significantly increased the probability that hardware circuits 
are affected by permanent or transient faults and has accelerated the aging process. 

• Permanent Faults: These process variations represent imperfections that are 
generated during the fabrication of integrated circuits [71]. High rates of such 
process variations result in permanent faults, which dramatically decrease the 
yield of the wafer fabrication. 

• Transient Faults: Soft errors are bit-flips caused by high-energy particle strikes 
or induced by other radiation events [6]. They are categorized as transient errors 
since the faulty cells are not permanently damaged, but these faults vanish once 
new data is written into the same locations. 

• Aging: The electronic circuits gradually degrade over time [32], due to various 
physical phenomena, like Hot Carrier Injection (HCI), Bias Temperature Instabil-
ity (BTI), and Electromigration (EM). These effects can manifest as transistors’ 
threshold voltage increase, which causes timing errors and permanent faults over 
time. 

Conventional fault mitigation techniques such as Dual Modular Redundancy 
(DMR) [88], Triple Modular Redundancy (TMR) [48], and Error-Correcting Codes 
(ECC) [69] can be applied, but they incur huge overheads, which makes them 
impractical for ML applications. Therefore, ad-hoc cost-effective mitigation tech-
niques need to be applied. 

• Permanent faults mitigation: To mitigate permanent faults due to process varia-
tions in ML accelerators, different techniques have been proposed. Fault-Aware 
Training (FAT) and Fault-Aware Pruning (FAP) [95] incorporate the information 
of faults into the training process and bypass the faulty components. To avoid the 
re-training overhead, Fault-Aware Mapping techniques such as SalvageDNN [28] 
are based on mapping the least significant weights on the faulty units. 

• Soft error mitigation: To mitigate transient faults, generic fault-tolerant methods 
like Ranger [11] and ABFT [97] can be applied. Moreover, FT-ClipAct [30] uses  
clipped activation functions that are mapped into pre-specified values within a 
range that has the lowest impact on the output, and Sanity-Check [61] protects 
fully connected and convolutional layers of ML models employing spatial and 
temporal checksums that exploit the linearity property. 

• Aging mitigation: The effects of timing errors that occur in the computa-
tional units of ML accelerators can be mitigated with ThUnderVolt [94] and 
GreenTPU [64]. The NBTI aging of on-chip SRAM-based memory cells in ML 
accelerators is mitigated with the DNN-Life framework [29] that employs read 
and write transducers to balance the duty-cycle in each SRAM cell.
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3 Taxonomy of Adversarial ML 

Given an ML model M , an input x, and its output prediction label .ytrue, the goal of 
classical ML is to make a correct prediction, i.e., the predicted output . y = M(x)

is equal to .ytrue. On the contrary, an adversarial attack method aims at generating a 
misclassification by introducing a small noise . ε to the input, such that the adversarial 
example .x′ = x + ε is incorrectly classified (.M(x′) �= ytrue). Due to the wide 
variety of adversarial attack typologies and threat models, it is important to define a 
common taxonomy for their categorization. Towards this, we discuss four different 
features of adversarial attacks and their possible types. An overview of the taxonomy 
is shown in Fig. 2. 

• Attacker Knowledge: It refers to what is the threat model in which the adversary 
operates and what are the accessible data and features. In white-box attacks, the 
adversary has full knowledge about the ML model, its parameters, the training 
algorithm, and the training data. On the contrary, black-box attacks assume no 
knowledge about the ML model. Hence the adversary can only craft an adversarial 
example by sending a series of queries and analyzing the vulnerability based 
on the corresponding outputs. Moreover, in the literature, there exist different 
attacker knowledge assumption models referred to as grey-box attacks, in which 
the adversary knows more features than for black-box attacks, but does not have 
full access like under the white-box assumption. 
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Fig. 2 Categorization of different types of adversarial attack methods and their taxonomy
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• Adversarial Goal: It refers to the scope of the attack algorithm. If the goal is 
simply a misclassification, the attack is untargeted since any class different from 
the correct one can be the prediction of the adversarial example. On the other 
hand, in a targeted attack, the adversary produces adversarial examples that force 
the output of the ML model to predict a specific class. 

• Phase of ML Flow: It refers to the stage of the ML development in which the 
adversary operates. In training attacks, the adversary poisons the training data 
by injecting carefully designed samples to force the ML model to learn wrong 
features that can later be used to generate specific misclassifications. On the 
contrary, in evasion attacks that operate at the inference stage, the adversary tries 
to evade the system by crafting malicious samples that force the ML model to 
make false predictions. 

• Evaluation Metrics: It refers to the quantitative methods for measuring the 
strengths of the attacks, and easily accessible comparison metrics. To evaluate 
the robustness of the attack, the success rate measures the number of adversarial 
examples that are misclassified by the ML model. Since a well-designed attack 
needs to be imperceptible, i.e., hardly distinguishable from the original input 
by a human eye, the perturbation measures the distance between the adversarial 
example and the original (clean) input. 

4 Security for DNNs 

Due to their high accuracy on many tasks, DNNs are prime candidate algorithms to 
be applied to safety-critical applications. However, due to the security vulnerabilities 
that undermine their correct functionality, several defensive countermeasures need 
to be applied. An overview of adversarial attacks and defenses applied to the DNN 
design flow is shown in Fig. 3. 
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Fig. 3 Adversarial attacks and defenses applied in different stages of the DNN design flow
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4.1 Adversarial Attacks 

As previously discussed, the adversarial attacks can be categorized into different 
types based on the adversary’s knowledge, goal, and phase of the ML flow. Due to 
the mainstream usage of DNNs, several attack methodologies have been proposed. 
The following list discusses the most prominent ones: 

• Poisoning Attacks: At the training stage, the training data can be poisoned with 
contaminated inputs. Based on the principles of Genetic Adversarial Networks 
(GANs), Goodfellow et al. [22] devised a procedure to generate samples similar to 
the training set, having almost identical distribution. This method inspired many 
of the successive adversarial attack methodologies. Poisoning Attacks [76] alter 
the training dataset to modify the decision boundaries of the DNN classifiers. 
Backdoor Attacks [24] aim at training the DNN for a carefully crafted noise 
pattern (acting as a backdoor) while maintaining high accuracy on its intended 
task. However, when such a backdoor trigger is present at the input of the DNN, 
a targeted misclassification is achieved. 

• Evasion Attacks: Different evasion attack methodologies were proposed. In 
white-box settings, gradient-based attacks like the Fast Gradient Sign Method 
(FGSM) [23] and its iterative version, the Projected Gradient Descent (PGD) [50] 
exploit the gradient of the DNN output predictions w.r.t. the inputs to craft the 
adversarial perturbations as imperceptible noise that make the DNN classifier 
cross the decision boundary. In black-box settings, the One Pixel Attack [85] 
demonstrated to misclassify DNN models by changing only one pixel intensity. 
fakeWeather attacks [55] emulate the effect of atmospheric conditions to fool 
DNNs. Decision-based attacks [8] are a subset of evasion attacks in which 
the adversary does not have access to the output probabilities but only to the 
prediction. For instance, the FaDec attack [34] jointly optimizes the number of 
queries and the perturbation distance between the adversarial example and the 
clean example to fool DNNs. 

• Attacks in the Physical World: While the aforementioned attacks mainly make 
modifications in the experimental settings, the adversarial attacks can also be 
applied in real life by introducing physical modifications [38]. Examples of phys-
ical world attacks have been showcased in the context of road sign classification 
by adding stickers [17], in the context of object detection by adding adversarial 
patches [86], or in face detection using eyeglasses with special frames [79]. 

4.2 Adversarial Defenses 

The large variety of adversarial attacks led to the design of several types of defenses, 
which can be summarized and grouped into the following categories:
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• Poisoning Defenses: To mitigate against poisoning attacks, several defensive 
countermeasures have been proposed. Outlier detection-based defenses [67] filter 
out training sample outliers, which most likely correspond to poisoned samples. 
Since typically backdoor attacks exploit the sparsity of DNNs, the Fine-Pruning 
method [46] defends against backdoor attacks by eliminating the neurons that are 
dormant for clean inputs in the backdoor network. 

• Data Augmentation: The basic principle of Adversarial Training [50] is to extend 
the training example with the adversarial examples, for instance, generated with 
the PGD attack. In this way, the DNN models achieve higher robustness against 
such perturbations. This method is considered very effective to defend against 
adversarial attacks, but its high computation overhead pushes the community to 
search for efficient optimizations of this procedure. 

• Quantization: The optimization techniques employed to improve the energy -
efficiency of DNNs can also achieve higher robustness against adversarial attacks. 
The Defensive Quantization method [42] demonstrated that the adversarial noise 
magnitude remains contained in quantized DNNs. The QuSecNets method [33] 
selects the quantization levels based on the DNN resilience and computes the 
appropriate quantization threshold values based on an optimization function. 
Other approaches, such as Defensive Approximation [27] are promising, but the 
work of Siddique et al. [83] demonstrated that approximate computing cannot be 
referred to as a universal defense technique against adversarial attacks. 

• Pre-Processing Filters: Another common technique to improve the DNN robust-
ness against adversarial attacks is to employ pre-processing filters. The basic idea 
of this approach is to view the adversarial perturbation as a noise added to the 
input, which can be filtered out at runtime. Methods based on Sobel filters [3] 
and randomized smoothing [13] demonstrated that the pre-processing filters have 
a smoothing effect and significantly reduce the adversarial success rate. 

5 Security for Capsule Networks 

CapsNets have emerged as efficient ML models which encode hierarchical informa-
tion of the features through multi-dimensional capsules [75]. Based on the principle 
of inverse graphics, the CapsNets from the image pixels encode the pose of low-
level features, and from these low-level features encode the higher-level entities. 
Moreover, to overcome the translation-invariance issue that affects traditional 
DNNs, the max-pooling layers are replaced by the iterative dynamic routing-by-
agreement algorithm, which determines the values of the coupling coefficients 
between low-level capsules and higher-level capsules at runtime. Therefore, it is key 
to analyze the security vulnerabilities of CapsNets and compare their robustness to 
the traditional DNNs.
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5.1 Robustness Against Affine Transformations 

Before studying the vulnerability of CapsNets under adversarial examples, their 
robustness against affine transformation is studied [51]. This analysis is key 
to determining how affine transformations, which are perceptible yet plausible 
perturbations appearing in the real world, can or cannot fool the networks under 
investigation. We apply three different types of transformations, which are rotation, 
shift, and zoom, on the images of the GTSRB dataset [84]. For the evaluation, 
we compare the CapsNet model [36] with a 9-layer VGGNet [93] and a 5-layer 
LeNet [39]. 

Figure 4 shows some examples of affine transformations applied to the images 
of the GTSRB dataset. Both the CapsNet and the VGGNet can be fooled by some 
affine transformations, like zoom or shift, while the prediction confidence of the 
CapsNet is lower. Moreover, as expected, the LeNet is more vulnerable to this kind 
of transformations due to its lower number of layers and parameters compared to the 
VGGNet. The CapsNet, on the other hand, is able to overcome a lower complexity 
than the VGGNet in terms of the number of layers and parameters. Indeed, as 
noticed in the example of the STOP image rotated by 30. ◦, the confidence is lower, 
but both the CapsNet and the VGGNet are able to classify it correctly, while the 
LeNet is fooled. 

Original Rotated by 10° Shi�ed by (2,2) Zoomed by 1.5× Rotated by 30° Shi�ed by (-4,-4) Zoomed by 0.8× 

Original Rotated by 10° Shi�ed by (2,2) Zoomed by 1.5× Rotated by 30° Shi�ed by (-4,-4) Zoomed by 0.8× 

CapsNet 
Predic�on STOP STOP STOP ROAD WORK STOP YELD STOP 

Probability 0.057 0.056 0.050 0.026 0.032 0.037 0.054 

VGGNet 
Predic�on STOP STOP STOP GENERAL CAUTION STOP YIELD STOP 

Probability 1.000 0.999 0.999 0.735 0.747 0.900 0.999 

LeNet 
Predic�on STOP STOP STOP YIELD GO STRAIGHT OR LEFT YIELD STOP 

Probability 0.999 0.999 0.984 0.574 0.668 0.999 0.989 

CapsNet 
Predic�on SPEED LIMIT 30 SPEED LIMIT 30 SPEED LIMIT 30 BYCICLES CROSSING KEEP RIGHT TRAFFIC SIGNALS SPEED LIMIT 30 

Probability 0.056 0.055 0.045 0.032 0.027 0.024 0.058 

VGGNet 
Predic�on SPEED LIMIT 30 SPEED LIMIT 30 SPEED LIMIT 30 ROUNDABOUT MANDATORY SPEED LIMIT 50 SPEED LIMIT 30 SPEED LIMIT 30 

Probability 1.000 1.000 1.000 0.629 0.433 0.870 1.000 

LeNet 
Predic�on SPEED LIMIT 30 SPEED LIMIT 30 SPEED LIMIT 30 ROUNDABOUT MANDATORY SPEED LIMIT 50 SPEED LIMIT 50 SPEED LIMIT 30 

Probability 1.000 1.000 0.999 0.830 0.999 0.440 0.999 

Fig. 4 Predicted classes and their probability associated with the prediction confidence, com-
paring the CapsNet, VGGNet, and LeNet, under different affine transformations applied to two 
examples of the GTSRB dataset [51]
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5.2 Robustness Against Adversarial Attacks 

Besides the vulnerability against affine transformations, the robustness against 
adversarial attacks is a key metric to analyze when evaluating the security. The 
CapsAttack methodology [51] evaluates the adversarial robustness of CapsNets and 
other DNNs under a novel adversarial attack generation algorithm (see Fig. 5) and 
analyzes in detail the output probability variations of single images under attack. 

5.2.1 Adversarial Attack Methodology 

The goal of an efficient adversarial attack is to generate imperceptible and robust 
examples to fool the network. An adversarial example can be defined imperceptible 
if the modifications of the original sample are so small that humans cannot notice 
them. Therefore, the perturbations added in high variance zones are less evident and 
more difficult to be detected, compared to the perturbations applied in low variance 
pixels. To measure the imperceptibility, we measure the distance D between the 
original sample X and the adversarial sample X*. This value indicates the total 
amount of perturbation added to all the pixels in the image. We also define . DMAX

as the maximum total perturbation tolerated by the human eye. 
Moreover, an adversarial example can be defined robust if the gap between 

the probability of the target class and the probability of the highest class is 
maximized. A gap increase makes the adversarial example more robust, since the 
modifications of the probabilities caused by the image transformations (e.g., resizing 
or compression) tend to be less effective. Indeed, if the gap is high, a small variation 
of the probabilities may not be sufficient to change the prediction. 

As shown in Fig. 5, the CapsAttacks methodology is based on an iterative 
procedure that automatically produces targeted imperceptible and robust adversarial 
examples in a black-box setting [51]. The input image is modified to maximize 

X* 
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X* 
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Fig. 5 The CapsAttacks methodology [51] to generate adversarial examples. The blue-colored 
boxes work towards fooling the network, while the yellow-colored boxes control the impercepti-
bility of the adversarial example
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the gap (imperceptibility) until the distance between the original image and the 
adversarial example is lower than .DMAX (robustness). The perturbations are applied 
to a set of pixels in the highest variation regions at every iteration to create 
imperceptible perturbations. Moreover, the algorithm automatically decides whether 
it is more effective to add or subtract the noise to maximize the gap according to the 
values of the two parameters .GAP(+) and .GAP(−). These mechanisms increase 
the imperceptibility and the robustness of the attack. 

5.2.2 Evaluation Results 

The CapsAttacks methodology is applied to the previously described CapsNet [36], 
LeNet [39] and VGGNet [93], tested on different examples of the GTSRB 
dataset [84]. 

The CapsNet is tested on two different examples, shown in Fig. 6a (Example 1) 
and Fig. 6e (Example 2). For the first one, we analyze two cases to test the 
dependence on the target class: 

• Case I: the target class is the class relative to the second-highest probability 
between all the initial output probabilities. 

• Case II: the target class is the class relative to the fifth-highest probability 
between all the initial output probabilities. 

The analyses of the examples in Case I and Case II lead to the following 
observations: 

1. The CapsNet classifies the input image shown in Fig. 6a as the “120 km/h speed 
limit” (S8) class with a probability equal to 0.0370. 
The target class for Case I is “Double curve” (S21) with a probability equal to 
0.0297. After 13 iterations, the image (in Fig. 6b) is classified as “Double curve” 
with a probability equal to 0.0339. Hence, the probability of the target class 
has overcome the initial one, as shown in Fig. 7a. At this iteration, the distance 
.D(X∗, X) is equal to 434.20. If we increase the number of iterations, the robust-
ness of the attack will increase as well since the gap between the two probabilities 
increases. However, the adversarial noise becomes more perceptible. Indeed, the 
distance at the iteration 16 overcomes .DMAX = 520 (see Fig. 6c). 

(a) (b) (c) (d) (e) (f) (g) 

Fig. 6 Images for the attack applied to the CapsNet: (a) Original input image of Example 1. 
(b) Image misclassified by the CapsNet at iteration 13 for Case I. (c) Image misclassified by the 
CapsNet at iteration 16 for Case I. (d) Image at iteration 12 for Case II. (e) Original input image of 
Example 2. (f) Image at iteration 5, applied to the CapsNet. (g) Image misclassified by the CapsNet 
at iteration 21
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Fig. 7 CapsNet results: (a) Output probabilities of Example 1—Case I: the blue bars represent 
the starting probabilities, the orange bars the probabilities at the point of misclassification, and 
the yellow bars at the . DMAX . (b) Output probabilities of Example 1—Case II: the blue bars 
represent the starting probabilities, and the orange bars the probabilities at the . DMAX . (c) Output 
probabilities of Example 2: the blue bars represent the starting probabilities, and the orange bars 
the probabilities at the . DMAX

For the Case II, the probability of the target class “Beware of ice/snow” (S30) 
is equal to 0.0249, as shown in Fig. 7b. The gap between the highest probability 
and the probability of the target class is larger than the gap in Case I. After 12 
iterations, the CapsNet still correctly classifies the image (see Fig. 6d). Indeed, 
Fig. 7b shows that the gap between the two classes is lower, but not enough for 
a misclassification. However, the distance at this iteration overcomes . DMAX =
520. This experiment shows that the algorithm would need more iterations to 
misclassify, at the cost of more perceivable perturbations. 

2. The CapsNet classifies the input image shown in Fig. 6e as the “Children 
crossing” (S28) class with a probability equal to 0.042. The target class, which 
is “60 km/h speed limit” (S3), has a probability equal to 0.0331. After 5 
iterations, the distance overcomes .DMAX = 250, while the network has not 
misclassified the image yet (see Fig. 6f), because the probability of the target 
class has not overcome the initial highest probability, as shown in Fig. 7c. 
The misclassification is noticed at the iteration 21 (see Fig. 6g). However, the 
perturbation is very perceivable. 

The same two examples are evaluated to compare the robustness of the CapsNet 
and the 9-layer VGGNet. For the Example 1, only Case I is analyzed as benchmark. 
Since the VGGNet classifies the input images with different output probabilities 
compared to the ones obtained by the CapsNet, the evaluation of how much the 
VGGNet is resistant to the attack is based on the gap measured at the same distance. 
To compare the robustness of the CapsNet and the 5-layer LeNet, we only analyze 
the Example 1, since the original Example 2 is incorrectly classified by the LeNet. 

From the results in Figs. 8 and 9, we can make the following observations: 

1. The VGGNet classifies the input image (in Fig. 8a) as the “120 km/h speed limit” 
(S8) class with a probability equal to 0.976. The target class, which is “100 km/h 
speed limit” (S7), has a probability equal to 0.021. After 3 iterations, the distance 
overcomes .DMAX = 520, while the VGGNet has not misclassified the image yet 
(see Fig. 8b) yet, since the two initial probabilities were very distant, as shown in 
Fig. 9a. The algorithm would need to perform 9 iterations (see Fig. 8c) to fool the 
VGGNet, where the probability of the target class is 0.483.
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(a) (b) (c) (d) (e) (f) (g) 

Fig. 8 Images for the attack applied to the DNNs: (a) Original input image of Example 1. (b) 
Image at iteration 3, applied to the VGGNet. (c) Image at iteration 9, misclassified by the VGGNet. 
(d) Original input image of Example 2. (e) Image at iteration 2, applied to the VGGNet. (a) Image  
at iteration 6, misclassified by the LeNet. (b) Image at iteration 13, misclassified by the LeNet 
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Fig. 9 DNNs results: (a) Output probabilities for the Example 1 on the VGGNet: the blue bars 
represent the starting probabilities, the orange bars the probabilities at the point of misclassifi-
cation, and the yellow bars at the . DMAX . (b) Output probabilities for the Example 2 on the 
VGGNet: the blue bars represent the starting probabilities, and the orange bars the probabilities 
at the . DMAX . (c) Output probabilities for the Example 1 on the LeNet: the blue bars represent 
the starting probabilities, the orange bars the probabilities at the point of misclassification, and the 
yellow bars at the . DMAX

2. The VGGNet classifies the input image (in Fig. 8d) as the “Children crossing” 
(S28) class with a probability equal to 0.96. The target class, which is “Beware of 
ice/snow” (S30), has a probability equal to 0.023. After 2 iterations, the distance 
overcomes .DMAX = 250, while the VGGNet has not misclassified the image yet 
(see Fig. 8e). As in the previous example, this behavior is due to the high distance 
between the initial probabilities, as shown in Fig. 9b. Note that the VGGNet 
reaches .DMAX in a lower number of iterations compared to the CapsNet. 

3. The LeNet classifies the input image (in Fig. 8a) as the “120 km/h speed limit” 
(S8) class with a probability equal to 0.672. The target class, which is “30 km/h 
speed limit” (S1), has a probability equal to 0.178. After 6 iterations, the LeNet 
is fooled, because the image (in Fig. 8f) is recognized as the target class with 
a probability equal to 0.339. The noise becomes perceptible after 13 iterations 
(Fig. 8g), where the distance overcomes .DMAX = 520. 

5.3 Discussion 

While it is highly complex to formalize generic conclusions, a common trend is that 
the CapsNets are more robust against adversarial attacks and affine transformation 
than DNNs with similar depth and number of parameters. These observations are 
aligned with similar works of Michels et al. [58] and Gu et al. [25].
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Concurrently, the CapsNets security has been analyzed from different perspec-
tives. The Vote Attack [26] is a method that directly perturbs the CapsNets by 
manipulating the votes from primary capsules. Qin et al. [70] proposed a method 
to detect adversarial examples using the CapsNet reconstruction network. 

These analyses and findings open several directions and strategies for deploying 
robust CapsNets in safety-critical applications. 

6 Security for Spiking Neural Networks 

SNNs are considered the third generation of neural networks [49] due to their high 
biological plausibility and similarities to the human brain. Compared to traditional 
DNNs, which are based on the computation of continuous values, SNNs process 
discrete spike trains in an event-based fashion. Hence, they exhibit great potential 
for deploying high-performance and energy-efficient ML algorithms [56, 90]. In 
terms of security, the different computational principles of SNNs offer unique vul-
nerabilities and potential optimizations for improving their robustness. In contrast 
to the well-established knowledge about DNN security, the robustness of SNNs is 
an ongoing research topic of high interest in the ML community. 

6.1 Comparison DNNs vs. SNNs 

The robustness evaluation of SNNs can be conducted by analyzing the comparison 
between an SNN and a (non-spiking) DNN having the same architectural model, 
i.e., the same number of layers, neurons per layer, and connections. While the DNN 
has traditional neurons with ReLU activation function, the SNN has LIF neurons 
with threshold voltage .Vth = 1 V . For these experiments, we use a 5-layer network 
with 3 convolutional layers and 2 fully connected layers on the MNIST dataset [39]. 
The DNN is trained using the PyTorch framework [66], while the SNN has been 
implemented and trained with the Norse framework [68]. The PGD attack [50] 
is applied to both networks using the Foolbox library [73]. Figure 10 shows the 
accuracy results of both networks when varying the value of adversarial noise budget 
. ε. While for low noise magnitude the DNN has slightly higher accuracy than the 
SNN, after the turnaround point of .0.5 ≤ ε ≤ 0.6, the opposite behavior is noticed. 
While the accuracy curve of the DNN decreases sharply, the SNN curve has a lower 
slope. For instance, when .ε = 1, the SNN accuracy is more than .50% higher than 
the DNN accuracy [16]. Such an outcome indicates that SNNs have the potential 
to be applied in security contexts due to their higher inherent robustness compared 
to traditional DNNs. These findings are aligned with recent works [5, 37, 52, 80] 
that demonstrate the SNNs’ higher robustness against security threats, and motivate 
deeper analyses on this topic.
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Fig. 10 Comparison between a DNN and an SNN with the same structure under the PGD attack 
with different values of the adversarial perturbation . ε (adapted from [16]) 

6.2 Improving the SNN Robustness Through Inherent 
Structural Parameters 

The previous analyses can be extended not only by exploring the SNN robustness 
for different adversarial perturbations but also by studying the impact of the SNN 
structural parameters, i.e., spiking threshold voltage .Vth and time window T . . Vth

represents the threshold to be compared with the spiking neuron’s membrane poten-
tial to decide whether or not to emit an output spike. T represents the observation 
period in which an SNN implemented with the rate-coding mechanism receives 
spike sequences associated with the same intensity value, which is associated with 
the firing rate. 

6.2.1 SNN Robustness Exploration Methodology 

Figure 11 shows the robustness exploration methodology, mainly composed of two 
steps: 

1. Learnability Analysis: Given the SNN architecture, the threshold voltage . Vi , and 
the time window . Tj , the training in the spiking domain is conducted. This step 
excludes the configurations of parameters that have low accuracy, by setting 
a minimum baseline accuracy level below which the SNN learning process is 
considered inefficient, since there is no interest in continuing the study on SNNs 
that do not converge. 

2. Security Analysis: For all the .(Vi, Tj ) tuples for which the SNN achieves high 
baseline accuracy, the security study is conducted. The adversarial examples 
are also generated based on the adversarial noise . ε, and the SNN robustness is 
evaluated. The parameter . ε models the strength of the attack, where a high value 
tends to reduce the SNN accuracy due to the higher perturbation budget given
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Fig. 11 Methodology for exploring the SNN robustness, varying the threshold voltage . Vth, the  
time window T , and the adversarial perturbation . ε [16] 

to the adversary. For every value of . ε, the robustness is computed as the inverse 
of the attack’s success rate, i.e., how many adversarial examples are correctly 
classified by the SNN. 

By observing the robust combinations of .(Vi, Tj ) during both the learnability and 
security analyses, a trustworthy SNN design is obtained at the output. 

6.2.2 SNN Robustness Evaluation 

The experiments were conducted using a 5-layer SNN similar to the LeNet-5 
architecture adapted for the spiking domain. It is trained for the MNIST dataset [39] 
with the Norse framework [68], and the PGD adversarial attacks are implemented 
using the Foolbox library [73]. Figure 12a shows the heat map relative to the 
learnability analysis. The variations of .Vth and T appear on the horizontal and 
vertical axes, respectively, while the color denotes the SNN accuracy. Compared to 
the default values, which are .(Vi, Tj ) = (1, 64), other combinations of parameters 
are explored and evaluated. While a high-accuracy region can be identified in 
the top-left corner (low . Vi , high . Tj ), the accuracy is not monotonic w.r.t. both 
parameters, since the SNN with .(Vi, Tj ) = (1.25, 56) has lower accuracy than the 
surrounding points. 

Figure 12b show the security analysis heat map for .ε = 1. A comparison between 
the two graphs indicates that high learnability (i.e., without adversarial attacks) 
does not guarantee high robustness. Indeed, different responses of the SNNs under 
adversarial attacks based on their respective structural parameters can be noticed. 
Two SNNs that have a comparable baseline accuracy may have different robustness.
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Fig. 12 Heat maps showing the SNN accuracy for the MNIST dataset using different combina-
tions of .(Vi, Tj ), based on the results in [16]. (a) Learnability analysis, equivalent of having .ε = 0. 
(b) Security analysis, for . ε = 1

For example, the SNN with .(Vi, Tj ) = (0.75, 72) has .91% accuracy under attack, 
and the SNN with .(Vi, Tj ) = (0.5, 80) has only .27% accuracy, while their baseline 
accuracy is equal to .97% for both combinations. 

Hence, studying the SNN security under different values of adversarial pertur-
bations is crucial to identifying robust combinations of threshold voltage and time 
windows, which contribute to enabling the deployment of SNNs for safety-critical 
applications. 

6.3 Adversarial Attacks and Defenses on Event-Based Data 

Along with the efficient implementation of SNNs on neuromorphic architectures 
(e.g., Intel Loihi [15] and IBM TrueNorth [57]), other advancements in the vision 
field have come from the event-based camera sensor, such as the dynamic vision 
sensors (DVS) [41]. Unlike classical frame-based cameras, the DVS cameras 
emulate the behavior of the human retina by recording the information in the form 
of spike event sequences, which are generated each time a change of light intensity 
is detected. As a consequence, SNNs processing event-based data are affected by 
different types of security vulnerabilities compared to frame-based data processing. 

Figure 13 provides an overview of the adversarial threat model used in this 
section. The frames of events recorded by a DVS camera are subjected to adversarial 
attacks, while DVS noise filters placed at the input of the neuromorphic hardware 
that executes SNN inference can mitigate the adversary perturbations.
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Fig. 13 Adversarial threat model for applying attack algorithms and noise filters on event-based 
SNNs. Figure adapted from [54] 

Algorithm 1: Gradient-based adversarial attack methodology for event-
based SNNs [54] 
1 Define M as a mask able to select only certain frames; 
2 Define D as a dataset composed of DVS images; 
3 Define P as a perturbation to be added to the images; 
4 Define prob as the output probability of a certain class; 
5 for  d in D do 
6 for  i in max_iteration do 
7 Add P to d only for the frames selected by M; 
8 Calculate the prevision on the perturbed input; 
9 Extract prob for the correspondent class of d; 
10 Update the loss as loss = −log(1 − prob); 
11 Calculate the gradients and update P ; 

6.3.1 Gradient-Based Attack for Event Sequences 

There exist different types of adversarial attacks and noise filters specific to 
event-based data. A gradient-based attack [54], described in Algorithm 1, is an  
iterative algorithm that progressively updates the injected perturbations into the 
event sequences based on the loss function (lines 7–11 of Algorithm 1) for each 
frame series of the dataset. After defining a mask in which the perturbation should be 
added (line 7), the output probability and its respective loss, obtained in the presence 
of the perturbation, are computed in lines 9 and 10, respectively. Afterward, the 
perturbation values are updated based on the gradients of the inputs with respect to 
the loss. 

6.3.2 Background Activity Filter for Event Cameras 

DVS sensors are mainly affected by noise caused by thermal noise and junction 
leakage current, which can be classified as a background activity. Since similar 
events are typically generated in a neighborhood of pixels, the real events have a 
higher spatio-temporal correlation than the noise events. Such empirical observation 
is exploited for generating the Background Activity Filter (BAF) [43, 53]. The



482 A. Marchisio et al.

Algorithm 2: Background activity filter for event sequences [53] 

1 Define E as a list of events of the form  (x, y, p, t); 
2 Define (xe, ye, pe, te) as the x coordinate, the y coordinate, the polarity, and the timestamp 

of the event e, respectively; 
3 Define M as a N × N matrix, where N is the size of the frames; 
4 Define S and T as the spatial and temporal filter’s parameters; 
5 Initialize M to zero; 
6 Sort E from the oldest to the newest event; 
7 for  e in E do 
8 for  i in (xe − S,xe + S) do 
9 for  j in (ye − S, ye + S) do 
10 if not (i == xe and j == ye) then 
11 M[i][j ] =  te; 

12 if te − M[xe][ye] > T  then 
13 Remove e from E; 

spatio-temporal correlation between events is computed. If such correlation is lower 
than a certain threshold, the events are filtered out since they are likely due to 
noise, while the events with higher correlations are kept. The methodology is 
reported in Algorithm 2, where S and T are the parameters of the filter that set the 
dimensions of the spatio-temporal neighborhood. Large S and T values imply that 
few events are filtered out. The filter’s decision is based on the comparison between 
.te − M[xe][ye] and T (lines 12–13 of Algorithm 2). The event is filtered out if the 
first term is lower. 

6.3.3 Evaluation of Gradient-Based Attack and Background Activity 
Filter 

The experiments are conducted by training the 4-layer SNN described in [82], 
with two convolutional layers and two fully connected layers, for the DvsGesture 
dataset [4] using the SLAYER backpropagation method [82]. Figure 14 shows the 
results for the gradient-based attack applied to the SNN. When it is not protected by 
the BAF, the attack is successful since the SNN accuracy drops to .15.15%. However, 
the BAF plays the role of a suitable defense since the accuracy remains higher than 
.90% for a wide range of values for the parameters s and t . At the extremes, for 
.t = 1, the accuracy is strongly affected by the parameter s, while for .t = 500 the 
SNN accuracy drops to less than .48%. 

The results relative to a case study in which the gradient-based attack is applied 
to the sequence of events of a sample of the DvsGesture dataset are shown in 
Fig. 15. The first row (Fig. 15a) shows the results for the clean event sequence, 
i.e., without attack and without filter. The SNN correctly classifies the frame as 
the class 2, which corresponds to the “left hand wave” label. The second row
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Fig. 14 Robustness evaluation for the SNN on the DvsGesture dataset, under the gradient-based 
attack and BAF filter. Based on the results in [54] 

(Fig. 15b) shows the outcome when the gradient-based adversarial attack is applied. 
The visible modifications in the event sequences are minimal, but the sample is 
misclassified by the SNN as the class 0, which corresponds to “hand clap.” The last 
row (Fig. 15c), relative to the scenario in which both the gradient-based attack and 
the BAF filter (with .s = 2 and .t = 5) are present, shows that the sequence is again 
correctly classified as the class 2 (“left hand wave”). It is worth noticing that several 
spurious events have been filtered out by the BAF, resulting in high SNN prediction 
confidence. 

6.3.4 Dash Attack for Event Sequences 

While the BAF filter is successful against the gradient-based attack, more sophisti-
cated adversarial attack algorithms can evade this protection. For instance, the Dash 
Attack [53] injects events in the form of a dash. Only two pixels are perturbed for 
each time step. It starts by targeting the top-left corner (lines 11–13 of Algorithm 3). 
Afterward, the x and y coordinates are updated to hit only two consecutive pixels 
(see lines 17–25 of Algorithm 3). Hence, this attack results difficult to spot since the 
injected spikes do not cause a large overhead on the whole sample. 

6.3.5 Mask Filter for Event Cameras 

Another type of filtering methodology for event sequences is represented by the 
Mask Filter (MF) [43, 53]. Algorithm 4 shows the MF technique, whose basic 
functionality is to filter out the noise on the pixels which have low temporal contrast.
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Fig. 15 Detailed results of an event sequence of the DVSGesture dataset labeled as “left hand 
wave.” (a) Clean event sequence. (b) Event sequence under the gradient-based adversarial attack, 
unfiltered. (d) Event sequence under the gradient-based adversarial attack and protected by the 
BAF filter with .s = 2 and .t = 5. Based on the results in [54] 

The activity of each pixel coordinate is monitored (lines 10–11 of Algorithm 4). If 
such activity exceeds the temporal parameter T , the mask is activated (lines 14– 
15 of Algorithm 4). After setting all the pixel coordinates of the mask, each event 
corresponding to a coordinate in which the mask is active is filtered out (lines 15–16 
of Algorithm 4). 

6.3.6 Evaluation of the Dash Attack Against Background Activity Filter 
and Mask Filter 

The Dash attack introduces perturbations that look very similar to the inherent 
background noise generated by the DVS camera recording the events. Therefore, 
they result difficult to be spotted. As shown in Fig. 16a, the accuracy of the SNN 
without filter under the Dash Attack drops to .0% for the DvsGesture dataset, while 
the BAF defense produces a slightly higher SNN accuracy. However, the accuracy 
peak of .28.41% achieved with the BAF with .s = 1 and .t = 10 is too low to 
consider the BAF as a good defense method against the Dash Attack. However, 
the MF represents a successful defense because the SNN accuracy is high for large 
values of T .
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Algorithm 3: Dash attack methodology [53] 

1 Define D as an event-based dataset made of (C × N × N × T )  tensors, where C is the 
number of channels, N is the size, and T is the duration of the sample; 

2 S is the list of the samples that compose D; 
3 xmin = 0; 
4 x = 0; 
5 y = 2; 
6 lef t = T rue; 
7 while  S is not empty do 
8 for  s in S do 
9 for  i in (0, N  − 1) do 
10 for j in (0, N  − 1) do 
11 if i == x ∧ (lef t ∧ (j == y ∨ j == y − 1) ∨ lef t 
12 ∧(j == N − y ∨ j == N − y + 1)) then 
13 s[:, i, j, :] = 1; 

14 The perturbed sample s is fed into the SNN, which produces a prediction P ; 
15 if P is incorrect then 
16 Remove s from S; 

17 if x == xmin then 
18 x = N − xmin − 1; 
19 else 
20 lef t = lef t ⊕ 1; 
21 x = xmin; 
22 if lef t then 
23 y = y + 1; 

24 if y >  N/2 then 
25 xmin = xmin + 1; 

6.3.7 Mask Filter-Aware Dash Attack for Event Sequences 

The main drawback of the Dash attack is its intrinsic weakness against the MF. In 
fact, it targets the same pixels for the complete sample duration. This highlights 
which pixels are targeted by the attack. Indeed, the number of events produced by 
the affected pixels is significantly higher than the events associated with the other 
pixel coordinates not hit by the attack. In addition, it mainly injects events on the 
boundaries of the images, which do not tend to overlap with useful information 
that is typically centered. Hence, by hitting the perimeter of the frames, there is a 
low risk of superimposing adversarial noise to the main subject. These observations 
explain the success of the MF in restoring the original SNN accuracy. The perturbed 
pixels are easily identifiable due to their high number of events, and the filter does 
not remove useful information, since the modifications are mainly conducted at the 
edge of the image. Based on these premises, the Mask Filter-Aware Dash Attack
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Algorithm 4: Mask filter for event sequences [53] 

1 Define E as a list of events of the form  (x, y, p, t); 
2 Define (xe, ye, pe, te) as the x coordinate, the y coordinate, the polarity, and the timestamp 

of the event e, respectively; 
3 Define M as a N × N matrix, where N is the size of the frames; 
4 Define activity as a N × N matrix, representing the number of event produced by each 

pixel; 
5 Define T as the temporal threshold passed to the filter as a parameter; 
6 Initialize activity to zero; 
7 for  x in (0, N  − 1) do 
8 for  y in (0, N  − 1) do 
9 for  e in E do 
10 if (x, y) == (xe, ye) then 
11 activity[x][y]+ = 1; 

12 if activity[x][y] > T  then 
13 M[x][y] =  1; 

14 for e in E do 
15 if M[xe][ye] ==  1 then 
16 Remove e from E; 

(a) Dash A�ack Mask FilterBackground Ac�vity Filter 

Mask FilterBackground Ac�vity Filter(b) MF-Aware Dash A�ack 

Low accuracy Weak defense MF is a good defense 
for large T values 

Low accuracy for t ≥ 5 
Low accuracy 

for T ≥ th 

20% lower 
than original 

Fig. 16 Evaluation of DVS attacks for the SNN on the DvsGesture dataset, under the BAF and 
Mask filters, based on the results in [53]. (a) Results for the Dash Attack. (b) Results for the  
MF-Aware Dash Attack 

has been designed, aiming at being resistant to the MF. It receives as a parameter 
th  that sets a limit on the number of frames that can be changed for each pixel (line 
14 of Algorithm 5). Therefore, the algorithm hits a couple of pixels, as in the case 
of the Dash Attack. However, after injecting events into th  frames, it moves to the 
following pixel coordinates (lines 17–19 of Algorithm 5). The visual effect created 
by the MF-Aware Dash Attack is that of a dash moving along a line. A smaller th  
implies a faster movement of the dash across the image.
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Algorithm 5: Mask filter-aware dash attack methodology [53] 

1 Define D as an event-based Dataset made of (2 × N × N × T )  tensors, where N is the 
frame dimensions, and T is the sample duration; 

2 Define S as the list of the samples that compose D; 
3 Define th  as the parameter associated the activity threshold of the Mask Filter; 
4 Initialize x = 0; 
5 Initialize y0 = 2; 
6 Initialize lef t = T rue; 
7 while  S is not empty do 
8 for  s in S do 
9 th  = th0; 
10 y = y0; 
11 for t in T do 
12 for i in (0, N  − 1) do 
13 for j in (0, N  − 1) do 
14 if i == x ∧ t <  th ∧ (lef t ∧ (j == y ∨ j == y − 1) 
15 ∨ lef t ∧ (j == N − y ∨ j == N − y + 1)) then 
16 s[0, i, j, t] =  1; 

17 if t == th  then 
18 th  = th  + th0; 
19 y = y + 2 

20 The perturbed sample s is fed into the SNN, which produces a prediction P ; 
21 if P is incorrect then 
22 Remove s from S; 

23 if x == 0 then 
24 x = N − 1; 
25 else 
26 lef t = lef t ⊕ 1 x = 0 if lef t then 
27 y0 = y0 + 1; 

6.3.8 Evaluation of the Mask Filter-Aware Dash Attack Against 
Background Activity Filter and Mask Filter 

Figure 16b shows the results relative to the experiments conducted for the MF-
Aware Dash Attack, with different values of the parameter th. While the visibility 
of the injected noise on the DvsGesture dataset, reported for .th = 150, is similar 
to the Dash Attacks, the behavior of the MF-Aware Dash Attack in the presence of 
noise filters is much different. The accuracy of the SNN under attack without filter is 
very low (up to .7.95% for .th = 50. The SNN defended by the BAF shows discrete 
robustness, in particular, when .s = 3 and .t = 1. In such a scenario, the accuracy 
reaches .59.09% against the MF-Aware Dash Attack with .th = 50. However, when 
.t ≥ 5, the SNN accuracy is lower than .31.44%. The key advantage compared 
to the Dash Attack resides in the behavior of the MF-Aware Dash Attack in the 
presence of the MF. If .T ≥ th, the SNN accuracy becomes lower than . 23.5%. On
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the contrary, the behavior for .T < th is similar to the results achieved for the Dash 
Attack. For example, the MF-Aware Dash Attack with .th = 50 achieves . 71.21%
accuracy for .T = 25, which is .20.83% lower than the original SNN accuracy. These 
results demonstrate that noise event filters such as the BAF and the MF significantly 
improve the SNN robustness against adversarial attacks. However, an adversarial 
attack algorithm specifically designed for being resistant to the MF, such as the MF-
Aware Dash Attack, has the potential to break the noise filter defense for a good 
choice of its parameter th. 

7 Conclusion 

Despite being employed at a large scale, ML models are vulnerable to security 
threats. Therefore, several defensive mechanisms have been explored to increase 
their robustness. This chapter presented an overview of ML security, focusing on 
emerging architectures, such as DNNs, CapsNets, and SNNs. The high complexity 
of these models requires dedicated methodologies to investigate their trustwor-
thiness. The analyses conducted in this chapter demonstrated that CapsNets are 
more robust than traditional DNNs against affine transformations and adversarial 
attacks. SNNs are inherently more robust than non-spiking DNNs, and such inherent 
robustness can be enhanced by fine-tuning their structural parameters, like the 
spiking voltage threshold and the time window. Moreover, event-based SNNs can 
be protected through noise filters for event sensors, like the Background Activity 
Filter and the Mask Filter. However, when properly tuned, advanced event-based 
adversarial attack methodologies, such as the Mask Filter-Aware Dash Attack, can 
cause significant accuracy drops in SNNs. 
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